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ABSTRACT 

Throughout this paper, we will examine correspondences, also known as set-valued 

functions.  A definition of correspondences and their graphs are given.  Properties of 

correspondences including continuity, optimization, and existence of fixed points are 

considered.  Examples are considered demonstrating these properties.  Applications in the 

field of Economics are introduced.  Specifically the optimization of consumer utility is 

examined through examples.   

INTRODUCTION 

Functions are typically denoted 𝑓: 𝑋 → 𝑌 where 𝑓(𝑥) = 𝑦 with 𝑥 ∈ 𝑋 and  𝑦 ∈ 𝑌.  

Functions are traditionally single valued such that for any 𝑥 from the domain, the output 

will be a single point, 𝑦, from the range.  We can now expand our knowledge to 

correspondences, or set valued functions.  Correspondences are denoted by 𝑓: 𝑋 →→ 𝑌 

where for any 𝑥 ∈ 𝑋 the output is written 𝑓(𝑥) = 𝑦, but 𝑦 is some subset of 𝑌 instead of a 

single point.  Before considering a few examples we will clearly define the graph of a 

correspondence as found in [5]. 

Definition 1: Define 𝑓: 𝑋 →→ 𝑌 to be a correspondence.  The graph of  𝑓(𝑥), denoted 

𝐺𝑟(𝑓), is defined as the set 𝐺𝑟(𝑓) ≔ {(𝑥, 𝑦) ∈ 𝑋 × 𝑌  | 𝑦 ∈ 𝑓(𝑥)}. 
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Example 1: Define 𝑓: ℝ →→ ℝ such that 𝑓(𝑥) = {−𝑥, 𝑥}. 

 

 

 

 

 

 

 

 

 

 

 

Example 2: Define 𝑔: ℝ+ →→ ℝ+ such that 
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Figure 6.  Table and 𝑮𝒓(𝒇) 

. 

Figure 7.  Table and 𝑮𝒓(𝒈) 
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Example 3: Define  ℎ: ℝ+ ∪ {0} →→ [1,2] such that  ℎ(𝑥) = [1,2]. 

 

 

 

 

  

 

 

 

 

The examples above demonstrate three ways of representing a correspondence: definition, 

data values, and graphically (Figures 1, 2, and 3).  The objectives of this paper are to 

determine what characteristics a correspondence needs in order to be continuous, when a 

fixed point is guaranteed to exist, where and how a correspondence is optimized, and how 

correspondences can be useful in other fields of study.   

Considering Sets 

Consider an arbitrary, nonempty set 𝑆 and an arbitrary member 𝑠 ∈ 𝑆.  We can determine 

many characteristics of 𝑆 by applying classifications to all of its members.  Most of these 

classifications will be dependent upon the points that surround a particular member.   

Definition 2: Let 𝜖 > 0, 𝑆 be an arbitrary nonempty set, and 𝑠 ∈ 𝑆.  We define a 

neighborhood about 𝑠 to be 𝑁(𝑠) = (𝑠 − 𝜖, 𝑠 + 𝜖). A deleted neighborhood about 𝑠 is 

defined as 𝑁∗(𝑠) = (𝑠 − 𝜀, 𝑠) ∪ (𝑠, 𝑠 + 𝜀). 

Observing neighborhoods about 𝑠 allow for determination of the characteristics of s.  

Member points can be classified into one or more of the following categories: 

𝒙 𝒚 

1 [1,2] 

2 [1,2] 

3 [1,2] 

4 [1,2] 

5 [1,2] 
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Figure 8.  Table and 𝑮𝒓(𝒉) 
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1. Interior Point: A member 𝑠 ∈ 𝑆 is an interior point of 𝑆 if there exists 𝑁(𝑠) ⊂ 𝑆.  

In other words, if there exists a neighborhood about a member of the set that is 

completely contained in the set, then that member is an interior point. 

