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DIVERSITY AND DENSITY OF SHELTERBELT BIRD COMMUNITIES 

Abstract 

THOMAS E. MARTIN 

The nu�ber of bird species and the density of each species were 

monitored in 69 shelterbelts in eastern South Dakota during spring 

migration and breeding seasons in 1976 and 1977. A total of 44 

different species of birds were found during breeding anj 68 species 

during spring migration. Approximately 60 to 80% of the species in a 

shelterbelt eat insects as part or al I of their diet. Most of these 

bird species are territorial. Usually only I -· 2 pairs of a territorial 

species wi I I reside in any one shelterbelt. This low density is ca�sed 

by the I imited habitat area that shelterbelts provide. Shelterbelts are, 

essentially, forest islands surround�d by cultivated and natural grasses. 

Area of the shelterbelt accounted for approximately 60� of the 

variation in the number of species and density of the bird comnunities 

in both seasons as a :-esult of the "island effect". The limited food 

space provided by these forest islands makes ecological isolation among 

coexisting sp8cles necessary for birds to replenish energy stores lost 

due to mlgrctfonal fl 1ght. 

The i�portance of shelterbelt area on species numbers during the 

breeding ssascn can be partly attributed to the minimum area require�ent 

of territorial pairs during breeding. Some species wi; I not reside i� 

shelterbelts below a minimum size due to the large territory size these 

birds require. However, mir.imum area does not explain the upper I imit 

placed on +he number of species that wi I I coexist in shelterbelts. 



iii 

Diffuse uti I ization of the I imited food supplies was postulated as 

setting the upper I imit. Bird species that coexisted tended to exhibit 

different foraging strategies, thus red�cing overlap in use of food 

resources. lmpl ied increases in territory size with increases in the 

number of coexisting species were found. 

Theories on species-area models were re-evaluated in terms of 

competitive saturation. Abi I ity of the species source pool to sup�ly 

enough competitively different species to saturate the avai !able fcod 

space for the smallest islands was postulated as the reason for the high 

species-area slope found. Al I species-area relationships were evaluated 

in terms of one ger.eral curve and were considered a sub-section of that 

curve. Placement on the curve, and consequenily, the slope of the 

species-area relationship, was related to immigration and extinction 

rates, based on the effective source pool size. The effective source 

pool size was related to the actual source pool size, the distance of 

the archipelago from the source pool, ar.d the overal I vagi I ity of the 

species comprising the source pool. 

The idea of diffuse competition influencing th� territory size 

of bird species was further investigated by mapping territories of 

yel lowthroats, house wrens, and brown thrashers in 2 large shelterbelts. 

Results indiccted that territory siz6 of these species was larger in 

belts with a greater number of coexisting species than in the smal le5t 

shelterbelt size colonized by one pair of each species. 

The variation in corn"T,unity diversity and density unexplained by 

area was attributed to environmental factors and sampling error. The 

effect of are::i was removed. The transforn:ed data were anaiyzed to 
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provide management alternatives using multiple regression to del ineate 

the environrr.ental factors influencing community diversity and density 

during both migratory and breeding seasons. A shelterbelt that is 

subjected to I ight grazing to eliminate a heavy shrub understory and 

enhance deve lopment of a lush herbaceous layer is considered optimal for 

both divers it, and dens it,. Dense ro\\·s of shrubs a I ong the borders of 

the belts a:£0 contributed to an increase in the bird population. Heavy 

grazing C; mowing of the belt after the belt was wel I established reduced 

bird di varsity. Uti I ization of tree species that provide open foliage 

cond itions, such as Siberian elm, led to increased bird d iversity and 

dE:nsity. 

M�ltiple regression aGalyses of the environmental factors 

influencing 14 of the bird species commonly inhabiting shelterbelts were 

performed. In general, the 14 species preferred a shelterbelt 

configur�tion similar to that described for the diversity and density 

measures. in addition, specific preferences of each species suggested 

ways of rr.odifying the bird community composition. Re�oval of eastern 

red cedar mcy :ead to a reduction in noxious species. Planting of green 

ash, due to its infection by heartrot, and retaining snags enhances the 

presence cf hole nesting species such as house wrens and woodpeckars. 

Other species preferences are discussed. 
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Section I 

INTRODUCTION 

This study was initiated to quantify the diversity and dens ity of 

avian species uti I izing shelterbelts in eastern South Dakota. Objectives 

were to describe the relationship of the vegetative structure of the 

shelterbelts to b ird density and diversity, and to provide management 

suggestions for maximiz ing attractiveness of  the belts for those bird 

species compatible with farming operations, yet minimize the attractiveness 

to noxious species. There has been no comprehens ive quant itat ive study 

reported in the I iterature on the ut ilization of shelterbelts and 

windbreaks by birds relative to age of stand, understory density, canopy 

coverage, canopy volume, and numerous other quantitative features of 

these forest islands. 

Farming and ranching practices are intensive in the prairie areas 

of South Dakota and the surround ing Great Plains. Farms and ranches 

occupy 94% of  the land area of the Great P lains (Griffith 1976) . The 

estatl is�mant of wooded areas by man in this intensively managed 

agricultura l environment has been minimal in relation to total land area 

avai !able. Only 3% of  the land area of the Great Plains is forested 

(Grif fith 1976). Shelterbelts occupy I. 1% of  the land area of eastern 

South Dakota (Walker and Suedkarnp_ 1977). Shelter-belts are, therefore, 

present as a series of isolated forest habitats in a sea of cultivated 

fields and natural grasses. The "woodland islands" supp ly habitat for 

breed ing b irds which include e levated song and display perches used by 

both grassland and woodland birds. Shelterbelts also provide rest ing and 



feeding stations uti I ized by many spring and fal I transient birds. 

Distribution of birds between and within vegetative communities 

is determined by their selection of specific habitats. Management of 

the distribution of birds among habitats, therefore, is contingent on 

understanding the process by which habitat selection occurs. Selection 

for a specific habitat by a bird is believed to be a behavioral response 

to proximate and ultimate environmental stimuli causing an innate 

settling response (Lack 1 933, Svardson 1 949, Hi Iden 1 965). Recognition 

2 

of proximate cues is believed brought about by evolution and early 

experience. I mp r inti ng of the habitat features in which birds are raised 

influences their selection of habitats (Klopfer 1 963, Klopfer and Hai Iman 

1 965) . Natural selection tends to 11select" those birds sett I ing in 

habitats providing the ultimate factors necessary for maximal survival 

and reproductive success, and the birds, therefore, should evolve to be 

more selective of habitats maximizing fitness (Svardson 1 949, Hi Iden 1965, 

Fretwel I and Lucas 1969, Ori ans 1 97 1, Verner 1 975). 

Maximizing the attractiveness of shelterbelts to birds is 

dependent on determining the proximate factors recognized by birds in 

this habitat type. Bird species diversity in other forest and grassland 

habitats is related to the structural complexity of the vegetation 

(MacArthur and MacArthur 1 961 , �:acArthur 1964, MacArthur et al. 1966, 

Ficken and Ficken 1966, Recher 1 969, Austin 1 970, James 1971 , Anderson 

and Shugart 1 974). Inferences reached from these studies suggest that 

manipulation to increase the complexiiy of the habitat structure should 

result in an increase in the density and diversity of birds. 

Just the presence of shelterbetts al lows an increase in birds on 
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the prairies. Orendurff (1 940, 1941 ) qua I itati vely demonstrated an 

increase in the numbers of birds over the 10 years fol lowi ng establi shment 

of windbreaks and shelterbelts. Emerson (1 940) provided a quantitative 

estimate of the number of birds uti I izing shelterbelts in Nebraska for 

food and cover and related his estimates to the total planti ngs in  

Nebraska. However, neither Emerson nor Orendurff attempted to quantify 

the relationship between speci fic vegetation characteristics of the 

habitat and the diversi ty and density of the avifauna. 

Rotzien (1 966) counted birds in 8 shelterbelts in North Dakota 

during 3 winter periods. He named the or 2 most common bi rd species 

and the dominant trees i n  each belt, but did not quantitatively relate 

the density and diversi ty of birds to vegeta1·ive structure. Rotzi en 

did conclude, in the absence of tabular data, that density of cover was 

not related to density and di versity of birds. Field (1 971 ) quantified 

the number and di stribution of bird nests present in a single shelterbelt, 

but did not correlate her findings with vegetative characteri stics. 

The importance of shelterbelts to increased crop producti on due 

to reduced soi I erosion (Goldsmith 1976, Lyles 1 976), soi I moisture 

distribution (Frank et al. 1976, Rosenberg 1 976), and microcl imatic 

modifi cation (Rosenberg 1 976, Skidmore 1976), and I ivestock protection 

(Aitchison 1976, Fewi n 1976) has been documented. Researchers believe 

that 10 times as many shelterbelts are needed than are now planted to 

stop decimati on of the prairies through soi I erosion (Goldsmith 1 976, 

Griffith 1 976). Delineation of the envi ronmental factors influencing 

the diversity of bi rds uti I i zing shelterbelts provides opportunity for 

management suggestions to benefi t shel terbelt bi rd communities in the 



Great Plains. Shelterbelts can be designed to benefit both birds and 

humans. 

4 



Section 2 

STUDY AREA 

South Dakota, located in the eastern portion of the northern 

Great Plains, is divided by the Missouri River into 2 similarly sized 

east-west segments. This study was conducted in the eastern half of the 

state, between 42 and 46° latitude and 96 and 101 ° longitude. During the 

study, average monthly temperatures for May, June, and July were 57, 70, 

and 76°F, respectively (NOAA 1976) . The average annual temperature was 

46°F, wh:ch was 1°F above normal. The average annual precipitat ion was 

12 .5  inches; 10. 4 inches below normal. 

Eastern South Dakota varies in topography from flat to undulating, 

and the majority of the land is farmed for smal I grains. Establ ish�ent 

of shelterbelts to reduce wind erosion of topsoi I has been sponsored by 

governm9ntal and private agencies from the 1930's to date. Shelterbelts 

established near farmsteads improve appearance of the farmstead, provide 

shade in summer, reduce wind speed and snow accumulation around the hOl?ie 

and other buildings, and shield cattle and other I ivestock. Walker and 

Suedkamp ( 1977) determined that 56. 9% of the shelterbelts in South Dakota 

were directly related to farmsteads. 

A shelterbelt was defined for this study as a homogeneous stand 

of trees and/or shrubs planted in I inear rows. Shelterbelts vary 

considerably in size, shape, and composition of plant species (Table I) . 

Many young belts are cultivated for the first 4 tc 5 years to reduce 

competition for w3ter with trees and shrubs. Some belts established near 

farmsteads are mowed and lack an understory. Many belts are grazed, and 



Table I. l,1aximum, m1n1mum, and mean values of selected characteristics 
of shelterbelts, demonstrating the variability among the 69 
shelterbelts studied in eastern South Dakota. 

VARIABLE1 MAXIMUM MINltl.Ut-1 MEAN + SE 

LEI\GTH 877 .am 72.9m 261. 7 19.5m 

WIDTH 65.9m 6.6m 27.8 I .6m 

AREA 29230. 7m 2 984.2m 2 7532.8 778.4m 2 

AGE 61yrs 3yrs 20.5 I . 3yrs 

NTR II 0 5.3 0.3 

NSR 9 0 I • 7 0.2 

TNR 20 3 7.0 0. 4 

NTRSPP 7 0 2.8 0.2 

NSHSPP 4 0 I • 5 0.2 

CANHT 14.2m 6.3m 9.6 I .Om 

1Explanation of mnemonics are given in Appendix J. 
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the understory density is modified by the intensity and duration of the 

grazing. 

7 

There are 2. 5 shelterbelts per square mi le in eastern South Dakota, 

representing I. 1% of the land area (Walker and Suedkamp 1 977). The 69 

belts evaluated in this study included 14 shrub and 1 4  tree species. 

Mean canopy height (9. 60+ 0. 99m) and mean shrub row height (2. 00 .:!:_ 0. 1 7m) 

provide an average measure of height of the belts. Siberian elm (Ulmus 

pumi la) was the most common tree species, while American elm CU Imus 

americana) , green ash (Fraxanus pennsylvanica), hackberry (Celtis 

occidental is), and Russian-cl ive (Elaeagnus angustifol ia) were common. 

Honeysuckle (Lonicera tatarica), Ii lac (Syringa vulgaris), wi Id plum 

(Prunus americana), and chokecherry (Prunus virginiana) were the most 

common shrubs. 



Section 3 

METHODS AND MATER IALS 

Plot Selection 

Study plots were selected from throughout the eastern half of South 

Dakota to encompass substantial geographic variation. Selection of 

shelterbelts was accomplished by uti I izing a 2-stage cluster sampling 

of quarter-sections (65 hectares) (Brewster et al. 1976). Counties were 

divided into 8 similarly-sized groups to insure an even distribution of 

study plots throughout the study area. Eight townships were selected at 

random from each group of counties. A circle (scale radius of 4 mi !es) 

was drawn using the northwestern corner of each selected township as the 

pivot point and encompassing parts of the 4 townships adjacent to that 

corner. The resulting circle was quartered using the township boundaries. 

Al I q�arter-sections within each of the township segments encompassed by 

the respective circle were numbered, and I quarter-section was selected 

at random from each of the 4 areas. The resulting randomly selected 288 

quarter-sections were clustered in groups of 4 to minimize travel time 

between sample areas. 

Names and addresses of the landowners of al I selected 

quarter-sections were obtained through the cooperation of the local 

offices of the Agricultural Stabi I ization and Conservation Service. Each 

landowner was mailed a letter of explanation of the project, a 

pre-addressed and stamped envelope, and a questionnaire (Appendix A) 

requesting information concerning presence or absence of shelterbelts on 

the selected q�arter-sections. The landowner was requested to state 



yes or no concerning the presence of snelterbelts and, if presence was 

affirmed, to ·complete information concerning the description and history 

of the shelterbelt . 

Of the 288 questionnaires mailed, 1 86 were returned. Sixty-four 

landowners indicated presence of 97 shelterbelts and granted permission 

for study. A large sample size was believed essential to al low the 

study to evaluate the range of variabi I ity existing in shelterbelts 

within the large geographical region. Al I 97 potential belts were 

visited during the initial winter bird counting period. A number of 

shelterbelts were not on the selected quarter-section and some did not 

fulfi I I the definition of a shelterbelt. Removal of the non-conforming 

plots reduced the sample size to 69 shelterbelts. 

Vegetation measurements 

Shelterbelts provide a unique situation because their unusual 

homogeneity al lowed specific description of the habitat features. 

Techniques for sampling vegetation al lowed measurements to be obtained 

9 

in conjunction with the breeding season censuses. Vegetation was 

evaluated during a fairly uniform phenological period and, as Lack (1970) 

noted, coinciding with the time of peak food requirement for most bird 

species. 

Habitat vai-iables were measured in discrete or continuous units . 

Variables measured on a continuous scale included length; vddth; number 

of tree rows; number of shrub rows; age; height of herb layer; height of 

shrub layer; height of shrub rows; height of tree rows; canopy coverage; 

ground coverage; understory density; sr.ag density; density of the various 



shrub and tree species; and volume of al I shrub and tree species. Age 

was obtained from the landowner or by aid of an increment borer. 

Measurement of percent slope by a Brunton compass determined vegetation 

he ight. Ground and canopy coverages were measured by observing the 

presence-absence of green vegetation through an ocular tube (James and 

Shugart 1970) . 
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Understory density was measured using a density board (Giles 197 1) 

6 ft in height and divided into I f t  alternately painted black and white 

sections numbered I to 6 from bottom to top. At a distance of 2 1. 5  m, 

the investigator recorded the numbers of sections obscured by the 

vegetation between each planted row at 3 locations in each belt. 

The number of snags and al I shrub and tree species were counted 

in each of 2, 50m long transects. The average of these 2 transects was 

used as the density for each species. This was deemed sufficient due to 

the uniform planting of the vegetation in a belt. Species diversity of 

vegetation was based on the Shannon infonnation index (Shannon and Weaver 

1963) . 

Canopy and shrub volumes were calculated using a computer program 

wrii�en by Mawson, Thomas and DeGraff (1973) . Calculation of canopy 

volume fol lowed classification of the trees into I of 15 geometric forms. 

The program was dev�loped for studies in which al I trees within the plot 

were measured. It was not feasible to measure every tree in each of the 

69 shelterbelts. Because of the homogeneity within shelterbelts, 10 

individuals of each tree species present in a belt were measured. The 

progra� was modified to calculate volumes based on the ratio of the 

number of trees measured against the actual number of trees of the species 
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in each belt. 

Two additi onal modifications were incorporated into the program. 

One al lowed calculat i on of the average volume of each speci es and the 

other modified the volume in relation to foliage densi ty. Previous 

I nvestigators calculating canopy vol umes (e. g. Sturman 1 968, Balda 1969 , 

Thomas et al . 1 973) have made the invalid assumption that al I trees 

having the same geometric form have the same foliage density. I ndividual 

trees of a given species vary decidedly in the amount of foliage per unit 

area. Trees ut i I i zed for volume estimates were separated into 5 density 

classes. A tree classified in density class I was considered to have 

sufficient foliage to compl etely occupy the volume of space pred i cted by 

the geometric form selected for it. A density class rating of 2 indicated 

the fo Ii age on I y "f i I I ed" 80% of the vo I ume of the form se I ected for that 

tree . Density cl asses 3 ,  4 and 5 were considered 60%, 40% , and 20% "ful I "  

respectively. 

Variables measured as discrete included orientation of the bel t ;  

proximity of the belt to other woody cover , roads , water , human residence , 

and I ivestock feedlot; mowing; and grazing. Belt orientation was 

classified as east-west , north-south , or , if L-shaped , both . Proximity 

of the be l t  to var i ous infl uencing factors was class i fied i nto I of 5 

categor·ies : less than 200 m ,  200-400 m ,  400-600 m, 600-1 000 m ,  and 

greater than 1000 m. Mowing was recorded as yes or no , and grazing was 

class i fied as I ight , medium, or severe . 
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Bird census 

The transect method of Eml en ( 197 1 )  was used dur i ng spr i ng 

migration and summer resident periods because it al lows rapid censusing 

of al I individuals during any season . Censuses were conducted with i n  

2 hours o f  sunrise and sunset . 

Transects extending 6 1  m on both s i des of  the observer were 

established perpendicul ar to the belt. Transects were repeated at 122 m 

intervals to provide maximum possible accuracy. Some species went 

undetected during the transect counts if  they were present as only I or 

2 individuals and were near the edges of the transects. The isolated 

and restricted nature of the shelterbelts al lowed walking the lengtl, of 

the belts upon completion of al I trensects and tallying any species 

unrepresented in the transects .  These species were then assigned the 

abundance value equivalent to the number of individuals counted. 

A computer program written in PL/ I calculated the abundance of 

each bird species from the lateral counts fol lowing Emiens' ( 1 97 1 ) 

der i vat i ons . The program calculated the peak inf lexion of  the lateral 

counts by comparing each 3 m strip to tho subsequent 2 strips. I f  the 

number of ind i viduals observed in the lateral strip being compared was 

greater than both of the fol lowing 2, then the strip immediately 

fol l owing that pea k  was considered to be the end of the plateau . However, 

i o  reduce �verestimation of species due to chance or clumped observations 

near the observer ,  a minimum peak of 12 m was established . This distance 

was selected because it was f elt al I birds w i th i n  12 m were being detected. 

Based on these calcul�ted densities, the program then ccmputed the overal I 

b l rd species d i vers i ty, species richness, and equitabi I ity for each telt . 
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Up on comp letion of these calcu lation s, the program adj u sted the den sities 

of al I sp ecies to a conman p lot siz e. 

S tatistics 

T he S hann on in f orm ation i n dex ( S hann on an d Weaver 1 963 ) w as u sed 

becau se it i ncorporates both sp ecies richn ess ( Mci n tosh 1 967 ) an d 

equ itabi I ity ( L l oyd an d G helardi 1 964 ) . A l  I p aired comp ari sons  \'J ere 

based on S tu dent ' s  T-t est ( S tee l e an d Torrie 1 960) u nless n oted as bein g 

an al yz ed through an al ysis of vari ance or l east- squ ares regression . 

An alysis of th e en vironmen tal variables w as accomp lished throu gh step-w i se, 

mu l tip l e regress ion .  T he 9 0% con f idence in terval w as u sed in al I 

statistics. 



Section 4 

EFFECT OF AREA ON THE COMPOSITION AND DIVERSITY OF M I  GRANTS 

INTRODUCTION 

The effect of area on the number of breeding bird species 

occupying both real and virtual islands has been studied in an 

increasing number of island groups in recent years ( e. g. MacArthur and 

Wi Ison 1963, 1 967 , Abbot 1 974 , Johnson 1 975, Diamond and Mayr 1 976, 

Schoener 1 976, Galli et al. 1 976). However , the role of area in modifying 

the composition and diversity of transients uti I izing habitat islands as 

resting and feeding stations during their northerly migration in the 

spring has not been reported. 

Censuses of avian migrants were initiated on 8 May in the 69 study 

shelterbelts dur i ng spring migration in 1 976 and 1 977. Censuses of study 

plots were init i ated in the southern portion of the state and continued 

northward to minimize the temporal dynamics of migration . Nineteen and 

1 3  days were required to complete the censuses in 1 976 and 1977, 

respectively . In 1976 , the first 3 - 4 days were uti I ized to accomplish 

dup Ii cate counts to test differences between morning and even i ng censuses 

and rel iabi I ity of the counts. T-tests i I lustrated no significant 

differences (p> , 1 0) between counts ; duplicate counts were not conducted 

in 1 977. Efficiency in counting and fewer days lost to rainfal I reduced 

the duration of counts in 1 977. 
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RESULTS 

Between-years comparison 

The shortened circuit time in 1 977 , especially in the initial few 

days, resulted in the 1 977 censuses being completed at an earlier stage 

of migration than in 1976. Consequently , the 69 study shelterbelts 

i I lustrated lower (p<0. 01 ) mean species richness, diversity , and density 

during 1 977 as compared to the 1 976 migratory season (Table 2) . 

Black-bi I led cuckoos are late migrants and were observed near the 

end of the 1 976 migratory census period. No black-b i I led cuckoos were 

observed during the 1 977 migratory count , although many were observed 

during breeding. This species i I lustrates the effect earlier completion 

of the 1977 counts had on the b ird community composition. Of the species 

represented in 2 or more plots, 77. 8% were found in fewer pl ots in 1 977 

than in 1 976 (Appendix C) . The mean number of species during the 1 977 

migratory count (9. 59) was sti I I slightly higher (p<O. 10) than the mean 

(8. 49) for the subsequent 1977 breeding count. 

Species richness in 1977 was lower than in 1 976, but varied among 

belts in a similar manner both years , as indicated by the correlation 

Cr = 0. 802) of 1976 species richness with 1977 species richness. Density , 

though 52. 2% lower (p<0. 01 ) in 1 977 than 1 976, also varied similarly 

between years Cr = 0. 868) . Diversity provided the lowest correlation 

Cr = 0. 61 6) between years. Since the diversity index is comprised of 2 

components, species richness and equitabi l ity , and spec ies richness 

exhibits a much higher correlation between years , the l ower correlation 

of diversity is due to the low correlation (r = 0. 307) of equitabi I ity 



Table  2 .  Means and s tandard errors of all s tudy she l terbe l t s  (N = 69) 
for 1976 and 1977 migratory seasons . a )  Community s pecies 
r ichness , diversi ty , and density . b )  Number of  s pecies per 
food habits  grou p .  c )  Density o f  each food habits  group . 
d )  Percent s pecies composi tion. 

1 976  1977 

var iable Mean + SE Mean + SE 

a) S pecies richness  12 . 536  0 . 742 9 . 594 0 . 499 
S pecies divers ity 1 . 96 7  0 . 065 1 . 706  0. 047 
Density 66 . 109 4 . 366  3 5 . 48 7  3 . 049 

b)  Granivores 2 . 681  0. 102 2 . 565 0 . 093 
Omnivores 3 . 638 0 . 2 54 2 . 9 7 1  0 . 1 66  
Insec t ivores 6 . 203 0 . 493  4 . 058 0 . 343 

c )  Granivores 2 6 . 1 30 2 . 11 7  1 6 . 1 1 6  1 . 2 69 
Omnivores 1 7 . 067 1 . 384 1 1 . 983 1 . 318 
Insec tivores 2 2 . 790  2 . 400 7 . 580 0 . 795  

d )  Granivores 0 . 2 55 0 . 01 7  0 . 2 99 0 . 014 
Omnivores 0 . 2 98 0. 017  0 . 31 5  0 . 012 
Insec t ivores 0 . 447  0 . 020  0 . 386 0 . 019  

1 6  
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between years . Further insight into the differences between years is 

provided by grouping the species of each plot into their primary food 

habits as granivores, omn i vores, or insectivores (Appendix B) . The mean 

number of species found for each classification in both years (Table 2b) 

I I lustrates no difference (p>O . 1 0) in the number of granivore species 

between years . There are fewer omnivore (p<0 . 05) and insectivore 

(p<0 . 00 1) species in 1977 than 1976 . 

