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Evaluation of a coupled event-driven phenology and
evapotranspiration model for croplands in the United States
northern Great Plains

V. Kovalskyy,1 G. M. Henebry,1 D. P. Roy,1 B. Adusei,1,4 M. Hansen,1,4 G. Senay,2

and D. M. Mocko3

Received 25 June 2012; revised 28 March 2013; accepted 1 April 2013; published 3 June 2013.

[1] A new model coupling scheme with remote sensing data assimilation was developed for
estimation of daily actual evapotranspiration (ET). The scheme consists of the VegET, a
model to estimate ET from meteorological and water balance data, and an Event Driven
PhenologyModel (EDPM), an empirical crop specific model trained on multiple years of flux
tower data transformed into six types of environmental forcings that are called “events” to
emphasize their temporally discrete character, which has advantages for modeling multiple
contingent influences. The EDPM in prognostic mode supplies seasonal trajectories of
normalized difference vegetation index (NDVI); whereas in diagnostic mode, it can adjust the
NDVI prediction with assimilated remotely sensed observations. The scheme was deployed
within the croplands of the Northern Great Plains. The evaluation used 2007–2009 land
surface forcing data from the North American Land Data Assimilation System and crop maps
derived from remotely sensed data of NASA’s Moderate Resolution Imaging
Spectroradiometer (MODIS). We compared the NDVI produced by the EDPM with NDVI
data derived from the MODIS nadir bidirectional reflectance distribution function adjusted
reflectance product. The EDPM performance in prognostic mode yielded a coefficient of
determination (r2) of 0.8� 0.15and the root mean square error (RMSE) of 0.1� 0.035 across
the entire study area. Retrospective correction of canopy attributes using assimilated MODIS
NDVI values improved EDPMNDVI estimates, bringing the errors down to the average level
of 0.1. The ET estimates produced by the coupled scheme were compared with the MODIS
evapotranspiration product and with ET from NASA’s Mosaic land surface model. The
expected r2 = 0.7� 0.15 and RMSE=11.2� 4mm per 8 days achieved in earlier point-based
validations were met in this study by the coupling scheme functioning in both prognostic and
retrospective modes. Coupled model performance was diminished at the periphery of the
study area where r2 values were about 0.5 and RMSEs up to 15� 5mm per 8 days. This
performance degradation can be attributed both to insufficient EDPM training and to spatial
heterogeneity in the accuracy of the crop maps. Overall, the experiment provided sufficient
evidence of soundness of the EDPM and VegET coupling scheme, assuring its potential for
spatially explicit applications.

Citation: Kovalskyy, V., G. M. Henebry, D. P. Roy, B. Adusei, M. Hansen, G. Senay, and D. M. Mocko (2013),
Evaluation of a coupled event-driven phenology and evapotranspiration model for croplands in the United States
northern Great Plains, J. Geophys. Res. Atmos., 118, 5065–5081, doi:10.1002/jgrd.50387.

1. Introduction

[2] There is growing consensus in the climate science com-
munity that the ability to precisely partition energy and matter
fluxes on the land surface is key to improving our understand-
ing of mesoscale atmospheric dynamics, ecosystem responses
to climate change, and interactions with human activities
[Pitman, 2003; Ibanez et al., 2010; Niu et al., 2011]. Since
Manabe [1969] researchers have been coupling global and
regional climate models with land surface models (LSM) to
model interactions between the land surface and the lower
levels of the atmospheric boundary layer. Among many sur-
face fluxes, LSMs keep track of actual evapotranspiration
(ETa) that quantifies surface water loss to evaporation from
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land surface and plant transpiration. Vegetation cover poses
a major challenge for ETa modeling due to its spatial and
temporal variability, and therefore, various process-based
[Lawrence and Chase, 2007; Sabater et al., 2008;
Wegehenkel, 2009; Vinukollu et al., 2011; Yan et al.,
2012] and empirical methods [Nagler et al., 2005; Godfrey
et al., 2007; Senay et al., 2007; Jang et al., 2009; Li et al.,
2009; Gao et al., 2010; Zhenzhong et al., 2012] have been
used to incorporate vegetation cover. Model parameteriza-
tion of croplands is particularly challenging because crop
temporal dynamics, irrigation regimes, and diverse agricul-
tural practices can have complex effects on evapotranspira-
tion [Pitman, 2003; Abramowitz et al., 2008].
[3] The use of fully functional crop models as alterna-

tives of LSMs in field scale studies to assess regional
agricultural developments has been a common practice
[Maruyama and Kuwagata, 2010; Stancalie et al., 2010].
However, many study cases require spatially explicit ETa

estimates over larger areas. This requirement would entail
additional parameterization, tuning, and running time for
the models like ALMANAC [Debaeke et al., 1997; Kiniry
et al., 2008], CERES [Mearns et al., 1999; Liu et al.,
2011], CROPWAT [Stancalie et al., 2010; Nkomozepi
and Chung 2012], or MODWht [Kang et al., 2009].
Deployment of several of these models in a spatially
explicit study of evapotranspiration dynamics in croplands
may result in numerous parameterization conflicts and
computational constraints [Iglesias et al., 2011]. Therefore,
a simplified simulator of ETa called VegET [Senay 2008]
coupled with a multicrop vegetation model can potentially
be a solution for finer spatial resolution studies where mul-
tiple crops are grown within one mapping unit. A key
advantage of VegET is the modulation of reference evapo-
transpiration by a canopy phenology coefficient derived
from the normalized difference vegetation index (NDVI)
[Tucker, 1979], which has been used as a proxy for
numerous canopy properties important for ET and other
surface fluxes [Dickinson et al. 1998; Foley et al. 2000;
Godfrey et al. 2007; Prihodko et al. 2008; Rosero et al.
2009; Rötzer et al. 2010; Zha et al. 2010]. The original
implementation of VegET used climatologies of NDVI as
canopy phenology parameters. However, the climatologies
would not reflect changes in growing conditions [Godfrey
et al., 2007; Wegehenkel, 2009] or changes in crop areas.
Therefore, the NDVI climatologies were replaced with an
interactive vegetation growth module Event Driven
Phenology Model (EDPM) [Kovalskyy and Henebry,
2012a] capable of predicting seasonal daily NDVI trajecto-
ries. The EDPM can predict daily NDVI independently
when working in prognostic mode. The model can also assim-
ilate satellite observations to correct its NDVI predictions
retrospectively when working in diagnostic mode. The
coupled EDPM-VegET scheme has a potential not only in
phenological or crop modeling applications but also for
monitoring vegetation and evapotranspiration.
[4] This paper presents temporally and spatially explicit

