December, 1980

Plant Science Pamphlet #58

ANNUAL PROGRESS REPORT

CENTRAL CROPS AND SOILS RESEARCH STATION

HIGHMORE, SOUTH DAKOTA

BRIEF HISTORY

The 1980 crop season started out to be a good year for crop production. The soil moisture and temperature were adequate for rapid germination of planted crops. As the season progressed, rainfall was below normal for all months of the small grain season. High temperatures and windy conditions affected all crops on the research station. Millet, which is more tolerant to heat and drought, did not produce a good seed or forage crop this year.

Fall plantings of winter grain emerged well on summer fallow ground but not on recrop areas cropped in 1980. These plantings had seed laying in dry soil till the rains in October occurred, at which time germination and emergence took place. Usually by October 16 the soil would be frozen and plant activity would be in a dormant state till the following spring.

A twilight tour of the station, June 24, covered the garden, diseases affecting small grain, weed control in small grain, small grain varieties and the Ram Testing unit, which is now in its 4th year of testing. An after tour lunch was served by the ladies associated with the station or extension service.

The Board of Directors met in Highmore December 18, 1980, and the yearly station results were discussed, and election of officers for 1981.

In 1981, the twilight tour will be conducted Wednesday, July 1 at 6:30 PM, with refreshments to be served after the tour.

The annual meeting of the Central Research Advisors has been set for December 18, 1981 in the Hyde County Extension building at 9:30 AM, Highmore, SD.

A planning meeting for 1981 has been tentatively set for 3:30 PM, March 3 at the Crop and Pest Conference at the King's Inn in Pierre, SD.

NOTE: This is a progress report and, therefore, the results presented are not necessarily complete nor conclusive. Any interpretation given is strictly tentative because additional data from continuation of these experiments may produce conclusions different than those of any one year. These data reflect the 1980 growing season.

750 copies printed at an estimated cost of 42¢ per copy.

TABLE OF CONTENTS

Pa	0e
Brief History	
Table of Contents	1
Agricultural Advisory Group	2
The Cooperative Extension Service	2
1980 Crop Season	2
Crop Rotation - Soil Moisutre Usage Relationship	3
Hay, Haylage and Silage Production	4
1980 Standard Variety Small Grain Trials	7
Spring Wheat Breeding	9
Highmore Forage Experiments 1	1
Winter Wheat Breeding	1
Garden 1980	3
Sunflower Research - Onida 10	6
Fodder Beets - Onida	8
Soybean Trials - Onida 19	9
Performance of Herbicides in Soybeans - Sully County 20	0
Sheep-Ram Testing	2

AGRICULTURAL ADVISORY GROUP

Central Research Station, 1980

Highmore

Roger Hainy, Chairman '80 Doug Meyer Larry Lindhorst Jay Pugh Jerry Hawkins Dennis Ruzicka Victor Beringer Doug Marsh

Wessington Spring Huron Cresbard Miller Pierre Highmore Gettysburg Onida

Jerauld County Beadle County Faulk County Hand County Hughes County Hyde County Potter County Sully County

THE COOPERATIVE EXTENSION SERVICE

Hollis D. Hall, Director

County Extension Agents of the Central Research Station Area

Lawrence Carson, Sec. '80 Dick Fadgen Ray Larsen Wayne Nesby Robert Edwards Becci Fonck, Acting Lawrence Madsen Nanette Weber, Acting

Wessington Springs Huron Faulkton Miller Pierre Highmore Gettysburg Onida

Jerauld County Beadle County Faulk County Hand County Hughes County Hyde County Potter County Sully County

1980 Crop Season

Total Rainfall for Growing Season by months with their Departure from Long-time average on Central Research Station, Highmore, S.D.

Rainfall	Inches	Departure*	Greatest Day	Date
April	1.25	-0.62	1.10	7th
May	0.95	-1.60	0.40	10
June	3.77	-0.20	1.20	28
July	2.25	-0.29	0.55	4
August	2.90	+0.55	1.95	16
September	0.43	-1.18	0.20	1
October	3.30	+2.05	2.25	16

Number of days during month with temperature 90⁰ or above: April 2; May 7; June 10; July 20; August 13; September 7; October 2.

Last frost - Spring (May 15) First frost - Fall (October 11) Frost free period - 149 days

*Departure from longtime rainfall average April through October: -1.29 inches on the Central Research Station. Total hail occurred June 12, July 10 and 15.

CROP ROTATION - SOIL MOISTURE USAGE RELATIONSHIP

Q. Kingsley and M. Volek

OBJECTIVE OF EXPERIMENT:

1. To compare various crops with different maturities for soil moisture usage and yielding ability under similar soil and climatic conditions.

DISCUSSION:

Crops chosen for this experiment are of different maturities. Barley, oats and wheat are about 20-25 days earlier maturing than safflower while corn and sunflowers are long season crops. Planting and harvest dates are the same as * Inches used period.

The safflowers and sunflowers had Tolban applied at 1 pound per acre preplant for weed control.

In 1981, a grain sorghum will replace the safflower in the rotation, but it will be grown in another area to study moisture usage and yielding ability.