The mean densities of granivores and of insectivores averaged over 

al I plots (Table 2c) are not s i gnificantly d i fferent (p>O. 1 0).  However, 

if these means are divided by the mean number of species for their 

respective grcup to approximate the number of individuals per species , the 

result is 9. 83 granivores per granivore species and only 3. 67 insect i vores 

per insectivore species in 1976, and 6 . 42 and 1 . 85 for 1977, respectively. 

Granivore species such as common grackles and house sparrows are more 

social as compared to the more solitary insectivores. 

The resultant decrease in number of insectivore species as compared 

to granivore species in 1977 as compared to 1 976 (Table 2b) is clearer 

when represented as the proporti on of species in the convnunity representing 

each food hab i ts group (Table 2d). The mean percentage of total spec i es 

in a plot classified as granivores is higher (p< O. 1 0) in 1 977 even though 

the mean number of granivore species i I l ustrates no difference. The 

difference in proportional representat i on of granivore species between 

years can be attributed main l y  to the reduced (p<0. 05) representation of 

i nsectivores. 
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Analys i s  of primary food habits with area 

The shelterbelts were divided into 3 size classes to fac i I itate 

analysis of the changes in the representation of each food habits group 

with changes in plot size. Size class I represents the smallest 23 (984 

to 3, 682 m2) ,  size class 2 the intermedi ate 23 ( 3, 770 to 7, 430 m2) ,  and 

size class 3 the largest 23 ( 7 , 45 1  to 29, 230 m2) shelterbelts studied. 

Mean p l ot size and standard error for each size class is given in Table 

3b. The number of species (Figs . 1, 2) and density ( Figs . 3, 4) of each 

food habits group increased with plot size in both years (Appendix C) . 

Two factor analysis of variance was utilized to describe the changes in 

food habits groups relative to each other and with respect to plot size 

(Appendix O) . The increase in number of species with plot size is highly 

sign i f i cant C p< 0. 00 1 )  in both years ( F=l2 . 1 29 i n  1 976, F=52. 972 in 1977) . 

The number of species of each food habits group differs s i gnificantly 

(p<0. 00 1) from each other C F=5 1. 984 in 1976, F=l4 . 604 in 1977) because 

the number of insectivore species is greater than the number of omnivore 

species and omnivore spec i es exceed the number of gr·anivore species . 

The interaction between food habits and size class is also high l y  

significant ( p< 0 . 00 1) in both years ( F=7 . 636 in 1976, F=I 1 . 774 in 1977) . 

The s i gnificant interaction indicates that differential rates of increase 

of the 3 food hab i ts groups occur with changing p l ot size. For both years 

the nu�ber of species of insectivores increases f aster than omnivores 

and omnivores increase faster than granivores as plot size i ncreases. 

I nsectivores comprise an increasing proportion of the species as plot size 

increases . Conversely , granivores comprise a decreasing proport i on of the 

spec i es (F i gs. 1 , 2) . Relatively I i ttle change i n  the proportional 



Figure I. Mean number of species of granivores C G ) ,  omnivores C O ) , and 
insect i vores C l )  censused during spring migrat i on 1976 in 
each of 3 shelterbelt s i ze classes. Size classes I ,  2 ,  and 
3 represent the sMa I I est, intermediate, and I argest 23 
shelterbelts , respecttve l y. The regression equations are 
based on al I 69 she lterbelts and a l  I are h ighly signif icant 
( p<0 . 00 1  ) .  The numbers indicate the �ean percent 
representation of each f ood habits group f or each size class. 
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F igure 2 .  Mean number ot species ot g ranivores C G) , omn i vores ( 0) , and 
insectivores C l) censused during spring migrat i on 1977 in 
each of 3 shelterbelt si ze classes. The regress i on equat i ons  
are based on al I 69  study shelterbelts and al  I arc h i ghly 
s i gnif i cant { p<0.00 1 ).  The numbers  indi cate the mean percent 
representation ot each f ood habits grou p f or each size class . 
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Figure 3 .  Mean dens-ity of granivores CG ) ,  omnivores Co ),  and insectivores 
Cl ) censused during sp�ing migrat i on 1 976  in each of  3 
shelterbett size c lasses . The regression equations are 
based on al I 69 study shelterbelts and al I are high l y  
significant (p<0 . 001 ) .  The numbers indicate the mean percent 
representation o f  each food habits group for each size class . 
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F i gure 4. Mean density of granivores CG) , omnivores CO) , and insectivores 
Cl) censused during spring migration 1 977 in each of 3 

, i ncreasing shelterbelt size classes. The regression equations 
are based on al I 69 study shelterbelts and al I are highly 
signif icant (p<0 . 00 1  ) .  The numbers indicate the mean percent 
�epresentation of each food habits group for each size class. 
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representation of omnivores occurs as p l ot size increases. 

Although insectivores dominate community species composition, 

granivores comprise the greatest proportion of individuals in the 

communities . Highly significant (p<0. 001) increases in density of al I 3 

food habits occur with increases in plot size (F=l2. 254 in 1 976, F=14. 91 8 

in 1977). The differences between food habits groups are less marked in 

1976 (F=5.597, p<0 . 010) than in 1 977 (F=l8. 265, p<0. 001 ) .  There was a 

greater similarity in density of insectivores and granivores in 1976 as 

compared to 1 977 (Figs. 3,4). The regression slopes i I lustrate there is 

a larger increase in number of insectivore individuals than omnivores and 

a larger increase in number of omnivore individuals than granivores with 

increasing plot size . However, the increase in number of insectivore 

individuals is not sufficient to change the dominant status of granivores 

(Figs. 3,4 ) .  

Effect of area on community species richness 

The increase in the number of species of each of the 3 component 

food habits groups of the community with increases in size class imp I i es 

that composite community richness increases with area (Tab l e  3a) . 

Regression of species richness on area provides a strong correlation in 

both years ( r = 0. 774 in 1976, r = 0 . 82 1  in 1 977) . Previous studies on 

the species-ar&a relationship during the breeding season have i I l ustrated 
z the relationship to be a power CS = CA ) or exponential (exp CS) = A) 

function, where S is the number of species and A is the area (MacArthur and 

Wi Ison 1963, 1 967, Hami ! ton et al. 1 964, Hamilton and Armstrong 1965, 

Vui I leumier 1970, Diamond 1 973). The data col l ected during the breeding 



Table 3. Means and s tandard errors by size class  (N = 2 3  shel terbe l t s  
per s ize c las s )  for the 1 9 7 6  and 1 9 7 7  mig

2
a tory seasons . 

a )  Species  richness . b )  Plot  size (in m ) .  c )  S pecies 
d iversity. d) Equitability. e) Uns tandardized density . 
f )  S tandardized dens ity . 

1976  1 9 77 

S ize C lass  Mean + SE Mean + SE 

a )  1 8 .  743 0 . 753 6 . 96 6  0 . 394 
2 12 . 1 78  1 . 2 64 8 . 132 0. 528 
3 1 6 . 700 1 . 224  1 3 . 700 0 . 838 

b) 1 2 553 . 023  162 . 2 1 6  
2 541 6. 742 247. 988 
3 14616. 243 1323. 649 

c )  1 1 . 683 0 . 098 1 . 42 5  0 . 051 
2 1 .  921 0 . 108 1 .  62 1 0. 060 
3 2 . 29 7  0 . 098 2 . 07 1  0. 067 

d )  1 0 .  62 7 0 . 045 0. 606 0 . 043 
2 0 . 691  0 . 02 6  0 .  714 0 . 017  
3 o .  746 0 . 02 0  0 .  72 3 0 . 023 

e )  1 45 . 692 4 . 9 62 2 5. 981  3 . 607 
2 62 . 591 7 . 2 04 2 8. 944 3. 080 
3 9 0 . 066 7. 389 51. 543 4 . 585 

f )  1 1 9 . 854 3 . 434 11 .283  3 . 201 
2 12 . 011  1 . 384 5. 200 0 . 519 
3 6 . 793 0 . 669 3 .  7 1 1  0 . 300 

28 



season in this study demonstrate a power function (Section 5 ) .  Both 

exponential Cr = 0.725 in 1 976, r = 0. 776 in 1 977 ) and power Cr = 0.65 1 

in 1976, r = 0.729 in 1977 ) functions i i  lustrate declines in the 

correlation of species richness with area during migration. This 
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suggests the relationship is nearly I inear. However, if the relationship 

was truly I inear, the slope, z, should equal I Ci .e. S = CA 1 ) .  The slopes 

were actually 0.439 and 0.406 for 1 976 and 1977, respectively. 

Due to the high correlation of species richness between years, the 

data were pooled over years. The resulting regression of species richness 

on area i I lustrates a similarly high I inear correlation Cr = 0.8 18 ) with 

an intermediate slope (z = 0.409 ). However, the regression equation 

underestimates the tai I of the relationship (Fig. 5 ) , ind i cating the 

regression estimate of the slope is too low. 

Community density 

Total community density increases as a function of area (Table 3e ). 

The linear function (r = 0.81 I )  i I lustrates a higher correlation than 

either the exponential Cr = 0.775 ) or power Cr = 0.7 1 2 )  functions. The 

slope (z = 0 . 597 ) also suggests the relationship is approaching I inearity. 

Removal of the social common grackles, American robins, and house sparr0\'1s 

from the data produces an even greater slope (z = 0.89 1 ). The density of 

less social species increases I inearly with area (Fig. 6 ). 

Convnunity density does not increase at the same proportional rate 

as area. A 100% increase in density usually fol lows an approximate 500% 

increase in area. Thus when density is standardized to the smallest 

shelterbelt (984.m2 ) ,  it shows a sign i ficant decrease Cp<0. 001 ) as area 



Figure 5. Species ric �ness o f  each of  the 69 study shel terbe l ts p l otted 
against the area of those she l terbe l i"s. The spec ies richness 
of each plot is based on the average of 1976 and 1977 
migratory season cens,Jses. Correlatio:is exhibited are higr, f y  
significant C p<0 . 00 1  ). 
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Figure 6 .  Tota l community dens rty adjusted by subtraction �f the 
densities of common grac kles , house sparrows, and American 
robins and plotted against the area of those shelterbelts. 
A l  I densiti es are based on the average of 1 976 and 1 977 
migratory season censuses. The regression equat i on is highly 
significant ( p<O .  001 ).. 
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increases from size class I to 3 (Table 3f). Standardized density 

produces a curvi I inear ( backward J )  relation with area ( Fig. 7) , as is 

typical of density compensation in islands. 

Species richness is a better pred ictor of community density than 

is area. Regression analys is between community density and species 

richness produces a high correlat ion C r = 0. 859). Spec ies richness can 

be viewed as an index of both the area and the suitabi I ity of food 

resources and habitat structure of a plot. A plot which has an area 

large enough to support 18 species but which only supports 1 2  due to 

poor food or hab itat tends to have a lower density than that predicted 

by area . Thus the species richness and density of a plot tend to vary 

closely together. 

DISCUSSION AND CONCLUS I ONS 

Species richness demonstrates a correlat ion with area during 

spring migration that is almost as h igh as dur ing breeding season 
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C r = 0. 8 18 and 0. 830 for species richness and area during m igration and 

breeding respectively).  Density is more highly correlated with area 

during m igration (r  = 0. 8 1  I) than during breeding C r = 0. 789) . Since the 

11island effect" is as strong during migration as dur ing breeding, similar 

factors may be operating in both seasons to pl ace upper I imits on the 

number of species and individuals which coexist in a she l terbelt . 

Species numbers and dens i ty of al I 3 food hab its groupings 

increased with increases in plot size. I nsectivores, because they 

comprise the greatest proportion of species of most of the shelterbelt 

bird communities, exhibit the highest correlation with area. However , 



Figure 7. Standar dize d community dens i ty of each of the 69 stu dy 
she lterbelts plott ed against the area of those shelter belts. 
Sta ndardized dens�ty repr esent s the commu n i ty dens i ty of 
bi rds per 984.2 m ,  the smallest sh elterbett  stu died. 
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t correlations of the number of species in each f ood habits gr oup w ith 

com munity species richness are hig her by y ear or pooled over year s, 

n is the number of species in each f ood hab its gr oup correlated with 

These conditions indicate the h igh inter- dependency among food 

gr oups. Com munity species rich ness is an index of the area and 

environmental suitability of a plot, and both of these influence 

community composition. 

The corr elation of area with al I 3 f ood habits gr oups combined is 

correlation of each gr oup w ith area. A decrease i n  the 

n ber of species of I f ood habits group is compensated by an i ncrease in 

The inter-com pensation is pr obably due to: I )  habitat and food a
�

ther. 

r
,

sources being optimal f or I group and sub- optimal for another ; or 2 )  

canpetitive inter actions; or 3) a combination of I and 2. 

M i gr ants ar e less str ingent i n  their selection of habitats as 

r�sting and feeding stations dur ing migr ation than of their br eeding 

h,bitat. Their migr atory mode of existence f orcing them to encounter and 

u�i liz e a wide var iety of habitats necessitates plasticity . However , 

s� er al investigator s have demonstr at ed that migr ants do utiliz e habitats 

t
�

t ar e at least super ficial ly similar to their br eeding habitat outside 

01 the repr oducti ve per iod (M acArthur 1 958, M orse 1 968, Parne l  I 1 969, 

Pqwer 1 97 1 , L ack and Lack 1 972 ,  L ack 1 976, Hamilton and N oble 1 975) . 

I Multi p l e r egress i on analy ses wer e  perf ormed t o  d eter mine wh i ch 

ha�itat and envir onmental var iables wer e  responsib l e, or associated with 
I 

thk var iables r esponsible f or the r es idual var iati on unexplained by area. 
I 

These results w i  I I be considered in d etai I in sections 7 and 8, but of 

the signif ic ant var ia bles to be cons i d er ed here w as the diversity of 
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vegetation . 

The sign ificance of vegetation diversity is imp ortan t  from 2 

stan dp oi n ts. Fir st, habitat f actors ar e imp ortan t to migran ts, an d the 

di f feren tial r esp on ses of mi gr an t  sp ecies to the habitat modif i es sp ecies 

n umbers an d comp osition . Secon d, sever al i n vestigators have shown 

vegetation divers i ty to be a better predictor of bir d sp ecies diversity 

than ar ea, a l thou gh vegetati on diversity i s  r e l ated to area ( Power 1 97 2, 

1 975, 1 976 ,  H arris 1 97 3, L ack 1 97 3, Amerson 1 97 5, Johnson 1 97 5) .  

Vegetation diver sity is n ot as imp ortan t as u rea to the n umber an d 

sp ecies comp os i tion of avian migran ts uti I i z in g she l ter be l ts. The 

corre l ation s of vegetation diver sity with sp ecies richn ess ( r  = 0 . 238) 

is cl ear l y  l ess than the corre l ation s of the s ame in dices with area. 

H owever , shel terbel ts ar e con sider abl y  more homogen eous with resp ect to 

vegetation than most other habitat is l an ds studied. The corre l ation 

between vegetati on diversity an d ar ea ( r  = 0. 302) is comparativel y l ow .  

The significance of vegetation diversity, in sp ite of the min or 

r ol e  i t  p l ays i n  the habi tat con figura tion of she l ter be l ts, suggests that 

avian migr an ts may re l y on more r ead il y visabl e pr oximate cues than do 

breedin g i n dividual s. A comp arison of the 3 l argest she l terbel ts durin g 

migr ation versus br eedin g season s  p r ovides in f or mation to sup por t  this 

concept. The l argest 3 she l ter be l ts ( 4 8, 62, 29) have ar eas of 27 1 38, 

27629, an d 29231 m2 , resp ecti ve l y. During mi gr ation these 3 p l ots he l d 

24 sp ecies in 1 976 an d 2 1  sp ecies in 1977 . H owever , durin g  the breedi n g  

season ,  these 3 p l ots of simi l ar siz e he l d 1 8  an d 1 3  sp ecies, resp ectivel y. 

The dif fer ences in sp ecies richn ess b etween season s  in these p l ots can be 

attributed to the dif feren ti al resp on ses to en vir on men tal f actor s of 



migrants to the more vi sable proximate cues and wi I I be discussed in 

greater detai I in section 7. 
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The existence of a relationshi p between species number and area 

during migration could be due, at least, to 2 reasons . One possibi I ity 

l s  that larger wooded areas attract more species. If larger belts 

provide a better target for temporary colonization, then a 

disproportionate number of species would be expected in the larger belts. 

The power function distribution of species among belts suggests that 

target size does not present a satisfactory answer. 

I have suggested that I imits on the number of coexisting species 

during breeding are placed by the I imited food space characteristic of 

habi tat islands. Competition for the food resources within the boundaries 

of the islands is reduced through territorial spacing and ecological 

isolation (Section 5) . Competition for the I imited food resources of 

habitat islands could arise during migration. Seventy to 80% of the 

migrants uti I izing shelterbelts are insectivores and omnivores . Many 

migrants are insectivorous due to the seasonality of the food source 

of insectivores in the temperate zones (MacArthur 1959 , Anderson 1970, 

Karr 1971, 1976a, b, Morse 197 1 ,  Welty 1975). I t, therefore, i s  logical 

that the major portion of the migratory commun i ties is species which are 

wholly, or partly, insectivorous, but the overlapping food habits may 

also result in com?etitive interactions. Spring migration occurs when 

insect hatches and seed production have just begun. Thus while migrant 

individuals require much less food than they require during the breedi ng 

season, the greater number of i ndividuals exp l oiting a smaller food 
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supply can create a competitive situation. 

A competitive situation during migration may be enforced by the 

energy demands of migrants. The demand for energy placed on the 

physio l ogical system by migration is high, and energy appears to require 

daily replen ishment where possible. Graber and Graber ( 1962 ) ,  studying 

birds ki I led at a te l evision tower near Champaign, I I I inois, estimated 

the birds to have lost between 2. 6 and 4 . 4% of their gross body weight 

per hour while flying .  Hussel I ( 1969 ) suggested that veeries lost I . 3% 

of their gross body weight per hour and ovenbirds 1. 0% per hour. The 

continual night l y  losses require migrants to feed and rep l enish their 

energy stores during the day (Berthold 1975, Rappole 1976 ) .  

Any behavior which optimizes an individua l ' s abi I ity to replenish 

i ts energy and to successfully migrate and breed would tend to be selected. 

Thus ecological i so l ation and ind i vidual spacing, through mutual avoidance 

wherever possible, could arise due to the competitive advantage it confers 

on obtaining a suitable food source in areas such as habitat islands where 

the food space has defin ite boundaries. 

Maintenance of individual spacing by migrants is suggested by a 

review of the I iterature. The vast majority of nocturnally m i grating 

birds m i grate as solitary i ndiv i duals (Lowery and Newman 1955, Eastwood 

and Rider 1966, Schaefer 1968, Bel I rose 197 1, Gauthreaux 1972, Balcomb 

1977 ) . Hebrard ( 197 1 )  also noted that woodland passerine migrants 

indiv idua l ly initiate their nightly f l ights. The solitary nature of 

migrants in flight might suggest similar behav l or du ring the day while 

feeding. Territo,ial ity and ecological separation among North American 

migrants on their tropical wintering grounds has been commonly observed 
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( Eaton 1 953, Wi I I is 1 966, Schwartz 1 964, Karr 1 97 1 ,  1 975, Lack 1 971 , 

1976, Lack and Lack 1 972, Leck 1 972a, Moreau 1 972, Rappol e 1 97@. Spacing 

behavior i s  characteristic o f  species which feed on dispersed food, such 

as insects (Rand 1 954, Brown 1 964, Horn 1 968, Orians 1 971 , Karr 1 97 1 ,  

Wiens 1 976) . Since migrants displ ay ecol ogical isol ation and spacing 

behavior during both breeding and winter season (whenever dispersed food 

l s  avail abl e), it seems l ogical that they continue to maintain such 

behavior during migration if  dispersed food is avai I abl e but total food 

resources are I imited. By exploiting a uniforml y  dispersed food source 

wh i ch they isolate intra-specifical l y  through individual spacing and 

i nter-specifical l y  through foraging strategies, food avai l abi I ity i s  

then predictabl e and search time and energy is minimi zed. 

The val ues Power (1 97 1 )  calcul ated in a re-eval uation of the data 

of  Parnel I ( 1 969) i I l ustrate that the ecol ogical distance o f  migrants is 

88. 1 %  of  breeding individual s in fol iage types and 85.5% in habitat zones. 

These high percentages demonstrate that the ecol ogical distance among 

species is not as great during migration as during breeding, but 

ecological isol ation sti I I exists. 

Part o f  the individual distance maintained between spring migrants 

may be due to the onset of  breeding terri tor i al behavior. Stewart 

( 1 953 : 99) indicated that some of  the resi dent yel l owthroat mal es he 

studied arrived "at least as soon as, if not before, the transient males 

that nest f ar�her north. " There were many instances in which I observed 

mal es of  a particular species giving their territorial song during 

migration, but by breeding season I woLll d find only I or 2 breeding pairs. 

Rappole (1 976) has documented the establ ishment o f  individual 



42  

territories of tr ansient nor thern  w aterthrush es around a p ond where  th ey 

do not br eed. A p ond, like sh elterbelts , r ep resents a res ource sp ace of 

definite boundar ies and i ndiv iduals which could not establish a terr itory 

around th e p ond di d not attemp t to establish terr itor ies in th e surr ounding 

less sui table h abitat. Tr ans i ent w aterth rush es th at establish ed terr itor ies 

wh i le migr ati ng thr ough R app ole' s ( 1 97 6 )  study area in Texas sh owed wei gh t  

gains, wh ile birds unable to obtain terr i tories did not gain weigh t. Th us 

indiv i dual sp acing in tr ansients does app ear to confer an adv antage in 

obtai ning f ood, at least i n  areas of I imited resource sp ace. 

Th e amount of f ood r esources diminish es as th e number of bir ds 

coex i sting increases due to increasing use of th e resources. I ncreasing 

density also i mp I ies decr easi ng ecological sp ace due to an i ncrease in 

number of sp ecies w i th density. Th us n umbers ev entually reach a p oint, 

wh ereup on th e suitabi I ity of th e sh elterbelt as a h abitat for resti ng 

and feeding begins to decli ne ( see Fr etw el I and Lucas 1 969 ) and subseq uent 

indiv iduals enter ing th e belt find encounters of oth er bir ds too freq uent 

to r emain. 

Th at th e number of sp eci es is m odi f ied by th e av ai  I able food sp ace 

i s  also supp orted by th e analysis of th e f ood h abits gr oup s. I nsectiv ores, 

which would be exp ected to be th e most territor i al, i I lustr ate the gr eatest 

i ncrease in number of sp eci es w ith increasing ar ea, imp lying th ey are 

r estr i cted th e most by ecol ogi cal sp ace . O mniv ores , wh ich are less 

terr itor ial th an insectiv or es , and graniv or es, wh ich are less terr itor ia l 

th an omniv ores , sh ow intermediate and low influences of area on sp ecies 

numbers, resp ecti v ely, as w oul d be p redicted if r esource sp ace is modifying 

densi ty and the resultant sp ecies number s .  



43 

have suggested that species wh i ch are ecologically and spatially 

isolated during the breeding and winter seasons should continue to 

maintain such isolation during their transitory migrant stage, if food 

space is I imited and the food resource dispersion warrants such behavior. 

In the temperate zone where this isolating behavior i s  commonly 

profitable, I imited ecological space as provided by habitat islands, 

places 3n upper I imit on the density and correlated number of species 

which can coexist at one time. Habitat is l ands are important to many 

species crossing otherwise unsuitable areas during migration. Those 

individuals that maintain an isolated area feed better and, 

hypothetically, reach their breeding grounds in better shape than 

individuals which do not try to isolate a food source. Those i ndividuals 

arriving on the breeding ground in good physiological condition should be 

able to procure good breeding territories and optimize their reproductive 

success , so there is a greater recruitment of their genes in the next 

generat i on .  

Direct data supporting the above postulation are weak, but not 

lacking . The postulation is suppl i ed as a plausible exp l anation of the 

observed species-area relationship during migration in the hope that it 

wi I I stimulate f urther research into the behavior of migrants. 



Section 5 

COMPETIT I ON AND THE SPEC I ES-AREA RELAT I ONSH I P  

INTRODUCT I ON 

Islands have definite and abrupt boundaries and, whether they are 

rea l or habitat is l ands, are idea l for the study of competit i ve 

interactions and adaptations that a l  low coexistence of species. The 

number of species that can successfu l l y coexist and the re l ationship 

between this number and area of is l ands has been explored in numerous 

studies (e. g. MacArthur and Wi I son 1 963 , 1 967, Hamilton et a l . 1 964, 

Hami l ton and Armstrong 1 965, Vui I l eumier 1 970, Diamond 1 973, Diamond and 

Mayr 1 976, Gal I i  et a l .  1 976, Schoener 1 976). 

Studies were initiated in 1976 to monitor the var i ance in bird 

species numbers and dens i ties among 69 shelterbe l ts in eastern South 

Dakota to identify environmental factors that might be responsibl e for 

th is  variance. Comp l ete censuses of a l  I be l ts were made in 1 976, and 2 

sets of censuses were conducted i n  1 977. 

