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METHODOLOGY ARTICLE Open Access

Development of an indirect ELISA, blocking
ELISA, fluorescent microsphere
immunoassay and fluorescent focus
neutralization assay for serologic evaluation
of exposure to North American strains of
Porcine Epidemic Diarrhea Virus
Faten Okda1,2, Xiaodong Liu1, Aaron Singrey1, Travis Clement1, Julie Nelson1, Jane Christopher-Hennings1,
Eric A. Nelson1 and Steven Lawson1*

Abstract

Background: Recent, severe outbreaks of porcine epidemic diarrhea virus (PEDV) in Asia and North America
highlight the need for well-validated diagnostic tests for the identification of PEDV infected animals and evaluation
of their immune status to this virus. PEDV was first detected in the U.S. in May 2013 and spread rapidly across the
country. Some serological assays for PEDV have been previously described, but few were readily available in the U.S.
Several U.S. laboratories quickly developed indirect fluorescent antibody (IFA) assays for the detection of antibodies
to PEDV in swine serum, indicating prior exposure. However, the IFA has several disadvantages, including low
throughput and relatively subjective interpretation. Different serologic test formats have advantages and
disadvantages, depending on the questions being asked, so a full repertoire of tests is useful. Therefore, the
objective of this study was to develop and validate multiple improved serological assays for PEDV, including an
indirect ELISA (iELISA); a highly specific monoclonal antibody-based blocking ELISA (bELISA); fluorescent
microsphere immunoassays (FMIA) that can be multiplexed to monitor exposure to multiple antigens and
pathogens simultaneously; and a fluorescent focus neutralization assay (FFN) to measure functional virus
neutralizing antibodies.
(Continued on next page)
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Results: A recombinant North American nucleoprotein (NP) based iELISA was developed and validated along with
a bELISA using newly developed PEDV-NP specific biotinylated monoclonal antibodies (mAbs) and an FMIA using
magnetic beads coupled with expressed NA PEDV-NP. Receiver operating characteristic (ROC) analysis was
performed using swine serum samples (iELISA n = 1486, bELISA n = 1186, FMIA n = 1420). The ROC analysis for the
FMIA showed estimated sensitivity and specificity of 98.2 and 99.2 %, respectively. The iELISA and bELISA showed a
sensitivity and specificity of 97.9 and 97.6 %; and 98.2 and 98.9 %, respectively. Inter-rater (kappa) agreement was
calculated to be 0.941 between iELISA and IFA, 0.945 between bELISA and IFA and 0.932 between FMIA and IFA.
Similar comparative kappa values were observed between the iELISA, bELISA and FMIA, which demonstrated a
significant level of testing agreement among the three assays. No cross-reactivity with the closely related
coronaviruses, transmissible gastroenteritis virus (TGEV) or porcine respiratory coronavirus (PRCV) was noted with
these assays. All three assays detected seroconversion of naïve animals within 6–9 days post exposure. The FFN
assay allows relative quantitation of functional neutralizing antibodies in serum, milk or colostrum samples.

Conclusion: Well-validated iELISA, bELISA and FMIA assays for the detection of PEDV antibodies were developed
and showed good correlation with IFA and each other. Each assay format has advantages that dictate how they
will be used in the field. Newly developed mAbs to the PEDV-NP were used in the bELISA and for expediting FFN
testing in the detection and quantitation of neutralizing antibodies. In addition, these PEDV mAbs are useful for
immunohistochemistry, fluorescent antibody staining and other antigen-based tests. Measurement of neutralizing
antibody responses using the FFN assay may provide a valuable tool for assessment of vaccine candidates or
protective immunity.

Keywords: Porcine epidemic diarrhea virus (PEDV), Serology, ELISA, Fluorescent microsphere immunoassay (FMIA),
Fluorescent Focus Neutralization (FFN)

Background
Porcine epidemic diarrhea virus (PEDV) was first described
in Europe in the 1970s with more recent and severe out-
breaks in Asia [1, 2]. The virus was identified in the United
States in May 2013, causing severe diarrhea and vomiting
in pigs across age groups, with high mortality of up to 90
−95 % in suckling pigs [3]. PEDV is an enveloped, single
stranded RNA virus belonging to the Coronaviridae family.
The coronaviruses taxonomically form a subfamily (Coro-
navirinae) within the order Nidovirales. Recently, the
International Committee on Taxonomy of Viruses (ICTV)
recognized four genera within the Coronavirinae subfam-
ily: Alphacoronavirus, Betacoronavirus, Gammacorona-
virus, and Deltacoronavirus [4]. PEDV belongs to the
genus Alphacoronavirus along with other swine viruses
including transmissible gastroenteritis virus (TGEV) and
porcine respiratory coronavirus (PRCV).
The genome is composed of a large ~28 Kb molecule

consisting of a 5′ untranslated region (UTR), a 3′ UTR,
and at least seven open reading frames (ORFs) encoding
three nonstructural proteins: ORF1ab (pp1a and pp1ab)
and ORF3, an accessory protein. The four major struc-
tural proteins of the mature virion include the spike (S)
glycoprotein (Mr 150–220 kDa), the nucleoprotein (NP)
(Mr 45–57 kDa) that is associated with the positive
stranded RNA providing integral support for its helical
structure, the glycosylated membrane protein (M) (Mr

20–30 kDa), and the glycosylated envelope protein (E)
(Mr 7 kDa) [5–7].
Coronaviruses are taxonomically assigned to different

genera based on their rooted phylogeny and calculated
evolutionary distance for seven highly conserved gen-
omic domains within ORF 1ab [8]. The genetic diversity
of coronaviruses may be due to their high frequency of
recombination [9]. The heterogeneity among corona-
virus subfamilies is well documented [7], and the factors
that contribute to PEDV’s ability to gain or lose parts of
its transcriptome are believed to have contributed to
quasispecies with novel traits that are able to adapt to
new hosts, ecological niches and zoonotic events. The
exact origin of PEDV in North America is not entirely
clear, but there is evidence of genetic similarities to
Chinese PEDV strains [10].
Recently, a novel NA PEDV recombinant strain was

identified (S INDEL) containing both insertions and dele-
tions within the N-terminal domain of the ORF 3 and S1
genes. Specifically, sequence alignment indicated spike
gene nucleotide deletions at positions 164–169 that cor-
respond to amino acid deletions at positions 55 and 56 in
addition to substitutions at positions 23 (I), 31 (H), 57 (K),
and 59 (E) as compared to the CV777strain [10, 11].
The relatedness of several PEDV strains circulating in

China was evaluated by Li et al. [5] using phylogenic
analysis of the NP gene and no insertions or deletions
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were noted. Sequence comparison with other European
and Korean PEDV strains obtained from GenBank
indicated that the NP genes were highly conserved
(94.7−97.7 %) even though these strains originated from
different geographic regions [5]. In addition to being
highly conserved among PEDV variants, the NP is the
most abundant viral protein expressed in PEDV infected
cells [12, 13]. In contrast, the spike protein is presented
on the viral surface and subject to various host immune
pressures, which predisposes it to a greater range of gen-
etic heterogeneity including insertions and deletions.
Because the NP protein is highly abundant in virus
infected cells, it provides an attractive target for the
development of antigen-based serological assays. Taken
together, this evidence provided rationale for using it as
our antigen of choice for the iELISA, bELISA and FMIA.
In response to the recent outbreaks of highly virulent

PEDV in North America (NA), PCR assays were quickly
developed to detect the presence of PEDV RNA in intes-
tine or fecal material. These assays provide an important
tool in control of the virus; however, well-validated,
high-throughput assays to detect antibodies following in-
fection would provide additional valuable diagnostic
tools for the swine industry. The ability to detect and
evaluate antibody responses using serologic tests is im-
portant in efforts to answer basic production related
questions. These questions may include whether a pro-
duction site is naïve or has historically experienced a
PEDV exposure, even though a producer has not seen
obvious clinical signs; the level of immune response
sows may have in relation to vaccination, initial wild-
type virus infection or intentional feedback exposure;
and whether sow immunity is inadequate when clinical
infection occurs in individual litters after initial PEDV
exposure in a herd.
One of the most pressing issues of PEDV disease is

maintaining herd site biosecurity through exclusion
measures to prevent viral entrance into swine units.
However, PEDV infection may not always be obvious in
finishing pigs so the widespread transport of these ani-
mals may represent additional risks. Thus, sensitive sero-
logical tests provide a valuable tool in the detection of
recent infection to avoid the introduction of these ani-
mals into naïve herds.
Since PEDV was widespread in Europe in the 1970s

and 1990s and more recently in Asia, various serologic
tests have been developed and subjected to varying de-
grees of validation [14–20]. However, few assays have
been developed using antigens associated with contem-
porary strains currently circulating across NA. The need
to develop more sensitive serological assays has become
paramount in order to address questions regarding
PEDV infections and epidemiological transmission pat-
terns, as well as to analyze disease progression.