This is a replicated study and will be continued on a rotation basis where a short season crop may precede or follow a long season crop.

RESULTS: Central Research Station, Highmore, S.D. 1980

Table 1

Crop	Yield in Bu or lb/A	Moisture loss from profile plus precip. inches used*	Bu/or Lbs. per Inch of Water Used**	Test Weight	Protein or Oil
Barley					
Primus II	12.2	9.13	1.34	48.8	15.7
Oats Nodaway 70	14.6	9.85	1.48	34.6	15.1
Wheat WS1809 Corn	9.3	9.30	1.00	58.3	18.2
Pioneer Safflower	55.7	11.47	4.86		9.9
S-208 Sunflower	469.9	12.56	37.41	40.0	
IS 3100	578.4	12.15	47.60	28.0	43.7

* Inches used: Includes 6.42 inches of rain from April 17 to July 16 for barley, oats and wheat. Safflower - April 17 to August 6, 6.97 inches Corn - May 19 to September 17, 9.62 inches Sunflowers - May 19 to October 8, 9.75 inches

**Calculated by: <u>Bu. of grain produced</u> = bushels of grain produced Loss + precipitation per inch of water used.

HAY, HAYLAGE AND SILAGE PRODUCTION Central Research Station, 1980 Q. Kingsley and M. Volek

TITLE: Dry Matter Production for Small Grains, Millet and Forage Sorghum. OBJECTIVES OF EXPERIMENT:

- 1. Compare various crops for dry matter production.
- 2. Obtain regrowth data after first harvest.

DISCUSSION:

Four oat varieties of various degrees of maturity were used for this study. The dried samples from the milk stage cutting wer lost when the drying oven caught fire. The tonnage there is reported on a wet weight basis. Yields taken from the late dough to ripe were hailed on but an attempt was made to salvage some of the crop.

RESULTS:

Table 2. Small Grain Haylage, Tons of Dry Matter* (DM) per acre.

Variety	Milk (wet wt) 6/26	Tons per acre Dough 7/1	Late dough to Ripe (Hail7/10) 7/14
Burnett	3.82	1.23	0.36
Lancer	3.16	0.92	0.45
Nodaway 70	3.32	1.01	0.42
Benson	4.25	1.48	0.51
Average: 3.	64		

Hay (88% DM); Haylage (50% DM); Silage (33% DM)

*To determine yields of hay, haylage or silage: Divide tons of DM by percent DM in hay, haylage or silage. Example (DM average for dough of 1.16 if divided by 0.88 equals 1.32 tons of 12% moisture hay, etc.)

Planted: 4/16/80

Harvested: Listed above under column heading.

- 4 -

DISCUSSION:

Dryness after the millet, Table 3, was at the heading stage reduced yield plus the constant activity of grasshoppers. This study will be continued in 1981.

RESULTS:

Table 3. Millet Haylage 1980, Tons of Dry Matter* (DM). Per acres and grain yield, Central Research Station.

Variety	Tons DM per acre	Lbs Grain per acre
Foxtail	1.09	158.9
White (proso)	1.21	99.4
Minsum (proso)		196.1
DM Averag	je 0.65	

DM average Hay (88% DM)	0.65 0.74	Haylage (50 Silage (33%	% DM) 1.30 DM) 1.97
*Formula same	as Small Grain	Haylage, Table	2.
Planted: June	: 13	Harvested:	August 5
Planting rate:	Foxtail 6#/A Proso 20#/A		

FORAGE SORGHUM

DISCUSSION:

The tonnage produced from these different sorghum plant types reflect the environmental conditions during 1980. Regrowth from the first cutting August 15 was not dried and yields had to be given on a wet weight basis. In 1981, this study will be cut back to 3 entries per plant type with complete chemical analysis performed on each entry.

RESULTS:

1

÷

Table 4. Forage Sorghum Tons of Dry Matter*(DM) per Acre, Central Research Station, 1980. Planted June 11.