It was apparent early in this study that the isolated nature of 

she l terbe l ts resu l ted in a species-area re l ationship characteristic of 

is l and biotas. The data were ana l yzed to determine why the speci es-area 

re l ationship exists for hab i tat is l ands and how these resu l ts re l ate to 

rea l is l and s i tuations. 
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RESULTS 

S peci es richness 

S peci es richness, when averaged over the smallest, medium and 

l argest 23 shelterbelts, shows an increase with the 3 size classes during 

al I 3 censuses ( Table 4 ) . Analyses in dicated no significant differences 

( p>0 . 1 0) between any of the 3 overal I means. There w ere no differences 

( p:>0 . 1 0) f ou nd among means within a size class with I excepti on; within 

t he smallest size class the mean f or 1 976 is higher < ix O. 1 0) tha n the 

mean of the second census of 1 977. Da ta w ere pooled over al I censuses 

due to the homogeneity found ( Table 4a ) . 

Regression of species richness on area produced similar 

correlation coeffic i ents among the power C r = 0. 832) , exponential 

C r = 0.830) , and I inear C r = 0. 805) fu nctions, although the former 2 

are slightly higher than the latter. The slope ( z  = 0 . 388) imp I ies that 

the power f unction best fits the relationship. H owever, the true f orm 

and slope is slightly obscured due to the variance i n  the date being 

i nf lated by environmental variation in the plots ( Fig. 8) . Part of the 

variance exhibited in Table 4 is due to the variance in plot size within 

a size class ( Table 3b) . The influence of environmental variation in 

obscuring the true relationship is exhibited by t he underestimation of 

t he regression eq uation of the data at the larger she l terbelt areas 

( Fig. 8) . This indicates the slope predicted by regression is low. 
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Table 4 .  Means and s tandard errors for each s ize c lass (N = 23 
shel terbe l t s  per s ize c lass )  and for all plot s  (N = 69 
shel terbe l t s )  for the 1976  and bo th 1977 breed ing censuses , 
and the composite average of the three censuses. a )  Species 
richness. b )  S pecies  d iversity. c) Equitability. 
d )  Density. 

1976  1977-1  1 977-2 COMPOSITE 

S ize Class Mean + SE Mean + SE Mean + SE Mean + SE 

a) 1 7 . 43 .56 6 . 39 .35 6.13 .33 6.65 .44 
2 7.61 .43 7 .2 6 .38 7.74 .39 7.54 .40 
3 1 1.61 . 77 1 1.83 .62 12.22 . 63 11.97 .63 

ALL 8.97  .40 8.49 . 38 8.70 .41 8. 72 .38 

b) 1 1 . 575 .095 1 . 437  . 058 1.441 .048 1.484 .070 
2 1.684 .055 1.597  .054 1.663 .050 1.648 .053 
3 2 .126 .075 2.041 . 058 2.065 .057 2 . 077 .063 

ALL 1.  795 .052 1.692 .045 1. 723 .043 1.737 .046 

c)  1 0.753 .043 o .  713  .045 0.743 .040 0. 736 .042 
2 0.812 .01 9  0. 791  .018 0. 795 .016 0.799 .018 
3 0 . 845 . 02 1  0 . 800 .012 0.800 .01 1 0.815  . 01 6  

ALL 0.803 . f.H8  0 . 7 68 .017  0. 779 .015 0.783 .015 

d )  1 33.56 3.69 30.29 3.61 30.57 3.53 31.48 3.57 
2 31.70 2.66 3 7.08 4.06 40 . 54 4 . 08 36 . 45 3.69 
3 54.96 5.04 58.14 5. 09 62 .00 4.54 58.38 4.87 

ALL 40.07 2.57 41.83 2.84 44.37 2.81 42.09 2.67 



F igure 8 .  Species richness o f  eac h o f  the 69 study shelterbelts plotted 
against the area of those shelterbelts . Tne species richness 
of each plot is based on the average of  the 1976 and 1977 
breeding season censuses. Correlations exhibited are highly 
significant Cp<0 . 001 ) .  
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Ana lysis of  primary food ha bits rela tionships 

I nsight into coarse cha nges in bird species co mposition o f  

shelterbelts w ith increa ses in shelterbelt area ca n be o bta ined by 

grouping bird s by primary food ha bits . To faci I ita te sta tistica l 

a na ly ses, plots were grouped into 3 siz e cla sses ( F igs. 9 , 1 0 ) .  Two 

factor a na lysis of  varia nce wa s performed on  the rela tionship between 

plot siz e cla sses a nd food ha bits. However, regressions were ba sed on  
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the continuous ra nge of stud y  plots ( F igs. 9, 1 0) .  Ana lysis o f  the mea n 

nu mber o f  species per food ha bits group per siz e cla ss (Appendix I) 

indica ted a highly significa nt d if ference C F=35. 062, p< 0. 001) a mong food 

ha bits groups a nd a highly s i gnifica nt increa se C F=57. 305, p< 0. 00 1 ) in the 

mea n number of species with a n  increa se in siz e  cla ss ( Fig. 9 ) .  

The interactio n between food ha bits groups a nd siz e cla sses is 

a lso highly significa nt C F= 1 3. 768, p< 0. 001 ) .  This interaction ca n be 

a ttributed to the differentia l rates of increa se in the number o f  species 

o f  each food ha bits cla ssifica tion wit h  plot siz e. The regression slopes 

( Fig. 9 )  i I lustrate that the number of species o f  insectivores increa ses 

fa ster with plot siz e tha n o mnivores, a nd o mnivores increa se fa ster tha n 

gra nivores . These differenti a l  ra tes o f  increa se lead to insectivores 

representing a n  increa sing proportio n o f  the species of  the larger 

a vifa una l com munities, while gra nivores d ecrea se in proportiona l 

representation a s  plot siz e increa ses ( Fig. 9 ) .  O mnivores rema in 

rela tively uncha nged in porportiona l representa tion. 

Two factor a na lysis of  varia nce i I lustra tes highly significa nt 

d i fferences C F=30. 71 0, p< 0. 00 1 ) among d ensities of  food ha bits groups. 

Dens i ty of  a l  I 3 groups i I lustra tes a highly s i gni fica nt increa se 



F i gure 9. Mean number 6f species of granivores CG), omnivores ( 0), and 
insectivores Cl) censused during 1976 and 1977 breeding seasons 
in each of 3 increasing shelterbelt size classes. The regression 
equations are based on al I 69 study shelterbelts and al I are 
highly significant Cp<0. 00 1). The numbers indicate the mean 
percent representation of each food habits group for each 
size class. 
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F i g u re 10. Mean d ens i ty of g ranl vores CG ) , om nivores (0 ) ,  and 
i nsec ti yores ( I )  c ensused du ring 1976 and 1977 b reed i ng 
seasons i n  each of 3 inc reasing sh el terb el t siz e  c lasses. 
Th e reg ression equations are based on  al I 69 stud y 
sh elterbelts and al I are high ly  sig nif ic ant ( p<0. 001 ) .  Th e 
nu mbers ind icate th e mean perc ent representation of each 
food . h abits g roup for each siz e  c lass. 
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(F= l 4 . 974, p<0 . 001 ) with plot size (Fig . 1 0 ). The proportional density 

representation of insectivores increases and granivores decreases as was 

the case for proportional species representation . However, granivores 

represent the greatest proportion of individuals in the avifauna l 

conmunities (Fig. 10 ) in contrast to insectivores which represent the 

dominant proportion of species (Fig . 9) . 

Community density 

Community density, or the total number of individuals in a 

she l terbelt, increases with plot size . Investigators of island theories 

have postulated that the relationship between community density and area 

should be I inear (e. g .  May 1975, Diamond and Mayr 1 976 ) ,  although I know 

of no reported study that i I lustrates I inearity. Regression analysis of 

community density with area indicates that the I inear relationship 

produces a higher correlation (r = 0. 802 ) than either the exponential 

Cr = 0. 750 ) or power (r = 0 . 681 ) functions (Fig . I I ) . 

If density is increasing I inearly with area (increasing at a constar.t 

rate ) ,  and the number of species is increasing logarithmically (increasing 

at a decreasing rate ) ,  then the relationship between density and species 

richness is curvilinear because density increases at a faster rate at the 

larger plot sizes than does species richness. Plotting of density against 

species richness (Fig. 1 2 )  i I lustrates a slight upswing in the tai I. This 

curvi I inearity suggests the relationship is logarithmic. Regression 

i i  lustrates that the I inear relationship Cr = 0. 879 ) and the power function 

Cr = 0 . 870 ) are very close and both are slightly highe, than the 

exponential function (r = 0. 843 ).  In al I cases the correlation is higher 



F i gure I I. Total corm,unity density of each 6f the 69 study shelterbelts 
plotted· against the area of those shelterbelts . Density 
represents the total number of individuals censused in each 
she l terbelt averaged over 1976 a nd 1 977 breeding seasons. 
The correlation exhibited is highly significant C p<0 . 001 ) .  
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Figu re 1 2. Total com mu ni ty density of each of the 69 stu dy shelter be l ts 
plotted ag ai nst the sp ecies ri chness of those shel terbel ts . 
The dens i ty and speci es richness of each p l ot is based on 
the averag e of 1 9 76 and 1 9 77 breed i ng sea son censu ses. 
Correlat i ons exhi b i ted are hi gh l y s i g ni f i cant ( p<0 . 00 1  ) ,  



140 

1 20 

� 100 

Q 80 

_J 6 

� 
0 4 

20 

0 
0 

LOGeY = 0.643 +1 -476LOGe X -
r = o.s70 

• 
• 

Y = -18.689 + 7-905LOGeX - - : - :f'/ 
r = 0-879 / '  • 

• • 

• 

• • 
• 

• • 

,,, . ' ,,, . . . .. 

2 4 6 8 10 1 2  14 16  18 20 
SPEC IFS RICHNESS 

\.11 
Ol 



59 

than found for the density-area relationship , indicating species richness 

l s  a better predictor of density than is area. 

The true relationship between density with area and species 

richness l s  partly obscured due to the high scatter of points. Part of 

this scattering can be attributed to the more sporadic densities of the 

most abundant social species which rely on food sources outside of the 

belt. If the densities of the common grackle, house sparrow, and American 

robin are subtracted from the total community density and this new 

adjusted density regressed against area (Fig . 1 3) ,  the correlation is 

increased in a l  I cases and the I inear relation (r = 0. 889) sti I I produces 

a higher correlation than either the power Cr = 0. 853) or the exponential 

Cr = 0. 830) functions. Linear increase of density with area is further 

supported by the slope of the power function. If the relationship is 

linear the slope should equal I (e. g .  S = CA ) and the value calculated 

by log-log regression of density against area showed the slope (z = 0. 864) 

to be very close to 1 . 0 .  

Regression of the adjusted density against species richness (Fig. 

14) demonstrates that the power Cr = 0. 925) and the exponential Cr = 0. 924) 

functions have similar correlation coefficients , and both are sl ight i y  

higher than the I inear function (r = C . 901 ) .  The density-species richness 

relationship is curvi I inear and i I lustrates that at the higher ranges of 

species richness there is an increase in the number of individuals per 

species . 

r· � _-
:t .. : _· :·, . 

:,; 
' 
.� . � • ' ; .,. 



F igure 1 3 .  Total conmunity density ad j u sted by subtraction of the 
densities of common grac kles, hou se sparrows, and Amer ican 
robins of each  of hte 69 study shelterbelts plotted against 
the area of those shelterbelts . Al I densitles 0 are based 
on the average of 1 976 and 1 977 breeding season censu ses. 
The correlation ex hibited is highly signif icant Cp<0 . 001 ) .  
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Figure 14 . Tota l corrvnunity density adjusted by subtraction of the 
dens iti·es of common grac k l es, house sparrows, and Anerican 
rob i ns of each of the 69 study she l terbelts p l otted against 
the species r ichness of those she l terbe l ts . A l  I densities 
aod spec ies richness are based on the average of 1976 and 
1977 breedi ng season censuses . Both correlations exh ib i ted 
are highly signif icant ( p< 0 . 00 1  ) .  
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Species relations 

Subtraction of the dens ities of the 3 bird species from the 

overal I community dens ity i mproves the fit of density with area s ince 

none of these spec i es show any propens ity to respond to changes in area 

I n  a predictive fashion (Table 5) . Of the rema ining 14 common spec ies, 

only 2, western kingb i rd and redw ing blackbird, do not show sign if i cant 

correlations with area. The strong relationship w ith area exhib ited by 

many spec ies can be attributed to the ir territorial nature. Some species 

require a certa in min imum size (Table 6) before they wi I I reside in a 

particular belt. The proportion of belts in which terr itorial species 

reside increases as belt size increases. However, in al I cases, the size 

at which 2 pairs are found is always more than double the s ize at which 

I pair was init ially found. Mapping of the territor ies of house wrens, 

yel lowthroats, and brown thrashers in 2 large shelterbelts demonstrates 

the terr itory size of specif ic pairs in these larger belts to be 2 - 3 

times as large as the total area of the belts which these 3 species 

colonize initially as I pair ( Section 6). 

D ISCUSS I ON AND CONCLUSIONS 

Some recent studies have i I lustrated environmental diversity, 

rather than island area, as the main factor accounting for bird spec ies 

diversity in some island situat ions ( Power 1972, 1975, 1976, Harris 1973, 

Lack 1973, Amerson 1975, Johnson 1975) , although these investigators 

point out that environmental d iversity is a consequence of island area. 

Mult iple regress ion analysis of the environmental variab les influencing 

variation in the number of bird species in shelterbelts al lows the 
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Table 5 .  Correla tion coeffic ients and the s ignificance from regression 
of · l8 res ident s pecies  on area , length , and community species 
richness.  

SPECIES AREA p LENGTH p RICHNESS p 

COMMON GRACKLE 0. 149 . 100 0. 090 . 100 0. 312 . 010 
MOURNING DOVE 0. 487 . 001 0. 418 . 001 0. 624 . 001 
AMERICAN ROBIN 0. 2 2 7  . 100 0. 2 59 . 050 0. 306 . 02 5  
HOUSE SPARROW 0. 004 . 100 0. 001 . 100 0. 033 . 100 
ORCHARD ORIOLE 0. 533 . 001 0. 511  . 001 0 .  724 . 001 
BROWN THRASHER 0. 653 . 001 o .  525 . 001 0. 587 . 001 
WESTERN KINGBIRD 0. 2 18 . 100 0. 2 2 7  . 100 0. 329 . 010  
EASTERN KINGBIRD 0. 553 . 001 0. 630 . 001 0. 650 . 001 
AMERICAN GOLDFINCH 0. 645 . 001 0. 555 . 001 0. 680 . 001 
YELLOWTHROAT 0. 365 . 005 0. 380 . 002 0. 52 1 . 001 
RED-WINGED BLACKBIRD 0. 189 . 100 0. 181  . 100 0. 315  . 010 
HOUSE WREN 0 . 455 . 001 0. 415 . 001 0. 506 . 001 
BROWN-HEADED COWBIRD 0. 403 . 001 0. 485 . 001 0. 430 . 001 
BLACK-BILLED CUCKOO 0. 680 . 001 0. 566 . 001 0. 640 . 001 
SONG S PARROW 0. 629  . 001 0. 586 . 001 0. 685 . 001 
EASTERN WOOD PEWEE 0. 288 . 02 5  0. 181  . 100 0. 470 . 001 
COMMON FLICKER 0. 535 . 001 0. 404 . 001 0. 530 . 001 
BLUE JAY 0 . 732 . 001 0. 671 . 001 0. 522 . 001 
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Tab l e  6 .  Oens l ty of  b i rd spoc l os ,  wh ich i i  l u strate s i gn i f icant corre l a t ions w i th area ( see Tab l e  5 ) ,  exh i b i ted for each 
of tho 69 she l terbe l t:; arranged i n  order G>f l ncroa s i ng area ( See Append i x  L for I l st i ng of the area of 0och 
shej,turbe l t i .  
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conc l us i on that vegetation div ersity is not a sign i fic ant factor (l)<O. 1 0 )  

and that the c orre l ation w i th v egetation di v er s i ty is negativ e ( Sec tion 7 ) . 

My studies demonstrate that the pri m ary determinant of sp ec i es richness 

and density f or she l terb e l ts is area. The i mp ortance of area in 

i nf luencing sp ecies number s  on isl ands has b een observed by  many 

i nv esti gators ( e. g. M acArthur and Wi I s on 1 963, 1 967 , Ham i l ton et al . 

1 964 , H am i l ton and Armstrong 1 965, V ui I l eum i er 1 970 , Diam ond 1 973,  Ga l  I i  

et al . 1 976, M ayr and Di amond 1 976) . 

Area of she l terbe l ts i s  a resul t of 2 f ac tors, l ength and number 

of rows of vegetati on ( w i dth) . Un i  i ke other real or habitat is l ands, 

i ncr ease in area does not nec essaril y result in an i ncrease in b otanical 

di v ersi ty. I n  natural is l and s i tuations, an increase in ar ea i ncreases 

the prob abi I ity of prop agule immigr ation and i ncreases diver sity of sites 

for estab l ishment. This re l at i onshi p o f  area and p l ant div ersity 

( Ki I b urn  1 966, Power 1 972 , J ohnson 1 975 , H arner and H arp er 1 976) and the 

added effect  of e l ev ation i n  comb inati on with area to further i nc rease 

site div ersity and hence p l ant di v ers i ty has b een doc umented (Pow er 1 975, 

1976, Amer son 1 975) . I n  shelterbe l ts , overstory c omp osition i s  

determ i ned by  the p l anting strategy, an d the under story p l ant divers i ty 

i s  modified by  c are  of the b el t. 

Culti v ation of she l terb e l ts in their fir st 5 years to reduce 

c omp etiti on for water betwee n the p l anted trees and natural w eeds al l ows  

li ttle natural diversity i n  the underst ory. Sub seq uent m owing or sev er e 

graz i ng tends to maintai n the origir. a l  p l anted div ersity. I f  b el ts ar e 

not graz ed or m owed, a shrub understory deve l op s  i n  s ome  c ases , b ut the 

l ack of woody sp ecies prop agules and/ or sui tab l e m i c ro- environment for 
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their e stablishment u su ally re su lts in a tal I g rass u nde rstory. The low 

corre lations of are a with u nde rstory density C r = 0. 033) , shru b layer 

height C r = 0. 040) , canop y he ig ht ( r  = 0. 022) , canopy coverage 

C r = 0. 139) , and g round cove rage C r = 0. 090) f urther sup p ort the lack of 

a relationshi p between are a and env ironmental dive rsity. The low 

conf ounding of are a and e nv ironmental f actors theref ore al lows e asie r 

interp re tation of the absolu te i mp ortance of are a in af f ecting bird 

species nu mbers. 

Isolation 

The deg ree of isolation of the islands u nder  stu dy i s  another 

f actor which has been recog nize d  as af f ecting insu l ar equ i I ibriu m leve l s  

( M acArthu r and Wi l spn 1967 , Powe r 1975 , 1976, Diamond et  al. 1976, G ilpin 

and Diamond 1976, J ohnson 1975, Schoener 1976 ) . Isolati on of she lterbe l ts 

was measu re d  i n  2 w ays, di stance to ne are st other w oody cover, and whethe r  

or not the shelterbelt bordere d a tree claim. A tree claim rep re sents a 

large ,  rectangu lar, 10 acre or larger block of tree s.  Other  woody cover 

inclu de d any other woody habitat, such as other she lte rbe lts, tree 

claims, and ri p arian are as .  The incl u sion of the second me asure ,  

p re sence- absence of tree claims, w as due to the p re sence of tree claims 

adj acent to 7 of the stu dy belts and t he fie ld observ ations of a 

resu ltant dep ressing e f fect on species nu mbe rs. 

M u ltip le regression analysis of env ironmental f act ors showe d the 

p re sence of tree cl aims cau se s a s i g nificant re duction ( p< 0. 0 1 ) in both 

species richne ss and diversity. Distance to ne are st other woody cover 

exhibite d a sig nificant p ositive corre l ation ( p<O . 10 ) with species 

richne ss. Thi s re l ationship can be exp laine d as due t o  incre asing u se of 
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more than I island by I pair as distance between is l ands decreases. The 

curvi I inear re l ationship between species richness and area indicates a 

decrease in number of species per unit area with an increase in area. 

Therefore, if birds are viewing be l ts in c l ose proximity as I large 

belt, the number of species of birds in I of these belts wou l d  on l y  be a 

subset of the tota l number of spec i es and wou l d  be l ess than if the be l t  

was i so l ated. The close and constant scattering of she l terbelts in 

conjunction with the high vagi I ity of temperate bird species reduces 

i so l ation as an inhibitor of co l onization. 

M i nimum area 

Gal I i  et al. (1 976 ) studied forest is l ands in New Jersey similar 

in size to shelterb�lts. It was their contention that the increase in 

bird species numbers with an increase i n  area was due main l y  to the 

meeting of progressively more and more minimum area requirements for 

species, and that an increase in habitat patchiness with area provided 

specific requirements for other species . 

The data col l ected in shelterbe l ts also i I l ustrate minimum area 

restrictions for some species (Tab l e  6 )  that partly explains the increase 

in species richness with area. However, the conc l usions of Gal Ii et al. 

( 1976 )  do not tota l l y  exp l ain the increase in either their study or mine. 

The data presented indicate that p l ot 68, which is 31 00 m2, is of 

sufficient area to support 20 common or relative l y  common species (Tab l e  6 ) .  

Yet there are on l y  7 species, on the average, actua l l y coexisting at this 

area. The data of Ga l Ii et al. ( 1 976 ) siMi larly show only 6 coexisting 

2 species on a p l ot size of 0. 8 ha (8000 m ) ,  where 20 common or re l atively 
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common species would be expected to exist if area was the major determinant. 

Clearly, other restrictions I imit the upper number of coexisting species 

in a g i ven habitat island. I suggest that diffuse competition is a major 

factor in setting this upper limit (see D i amond 1 970a, b, MacArthur 1 972, 

P i anka 1 974) .  

D i ffuse competition 

Economic defens ibi I ity of the food resource has been suggested as 

I of the major determ i nants of the soc i al behavior of birds (Rand 1954 , 

Brown 1 964, Horn 1 968, Or i ans 1 971 , Wiens 1976). Brown ( 1 964), Crook 

( 1 965) ,  and Morse ( 1 971 a) suggested, wh i I e Horn ( 1968) demonstrated 

mathematically, that evolution of the large territories of birds that 

include both feeding and nesting (Nice ' s  ( 1 941 , 1943) type A) should be 

favored for those species which feed on randomly dispersed food. If food 

is randomly dispersed then its density would be proportionate to space, 

and an i ncrease in space would then be equivalent to an increase of food. 

Therefore, terr i torial defense of a given space is equiva l ent to defense 

of a proportional density of food. 

A direct relationship between territory size and food density has 

been documented for the great tit (Kluijver 1 95 1  ) ,  ovenbird (Stenger 1958, 

Stenger and Fal Is 1 959), dun ! in (Holmes 1 970) , winter wren (Cody and Cody 

1972), and several species of Sylviid warblers (Cody and Walter 1 976) . 

Schoener (1 968 : 1 32) in his review of factors influencing territory size 

noted several studies which documented expanded territory sizes in habitats 

that were seemingly less r ich i n  preferred food (e . g. Howel I 1952, Erickson 

1938, Mi I I er 1931 , Odum 1 941 , P i  te I ka et a I. 1955). Zimmerman ( J 97 1 ) , 

Hertz et al. (1 976), and Best (1977) also relate territory size to habitat 
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condition. 

The territory size must be large enough to compensate for the 

normal temporal dynamics of the resource base plus the added dampening 

influence of the pair feeding on it. The continual exploitation of prey 

by a pair wi I I result in a declin i ng prey base within the breeding 

territory if the range over which the pair forages is too smal I. The 

dee ! ining prey base results in an increase in the energy expended 

searching for, finding , and eating a suitable prey item and results in 

a declin i ng net energy gain (Schoener 1 971 , Krebs et al. 1 974 , Pyke et al. 

1977). Further reduction of the prey of a species occurs through 

uti I ization by other coexisting species . 

As food resources or habitat structure become suitable for more 

species to coexist , the increasing number of coexisting spec i es should 

result in each species being increasingly restricted to exploiting that 

portion of the environment to which it is best adapted , becoming hab i tat 

and forag i ng specialists , but remaining food generalists (MacArthur and 

Wi Ison 1 967 , MacArthur 1 972 , Yeaton and Cody 1974 , Hespenheide 1 975) . 

Thus as the number of species increases and because the food spectrum 

remains constant , there should be an increasing overlap in food obta i ned 

(diffuse competition) . This overlap decreases the avai ! ab l e  food to any 

I species and leads to the prediction that with i ncreasing number of 

coexist i ng species there should be a corre l ated increase in territory 

size required to obtain sufficient food. 

I have documented increases in territory sizes with increases in 

number of coexisting species in the yel lowthroat , house wren, and brown 

thrasher (Section 6). Increases in territory size w i th l ncreases in 
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species richness can also be imp I ied by comparing the minimum size of 

shelterbelts within which a species wi I I reside to the minimum size 

shelterbelt in which 2 pairs wi I I occur divided by 2 (Table 6) . The 

difference is large in most cases. Yeaton and Cody (1 974) documented 

increases in territory size with increases in number of coexisting species 

and further documented the decrease in niche width with increased species 

diversity. Abnormally smal I territories that increase with increasing 

island area, and, consequently, the number of coexisting species has been 

documented by Beer et a I. ( 1 956), Schne I I ( 1 963), and Ni I sson ( 1 977) . 