Currently, serum virus neutralization (SVN) tests are
the most widely employed serological assays used to
detect PEDV antibodies. It is a test that is highly specific
and useful for screening of antibody titer post vaccination
[1, 16]. However, the test is expensive and labor intensive,
requiring manual reading and interpretation of virus in-
duced cytopathic effect (CPE) endpoints. Moreover, serum
cytotoxicity can be mistaken for viral CPE, giving rise to
false interpretations at lower serum dilutions.
Several laboratories have generated in-house indirect

ELISAs using either virus derived antigen or recombinant
structural proteins. Early indirect ELISAs were developed
using Vero cell derived, whole virus preparations [15, 21]
or Vero cell expressed viral proteins [16]. These methods
may be problematic because serum from animals vacci-
nated with cell culture derived PEDV may cross-react with
cellular components of ELISA antigen, causing low speci-
ficity and high background. Other groups have used
recombinantly expressed, purified, structural S and NP
proteins for iELISA serodiagnosis, but because low num-
bers of experimentally derived samples were used to
evaluate the performance of the assay, full validation of
the diagnostic sensitivities and specificities could not be
assessed [19, 20].
Both the iELISA and bELISA formats have proven use-

ful for the serodiagnosis of experimental and natural in-
fections. Blocking or competitive ELISAs have been
shown to be especially useful where a higher level of
specificity is required. The increased specificity has been
shown to be dependent on both the isotype and on the
target specificity of the monoclonal or polyclonal anti-
bodies [6, 17, 22]. Various laboratories have developed
sensitive blocking ELISAs, and Carvajal et al. [17] dem-
onstrated their bELISA was able to detect an antibody
response 3 to 5 days earlier than IFA, which suggested
higher sensitivity of the bELISA. In addition, the bELISA
is valuable as a confirmatory test where unexpected
positive results appear in presumably negative herds.
The fluorescent microsphere immunoassay is based on

fluidic, particle array technology (Luminex Corp., Austin,
TX) and has become increasingly standardized and ac-
cepted in applications involving the serologic diagnosis of
autoimmune and animal infectious diseases [23, 24].
There are distinct advantages of the FMIA over the
ELISA, which include higher sensitivity, higher sample
throughput analysis, and the ability to multiplex and
monitor exposure to multiple pathogens simultaneously
in a single sample. In addition, multiple bead sets in the
FMIA could be added to a standardized assay against
newer virus subtypes that continue to emerge in the field
or to assess antigenic/phylogenetic differences between
genera of coronaviruses.
In this study, we report the adaptation of a recombin-

ant, highly purified, NA PEDV-NP antigen to the
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development of iELISA, bELISA and FMIA platforms
for the detection of PEDV antibodies in serum. These
assays provide high throughput serological tests de-
signed to address PEDV disease diagnostics. They were
fully validated using a large number of serum samples of
known status, and validation of the tests was detailed
using methods for the validation of serological assays for
the diagnosis of infectious diseases previously described
by Jacobson for the Office International des Epizooties
[25]. In addition, a fluorescent focus neutralization
(FFN) assay was developed for the rapid evaluation of
neutralizing antibody responses.

Methods
Ethics Statement
Procedures involving animals were approved by the
South Dakota State University Institutional Animal
Care and Use Committee (IACUC) under approval
numbers 13-054A and 04-A034. Time course swine
serum samples provided by Kansas State University
were part of a separate PEDV challenge study con-
ducted at the Biosecurity Research Institute approved
by the Kansas State University Institutional Animal
Care and Use Committee. All other serum samples
were obtained as routine diagnostic sample submis-
sions at the South Dakota ADRDL.

Animal samples for assay validation and time-course sero-
logical evaluation
For time course studies, serum samples from experi-
mentally infected animals were obtained courtesy of
Dr. Richard Hesse (Kansas State University Veterinary
Diagnostic Laboratory, National Pork Board Grant
#13-228). Thirty-three PEDV naïve 3-week-old feeder
pigs were obtained from a private, high-health status
swine production farm. . Of the 33 pigs, 23 were in-
oculated with PEDV at 4 weeks of age via intranasal
and oral routes with a pool of gut derived intestinal
contents that had been used as “feedback” inocula for con-
trolled exposure of a sow herd. Serum was collected prior
to challenge and at days 0, 6, 9, 14, 21, 28, 35 and 43 days
post-infection (DPI). Multiple aliquots of all samples col-
lected were shared with requesting laboratories to expand
diagnostic testing and vaccine development capabilities.
To accurately assess the diagnostic sensitivity and spe-

cificity of the assays, samples of known serostatus for
PEDV were used. This included sera from multiple ani-
mal populations including experimentally infected ani-
mals and serum samples from animals with known
historical exposure to PEDV that were submitted to the
South Dakota Animal Disease Research and Diagnostic
Laboratory (ADRDL). PEDV negative sample sets in-
cluded samples from PEDV negative control pigs used in
experimental studies and selected high biosecurity herds

with no history of PEDV. In addition, archived serum
samples collected prior to the emergence of PEDV in
the U.S., including samples testing positive for the re-
lated swine coronaviruses TGEV and PRCV (n= > 50),
were used. The exact number of positive and negative
sera used for sensitivity and specificity calculations per
assay with statistical testing agreement calculations
based on serum numbers is listed in Table 1. The major-
ity of these sera were identical among assays, but limited
serum volume did not allow for use of all sera samples
among all assays.

Antigen production, expression of recombinant PEDV-NP
protein
The development and validation of the iELISA and
bELISA made use of a recombinantly expressed full
length NA PEDV-NP. The NP open reading frame
(ORF) of PEDV was amplified from RNA extracted dir-
ectly from intestinal contents by RT-PCR from a case
submitted to the South Dakota ADRDL. It was subse-
quently directionally cloned into the E. coli, pET 28a(+),
plasmid expression vector (Novagen, Madison, WI), then
transformed into BL21-Codon Plus (DE3)-RP competent
cells (Stratagene, La Jolla, CA) for protein expression.
Primers used for the amplification of the full length
(1323 bp) nucleoprotein were: PEDV-NP-fwd (5′-CG
CGGATCCATGGCTTCTGTCAGTTTTCAG-3′); PED
V-NP-rev (5′- CACACTCGAGATTTCCTGTGTCGAA
GATCTC-3′). Next, 20 μl of transformed cells were
plated onto Luria-Bertani agar plates containing 50 μg of
kanamycin/ml and incubated overnight. The following
morning, colonies from the agar plates were added to
1 L of pre-warmed 2X yeast extract tryptone (YT) cul-
ture medium containing 50 μg kanamycin/ml and
allowed to grow to an OD600 of 0.5 at 37 °C. PEDV-NP
expression was induced using isopropyl β-D-1-thio-
galactopyranoside (IPTG) at a final concentration of
1.0 mM to induce transcription of the Lac operon, and
the E. coli was allowed to incubate for an additional 8 h

Table 1 Evaluation of statistical agreement among serological
testing platforms. Multiple comparison, inter-rater agreement
(kappa association) was calculated among all four tests. Kappa
values shown represent a statistical measure of test agreement
and were calculated using MedCalc version 11.1.1.0