2. Boundary Point: A point 𝑠 is a boundary point of 𝑆 if every 𝑁(𝑠) has at least 

one point that is in 𝑆 and at least one point that is not in 𝑆.  A boundary point 

does not have to be an a member of the set. 

3. Limit Point: Any 𝑥 ∈ ℝ  is a limit point of 𝑆 if every 𝑁∗(𝑠) has at least one 

point in 𝑆. Note that a limit point does not have to be a member of the set. 

4. Isolated Point: A member 𝑠 ∈ 𝑆 is an isolated point of 𝑆 if there exists an 𝑁(𝑠) 

such that the only point in 𝑁(𝑠) that is a member of 𝑆 is 𝑠. 

Example 4: 𝑆 = {𝑠 ∈ ℝ |𝑠 ∈ (0,5)} 

 

Figure 9.  Graph of set S (example 4) 

Interior points: Each 𝑠 ∈ 𝑆 is an interior point because there is a neighborhood about each 

point such that every element in the neighborhood is also be a member of 𝑆 (Figure 4). 

Boundary points:  The set {1, 5} is the set of boundary points.  Any neighborhood of these 

values that are not in the set have a member that is a member of 𝑆. 

Limit Points: The set {1,5} ∪ 𝑆  is the set of limit points of 𝑆.  A deleted neighborhood 

about 1,5, or any member of 𝑆, results in the deleted neighborhood containing at least one 

element of 𝑆. 

Isolated points:  There are no isolated points in 𝑆 because every neighborhood of every 

member contains other elements of 𝑆. 

Example 5: 𝑆 = {1,2,3,4,5} 

 

Figure 10.  Graph of set S (example 5) 
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Interior points: There are no interior points in this example because there is always a 

neighborhood about each member that has elements that are not in 𝑆 (Figure 5).  

Boundary points: Every element of 𝑆 is a boundary point because every neighborhood 

about every member contains one element of 𝑆 which happens to be the member itself, and 

one point not in the set. 

Limit Points: This set has no limit points because for each real number, there exists a 

deleted neighborhood that contains no members of 𝑆. 

Isolated points:  Every element in 𝑆 is an isolated point by definition. 

Now that we are able to classify the members within a specific set we can now use those 

classifications to determine its properties.  Specifically, we will want to determine whether 

a set is an open set or a closed set. 

Definition 3: A nonempty set 𝑆 is open if every 𝑠 ∈ 𝑆 is an interior point.  A set 𝑆 is closed 

if its complement 𝑆𝑐  is open or if the set contains all of its limit points. 

In Example 4, the set S is an open set since every element is an interior point.  However, 

the set in Example 5 does not have any interior points.   Consider, in example 5, 𝑆𝑐 = {ℝ −

{1,2,3,4,5}}.  The elements in 𝑆𝑐  are all interior points since there exists a neighborhood of 

each element which is contained in 𝑆𝑐  itself.  Since 𝑆𝐶  is an open set, 𝑆 is a closed set.  

Another way to look at this would be to reconsider the limit points of 𝑆.  Since there were 

no limit points we determine the set of limit points to be the empty set, and since the empty 

set is a subset of 𝑆 we can say that 𝑆 contains all of its limit points.  Thus 𝑆 is closed. 

Other necessary concepts include supremum and infimum, upper and lower bounds, and 

compactness.  A set 𝑆 is bounded above if there exists 𝑥 ∈ ℝ such that for every 𝑠 ∈ 𝑆, 𝑠 ≤

𝑥.  The real number 𝑥 is referred to as the upper bound of 𝑆.  If this 𝑥 also happens to be 

the smallest real number for which 𝑠 ≤ 𝑥, then 𝑥  is called the supremum of 𝑆 denoted 𝑥 =

sup (𝑆).  Note that 𝑥 does not have to be a member of the set in order to be the set’s 

supremum.   A similar definition is given for the lower bound of 𝑆 where for some 𝑦 ∈ ℝ 

and every 𝑠 ∈ 𝑆,   𝑠 ≥ 𝑦.  If the real number 𝑦 is also the largest real number for which 𝑠 ≥

𝑦, then 𝑦 is called the infimum of 𝑆 denoted 𝑦 = inf (𝑆). If a set has an upper bound and a 
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lower bound we call the set bounded.  A set is called a compact set if the set is both closed 

and bounded. 