Diffuse competition can explain the increase in territory size through 

the reduction in avai I able food supply and restricted niche width. On a 

smal I island, niches can be expanded due to competitive release. Expansion 

of foraging height (Yeaton 1 974, MacArthur et a I. 1972) , habitat breadth 

(Crowell 1 961 , 1 962, Diamond 1 970, Morse 1 971 , Terborgh 1 971 ,  MacArthur 

1972, Lack 1 976) , and elevation residence (Terborgh and Weske 1 975) due 

to competitive release has been documented. 

Density should increase I inearly with area if bi rds spaced 

themselves to obtain the i r  food requirements. Food demands of indi vidua l s  

w i  I I not change so increases in food space (island area) should result in 

proportional increases i n  number of i ndividuals. As island area increases, 

the resultant increase in species numbers should lead to an increase in the 

territory size of any particu l ar species, but the overal I community density 

should increase proportional ly (I inearly) with area because there are more 

species overlapping spatial ly. Density does increase I inearl y with area 

in she l terbelts, and the fit is considerably improved when species which 

feed outside of the belts are subtracted.  However, if more species are 
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coexisting in a given area of space, then selection should be for species 

that exploit different microhabitats, and , hence , different food resources. 

This selection is due to the greater food avai labi I ity in unexploited 

microhabitats . 

Assignment of al I species into gui I d  classifications fol lowing Root 

(1 967), Karr ( 1971 ) ,  and Wi I I son ( 1974) indicates the manner in which each 

species generally partitions the habitat space. If division of the habitat 

space is such that each species in a given community does partition the 

space differently , the number of gui Ids divided by the number of species 

represented in the community should approach 1 00% . This percentage for 

each of the 69 shelterbelts showed that 93. 7% of the species in each 

community were in different gui Ids. Most species present in a community 

and sharing a gui I d  �lassification were highly divergent in body size. 

MacArthur ( 1972) suggested a difference in body weight by a factor of 2 

or more indicates separate food resources are being uti I ized. Therefore, 

recalculation of the percentage of species per gui I d  with the added 

separation by body size within gui I ds demonstrated the overal I percent 

species per gui Id to be 99. 4%. This high percentage supports the above 

postulation that species composition should tend to maximize resource 

partitioning differences between species . However , the smal I overlap in 

gui I ds may be due simply to the smal I number of species present in a 

shelterbelt. The number of species existing in a given shelterbelt is so 

smal I that random distribution of species might provide similar results. 

Moreau ( 1966) and Grant (1 966, 1968 , 1 969) and Simberloff ( 1970) considered 

a similar reduction in number of congeneric species which coexist on 

islands , and Simberloff ( ! 970) presented a simple method for testing the 
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method. 
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Simberloff ( 1970 ) and Cox and Ricklefs ( 1977 ) concluded that 

coexistence of congenerics on islands could be explained as random 

occurrences. However, both studies uti I ized large source pools. As the 

source pool increases, the number of congenerics randomly drawn to coexist 

wi I I decrease. Cox and Ricklefs ( 1977) used 375 genera as the source 

poo l size in a study of Caribbean island fauna. They indicated there 

are 205 and 144 genera of birds on Panama and Trinidad, respectively, 

which represent their continental and large continental island situations, 

respectively. The continental situation has only sl i ght ly more than 

one-ha lf the number of genera used as the source pool size. Further, 

al I genera do not have the flight capabi I ity to fly to an island. Thus 

the source pool size is probably too large. Al I species known to have 

co lonized the islands of an archipelago at some point in time would 

make a more justifiable source pool . One further assumption made by 

both studies is that congeneric species are highly competitive. The data 

of Lack ( 1976 ) i I lustrates the divergence in body size, or other 

competition-reducing characteristics in various congeneric bird species 

coexisting on islands. 

I used Simberloff ' s  ( 1970 ) random generation model on the 3 largest 

she lterbelts stud i ed to reduce the effect of size restriction. For my 

source pool I uti I ized al I woodland bird species known to have nested in 

South Dakota and which should be able to uti I ize shelterbelts for nesting 

(exc luding species which are restricted to riparian areas, for example ) .  

Instead of using genera as a criteria of compet i tion, gui Id classifications 
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were used. The largest belt contained I I species and met the random 

criter ia (p>0. 05) . The other 2 belts, w ith 1 7  and 1 8  species respect ively, 

i I lustrated s ignificantly C p<0 , 05) more gu i Ids per species than pred icted 

by random distribution . 

The data presented i I lustrating a I inear increase in density with 

area, an upper I imit on the total number of species in a commun ity not 

set by a m inimum size restrictions, an increase in territory s ize with 

number of coexisting species , and selection for divergence of resource 

partitioning al I support the contention that diffuse competition is an 

operative factor affecting community bird species composition and 

restriction of total numbers which can coexist. Terborgh and Weske ( 1 975) 

documented the existence of diffuse competition in restricting elevational 

presence of several .bird species. Diamond ( 1 975) documented the existence 

of diffuse competition in restricting the presence of some bird spec ies by 

part icular combinations of other species in several different archipel agos, 

causing a checkerboard distribution pattern. The checkerboard pattern 

has also been reported by Lack ( 1 97 1 ,  1 972, 1 976) , and MacArthur et al. 

( 1972) . One of the approaches to documenting diffuse competition is 

correlation of the variance in incidence, niche, or abundance of a given 

spec ies with variation in total number of spec ies (D iamond 1975 : 345) . The 

data I presented in Table 5 i I lustrated the higher correlation with 

species numbers than with area exhibited by many species. Thus the 

concept that diffuse competition modifies the community bird species 

composition and sets an upper I imit to the total number present is a 

reasonable explanation . 
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Species-area models 

Schoener (1 976) and Diamond and Mayr (1 976) placed heavy emphasis 

on the ecological evaluation of dlog S/dlog A, where S is the equi I ibrial 

number of species and A is the island area, for analyzing differences in 

the species-area relationship among archipelagos. The species-area 

relationship has been documented as a curvi I inear relationship and has 

z had either an exponential (exp CS) = A) or a power CS = CA , where 

z = dlog S/dlog A) function ascribed to it (Preston 1 962a, b, Hami I ton 

et al. 1964, Ki I burn 1 966, MacArthur and \'Ii Ison 1 967) . 

Preston (1 948, 1962a, b), May (1 975), and Diamond and Mayr (1976) 

postulate that if the islands under study are considered isol ated 

universes with large or heterogeneous species assemblies with independent 

niche requirements then statistical ru l es predict that the species-

abundance relations should approximate a lognormal distribution. Further , 

when density increases proportional ly with area, the species-area 

relationship shoul d be a power function with a slope between 0. 1 5-0.39. 

If  the relationships are constructed for a nested series of sample areas 

on a single land mass or for a commun ity which is dominated by some 

single factor and div i sion of this niche volume proceeds in a strongly 

hierarchical fashion with successive species pre-empt ing successive 

fractions of the niche volume , the species-abundance relation is predicted 

to be logser i es ( May 1 975 : 83) and the form of the species-area relations 

should fol l ow an exponential function with a l ower sl ope than for isolated 

uni verses ( Preston I 962a, b ,  May 1975, Di amend and Mayr I 976) . If, on 

the other hand, the I imited resource is divided evenly among a 

taxonomically homogeneous set of species then MacArthur ' s  (1 957, 1960) 



"broken-stick" distribution is predicted, with a species-area slope 

steeper than for isolated universes (May 1 975) . 
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My data appear to approximate the lognonnal distribution (Table 7) . 

Shelterbelts are not isolated universes, or a nested set of sample areas, 

or comprised of a taxonomically homogeneous set of species. I have 

postulated that there is I major I imiting factor, food, the division 

of which cannot be even among species due to the different energet i c  

requirements of the heterogeneous species assemblies. I have i I lustrated 

that species tend to be added to the community at a fairly constant rate 

due to selection for different partitioning strategies. Up to a certain 

area, most species are represented equally as I pair due to minimum area 

requirements. Some species increase in density as area continues to 

increase, while other species are first colonizing due to different 

minimum size requirements. This differential response results in an 

increasing divergence in species abundances. At the largest she l terbelt 

sizes, 2-4 pairs of house wrens and yel lowthroats may exist, but minimum 

area requirements al low only I pair of black-capped chickadees. Further 

increases in area would continue to meet the requirements of other species 

for the first time. Thus the lognonnal distribution, as compared to the 

logseries or other distributions, would be enhanced by sampling 

shelterbelts beyond the largest sizes evaluated in this study . 

Enhancement of the lognormal distribution would also occur by increasing 

the number of shelterbelts samp l ed. An increase in the number of 

shelterbelts sampled should result in greater separation of the densities 

of the common speci�s and, at the same time, tend to raise the entire 

curve, equivalent to shift i ng the curve to the left, (shifting Preston ' s  
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Ta b l e  7 .  D i str i bu t i on of the n umber of  spec i es among a b u nda nce c l a sses 
a rra nged i n  oc tave s .  

ABUNDAt-CE CLASSES 

1 - 2  
2-4 
4-8 
8- 1 6  

1 6-32 
32-64 
64- 1 28 

1 28-256 
256-5 1 2  
5 1 2- 1  024 

I 024-2048 

NUMBER SPEC I ES 

2 J /2 
2 1 /2 
5 1 /2 
6 
6 1/2  
6 1/2  
5 
3 
2 
I 

I 
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(1948) vei I I ine to the right). Thus the l ognormal distribution found, 

and the division of resources postulated, suggests a combination between 

the iso l ated universe mode l and MacArthur ' s  model. The results, 

1 1  l ustrat i ng a slope of 0. 388, near the upper extreme ind i cated for power 

functions, also suggest the relationship may be intermediated in form, 

yet shelterbelts do not really fit e i ther model defin i t i on. 

The discrepancy between model def i nitions found here may be 

attributed to the propensity that investigators h�ve exhibited i n  

s l ighting the importance of smal I islands . The smal l est islands have a 

greater I imitation of space (food and habitat) than larger islands. Thus 

the number of spec i es that can coexist on sma I I i s  I ands may be I ess, due 

to competit i ve saturation, than the actual number the source pool can 

provide. The upper I imit on the number of species which can coexist, in 

comparison to the number the source pool can supply, found for 

shelterbelts and habitat islands in New Jersey (Ga l  I i  et al. 1 976) of a 

given size is evidence of competitive saturat i on .  By competitive 

saturation refer to the situation where the ava i I able food space is 

saturated by the number of species coexisting. No more species from the 

existing source pool can be added to the community because the avai ! ab l e  

food space wi I I not support them. Whether the source pool is large enough 

to saturate the smal l est islands (or conversely whether the smallest 

island is smal I enough to be saturated by the source pool) and the range 

of island areas over which saturation can exist are important 

determ inants of the spec i es-area re l at i onship of an archipelago. 

Diamond and Mayr ( 1 976) indicate the So l omon archipelago as an 

exponential species-area r�lationship . They then ca l culate the slope 



for those islands greater than I mi2 to be 0. 087 and concluded that 

colonization was by highly vagi le species. Inclusion of islands less 

than I mi2 would have increased the slope. The slope for islands below 

I mi2 Cz = 0. 385) indicates a power function very similar to the slope 

exhib i ted by shelterbelts. This i I lustrates that z changes with area 

(Schoener 1 976), a fact that needs further explorat i on. 
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Schoener (1 976) presented a model for interactive species that 

pred i cted the slope of the species-area relationship should never exceed 

0. 5. Since the assumption that no more species can be added to the 

community is imp I ic i t  in the definition of compet i tive saturation, then 

z should be maximized and approach 0. 5 for these communities. The slopes 

for shelterbelts and for i slands of the Solomon archipelago under I mi2 

are approximately 0. 4, which is approaching 0. 5. The slope of habitat 

islands studied by Gal Ii et al. (1 976) is actually set at 0. 5 (square 

root function) . Re-evaluat i on of Gall i ' s (1 975) data through regression 

found the slope (z = 0.395) to be similar to that found for shelterbelts 

and the smal I i slands of the Solomon archipelago. However, if Gal I i ' s  

( 1 975) data from the 8 censuses at each plot s i ze are averaged to reduce 

sampling variance, regression produces a slope (z = 0. 5 16 }  very close to 

the square root function used by Gal Ii et al. (1 976). The biological 

validity of such averaging is questionnable, but the tendency of the 

slope to approach 0. 5 is documented. 

Evaluation of the relationship of area of shelterbelts and the 

3 primary food habits groups can exp l a i n  why the slope of the species-area 

curve does not actually reach 0. 5. Granivores and some omnivores feed 

outside of the shelterbelt. Food space is not as restrictive as it is for 



species which rely on food inside the belt. The low and intermediate 

number of source species of granivores and omnivores, respectively, 

coupled with the low and intermediate tendencies of these 2 groups to 

8 1  

rely on food within the belt explains the low (z = 0. 1 71 )  and intermediate 

(z  = 0. 376) slopes. 

Insectivores tend to be territorial and rely on food within the 

belt. The source number of insectivore species is high enough to result 

in competitive saturation and the slope (z = 0.526) is indicative of such 

a situation. Thus the species-area slope does reach 0. 5 if just the 

species that feed within the belt are considered . However, the slope of 

the species-area relationship for al I species in shelterbelts is lower 

than 0. 5 due to the influence of species which feed outside of the belts. 

The species source pool size is considerably increased during 

migration. The proportion and significance of species which feed outs ide 

of the belt is reduced. Thus the depressing effect of such species on 

the slope is reduced and the slope comes much closer to reaching 0. 5 

(z = 0. 483 in 1976). However the species-area slope for insectivores 

is sti I I only 0.544 even with the much greater source pool size. These 

data support the postulation that competitive ·saturation of the smallest 

belts should result in a constant slope of 0. 5 fol lowing Schoener ' s  

( 1976) interactive model. 

General model definition 

A general model of the species-area curve can be described and 

used to relate most findings relative to island effects. The general 

species-area curve begins on the left side by increasing at a constant 
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slope of 0. 5. As long as the source pool is large enough to supply 

competitively different species, the species-area relationship wi I I remain 

constant at 0.5. The point at which the source pool can no longer keep up 

at the same rate as area is the point at which the slope begins to decline 

from 0.5. Continued increases in area leads to continued decreases in the 

number of competitively different species l eft in the source poo l which 

have not yet colonized. As a result, larger and larger increases in area 

are necessary to get equivalent increases in species numbers (the 

species-area slope is declining faster and faster) . Theoretically the 

area of the islands reach a I imit where an increase in area does not 

elicit an increase in species numbers. Thus at the far right the slope 

of the general curve becomes 0. Any archipelago is simply a subset of 

the general curve and where it exists on the general curve depends on 

the size of the source pool, distance from the source pool immigration 

and extinction rates, and environmental diversity. 

Support for the above general curve is supplied by the species 

richness-density relationship. I demonstrated earlier that because 

density increases I inearly with area and species richness increases 

curvi I inearly with area, there exists a curvi �inear relationship between 

density and species richness, i.e. density increases at an increasing 

rate at the upper end of species richness. This relationship was also 

noted by Diamond (1 970b) . The point at which density begins to curve 

upward with species richness is the point at which t he species-area 

relationship begins to depart curvi I inearly from a constant relationship. 

The I inear relation between density and area indicates the continually 

proportional increase in niche space with area. The point at which the 
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slope of the species-area curve starts to depart negatively from a 

constant z = 0. 5 relationship is the point at which the species source 

pool can no longer keep up with the increase in area with an increase in 

competitively different species. This is also the point at which the 

density-richness relationship curves upward indicating the increase in 

niche space cannot be fi I led by a new species, so it is instead fi I led 

by more individuals of already existing species. The upward curve of 

the density-richness relationship reflects this increase in density per 

species at the upper ranges of species richness. 

The range of areas over which the z = 0. 5 increases in species 

numbers can exist is dependent on the size of the source pool and the 

dispersal abi I ity of the species in the pool. Therefore, near 

archipelagos have � larger source pool than far archipelagos s i mply 

because the chance of being found is much greater for near archipelagos, 

but also because less vagi le species wi I I colonize near archipelagos 

more readily than far. Because the species source pool is effectively 

l arger for near archipelagos, the range of island areas over which the 

constant relationship exists is eXTended over that of far archipelagos 

and moves the arch i pelago to the left on the general curve in relation 

to a far archipelago of similar island sizes. 

Tropical near archipJlagos show a larger z than temperate near 

archipelagos because tropical archipelagos of similar distance have a 

larger source pool. Tropical archipelagos are therefore moved to the 

left relative to temperate archipelagos as tropical archipelagos can 

continue to add competitively different species over a larger range of 

island areas. The magnitude of z for an archipelago is there fore much 
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dependent on the smallest islands within it, but it also is dependent on 

the vagi I ity of these spec ies . If  the smallest islands are large enough 

to al low coexi stence of al I the species within the arch ipelago, as may be 

the case for far archipelagos where the effect ive sou rce pool is smal I or 

archipelagos where the smallest island is large, then z would be smal I, 

especially if the species are highly vagi le . The ent i re relationship 

would fit in the right-most part of the general curve, where z is low and 

approach ing zero, as Diamond and Mayr  ( 1976 ) found for  islands g reater 

than I mi2 of the Solomon archipelago . If the smaller islands are 

included, z increases because the range of areas is increased toward the 

left side of the general curve. 

There is a decrease in z w ith isolation because the effective 

spec i es sou rce pool i s  decreas ing and the vagi I ity of the res ident 

species is increas ing. Thus most species in isolated archipelagos can 

competitively coexist due to the low number of coexisting species present 

al lowing horizontal separat ion and niche divergences. Thus the 

species-area relat ionship starts farther and farther to the r ight as 

similar s ized archipelagos become more and more isolated. The farther to 

the right the cu rve is analyzed, the smaller the differences that exist 

due to the slope approaching zero. On the other hand, study of the left  

side o f  the curve i I lustrates max i mum differences as the slope of  smal I 

islands demonstrates whether the source pool is large enough to satu rate 

the smallest island (z is h igh ) or if the smallest island can support 

nearly equal numbers of species as the larger islands (z is low ). 

Schoener ( 1976 : 638 ) i I lust rated that z is larger for archipelagos 

where the largest is land is smal I (< 800 mi2 ) than for archipelagos where 
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the largest isl and is l arge ( >1 500 mi2) and exp l ains th i s  as being due to 

the proportion of unestabl ished species immigrating per unit time 

decreasing with area. I suggest it i s  al so due to the above expl anation 

that archipelagos made up of smal I islands have greater compet i tive 

interactions which increases z .  Archipelagos with l arge isl ands inc l ude 

a larger range of areas, which lowers z, but in addition, l arge is l ands 

can support most of the i mmigrating species, thereby enhancing a decrease 

in the slope. 

Another factor mod i fying the po5ition of an archipel ago on the 

general curve is the env ironmental diversity of that archipe l ago . As the 

diversity of habitat increases, the nu:nber of species which can coexist 

increases due to the increase in number of rea I i zed niches. In 

shelterbelt islar.ds. having relatively homogeneous vegetation, sel ection 

is for species which are ecologically isolated from each through foraging 

means because d ifferences in habitat are not avai I abl e. The sma l I number 

of congeners found by Grant ( 1 965 ) might al so be attributed to this fact 

as he noted t�e habitat of the Tres Marias Is l ands is fair l y  uniform. 

As habitat diversity increases, wou ! d  expect an increase in number of 

congeners and spec i es wh i ch forage s i rr i I ar I y ,  -as they can i so I ate 

themselves through habitat differences. Thus area would be expected to 

be the best predictor of species numbers on is l and s with unifonn habitat 

while both area and habitat diversity would be expected to be good 

predictors of the number of species of birds en islands with high 

habitat divers i ty. I ncreased habitat diversity i ncreases the number of 

realized niches thereby moving an archipelaso to the right on the gene�al 

curve. 
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Increasing endemism woul d a l so be expected with increasing habitat 

diversity . Endemism has been noted as increasing with isolation (Diamond 

1975) . The ratio of rea l ized to uti I ized niches woul d increase with 

archipelago iso l ation due to a decreasing number of species colonizing. 

Thus there is i ncreased niche space avai ! ab l e for  divergence of species 

in increasingly isolated archipe l agos, a l  lowing evolution of endemic forms . 

Since increased habitat diversity also increases the number of rea ! ized 

niches, increasing habitat di�ers i ty interacts with increasing isol ation 

to result in increasing endemism. 

Saturation can occur on smal I islands i n  an archipelago. Smal I 

islands are importcnt in determining the actual form of the species-area 

rel ationship for an archipe l ago because of this potential for saturation . 

The range of : s ! and areas that can continue to be saturated i s  dependent 

on the ef fective source pool size . The range of island areas that al l ows 

continuation of saturation i s  also dependent on the n umber of realized 

niches avai lab ! e .  The number of realized niches woul d increase with 

i ncreased enviror.mental diversity, thus decreas i ng the sizes at which 

saturation can be reached. 



Section 6 

COMPETITION A�D TERR I TORY SIZE IN HABITAT ISLANDS 

Decreas i ng is l and area is often accompanied by increasing density 

of birds per unit area (Diamond I 970a, b ,  1973, CrO\'le I I 1962, Grant 1966, 

MacArthur et al. 1972, Nilsson 1977) . Such density compensation a l so 

imp I ies i ncreasi ng territory size wi th is l and area. Nesting of bird 

species on i s l ands sma l l er than the norma l territory sizes of those 

spec i es on the mainland and i ncreasing territory size with increasing 

is l and  area has been docurnented ( Seer et a l .  1956 , Schne l l  1963, Cody and 

Cody 1 972, Yeaton and Cody 1 974, Ni l sson 1 977) . Decreasing territory 

s ize ( increasing density compensat i on) wi th decreasi ng is l and area has 

been attributed to c�mpetitive re l ease (Yeaton and Cody 1974, Ni l sson 

1 977) . Sma l l �r is l ands have fewer coexist i ng spec i es, and a greater 

range of microhabitats may be avai I ab l e  for exp l oitation by the species 

on sma l I is l ancJs due to the absence of spec i es with simi l ar foraging 

strategies. An expansion in the foraging height of bird species on 

islands has been docu�er,ted ( Yeaton 1 974, MacArthur et al. 1 972). An 

expans i on i n  number of microhabitats exp l oited i ncreases the ef fect i ve 

food supp l y  and thus a l  ! ows a decrease in territory size. Yeaton and 

Cody ( 1 974 ) presented a strung ccrre l at i on between increasing species 

numbers and the territory size of  song sparrows. 

Increasing r.umbers of coexisting speci es l eads to increasing 

restr i ction of each spec i es to the m i crohab i tat for which each i s  best 

adapted C·lacArthur end ',·/i l sc ,1 1957 , 1·1acArthJr 1 972, Hespenheide 1975).  

However, prey se l ection shou l d  rer,1ain diverse 't: f th i n  the m i crohabitat 
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(MacArthur 1 972, Hespenheide 1 975). Maintenance of diverse prey 

selection leads to overlap in food consumed among species. This overlap 

logically increases with increasing similarity of species. Thus, such 

overlaps may also result in compensatory increases i n  territory size . 

RESULTS AND DISCUSSION 

Diversity and density of birds uti I izing shelterbelts in eastern 

South Dakota were determined by censusing 69 shelterbelts in 1 976 and 

1977. These censuses indicated that yel lowthroats and house wrens, 2 

species of simi l ar size and foraging ecology, did not coexist in smal I 

belts but did coexist in l arge shelterbelts (Table 6). House wrens did 

not occur in belts smaller than 2264 m2, and ye ! lowthroats  required a 

minimum size of 3004 m2 for residence. Coexistence occurred when 

shelterbelt size of 9895 m2 was attained and was accomplished through 

horizontal separation . The smallest shelterbelt in which the 2 species 

coexisted, 1 4, was the widest of the 69 belts censused . The house wren 

pair was located near the southern boundary and toward the western edge. 

The yel lowthroat pair was observed to the north and near the eastern 

edge of the belt. House wrens and yellowthroats had horizontal 

separation in shelterbelt 40 where pairs were established at opposite 

ends of the belt. The smallest belt in which spatial overlap probab l y  

2 occurred was belT 25 that was 14,028 m in area. 

Territories of house wrens, ye t lowthroats, and brown thrashers 

were mapped in 2 large shelterbelts in 1 977. Mapping was accomplished 

from 24 May to 1 8  June. The she I terbe I ts �:ere visited da i I y, weather 

permitting, for I to 4 hours starting at sunrise. The 2 shelterbelts 
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2 were of equal size (24, 329 m ) and overstory composition but differed in 

understory. One belt (Fig. 1 5a) had a grass understory resulting from 

grazing, while the other belt (Fig. 1 5b) had a thick, shrub understory . 

The grass-belt contained 17 bird spec ies while the shrub-belt had only 

13. Further, the grass-belt has several pairs of house wrens and 

yel lowthroats, while the shrub-belt had I of each. Thus spatial overlap 

between house wrens and yel lowthroats occurred only in the grass-belt. 