FMIA bELISA Indirect ELISA IFA

IFA 0.932 0.945 0.941 1

iELISA 0.919 0.923 1 0.941

bELISA 0.941 1 0.923 0.945

FMIA 1 0.941 0.919 0.932

Number Positive Serum Samples 158 158 158 158

Number Negative Serum Samples 361 361 361 361

Total Serum Samples Tested 519 519 519 519
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at 37 °C with shaking at 200 RPM. The agar was strained
out and bacteria pelleted by centrifugation at 12,000 g
for 10 min at 4 °C. The pellet was resuspended in 40 ml
of lysis buffer solution (B-PER, Pierce, Rockford, IL), in-
cubated for 15 min at 20–22 °C, then centrifuged at
12,000 g to separate the soluble from insoluble proteins.
The PEDV-NP recombinant protein was expressed as in-
soluble periplasmic inclusion bodies. The resulting 441
amino acid recombinant protein was denatured using 8 M
urea, subsequently purified three times using nickel-NTA
affinity column chromatography and refolded back to its
native conformational state. Individual affinity column
elutions were collected, pooled and confirmed by SDS-
PAGE, then aliquoted/frozen at −80 °C. The correct
nucleotide sequence was confirmed by sequence and
restriction endonuclease analysis. The average protein
yield produced by the pET28a-PEDV-NP plasmid con-
struct was calculated to be 11 mg PEDV-NP per liter
of 2XYT under the aforementioned conditions. The
recombinant protein was detected and a predicted
molecular weight of 51 kDa was confirmed via
Western Blotting using convalescent sera, a 6X histidine-
specific mAb (Novagen, Madison, WI) and a PEDV-NP
specific mAb (Figs. 1 and 2).

mAb production and biotinylation
Two separate mAbs were developed in our laboratory
(SD6-29 and SD17-103) that recognize both the native
conformation of the PEDV-NP and the full length, linear,
recombinant protein used in all antibody capture assays.
Hybridomas were produced as previously described
[26, 27]. Immunoglobulin isotyping of the resulting
mAbs was performed using a commercial lateral flow
assay (Serotec, Raleigh, NC). Subsequently, mouse as-
cites fluid was produced in pristane-primed mice, and the
antibodies were purified and biotinylated for use as the de-
tection moiety for the bELISA [23]. The conjugated anti-
body solution was quantified via the Lowry protein
method, and carrier BSA was added to a final concentra-
tion of 10 mg/ml, then aliquoted and stored at −20 °C.

IFA
Vero-76 cells (ATCC CRL-1587) were cultured with
MEM+ 10 % FBS for 48–72 h until fully confluent in
96-well plates, then washed twice with MEM. Subse-
quently, alternating rows of 96-well plates were inocu-
lated with the cell culture adapted PEDV NVSL-CO
strain of PEDV (PEDV USA/Colorado/2013, GenBank
accession number KF272920) at a multiplicity of infec-
tion (MOI) of 0.05 with MEM supplemented with
1.5 μg/ml trypsin (TPCK treated, bovine derived (Sigma,
St. Louis, MO)). After incubation at 37 °C for 20–24 h,
monolayers were fixed with 80 % acetone for 20 min.
Serum samples were initially serially diluted from 1:40 to
1:320 with PBS in duplicate wells, and 100 μls of the di-
luted serum were added to each well. The plates were
incubated at 37 °C for 1 h and then rinsed 3X with PBS.
Next, fluorescein isothiocyanate (FITC)-conjugated goat
anti-swine IgG (KPL, West Chester, PA) was prepared at
a dilution of 1:15 with PBS and 50 μl added to each well.

Fig. 1 Purification of antibody capture antigen. SDS-PAGE/Coomassie
blue staining of E. coli expressed and purified NA PEDV-NP antigen
used to coat ELISA microtiter plates and FMIA microspheres. Molecular
weight ladder (MW) PEDV-NP (51 kDa)

Fig. 2 Antigen/antibody specificity. Western blot analysis showing
detection of recombinant expressed NA PEDV-NP protein and
specificity of the monoclonal antibody used in the bELISA. L- Molecular
weight ladder. A- anti-PEDV-NP mAb 6–29. B- anti-polyhistidine mAb.
C- anti PEDV-NP convalescent swine serum

Okda et al. BMC Veterinary Research  (2015) 11:180 Page 5 of 14



After 1 h of incubation at 37 °C, plates were rinsed 3X
with PBS and examined using fluorescent microscopy. For
each individual test, each PEDV infected well was com-
pared to its respective uninfected partner well, and a posi-
tive sample was indicated if a PEDV specific fluorescent
signal was observed at a serum dilution of 1:40 or greater.
All samples were tested in duplicate, and the antibody titer
was expressed as the mean of all replicates.

iELISA
The serological PEDV-NP indirect ELISA was performed
by coating alternate wells of Immulon 1B, 96-well, mi-
crotiter plates (Thermo Labsystems, Franklin, MA) with
250 ng/well of purified, recombinantly expressed PEDV-
NP antigen. The optimal dilution of the recombinant
protein and secondary detection antibody was deter-
mined by a checkerboard titration that gave the highest
signal to noise ratio. In addition, a single lot of pooled
convalescent serum from PEDV infected pigs was used
to generate quality control standards that gave high and
low optical density (high OD = 2.0 to 2.5; low OD = 0.5
to 1.0; and negative OD < 0.2). PEDV-NP recombinant
protein was diluted to 2.5 μg/ml in 15 mM sodium
carbonate-35 mM sodium bicarbonate- antigen coating
buffer (ACB) pH 9.6. Odd-numbered columns were
coated with 100 μl of ACB plus antigen, while the even-
numbered columns were coated with ACB without anti-
gen, serving as background control. The plates were
incubated for one hour at 37 °C, then washed 3X with
PBS plus 0.05 % tween20 (PBST). Each well was then
blocked with 200 μl of sample milk diluent (PBST plus
5 % nonfat dry milk, (SMD)) and allowed to incubate
overnight at 4 °C. The following day, the plates were
washed 3X with 300 μl of PBST. Test and control sera
were diluted 1/50 in SMD, mixed, and 100 μl of the so-
lution was added to each well. The plates were incubated
for 1 h at 20–22 °C. Next, 100 μl of biotinylated, goat
anti-swine detection antibody (Bethyl Laboratories, TX)
was added at a concentration of 200 ng/ml of PBST and
allowed to incubate at 20–22 °C for 1 h. The plate was
washed 3X with 300 μl of PBST, then 100 μl of
streptavidin-HRP conjugate (Pierce, Rockford, IL) was
added and incubated for another hour at 20–22 °C, then
washed and developed with 3,3′,5,5′- tetramethylbenzi-
dine, peroxidase substrate (TMB) (Surmodics, Eden
Prairie, MN). Color development progressed until the
positive control attained a standard OD and was stopped
using 2 N H2SO4. Colorimetric development was quanti-
fied spectrophotometrically at 450 nm with a ELx800
microplate reader (BioTek Instruments Inc., Winooski,
VT) controlled by XCheck software (Idexx Laboratories,
Westbrook, ME). The raw data was normalized and
transformed into an Excel spreadsheet. Sample to Posi-
tive (S/P) ratios were calculated using the following

formula: S/P = optical density (OD) of sample - OD of
buffer/OD of positive control - OD of buffer.