Referring back to Example 4, we can classify that this set is bounded with sup(𝑆) = 5 and 

inf(𝑆) = 1.  The set is not classified as compact since we determined it to be an open set.  

The set in Example 5 is also bounded with sup(𝑆) = 5 and inf(𝑆) = 1.  Since the set is 

closed and bounded we can also determine that it is compact. 

Continuity of Correspondences 

These preliminary ideas provide a setup for the conditions a correspondence must meet in 

order to be classified as a continuous correspondence.  We first define the concept of 

continuity as found in [1]. 

Definition 4: A correspondence 𝑓: 𝑋 →→ 𝑌 is continuous if its codomain is compact, if 

every element in the domain maps to a nonempty subset of the range, and if 𝐺𝑟(𝑓) satisfies 

the following two conditions: 

1. 𝐺𝑟(𝑓) is closed and 

2. For every (𝑥, 𝑦) ∈ 𝐺𝑟(𝑓), if a sequence {𝑥𝑛} converges to 𝑥 then there must exist 

a sequence {𝑦𝑛} that converges to 𝑦 ∈ 𝑓(𝑥) where 𝑦𝑛 ∈ 𝑓(𝑥𝑛) for all n. 

When a correspondence satisfies the latter of the two conditions it is said to be lower 

hemicontinuous, which is commonly abbreviated LHC.  

Reconsider 𝐺𝑟(𝑓) from Example 1 where 𝑓(𝑥) = {−𝑥, 𝑥}.  We will consider each 

continuity requirement to determine if 𝑓 is continuous. 

Claim 1: The function has a compact codomain. 

The codomain of 𝑓 is ℝ which is neither closed nor bounded.  Thus the codomain 

is not compact and we can conclude that 𝑓 is not continuous.   

Claim 2: Every element in the domain maps to a nonempty subset of the codomain.  

Since 𝑓(𝑥) = {−𝑥, 𝑥} we can conclude that this holds true for every element in 

the domain. 

Claim 3: The 𝐺𝑟(𝑓) is closed. 
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Recall 𝐺𝑟(𝑓) ≔ {(𝑥, 𝑦) ∈ 𝑋 × 𝑌  | 𝑦 ∈ 𝑓(𝑥)} and note that when determining 

whether 𝐺𝑟(𝑓) is closed we consider the (𝑥, 𝑦) ∈  𝐺𝑟(𝑓) as a subset of all 

(𝑥, 𝑦) ∈ ℝ × ℝ.  Considering a neighborhood, in this case an infinitely small 

circle, about an arbitrary ordered pair in the graph, note that each point is a limit 

point.  Consider every ordered pair in 𝐺𝑟(𝑓)𝑐 and determine whether there exist 

limit points of 𝐺𝑟(𝑓) outside of 𝐺𝑟(𝑓).  Note that each neighborhood can be 

made small enough so as to not contain a point in 𝐺𝑟(𝑓).  Since 𝐺𝑟(𝑓) contains 

all of its limit points, 𝐺𝑟(𝑓) to be closed.   

Claim 4: The 𝐺𝑟(𝑓) meets the LHC requirement. 

Consider every sequence {𝑥𝑛} → 𝑥 and determine whether there exists a 

sequence  {𝑦 𝑛} → 𝑦 with 𝑦𝑛 ∈ 𝑓(𝑥𝑛) for all 𝑛 where 𝑦 ∈ 𝑓(𝑥).   To do this we 

need to show that for every 𝜀 > 0 there exists a 𝛿 > 0 such that whenever 

|𝑥 − 𝑥0| < 𝛿 then |𝑓(𝑥) − 𝑓(𝑥0)| < 𝜀.  This is basically saying that for any 

sequence that gets infinitely closer to an arbitrary 𝑥 there exists a sequence of 

function values that gets infinitely closer to 𝑓(𝑥).  For this example consider the 

two parts of the graph: 𝑦 = 𝑥 and  𝑦 = −𝑥 and show that this is true for both 

graphs.   