Plant Type and Variety	First Cut Plant Height	First Cut 8/15 tons/A DM	Regrowth 9/13 tons/A wet	First Cut 9/13 tons/A DM	Plant Height
Sudan	nergne	consyn on	00113/11 1120		inc r girt
Acco HS 33	36	1.62	1.10	5.71	51
Cal/West Piper	44	2.03	1.35	4.44	68
culturest super	77	2:05	1155	7.77	00
Forage					
Asgrow Merit	31	1.18	1.01	3.89	43
DeKalb FS 25A	46	2.63	1.21	7.11	61
Sigco Bet-R-Sile	32	1.43	0.96	3.64	45
Sorgo x Sorgo					
NK X4224	32	1.46	0.96	4.35	49
11 4227	JE	1.40	0.90	4.55	
Forage x Sudan					
Acco Sweet Sioux IV	34	1.91	1.05	5.71	55
Cal/West Forage x Sudan	37	2.38	1.09	5.66	64
Cal/West Sorgo x Sudan	41	2.56	1.16	6.56	63
DeKalb ST6	49	2.46	1.10	5.08	66
Paymaster S99	32	1.88	1.06	3.82	40
Sigco Sorghum Sudan	31	1.20	1.03	4.07	52
Grain x Sudan					
Asgrow Grazer N2	31	1.37	1.06	3.65	44
Asgrow Titan E	31	1.33	1.10	4.14	52
A					
Grain x Forage					
Ploneer 911	28	2.48	1.04	3.07	45
Pioneer 923	32	1.52	1.05	5.95	47
Pioneer 931	33	1.52	1.07	4.29	49
Forage, Leafy					
NK 367	36	1.42	1.09	5.03	53
Paymaster 401R	31	1.35	1.04	5.51	48
Paymaster FS531	32	1.23	1.05	7.00	48
Pioneer 989	33	1.60	1.08	4.33	47
Dual Purpose					
Acco D2912	34	1.54	1.02	4.77	47
DeKalb FS4	47	2.90	1.10	6.37	70
NK Silo-Milo	34	1.47	0.99	4.09	48
NK 300	30	1.34	0.93	5.96	46
Pioneer 956	29	1.42	0.96	3.26	49
DeKalb FS1A	50	2.58	1.14	7.56	59
Corn (18,000/A)					
NK PX 37	35	1 50	1.07	3.44	48
ITA FA SI	20	1.59	1.0/	J • 44	40

*Formula same as Small Grain Haylage, Table 2.

1980 Standard Variety Small Grain Trials

J. J. Bonnemann

The drouth and high temperatures during the 1980 small grain growing season at Highmore greatly limited production. Yields and quality of all grains were affected adversely. The winter wheat trial was lost to winterkill. Seeding was on April 16 but lack of moisture, even early in the crop year, retarded growth and the plants suffered throughout the season.

The results are reported in Tables 5, 6, and 7. Results of the remaining Standard Variety Small Grain Trials conducted by this project are published in Plant Science Pamphlet #56, November 1980.

Bushels per Variety	1978	1979	Weig 1980	nt 3 yr	1980	3 yr
Standard/mid	-tall					
Fortuna				22.8	57	57
Chris	18.9	21.4		20.1	57	57
Waldron	17.8	26.2		20.3	54	54
Lew			18.0		56	
Butte			13.6		56	57
Eureka			14.7		55	55
Coteau		24.7		20.9		57
James	20.0	30.8	17.2	22.6	56	57
Pondera			22.4		57	
Marberg			20.7		56	
Semi-dwarfs						
Era				20.9	55	56
WS 1809			16.4		58	57
Wared		24.3			54	56
Olaf			19.3		56	56
Prodax			23.7		55	54
Protor			15.2		58	58
Angus	20.0	30.7		24.8	58	58
Len	25.7	31.9			56	56
Solar	15.2	30.0		22.7	56	56
711			18.1		58	
Oslo			14.1		56	
Aim			15.9		57	
906-R		30.9	18.3		58	
Means			18.9		57	
LSD .05			4.5		57	
CV - %			16.9			

Table 5. 1980 Standard Variety Spring Wheat Trials.

	1979	1980	3 yr	1980	3 yr
37.6	47.0	35.4	40.0	32	31
30.0	48.2	33.8	37.3		33
					32
					32 32
					33
43.2	54 • 1	34.0	43+1	34	*
29.9	42.4	28.6	33.6	34	32
19.9	51.4	40.0	37.1		30
30.2					29
					32
					31 33
41./	51./	34.0	42.1	37	33
	64.1	49.0		34	
33.2	64.3	42.1	46.5	35	31
21.3	53.6	41.5	38.8	31	27
		32.8			31
					33
37.3	56.6	44.1	46.0	31	30
	62.2	37 6		34	
	0.511				
				34	
	30.0 31.5 31.7 26.6 43.2 29.9 19.9 30.2 37.5 35.0 41.7 33.2 21.3 33.5	30.0 48.2 31.5 49.6 31.7 49.4 26.6 42.6 43.2 52.1 29.9 42.4 19.9 51.4 30.2 54.9 37.5 53.9 35.0 44.4 41.7 51.7 64.1 33.2 33.5 57.6 48.5 55.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 6. 1980 Standard Variety Oat Trials.

Table 7. 1980 Standard Variety Barley Trials.

Variety			per a 1980	acre 3 yr		Weight 3 yr
Firlbecks III	17.2	48.7	27.4	31.1	44	46
Larker			27.6		44	46
Primus II			18.7		46	46
Park			20.3		42	45
Glenn			22.4		39	43
Morex			22.5		42	46
Menuet		50.4	19.9		43	
Klages			18.5		39	
SD 71-672	25.2	35.0	26.5	28.9	48	48
Means			22.9		43	
LSD .05			4.6			
CV - %			14.0			

Spring Wheat Breeding

D. L. Keim, G. W. Buchenau, K. M. Sellers and G. K. Hess

The Advanced Yield Trial was planted on April 15, 1980 on summer fallow. Stand establishment was good and moisture stress hit the crop fairly early in development. A hail storm hit on July 10 causing from three to 17 percent damage depending on variety.