bELISA
The serological bELISA was performed using Immulon
1B, 96-well microtiter plates (Thermo Labsystems,
Franklin, MA). Alternate wells of each plate were coated
with 500 ng per well of expressed PEDV-NP antigen.
The optimal dilution of the recombinant protein and
mAb antibody was determined by a checkerboard titra-
tion that gave the highest signal to noise ratio with an
OD reading of approximately 2.0, in the absence of
swine serum/competitor antibody. First, PEDV-NP re-
combinant protein was diluted to 2.5 μg/ml of ACB.
Odd-numbered columns were coated with 100 μl of
ACB plus antigen, while the even-numbered columns
were coated with ACB without antigen serving as back-
ground control. The plates were incubated for 1 h at
37 °C, washed 3 times with PBST, then placed at 4 °C
overnight. The following day, each well was blocked with
300 μl of SMD and incubated one hour at 37 °C. Plates
were washed 3 times with PBST, and 100 μl of test and
control sera were diluted 1/3 with PBST + 0.1 % nonfat
dry milk and added to each of the duplicate wells. Plates
were incubated 1 h at 37 °C. During sample incubation,
PEDV-NP specific biotinylated, mAbs (SD6-29 and
SD17-103) were adjusted to equal titers and mixed to-
gether in a 1:1 ratio. Next, 100 μl of a 1:40,000 dilution
of the antibody detection mixture was added to the
microtiter plate containing the competitive swine anti-
body, then swirled and incubated for an additional
30 min at 37 °C. The plates were washed 3 times, and
100 μl of high sensitivity, streptavidin-horseradish perox-
idase conjugate (Pierce, Rockford, IL) was added to all
wells of the microtiter plate for 1 h at 37 °C.
Plates were washed 4 times with PBST, and 100 μl of

TMB was added to all wells and gently swirled. After ap-
proximately15 min, color development progressed until
the negative control attained a standard OD of approxi-
mately 2.0 and was subsequently stopped using 2 N
H2SO4. Colorimetric development was quantified spec-
trophotometrically at 450 nm with an ELx800 micro-
plate reader (BioTek Instruments Inc., Winooski, VT)
controlled by XCheck software (Idexx Laboratories,
Westbrook, ME). The raw data was normalized and
transformed into a Excel spreadsheet, and the percent
inhibition (PI) ratio was calculated using the following
formula: PI = 1-{(OD of sample - OD of buffer)/(OD of
negative control – OD of buffer)} X 100.

Preparation of PEDV-NP coupled microspheres for the FMIA
A two-step carbodiimide coupling procedure was used
to couple NA PEDV-NP protein to Luminex™ micro-
spheres. Briefly, the coupling of fluorescent microsphere
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was performed by washing 3.125 × 106 microspheres
twice with 250 μl activation buffer (0.1MNaH2PO4,
pH6.2) and sonicating them for 60 s after each wash.
Microspheres were activated for 20 min at 20–22 °C in
500 μl activation buffer containing 2.5 mgN-hydroxysul-
fosuccinimide (sulfo-NHS) and 2.5 mgN-(3- dimethylami-
nopropyl)-N-ethylcarbodiimide (EDC) (Pierce Chemical,
Rockford, IL). Activated microspheres were washed twice
with PBS and sonicated. Coupling was initiated by the
addition of 12.5 μg of recombinant NA PEDV-NP protein,
brought to a final volume of 500 μl with PBS and incu-
bated in the dark for 3 h at 20–22 °C with rotation.
Coupled microspheres were washed once with 1 ml of
PBS plus 0.05 % NaN3 and 1.0 % bovine serum albumin
(PBS-NB). Next, the microspheres were blocked with 1 ml
of PBS-NB for 30 min to reduce nonspecific binding.
Microspheres were then washed twice with PBS-NB and
resuspended in PBS-NB to a final concentration of
2.0 × 106 antigen-coupled microspheres/ml.

FMIA
A 96-well hydrophilic membrane filter plate was blocked
for 2 min with 150 μl of PBS-NB, and then the liquid
was aspirated via vacuum manifold. The plates were wet-
ted with 20 μl of PBS-NB buffer to prevent drying. Next,
50 μl of serum (diluted 1:50 in PBS-NB) was added to
duplicate wells of the filter plate along with 50 μl of
PBS-NB containing 2.5 × 103 antigen-coupled micro-
spheres. Since the microspheres and reporter moieties
are light sensitive, all incubations were performed in the
dark by sealing the plate with foil. Subsequently, the
FMIA plate was incubated at 20–22 °C for 1 h on a plate
shaker rotating at 600 rpm. The plate was washed 3
times with 200 μl of PBST. Next, 50 μl of anti-swine, bi-
otinylated IgA (heavy & light chain, diluted in PBS-NB;
Bethyl Laboratories) or IgG-FC specific polyclonal anti-
bodies (diluted 1:2,000 dilution in PBS-NB; Bethyl
Laboratories) were added to the filter plate and incu-
bated at 20–22 °C for 1 h. NP IgM and IgG isotype-
specific antibody levels were detected using PEDV-NP
coated microspheres, but speciated by means of individ-
ual and separate IgM and IgG-specific secondary anti-
bodies. Since validation was performed using serum, and
because IgA is present in very low amounts, IgA specific
secondary antibodies were not used at this step. After
incubation with the secondary antibodies, 50 μl of strep-
tavidin phycoerythrin (2.5 μg/ml in PBS-NB, Molecular
Probes) was added to each well and incubated for
30 min at 20–22 °C with shaking. The supernatant was
aspirated, and the plate was washed 3 times with PBST.
Finally, the microspheres were resuspended in 125 μl of
PBST per well and transferred to a clear 96-well poly-
styrene optical plate. Coupled microspheres were ana-
lyzed through a dual-laser Bio-Rad Bio-Plex 200

instrument. The median fluorescent intensity (MFI) for
100 microspheres corresponding to each individual bead
analyte was recorded for each well. All reported MFI
measurements were normalized via F - F0, where F0 was
the background signal determined from the fluorescence
measurement of a test sample in uncoated beads and F
was the MFI for a serological test sample using antigen-
coated beads.

Establishment of serological reference standards for ELISA
and FMIA development
Four serological reference serum sets were constructed as
standards termed high, medium, low and negative to serve
as internal quality control standards and to mathematic-
ally normalize individual samples for objective compari-
sons between testing platforms. The high-labeled standard
was designed to generate an OD above 2.0 for the iELISA
and bELISA and an MFI of approximately 25,000 for the
FMIA. The high standard was used exclusively for the
mathematical determination of the serological response
(S/P ratio) of samples used for test validation. The
medium standard generated a response of between 1.5
and 2.0 OD for the two ELISAs and approximately 10,000
MFI for the FMIA. The low standard was designed to de-
liver a signal slightly above threshold level for all 3 tests,
and the negative serum generated an OD or MFI to a
background level of less than 0.2 OD for the ELISAs and
600 MFI for the FMIA.

Validation methods for the determination of diagnostic
sensitivity, specificity, repeatability and threshold cutoff
level
To accurately assess the diagnostic sensitivity and speci-
ficity of the assays, samples of known serostatus for
PEDV were used. This included sera from multiple ani-
mal populations including experimentally infected ani-
mals and serum samples submitted to the South Dakota
ADRDL. PEDV negative sample sets included samples
from selected high biosecurity herds with no history of
PEDV and archived serum samples collected prior to the
emergence of PEDV in the U.S., including samples test-
ing positive for the related swine coronaviruses TGEV
and PRCV. Known positive samples were collected from
pigs that were naturally infected at least 3 weeks prior to
collection and were previously positive by PCR. The
negative-testing sample population (uninfected animals)
consisted of maximally 980 PEDV negative serum sam-
ples, while the positive-testing (infected) population was
composed of 516 serum samples. Receiver operating
characteristic (ROC) analysis was calculated for each
assay to assess diagnostic performance, which included
determination of sensitivity, specificity and threshold
cutoff using MedCalc version 11.1.1.0 (MedCalc soft-
ware, Mariakerke, Belgium).
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The repeatability of each assay was assessed by run-
ning the same internal quality control serum standards
in multiple replicates within the same run or between
runs. For the iELISA and the bELISA, the intra-assay re-
peatability was calculated for 48 replicates on 3 separate
plates, then repeated over a 3-day period for inter-assay
repeatability assessment. The values for each assay were
expressed as a mean, standard deviation and percent
coefficient of variation (CV%) for repeated measure.