 Define 𝑓(𝑥) = 𝑥.  Let 𝜀 > 0 and 𝛿 > 0.  Assume  |𝑥 − 𝑥0| < 𝛿.  Then 

|𝑓(𝑥) − 𝑓(𝑥0)| = |(𝑥) − (𝑥0)| < 𝛿 

Choose 𝜀 = 𝛿.  Then substituting from above yields 

|𝑓(𝑥) − 𝑓(𝑥0)| < 𝜖.                              

Next, define 𝑓(𝑥) = −𝑥.  Let 𝜀 > 0 and 𝛿 > 0.  Assume  |𝑥 − 𝑥0| < 𝛿.  Then 

|𝑓(𝑥) − 𝑓(𝑥0)| = |(−𝑥) − (−𝑥0)|     

                = | − 𝑥 + 𝑥0| 

                  = |𝑥 − 𝑥0| < 𝛿 

 

Choose 𝜀 = 𝛿.  Then substituting from above we have 
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  |𝑓(𝑥) − 𝑓(𝑥0)| < 𝜖.                              

Thus, 𝑓 satisfies the LHC requirement.   

Next we shall reconsider Example 2. This correspondence will prove to be discontinuous 

for many reasons, but we will discuss each requirement. 

Claim 1: The function has a compact codomain. 

Consider the union of all of the subsets that make up the codomain and note that 

it is ℝ+ which is neither closed nor bounded.  Thus 𝑔 does not map to a compact 

codomain. 

Claim 2: Every element in the domain maps to a nonempty subset of the codomain. 

 The correspondence maps zero to the empty set and thus fails this claim. 

Claim 3: The 𝐺𝑟(𝑔) is closed. 

Consider an  (𝑥, 𝑦) ∈ 𝐺𝑟(𝑔) where 𝑥 < 1.  For this portion of the graph, note that 

the limit points include (0,0), every point on the curve 𝑦 =
1

𝑥
  , every point on the 

line 𝑦 = 𝑥, and (1,1).  Since 0 and 1 are limit points that are not contained in 

𝐺𝑟(𝑔), we can classify this portion to be not closed.  Now consider an (𝑥, 𝑦) ∈

𝐺𝑟(𝑔) where 𝑥 > 1.  The limit points of this part of the graph include (𝑥,
1

2
) and 

(𝑥, 0) which are both contained in the graph.  This portion of the graph is closed.  

Now consider the graph as a whole.  We cannot classify the graph as open 

because not every point on the graph is an interior point.   We also cannot classify 

the graph as closed because it does not contain all of its limit points.  Thus, we 

classify the graph to be neither open nor closed. 

Claim 4: The 𝐺𝑟(𝑔) meets the LHC requirement. 

Consider all of the possible sequences {𝑥𝑛} that approach 1 from the left hand 

side.  All of the possible sequences {𝑦𝑛} are approaching 1, but (1,1) ∉ 𝐺𝑟(𝑔).  

Now, consider all of the possible sequences {𝑥𝑛} that approach 1 from the right 

hand side.  Some of the possible sequences {𝑦𝑛}  are converging to values in the 

interval [0,
1

2
].  Other sequences are not converging at all.  Consider the sequence 
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where 𝑦𝑛 =
1

2
 when 𝑛 is even and 𝑦𝑛 = 0 when 𝑛 is odd.  This sequence {𝑦𝑛} 

bounces back and forth between 0 and 
1

2
 and does not converge at all. However, 

from our definition of LHC we need only there to exist at least one sequence {𝑦𝑛} 

that does converge.  However, when 𝑥 = 1, 𝑦 = 2.  Therefore, we still don’t have 

a 𝑦 value that is a member of the 𝐺𝑟(𝑔) even for the sequences that do converge 

from the right hand side.  Thus 𝐺𝑟(𝑔) does not meet the LHC requirement. 