SD 2860 (SD 2167/James 'sib') was the top yielding line in the 1980 average as well as the two-year average. At 14 test sites through 1979 and 1980, SD 2860 outyielded all check varieties with the exception of Butte. This line has yielded better than Butte under more stressed environments. Further testing will be conducted on SD 2860 and other promising lines.

VARIETY	PEDIGREE	ENTRY		WEIGHT	HEADING- Date	PLANT	DAMAGE		o Yield	
and a second of			the second second	_ L8/8U			0/0		/.	
SD 2860	SD 2167/SD 2271	15	21.8	55.6	10	25	3		27.2	
SD 2854	JANES/2049	13	21.3.	53.7 53.9	10	26		311 0	05.4	
EHA SJ 2256	ERA/NU 596	3	20.3	55.6	li	30	10	24.8	25.4	
HUAC*S*	HUACAMAYO * 1	47	_ 19.6	_ 55.5	13	25		24.0		
NPV-3		49	19.6	55.2	13	29	10			
SU 2901	SD 2528/HN 7083	43	19.0	55.3	10	27	13			
SD 2881	PROTURIAL 6010		18.4	57.0	10		12			
CGT 700		46	18.6	56.4	6	24	3			
SD 2899	3001/RL 6010	41	18.3	54.7	7	26	3			
SD 2880	PROTOK/RL - 6010	_22				26	13	-		
ULAF		2	10.1	55.1	12	24	7	25.1	26.1	
EUREKA		6	18.1	51.3	11	28	15	22.0	23.8	
1965 Q2	_ DLAF/NN 6192 _	33	18.0	_ 56.6	9		- 7	_		_
SD 2882	JAMES/SD 2049	24	17-9	57.1	8	26	10			
SU 2870	69103/2+1809//QN/TOB/:2R	21	1/-8	55.1	9	26	13	22.8		
50 2886	ULAF/IN 6792	28	17.4	_ 57.1	9	24	- 7			-
50 2007	OLAF/NN 6792	29	17.3	56.4	10	25	7			
SD 2095	3001/RL 6002	.37	17.1	57.4	9	26	15			
\$0 2853	JANES/2049	12	_17.0	57.1	1	26	T			
SO 2068	BUTTE/JAHES "S"	20	16.7	59.0	6	26	12	20.2		
CGT 105		48	16.7	55.1	11	23	7			
SU 2008	OLAF/HN 6792		-16.6	_ 56.8	10	26	13			-
SD 2040	DLAF/MN 6792	32	16.6	56.0	9	25	0			
SD 2878	3001/RL 6010	40	16.6	56.1	9	26	17		and the state	
60 2455			14.5	-36.	9		6		29.3	
SD 2399	ULAF/NN 6792	31	16.3	57.5	B	24	li.	0. 6		
SD 2700	OLAF/AN 6792	8	16.0	58.5 56.4	8	24	15	24.6	white the	
	SD 2201/PRDIOR	_	- 16.0							
SD 2866	BUTTE/ERA	19	16.0	56.8	9	26 26	7	10.0	39,3	
BUTTE	000T(W(0) (010		15.7	51.3		26		20.12	33*0	
SU 2854	PROT(IK/RL 6010 BUTTE/2271//MN 70181	- 11	15.7	\$8.0 50.4	7	25	10			
SD 2027	BUTTE/EUREKA	10	15.5	55.5	7	25	5	22.5		
SD 2835	BUTTE/CUPEKA -	9	- 15.4			25		22.6		
50 2884	SU 2201/PROTUR	26	15.4	54.4	13	26	10			
50 2861	EUREKA/PROJAX	16	15.3	55.8	6	25	3		-	
SD 2883	SD 2201/PRUTOR		_ 15.2	53.2	13	26	15		32.3	
SD 2364	SD 2201/PRUTUR	17	15.0	55.2	13	25			12.5	
SD 2892	BUTTE/EUREKA	34	15.0	56.6	10	20	17			
		36.	.15.0	- 58.8	9.		11		_	
SD 2896	NN 7083/SD 74219	30	15.0	55.1	12	25	P-			
SU 2835	BUTTE/ERA	27	14.9	53.6	9	26				
WALORON-		1.00	_14.7		12	26	12			_
20 2403	SXW COMPOSITE	45	14-2	57.9	8	25	10		12	
\$0 2897	SD 2J07//BUTTE/ND 517	39	14.0	55.1	9	26	13			
PRUTUR			_13.5	56.4	10.	22		-14.4-		_
an and	BUTTEING STREAMES	35	12.3	57 . J	LQ	24	10			
30 24Du	al inus/SD 2003	42	10-9		T	21				
Lucitians Ale			16.7			20		_		
Coefficient	of Variation		7.4			and the second				
Bayes LSD			2.04							

.

•

9

Highmore Forage Experiments James G. Ross and Arvid Boe

Because of the drought, forage production from the grass and alfalfa trials was so low that harvests were not possible. A spaced plant nursery of grazing-type alfalfa was established for selection of drought resistant, high seed yielding genotypes. An experiment to evaluate the best varieties of switchgrass, big bluestem and Indiangrass was planted for stand establishment and forage yield June 10.