validation of the coupled EDPM-VegET scheme that
models seasonal dynamics of NDVI and evapotranspira-
tion. Previously, the EDPM has been shown, at a small
number of U.S. flux towers, to capture fine temporal
details of crop NDVI dynamics and provide canopy
phenology parameterization for VegET [Kovalskyy and

Henebry, 2012b]. Similarly, the EDPM is used in this
study to parameterize VegET in a regional application to
estimate daily actual evapotranspiration during the grow-
ing seasons of 2007, 2008, and 2009. The spatially
explicit NDVI was modeled by the EDPM using meteoro-
logical forcings and, for this paper, by satellite-derived
annual crop cover maps covering more than 0.5
million km2 of the United States Northern Great Plains.
The EDPM was run in prognostic mode to predict
daily NDVI during the growing season, and in diagnostic
mode where the predicted NDVI are corrected via a data
assimilation scheme using near-weekly NDVI derived
from Moderate Resolution Imaging Spectroradiometer
(MODIS) data.
[5] The analysis is focused on three aspects of the

EDPM and the VegET model performance. First, temporal
and spatial differences between the EDPM NDVI esti-
mates and NDVI values derived from MODIS are ana-
lyzed. Second, the EDPM-derived phenological dates
defining the start, end, and length of the growing season
are compared with comparable phenological dates derived
from the weekly Crop Progress reports of the U.S.
National Agricultural Statistics Service (NASS). Third,
the ETa results derived from the coupled EDPM-VegET
model are compared with contemporaneous MODIS and
Mosaic ETa products.

2. Methods and Materials

2.1. Study Area

[6] The study area encompasses all of Nebraska, Iowa,
Minnesota, North Dakota, South Dakota, and parts of
Illinois and Indiana. Together, these states include more
than half of the nation’s maize and soybean crops and
comprise the major part of the U.S. maize and soybean
belts [Chang et al, 2007]. Within these states, only 0.05�
grid cells with at least 50% maize or soybean cover
mapped in any of 2007, 2008, or 2009 were considered
(Figure 1). Maize and soybean are the most prevalent
crops across the region. Farmers use different genetic vari-
eties of these crops to match the growing conditions of
their farms and to spread production risk [Ransom et al.,
2004]. The green-up of the area generally starts in early
May in the southeast and can be as late as mid-June in
the northwest. The length of the growing cycle also varies
greatly from almost 5months in the south to slightly more
than 3months in the north. The growing season across the
region is always within the period March to October.
There are strong ET gradients across the region, from
600mm ET annually in the North to 1000mm in the
South, and as low as 400mm at the western extreme
[Willmott and Matsuura, 2007].

2.2. Modeling

[7] The model coupling scheme evaluated in this paper
consists of two parts: the VegET model [Senay, 2008] to
estimate ETa from meteorological and water balance data
and the EDPM, an empirical crop specific model trained
on flux tower data and capable of producing seasonal tra-
jectories of NDVI and drive canopy phenology coefficient
in the VegET.
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2.2.1. Model for Evapotranspiration Estimation
[8] The VegET model provides a simplified simulator of

ETa and, similar to Godfrey et al. [2007], Kang et al.
[2009] and Yuan et al. [2010], relies on the Penman-
Monteith equation to calculate daily reference evapotranspi-
ration (ET0). The daily ETa is derived as the product of ET0,
Ks, and Kcp where Ks is the daily soil water stress parameter-
ized from North American Land Data Assimilation System
(NLDAS) soil water content data and Kcp is a canopy
phenology coefficient derived from a 15 year climatology
of satellite-derived NDVI [Senay, 2008]. Importantly, as
vegetation phenology has interannual variability [Pitman,
2003], in this study, we derived Kcp values from EDPM-
generated seasonal NDVI trajectories.
2.2.2. Model for Estimation of Canopy
Phenology Coefficient
[9] The EDPM can simulate seasonal NDVI dynamics

[Kovalskyy and Henebry, 2012a] using a similar set of
forcings as the Penman-Monteith equation [Monteith,
1965]. The EDPM transforms continuous meteorological
forcings into transient “events” that can potentially modify
NDVI trajectories. From such events, the model predicts
the seasonal NDVI trajectories at a daily temporal resolu-
tion. Currently, EDPM provides support for six kinds of
forcings/events: (1) rain, (2) heat stress, (3) frost, (4)
insufficient insolation, (5) excessive vapor pressure deficit,
and (6) thermal time or growing degree-days. The model
provides a computationally inexpensive replacement for a
dynamic vegetation model, and it can work in both
prognostic and diagnostic modes. In diagnostic mode,
the EDPM corrects its predictions with satellite observa-
tions assimilated via a fast one-dimensional Kalman filter
(1-DKF), which is especially advantageous for spatially
explicit model applications [Nagler et al., 2008; Turner
et al., 2008; Campo et al., 2009; Meng et al., 2009;
Anderson et al., 2011; Miralles et al., 2010; Godfrey and
Stensrud, 2010, Lewis et al., 2012].
[10] Prior to this evaluation, the EDPM was successfully