Measurement of statistical testing agreement
Multiple comparison, inter-rater agreement (kappa meas-
ure of association) was calculated among all four tests
(bELISA, iELISA, FMIA and IFA) using IBM, SPSS ver-
sion 20 software (SPSS Inc., Chicago, IL). The sample
cohort used was a well-characterized set of serum samples
collected from “positive testing” experimentally infected
pigs over time courtesy of Dr. Richard Hesse (n = 158)
and from archived experimental control uninfected PEDV
“negative testing” animals. The interpretation of kappa
can be rated as follows: Kappa less than 0.0, “poor” agree-
ment; between 0.0 and 0.20, “slight” agreement; between
0.21 and 0.40, “fair” agreement; between 0.41 and 0.60,
“moderate” agreement; between 0.61 and 0.80, “substan-
tial” agreement; and between 0.81 and 1.0, “almost per-
fect” agreement [28, 29].

FFN
A PEDV virus neutralization assay using a FFN format
was developed for rapid detection of neutralizing anti-
bodies produced in response to PEDV infection. The
FFN was evaluated using serum samples or rennet
treated milk and colostrum samples. Heat-inactivated
samples were diluted in a 2-fold dilution series starting
at 1:10 in MEM plus 1.5 μg/ml TPCK-treated trypsin in
96-well plates. An equal amount of cell culture adapted
PEDV stock at a concentration of 100 foci forming
units/100 μl was added to each well and plates incubated
for 1 h at 37 °C. The virus/sample mixture was then
added to washed confluent monolayers of Vero-76 cells
and incubated for 2 h at 37 °C. Plates were washed again
with MEM/TPCK-trypsin medium and incubated 20–24
h to allow for replication of non-neutralized virus. Plates
were then fixed with 80 % acetone and stained with
FITC conjugated mAb SD6-29 to allow visualization of
infected cells. Endpoint neutralization titers were deter-
mined as the highest serum, milk or colostrum dilution
resulting in a 90 % or greater reduction in fluorescent
foci relative to controls.

Results
Expression of recombinant PEDV-NP antigen
As shown in Fig. 1, the purity of the recombinant
protein was assessed via SDS-PAGE and gave a band

that migrated corresponding to the expected molecu-
lar mass of 51 kDa upon staining with Coomassie
brilliant blue R250. The protein yield of the IPTG in-
duced E. coli culture was calculated to be approxi-
mately 11 mg PEDV-NP/liter of 2XYT medium with
a purity of greater than 95 %. The identity of the pro-
tein was further characterized by Western blot using
convalescent swine serum, an anti-His mAb and an
anti-PEDV-NP mAb (Fig. 2).

Diagnostic sensitivity, specificity, repeatability and
threshold cutoff level
To optimize the serologic assays, various antigen and
serum dilutions were used to determine optimum
concentrations. All 3 tests were optimized in a
checkerboard fashion to maximize signal-to-noise ra-
tios. It was determined by antigen titration that the
optimal coating of Luminex™/FMIA microspheres was
achieved at a concentration of 12.5 μg protein per
3.125 × 106 microspheres. Similarly, the optimum
coating of both the iELISA and bELISA plates was
achieved at a concentration of 250 ng/well. In
addition, to determine the optimum serum dilution
for each of the testing platforms, a well-characterized
PEDV “high” positive serum standard was serially di-
luted in a log2 titration against antigen coated micro-
spheres (FMIA) or antigen coated ELISA wells at a fixed
concentration. Figure 3 shows concentration-dependent
OD or MFI signals of various serum standards. Overall,
sample absorbance increased inversely proportional to the
serum dilution. However, based upon the highest signal-
to-noise ratio, it was determined that the optimal serum
dilution for the bELISA was 1/3, while the iELISA and
FMIA each demonstrated an optimum dilution of 1/50 as
indicated by arrows (Fig. 3).
ROC analysis to determine sensitivity, specificity and

threshold cut-off levels was performed using large num-
bers of swine serum samples and demonstrated excellent
agreement (>0.91 kappa scores) between assays with
good intra and inter assay repeatability (Table 1). None
of the known positive TGEV or PRCV samples tested
was shown to cross-react.
The optimal cutoff values and corresponding sensitiv-

ity and specificity of each individual test are presented in
Fig. 4. Specifically, ROC analysis for the iELISA and
bELISA showed similar sensitivity and specificity of 97.9
and 97.6 %; and 98.2 and 98.9 %, respectively. The ROC
analysis for the FMIA showed estimated sensitivity and
specificity of 98.2 and 99.2 %, respectively. Although the
FMIA showed an identical sensitivity as the bELISA, it
demonstrated the highest degree of specificity of all
three assays at 99.2 %. This observation was not surpris-
ing given that FMIA technology inherently imparts

Okda et al. BMC Veterinary Research  (2015) 11:180 Page 8 of 14



greater sensitivity and a larger dynamic range than the
ELISA platform [30].
In addition to determining cutoff values, sensitivities

and specificities, multiple comparison tests were per-
formed to calculate the degree of agreement among the
ELISA, FMIA and IFA tests. Specifically, the Kappa test
demonstrated all diagnostic platforms had kappa values
greater than 0.91, which demonstrates that all 4 tests are
in “almost perfect” agreement with each other.

Assessment of repeatability
The iELISA and bELISA demonstrated slightly lower
%CVs than the FMIA with 3.7 %, 6.8 %, 10.7 % intra-assay
variability for bELISA, iELISA and FMIA respectively.

Inter-assay %CVs were 5.0, 5.6 and 7.7 % for the bELISA,
iELISA and FMIA respectively. Nonetheless, all the CVs
were 10.7 % or less, which demonstrated that the tests
were highly repeatable in a diagnostic application.

Evaluation of a kinetic PEDV antibody response
As shown in Fig. 5, a mean antibody response to PEDV-
NP could be detected as early as 9 DPI for both the
iELISA and bELISA. The FMIA detected PEDV-NP anti-
bodies slightly earlier at 6 DPI. All 3 tests detected the
duration of antibody out to the 43 DPI time-point in this
study but demonstrated a decline in detectable antibody
after 21 DPI.

A B C

Fig. 3 Serum dilution optimization for both ELISA assays and FMIA. Reference serum standard was titrated 2-fold in antigen coated wells at a
fixed concentration in order to gauge a maximum signal-to-noise ratio for each assay a iELISA, b bELISA, c FMIA. Arrows show the optimum dilution
of swine serum from which the highest signal to noise ratio was achieved

A B C

Fig. 4 Receiver operator characteristic (ROC) validation and determination of diagnostic sensitivity and specificity of the PEDV-NP iELISA, bELISA
and FMIA assays. Diagnostic sensitivity and specificity were calculated using serum samples from a known PED-uninfected and PED-infected
population. ROC analysis was performed using MedCalc version 11.1.1.0 (MedCalc software, Mariakerke, Belgium). In each panel, the dot plot
on the left represents the negative testing population, and the dot plot on the right represents the positive population. The horizontal line
bisecting the dot plots represents the cutoff value that gives the optimal diagnostic sensitivity and specificity. a Serum iELISA, b Serum bELISA,
c Serum FMIA
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Application of the FMIA to isotype PEDV-NP specific
antibodies
High levels of PEDV-NP specific IgM antibodies were
observed at 7 DPI compared to IgG (Fig. 6). However,
the IgM antibodies decreased to barely detectable levels
by 20 DPI. IgG continued to increase linearly to 20 DPI.
There is a concomitant appearance of neutralizing anti-
bodies by 14 DPI.

FFN
The FFN assay was initially evaluated using sequential
serum samples from experimentally inoculated piglets.
Additional evaluation was conducted using 250 serum
samples from known PEDV naïve herds and 250 samples
from herds with documented PEDV exposure, collected
at least 3 weeks after initial PCR diagnosis and whole
herd feedback. Experimentally inoculated piglets demon-
strated detectable seroconversion by 14 DPI (Fig. 6).