WINTER WHEAT BREEDING

CENTRAL RESEARCH STATION

D. G. Wells

The tests were seeded on fallowed land on September 7. The top soil was moist and the subsoil contained a good supply of water. Fall stands were good.

Winter precipitation was inadequate. Spring weather was hot and dry. Late rains produced good growth and a wet field at harvest time.

Winter injury was extensive and so severe that some tests were not harvestable. Some others that were harvested were of little value.

The tests were very weedy.

The tests were harvested with a Hege combine July 14.

Northern Regional Performance Nursery, Highmore, 1980

Table 9.

Line or Variety	Pedigree	Entry	Survival	Yield	Test Wt.
ND 7412	YTO-17/Trader	267	60	32.6	57.6
SD 73177	Scout sel./NE 66403	271	53	31.2	59.6
ND 7481	Froid/Lancer	268	57	29.8	57.8
NE 77663	Mironovskaja 808/2*Ctk78	265	43	29.4	58.7
SD 76125	CI 15322//3#Ag/4#Sut	275	37	27.0	59.3
SD 7279	SS/D8//Wmt/3/Hume/NE 63265	269	40	26.6	57.7
SD 75284	Ag/4#Sut#2//Hand	277	30	26.0	58.6
SD 75393	Ctk*4/NapHal	274	40	25.8	57.9
SD 75269	Agent/4 Sut//Hand	272	43	25.3	58.9
SD 73165	Ctk/NE 66490	279	43	24.5	58.4
NE 75414	NE 68723/NE 68719//Gage ael.	264	37	24.2	57.5
Karkof, Check		261	50	23.5	57.5
SD 75314	Sage/Hand	278	40	23.3	58.8
NK 76W239	Winoka/Sturdy	280	30	22.1	57.4
Roughrider, Check		263	33	21.3	56.7
Warrior, Check		262	40	21.2	57.4
MT 7801	Yogo#3/Cnn	283	33	21.0	57.9
MT 7244	Lancer/Winalta	281	33	20.9	58.0
NE 76706	Bezostaial/2#Ctk sel.	266	17	19.1	56.5
SD 75375	Ctk#3/Hand//Ctk#4/NapHal	273	23	18.2	57.0
MT 7431	Rego/Cnn//Winalta	282	27	17.1	57.0
SD 74221	Ctk#2/Hand	276	28	13.6	59.0
SD 73160		270	13	12.6	56.0

High Protein Lines, 1980 - Highmore

Line or variety	Pedigree	Entry n	Survival	Yield bu.	Test Wt. lbs.
SD 75269	AG/4*Sut*2//Hand	503	62	30.4	59.6
Centurk, Check		502	45	28.7	59.4
SD 75284	Ag/4*Sut//Hand	505	57	27.7	59.3
SD 74221	Ctk#2/Hand	506	48	24.9	60.1
SD 75375	Ctk*3/Hand//Ctk*4NapHal	504	43	23.5	57.3
SD 75314	Sage/Hand	507	52	22.2	58.8
Gent, Check		501	33	20.9	58.4

Garden 1980 Central Research Station M. Volek and Q. Kingsley

Table 10. Yields of Garden Edibles in pounds produced by row or plants and on acre basis.

Variety	Row Length or Number Plants	Yield Lbs.	Yield#/A	
Radish				
New Champion	1 row 15'	2.1	1,987.3	
Sparkles	40 01	1.0	671.0	
White Icicle	н н	2.6	2,530.4	
Beet				
Early Wonder	2 row 15'	19.0	9,215.9	
Ruby Queen	e1 10	11.0	5,360.7	
Cardenal 190	1 " "	9.9	9,602.0	
Lettuce				
Black Seeded Simpson	1 row 15'	6.3	6,113.1	
Royal Oakleaf	10 41	6.0	5,783.0	
Peas				
Alaska	2 row 15'	1.0	362.7	
Wando	10 44 11 10	5.6	2,736.0	
Early Perfection	11 10 11 W	2.3	1,095.7	
Little Marvel		2.8	1,342.9	
Kohl Rabi				
Early White Vienna	2 row 15'	25.4	12,337.1	
C abbage	10	27.6	06 071 0	
Golden Acre	12 plants	37.6	36,371.9	
Hercules Hybrid		109.8	106,131.5	
Beans				
Busy Daisy	4 rows 15'	35.5	8,691.8	
Spartan Arrow	1 row 15'	21.1	20,448.0	
Green Isle Green Improved Tender	0	24.1	23,306.5	
	2 row 15'	22.9	11,145.1	
Kentucky Wonder Slim Green	16 11	27.4 24.8	13,298.0 12,039.6	
Wax Pencil Pod Black	6 11	18.6	9,037.2	
Peppers				
No. 3	4 plants	4.5	8,084.0	
No. 5	8	3.1	2,782.0	
No. 7 Petite Sirah	4 plants	1.0	1,276.0	
No. 9		5.0	9,040.0	
No. 15	41 14	4.7	8,532.0	
Big Bertha 046	H H	1.0	1,464.0	
No. 69		3.7	6,692.0	