Lastly, reconsider Example 3 and determine whether it is a continuous correspondence.  

From Example 3, we have 𝐺𝑟(ℎ) where, for ℎ: ℝ+ ∪ {0} →→ [1,2], ℎ(𝑥) = [1,2].  For this 

final Example we can conclude that ℎ is in fact a continuous correspondence.  The details 

of each claim explaining this conclusion are left to the reader as an exercise. 

Fixed Points 

Next we turn to the definition of a fixed point. Recall that 𝑥 is a fixed point of a single 

valued function 𝑓: 𝑋 → 𝑌 if 𝑓(𝑥) = 𝑥.  The fixed point theorem, which states that if a 

continuous function given as 𝑓: 𝑋 → 𝑋 where 𝑋 is a compact metric space then 𝑓 has at 

least one fixed point, is the most common way to determine if a function has a fixed point 

[4].  The definition and applicable theorem differ from single valued to multi valued 

functions.  We will define a fixed point of a correspondence and consider Kakutani’s Fixed 

Point Theorem as found in [1]. 

Definition 5: A fixed point of a correspondence 𝑓: 𝑋 →→ 𝑌 is an 𝑥 ∈ 𝑋 for which 𝑥 ∈

𝑓(𝑥). 

Definition 6: A set A is convex if given two points contained in set A, the line segment 

connecting the two points is also contained in set A. 

Theorem (Kakutani’s Fixed Point): Let 𝑓: 𝑆 →→ 𝑆 be a correspondence.  If S is 

nonempty, compact, and convex and if f is nonempty-valued, convex-valued, and has a 

closed graph then f has a fixed point. 

Proof   Let 𝑓 be as above and let 𝑆 = [𝑎, 𝑏].  Assume that 𝑓 has no fixed point.  

Then the set 𝑓(𝑥) must not intersect the line 𝑦 = 𝑥 for all 𝑥 ∈ [𝑎. 𝑏].  Since 𝑓 is 

convex valued, that must mean that for all 𝑥, 𝑓(𝑥) is either all above the line or 
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all below the line.  First consider 𝑓(𝑎).  Since the range of 𝑓 is contained in [𝑎, 𝑏] 

and there is no fixed point, values in 𝑓(𝑎) must be greater than 𝑎.  Thus 𝑓(𝑎) is 

above the line 𝑦 = 𝑥.  Let 𝑥0 be a point in (𝑎, 𝑏] such that 𝑓(𝑥) is above the line 

𝑦 = 𝑥 for 𝑥 ∈ [𝑎, 𝑥0) but 𝑓(𝑥0) is below the line 𝑦 = 𝑥.  Then 𝐺𝑟(𝑓) is open on 

the right along the vertical line 𝑥 = 𝑥0 which contradicts the assumption of a 

closed graph.  Suppose no such 𝑥0 exists.  Then 𝑓(𝑥) is above the line 𝑦 = 𝑥 for 

𝑥 ∈ [𝑎, 𝑏].  This implies that 𝑓(𝑏) > 𝑏, which is outside the range of the 

function.  Therefore, 𝑓 must have at least one fixed point.                                    

Consider Example 3 where, for ℎ: ℝ+ ∪ {0} →→ [1,2], ℎ(𝑥) = [1,2].  We shall restrict the 

domain to [1,2].  Note that [1,2] is nonempty, compact, and convex.  Also note that ℎ is 

nonempty-valued, convex-valued, and has a closed graph.  Kakutani’s Fixed Point 

Theorem guarantees that there is at least one fixed point in ℎ.  Every 𝑥 ∈ [1,2] will be a 

fixed point of ℎ. 