Essentially all samples from PEDV naïve animals had
serum FFN endpoint titers of <1:20 while most sam-
ples from the PEDV positive set had endpoint titers
ranging from 1:40 to 1:1280 (data not shown). Fur-
ther evaluation of the FFN included serum, milk and
colostrum samples from 27 sows from a herd that
had experienced an acute PEDV outbreak 6 to 7 weeks
prior to farrowing. All animals were exposed to live
virus twice within the first week of the outbreak, followed
by one dose of Harrisvaccines Porcine Epidemic Diarrhea
Vaccine, RNA (Harrisvaccines, Inc., Ames, IA) at 1 week
pre-farrow. Serum and colostrum samples were tested at
the time of farrowing, followed by serum and milk sam-
ples at 1 week and 2 weeks later. As shown in Fig. 7, mean
colostrum titers were approximately 4-fold higher than
serum titers at the time of farrowing. At later time-points,
serum and milk titers were similar in magnitude, although
substantial animal to animal variation was apparent.

Discussion
Overall, this repertoire of assays is useful for initial iden-
tification and efficient, high throughput quantitation of
PEDV antibodies. We evaluated all three diagnostic plat-
forms against a well characterized IFA and compared
the individual serum IgM and IgG kinetic antibody
responses in an FMIA to the appearance of neutralizing
antibody as detected by the FFN assay. Each of the
antibody-capture assays was validated using a large
number of serum samples (n >1100) based upon the
assay validation methods of Jacobson, which is sup-
ported by the Office International des Epizooties [25].
Since PEDV was first identified in the U.S. in May 2013,

it has spread rapidly to at least 33 states (www.aasv.org)
and has been reported in Mexico and Canada [31]. The
virus causes severe gastroenteritis, destroying villus enter-
ocytes in pigs of all ages, and is characterized by vomiting
and diarrhea, leading to subsequent dehydration, high
mortality rates and economic losses, particularly in

A B C

Fig. 5 Kinetic time course antibody evaluation. Antibody time course kinetics were calculated for each of the ELISAs and FMIA using serum
samples from experimentally infected pigs collected at weekly intervals. The horizontal line indicates the diagnostic cutoff for each test. All three
tests demonstrate similar kinetic curve responses via their calculated S/P values. a Antibody kinetic time course via iELISA, b Antibody kinetic time
course via bELISA, c Antibody kinetic time course via FMIA

Fig. 6 FFN antibody and FMIA isotype time course evaluation. Using
serum collected over time from experimentally infected pigs, the
FMIA demonstrates the kinetic nucleoprotein-directed, isotype-
specific response of IgG and IgM in serum. In addition, the data
show a concomitant appearance of neutralizing antibodies as soon
as 14 DPI
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nursery piglets [3, 32]. A variety of serological tests
have been developed against PEDV, but they vary by
antigen used and in the degree of validation. In
addition, few have used North American NP based
antigens or compared the array of serologic assays de-
scribed here. In the current study, four tests (IFA, bELISA,
iELISA, FMIA) showed strong correlation. Each has
advantages, which dictate how they will be used in the
field. In addition, newly developed NP mAbs were used in
the bELISA and for expediting FFN testing in the detec-
tion of neutralizing antibodies.
In the development of the ELISAs and FMIA, the full

length NA PEDV-NP gene was amplified directly from
RNA extracted from PEDV-infected ileal tissue. Multiple
sequence alignment analysis showed that the amplified
NP gene shared a 100 % nucleotide homology with that
of the US Colorado strain isolated in 2013 (Genbank
accession no. 13–019349). Several authors confirm that
the NP carries multiple antigenic determinants that are
conserved among the Coronaviridae [33, 34]. However,
we performed one-way cross-reactivity testing using
serum from TGEV and PRCV, and no antibody cross-
reactivity was detected within any of our assays. In
addition to being highly conserved among various PEDV
variants, the NP is the most abundant viral protein
expressed in PEDV infected cells, making it an attractive
target antigen [12, 13]. Using Western blotting experi-
ments, we confirmed the finding of Hou et al. [19], in
which they observed the level of expression of NP

protein to be significantly higher than the level of the
spike protein. Our study demonstrated that it is possible
to achieve a protein yield of over 10 mg per liter of cul-
ture with a purity of greater than 95 %.
The recombinant NP has previously been identified as

a useful antigen in other ELISAs developed to detect
antibodies in pigs located in China and Korea [19]. In a
study by Hou et al. [19], the authors showed similar sen-
sitivities and specificities of their iELISA compared to
the iELISA described in this study. However, smaller
numbers of known positive and negative samples were
evaluated than in the current study.
Since no test has 100 % specificity, a bELISA was de-

veloped that is useful for confirmatory testing due to its
higher inherent specificity than the iELISA [35]. Block-
ing or competitive ELISAs have been constructed using
monoclonal antibodies in PEDV serodiagnosis, and the
specific methodology can affect the overall specificity
and performance of the assay. Our method was based
upon coating plates with highly purified NA PEDV-NP,
then using a combination of two separate NA, anti-
PEDV-NP specific, biotinylated, monoclonal antibodies
as the blocking/competitive detection step. This allows
the capture of anti-NP antibodies at higher quantities
and those with a greater range of antigen specificities.
The analytical specificity of the NP-based bELISA is also
dependent on the affinity of the mAbs used. The anti-
bodies used in this study are directed against conserved
epitopes on the nucleocapsid protein without any

Fig. 7 Assessment of neutralizing antibody titers in different sample matrices following PEDV exposure. FFN titers were detected in
various sample matrices including colostrum (n = 25), milk (n = 23) and serum (n = 27) collected at the time of farrowing and weekly
for two weeks post-farrowing. Error bars indicate a 95 % confident interval for mean titers indicated by horizontal lines
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evidence of cross-reactivity to any other genera of
Alphacoronavirus tested. A previous assessment of anti-
genic cross-reactivity was performed using these same
mAbs against different strains of PEDV and TGEV [7].
In that study, the authors reported that both mAbs used
in the bELISA reacted with all PEDV strains tested,
namely the homologous US isolate PC22A and the
heterologous strains S INDEL IOWA 106, S 197DEL
PC177 and CV777, at similar titers. Neither of the
PEDV-NP mAbs cross-reacted with either the TGEV
Miller or Purdue strains. Not only were the bELISA
mAbs tested for heterologous cross-reactivity, but all
three diagnostic platforms were evaluated in their ability
to capture antibody against TGEV and PRCV, and there
was no cross-reactivity to either heterologous virus.
Serology testing with IFA, iELISA, bELISA or FMIA is

useful in determining whether pigs were previously in-
fected with PEDV, or if piglets have acquired antibodies
through colostrum (eg. passive antibody transfer). How-
ever, tests that evaluate the functionality of the anti-
bodies such as the FFN are needed to determine if the
detected immune response could be helpful in providing
protection to nursing piglets. Neutralizing antibodies
may be protective through actions including blocking
uptake of the virus into cells, preventing virus binding to
receptors on cells, preventing uncoating of the virus ge-
nomes in endosomes and/or causing aggregation of virus
particles. For enveloped viruses, such as PEDV, lysis of
the virus may also occur when antiviral antibodies and
serum complement disrupt the viral membrane. For
these reasons, an FFN-based virus neutralization assay
was developed to assess levels of PEDV neutralizing
antibodies in serum, milk or colostrum samples. The
FFN provides a more rapid determination of neutralizing
antibody levels than is possible with traditional virus
neutralization assays that rely on visualization of virus-
induced CPE after three or more days incubation to
allow for full development of PEDV CPE. The direct ob-
servation of fluorescent stained infected cells, or lack of
stained infected cells in the case of virus neutralization,
allows for simple endpoint determination. This feature is
particularly valuable when dealing with a fastidious,
trypsin-dependent virus such as PEDV where CPE-based
endpoints may not be obvious or may be confused with
trypsin-induced CPE in the cell monolayer. Although
neutralizing antibodies present in the serum would not
be expected to provide direct protection from a strictly
enteric infection such as PEDV, our data suggest a cor-
relation between detectable neutralizing antibody levels
in the serum and those present in milk and colostrum of
previously exposed or vaccinated sows.
Some correlation between PEDV neutralization results

and ELISA results exists as described in the literature.
One study performed a comparative analysis between a