Territories mapped in these large belts were larger than the area 
2 of the smallest belts inhabited by house wrens (2264 m > ,  yel lowthroats 

2 2 (3004 m ), and brown thrashers (3004 m ). The brown thrasher was found 
2 in 2 belts smaller than 3004 m (Table 6), but in both cases another 

shelterbelt was nearby and could have been used in conjunction with each 

of the censused belts. The minimum size, 3004 m2, indicated for the 

brown thrasher represents the smallest, isolated shelterbelt inhabited. 

Kendiegh (1 94 1 )  indicated the average territory size of house 

wrens to be approximately 4350 m2 in unrestricted woodland coflYTlunit i es. 

The mapped territories of house wrens in the 2 shelterbelts were similar 

in size to that reported by Kendeigh (1 941 ) (Table 8), with the exception 

of HW-5. Stewart (1953) documented yel lowthroat territories to average 

2 5652 m .  Al I 3 yel lowthroat territories mapped in the shelterbelts 

were larger than 5652 m 2 

The territory of Yt-1 does not spatially overlap the territory of 

any house wrens . The territory of Yt-3 overlaps I house wren territory 

and the territory of Yt-2 overlaps 2 house wren territories (Fig. 1 5). 

The size of the yel l owthroat territories increases with i ncreasing 

numbers of overlapping house wren territories. If birds maintain 



Figu r e  1 5. Ter r i tor i es of y el l owthr oats  (Yt ) ,  hou se wr ens ( HW ) , an d 
br own thr asher s  ( St )  map ped i n  2 s hel ter be l t s of equ a l 
siz e and ov er st ory co�p os i t i on .  On e bel t ,  a) has a h eavy 
grass u nd er story . The oth er bel t ,  b) has a thick shru b 
u nder st ory. 
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diverse prey sel ection, as MacArthur (1 972) and Hespenheide (1 975) 

postul ate, then some overlap in prey types taken is expected among bird 

species. This overl ap shoul d increase with increasing simil arity between 

species and leads to the prediction that territory size woul d be expanded 

when similar species coexist. Yel l owthroats appear to fit this 

postulation as they demonstrated a constant increase in territory size 

w i th increasing numbers of house wrens spatiall y overlapping. House wrens, 

on the other hand, do not show as cl ear a relationship. The territory of 

HW-5 is not over l apping the territories of any yel l owthroats, and th i s  

territory is the small est of the mapped house wren territories. The 

territory of HW-3, which also does not appear to overl ap with 

yel l owthroats, is simi l ar in size to HW- 1 which does exhibit spatial 

overlap with a ye l l owthroat pair ( Yt- 1) . Both of these house wren 

territories are smal ! er than the territories of the other 2 house wrens 

wh i ch spatial ly overl ap yel l owthroat territories . There are at least 2 

possibl e expl anations. HW- 1 is on the eastern border of the territory 

of Yt-1, which was not as intensively uti I ized by Yt-1 as the western 

half. Al so house wrens may be more general ized in their foraging than 

yel l owthroats. In this case, house wrens wou l d  overl ap the food habits 

of ye ! lowthroats more than the converse. 

Fiel d observations indicated that yel l owthroats forage mainl y 

through fo l i age gl eaning  off l eaves oi shrubs and grasses and by hawking 

among the grasses. House wrens were observed g leaning mainl y off the 

bark of trunks and branches, but occasional l y  fol iage g l ean i ng. The 

fol iage gl eaning habit of house wrens suggests that house wrens over l a� 

the food hab i ts of the ye ! l owth,oat more than the converse. 
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Table 8 .  Territory sizes ( i n  m2) of ye llowthroats, house l'Jrens, and 
brown thrashers in I shelterbelt with a grass understory 
and I shelterbelt with a shrub understory. 

YELLO\'/THROA T S I ZE HOUSE  WREN S I ZE BRO\m THRASHER S I ZE 

GRASS  UNDERSTORY 

Yt- 1 98 65 HW- 1 3 752 BT- I 5 1 60 
Yt-2 6992 HW-2 4202 BT-2 5374 

HW-3 3693 
HW-4 3 91 4  

SHRUB unDERSTORY 

Yt-3 6536 HW-5 2860 BT-3 5232 
BT-4 4463 
BT-5 48 1 8 
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The  d i f f erences i n  terri tory size betw een h ou se wrens and 

yel lowthroats may also be d u e  to d i f f erenc es i n  h abitat pref erence. The  

resu lts of Krood sma ( 1 973}  and Wh i tmore ( 1 977 } i nd i c ate th e h ou se wren 

pref ers a h abitat where shru b d ensity is mod erate to open and a grass 

su bstrate i s  pr esent. Mu lti ple regress i on analysis of h ou se wrens in 

sh elterbelts provi d ed similar resu lts ( S ec ti on 8} . T h e  h abi tat 

pref erences of th e yel lowthroat are less c lear. S tew art ( 1 953 : 100) f ou nd 

yel lowthroats breed i ng in h abi tats varying from an " open savana- 1 i ke type 

w i th sc attered grou ps of shru bs or trees f rom 3 to 1 5  f t  i n  h ei ght  to a 

f ai rly d ense thicket of smal I w oody plants, u su ally less th an 3 f t  in 

h eight" . Kend ei gh ( 1 945} suggested yel lowthroats pref er areas of d ense, 

low vegetation. Y eaton and Cody ( 1 974 ) also suggested yel lowthroats pr ef er 

h abi tats with d ense 'vegetati on at th e O - 2 f t  level. d etec ted 

separation ( S ection 8) f or some h abi tat ch aracteristics, but overlap i n  

oth ers betw een h ou se wrens and yel lowthroats. T he  lack of spatial overlap 

i n  belts smaller th an 1 4 , 02 8 m2 and th e large, mapped territory s i z es may 

be parti ally du e to h abitat pref erences. H ow ever th e large d i f f erenc e i n  

the territory siz es of th e 2 yel lowthroat pai rs nesti ng within th e same 

belt ( F i g. 1 5a) ind i c ate that dif f erences in h abi tat pref erences d oes not 

of f er an ad eq u ate explanation. 

D i f f 1 1 se u ti liz ati on of the f ood resourc es and restricti on of 

f or aging ni che  dimens i on s  du e to th e gr eater nu mber of c oexi sti ng species 

f ou nd i n  th e mapped belts versu s th e smallest belts i nh abi ted may al so 

explai n th e large territory siz es . The brown thrash er d oes not have a 

c lose ec ologi c al associa te i n  th ese belts, bu t th e mapped terri tory s i z es 

were sti I I much larger th an th e smallest, isolated belt it inhabited . 



Yeaton and Cody ( 1974) and Nilsson (1 977) also documented increasing 

territory sizes with increas ing numbers of coexisting species and 

attributed this compensation to increas ing restriction of niche 

dimensions. 

Al I 3 speci es studied here demonstrated substantial increases in 

territory size in more diverse communities as compared to more 

depauperate commun ities. The minimum shelterbelt size at which each 

species first colonizes, (and the actual territory size w ithin this 

belt could be smaller if the pair did not use the entire belt), was 

considerably smaller, in al I cases, than the mapped territories in 

communit ies with a greater number of coexisting species . This supports 

the content ion that an increased number of coexisting species causes 

decreased niche width and results in a compensatory increase in 

territory size. The data also suggest that diffuse overlap in food 

uti I ization, which increases with increasing ecolog ical similarity of 

species, leads to decreased ava i I able food for a species and results 

in compensatory increases in territory size as wel I .  
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Section 7 

ENV IRONMENTAL INFLUENCES OF AV I AN DIVERS I TY AND DENSITY DURING �1 1 GRATORY 
AND BREED I NG SEASONS 

INTRODUCT I ON 

The number of species of birds wh i ch cohabit an area has been 

related to the foliage height distribution (MacArthur and MacArthur 196 1 ,  

MacArthur et al . 1962 , MacArthur et al . 1966, Recher 1969 , Karr 1 97 1 , 

Karr and Roth 197 1 ) , percentage vegetation cover ( Karr 1 968 , Karr and 

Roth 197 1 ,  Wi I Ison 1974 ) ,  foliage volume ( Sturman 1968, Ba l da 1969 , 1975 , 

Laudenslayer and Balda 1 976 , Szaro 1976 ) ,  and various multivariabl e 

measurements of the habitat structural complexity ( J ames 197 1 ,  Anderson 

and Shugart 1974 , Whitmore 1975 , 1977 , Smith 1977 ) .  Dif ferent species 

must dif fer by range , habitat, or feeding ecology to coexist. Since 

birds coexisting within a given habitat are not separated by range or 

habitat , they must be separated by dif ferential foraging behavior. 

Some of the ways in which dif ferences in f oraging behavior can 

be manifested is through dif ferences in foraging strata (Root 1 967 , 

Karr 197 1 ,  Wi I Ison 1 974 ) and dif ferences in vertical and interior versus 

exterior foliage zones (Colquhoun and �orley 1943 ,  Hartley 1953, Gibb 

195 4 ,  MacArthur 1 958,  Pearson 197 1 ,  Edington and Edington 1972 ).  Thus 

increases in the structural complexity and patchiness (Roth 1976 ) of a 

habitat increases the number of ways in which species can partition the 

habitat space and leads to the prediction of increased species diversity. 

Area accounts for approximately 60% of the variation in bird 

spec i es number l n  shelterbe l ts during m i gration and breeding seasons 
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(see Sect i ons 4, 5). Part of the residual var i ation unexpla i ned by area 

is due to sampling error, and the remainder can be ascribed to 

environmenta l var i ab i  I ity of the plots. Del i neat i on of the 

multivariable set of env i ronmenta l factors accounting for the variation 

in species diversity and density can be accomp l ished through mult i ple 

regression analyses. However, the variation i n  spec i es numbers i s  

confounded by area . An area that i s  large enough to accommodate tw i ce 

as many species as a smaller area, but that does not have twice as many, 

can be assumed to be environmentally inferior to the smal l er plot. 

However, regress i on analys i s  assumes the larger plot i s  actually 

environmentally superior because it has a greater diversity and density 

of birds. 

By determ i n i ng the relat i onship between area and the divers i ty 

and density measures, these measures can be pred i cted for a shelterbelt 

based on i ts area . Subtraction of th i s  predicted value from the actual 

va l ues resu l ts i n  the residual variat i on, due to sampl i ng error and 

env i ronmental variab i I ity, varying around zero, thus remov i ng the 

increasing effect due to area. Mu l tiple regression ana l yses of these 

transformed values al lows delineat i on of the environmental variables 

accounting for the res i dual variation unexp l ained by area. 

The dependent variables used for both seasons included species 

richness, spec i es divers i ty, conmun i ty density, and layer divers'ity . 

Spec i es richness i s  the number of species i n  the commun i ty .  Spec i es 

divers i ty is the Shannon index ( Shannon and Weaver 1 963 ),  wh i ch i s  an 

index of both the number of spec i es and the evenness of distr i bution of 

those spec i es .  Commun i ty dens i ty i s  the number of i ndividuals i n  a 

,· 
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commun i ty, and layer divers i ty is the Shannon d i versity based on the 

proportion of the community density which is in each of the herb, shrub, 

and tree l ayers during censuses . Area was the primary factor accounting 

for variation i n  the first 3 var i ables ; richness, diversity, and density , 

and these were transformed by the method described above. Area was not 

the major determinant of the variat i on in layer diversity and layer 

diversity was not transformed. 

RESULTS AND DISCUSSION 

Approximate l y  60% of the residual var i at i on of species r i chness 

and d i versity was expla i ned by environmenta l var i ables during both 

seasons (Tables 9, 10) . The var i ab l es important to spec i es r i chness and 

d i versity within a �eason were similar. The sim i lar i ty may be expected 

since spec i es r i chness i s  the major component of spec i es divers i ty. The 

var i ab l es i mportant to species r i chness and diversity are d i f ferent 

between seasons. Community density (Table l I) and l ayer diversity 

(Table 1 2) also i I lustrate s i gn i f i cant d i fferences between seasons. 

Two variables, presence of tree cla i ms and presence of I i ght 

graz i ng, are i mportant for species r i chness aRd d i versity during both 

seasons. The negat i ve influence of tree claims on species richness and 

diversity in both seasons can be attributed to the spec i es-area effect. 

As area increases, the number of species per un i t  area decreases. A 

tree claim bordering a shelterbel t is used by b i rds in conjunct i on with 

the shelterbelt. The shelterbelt is , therefore, a subset of a larger 

area, and the number of birds for that subset i s  smal l er than if i t  had 

been completely i so l ated. 
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Table 9. Spec i es r i chness. Env i ronmental var i ab l es , de l ineated through 
mu l tip l e  regression, that cooperatively exp l a i n  the var i ance 
in species richness, a nd ,  other env i ronmental va�iables that 
a re significant l y  corre l ated with spec i es r i chness d u ring 
spr i ng m i grat i on and breeaing seasons . 

VAR I ABLEa 
MULT I PLE Rb 

RSQc 
S I MPLE Rd 

BREED I f'IG 

MOWED 0.395 0 . 1 1 6  -0.395 
GRL I * * * *  0 . 4 93 0. 243 0.31 0 
ULPU 0. 543 0. 295 0.365 
TRCLA I i,1 0. 575  0.330 -0. 1 59 
LOTA 0. 607 0.369 -0. �44 
CAAR 0. 641 0. 41 1 -0. 093 
GRZ 0 . 667 0. 4 4 5  -0. 026 
WATER 0. 692 0 . 4 79  -0. 050 
AGE* *  o .  7 21 0. 51 9 0. 31 8 
ELAN 0. 741 0. 549 -0. 124 
PRAM o .  7 58 0 . 574 0 . 161 
WOODY* 0. 772  0. 596 o. 195 

OTHER S I GN I F I CMJT VAR I ABLES ( S I MPLE CORRELAT I ON) 
VEGD I V  ( -0. 235**) cc < O. 251 * * }  TRVOL (0.305* * * } 

M I GRAT I ON 

AGE 0. 4 28 0. 1 83 0. 428 
HUMAN** * *  0. 508 0 . 258 0 . 262 
TRCLA I M  0. 583 0. 339 -0 . 1 92 
RS HAR 0. 6 11 0. 373 0. 128 
TOTUND 0. 646 0. 4 17 0. 21 0 
JUV I 0. 685 0. 469 -0. 1 89 
VEGD I V  o .  703 0. 501 0. 0 16 
NL  0. 736 0. 541 0. 043 
GRL I * * o .  7 58 0 . 57 5  0. 21 3 

OTHER SIGN I F I CANT VAR I ABLES CSl!-�PLE CORRELA, I Otn 
TRVOL < 0 . 2 1 4 * ) SHRLHT CO. 225*) NTRSPP ( 0. 236* * > cc ( 0 . 3 54 * **  ) 



Ta ble 1 0. Species diversity. Environmental variables, delineated 

through mult i ple regress i on ,  that cooperatively explain the 
variance in species d ivers i ty ,  a nd, other environmental 
variables that are s i gn i ficantly correlated with spec i es 
d iversity duri ng spr i ng m i gration and breeding sea sons. 

I 00 

VARIABLEa MULTIPLE Rb RSQc S I MPLE Rd 

BREED I NG 

ULPU 0. 435 o .  189 0.435 
TRCLA I M  0. 522 0. 273 -0. 271 
GRL I 0. 585 0. 343 0. 282 
CAAR 0. 639 0.408 -0. 159 
PRV I * ***  0. 695 0.482 -0. 226 
J UV I  0. 722 0. 521 -0. 233 
ELAN 0.743 0. 552 -0. 1 74 
NSR o .  759 0. 576 0. 249  
LOTA** o .  7 7 9  0 . 606 -0. 254 
MORU* 0. 79 1 0. 626 0. 022 

OTHER S I GN IF ! CANT VARIABLES c s1 ;.1PLE CORRELATION ) 
TRVOL (0. 220* ) VEGD I V  (-0 .259**) t.;Q\�ED (-0. 321 ***) 

M I GRAT I OiJ 

AGE 0.339 0 .  1 1 5 0.339 
HUMAN 0.467 0. 21 8 0.3 12 
TRCLAIM 0. 542 0. 294 -0. 1 88 
RP I PO**** 0. 597 0. 357 0. 203 
CEOC*** 0. 64 1  . 0. 41 1 0. 205 
VEGD I V  0. 674 0.4 55 0. 060 
GRLI 0. 696 0.485 0. 1 93 
RS HAR 0. 71 4 0. 509 0. 123 
SYVU 0 . 730 0. 534 o. 136 
SHRLHT 0. 750 0. 562 0. 1 42 
NL** 0. 769 0. 591 o .  132 

OTHER S I Gt� I FI CANT VARIABLES (SIMPLE CORRELATION )  
NTRSPP ( 0. 230** l cc ( 0. 239** l 



Ta b l e  1 1. Commu n i ty d en s i ty .  Env i ronmenta l va r i ab l e s ,  de l i neated 
throu g h  mu l t i p l e  reg re s s i on ,  that coopera t i ve l y  exp l a i n  the 
var i a nc e  i n  commu n i ty d e n s i ty ,  a nd ,  other env i ronmenta l .  
va r i a b l es t hat a re s i g n i f i c a nt l y  corre l a ted w i th commu n i ty 
dens i ty d u r J ng s p r i ng m i g ra t i on a nd breed i ng se3 sons . 

10 ! 

VARIABLEa 
MULT IPLE  Rb RSQc 

S I MPLE Rd 

BREED ING 

RFRPE 0.396 0. 1 57 -0.396 
SHRRHT*** * 0. 499 0. 249 0.306 
FRPES*** 0.555 0 . 308 -0. 2 16 
SHRLHT 0.597 0. 356 -0. 224 
ROADS 0 . 627 0 . 394 -0. 1 99 
RELAN 0.648 0.420 -0. 131 
PRPU 0. 668 0 . 446  -0. 1 2 1 
PSf.1 E 0.685  0. 469 0. 13 1 
�/ATER o. 72 1 0.520 0.291 
RJ UV I o .  738 o. 54 5 0. 247 
RU LAM* * 0 . 758 0. 575 -0. 068 

OTHER S IGN IFICANT VAR IABLES (S IMPLE  CORRELATION ) 
MOWED (- 0 . 269* * )  ULPU C 0. 305*** )  

M I GRAT ION 

SYVU o.4r2 0. 169 0. 4 12 
GC 0. 520 0. 270 0. 297 
SHRRHT**** 0. 592 0.3 5 1 0. 290 
HUMAN 0.626 0.392 -0 . 294 
UNDSHR 0.660 0. 436 -o. 1 35 
TNR** 0. 684 0. 468 0. 01 2 
PLDEN o. 700 0.489 0. 106 
FHT 0.7 13 0 .  508 0. 056 
PODE 0.730 0 . 533 -0. 043 
RLOTA 0. 744 0. 553 -0. 043 
WATER o.  764 0. 534 0. 273 
RPRV I o.  779 0. 606 0 . 077 
RP IPU* 0.795 0. 633 -0.25 1 



Tab l e 1 2. 

VAR I ABLEa 

BREED I �  

TOTUND 
MOWED 
AREA 
RE LAN 
RJUVI 
HUMAN****  
PRAM 
PSME 
RCEOC 
RPRPU 
RROPS 
NSR 
GC 
RP I PO  
GRL I *  
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Layer d iversity. Environmenta l var ia bl es ,  d elineated throu gh 
mu l ti p l e  r egr ession, that cooperatively exp la in the va ria nc e 
i n  la yer d i versity, a nd ,  oth er environmenta l var ia bl es that 
ar e  s i gni f ica ntly corr elated with la yer d ivers ity d ur ing 
spr i ng migration  a nd br eed ing s ea sons.  

MULT I PLE Rb 

0.4 1 6  
0. 540 
0. 600 
0. 639 
0.684 
o. 7 27 
0.747 
0. 7 68 
o .  7 80 
0.792 
0. 803 
0. 81 3 
0. 824 
0.833 
0.84 1 

RSQ� 

0.1 73  
0.292 
0.360 
0. 4 08 
0.4 68 
0.529 
0. 559 
0.589 
0.608 
0. 627 
0.645 
0. 662 
0.629 
0.694 
0.7 10 

S I MPLE Rd 

0.4 1 6  
-0.183 

0.27 1 
- 0. 0 9  
-0.213 

0.067 
0.282 

- 0.225 
0.058 
0.045 
0.1 60 
0.219 
0. 00 1 

-o. 153 
0.126 

OTHER S I GN I F I CANT VAR I A BE:.ES C S I MPl:.E CORRELAT I ON )  
FHT C 0.267** ) SHRLHT C 0.274** > N L  ( 0.283** ) GRZ C - 0.3 1 0* ** ) 
UNDSHR ( 0.319*** ) 

M I GRAT I ON 

AREA 0.503 0.253 0.503 
LOTA 0. 598 0.358 0.300 
L I VESTOCK**** 0.657 0.432 0.265 
PLDEN*** 0 . 682 0.466 0.250 
SHRLHT o .  7 02 0.4 93 0.075 
PRAH 0. 7 16 0.5 1 2 0.339 
GRSE 0. 7 27 0. 529 - 0.030 
CANHT o .  7 38 0.545 0.154 
TRCLA I M  0. 747 0.559 - 0.206 
TOT UNO o .  7 59 0.5J 6 0.050 
VEGD I V  0.776  0.602 0.4 20 

t} 
·· i 
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Ta ble 1 2. continued. 

VARIABLEa MULTIPLE Rb RSQc SIMPLE Rd 

MIGRAT I ON (cont. ) 

ACSA 0.790 0. 625 0. 044 
RPRPU 0 . 805 0. 648 0. 037 
COt�VOL 0 .8 1 3 0 . 66 1  o .  185 
RPRTO 0.822 0. 676 -0. 207 
RE LAN 0.830 0 . 689 0 . 033 
RCEOC 0.844 0.7 1 3 0. 172 
PODE** 0.856 0.733 -0. 096 

OTHER SIGNIFICANT VARIABLES { SIMPLE CORRELATION) 
FRPE CO . 236** > 

aMnemonics are defined in Appendix J .  Asterisks indicate significanC?:e 
levels. *p(0. 100 **p< 0. 050 ***p<0. 01 0 ****p<0. 005 Al I var i ables 
I isted above any aster i sk-marked variab l es are significant at least at 
the level the asterisks ind icate. 

bMultiple correlation coefficient. 

cCoeff icient of determination 

dSimple correlation of dependent varia ble witb the ind epend ent variable. 
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Grazing was registered as the presence - absence of l ight, medium, 

or severe graz i ng, and as a 0-3 cumu l ative index of I ight to severe 

grazing. Whi l e  l ight grazing i I l ustrated a positive re l ationship with 

diversity and richness in both seasons, the cumu l ative g razing index 

i i  l ustrated a negative effect on species richness during breeding. The 

effects of g razing on the diversity and richness of bird species in 

she l terbelts can be interpreted i n  terms of the effect of grazing on the 

structure of the she l terbe l t  habitat. I ncreased grazing pressure 

produces an increasing negative correlation with herb height, shrub row 

height, n umber of l ayers (not counting shrub rows as a shrub l ayer), 

and u nderstory density (Tab l e  13). 

Light g razing tends to restrict the growth of an u nderstory shrub 

l ayer, but seems to- stimu l ate g rowth of a thick herb l ayer (pers. obs. ). 

The corre l ation matrix (Tab l e  1 3) i I l ustrates a positive corre l ation 

between I ight grazing and both herb height and shrub row height. A 

s l ig ht negative correlation existed between n umber of l ayers and I ight 

graz i ng, as wou l d  be expected if g razing e l iminates the shrub l ayer. 

This e l imination wou l d  a l so exp l ain the s l ight negative corre l ation of 

l ig ht grazing with understory density , as restriction of the shrub l ayer 

wou l d  decrease understory density at the higher heights of measurement. 

Medium and severe grazing i I l ustrate much higher negative corre l ations 

with a l  I 4 habitat measures, indicating that increasing intense grazing 

i ncreasing l y  restricts growth of the herb l ayer, shrub l ayer, and shrub 

rows, a nd has an overa l I strong inhibitory effect on the l ower 6 feet of 

the hab i tat. 

The cumu l ative grazing index i I l ustrates the g reatest negative 



1 05 

Ta b l e  1 3 .  Corre l a t i on matr i x  of the  4 gra z i ng i nd i c i es aga i nst 4 ha b i tat 
mea su res . 

GRL I  GRME GRSE GRZ 

*** **** **** . 
FHT 0 . 1 29 -0 . 354 -0 . 407 -0. 562 

***  **** 
SHRRHT 0 .042 -0 . 1 25 -0. 369 -0 . 392 

****  ****  **** 
NL -0 .07 9  -0 . 4 26 -0 . 504 -o .  708 

* ** ** **** 
TOTUND -0 . 0 1 6  -0. 3 1 4  -0 . 282 -0 . 439  

* p< . I 00 **p< . 020 ***p< .0 1 0  ****p< .00 1 
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c orrelat i on f or the 4 measures. The hi gher negat i ve c orrel at i on of t he 

c umulat i ve me asure as comp ared t o  severe graz i ng c an be attri buted t o  the 

cumul at i ve negat i ve ef f ect s of both  med i um and severe graz i ng. The 

p os i t i ve ef f ect s of I i ght graz i ng i s  overri dden i n  t he c umul at i ve i ndex 

because t he ex i stence  of I i ght graz i ng i s  not as c orrvn on as more i ntense 

graz i ng. The mean f or I i ght graz i ng ( 0 . 015 + 0. 120)  i ndi c ates i t  i s  

approx i mately . 14 as c orrm on as medi um graz i ng C O .  IO I  + 0. 304 ) and . 20 

as c orrrn on as severe graz i ng ( 0.073 + 0. 26 1  ) .  Thus, i ntense graz i ng 

tend s t o  i nhi bi t underst ory w hi le I i ght graz i ng leads t o  st i mulat i on of 

t he herb layer and op en i ng of t he mi ddl e canop y. 