tested only in point-based experiments [Kovalskyy and

Henebry, 2012a,2012b]. However, the spatially explicit
application of the EDPM required amendments to the
functioning of the EDPM phenological phase control mod-
ule in order to match the variability of the growing season
dates within a wider range of conditions. The existence of
latitudinal gradients in phenology has long been recog-
nized [Hopkins, 1918]. Vegetation phenology in the humid
to subhumid extratropics responds primarily to temperature
and daylength [Running et al., 2004]. Daylength is a
function of latitude, and temperature is strongly linked to
insolation and thus daylength. We used the latitudinal
patterns in the parameter coefficients from a simple qua-
dratic model linking NDVI to thermal time [de Beurs
and Henebry, 2004, 2005, 2010] to “transplant” the
EDPM-derived start-of-season and growing season length
using linear and inverse linear functions of latitude,
respectively [Henebry, 2010].
2.2.3. The VegET and EDPMCoupling for the Evaluation
[11] Using the preplanned workflow (Figure 2), the

coupled EDPM-VegET model was run in a prognostic
mode and in a diagnostic mode. In prognostic mode,
the EDPM used only meteorological data and linear
mixing to produce seasonal NDVI trajectories for 0.05�
grid cells in the study area. In diagnostic mode, the
EDPM’s prediction was corrected via a one-dimensional
Kaman Filter (1-DKF) with MODIS NDVI observations
defined as

NDVI ¼ rNIR � rred
rNIR þ rredð Þ (1)

where rred and rNIR are the red and near-infrared reflectance.
The EDPM also produced maps of phenological timing
separately for maize, soybeans, and grassland.
[12] Daily EDPM NDVI was estimated prognostically in

each 0.05� grid cell by modeling the mixed cropland covers
as follows:

Figure 1. The study area (dark gray), Northern Great Plains, encompassing Nebraska, Iowa, Minnesota,
North Dakota, and South Dakota, USA. The dark gray areas are defined by 0.05� grid cells with at least
50% MODIS mapped maize or soybean crop cover during 2007–2009 that are also labeled as cropland or
grassland in the MODIS land cover product. The four dots show the locations of flux towers used for the
EDPM training.
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NDVI ¼
X3
i¼1

fi NDVIendmember
i (2)

X3
i¼1

fi ¼ 1

where fi is the fraction (0–1) of the 0.05� grid cell that is
cover type i (i= 1: maize, i = 2: soybean, i= 3: grassland)
and NDVIendmember

i is the EDPM-modeled NDVI value for
that grid cell assuming 100% cover of cover type i. We
note that direct linear mixing of NDVI values in this manner
has been criticized in the literature since the NDVI is not
a linear function of red and near infrared reflectance
[Settle and Campbell, 1998; Busetto et al., 2008]. However,
we found that this had small impact for this study and that
the error it creates is generally smaller than that due to
MODIS reflectance errors propagated into the NDVI.
[13] The daily Kcp data were derived from the EDPM

NDVI as follows:

Kcp ¼ 1:22 NDVIþ 0:01 (3)

where NDVI is the EDPM-derived NDVI defined as (2). The
linear coefficients in (3) were derived by a statistical analysis
of 8 years of flux tower ETa and ET0 measured at four flux
towers (Figure 1) located in Mead, Nebraska (three towers)
and Bondville, Illinois (one tower) and described in
Kovalskyy and Henebry [2012b]. The four towers represent
typical conditions for rain-fed commodity crops in the
Central USA with maize-soybean rotation annually. The
relationship (3) was derived by regression analysis with
n = 842, r2 = 0.46 (p< 0.01). Both the prognostic and
diagnostic daily EDPM NDVI data were used in the
VegET to produce corresponding prognostic and diagnostic
ETa results.

2.3. Model Parameterization Data

[14] The experiments conducted within this investigation
used various data sources to reach its goals: (1) running
the EDPM-VegET coupling scheme required meteorologi-
cal forcing data; (2) percent crop cover data were neces-
sary for the EDPM to produce seasonal canopy
trajectories of model grid cells with mixed vegetation
cover; (3) satellite NDVI data were used to assess the
EDPM’s predictions of seasonal canopy trajectories and
later to produce retrospective outcomes.
2.3.1. Meteorological Forcings
[15] Meteorological forcings for the EDPM and the

VegET were supplied by the North American Land
Data Assimilation System in native General Regularly-
distributed Information in Binary 1 format (1 h temporal
and 0.125� grid cells). The original hourly data time
series were aggregated into daily time series of 2m
air temperature (K) (daily average, maximum, and
minimum); 2m specific humidity (kg/kg) (daily
average); surface pressure (Pa) (daily average); U wind
component (m/s) (daily average); V wind component
(m/s) (daily average); downward shortwave radiation
(W/m2) (daily sum); downward longwave radiation (W/m2)
(daily sum); total precipitation (mm) (daily sum), and soil
water content at 1 m depth (kg/m3) (daily average). The
forcing data set and LSM simulations of NASA’s
Mosaic model from NLDAS Phase 2 were obtained from
the NASA Goddard Earth Sciences Data and Information
Services Center at http://disc.sci.gsfc.nasa.gov/hydrology/
data-holdings.
2.3.2. Crop Cover Data
[16] This modeling experiment used annual 500m crop

cover maps for 2007, 2008, and 2009 derived via deci-
sion tree classification of the seven MODIS visible to
shortwave infrared reflectance bands and derived tempo-
ral metrics that capture surface changes [Chang et al.,
2007]. As recommended in the original publication
[Chang et al., 2007], annual crop maps were mosaicked

