South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange

South Dakota Poultry Field Day Proceedings and Research Reports, 1971

Animal Science Reports

1971

Dietary Protein and Copper Levels and Its Effect on Fat Composition of Turkeys

R. A. Nelson South Dakota State University

E. Guenther South Dakota State University

C. W. Carlson South Dakota State University

Follow this and additional works at: http://openprairie.sdstate.edu/sd poultry 1971

Recommended Citation

Nelson, R. A.; Guenther, E.; and Carlson, C. W., "Dietary Protein and Copper Levels and Its Effect on Fat Composition of Turkeys" (1971). South Dakota Poultry Field Day Proceedings and Research Reports, 1971. Paper 14. http://openprairie.sdstate.edu/sd_poultry_1971/14

This Report is brought to you for free and open access by the Animal Science Reports at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in South Dakota Poultry Field Day Proceedings and Research Reports, 1971 by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu.

South Dakota State University Brookings, South Dakota

Department of Animal Science Poultry Section

A.S. Series 71-13

DIETARY PROTEIN AND COPPER LEVELS AND ITS EFFECT

ON FAT COMPOSITION OF TURKEYS

R. A. Nelson¹, E. Guenthner², and C. W. Carlson³

Recent studies at many experiment stations have caused people to become concerned about the type of fat in their diets. Experiments tend to show that highly saturated fats are more cholesterol forming and therefore, a major cause of heart attacks in this country. Previous work at this station has indicated that diet has a great effect on the type of body fat in birds.

In this experiment, the effects of copper, and protein level on fat composition were considered. Carcasses from the growth study reported here (A.S.
Series 71-12) were made available for this work.

Drip fat collections after cooking were taken from a selection of twelve birds from each treatment (six broilers and six Large Whites). Two methyl esters were made of each fat sample and these in turn were analyzed twice for fatty acid analysis by Gas-Liquid chromotography. The results obtained are shown in Table 1. No statistical analysis has been made of these results, but copper supplementation does not increase the extent of total fat unsaturation. However, there seemed to be an effect on linoleic acid content. The heavy variety showed an increase whereas the broilers showed a consistent decrease in linoleic acid content with copper supplementation. The low protein diets produced turkeys with a slightly higher linoleic acid content. Diets had no consistent effect on total fat content of muscle tissue.

¹Graduate Student

²Instructor

³Professor and Leader, Poultry Research and Extension

TABLE 1. FAT COMPOSITION AS INFLUENCED BY DIET AND TYPE OF TURKEY

	15 Wk. Broiler Turkeys				24 Wk. Large Turkeys			
		Low		High		Low		High
	Protein			Protein	Protein			Protein
	Low	and	High	and	Low	and	High	and
	Protein	Copper	Protein	Copper	Protein	Copper	Protein	Copper
FATTY ACIDS								
Myristic, %	1.58	1.20	1.19	1.23	0.94	0.98	0.96	0.99
Palmitic, %	23.16	25.61	23.20	26.74	23.44	23.22	23.38	22.93
Palmitoleic, %	6.99	7.76	7.16	7.07	6.22	5.87	6.76	7.08
Stearic, %	7.56	7.56	7.84	8.28	7.40	7.71	7.06	7.17
01eic, %	39.95	39.81	39.99	39.21	35.66	34.62	36.73	35. 85
Linoleic, %	19.15	16.63	18.99	16.26	24.72	26.05	23.62	24.32
Linolenic, %	1.20	1.05	1.37	1.23	1.60	1.70	1.66	1.69
% SATURATION	32.30	34.37	32.23	36.25	31.78	31.91	31.40	31.09
% UNSATURATION	67.71	65.71	67.77	63.77	68.20	68.24	68.77	68.94
COOKED MUSCLE FAT ON A MOISTURE FREE BASIS, %	9.70	10.16	9.33	12.59	19.15	19.53	19.09	18.17