The i ncrease i n  bi rd sp ec i es ri chness and di vers i ty  w i t h  I i ght 

graz i ng duri ng t he breedi ng season c an be credi t ed t o  t he sp ec i es 

comp os i t i on of shelterbel ts .  The majori ty  of bi rd sp ec i es i nhabi t i ng 

shelterbe l t s  i s  op en- f oli age sp ec i es , a nd t he op eni ng of t he shrub layer 

by ll ght graz i ng enhances t he habi t at f or t hem. I i I lustrated i n  a 

previ ous sect i on ( Sect i on 6 )  t he decrea se i n  t he overal I number of 

coex i st i ng sp ec i es i n  a she l terbelt w i th a heavy shrub understory and a 

belt w i thout t he shrub underst ory, du e t o  t he absence and presence of a 

graz i ng hi st ory, resp ect i vely. L i ght graz i ng · enhances c ondi t i ons duri ng 

breedi ng season f or i ncreased di vers i ty and ri chness, w hi le more i nt ense 

graz i ng, as i ndi c ated by t he c umul at i ve i ndex, c auses a reduct i on i n  

habi t at sui t abi I i ty f or sp ec i es ri c hness duri ng breedi ng. 

The presence of sp ec i es w hi ch  pref er op en c ondi t i ons i n  

shelt erbelts duri ng breedi ng c an p art l y  be exp l ai ned by t he common 

pract i c e of i nten s i vely graz i n g  of shelterbelt s an d t he result i ng 

p auc i ty of shelterb elts  w i th a shrub un derst ory. Thus est abli shment of 
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a v i able population of bird species whith prefer a heavy shrub understory 

Is difficult as there ·are not enoug h  such habitats availa�le. On the 

other hand, during migration, species which prefer heavy shrubs pass 

through the area, and vegetation structural characteristics such as 

understory density results in increasing C p<0.025 )  migratory species 

richness <Table 9 ) . The n umber of layers is positive (p<0.050 ) for both 

migratory species richness and diversity, and the height- of  the shrub 

l ayer is important _in increasing (pc::0 . 050 ) species diversity 

<Tables 9 ,  1 0 ). 

The shrub layer has been postulated as being inhibitory during 

breeding season, and the height of the shrub layer i I lustrates a 

· significant negative correlation C p<0. 025 ) with breeding density, while 

shrub row height indicates a positive effect (p<0. 005 ) during both 

seasons (Table I I ) . Herb height also indicates a positive relationship 

Cp<O. 100 ) with migratory density. Thus it can be concluded that migrants 

exhibit preferences for shelterbelts with no grazing, as these 

shelterbelts provide a shrub layer, but migrants also prefer I ightly 

grazed shelterbelts that have an  openness of the shrub rows and a thick 

herb layer. 

The differences in preference between seasons of shelterbelts 

with no grazing and those that are lightly grazed are i I lustrated by 

shelterbelts 48 and 29 � These 2 belts are of similar size, approximately 

29,000 m2, but 48 is lightly grazed and 29 is not grazed. A thick shrub 

l ayer occurs in 29 but is absent in 48.  During migration, these 2 belts 

had an equal number of species in each year of study, but during breeding, 

i n  both years, 48 had 18 species, while 29 had only I I bird species . 

I 'if ;1 -- . 
- ' -:� I . . 



M i grants seem- to rel y  more heavily on readi ly vi sab le proxi mate 

hab i tat structural cu es than do su mmer resi dents. T he pri mary 

env i ronmental f ac tor accou nti ng f or vari ati on i n  b oth spec i es ri chness 

and di versi ty duri ng mi grati on i s  ag e of the shel terbelt (Tab l es 9, 1 0) .  

Ag e of the b elt i s  hi ghly c orrelated w i th many structural f eatures of 

shelterbelts: shrub layer hei g ht C r = 0.46 1 , p< 0. 00 1 ) ,  shrub volu me 

Cr = 0. 266, p< 0. 050) , tree volume Cr = 0 . 408 , p,: 0.001) , and c anopy 
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c overage C r  = 0. 46 1 ,  p< O. 00 l) . Ag e i s  neg ati ve I y c orre I ated w i th mow i ng 

Cr = - 0. 460, p< 0. 00 1 ) ,  and mow i ng i s  neg ati vely c orrelated w i th herb 

hei g ht C r = -0. 354, p< 0. 010) . T hu s  age i s  re l ated to the su i tabili ty of 

al I 3 veg etati on l ayers. Ag e i s  relate d to the densi ty of snag s 

· Cr = 0 . 303 , p< 0. 010)  that provi de nest hol es, and c orrelated w i th the 

proxi mi ty of w ater - Cr = 0. 3 1 8 , p< 0. 0 1 0) .  Both nesti ng holes and w ater 

were i ndi c ated by M ac Arthur C l 964) as b ei ng i mportant addi ti ons, along 

w i th the structure of a hab i tat, f or i nf lu enc i ng the su i tab i li ty of that 

hab i tat. 

The i mportance of structural compl exity i s  c ontinu ally exhib i ted 

i n  the vari ab les w hi ch are si g ni fic ant i n  exp l ai ni ng the vari ati on i n  

spec i es ri chness and di versi ty. In addi ti on f o  those f ac tors di scu ssed 

ab ove, veg etati on di versi ty and u nderstory densi ty are si g ni f i c ant 

(Tab les 9, 1 0 ) .  V eg etati on diversi ty i s  related to the patchi ness of the 

f oli ag e conf i gurati on, and u nderstory densi ty i s  related t o  the structure 

of the u nderstory. Understory densi ty i s  strong l y  c orrel ated w i th herb 

hei g ht C r = 0. 640, p<0. 001 ) ,  b ut  also corre l ated w i th the presence of 

u nderstory shrub s  C r = 0. 538 , !)<0. 00 1 ) and the hei g ht of the shrub layer 

Cr = 0. 536, p<0. 001) . 
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Shrub layer height (r = 0 . 225, p::: O . 100) , tree volume (r = 0 . 2 14, 

p:::0. 1 00) , canopy coverage C r = 0. 354, p::: 0.0 1 0) ,  and the number of tree 

species (r = 0 . 230, p<O .  100) are significantly correlated w ith migratory 

spec ies diversity . Due to inter-correlat ions with the other variables 

wh ich are signif icant in explaining the variation in species richness 

and d iversity, these variables were dropped from signif icance by the 

step-wise procedure of multiple regress l on .  However, their signi ficant 

correlations with the dependent variables attest to their importance . In 

fact, canopy coverage exh i bits the second largest correlation with species 

r ichness, ind icating that if  age was dropped from the analysis, canopy 

coverage would be the most important env ironmental factor explain ing 

variance in species r i chness . 

Habitat structure is s imilarly important during breeding. Age of 

the belts, which is important dur ing migrat ion, is also important in 

explaining increased breed ing spec ies r ichness . Mowing, which eliminates 

the understory habitat component, has the greatest depressing effect on 

breeding species r ichness, wh ile the number of shrub rows has a positive 

effect on breeding species diversity (Tables 9, 1 0) . 

Canopy coverage (r = 0 . 25 1, P< D . 050) and tree volume (r = 0. 305, 

p<0 . 0 10) are a l so positively correlated w ith breeding species richness . 

Tree volume (r = 0 . 220, p::: O. 100) is �ositively, while mowing (r = -0 . 32 1, 

p<0 . 0 10) is negatively, correlated w i th breeding spec ies diversity. 

Mowing is also negat ively correlated with breeding dens ity r = -0 . 269, 

p,::: 0 . 050) . These factors were not s ign i ficant in explain ing var iation in 

the depencent variables due to inter-correlations. 

Another var iable which did not enter into signif i cance but which 
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is significantly correlated with breeding species richness (r = -0.235, 

p<0.050) and diversity Cr = -0 . 259, p<0.050) is vegetation diversity . The 

negative relationship with vegetation diversity is believed due to the 

confounding of vegetation diversity w i th other variables, and the greater 

importance of these variables led to the negative correlation found. 

Vegetation diversity is significantly correlated with Siberian elm 

(r = -0 . 373, p<0 . 0 10 ) , Russian-cl ive (r  = 0.335, p<0 . 01 0), eastern 

redcedar (r = 0 . 21 I, p<O. 1 00, caragana Cr = 0.201 , p<O. 100) and tatarian 

honeysuck le Cr = 0 . 267, p<0. 050) . Al I of the above correlations of 

vegetation species with vegetation diversity are opposite the correlations 

of the same species with breeding species richness and diversity . 

The negative relationship with vegetation diversity is believed 

due to the overriding importance of other variables. Vegetation diversity 

is negatively correlated with the proximity of water ( r  = -0.26 1, p 0 . 050 ), 

and proximity to water is an important factor to bird species richness 

(Table 9) and density (Table I I) in both seasons . Vegetation diversity 

is also insignificantly associated with mowing (r = 0 .  1 23, p>O. 1 00) and 

negatively associated with age (r = -0 . 1 78, p>O .  1 00) both of which 

indicate association with decreased structura I· comp I ex i ty. Thus 

m igrants which are posit i vely associated with vegetation diversity select 

structurally complex shelterbelts, but also key on the readily vi sab l e  

proximate cue of vegetation diversity . Breeding species , which are 

negative l y  associated with vegetation diversity, appear to rely on 

habitat structure and place more emphasis on primary factors such as the 

proximity of water. 

Migrants are also affected by the readily visible cue of the 
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proximity of a human residence (Tables 9, 1 0).  Human residences are 

associated with both water and supplementary food sources. Proximity of 

human residences is significantly correlated with proximity of water 

(r = 0.351 , P<0.01 0) , and it is also h i ghly correlated with the proximity 

of I ivestock feedlots (r = 0. 495 ,  p<0.001 ) .  Livestock feedlots , in turn , 

are correlated with water (r = 0.664 , p<0.00 1 )  and are associated with 

granivorous food supplies. 

One other variable which significantly explained part of the 

variation in breeding density was the proximity of roads to the study 

belts. The importance of this factor is probably not direct , but an 

indirect consequence of the significant counfounding with herb height 

(r = 0.345 ,  p<0.010) and tree volume (r = 0.308 , p<0. 0 10). Proximity 

of roads is insignificantly , positively related (r = 0. 126 , p> O. 100) 

with shrub row height , which was entered as a significant var i able 

previous to the proximity of roads . Thus shrub row height and proximity 

of roads provide measures of al I 3 vegetation l ayers with I ittle 

redundancy between these 2 factors. 

Analysis of the proportion of individuals distributed throughout 

the 3 vegetation layers (Table 12) further supports the relationships 

found above. Factors influencing habitat structures including understory 

density , mowing , number of shrub rows , ground coverage, and I ight 

grazing were al I important during breeding. Di versity increased with 

area , and was associated with an increase in number of species uti I izing 

each of the 3 layers. During migration, significant habitat structural 

factors included shrub layer height, severe grazing , canopy height , 

understory density , vegetat i on d i versity , and coniferous tree vo l ume. 
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Proximity of I ivestock feed l ots associated with supp l ementary food and 

water was also significant for the layer diversity index during migration . 

Vegetation species 

The actual and relative densities of al I vegetative species were 

included in the multiple regression analyses because these species 

represent major components subject to modification. Siberian elm, the 

most common shelterbelt tree species, was a significant factor during the 

breeding season for both richness (Table 9) and diversity (Table 1 0) and 

was significantly correlated with breeding density (r = 0.305, p<0.01 0). 

Since Siberian e l m  is the most common shelterbelt tree species, it would 

be expected that many of the common b i rd species would be adapted to a 

habitat structure s i milar to that provided by Siberian elm . It was 

i i  lustrated earlier that many of the bird species in shelterbelts tend 

to be open canopy species. Siberian elm grows in a semi-open canopy as 

the very low correlations with deciduous tree volume (r = 0.01 7, p>O. 1 00) 

and canopy coverage (r = -0.01 4, p;;,0.1 00) i ndicate . Siberian elm branches 

laterally and provides many suitable nest sites. Of the nests of birds 

observed, 71 . 6% (n=88) of the doves, 92.6% (n=27) of the grackles, 88. 5% 

Cn=26) of the western kingbirds, 33.3% (n=l5) of the brown thrashers, 

86. 7% (n= I S) o f  the robins, 55 . 6% (n=9) of the eastern kingbirds, 1 00% 

(n=4) of the blue jays, and 66.7% of the orchard orioles were found in 

Siberian elm, a l though some bias is introduced due to the ease of 

observing nests in the open canopy of Siberian elm. 

The importance of Siberian elm may also be related to its 

infestation by insects, most notab l y  the elm leaf beetle (Pyrrhalta 
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luteola Mui ler ) and spring cankerworms ( Paleacrita vernata Peck ). The 

larvae of both of these species are prominent from May to Ju l y  ( Stein and 

Kennedy 1972 ) and are therefore avai ! able as food to both spring migrants 

and breed i ng i nd i viduals. 

Eastern redcedar was positively significant for breeding diversity, 

density, and negatively significant for layer diversity, and migratory 

richness. Many of the shelterbelts planted with eastern redcedar were 

ungrazed ( r  = -0. 146, p>O .  100 ) and had a shrub understory (r  = 0. 2 18, 

p<O. 100 ) with a correlated dense understory ( r  = 3 15, p<0. 0 10 ). Both 

factors exh i bited negative i nfluences on diversity and richness. 

Eastern redcedar is used heavily for nesting by doves and grackles. 

Multiple regression indicated that the dens i ty of eastern redcedar was 

highly significant _ Cp<0. 001 ) in explaining the variance in the density of 

both bird species. The posit i ve relationship between breeding dens i ty 

and eastern redcedar is related to the abundance of these 2 bird species . 

Russian-alive was negatively associated with breeding richness 

and diversity. Russian-alive was selected for shelterbelt plantings 

because of its rapid growth even though it tends to be short-I ived ( Read 

1964 ) .  The average survival rate of Russian-0 1 ive in 384 windbreaks 

averaging 15 years of age was only 57% (Read 1958 ) .  The mean age of 

shelterbelts in this study was 2 1.5 years. Most of the Russian-alive 

observed in the study belts was dead or in a severel y decadent condition, 

thus accounting for the negative relations. The value of Russian-alive 

as an attractant for birds during its early years has not been determined. 

Russ i an mulberry was a positive influence, while caragana was a 

negative influence on breeding diversity. Mulberry is a ta ! I shrub and 



provides a large volume of foliage as the correlation w ith shrub 

volume C r = 0. 268, p<0 . 050 ) indicates. Caragana also provided a 

substantial degree of fo l iage volume C r = 0. 230, p<0. 050 ) due to 

the dense nature of the fol iage . However, its growth form was 

shorter than mulberry. 

The opposite in fluences of these 2 shrub species may be due 

partly to the differences in shrub height because the height of the 

shrub rows has been demonstrated to exhibit a positive in fluence. 

Another factor may be the dif ference in I imb structure. Caragana 

tends to grow in a c l ump of I imbs, al I thin and rising from the base 
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of the plant, and providing no forks or lateral branches for nest 

placement. Species which can weave their nest around vertical branches, 

such as the yellow �arbler, are the only ones that can consistently 

ut ilize caragana for nesting. Mulberry grows similarly to a smal I tree 

and provides many forks for ava i I ab I e nest sites. Further, the fo I i age 

of mulberry is spread over a larger area and is therefore less dense 

than the foliage of the compact caragana. 

American plum, similar to mulberry, positively influences 

breed ing r ichness and provides many forks for �otential nesting sites. 

I t  was used for nesti ng by several species C i  . e. yellow warbler, brown 

thrasher, mourning dove, redwing blackbird, American robin, western 

kingbird ).  American plum is a medium-ta I I shrub and thus is correlated 

with shrub row height Cr = 0 . 233, p< 0 . 050 ) .  Plum also tends to be 

infested by webworms (Hyphantia cunea Drury ) .  The webworms are used 

for food by birds, and the webs are used for constructing nests (the 

sole componer.t of several yel l ow warbler nests ) .  



T at ar ian honeysuckle provides f ew f orks f or potential nest 

p l acement . However, t he negative inf luence of honeysuckle may be 

due t o  the young status of most shelt erb elts sampled in w hich 

honeysuckle w as a component . The strong negat i ve correlat i on 

C r = -0.402, p<0.001) between honeysuck l e  and age of t he belt indicat es 

t his relationship. Honeysuckle also w as a component in many belts  

w hi ch were mowed C r = 0. 367 , p< 0.0 1 0) .  Thus bot h of t hese conf ounding 

f act ors could be part i al causes of t he n egat ive relat ions of 

honeysuckle and breeding r ichness and di versity. 

Bird species composi t ion changes f r om migratory t o  breeding 

seasons and, as a result ,  diff erent vegetation species are important 

in bot h  seasons. One species w hich i I lustrates a highly signif icant 

positive inf luence 0n migratory species diversity is ponderosa pine. 

The importance of this conif er can be attr ibut ed t o  t he mi gr ant bir d 

species w hich reside and breed in conif er f orests f arther north. 

H ackberry also i I lustrat es a posi t ive eff ect on migratory 

divers ity, as wel I as migr atory and breeding layer di versity.  

H ackberry is sl ow er gr owing but t ends to I i ve longer than most other 

shelterbelt tree species. Hackberry grows a la rge and we t  I developed 

cr own, as the correlations with tree volume C r = 0.237 , p<0 . 050) and 

canopy coverage C r = 0 . 2 1  I ,  p::: O. 100) illustrate. How ever , hackberry 

w as also highly ass ociated w ith herb height C r = 0. 425, p<0 . 001) and 

shrub row height C r = 0. 283, p::: 0. 020) , bot h  of w hich have been 

demonstrated as posit i ve inf luences. 

T he 2 shr ub species signif icant f or migrat ory richness and 

diversity, I i  lac and si I ver buf f aloberry, sucker and tend t o  f or m  

1 1 5 
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CONCLUSIONS AND MANAGEMENT ALTERNATIVES 

The results support the f i nd i ngs of previous authors that the 

d i vers i ty of b i rd spec i es i s  related to the structure of the habitat . 

The maj or i ty of b i rd spec i es which breed i n  shelterbelts appears to 

prefer sem i -open fol i age cond i t i ons. Thus per i od i c  I i ght graz i ng to 

elim i nate understory shrubs, enhance herb growth, and open up the lower 

tree canopy, enhances shelterbelt cond i t i ons f or birds. Overgraz i ng, 

however, leads not only to el i minat i on of understory shrubs but also to 

a reduct i on i n  the cond i t i on of the herb layer. Further, overgraz i ng 

results in compact i on of the so i I .  Trees on the Great Pla i ns 

character i st i cally have problems i n  obta i ning suff i c i ent water for 

surv i val. Compact i on of the so i I by livestock i ntens i fies this problem. 

Th i s  i s  probably the reason for the high negat i ve correlat i on between 

graz i ng and shrub row he i ght C r = -0. 392, p<0. 00 1 ) .  Mowing also 

negat i vely i nfluences most b i rds because i t  el i m i nates both shrub and 

herb layers . 

While a shrub understory i s  not preferred , a shrub component, as 

prov i ded by shrub rows , i s  conduc i ve to i ncreased b i rd d i versity. Both 

he ight and number of shrub rows i I lustrate pos i t i ve i nfluences on b i rd 

d i versity . Amer i can plum, common I i  lac and si Iver buffaloberry appear 

espec i ally suitable for migratory and breeding birds i n  South Dakota. 

These shrubs sucker, form th i ckets, and reduce wind. Surv i val and 

longev i ty of these 3 spec i es relative to other shrub spec i es used for 

w i ndbreaks are favorable (Read 1958) . 

Russ i an-cl i ve has been used as a plant spec i es i ntermed i ate in 



height between shrubs and trees. Russian-cl ive is short- I ived and is 

dead or decadent in many of the shelterbelts studied. Another species 

of similar size which appears to be utilized more by birds is Russian 

mulberry. Russian mulberry is recommended as a good replacement for 

Russian-olive. 
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Siberian elm appears to be the tree species most uti I ized by birds 

common to shelterbelts. The lateral branching and semi-open foliage 

provide good nesting and foraging sites. Efficient uti I ization of the 

limited water is also an essenti al component of shelterbelt trees. In 

a recent study on several windbreak tree and shrub species, Woodruff 

et al. (1 976) found that Siberian elm provided the most growth per unit 

water used in comparison to al I other tree species studied. 

Hackberry, s imilar to Siberian elm , tends to branch laterally and 

also exerts a pos i tive influence on bird diversity. Hackberry would be 

a good companion species to use with S i berian elm as it tends to grow 

more slowly and to I ive longer. The combination of Siberian elm, a 

rapidly growing species with a short li fe span, and hackberry , a slower 

growing and l onger I ived species, provide the quick return benefit to 

the farmer for taking land from production and· longevity to reduce 

maintenance and replanting. 

Shrub species which sucker and thus form a thicket of many stems 

are beneficial in wind-and-snow stopping power of shelterbelts in winter, 

but inclusion of a conifer species greatly faci I i tates the winter 

protection of a shelterbelt. Eastern redcedar and ponderosa pine are 

the common coni fer species pl anted. Ponderosa pine appears more suitable 

for birds. Eastern redcedar tends to be used extensively by mourning 
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d ov es, a nd 2 nuisa nce species C redw ing b lackb ird s a nd common grackles) .  

Remova l of this pla nt species may lead to a red uction in nesting by a l  I 3 

b ird species. Pond erosa pine is important d uring migra tion, a nd the more 

open cond itions it prov id es r elativ e  to  ea stern redcedar, und oubted ly 

l ea d s  to grea ter uti I ization by a w id er variety of b reeding b ird species. 

I nsuff icient sa mple siz e  or conf ound ing of va ria b les makes conclusions 

hard to reach on oth er pla nt species stud ie�. 

other env ir onmenta l factors tha t  a ppear to influence b ird 

d i v er sity are pr oximity of wa ter , proximity of h uma n resid ence, pr oximity 

of oth er woody cov�r, a nd a rea of th e belt. Th e results ind icate 

placement of b elts proxima l to b oth water a nd h uman resid ences enha nces 

them f or b ird s. Proximity of oth er w oody cover ii lustra ted negativ e 

influences, b ut th is is rela ted to a r ea of th e b elt. Area of the b elt is 

a critica l factor f or many species a nd is a limiting f actor f or some of 

th e b irds using sh elterbelts. Species, such a s  th e b lack-ca pped 

chickad ee, req uire a sh elterbelt siz e  which is not often r eached .  Th us 

p l acement of sh elterb elts close togeth er a nd planting of large 

shel terbelts is critica l f or presence o f  some species. Replacement of 

lar ge, multirow belts with single-row sh elter�elts a nd/ or pla nting of 

many sma l  I sh elterbelts w ould elimina te many species req uiring a minimum 

a rea a nd could lead to a n  overa l I r ed�ced b ird species d iv ersity on the 

Great Pla ins. 

r :: :; -; � 

r ' ' 
,' :::: 

' .,.�· ·  
:, 

1 _},!i I . , ,�,' 

. . f 



Section 8 

ENVIRONMENTAL INFLUENCES OF B I RD SPEC IES BREEDING IN SHELTERBELTS 

INTRODUCTION 

The purpose of this sect ion is to discuss the environmental factors 

influencing each of 14 of the b ird species common to shelterbel ts in 

eastern South Dakota. Optimizat ion of a habitat for b ird commun it ies 

necess itates consideration of spec if ic requirements of the component b ird 

species in add ition to the f actors optimiz ing the overal I commun ity 

d ivers ity. The env ironmental f actors influenc ing community d iversity 

were considered previously (Sect ion 7 ) . However, knowledge of species 

requirements al lows habitat man ipu l at l on to select for, or aga inst, 

des irable, or undes.irable, spec ies. Knowledge also allows appraisal of 

ava i l abi I ity of nest cav ities or other potent ial I im iting factors that 

may not be emphas ized in overal I analys is of community diversity . 

Stud ies of b ird commun ities have emphasized structural components 

of the hab itat b�cause bird species ecologically iso l ate themselves from 

other spec ies by dif ferential partitioning of the foraging stratum ( Root 

1967, Karr 197 1, VJ il lson 1974 ) ,  and vertica l and horizontal spatial 

dif ferences in the fol iage ( Colquhoun and Morley 1943, MacArthur 1958, 

Pearson 197 1, 1 975, James 1976, Laudenslayer and Balda 1976 ) .  Thus 

measures of the fol i age height distribution (MacArthur and MacArthur 

196 1, MacArthur et a I. 1962, MacArthur 1965, Recher 1969 ) ,  percent 

vegetation cover ( Karr 1968, Karr and Roth 197 1, W i  I Ison 1974 ) ,  and 

foliage volume ( Ba l da 1969, 1 975, Laudenslayer and Balda 1976, Szaro 

1976 ) may be used to predict b ird spec ies d iversity . 