Figure 2. Modeling workflow. Rounded boxes are modeling and data preparation procedures; stacks are
data time series.
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from independently derived crop maps for Nebraska,
Iowa, Minnesota, North Dakota, and South Dakota. The
crop coverages in the mosaicked maps present the
percentage of area under maize and soybean in each
500m MODIS grid cell, provided that the grid cell has
at least 50% of the area in either crop. The remaining
proportion was assumed to be grassland, because grass-
land is the second most abundant land cover within the
Northern Great Plains [Luo et al., 2003]. Additionally,
MODIS 1 km land cover product [Friedl et al., 2002]
(MCD12C1, International Geosphere–Biosphere Programme
classification type available at ftp://e4ftl01.cr.usgs.gov/
MOTA/MCD12C1.005) was used to insure that selected
500m pixels are also labeled as grassland or cropland in the
corresponding year.
2.3.3. Satellite NDVI Data
[17] Image time series of NDVI data were generated

from the 0.05� MODIS nadir bidirectional reflectance dis-
tribution function (BRDF) adjusted reflectance (NBAR)
product [Schaaf et al., 2002] (MCD43C4 version avail-
able at ftp://e4ftl01.cr.usgs.gov/MOTA/MCD43C4.005).
The MODIS NBAR product is a 16 day product gener-
ated on a temporally overlapping basis every 8 days.
The MODIS red and near-infrared NBAR were screened
by examination of the associated product quality assess-
ment bits to reject poor quality and snow contaminated
retrievals and then used to generate NDVI as (1). The
NDVI derived from the MODIS NBAR product has
been shown to capture vegetation phenology [Zhang
et al., 2006; 2009; de Beurs et al., 2009; Kovalskyy et
al., 2011].
[18] These three data sets were reprojected as necessary

into the geographic (latitude/longitude) MODIS climate
modeling grid into 0.05� grid cells using the nearest
neighbor resampling procedure to preserve the original
data values. Resampled data were used to parameterize
the coupled EDPM and VegET models in as illustrated
in Figure 2.

2.4. Model Output Assessment Methodology
and Validation Data

[19] We used three comparisons to assess model perfor-
mance: (1) a comparison of the EDPM NDVI with the
MODIS NDVI; (2) a comparison of the phenological dates
produced by the EDPM with date from the NASS Crop
Progress reports; and (3) a comparison of EDPM-VegET
predictions of actual evapotranspiration with the evapotrans-
piration products from MODIS Land Suite and from the
Mosaic model in NLDAS.
2.4.1. Assessment of NDVI Produced by the EDPM in
Prognostic Mode
[20] The EDPM NDVI generated in prognostic mode

were compared with NDVI calculated from the MODIS
NBAR product. To match the nominal temporal date of
the MODIS NDVI composites, only the EDPM NDVI
values from the 8th day of the 16 day MODIS composit-
ing period were compared. Because the EDPM cannot
produce NDVI outside the growing season, the compari-
sons were restricted to the period early March to late
October (day of year 97 to 305) for each of 2007, 2008,
and 2009.

2.4.2. Assessment of Phenological Dates Estimated by
the EDPM in Prognostic Mode
[21] The EDPM estimates of the start-of-season (SoS)

and end-of-season (EoS) and length-of-season (LoS) were
compared with U.S. National Agricultural Statistics
Service (NASS) weekly reports (from http://www.nass.
usda.gov/Charts_and_Maps/Crop_Progress_&_Condition/
) on maize emergence and maturity respectively and with
NASS weekly reports of soybean emergence and leaf-
drop, respectively. The NASS data describe the county
and state percentage crop area that underwent a given
phenological phase transition for each calendar week
but were only available for 2008 and 2009 across all
the study area. Only the state level NASS data were used
as some of the county level data were missing. For each
state, the day when 50% of the crop was emergent was
derived by linear interpolation of the dates of the two
NASS reporting weeks with less than and more than
50% crop emergence. This NASS-derived state level crop
emergence date was compared with the EDPM day that
had 50% of 0.05� state grid cells labeled as SoS. Simi-
larly, the interpolated state NASS days with 50% maize
maturity and 50% soybean leaf-drop were compared with
the EDPM day that had 50% of 0.05� state grid cells
labeled as EoS for these crops. These dates were also
derived for 25% and 75% values to capture state level
temporal variability measured by interquartile range
(IQR). The 50% LoS values from the NASS reports were
calculated by subtracting the 50% SoS day of year from
50% EoS day of year. For the IQR LoS, the 75% LoS
was calculated as 75% EoS date minus 25% SoS date,
and the 25% LoS was computed as 25% EoS date
minus 75% SoS date. The difference between 75%
LoS and 25% LoS made the IQR of LoS from
NASS reports. The IQR in the LoS estimated by the
EDPM were collected directly from the model reports
on the grid cell basis.
2.4.3. Assessment of Actual Evapotranspiration Estimated
by the Coupled EDPM-VegET in Prognostic
and Diagnostic Modes
[22] Prognostic and diagnostic daily ETa estimates from