Table 10 Continued

Variatu	Row Length or	Viold the	Viclat
Variet <u>y</u>	Number Plants	Yield Lbs.	Yield#//
Peppers (Cont'd)			
86	4 plants	3.8	6,808.0
" 91	11 14	1.2	2,196.0
" 98		1.8	3,164.0
" 107	60 00	2.6	4,776.0
" 111	0 0	5.3	10,048.
" 118	8 plants	5.8	5,278.
" 121	4 plants	2.3	4,180.0
" 128	n n	8.1	14,712.
" 131	и в	3.9	7,072.0
" 137	и и	1.3	2,356.0
" 142	84 84	3.8	6,868.0
* 144	и п	3.5	6,364.0
" 148		2.8	5,016.0
" 151			
" 153	60 00	1.8	3,184.0
155		1.4	2,568.0
1/5	41 54	6.1	11,088.0
" 182		2.4	4,364.0
Tion Tim	16 alasta	20. 2	0 150 (
Tiny Tim	16 plants	20.2	9,159.0
Sweetie-872		10.5	4,770.0
No. 9	8 plants	7.6	6,940.0
10	11 II	29.5	26,742.0
		12.3	11,144.0
12		11.4	10,384.0
10		65.5	59,470.0
20	4 plants	12.0	21,852.0
90		0.3	408.0
33		18.1	32,860.0
103	11 11	25.4	46,072.0
107		14.9	27,084.0
108		10.4	18,964.0
" 110	11 11	15.0	27,232.0
arrots	0	15.6	7 500
ScarTet Nantes	2 row 15'	15.6	7,592.7
Red Core Chantenary		12.2	5,939.6
Danvers Half Long	, .	19.6	9,508.0
gg Plant	0 -1	10.0	0.044
Unknown Variety	8 plants	10.8	9,844.0
Broccoli Hybrid Green Comet	16 plants	61.1	22 210 /
	16 plants	51.1	23,210.0
auliflower Self Blanche	16 minute	26.6	16 500 (
Seri Dianche	16 plants	36.6	16,598.0

Table 10 Continued

Variety	Row Length or Number Plants	Yield Lbs.	Yield#/A	
Onions Jumbo Yellow	2 row 15'	16.5	8,025.0	
Squash Z hini Early Prolific, Straight Neck Yellow Summer Hybrid PSX475 Butternut Buttercup, Bush Hybrid Gold Shush? Acorn Squash	3 Hills 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17.6 62.7 122.9 30.3 40.3 140.0 392.2 142.7	3,993.4 14,226.6 27,886.0 6,875.1 9,144.1 31,766.0 88,990.2 32,378.6	
Buttercup <u>Pumpkin</u> Big Moon Jack-O-Lantern	3 Hills 2 Hills	234.1 420.0 420.0	53,117.3 95,298.0 142,926.0	
Cantaloupe Alaska	1 Hill	12.8	37,171.2	
Raspberries Fall Red	3' x 54'	9.7	2,596.6	
Strawberries Ogallalla June Bearing	8' x 20' 3' x 60'	19.0 3.5	5,188.2 845.5	
Grapes 7333 White 73512 Purple		0.6 4.0		

GARDEN DISCUSSION:

The transplants for the garden were provided by the SDSU Horticulture and Plant Science Departments. Seed for flowers and many of the vegetables were provided by Peto Seed of Saticoy, California.

Weights were recorded at each harvest and reported on total yield from number of rows, plants or hills of each variety. These yields were then calculated on an acreage basis for comparisons.

The garden was watered to reduce any moisture stress, but was damaged by hail on 3 occasions.

Sunflower Research Quentin Kingsley

Plant Populations: Central Satellite, Onida, Ken Sutton Ranch, 22 miles west of Onida.

Objective: Which population is most satisfactory for high yields and standability?

Experimental Design: 12,000; 16,000; 20,000 plants per acre dryland 16,000; 20,000; 24,000 plants per acre irrigated

Areas east of Highway 281, on dryland, produced higher yields at 16,000 plants per acre due mainly to increased rainfall. Sunflower seed production west of Highway 281, under dryland conditions, were sporatic. The rainfall patterns are so varied that any variation in soil type is evident in the field. The yields produced in 1979 were the best over the years. The state average last year was about 1,250 pounds per acre and 612,000 acres were planted.

The dryland sunflowers were a failure on the Onida satellite in 1980 where rainfall amounted to 5.65 inches for the growing season.

Irrigated sunflowers under any population were producing yields that offset the cost of water applied. An increase of 35 pounds of seed per acre in 1980 offset the cost of irrigation at \$3.00 per acre application cost. Yields at 12,000, 18,000 and 22,000 plants per acre were 1793.9, 2014.7 and 2172.0 pounds per acre, respectively on the Onida farm.

Sunflower Varieties Study:

Objective: To evaluate plant materials from various sources for yield, diseases and general plant characteristics.

The results of this experiment are published yearly with no remarks about individual entries. Yields, plant heights, disease reactions and seed oil content are reported to the USDA at Fargo, North Dakota.