Recall Example 1 where 𝑓(𝑥) = {−𝑥, 𝑥} but redefine the domain and range to be 

𝑓: [5,10] → [5,10].  Note that [5,10] is nonempty, compact, and convex.  However on this 

interval, 𝑓 is not convex-valued.  Though every point in [5,10]is a fixed in point in 𝑓,  this 

example does not satisfy Kakutani’s fixed point theorem   

With an understanding of continuity and fixed points, we now discuss optimization of 

correspondences.  Optimization occurs when a correspondence attains an absolute 

maximum and/or absolute minimum within its domain.  We first define a maximum and 

minimum as found in [4]. 

Definition 6: Define 𝑓: 𝑋 →→ 𝑌 to be a correspondence and  

𝐴𝑥 = {𝑎 ∈ 𝑓(𝑥)|𝑎 = 𝑠𝑢𝑝(𝑓(𝑥))}. 

Then we define 𝑦∗ as the maximum of 𝑓 if 𝑦 ∗ = 𝑠𝑢𝑝 (𝐴𝑥).  The minimum of a 

correspondence is defined similarly. 

In other words, the maximum of 𝑓 can be found by first finding all of the suprema of each 

set in the codomain and constructing a set to include only those suprema that are members 

of the codomain.   The largest member of the set will be the maximum of the function 𝑓.  
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The most common way to guarantee optimization of a function, whether single or multi 

valued, is to use the Weierstrass Theorem [1] which is stated here without proof.   

Theorem (Weierstrass): Let X be a compact metric space and 𝑓: 𝑋 →→ 𝑅 be continuous.  

Then 𝑓 attains its max and min in X. 

Recall Example 3 where, for ℎ: ℝ+ →→ [1,2], ℎ(𝑥) = [1,2].   The correspondence has 

been shown to be continuous.  Restricting the domain of the function to be any interval 

[𝑎, 𝑏] the Weierstrass theorem applies and ℎ is guaranteed to have a maximum and 

minimum value on any interval [𝑎, 𝑏] since it meets the continuity and compact domain 

conditions.  If the domain of ℎ is restricted to be [1,2], the maximum is 𝐴𝑥 = {2} and 𝑦∗ =

2. 

Restricting the domain of 𝑓(𝑥) = {−𝑥, 𝑥} from Example 1 to be any interval [a,b] assures 

the Weierstrass theorem can be applied in a similar way.  Note that on a restricted domain, 

the graph becomes closed and thus 𝑓 becomes continuous.  Then the Weierstrass theorem 

guarantees that 𝑓 will have a maximum and minimum.  For the sake of example, restrict the 

domain to [5,10].  For the maximum, 𝐴𝑥 = [5,10] and 𝑦∗ = 10.  Simliarily for the 

minimum 𝐴𝑥 = [−10, −5] and 𝑦∗ = −10. 

Application in Economics 

Correspondences are commonly used for applications in the field of economics.  We will 

explore one specific application here regarding a consumer’s utility function.  In 

economics, the assumption is made that whenever a consumer is faced with the choice of 

buying a bundle of different goods a choice can always be made that maximizes the 

consumer’s happiness.  This happiness is called utility and it differs from person to person.  

For each bundle of goods, a utility is assigned and we can then rank order the bundles from 

greatest utility to least utility.  The consumer is always assumed to choose the bundle that 

maximizes their personal utility [3].   

Example 6: Maximizing the Utility Function 

Say a college student has a fixed allowance for food of $10.  To simplify matters, 

let us assume that the only options available are pizza and pop.  Furthermore, 

assume that one slice of pizza costs $2.00 and one bottle of pop costs $1.00.  A 
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plot of pizza along the 𝑥-axis and pop along the 𝑦-axis shows the possible 

combinations of pizza and pop that correspond with an allowance of $10 (Figure 

9).  Note if we allow the student to exercise the option to buy fractions of slices 

of pizza and fractions of bottles of pop the available bundles would be the shaded 

region which is called the “feasible region”.  In other words the student has 

enough money to purchase any bundle that exists within that region, including 

those on the border line.  However, anything outside of the feasible region is not 

available due to the $10 budget constraint. 