the coupled EDPM-VegET model were compared with
MODIS and Mosaic land surface model ETa estimates.
The 1 km 8 day MODIS evapotranspiration product
(MOD16) presents estimates of 8 day sums of actual
and reference ET modeled from weather forcings and
remotely sensed land surface properties of the land sur-
face [Mu et al. 2009]. Standard Hierarchical Data Format
files were obtained from ftp.ntsg.umt.edu/pub/MODIS/Mirror/
MOD16/MOD16A2.105_MERRAGMAO/. The MODIS ET
product has been shown to match closely in situ ETa mea-
surements but has varying spatial and temporal uncer-
tainties [Mu et al., 2009, 2011]. Therefore, we also used
ETa estimates defined from NASA’s Mosaic LSM
[Koster and Suarez, 2003; Koster et al., 2004]. Similar
to MOD16 product, NASA’s Mosaic LSM has shown
differential spatial and temporal performance during vali-
dation experiments [Xia et al., 2012a, 2012b]. The
Mosaic ETa data are defined hourly in 0.125� grid cells
and were aggregated into daily estimates by summation.
The coupled model and Mosaic estimates were summed
into 8 day totals so that they could be compared with
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the 8 day MODIS ETa product. As with the evaluation of
NDVI, only within growing season ETa results were con-
sidered for 2007, 2008, and 2009.
[23] In the above NDVI and ETa assessments, the two

most common measures of performance: coefficient of
determination (r2) and root mean square error (RMSE) were
derived as below:

r2 ¼ 1�
X

m� cð Þ2X
c� �cð Þ2 (4)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

m� cð Þ2
n

s
(5)

where m is the modeled NDVI or ETa, c is the compari-
son reference NDVI or ETa, and n is the total number
of modeled and reference values. Along with r2 and
RMSE, we examined the spatiotemporal patterns of resid-
uals (m� c) to identify conditions where coupled scheme
maintains or loses its adequacy. Previous testing of the
EDPM and VegET at flux tower locations showed high
levels of performance for the coupled model [Kovalskyy
and Henebry, 2012a, 2012b]. In this regional application
of the coupled model, the performance expectations are
given by the earlier point-based performances; namely,
for NDVI estimates, r2 = 0.8� 0.1 with RMSE = 0.1
� 0.025, and for ETa, r2 = 0.7� 0.15 with RMSE = 1.4
� 0.5mm per day, and transforming into 8 day aggregates
by simple multiplication yields RMSE = 11.2� 4mm
per 8 days.

3. Results

3.1. Comparison of the EDPM-derived NDVI With
MODIS NDVI

3.1.1. Spatial Comparison of the EDPM NDVI Against
MODIS NDVI
[24] The maps representing performance measures for

each year show that the performance of the EDPM-
generated NDVI varies across the study area (Figure 3).
We also included the maps of average seasonal
modeling errors (Figure 3c) from results received after
the data assimilation (diagnostic mode) to contrast
those with RMSE obtained during uncorrected (prognos-
tic) estimation.
[25] The r2 maps in left column (Figure 3a) clearly

demonstrate that the EDPM NDVI time series well corre-
late with observed dynamics of MODIS NDVI. The r2

maps are dominated by dark color representing coeffi-
cients of determination of 0.8 and greater (Figure 3a).
The coefficients of determination had a tendency to
decrease toward the western edge of the study area,
showing the worst performance in 2007 and best in
2008 with mean r2 of 0.77 and 0.86, respectively. This
assessment is supported by the RMSE maps (Figure 3b):
the overall RMSE across the study area reached 0.18 in
2007 but dropped to just above 0.11 for 2008. Unlike
with prognostic mode of the EDPM, the maps produced
in diagnostic mode (Figure 3c) show the even spatial dis-
tribution of average modeling errors after the EDPM
NDVI has assimilated the MODIS NDVI observations. The
magnitudes of modeling errors with assimilated NDVI were
slightly less than 0.1 and similar in all 3 years.

(a) (b) (c)

Figure 3. Comparison of the EDPM NDVI against MODIS NDVI within the study area. (a) Coefficient
of determination (r2); (b) root mean square error NDVI; (c) seasonally averaged daily NDVI error after
assimilation of MODIS NDVI observations.
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[26] Compared to MODIS NDVI observation, the
EDPM NDVI was mostly lower in the central part of
the study area and higher at the periphery (Figure 4).
The 2007 results came out as the most biased having
the mean of residuals �0.2 to �0.3 spread along the
western Iowa and Minnesota borders. For 2008 and
2009, most of the seasonally averaged differences
between observed and modeled NDVI varied between
�0.2 and 0.1. The variability of the residuals grew from
the center toward the periphery (Figure 4b). Importantly,
similar absolute values of RMSE (Figure 3b) and mean
residuals (Figure 4a) point that the bias was rather
uniform for most of the study area.
3.1.2. Temporal Comparison of the EDPMNDVI Against
MODIS NDVI
[27] A closer look into seasonal dynamics of residuals

(Figure 5) reveals similarities in developments seen
in both the mean difference from observations and
the standard deviation of residuals within the three
growing seasons.
[28] Comparable seasonal patterns of residuals are evi-

dent and similar in 3 years (Figure 5). The graphs show
that the EDPM prediction of NDVI was only slightly
lower than MODIS observations early in the year when
grasses enter their growing phase, but later the underesti-
mation increased substantially as the growing season
commenced for maize and soybeans. The means of resid-
uals became more negative at the approach of each
phenophase transition, which has been previously identi-
fied as a source of error in the EDPM [Kovalskyy and

Henebry, 2012a,b]. After the change of phenophase, dif-
ferences with observations returned to the initial level.
Overall, the analysis of the EDPM performance suggests
that although the errors from EDPM were higher, they
were still within the expected range based on prior
performance validation [Kovalskyy and Henebry, 2012a].

Figure 5. Temporal dynamics of residuals (NDVIEDPM
NDVIMODIS) during three growing seasons. Light grey
squares represent 2007; darker grey diamonds are 2008; and
black triangles are 2009.