Table 11.	Central Research Station - Onida Farm
	Sunflower Varieties - 1980
	Irrigated

Ident	ification	Yield #/A	% 0il	Test Wt.
2. (3. (4. (Barzen Rancher 994 Cargill CAR 205 Pacific Oil POI S315 NK Sunbred NK 254 Growers Seed GS 378	2403.1 2214.3 2134.4 2040.1 1996.5	40.2 43.8 40.3 40.8 42.7	34.0 37.0 32.5 35.0 36.5
7. 8. 9.	4 Winds Sales 4W 900 Jacques Seed J 501 Keltgen Seed D0 844 Master Farmer MF 707 Interstate Seed IS 3100	1945.7 1938.5 1938.4 1931.2 1916.7		
12. 13. 14.	Agra Sun Products GH 10 TNT Sales TNT 444 Dahlgren Co. 00 704XL Cenex CX 907 Texas Triumph TRI 490	1916.7 1909.4 1887.6 1815.0 1807.7		
17. 18. 19.	Minn. Farm Bur. Hy 101 Pfizer P 620 Payco Seed Sungold 85 Peterson-Biddick. Funks G 6625 Sigco Research SGO 449	1807.7 1800.5 1749.7 1713.4 1713.4	40.5	33.5
22. 23. 24.	RBA RBA 300G Sokota Hybrid SKA 4000 Hybrid Hyb 894 Sheyenne Seed Sundance PAG SF 101	1698.9 1698.9 1662.5 1633.5 1626.2	40.8 40.6 40.7 41.2 43.3	34.5 35.0 35.5 34.5 36.0
27.	Cal/West Seed C/W 8904 Arrowhead, Inc. AR 8907 Hybrid Hyb 903	1619.0 1597.2 1531.8	41.2 41.0 40.6	35.0 34.5 34.5
	Average	1844.5		
	Sputnik Peredovik	1343.1 1894.9		
LSD a	t .05%: 3.49, 302#/A	CV%: 11.	.46	
Rainf	all: 6 inches	Planted:	May 22	

Harvested: October 8 Population: 22,000 Irrigation: 12 inches

	Root	Yield Tons/A	
Variety and Color	Wet	Oven Dry	Wet X
Monoblanc (white)	31.2	4.34	79
Monorosa (red)	31.6	4.38	76
Monoboma (red)	35.2	4.49	76
Trivert (white)	31.9	3.57	76
Percent Protein	Percent Dry	Matter Perce	nt <u>Sugar</u>
Tops 18.1 Root 12.7	23 15		16
Date Planted: May	22 Hai	rvested: Octo	ber 7
Rainfall: 6.0 inch	es Ir	rigation: 12.	0 inches

Table 12. Central Research Station, Onida Carm Fodder Beets - 1980

DISCUSSION:

Fertility: 150# H; 80# phosphate; 150# potash High potash will increase sugar.

Optimum Planting Date: Early as possible in the spring. Mid-March - Mid-April.

Plant Spacing: 36" row-7"; 22" row-10". (28,000 survival) 3-6 lbs/A depending on seed size. Depth 3/4 to 1 inch and pack after planting.

This crop was planted too late in 1980 to attain a maximum yield. Yields may reach 50 ton per acre if conditions are suitable. Fodder beets must be topped before digging, but unlike sugar beets, some of the leaf stems are left on to prevent bleeding. The harvesting can be performed with a modified potato digger.

Onida Soybean Trials L. Fine and Q. Kingsley

Table 13. Inoculation Treatments

Treatment		Bu/A
None		24.6
Slurry		25.8
Dr y	Variety Hodgson 78	24.9

Table 14. Irrigated Varieties

Variety	Bu/A
Evans	14.9
Hodgson 78	19.1
Corsory	16.3
Wells	24.3
Harcor	19.3
Sloan	19.6

Table 15. Row Space Plant Populations

Variety	Row Space Inches	Plant Space Inches	Bu/A
Hodgson 78	18	1	22.3
	18	2	25.1
	36	1	23.7
	36	2	18.3
Wells	18	1	26.2
	18	2	25.3
	36	1	20.4
	36	2	19.8

Planted:May 21, 1980Harvested:October 7, 1980Rainfall:5.65 inchesIrrigation:12 inches of water

Performance of Herbicides in Irrigated Soybeans

W. E. Arnold and L. J. Wrage

Herbicide demonstration plots provide side-by-side comparison of herbicide treatments. Treatments include herbicides presently labeled and those which may be approved in the near future. Demonstration plots are the final step in the herbicide evaluation program. Rates and application methods for each are based on results obtained in previous years' screening tests. Methods

Preplant and preemergence treatments were applied in the soybean plots on May 21. A plot sprayer delivering 20 gpa water and 32 psi pressure was used. Preplant treatments were incorporated immediately with two tandem diskings set to cut 5-6 inches deep (except Lasso and Dual preplant treatments incorporated 3-4 inches deep with one disking). Plots were planted in 36-inch rows the same day. Precipitation totaled 0.0 inches and 0.84 inches for the first and second week after planting, respectively. Post-emergence treatments were applied June 24 with precipitation totalling 0.44 inches and 1.05 inches for the first and second week following application, respectively.