                                                                                                                                                                       

 

 

 

 

  

 

 

 

How much utility does the student get from each point in the feasible region?  To find out, 

consider the student’s utility function.  A commonly used utility function is the Cobb 

Douglas utility function where utility is given by  𝑈(𝑥, 𝑦) = 𝑥𝛼𝑦𝛽  where α and β are 

positive constants [3].  The relative size of α and β determine the importance of each good 

to the student.   This utility function holds the property that when prices increase utility 

decreases [3].  Then, if we evaluate the utility function for each bundle of goods 𝑥 and 𝑦, 

the result is a utility 𝑈.  We then rank order the values of 𝑈 and the bundle that gives the 

highest value of 𝑈 is the bundle the student will choose.  It is assumed that for any bundles 

that produce the same utility value, the student remains indifferent.  In other words, having 

either bundle provides the student with the same amount of happiness and a bundle is 
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Figure 11.  Utility function corresponding to Example 6 
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chosen at random.  There will exist many bundles that produce the same utility and these 

can be plotted along a curve.  These curves are appropriately called indifference curves. 

Return to Example 6 and assume that the student’s utility function is given by 𝑈(𝑥, 𝑦) =

𝑥2𝑦.  Below is a plot of indifference curves for various values of 𝑈 along with the feasible 

region (Figure 7).   

 

 

 

 

 

 

 

 

 

 

 

 

Recall that the student is always assumed to maximize utility.  According to Figure 7, the 

student is able to attain a maximum utility of about 𝑈 = 37.  This indifference curve is 

tangent to the feasible region at (3.35,3.3).  Note that if the student is only able to buy 

integer values of pizza and pop, the student will choose the bundle of three slices of pizza 

and four bottles of pop since 𝑈(3,4) = 36 and 𝑈(4,2) = 32.   

In Example 6, we fixed the price of each slice of pizza and each bottle of pop.  In reality, 

we know that prices vary from one year to the next and in some industries, such as 

Figure 12.  Feasible region and indifference curves corresponding to Example 6 

Number of bottles 

of pop purchased 

Number of pizzas purchased 



THEORY AND APPLICATIONS OF CORRESPONDENCES                     62 

 

gasoline, one day to the next.  If the price of each slice of pizza and each bottle of pop were 

to change, how would that affect the student’s choices?   

Example 7:  Maximizing the Utility Function with Different Prices 

Suppose the college student is still constrained by a $10 budget for food.  

Assume that the only options available are slices of pizza, which cost $2 each, 

and bottles of pop, which now cost $2 each. 

 

  

 

 

 

 

 

 

 

 

 

 

The maximum utility in this market occurs at 𝑈(3.3,1.7) ≈ 18.5.  Again, since 

this is unrealistic we compare 𝑈(3,2) = 18 and 𝑈(4,1) = 16 and determine that 

the student chooses three pieces of pizza and two bottles of pop.  Note that since 

the price of pop has increased, the feasible region has decreased.  This is because 

the student is getting fewer products for the same amount of money.  Also note 

that the utility value of 37 is now out of the students reach.  Similarly, had the 

price of either commodity decreased, the feasible region would have increased 

and thus the maximum derived utility would have increased. 
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of pop purchased 
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Figure 13.  Feasible region and indifference curves for Example 7 
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As illustrated in the examples, the feasible region for the consumer changes when the price 

of the goods, or commodities, change (Figure 8).  Thus far we have only considered the 

consumer’s options when we fix the price of each good.  If the constraint of a fixed price 

for each good is removed and the prices are allowed to vary, the utility maximization 

problem requires the use of correspondences to determine which bundle of goods 

maximizes utility.  We will set up the utility maximization problem for the general case and 

then consider a specific example. 