(a) (b)

Figure 4. Spatial distributions of residuals (NDVIEDPM�NDVIMODIS): (a) Seasonal means of NDVI
residuals and (b) standard deviations of NDVI residuals.
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3.2. Comparison of Growing Season Dates

[29] Here we highlight the differences between the SoS and
EoS dates estimated by EDPM and those reported by NASS.
[30] Fairly good agreement is evident between observed

and estimated SoS and EoS dates of the two growing
seasons (Figure 6). Persistent delays of about 2weeks in
SoS for maize crops within all five states are also apparent
(Figure 6). Such delays in SoS predictions were comparable
with the mismatches encountered in retrospective NDVI
analyses by Fisher et al. [2006], Zhang et al. [2009], and
Kovalskyy et al. [2011]. Meanwhile, the estimates of both
SoS and EoS for soybeans were more accurate and consis-
tent. Length-of-season (LoS) for NASS data show higher
degree of variability than EDPM estimated ones (Figure 7);
similar patterns occur in the variability of SoS and EoS
(data not shown).

3.3. Comparison of Eta Estimated with the EDPM-VegET
with the MODIS and Mosaic Eta Products

3.3.1. Temporal Comparison of the EDPM-VegET
Produced Eta Against Reference Data Sets
[31] Before comparing the ETa estimates from the

coupled EDPM-VegET with references, it is important to
note the substantial discrepancies between the two refer-
ence data sets (Figure 8a). The plot clearly shows that,

Figure 6. Contrasted start and end dates of the growing season for the two crops and 2 years estimated
by the EDPM and reported by NASS recounted in days of year. Circles signed SoS and EoS denote start-
of-season and end-of-season, respectively. (a) SoS and EoS for maize in 2008, (b) SoS and EoS for maize
in 2009, (c) SoS and EoS for soybean in 2008, and (d) SoS and EoS for soybean in 2009.

Figure 7. Contrasts between the EDPM estimates and
NASS reports of the length-of-season and its variability for
the two crops and 2 years. Symbols show the average and error
bars display the interquartile range (IQR). Filled diamonds
show LoS for maize in 2008, open diamonds show LoS for
maize 2009, filled triangles show LoS for soybean 2008, and
open triangles show LoS for soybean 2009.
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compared with MOD16 product, Mosaic ETa first was
higher and then came close to zero difference by the mid-
dle of the growing season. Later, however, the Mosaic ETa

turned to overestimation again. In contrast, the differences
between the two versions of the EDPM-VegET estimates
representing ETa derived with and without assimilation
via 1-DKF scheme were apparent only in the middle of
the growing season (Figure 8b). The ETa prediction by
coupled model was following the previously noted under-
estimation pattern in NDVI produced by the EDPM in
prognostic mode (Figure 5). Hence, the prognostic ETa

values were lower than ETa produced in diagnostic
mode (with 1-DKF). The variability of residuals exhibited

similar temporal behavior to the one found earlier (com-
pare Figure 8b with Figure 5). The remaining subpanels
(Figures 8c–8f) retain the main features evident in
subpanels of Figures 8a and 8b.
[32] The subpanel (Figure 8c) reveals that at the beginning

of growing season, prognostic EDPM-VegET results
showed underestimation of 15mm per 8 days compared to
ETa produced by Mosaic. In the midseason, the difference
came close to zero, but later a smaller (~10mm per 8 days)
underestimation prevailed again (Figure 8c). Compared
to the ETa from MOD16, the predictions from the EDPM-
VegET showed close to zero difference for most of the
season with slight overestimation in early June (up to

Figure 8. Temporal dynamics of ETa residuals during the 2007–2009 growing seasons. (a) ETa Mosaic

ETa MOD16; (b) ETa EDPM-VegET�ETa EDPM with 1-DKF-VegET; (c) ETa EDPM-VegET�ETa Mosaic; (d) ETa EDPM-

VegET�ETa MOD16; (e) ETa EDPM with 1-DKF -VegET�ETa Mosaic; (f) ETa EDPM with 1-DKF -VegET�ETa MOD16.
Light grey squares represent season of 2007, darker grey diamonds are 2008, and black triangles are 2009.
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(a)

(b)

(1) (2)

(1) (2)

Figure 9. Comparison of MOD16 ETa with the ETa produced by EDPM-VegET working in (a) prognostic
mode and (b) diagnostic mode involving 1-DKF assimilation. (1) Coefficient of determination (r2); (2) root
mean square error (mm per 8 days).
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(a)

(b)

(1) (2)

(1) (2)

Figure 10. Spatial distributions of residuals (a) ETa EDPM-VegET�ETa MOD16 (b) ETa EDPM with 1-DKF-

VegET�ETa MOD16. (1) Seasonal mean of residuals (mm per 8 days); (2) standard deviation of residuals
(mm per 8 days).
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7mm per 8 days) and underestimation of the same magni-
tude in late August (Figure 8d). The variability of residuals
for prognostic ETa estimates remained high and had a clear
seasonal pattern.
[33] Differences between reference data and estimates

of ETa obtained with the EDPM-VegET working in diag-
nostic mode (with 1-DKF) exhibited temporal patterns
seen previously in prognostic results. Differences with
Mosaic ETa were negative at the beginnings of growing
seasons (Figure 8e), but in the midseason, the curves
drifted toward slight (up 5mm per 8 days) overestimation
but later reverted to underestimation of 15mm per 8 days
(Figure 8e). Compared with MOD16 ET product, the
EDPM-VegET diagnostic estimates produced residuals
that signal slight overestimation early in the growing sea-
son. Later, however, the residuals came close to zero and
remained there till the end of growing season indicating
good match (Figure 8f). The variability of residuals for
diagnostic ETa estimates from EDPM-VegET dropped
quite dramatically in both comparisons (Figures 8e and 8f)
showing the relative efficacy of data assimilation for this
method of ETa estimation.
3.3.2. Spatial Comparison of the EDPM-VegET
Produced Eta Against Reference Data Sets
[34] The comparison with MOD16 product demon-