Weed pressure was moderate to light. Annual grass species included green and yellow foxtail. Major broadleaved species were redroot pigweed, lambsquarter, and kochia with kochia becoming more apparent in late season. The plots were not cultivated.

Results

The performance of the soybean herbicide treatments is presented in the following table. Evaluations are based on an average of two visual estimates for each weed listed. Weed control differences in 1980 were apparent. The strengths and weaknesses of each treatment can be assessed. Over 90% control of both grasses and broadleaved weeds was achieved with several combination treatments.

- 20 -

- 21 -

		Percent We 7/30	/80	
Treatment	lb/A a.i.	Gr	BdTf	Cost/AL/
PREPLANT INCORPORATED				
Check		0	0	
Lasso	342	91	65	\$14.35
Dual	21/2	88	45	14.70
Treflan	3/4	92	76	6.80
Tolban	1	83	78	8.75
Prowl	11/4	90	81	8.75
Vernam	21/2	82	57	8.05
Treflan + Amiben	3/4 + 2	91	84	20.26
Treflan + Sencor/Lexone	3/4 + 3/8	90	91	14.38
Treflan + Sencor/Lexone	3/4 + 1/2	93	92	16.90
PREPLANT INCORPORATED AND PRE				
Treflan & Sencore/Lexone	3/4 & 1/2	98	97	16.90
Treflan & Sencore/Lexone	3/4 & 3/8	96	97	14.38
Check		0	0	
PREEMERGENCE				
Amiben	3	91	76	20.18
Lasso	3	95	82	12.54
Dual	21/2	94	46	14.70
Lasso + Lorox	2 + 1	92	67	18.75
Lasso + Modown	2 + 11/2	91	89	17.08
Lasso + Sencor/Lexone	2 + 3/8	96	95	15.93
Lasso + Sencor/Lexone	2 + 1/2	97	97	18.45
PREEMERGENCE AND POST			50	05 05
Lasso & Basagran	2 & 1	92	59	25.35
Lasso & Blazer	2 & 42	95	72	
PREEMERGENCE				
*Lasso + Lorox + Sencor/Lexone	2 + 1 + 4/4	93	93	23.80
PREPLANT INCORPORATED				
*Treflan + Amiben +Sencor/Lexone	3/4 + 14/2 + 4/4		89	21.95
Check		0	0	**

Table 16. 1980 Irrigated Soybean Herbicide Demonstration, Sully County.

* Experimental

Gr: Green and yellow foxtail

 \underline{W} Suggested retail

Bdlf: Kochia, redroot pigweed & lambsquarters

SHEEP RAM TESTING

J. M. THOMPSON AND []. L. WHITTINGTON

Data for the Fall 1979 and Spring 1980 ram tests conducted at the Central Research Station in Highmore is presented in the following tables. The fall tests are primarily for wool breeds and the spring tests for meat type breeds.

The following formula was used to index the rams in the fall test period: I = $60 \times (ADG) + 4.0 \times (staple length) + 4 \times (clean wool) - 3 \times (face cover score) - 4 \times (skin fold score).$

The following formula was used to index the rams in the spring test period: I = $60 \times (ADG) + 30 \times (weight per day of age) + 5 \times (muscle score) - 5 \times (fat score) - 5 \times (soundness score).$

In the 1979 fall test 24 producers entered 109 rams and 18 producers entered 56 rams in the spring 1980 test. For the fall 1980 test period, 86 rams were started on test for completion in March 1981. Results of this test and others will be presented in future Central Research Station reports.

		T = 4 = 1					
Breed	No.	Total Gain (1b)	ADG (1b)	Fat Score	Muscle Score	Soundness Score	Index
Suffolk	18	92.4	1.11	2.1	7.3	1.6	116.79
Hampshire	12	79.5	.96	2.75	7.7	1.4	105.55
Columbia	Ş	73.4	.89	1.8	5.6	1.0	92.6
Rambouillet	17	65.8	.80	1.9	5.4	1.1	83.2
Targhee	4	68.5	.84	2.0	5.2	1.0	85.8

Table 17. Results of Spring 1980 Test

	No.	Total Gain (1b)	ADG (1b)	Adj. 365 day Grease F1. Wt. (1b)	Adj. 365 day Clean Fl. Wt. (lb)	Adj. 365 day Sta _p le Length (in)	Face Score	Wrinkle Score	Index
Rambouillet	72	113.7	. 76	25.05	11.66	4.53	2.4	1.96	93.51
Columbia	\$	115.4	. 77	28.40	13.49	5.28	1.7	1.38	110.42
Targhee	19	125.2	.83	26.87	12.49	<mark>4.8</mark> 6	1.8	1.50	108.14
Hampshire	2	111.5	. 74	15.06	8.06	3.493	2.0	1.0	80.43
Corriedale	3	80.66	.54	23,65	11.35	5.467	2.5	1.33	86.53
Suffolk	5	91.2	.61	12.05	6.32	4.13	1.0	1.0	71.15

Table 18. Results of the 1979 Fall Test