whole-virus antigen ELISA and a serum neutralization
test for the serodiagnosis of PEDV [21]. The presence of
antibodies was confirmed by each test, and an overall
testing agreement of 84.2 % was demonstrated using 1024
field serum samples. Furthermore, a pairwise correlation
was performed that showed corrected cutoff values be-
tween the ELISA OD and SN titers having an R value of
0.837, indicating that the CPE-based neutralization test
had roughly the same reliability as the ELISA test [21].
Newer technologies such as the FMIA are useful for

the detection of antibodies against multiple antigens
simultaneously for surveillance purposes. FMIA are bead
based assays for simultaneous high throughput detection
of antibodies to multiple antigens. The FMIA differs
from the ELISA since it involves a fluid incubation step
with “beads suspended in solution, which allows for
higher surface area exposure in 3 dimensions” [30].
Therefore, there is a shorter diffusion path to antibody
binding sites on the antigen coated beads resulting in
rapid reaction times. Instead of a method using an
enzymatic reaction such as with the ELISA, the FMIA
detection is with laser technology, which results in a
shorter detection time. This PEDV antigen specific bead
set can be “mixed” with additional coated beads to other
antigens, such as SIV, PCV2, PRRSV or other pathogens,
for simultaneous detection of antibodies to these anti-
gens. In addition, an FMIA could be developed for
differentiation of wild-type infected vs vaccinated ani-
mals (DIVA) if proteins used in the vaccine were differ-
ent from those produced in a wild-type infection.
Individual kinetic serum IgG and IgM levels were mea-

sured by FMIA in experimentally infected animals over
time. The appearance of the IgM subclass is considered an
immunological parameter of early infection and generally
appears prior to the appearance of IgG, and this was con-
firmed in our study. This was in contrast to the data of
Woo et al. [36], which was unable to detect IgM antibodies
using their NP-based indirect ELISA. IgG antibodies may
be more easily detected as they are characterized by higher
antigen affinity but lower avidity than IgM [37]. Further
understanding of various antibody profiles will provide im-
portant information on the ability of vaccines to stimulate
a protective immune response.

Conclusions
These well-validated NA PEDV iELISA, bELISA, FMIA
and FFN assays are useful for a range of serological in-
vestigations. They can serve as a complement to nucleic
acid detection and determine the PEDV status of asymp-
tomatic individuals for cost-effective tools in manage-
ment strategies and monitoring virus exposure within
the herd. The FMIA will be useful for isotyping the anti-
body responses and in multiplexing for determining
exposure to multiple pathogens simultaneously. In
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addition, the FFN is useful for determining whether the
antibodies measured are providing a biological function
of blocking virus infectivity. Work is ongoing to further
validate these assays on other sample matrices such as
milk and colostrum for measuring passive transfer of
antibodies and oral fluids for pen-based surveillance.

Abbreviations
PEDV: Porcine epidemic diarrhea virus; IFA: Immunofluorescent assay;
iELISA: Indirect enzyme linked immunosorbent assay; bELISA: Blocking
enzyme linked immunosorbent assay; FMIA: Fluorescent microsphere
immunoassay; FFN: Fluorescent Focus Neutralization; ORF: Open reading
frame; UTR: Untranslated region; NP: Nucleoprotein; S: Spike; E: Envelope;
mAb: Monoclonal antibody; ROC: Receiver operator characteristic;
TGEV: Transmissible gastroenteritis virus; PRCV: Porcine respiratory
coronavirus; NA: North American; CPE: Cytopathic effect; DPI: Days
post-infection; ADRDL: Animal Disease Research and Diagnostic
Laboratory; RT-PCR: Reverse transcriptase polymerase chain reaction;
OD: Optical density; IPTG: Isopropyl β-D-1-thiogalactopyranoside;
SDS-PAGE: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis;
IACUC: Institutional Animal Care and Use Committee; HAT
medium: Hypoxanthine-aminopterin-thymidine medium; DMSO: Dimethyl
sulfoxide; BSA: Bovine serum albumin; MEM: Modified Eagles Medium;
FBS: Fetal bovine serum; NVSL: National Veterinary Services Laboratories;
MOI: Multiplicity of infection; TPCK: L-1-Tosylamide-2-phenylethyl
chloromethyl ketone; FITC: Fluorescein isothiocyanate; ACB: Antigen
coating buffer; SMD: Sample milk diluent; HRP: Horseradish peroxidase;
TMB: 3,3′,5,5′- tetramethylbenzidine; PI: Percent inhibition; MFI: Median
fluorescent intensity; SIV: Swine influenza virus; PCV-2: Porcine circovirus
type 2; PRRSV: Porcine reproductive and respiratory syndrome virus.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
FO: Conducted ELISA and FMIA development/validation, statistical analysis
and co-wrote paper. XL: Conducted ELISA and FMIA development/validation.
AS: Assisted with sample acquisition, assay development and study design.
TC: Assisted with sample acquisition and study design. JN: Conducted virus
neutralization assay development and testing. JCH: Assisted with study
design and co-wrote paper. EAN: Developed study concept and design,
edited paper. SL: Directed assay development and validation, co-wrote paper.
All authors read and approved the final manuscript.

Acknowledgements
Funding for this work was provided by the South Dakota Agricultural
Experiment Station, the South Dakota Animal Disease Research and
Diagnostic Laboratory and the National Pork Board through grants 13–263
and 14–038. The authors thank Dr. Sabrina Swenson and Melinda Jenkins-
Moore of the National Veterinary Services Laboratories for providing the cell
culture adapted PEDV-CO isolate and Dr. Richard Hesse of the Kansas State
University Veterinary Diagnostic Laboratory for providing serum samples
from PEDV challenge studies. The authors also thank numerous swine pro-
ducers and practitioners for providing field samples and herd history
information.

Author details
1Veterinary & Biomedical Sciences Department, South Dakota State
University, Brookings, SD, USA. 2National Research Center, Giza, Egypt.

Received: 27 April 2015 Accepted: 20 July 2015

References
1. Paudel S, Park JE, Jang H, Hyun BH, Yang DG, Shin HJ. Evaluation of

antibody response of killed and live vaccines against porcine epidemic
diarrhea virus in a field study. Vet Quart. 2014;34:194–200.

2. Debouck P, Pensaert M. Experimental infection of pigs with a new porcine
enteric coronavirus, CV 777. Am J Vet Res. 1980;41(2):219–23.

3. Stevenson GW, Hoang H, Schwartz KJ, Burrough ER, Sun D, Madson D, et al.
Emergence of Porcine epidemic diarrhea virus in the United States:
clinical signs, lesions, and viral genomic sequences. J Vet Diagn Invest.
2013;25:649–54.

4. Adams MJ, Carstens EB. Ratification vote on taxonomic proposals to the
International Committee on Taxonomy of Viruses. Arch Virol.
2012;157:1411–22.

5. Li Z, Chen F, Yuan Y, Zeng X, Wei Z, Zhu L, et al. Sequence and
phylogenetic analysis of nucleocapsid genes of porcine epidemic diarrhea
virus (PEDV) strains in China. Arch Virol. 2013;158:1267–73.

6. Rodak L, Valıcek L, Smıd B, Nevorankova Z. An ELISA optimized for
porcine epidemic diarrhoea virus detection in faeces. Vet Microbiol.
2005;105:9–17.

7. Lin C-M, Gao X, Oka T, Vlasova AN, Esseili M, Wang Q, et al. Antigenic
Relationships among Porcine Epidemic Diarrhea Virus and Transmissible
Gastroenteritis Virus Strains. J Virol. 2015;89(6):3332–42.

8. van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Stalin Raj V, Moh
Zaki A, et al. Genomic characterization of a newly discovered coronavirus
associated with acute respiratory distress syndrome in humans. mBio.
2012;3(6):e00473–12. doi:10.1128/mBio.00473-12.

9. Baric RS, Fu K, Schaad MC, Stohlman SA. Establishing a genetic
recombination map for murine coronavirus strain A59 complementation
groups. Virology. 1990;177:646–56.

10. Huang Y-W, Dickerman AW, Piñeyro P, Li L, Fang L, Kiehne R, et al. Origin,
evolution, and genotyping of emergent porcine epidemic diarrhea virus
strains in the United States. mBio. 2013; 4(5) doi:10.1128/mBio.00737-13.