strated that the EDPM-VegET scheme was able to follow
the dynamics of ETa in the reference data set and pro-
duced high coefficients of determination, even exceeding
the expectations of 0.7� 0.15 (Figures 9a and 9b). Aver-
age coefficient of determination was more than 0.8 for
both prognostic and diagnostic modes. In 2008, the aver-
age r2 dropped to the expected 0.7 level for both versions
of derived ETa (Figures 9a and 9b). Compared to the
coefficients of determination in Figure 9a1, the distribu-
tion of r2 values within the study area was more
homogeneous in the results from the coupled scheme
working in diagnostic mode involving 1-DKF assimila-
tion with MODIS NDVI data (Figure 9b1). In both
modes, the EDPM-VegET scheme showed lower r2 in
the western peripheral regions where the accuracy of crop
cover maps was known to be lower. RMSE values in
those regions were correspondingly higher especially in
the results of the scheme working in prognostic mode.
In diagnostic mode, RMSE had a more uniform distribu-
tion and constituted around 6mm per 8 days on average,
which is half of the expected level of 11.2 mm per
8 days. The average RMSE for EDPM-VegET outcomes
derived in prognostic mode was about 8mm per 8 days.
Transformed into corresponding units, this performance
would be comparable to Nagler et al. [2005] or
Abramowitz et al. [2008], if the ETa data from MOD16
product approximated the reality with the accuracy of
flux tower instruments [Mu et al., 2009]. A point-based
flux tower validation study has shown that the scheme
can approximate daily ETa in crops with similar accuracy
[Kovalskyy and Henebry, 2012b].
[35] The contrast between the two sets of ETa estimates

from the EDPM-VegET scheme is readily apparent in the
maps of mean seasonal residuals (Figures 10a1 and
10b1). In prognostic mode (Figure 10a), the prediction
of ETa had mostly negative mean residuals changing to
positive in the periphery of the study region (both east

and west). Predominantly, mean seasonal residual values
(Figure 10a1) deviated not too far from zero with worst
cases of �12mm per 8 days in 2007 in the central part
of the study region. Standard deviations of ET residuals
(Figure 10a2) shows uneven distribution of variability
revealing clusters of unstable performance from EDPM-
VegET scheme working in prognostic mode. Meanwhile,
the performance of the EDPM-VegET scheme was more
stable in diagnostic mode (Figure 10b). The mean
residuals in the left column (Figure 10b1) were mostly
positive, fluctuating no more than 9mm per 8 days.
There was less contrast between years and also less hetero-
geneity within the study region. Smaller and more
homogenously distributed standard deviations of residuals
(Figure 10b2) indicated more spatially stable performance in
diagnostic mode compared to prognostic mode (Figure 10a2).
[36] Overall, the EDPM-VegET scheme showed closer

temporal and spatial correspondence with MOD16 prod-
uct but contrasted with the ETa estimates from the
Mosaic estimates (section A); the results from the
EDPM-VegET scheme were less correlated and had
greater spatial variability in RMSE and residuals. Figures
in section A demonstrate the problem in the central part
of the study area (especially during 2007 growing sea-
son) that came from numerous differences in approaches
to the ETa modeling and in assumptions made about the
parameterization data, e.g., land cover types, soil types,
and leaf area index [Koster and Suarez, 1996; Mitchell
et al., 2004]. Nevertheless, the expected performance of
r2 = 0.7� 0.15 and RMSE = 11.2� 4mm per 8 days were
achieved by the coupled models working only in diag-
nostic mode using MODIS observations for correction
of simulated NDVI trajectories.

4. Discussion

[37] The overall impression from the comparisons is fa-
vorable in support of the EDPM-VegET coupling
scheme. The results matched and even exceeded most
of the expected measures of model performance obtained
from point-based validations [Kovalskyy and Henebry,
2012a,2012b]. Based on comparison with MODIS NDVI
observations, the EDPM NDVI trajectories may be useful
in various applications, such as daily vegetation monitor-
ing or phenological simulations with induced crop cover
changes. For the latter, the EDPM will be particularly
advantageous considering its simple assumptions and
possibility of using mixtures of crops in grid cells. The
coupled scheme has also produced ETa results similar
to those from the MODIS evapotranspiration product.
Even in the worst cases, the RMSE measures in ETa

(10–14mm per 8 days) were also comparable with those
of Senay [2008], Mu et al. [2007], and Abramowitz
et al. [2008]. It is possible, however, that the vegetation
and hence the canopy phenology coefficient derived from
the EDPM NDVI had a limited impact on the ETa results
from VegET driven mostly by meteorological forcings.
Additionally, the performance of the EDPM VegET scheme
may be affected by the choice of soil moisture data from
Mosaic LSM that may carry errors from original vegetation
representation. The impact of this issue on estimated ETa
requires further investigation on a daily basis.