First, define the commodity space and corresponding prices.  Let 𝑋 = {(𝑥1, 𝑥2, … , 𝑥𝐿)|𝑥𝑖 ∈

ℝ+} be the commodity space, or the set of all possible consumption bundles, where 𝐿 is the 

number of available commodities.  The commodity space is defined without respect to any 

budget.  In other words, this is all possible bundles in ℝ+
𝐿 .  Let 𝑌 = {(𝑦1, 𝑦2, … , 𝑦𝐿)|𝑦𝑖 ∈

ℝ+} be the corresponding price of each commodity.  Since we are allowing prices to vary, 

there will be a 𝑦 ∈ 𝑌 for every possible combination of prices for each commodity.  Note 

that the price vectors will also be members of ℝ+
𝐿  [1]. 

From here we can define the budget correspondence, or the feasible region.  Let 𝑤 be the 

fixed budget of any given consumer.  Then the set of feasible bundles, is given by 𝐵: 𝑌 →→

𝑋 where  𝐵(𝑦) = {𝑥 ∈ 𝑋|〈𝑦, 𝑥〉 ≤ 𝑤}.  Therefore 𝐵 is a correspondence that inputs a 

specific price vector and outputs the set of all possible bundles, or the feasible region, 

subject to the budget, 𝑤, of the consumer at hand.   Note that each  𝐵(𝑦) ⊆ 𝑋 [1]. 

Given this information we can now reconsider the consumer’s utility function 𝑈.  Recall 

that the consumer always chooses the bundle that maximizes his utility.  However, since 

prices are allowed to vary, the feasible region will also vary.  This implies that the 

maximum utility will change depending upon the available bundles in the feasible region.  

Thus the consumer’s maximum derived utility is now a function defined as 𝑈∗: 𝐵(𝑦) → ℝ 
  

where 𝑈∗ = max(𝑈(𝑦, 𝑥)) .  In other words, 𝑈∗ is all possible maximum derived utilities in 

each given feasible region [1].   

Example 8: Maximizing Utility while Allowing Prices to Vary 

For this example, we will combine Examples 6 and 7 into one.  The student has a 

$10 budget constraint, so 𝑤 = 10.  There are two commodities, pizza and pop, so 

𝐿 = 2.  The commodity space is all possible bundles of pizza and pop without 
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respect to a budget, so 𝑋 =  ℝ+
2 .  In this Example we are considering two 

possible prices for each good, so 𝑌 = {(2,1) , (2, 2)}.  There are two possible 

feasible regions, 𝐵(2,1) and 𝐵(2, 2) which are the sets of bundles in Figures 6 

and 7 respectively.  The utility function is still defined as 𝑈 = 𝑥2𝑦.  We have two 

possible maximizations of derived utility, 𝑈∗(2,1) ≈ 37 and 𝑈∗(2,2) ≈ 18.5. 

Correspondences allow us to consider the consumer’s feasible region for any price that the 

commodities may take on.  Another powerful tool is the Theorem of the Maximum which 

allows us to determine properties of 𝑈∗ under certain conditions [1].  This theorem is stated 

without proof. 

Theorem of the Maximum: Let 𝑋 and 𝑌 be metric spaces, 𝐵 a be compact-valued and 

continuous correspondence, and 𝑈 be a continuous function. Then  𝑈∗ is a continuous 

function.  

This is powerful because knowing that the function of maximum derived utility is 

continuous allows us to draw valuable conclusions.  If we bound prices to a reasonable 

range they could take on in a given period of time, the Weierstrass Theorem guarantees that 

the consumers maximum derived utility function will attain a maximum in the price range. 

This information can be used to predict consumer purchasing behavior. 

The use of correspondences for this type of optimization analysis was first studied around 

1959 by economist and mathematician Gerard Debreu [6].  Economist and Mathematician 

Nicholas C. Yannelis expanded Debreu’s work to other areas of Economics and Game 

Theory [6].  In this work, Yannelis proves the existence of an equilibrium in a random price 

model.  Correspondences have also been used for solving discontinuous differential 

equations.  A. F. Filipov elaborates on their uses in his book Differential Equations with 

Discontinuous Righthand Sides [2]. 
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