Variation in area of the shelterbelts presented a problem in 

application of multi variant analyses. The presence and density of many 
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of the bird species are dependent on the area of the belt ( Section 5) . 

Th is relationship with area obscures the importance of habitat variables 

to the bird species, and al I plots smaller than the minimum size 

requirement of a species were dropped from analyses . Thus the 

differentia l minimum areas for different species provided varying sample 

s i zes that precluded analyses through principal components or discriminant 

function methods. Therefore, step-wise, multiple regression analysis was 

uti Ii zed. 

Application of regression analysis assumes a habitat with a 

greater density for a given species to be better than another hab i tat 

with a lower density for that species. If the difference in densities 

is direct l y  attributable to differences in area of the 2 habitats, then 

the larger habitat is not necessarily better. Multiple regression can 

partially correct for difference in area by ascribing part of the 

variance in density to area. However, this relationship would only be 

accurate if density increases as a I inear function of area. 

Density can not increase in perfect I inearity with area because 

density is a discrete measure and, therefore , must increase in a step

wise manner. Further, density of many of the species appears to increase 

semi- l ogarithmica l ly with area. I presented evidence ear l ier to 

i I lustrate that territory size of many birds tends to increase as area 

increases ( Section 6 ) . Thus the density of any I bird species increases 

curvilinearly with area. 

The confound i ng effect of area was corrected by arranging 
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she l terbelts in order of ascending size. The smallest plot in which I 

pair of each species resided was delineated as the minimum area required 

by each species. That plot and al I larger plots were divided into 

sections with each section representi ng an array of plot sizes for a 

given density . Thus a l  I plots up to the plot size in which a density of 

2 pairs were found represented the f i rst group. Al I plots up to the size 

in which 3 pair were found represented the second group. Al I plots up to 

the size in which 4 pair were found represented the third group, and the 

remaining plots represented the fourth group. Al I plots within a group 

were then adj usted relative to the density that section was considered 

large enough to sustain. For example, group 2 represented plots 

considered large enough to sustain 2 pairs. Al I plots within a section 

were adj usted relat i ve to 8 because no species with minimum area 

requirements exceeded this density. If a plot in this section , 2, had a 

density of  4 individuals, it was classified as 8. If  a plot in this 

section had 3 individuals, it was considered to have I less individual 

than the area of the plot could actually sustain. Such a plot was 

classed as 7. If a plot in this group had only 2 individ uals, it was 

considered to be 2 under the number the plot could sustain based on size 

restrictions. Such a plot was classed as 6. These transformat i ons were 

performed for al I plots for each species individually. Thus the plots were 

adj usted relative to each other. 

The environmental variables measured exhibit many 

inter-correlations, as is true of any multivariable data set. I n  some 

cases the correlations are coincidental and lead to con founding of 

var i ables, and in other cases the correlat i ons represent actual 
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associations betw een variables. To reduce red und ancy in the text, I wi  I I 

first discuss those variables commonl y imp ortant throughout the sp ecies 

regressions and , i nter-correlations of those variabl es. 

RESULTS AND DI SCUSSI ON 

Inter-correlations of environmental variabl es 

The habitat features within a given vegetation l ayer tend to be 

highl y inter-correlated ( Tabl e 1 4 ) . Thus herb height is rel ated to ground 

coverage. The d ensity of the und erstory is highly correlated w i th herb 

height and shrub layer height. The presence or absence of understory 

shrubs is correlated with both shrub layer height and und erstory d ensity. 

Shrub fol iage vol ume is correlated with shrub l ayer height and shrub 

row height. Simi l arl y, tree f ol iage vol ume is associated with canop y 

height and both are correlated with canop y coverage. 

Th e age of the shelterbelt is p ositivel y related to the habitat 

structure, as the correlations betw een age and shrub layer height, canopy 

coverage, shrub vol ume, tree volume and the d ensity of snags indicate. 

Age of the belt is associated negativel y to the number of p l anted shrub 

sp ecies and p ositivel y  to the number of tree sp ecies. An ind ex of the 

diversity of the p lanted tree and shrub sp ecies based on Shannon' s 

inf ormation theory ( Shannon and Weaver 1 963 ) is correlated with the number 

of shrub (r  = 0 . 557 , p<0 . 00 1 ) and tree ( r  = 0. 588, p<0 . 001) sp ecies. 

The results of the regression analyses ( Tab le 1 5) i I l ustrate many 

similarities to other community studies . O ne diff erence found w as a 

significan t negative rel ationship betwe en vegetation diversity and orchard 

. '. j 
J 
ii • ,  

- -- i; 
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Tab le 14 . Inter-corr ela tions of selected structural habi ta t  f ea tur es of 
shet t erbelts. Mne monics ar e d ef in ed in Append i x  J .  

HHT UNDO EN SHRLHT AGE SHRRHT TRVOL CANHT 

GC 0. 325** 

HHT 0. 604*** 

UNDSHR 0. 538*** 0. 641 *** 

SHRLHT o .  536*** 0 . 26 1* 

SHRVOL 0 . 367** 0 . 26 1* 0. 494*** 

NSHSPP -0 . 51 1*** 0. 463*** 0.257* 

cc 0 . 461 *** 

TRVOL 0 .408*** 0. 32 1 ** 

NTRSPP 0.308** 

SNAGS 0.303** 

*p<0 . 050, **p<0 . 01 0 , ***p<0 . 001 



Ta b l e 1 5. Envi r onme nta l  var ia ble s, de li nea ted throug h mult i p le 
regre ssion, tha t coopera tive l y exp la i n  the va ria nce i n  
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the dens i ty of 1 4  b reedi ng bird speci es  common to she lterbe lts, 
a nd, other e nvironme nta l varia b l e s tha t a re sign i f ica ntly 
corre la ted w i th the se species . 

VARIA BLt' 

a }  COMMON FLICKER 

N TRSPP**** 
RE LAN 
WATER 
RJUVIS 
CULTIVATION 
cc 
CANHT 
SNAG 
ULAM* *  

MULTIPLE Rb 

0.598 
0.64 7 
0. 697 
0 . 713 
0. 731 
0. 74 7  
o .  761 
0. 767 
0 . 800 

0. 358 
0. 4 1 9 
0.4 86 
0. 508 
0. 534 
0. 558 
0. 579 
0. 589 
0. 64 1  

O THER SIGNIFICANT VA RIA BLES ( SIMPLE CORRELATION )  
NTR C 0. 299** ) F RPE ( 0. 321 *** ) SH RLHT C 0. 206* ) 

b )  HOUSE W REN 

NTRSPP 
F HT 
RPRPU**** 
RMORU*** 
RELAN 
WOODY 
GRLI 
TRVOL 
S HRVOL 
AGE 
PRAM** 
RPIPO* 

0. 589 
0. 660 
0. 71 9  
0. 752 
o .  778 
0 . 800 
0. 821 
0. 839 
0.85 1 
0. 866 
0. 880 
0. 889 

0 . 34 7  
0. 436 
0. 517 
0. 566 
0 . 605 
0. 64 0 
0. 674 
o .  704 
o .  725 
0.749 
0 .  775 
0. 790 

O THER S I GN IF !CANT VA R I ALBES C S  11/PLE CORRELA TION ) 

SIMPLE Re 

0.598 
- 0. 229 

0.1 59 
-0. 1 25 

0. 236 
0. 382 
0 . 052 
0. 336 
0.443 

0. 589 
0. 353 

-0 . 080 
-0. 006 
-0. 202 
0. 283 
0. 080 
0. 295 
o .  234 
0. 375 

-0. 082 
-0. 065 

NTR C 0. 399**** ) CC ( 0. 376*** ) SNA G  C 0. 368*** ) MOWED C -0 . 204* )  

1 

9 

\·i 
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Ta b l e 15. conti nued .  

-c, 

VAR I ABLE MULT I PLE R RSQ S I MPLE R : ; 

• 
c )  O RCHARD OR I OLE 

ROADS**** 0.319 0.102 0.319 
RULPU*** 0.429 0.184 0.251 
WOODY 0.4 93 0 . 243 -0.24 7  
GC 0.530 0.281 0.238 
PRV I o .  573 0.329 0.041 
RF RPE 0.607 0.369 -0.284 
TOTUND 0.641 0.411 -0.175 
GRZ 0.658 0.433 -0.054 
CEOC 0.672 0.452 -0 . 177 
CANHT** 0.689 0.475 -0.067 
RE LAN o. 7 1 1 0.506 -0 . 191 ,, 
RJUVI S o .  728 0.531 0.014 
RS HAR 0 . 74 2  0.551 -0.098 
SHRRHT 0. 757 0.573 0.112 
cc o. 770 0.593 -0.075 
JUVI * 0.784 0.614 -0.110 

O THER S IGN I F ICANT VAR I ABLES ( S I MPLE CORRELAT I ON ) 
UflOSHR ( -0.256** ) VEGD I V  ( -0.244* * > WATER ( 0 . 206* ) 
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Ta b l e  15. cont i nued. 

VAR I ABL� MULT I PL E  R RSQ S IMPLE R 

d )  WESTERN KI t--GB I RD 

VEGD I V  0 . 5 19  0. 269 -0. 5 1 9  
SHRLHT 0 . !>95 0 . 354 -0 . 2U 
CULT I VAT I ON 0 . 652 0.425 :.0 . 24 1  
NTR**** 0 . 69 1  0 . 477 -0 . 243 
RLOTA*** 0 . 737  0. 543 -0.39 1 
RJUV I ** o .  7 63 0. 582 0 . 1 1 4 t :"' RSYVU 0 . 777 0 . 603 0. 05 1 
MOWED 0 . 788 0. 621 -0 . 1 93 

;:': RGEOC 0 .800 0. 641 -0. 232 
- !I FHT 0 . 808 0. 654 0 . 272 , ,  

J 

ULPU 0 . 8 18 0 . 670 0. 058 ' -
ll.� PASTURE 0 .828 0. 686 0. 13 5 
'f

= RS HAR 0 . 838 o .  702 0. 026 
RPRAR 0 . 844 0. 7 1 3 -0. 096 - ;  
GRME 0 .8�0 o .  723 -0.335 
cc 0.856 0. 732 -0. 1 56 
GC 0 .864 0. 746 0. 191 
NSHSPP 0. 867 0. 7 52 0. 236 
NSR 0. 879 0. 773 0 . 1 21 
PRAM* 0 .890 0 . 792 0 . 038 .... � 

OTHER S I GN I F I CANT VAR IABLES ( S I MPLE CORRELAT I ON )  
GRZ { -0.330*** ) SHRRHT (0. 23 1 **) 
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Ta ble 15 . continued . 

VAR I ABL� MULT I PL E  Rb 
RSQc 

S IMPLE Rd 

e )  BROWN THRASHER 

NTRSPP 0 . 292 0 . 085 -0 .292 
WOODY 0 . 4 10  0 . 168 -0 . 239  
TOTUND*** 0 . 5 13 0 . 263 -0. 252 
RULPU 0 . 572 0 . 327 o .  197 
L I VESTOCK 0 . 6 10 0 . 372 0 . 197 
RE LAN** 0 . 646 0 . 4 18 -o .  1 84 
RCAAR 0 . 672 0 . 4 52 0 . 142 
RFRPE 0 . 687 0 . 472 -0 . 262 
NSHSPP o .  706 0 . 499 0 . 135 
GRZ o. 726 o. 527 -0.  074 
FHT* o .  7 5 1 0 . 564 0 . 228 

OWER S I GN IF I CANT VAR IABLES (S I MPLE CORRELAT I ON) i •  ' 
RCEOC C-0. 253** )  CANHT C-0 . 240** > 

f )  EASTERN K INGB I RD 

Ut,OSHR**** 0 . 340 0. 1 1 6  -0 .340 
RPRTO***  0 .4 18 0 . 175 0 . 238 
RULPU 0 .489 0 . 239 0 . 279 
L I VESTOCK 0 . 527 0 . 277 0 . 225 
GC 0 . 562 0 . 3 16 0 . 1 98 
SNAG** 0 . 592 0.3 5 1 -0 . 100 
RE LAN 0 . 6 1 1 6 . 373 -0. 087 
V EGD IV 0 . 627 0 . 3 94 0 . 030  
RPODE 0 . 642 0 .41 2 -0 .  176 
NTR 0 . 650 0 . 432 -0 .  I 05 
LOTA 0 . 670 0 . 449  -0 . 06 1  
GRL I *  0 . 686 0 . 470 0 . 021 

OTHER SI Gt� IF I CANT VAR I ABLES CS IMPLE CORRELAT I ON) 
SHRLHT C-0 .3 1 1 ***) 
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Ta ble 1 5. cont i nued. 

VAR I ABLEa 
MULT I PLE Rb 

RSQc 
S I MPLE Rd 

g > Y ELLOWTHROAT 

ROADS 0 . 41 9  0. 175 0 . 41 9 
UNDSHR****  0 . 537 0 . 289 -0 . 389  
RROPS*** 0. 61 2 0 . 375  0. 2·�6  
SHRRHT 0. 656 0 . 430 0 .  1 27 
RJUV I ** 0. 688 0.473 0. 255 
RSYVU 0 . 7 14 0 . 5 10 0. 24 9 
RSAAL 0 .  733 0. 537 0. 11 0 
NTR 0. 7 52 0 . 565 -0. 363 
HUMAN 0. 770 0 . 593 0 . 292 
RFRPE* 0. 7 90 0.624 0 . 002 

OTHER S I GN I F I CANT VAR I ABLES ( S I MPLE CORRELAT I ON) 
AGE (-0 . 227**) ',·/ATER ( 0. 252* * )  

h) SOr--..G SPARRml 

CULT I VAT I ON 0 .421 0 . 17 7 0 . 4 2 1  
ROADS**** 0 . 540 0 . 292 0. 400 
ELAN 0. 582 0 .339 -0.336 
L I VESTOCK 0.606 0.367 -0. 052 
CAAR 0. 629 0. 395 -0 .362 
GRL I 0. 655 0. 4 29 0. 1 66 
HUMAN 0. 67 9 0 . 4 61 -0. 059 
RPRAR**  o .  7 04 0 . 4 95 0. 1 66 
CANHT 0. 7 1 7 0 . 51 4  -0 . 007 
FHT 0. 734 0.539 0. 225 
RPRPU 0. 745 0.556 0. 01 0 
ACNE 0.755 0 . 570 0. 07 1 
RJ UV I o .  762 0.581 0 . 036 
TRCLA I f.I 0 . 771 0. 594 -0. 01 7 
NSR 0 . 777  0. 603 0. 358 
VEGD I V  0 .  7 92 0 . 627 -0 . 069 
ULPU* 0. 809 0 . 654 0. 140 

OTHER S I GN I F I CANT \'A.R I A.BL ES ( S I  l,IPLE CORRELAT I ON) 
TRVOL (0 . 260*" ) UNDSHR (-0. 254**) 



Tab l e  1 5 . continued. 

VARI ABL� MULTI PLE  Rb 

i )  RED\� I NS BLACKS I RD 

PRAM 0 . 439  0 . 1 92 
TOTUND 0 . 555 0 . 308 
GRZ 0 . 635  0 . 403 
TNR**** 0 . 709 0 . 502 
RSHA.R 0 . 728 0 . 529 
FRPE 0 . 748 0 . 559 
GC 0 .  7 6 1  0 . 578 
AGE** 0. 782 0 . 6 1 2 
TRCLA l l ·l* 0 .  7 98 0 . 638  

OTHER SI GNI FI CANT VARI ABLES ( SI MPLE CORRELATI ON )  

SI MPLE Rd 

0 . 439  
-0 . 229 
-0 . 1 86 
0 .  I 05 

-0 . 233 
-0 . 1 55 
0 . 1 7 5  

· -0 . 140 
-0 . 1 99 

RULPU C 0 . 3 1 5*** ) iITRSPP ( - 0 . 297** ) ULAM C -0 . 27 9** ) NSR C0 . 264** ) 
NSHSPP C0 . 264** ) SHRLHT {-0 . 256** ) 

j )  EASTERN WOOD PH/EE 

UNDSHR 
RSYVU*** *  
NTRSPP 
ROADS*** 
RPRPU 
S NAG 
GRZ 
NSHSPP** 
RPRVI * 

0 . 552 
0 . 654 
0 . 7 22 
o .  7 7 9  
0 . 796  
0 . 8 1 3  
0 . 830 
0 . 8 54 
0 . 870 

0 . 305 
0 . 4 28 
0 . 52 1  
0 . 607 
0 . 634 
0 . 66 1  
o .  68 9  
0 .  729 
0 . 756  

OTHER SI GNI FI CMIT VP.R I ABLES ( S l t-1PLE CORRELATI Ot-1 ) 

-0 . 552 
0 . 3 1 9 

-0 . 4 98 
0 . 3 1 2  
0 .076 

-0 . 274  
o .  1 1 6 
o .  1 7 6  

-0 . 0 1 1  

SHRLHT C - 0 . 332*** ) RULPU C0 . 328* ** ) CC C0 . 304*** ) RFRPE ( -0 . 296** ) 
TOTUMD ( -0 . 247** ) 

1 30 
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Tab l e 1 5 . cont i nued . 

VAR I ABLE'3 MULT I PLE  Rb 
RSQc 

S I MPLE Rd 

k )  CQ1,'.MON GRACKLE 

SNAG 0 . 37 7  o .  1 42 0 . 377 
RJ UVI S 0 . 504 0 . 254 0 . 3 1 2  
ULPU 0. 57 1 0 . 326 0 . 242  
MO\�ED**** 0 . 6 1 6 0 . 379  -0 . 273 
SHRRHT 0 . 648 0 . 4 1 9  0 . 353 
GRME*** 0 . 682  0 . 465 0 . 23 5  
RCEOC 0 . 707 0 . 500 0 . 1 77 
PS:-'1 E 0 .  7 27 0 . 529 0 . 1 60 
RJUV I o .  740 0 . 548 0 .0 1 8  
WATER 0 . 7 55 0 . 569 0 . 225  
SHRVOL** 0 . 778 0 . 605 0 . 1 56 
PASTURE 0 .  788 0 . 62 1  0 . 090 
HUMAN 0 . 802 0 . 644 0 . 1 07 
GRSE 0 . 8 1 4 0 . 663 -0 . 1 20 
CUL T l  VATI ON 0 . 8 23 0 . 677 0 .027 
ROADS* 0 . 834 0 . 695  0 . 1 69 

OTHER S I GNI F I CMIT VARI ABLES ( S l i·1PLE CORRELAT I ON )  
NTR ( 0 . 322* ** ) T:-IR (0 . 264* * )  

I ) Ai'·l ER I CAN ROB I N  

RJUV I 0 . 44 6  0 . 1 99 0 . 446  
TRVOL o .  570 b . 325 0 . 363 
CULTI VATI ON 0 . 625 0 . 3 9 1  0 . 257 
HLJ:.·lAW*** 0 . 67 2  0 . 4 52 -0 . 206 
TRCLAI M o .  705 0 . 4 98 -0 . 1 87 
SNAG0* 0 .  745  0 . 554 0 . 278 
RPRAR 0 .  7 69 o .  59 1  0 . 13 1 
RPRTO 0 . 7 90 0 . 625 -0 . 1 92 
RSAAL0 0 . 808 0 . 654 0 . 2 1 7  
RELANS 0 . 824 0 .  678 o .  1 00 
cc 0 . 833 0 . 702 0 . 2 1 2  
RE LAN* 0 . 8-1 9  0 .  7 2 1  -0 . 1 4 7 

OTHER SI GN I F I CANT VARI ABLES C S l �PLE CCRRELAT I ON )  
LI V ESTOCK ( C . 295* * ) 
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Ta ble 1 5. continued. 

VAR I ABLE a 
MULTIPL E  Rb RSQc SIMPLE Rd 

m )  HOUS E  SPARROW 

RELAN 0. 5 15 0. 265 0. 51 5 
HUMAN 0. 61 3 0.376 0.388 
RPI PU****  0. 663 0. 440 0. 191 
CAAR*** 0. 693 0. 481 0.322 
RJUVI 0. 71 8 0. 51 5 0. 1 82 
CULTIVATION 0. 739 0. 545 -0. 252 
RAC NE 0. 7 56 0. 571 -0. 1 35 
GC o .  777 0. 604 -0. 200 
MOWED 0. 793 0. 629 -0. 1 44 
WATER 0.808 0. 652 0. 269 
CEOC 0.820 0. 67 2 o. 124 
V EGDIV 0.839 o .  704 0. 030 
SN.'\G 0.850 0. 7 22 -0. 039 
TNR 0.860 o .  739 o .  1 54 
SHRRHT 0.868 0. 7 53 0. 284 
NSHSPP 0.874 0. 765 0. 03 1 
CC** 0. 889 0. 789 0. 058 

OTHER SIGN IF ICArff VAR I ABLES CS 1 1- lPLE CORRELATION )  
L I VESTOCK (0. 295** ) 

n )  MOURN I N3 DOV E 

SHRRHT 0. 296 6. 088 0. 296 
V EGDIV 0. 4 08 0. 1 66 -0. 1 50 
RJUVI 0. 507 0. 258 0. 273 
UNDSHR**** 0. 562 0.3 16 -0. 154 
R ELANS 0 . 609 0.371 0. 232 
ELAt� 0. 649 0.421 -0. 202 
ACNE 0. 676 0. 457 0. 1 36 
l I V ESTOCK 0. 698 0.487 0. 1 88 
HU!-1AN 0 .  7 2 1  0. 51 9  0. 239 
PSME***  0. 7 54 0. 569 o .  182 
WOODY o .  772  0. 596 0. 01 3 
FRPE* * 0. 796 0. 633 -0. 257 



Tab l e  15 . continued . 

aMnemonics are defined in Appendix J .  Asterisks ind i cate sign i ficance 
l evels. *p<O. 100 * *p<0. 050 * * *p<0 . 0 10 * * * *p<0 . 005 Al I variables 
I isted above any asterisk-mar ked variab l es are significant at least at 
the level the asterisks i ndicate. 

bMu l tip l e  corre l ation coefficient. 

cCoefficient of determ i nation. 

dS imple correlation of dependent variable with the independent variable . 
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or ioles, western k ingb irds , mourn ing doves, and song sparrows. A 

s ign if icant negat ive relat ionsh ip was also found between the number of 

tree spec ies and redw ing blackb irds and brown thrashers. These negat ive 

relat ionsh ips may be expla ined largely as a result of the inter-

correlat ions between the 2 d ivers ity measures and the density of S iber ian 

elm and green ash. Both vegetat ion d ivers ity and number of tree spec ies 

are negat ively related to S iber ian elm Cr = -0. 373, p<0. 0 10;  r = -0. 353, 

p<0. 01 0 ,  respect ively) and pos it ively related to green ash Cr = 0. 496, 

p<0. 001 ; r = 0. 41 2, p 0. 001, respect ively) .  In a t  I cases in wh ich a 

spec ies exh ib its negat ive assoc iat ions w ith vegetat ion d ivers ity or number 

of tree spec ies, that spec ies exh ib its a pos it ive re l at ionsh ip w ith 

S iber ian elm, a negat ive relat ionship w ith green ash, or both. S iber ian 

elm is a pos it ive factor for 8 of the 1 4  b ird spec ies (Table 1 5) .  The 

data on b ird nests found in shelterbelts (Append ix I) also ind icate the 

importance of S iber ian elm as a component of the nest ing hab itat for 

several species. 

Common fl icker and house wren 

Two · b ird spec ies demonstrat ing a pos it iYe relat ionsh ip w ith the 

number of tree spec ies were common fl icker (Table t 5a) and house wren 

(Tab l e  1 5b l .  The number of tree spec ies was the most important var iable 

in both cases and can be attr ibuted to the h igh correlat ion of the number 

of tree spec ies w ith snag dens ity Cr = 0. 488, p<0. 001 ) and w ith dens ity of 

Amer ican elm (r = 0. 599, p<0. 001 ).  Both b irds are cav ity nest ing spec ies 

and would be expected to respond to the dens ity of snags. The importance 

of Amer ican elm is s im ilarly related. Or ig inally Amer ican elm was 

commonly planted in she l terbelts. The suscept ib i l ity .to Dutch Elm d isease 

I 
I 

· 1  
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(Ceratocyst i s  ulm i ) has el i minated plant i ng of th i s  tree species i n  

recent I y estab I i  shed South Dakota she I terbe I ts . Hm1ever, some I i  vi ng and 

many dead ��er i can elm trees st i I I ex i st i n  many belts, and Amer i can elm 

is assoc i ated w i th the presence of snags. Snags of American elm provided 

suff i cient g i rth to prov i de s i tes for nest ho l e  construct i on by common 

f I i  ckers. 