KOVALSKYY ET AL.: EVALUATION OF A COUPLED EDPM-VEGET MODEL

5076



[38] Further, the comparison between the MODIS
NDVI and the NDVI produced by the EDPM revealed
both temporal and spatial drawbacks in the performance
of the event-driven model. The EDPM NDVI predictions
for 2007 during late season drought produced higher
residuals and RMSE compared to other years. The
most likely reason for this performance drawback is the
over-reaction of the EDPM to the 2007 drought
(residuals dropped to �0.25) and the current inability
of the model to account for irrigation. An appropriate
solution for the 2007 error spike would be additional
training of the EDPM on irrigated flux tower sites during
the drought years so that the model can respond to
hydrological stress more adequately within irrigated
areas. During other years, the bias appeared to be consis-
tent throughout the area and could be arithmetically
removed from the results or corrected by obtaining
better estimates of background vegetation-free NDVI
values as suggested by Zhang et al. [2003]. Unlike
spatial bias, the patterns seen in temporal dynamics of
errors constitute a problem that cannot be corrected with
an arithmetical transformation. Temporal spikes in resid-
uals were related solely to the performance of automatic
estimation of growing season dates in the EDPM.
Therefore, the solution should come from improvements
in functioning of the phenological control mechanism in
the event-driven model.
[39] The variability and some mismatches of key grow-

ing season dates also became problematic for the EDPM.
The contrast in IQR between LoS reported by the NASS
and estimated by EDPM was expected since the spatial
variability in LoS is driven by gradients in precipitation,
temperatures, and daylength, [Henebry, 2010; Ibanez
et al., 2010]; however, the EDPM does not include
precipitation as a phenological control at this stage
[Kovalskyy and Henebry, 2012a]. Despite this shortcom-
ing, the EDPM estimates of phenological dates for all
crops and years managed to stay within the range of
state-level reports from the NASS. The risk remains
that these phenological mismatches may propagate into
NDVI trajectories precluding further analysis based
on uncorrected (prognostic) daily NDVI time series.
Evidently, both NDVI and ETa predictions from EDPM-
VegET scheme exhibited increased error at times of
phenophase transition. Meanwhile, the 1-DKF-corrected
NDVI time series were less influenced by the errors in
phenological timing, but diagnostic ETa results were still
higher then references early in the growing season. This
overestimation indicates that, while decreasing the resid-
uals and their variability, the assimilation of MODIS
NDVI could not completely ameliorate the shortcomings
of the EDPM-VegET scheme.
[40] Next steps for model improvement include

attempts to eliminate the delays in SoS in maize by
collecting new phenological data from flux towers
or specialized phenological sites. The new data will
allow refinement of the temperature, insolation, and
calendar time triggers for phenological transitions in the
EDPM. Also, we intend to improve the matching
between the interannual variability in phenological
dates from the EDPM and in NASS reports through
inclusion of precipitation in the phenophase control

mechanism. Special attention will be paid to the periph-
ery of the study region, as those areas are most likely
to carry land cover mapping errors: crop cover classifica-
tion models were trained on representative areas located
in the middle of cropland regions of the five states
[Chang et al., 2007].

5. Conclusion

[41] The purpose of the experiment described in this
paper was to assess the fitness of the EDPM-VegET
coupling scheme for spatially explicit application in a
phenological modeling study within agricultural areas of
Northern Great Plains. The study has helped to prioritize
directions for model improvement so that future research
can provide insights into how ETa may change in
response to changes in crop area and how potential future
landscapes of rainfed croplands may affect regional
hydrometeorology. Performance of the scheme was
assessed through comparison of modeled variables with
independent reference data sets. First, the EDPM-
produced seasonal NDVI trajectories were found compa-
rable with MODIS NDVI giving coefficients of determi-
nation of 0.65–0.95 and RMSE of 0.1� 0.035 for the
entire study area. Assimilated MODIS NDVI brought the
variability in modeling errors closer to the 0.1 NDVI level.
Growing season dates estimated by the EDPM were
matching the NASS reports, with less than 2weeks of differ-
ence in key phenological dates in both maize and soybean
crops. Estimates of actual evapotranspiration produced by
the coupled scheme were compared with ETa from Mosaic
model and with the MODIS evapotranspiration product.
In both comparisons, the performance targets of
r2 = 0.7� 0.15 and RMSE=1.4� 0.5mm per day were both
met by the coupling scheme working in diagnostic mode
using MODIS observations for correcting seasonal trajecto-
ries of canopy development. Overall, in every comparison,
the EDPM-VegET coupling scheme proved its ability to
model daily NDVI and ETa dynamics that closely follow
best available reference data.
[42] Minor issues of model performance were encoun-

tered during this experiment. The EDPM NDVI trajecto-
ries were biased toward underestimation relative to the
MODIS NDVI reference; the bias was relatively uniform
in space but less stable in time. Actual ET estimates from
the EDPM-VegET were closer to MOD16 product, while
producing greater differences with Mosaic LSM predic-
tions. Spatial patterns in differences could be attributed
to distinct assumptions about land cover in Mosaic
LSM [Mitchell et al., 2004]. Seasonal profiles of differ-
ences between EDPM-VegET estimates and reference
data exhibited clear patterns driven by phenology. The
impacts of these issues on performances of the EDPM
and the VegET models, however, were relatively small
and easily correctable. The EDPM-VegET coupling
scheme has demonstrated its ability to reproduce both
the spatial and temporal dimensions of NDVI and ETa
dynamics within an acceptable range of error; therefore,
the coupled model is recommended for use in spatially
explicit applications and modeling studies in the humid
to subhumid extratropics.
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(a)

(b)

(1) (2)

(1) (2)

Figure A1. Comparison of ETa from Mosaic LSM with the ETa produced by EDPM-VegET from the
review version coupling scheme deployed in (a) prognostic mode and (b) diagnostic mode involving
1DKF from the review version assimilation. (1) Coefficients of determination (r2); and (2) Root mean
square error (mm per 8 days).

Appendix A

KOVALSKYY ET AL.: EVALUATION OF A COUPLED EDPM-VEGET MODEL

5078



(a)

(b)

(1) (2)

(1) (2)

Figure A2. Spatial distributions of residuals (a) ETa EDPM-VegET�ETa Mosaic (b)ETa EDPM with 1DKF �
from the review version VegET�ETa Mosaic. (1) Seasonal means of residuals (mm per 8 days); and
(2) Standard deviations from the review version of residuals (mm per 8 days).
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