11. Marthaler D, Bruner L, Collins J, Rossow K. Third strain of porcine epidemic
diarrhea virus, United States. Emerg Infect Dis. 2014; 20(12). doi:10.3201/
eid2012.140908.

12. Saif LJ. Coronavirus immunogens. Vet Microbiol. 1993;37:285–97.
13. Sturman LS, Holmes KV. The molecular biology of coronaviruses. Adv Virus

Res. 1983;28:35–122.
14. Pensaert MB, de Bouck P. A new coronavirus-like particle associated with

diarrhea in swine. Arch Virol. 1978;58:243–7.
15. Hofmann M, Wyler R. Enzyme-linked immunosorbent assay for the

detection of porcine epidemic diarrhea coronavirus antibodies in swine
sera. Vet Microbiol. 1990;21:263–73.

16. Knuchel M, Ackermann M, Muller HK, Kihm U. An ELISA for detection of
antibodies against porcine epidemic diarrhoea virus (PEDV) based on
the specific solubility of the viral surface glycoprotein. Vet Micro.
1992;32:117–34.

17. Carvajal A, Lanza I, Diego R, Rubio P, Carmenes P. Evaluation of a blocking
ELISA using monoclonal antibodies for the detection of porcine epidemic
diarrhea virus and its antibodies. J Vet Diag Invest. 1995;7:60–4.

18. Ren X, Suo S, Jang Y-S. Development of a porcine epidemic diarrhea virus
M protein-based ELISA for virus detection. Biotechnol Lett. 2011;33:215–20.

19. Hou X-L, Yu L-Y, Liu J. Development and evaluation of enzyme-linked
immunosorbent assay based on recombinant nucleocapsid protein for
detection of porcine epidemic diarrhea (PEDV) antibodies. Vet Microbiol.
2007;123:86–92.

20. Gerber PF, Gong Q, Huang Y-W, Wang C, Holtkamp D, Opriessnig T.
Detection of antibodies against porcine epidemic diarrhea virus in serum
and colostrum by indirect ELISA. Vet J. 2014;202:33–6.

21. Oh JS, Song DS, Yang JS, Song JY, Moon HJ, Kim TY, et al. Comparison of an
enzyme-linked immunosorbent assay with serum neutralization test for
serodiagnosis of porcine epidemic diarrhea virus infection. J Vet Sci.
2005;6:349–52.

22. Debouck P, Pensaert M. Porcine epidemic diarrhea: Kinetics of actively and
passively acquired serum antibodies and the effect of reinfection. Proc Int
Pig Vet Soc Congr. 1984;8:53.

23. Lawson S, Lunney J, Zuckermann F, Osorio F, Nelson E, Welbon C, et al.
Development of an 8-plex Luminex assay to detect swine cytokines for
vaccine development: Assessment of immunity after porcine
reproductive and respiratory syndrome virus (PRRSV) vaccination.
Vaccine. 2010;28:5383–91.

24. Langenhorst R, Lawson S, Kittawornrat A, Zimmerman J, Sun Z, Li Y, et al.
Development of a fluorescent microsphere immunoassay for detection of
antibodies against PRRSV using oral fluid samples as an alternative to
serum-based assays. Clin and Vacc Imm. 2012;19:180–9.

25. Jacobson RH. Validation of serological assays for diagnosis of infectious
diseases. Rev Sci Tech Of Int Epizoot. 1998;17:469–526.

Okda et al. BMC Veterinary Research  (2015) 11:180 Page 13 of 14

http://dx.doi.org/10.1128/mBio.00473-12
http://dx.doi.org/10.1128/mBio.00737-13
http://dx.doi.org/10.3201/eid2012.140908
http://dx.doi.org/10.3201/eid2012.140908


26. Nelson EA, Christopher-Hennings J, Drew T, Wensvoort G, Collins JE,
Benfield D. Differentiation of U.S. and European Isolates of Porcine
Reproductive and Respiratory Syndrome Virus by Monoclonal Antibodies.
J Clin Micro. 1993;31:3184–9.

27. Galfre G, Howe SC, Milstein C, Butcher GW, Howard JC. Antibodies to major
histocompatibility antigens produced by hybrid cell lines. Nature (London).
1977;266:550–2.

28. Landis JR, Koch GG. The measurement of observer agreement for
categorical data. Biometrics. 1977;33:159–74.

29. Abdo J, Kristersson T, Seitzer U, Renneker S, Merza M, Ahmed J.
Development and laboratory evaluation of a lateral flow device (LFD) for
the serodiagnosis of Theileria annulata infection. Parasitol Res.
2010;107:1241–8.

30. Christopher-Hennings J, Araujo KPC, Carlos CJH, Fang Y, Lawson S, Nelson
EA, et al. Opportunities for bead-based multiplex assays in veterinary
diagnostic laboratories. J Vet Diagn Invest. 2013;25:671–91.

31. Vlasova AN, Marthaler D, Wang Q, Culhane MR, Rossow KD, Rovira A.
Distinct characteristics and complex evolution of PEDV Strains, North
America, May 2013-February 2014. Emerg Infect Dis. 2014;20:1620–8.

32. Jung K, Wang Q, Scheuer KA, Lu Z, Zhang Y, Saif L. Pathology of US Porcine
Epidemic Diarrhea Virus Strain PC21A in Gnotobiotic Pigs. Emerg Infect Dis.
2014;20:662–5.

33. Horzinek MC, Lutz H, Pedersen N. Antigenic relationships among
homologous structural nucleotide sequences of porcine, feline and canine
coronaviruses. Infect Immun. 1982;37:1148–55.

34. Yaling Z, Ederveen J, Egberink H, Pensaert MB, Horzinek MC. Porcine
epidemic diarrhea virus (CV777) and feline infectious peritonitis virus (FIPV)
are antigenically related. Arch Virol. 1988;102:37–71.

35. Schrijver RS, Kramps JA. Critical factors affecting the diagnostic reliability of
enzyme-linked immunosorbent assay formats. Rev Sci Tech Of Int Epizoot.
1998;17:550–61.

36. Woo PC, Lau SK, Wong BH, Chan KH, Chu CM, Tsoi HW, et al. Longitudinal
profile of immunoglobulin G (IgG), IgM, and IgA antibodies against the
severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein
in patients with pneumonia due to the SARS coronavirus. Clin Diagn Lab
Immunol. 2004;11:665–8.

37. Murphy K, Travers P, Walport M. The Distribution and Functions of
Immunoglobulin Classes. In: Janeway’s Immunobiology. 7th ed. New York:
Garland Science; 2008. p. 400–1.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Okda et al. BMC Veterinary Research  (2015) 11:180 Page 14 of 14


	South Dakota State University
	Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange
	8-2015

	Development of an Indirect ELISA, Blocking ELISA, Fluorescent Microsphere Immunoassay and Fluorescent Focus Neutralization Assay for Serologic Evaluation of Exposure to North American Strains of Porcine Epidemic Diarrhea Virus
	Faten Okda
	Xiaodong Liu
	Aaron Singrey
	Travis Clement
	Julie Nelson
	Recommended Citation
	See next page for additional authors

	Authors


	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Ethics Statement
	Animal samples for assay validation and time-course serological evaluation
	Antigen production, expression of recombinant PEDV-NP protein
	mAb production and biotinylation
	IFA
	iELISA
	bELISA
	Preparation of PEDV-NP coupled microspheres for the FMIA
	FMIA
	Establishment of serological reference standards for ELISA and FMIA development
	Validation methods for the determination of diagnostic sensitivity, specificity, repeatability and threshold cutoff level
	Measurement of statistical testing agreement
	FFN


	Results
	Expression of recombinant PEDV-NP antigen
	Diagnostic sensitivity, specificity, repeatability and threshold cutoff level
	Assessment of repeatability
	Evaluation of a kinetic PEDV antibody response
	Application of the FMIA to isotype PEDV-NP specific antibodies
	FFN

	Discussion
	Conclusions
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