Several bird species were negat i vely related to the density of 

green ash . The common fl i cker exhib i ted a pos i t i ve relat i onship that may 

be attributed to heartrot disease (Fornes f rax i naph i lus ),  commonly 

afflict i ng green ash . This d i sease causes rotting of the heartwood and 

prov i des for easy excavation of nest ho l es by common flickers and other 

woodpecker species (Conner et a I . 1 97 5 ,  Conner et a I . 1 976 ) . 

The reduced l ongevity of Russ i an-alive and the negat i ve assoc i ation 

w i th common flickers and house wrens may be due to the reduced longev i ty 

of this plant species . The majority of Russian-ol i ve plants present in 

the study belts were dead or decadent. Many of the dead Russ i an-alive 

stems were sl i ghtly over 3 inches i n  diameter and were i ncluded i n  the 

measure of snag dens i ty. The major i ty of the dead Russ i an-cl i ves were 

l arge enough to be i ncluded as snags but were too smal I for excavat i on 

for use as nest i ng cav i t i es. 

The sign i f i cance of a prox i mal source of water and cult i vated 

f i elds (Table 1 5a )  can be expla i ned as supplementary water and food 

sources. Corn of ten provides supplemental food for f l i ckers. Co�roon 

fl ickers have been observed feeding on i nsects present on, or with i n, 

cornstalks, as wel I as feed i ng d i rectly on corn kernels. 

The significant effects of canopy he i ght , canopy cover, and shrub 
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l ayer height (Table 1 5a) appear to correspond to the results found by 

Anderson and Shugart ( 1 974 : 83 1) who noted common flickers "are found in 

habitats where there are many large trees and a wel I-developed canopy and 

subcanopy. " The house wren also appears to prefer the presence of a 

wel I-developed canopy and subcanopy. The house wren is correlated with 

tree volume, canopy cover, and shrub volume (Table 1 5b) . The correlation 

between house wrens and age of she l terbelts may be due to the significant 

inter-correlations between age and both snag density and canopy cover. 

The positive correlations of house wrens and common flickers with 

foliage measures imply that as foliage increases, the density of both 

species increases. This relationship could suggest these 2 species 

prefer dense foliage conditions . However, the shelterbelts studied in 

eastern South Dakota never achieved dense conditions due to the plant 

spec i es uti I ized and the spacing provided when planted. The mean percent 

canopy cover (54. 42) indicates the openness of the study shelterbelts. 

Dennis (1 969) and Conner and Adkisson (1 977) reported that flickers 

prefer to nest in or near open conditions, but both studies reported the 

versati I ity of the flicker in selecting nest sites. Kroodsma (1 973) and 

Whitmore ( 1977) indicated semi-open canopy cover is preferred by the 

house wren. These 2 species appear wel I adapted to the semi-open 

conditions  of shelterbelts. The shelterbelts with the densest foliage 

are sti I I sufficiently open to be uti Ii zed and even preferred by the 

COITJTlon flicker and house wren. 

One major d i fference between habitats of house wrens and common 

flickers is the association of the house wren with the herb layer. 

Kroodsma (1 973) and Whitmore ( 1977) noted the strong association of house 

l 
J 

-r 
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wrens wi�h grasses. My results (Table 15b ) i I lustrate the pos i tive effect 

of light grazing and negative effect of mowing and support their findings. 

Light grazing reduces the shrub understory and enhances the grass layer, 

while mowing eliminates both. 

Orchard oriole, western kingbird, brown thrasher, eastern kingbird, and 
yel lowthroat 

Orchard orioles, western kingbirds, brown thrashers, eastern 

kingbirds, and yel lowthroats exhibit a similar preference for habitat 

condit i ons of low canopy cover and high ground cover with few understory 

shrubs. The ordinations of James ( 197 1 )  and Whitmore ( 1977 ) also suggest 

an association of these 5 species i n  their habitat preferences. 

Orchard orioles (Tab l e  15c )  and western kingbirds ( Table 15d )  

i I lustrate significant pos i tive relationships with ground cover and 

significant negative relationships with canopy cover. Brown thrashers 

(Table 15e )  provide a significant positive relationship with herb height, 

which i s  correlated with ground cover, and a negat i ve association with 

canopy height, which is related to canopy cover. Al I 3 species i I lustrate 

significant negative correlations with develo�ment of a shrub understory 

and its resu l tant increase in understory density. 

The eastern kingbird (Table 15 f ), characteristic of the above 

group, exhibits a strong negative relat i onship with the presence of 

understory and a pos i tive re lationship with ground cover. The 

correlations of canopy cover with other variables that are negatively 

associated witn the eastern kingbird imp I ies a negat i ve association 

between canopy cover and eastern kingbirds. Number of tree rows is high l y  
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correlated Cr = 0. 369, p<0.0 1 0 )  with canopy cover a nd is negatively 

related to eastern kingbirds. Siberian elm is f requently used by eastern 

kingbirds for nesting (Appendix I ) ,  partially explaining i ts positive 

in fluence, but it is also negatively related to canopy cover (r = -0. 1 58, 

p >O. 100 ) a nd understory shrubs Cr = -0. 1 39, p>O. 100 ) .  

The yel l owthroat (Table 1 5g )  exhibits a negative relationship with 

the presence of  understory shrubs. The negative influence of canopy 

cover is imp I ied by the negative associations with number of tree rows 

a nd age. The latter 2 factors have been demonstrated to be positively 

correlated with canopy cover. Proximity of roads is highly correlated 

with herb height Cr = 0. 445, p<0. 00 1 ) .  

Al I 5 species show preference for wel I developed shrub rows along 

the outside of the belt. The orchard oriole, yel lowthroat, and western 

kingbird exhibit clear correlations with shrub row height. In addition, 

the western kingbird exhib i ts positive relations with the number of 

shrub species in the shrub rows a nd the number of shrub rows. These 

latter 2 variab les a re highly correlated Cr = 0. 846, p<0 . 00 1 ).  The 

brown thrasher also exhibits a preference for a wide diversity of shrub 

species and correlated number of shrub rows. The number of shrub species 

is correlated with shrub row height Cr = 0. 299, p<0.020 ) .  

The eastern kingbird i I lustrates a positive relationship with 

vegetation diversity. This may be explained by the high positive 

correlations of  vegetation diversity with number of  shrub species 

( r  = 0. 557, P<0. 001 ), shrub row height (r = 0. 303, p<0. 0 10 ) , a nd number 

of shrub rows ( r  = 0. 472, p<0. 00 1 ) . 

. I 



Song sparrow and redwing blackbird 

Whitmore ' s  ( 1977) principa l components ordination ind i cates 2 

other bird spec i es in close association with the ye l lowthroat; the song 

sparrow (Table 1 5h) and redwing blackbird (Table 1 5i). Current results 

indicate that the latter 2 species are similar to the previous group of 

5 species in their habitat requirements . The song sparrow i I lustrates 
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strong relationships with the herb layer. I t  is significantly associated 

w i th herb height, proximity of roads which is correlated with herb height, 

and I ight grazing which is related to herb height. The song sparrow is 

negatively related to understory shrubs, although the song sparrow also 

exhibits positive correlations with the number of shrub rows. I t  prefers 

a lower canopy as the negative corre lation with canopy height indicates, 

but the positive correlation with tree volume indicates a preference for 

a developed canopy. 

The redwing blackbird is strongly associated with the development 

of the shrub rows. The major factor predicting the density of redwings, 

American plum, is highly correlated with the number of shrub rows Cr = 

0 . 6 10, p<0. 001 ) and the number of shrub species Cr = 0. 3 18, J><0. 01 0), 

and both of these factors are also significantly correlated with the 

redwing b lackbird (Table 1 5i) . The association of the redwing 

b lackbird with the total number of rows can be explained on the basis of 

the correlation of this factor with the number of shrub rows Cr = 0. 548 , 

p<0.001 ),  shrub row height Cr = 0. 332, p<0 . 010) , and number of shrub 

species Cr = 0. 324, p<0. 0 10). However, the redwing sti I I exhibits 

negative relationships with the development of the shrub u nderstory, as 

d� ; 

� .. t,:· l 
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the s i gn i f i cant negat i ve correlat i ons w i th understory dens i ty and shrub 

layer he i ght indicate . The negat i ve i nfluence of  tree c l a i ms may be 

partly ascr ibed to i ts assoc i ation with volunteer shrubs as correlations 

w i th shrub layer he ight (r = 0 . 347 ,  P<0 , 0 10) and the presence of 

understory shrubs C r = 0. 276 , P<0. 050) demonstrate. 

The redw i ng blackb i rd ,  closely para I le i i ng the p rev i ously 

d i scussed group of 5 spec i es ,  exh i b its a pos i t i ve assoc i ation w ith 

ground cover and a negative associat i on w i th graz i ng that reduces the 

herb layer and ground cover .  The significance of green ash may be 

part l y  related to the negat i ve relat i onship of green ash .,., i th ground 

cover (r = -0 . 3 17 ,  p< 0 . 0 10). S i m i larly, s i  Iver buffaloberry i s  correlated 

w ith mow i ng (r = 0. 393, p< 0 . 00 1) and negat i vely correlated with ground 

cover C r = -0. 226, p<0. 050) . The negat i ve assoc i at i on of the red w i ng 

with age and understory dens i ty may be due to the h igh correlat i on of 

age w i th canopy cover- C r = 0 . 46 1 , p< 0. 00 1) and understory dens i ty w i th 

canopy cover C r = 0 . 342 , p< 0. 00 1 ). 

Whitmore ( 1977) i nd i cates that yel lowthroats, redw i ng blackb i rds, 

and song sparrows are s i m i lar i n  the i r hab i tat requirements. Th i s  study 

indicates a I I 3 do prefer heavy shrub rows , b,.ft p refer an open under story. 

The data of James ( 197 1) i nd i cate the yel lowthroat prefers cond i t i ons 

s i m i lar to those I describe . However, the data of Whitmore ( 1 977) 

indicate they prefer a heavy shrub understory. If the redw i ng blackb i rd 

and song sparr01v are associated with the ye l lowthroat, as my data and 

Whitmore's ( 1 975 , 1977) data suggest , then my data suggest the hab i tat 

preferences are more s i m i lar  to those descr i bed by James ( 197 1) than the 

habitat p re ferences delineated by i·ih i tmore ( 1977) for V i rgin R i ver Valley 

b i rds . 
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Eastern wood pewee 

The main factor predicting the presence of the eastern wood pewee 

(Table 15j )  is the absence of understory shrubs. Presence is also 

s ignificantly, negatively correlated with shrub layer height and 

understory dens ity. The sign ificant correlations with grazing, which is 

inversely related to herb he ight C r = -0. 562 , p<0. 00 1 ) ,  indicate the 

marked preference for a completely open understory. The significance of 

canopy cover ind icates the preference of eastern wood pewees for a more 

developed canopy. Further, the sign ificance of the proximity of roads 

may also be related to the tree crown as it is significantly correlated 

with tree volume ( r  = 0. 308, p<0. 0 10 ) .  The ordinations of James ( 197 1 ) 

supports these results as they indicate the eastern wood pewee prefers 

open understory cond it ions but a more developed canopy. 

Common grackle, American robin, house sparrow, and mourning dove 

James ( 197 1 ) ind icates the common grackle ( Table 15 k )  and 

American robin (Table 15 1 )  prefer a greater canopy cover than many of 

the previously d iscussed species. The significance of tree volume and 

canopy cover indicates such a situation for the American robin. However, 

the common grackle i I lustrates no significant correlations with tree 

crown measurements, although it is positive l y  related to shrub fo l iage 

volume. The importance of snags is due to the habit grackles have of 

perching and roost ing on snags, suggesting they I ike a slightly more 

open canopy for this activity. 

The house sparrow ( Table 15m ) shows a s l ight preference for 

higher canopy cover, whi l e  the mourning dove ( Table 1 5n ), I ike tho 
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grackle, exhibits I ittle correlation w i th tree crown development. The 

mourning dove, common grackle, and house sparrow exhibit significant, 

positive relationships with shrub row height. Shrub row height was 

important to many of the species previously d i scussed. The mourning dove 

and most other species exh i bit a negative association with the 

development of a sh rub understory. The house sparrow does not fol low 

the pattern of the other species and indicates no such tendencies. 

The corrvnon grackle is pos i tively related with medium grazing and 

negatively associated with severe g raz i ng and mowing, suggest i ng i t  also 

prefers an open understory. James ( 197 1 )  reported that common grackles 

prefer an open understory . 

Al I 4 species exhibit a significant positive correlation with 

eastern redcedar and use eastern redcedar for nest i ng. Al I 4 i nd i cate 

significant posit i ve correlations w i th the prox i mity of human residences 

and its associated supplemental f ood and water. Both house sparrows and 

common grackles exhibit pos i tive relationships with the prox i m i ty of 

water, as wel I .  However, proxim i ty of water is also highly correlated 

with the proxim i ty of I ivestock f eed l ots and its g rain sources. House 

sparrows, co��on grackles, and mourning doves show positive associations 

with the prox i m i ty of I ivestock feedlots. 

The common grackle and American rob i n  i n dicate posit i ve 

associations while the house sparrow i s  negat i vely associated with 

cultivated fields. Cultivated f i elds adjacent to the she l terbelt 

indicate, in most cases, that the belt i s  a f i eld w i ndbreak. F i eld 

windbreaks are ut i I ized less by house sparrows than shelterbelts proximal 

to human establ i shments. 
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CONCLUSIONS 

The preferred shelterbelt con f i gurat i on suggested by the results 

of this study is one that has a wel I developed i nternal grass layer with 

few or no understory shrubs present, but w i th we t I devel oped shrub rows 

along the outs i de edge of the belt. The use of shrubs that sucker along 

the outs i de would be beneficial as shrubs provide a dense th i cket than 

can be used by species preferr i ng th i s  I i te form. The dense shrub row 

th i cket that woul d develop i s  preferrable for reduc i ng wind velocity . 

Development of  th i ck shrub rows adjacent to an open understory w i th a 

dense herb layer but with few shrubs al lows ut i I i zat i on of  the be l ts by 

the house wren, ye I I owthroat, and song sparrow. 

Ma i ntenance of the sem i -open f o l iage condit i ons characteristic 

of shelterbelts i n  eastern South Dakota through ut i I i zat i on of spac i ng 

strateg i es and use of  open fol i age tree species w0uld meet the preferred 

requ i rements of most species common to shelterbelts. Siberian elm 

appears to meet the cr i ter i a  tor an open to  I i age tree spec i es and i s  

for nesting by many bird spec i es. Green ash prov i des easy excavat i on 

nest holes for common f I i ckers and house wrens due to the heart rot 

(Fornes fraxanaoh i ! us ) . Open foliage patches and snags i n  the belts 

produced by dead and decadent trees prov i de add i t i onal d i vers i ty of 

nest i ng an d forag i ng s i tes. 

used 

of 

Selection and plant i ng of plant spec i es shou l d  be kept as d i verse 

as poss i bl e  for several reasons. F i rst , a strong correlation between 

number of vegetation spec i es and bird spec i es has been shown in a r.umber 

of stud i es ( e. g. James 1 97 1 ,  Power 1 972, 1 976, Amerson 1 975) . An 
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increase in number of  plant species can increase the patchiness of the 

vegetation by providing dif f erent plant heights and I ife forms (James 

1971 ) and by supplying a diverse set of substrates and resources to be 

partitioned by birds (Pearson 1977a). An increase in habitat 

heterogeneity has been re l ated to increases in bird species diversity 

(MacArthur et al. 1962, MacArthur and Pianka 1966, Roth 1 976, Wiens 

1976). Further, the plant i ng of several species al lows the poss i b l e 

negative va l ue of I species to be of fset by the presence of alternative 

vegetation species for use by birds. For example, by incorporating I and 

only I row of green ash, the probabi I ity of nest hole sites being 

available is increased for  ho l e  nesting species, but the negative 

influence green ash exhibi ts for many bird species is minimized due to 

the presence of the · other tree and shrub species. Also, by incorporating 

a diverse set of  p lant species, the possib i I ity of a disease, such as the 

Dutch Elm d i sease, destroying an entire shelterbe l t  is minimized. 

Finally , dif ferent tree species with their dif ferent surviva l rates and 

longevity supply a mo�e versatile shelterbe l t. Plant species that die 

early can be removed and replaced . The longer-I ived species continue to 

provide protection while the short- I ived species are being replaced. 

Delineation of the specific requirements of the individua l 

species with in  the bird com�unity suggest ways for modifying the bird 

community composition . Removal of eastern redcedar may lead to a 

reduct ion in the number of grack l es by de l eting a preferred nesting site. 

Retention of snags, which provide avai I ab l e  nest hole sites for f l ickers 

and house wrens, enhances the probabi I ity of these 2 species inhabiting 

the shelterbelt community. 



Total area of the shelterbelt can also influence the bird 

community composition due to the minimum area requirements of some 

species (Section 6 ) .  Thus species which require a large area, such as 

blue jays, black-capped chickadees, and black-bi I led cuckoos, are 

precluded from nesting the smaller shelterbelts. While area of a 

shelterbelt may restrict some species, the absolute importance of 

shelterbelts to birds on the prairies is clearly indicated by the high 

diversity of migratory (68 spp. ) and breeding (44 spp. ) b i rds fcund in 

the 69 study belts during the 2 year study. Thus maintenance of 

established shelterbelts and planting of new sheltertelts planned to 

include the suggest i ons presented wi I I mainta i n  the preset d i versity 

of woodland birds on the prairies and may al low an increase in bird 

species numbers. 
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Append i x  A .  Questionnaire ma lled to landowners. 

QUESTIOimAIRE 

County 

1 .  Do you hav e  any shelterbelt or windbreak plantings on the proper ty 
des cr ib ed in the a t tached letter?  Yes No ----

2 .  If  so , ui ll you allou ny r epresentatives to  enter and s tudy these 
belts during late December , oiddle ! lay , and early July , for t:ie 
purpose of gatherins r esearch data only? Yes No __ _ 

1 58 

3 .  Do you wish then t o  co�tact y ou b ef ore they ent er ?  Yes ?!o __ _ 

4 .  Location of residence where you e1ay b e  contacted ( legal d escription 
if pos s ible pleas e) :��---��--------------� 

5 .  Telephone number : __________ _ 

6 .  Hhen �·1as the belt o r  b elts planted? ________ _ 

7 .  Has the belt cultivated when planted? Y.es llo ---- -----
ye a rs ? ______ _ 

now nany 

8 .  Eas the b elt ever been grazed ?  Y es No ___ _ How many 
years? Hm1 nany months out of the year? _____ _ 

9 .  Do you wish a f inal report fro.:, the proj ect? Yes ___ _ 

10 . Your nane and nailing addres s : 

I·1o ----
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Appendix B .  Common and sc ientif ic names, food habits cl assification, 
and the number of plots in which the bird species censused 
during 1976 and 1977 spring migration seasons were found. 

COMMON NAME 

Common grackl e 
Mourning dove 
American robin 
Brown thrasher 
House sparrow 
American gol df inch 
Western kingb i rd 
1-buse wren 
Empidonax f l ycatchers 
Orchard oriol e 
Cl ay-colored sparrow 
Ch ipp ing sparrow 
Swainson ' s  thrush 
Redwing bl ackbird 
Ea stern kingbird 
Yel l ow warbl er 
Brown-headed cowbird 
Song sparrow 
Ye I I owthroat 
Bl ue jay 
Common f l icker 
Tennessee warbl er 
Northern or io I e 
Star I i ng 
Yel low-rumped warbl er 
Gray catb ird 
America n�redstart 
Rose-breasted grosbeak 
Black-capped chickadee 
Red-headed woodpecker 
Harris ' sparrow 
Eastern meadowlark 
Eastern wood pewee 
W i l sons ' warbl er 
White-er.owned sparrow 
Downy wood pee t<er 
Ruby-crowned kingl et 
Bl ack-and-white 

warbler 
Gray-cheeked thrush 
Common crow 
Bl ackpoLI warbl er 

SC I ENT I F I C MA!-1 E 

Quiscalus quisau la 
Zenaidura naaroura 
Turdus migratoPius 
To:x:os tor..a rufwn 
Passer domestiaus 
Cardue Z.is tristis 
Tyrannus vertical.is 
Troglodytes aedon 
Empidonax spp .  
Icterus spurius 
Spize Z.la paZ.Z.ida 
Spize Z.Za p�ssePina 
Catharus ust'� lata 
AgeZaius pr.oeniceus 
Tyrannus t'drann:us 
Den.droica peteahia 
Mo Z.o thrus a ter 
UeZ.ospiza meZ.odia 
GeothZ.ypis triahas 
Cyanoaitta aristata 
CoZ.aptes a:a>atus 
Vermivora peregrina 
Iaterus galbu. Za 
Sturnus vuZ.garis 
Dendroiaa aoronata 
D11.JT1e te Z. Za caro Zin ens is 
Setopr.aga ruticil.Za 
Pheuatic�s Zudoviaianus 
Pa.rus atriaapii lus 
Me Zanerpes eryth.rocepha Z.us 
Zonotria�ia queruZ.a 
SturneZ.Za �a3r.a 
Contopus virens 
Wi Zsonia P--'Si Ua 
Zonotriar;ia Z.euaophpys 
Piaoides pubescens 
Regulus aa Z.enduZa 

Nniotila varia 
Catharus r.iir:ima 
Corous bracr:yrynahos 
Dendroica stri�ta 

Fa TOTAL 1976 1977 

G 
G 
0 
I 
0 
G 
I 
I 
I 
I 
G 
0 
I 
0 
I 
I 
0 
0 
I 
0 
I 
I 
I 
0 
I 
I 
I 
0 
I 
I 
0 
0 
I 
I 
0 

I 
I 
0 
I 

1 29 64 65 
1 1 8 5 1  67 
1 13 56 57 
93 5 1  4 2  
8 2  38 44 
60 3 1  29 
58 28 30 
52 28 24 
52 34 1 8  
4 6  22 24 
45 29 16 
4 4  2 1  23 
44 29 1 5  
39 22 1 7  
37 24 13 
37 20 1 7  
34 1 7  1 7  
33 16 1 7  
3 2  1 8  1 4  
27 1 4  1 3  
27 19 8 
26 15 1 1  
20 1 5  5 
1 7  1 2  5 
17 I O  7 
16 1 1  5 
16 13 3 
15 1 1  4 
1 4  1 2  2 
1 4  7 7 
13 1 1  2 
13 8 5 
1 2  1 0  2 
1 2  1 0  2 
9 7 2 
8 6 2 
8 6 2 

8 6 2 
8 5 3 
7 4 3 
6 5 I 
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Append i x  B .  cont i nu ed . 

CO!ll�ON NAME SC I ENT I F  I C  NA:-,1E Fa 
TOTA L 1 976  1 977 -- ---

B I  a c  k- hea d ed g ros bea k Pheuatious me ZanoaephaZus 0 6 4 
Ruf ou s- s i d ed towhee PipiZo erythrophtha. lmus 0 4 3 
Ovenb i rd Saiurus aui'oaapiZZus I 4 3 
Ora nge-c rowned wa rb l er Vermivora ae Zata I 4 4 
Mag no I i a war b  I er Dendroiaa magnolia I 4 4 
B l ac k- b i  I l ed cuc koo Cooayzus erythropthalmus I 4 4 
War b I i ng v i r eo Vireo gi Zvus I 3 2 
Chestnut- s i d ed war b l er Den.droica pennsyZvanioa I 3 2 
So l i ta r y  v i reo Vireo so litarius I 2 I 
Moc k i ng b i rd Mvnus po Zyg Zottos 0 2 I 
Ye I l ow-headed b l ac kb i rd Xanthooephalus x .  0 2 2 
Wh i te-throated sparrow Zonotriohia a Zbico l lis 0 2 
Ha i ry wood pee ker Piaoides viZ Zosus I 2 
L i nco l n  spa rrow /.fe Zospiza lir:oolnii 0 I 
Pa l m  wa r b l er Den.droioa pa Vnarwn I I 
Bay- brea sted 1�a r b l er Den.droica oastanea I I 
Ph i l ad e l p h i a  v i reo · Vireo phi Zadelphiaus I I 
I nd i go bu nt i ng Passerina ayanea I I 
Ye l l ow- brea sted c ha t  Ioteria virens I I 
Amer i ca n  mag p i e  Pica pica 0 I 
Ca pe may wa rb l er Dendroica tigrina I I 
Ca na d a wa r b I er Wi Zsonia oar.a.dens is I I 
B l ac k-throa ted g reen 

wa r b l er Den.droiaa virens 
Na s hv i I I e wa r b I er Vemivora rufioapi, Z la 

a F = Food ha b i ts c l a ss i f i ca t i on ,  G = gran i vores , 0 = �mn i vores , a d n  
I = i nsect i vore s . 

2 
. I 

I 

2 
2 
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Append i x  c .  Means and s tandard errors for each food habits  group by s ize 
class  (N = 23 shel terbe l t s  per s ize  c lass ) .  a) 1 976  s pecies 
richness. b) 1976  density. c )  1 9 7 7  s pec ies richness. 
d) 197 7 density. 

GRANIVORES OMNIVORES INSECTIVORES 

S ize C lass Mean + SE Mean + SE Mean + SE - - -

a)  1 2. 2 1 7  0. 125  2. 652 0. 324 3. 870 0. 500 
2 2 . 696  0.203 3. 696  0. 460 5. 783 0. 887 
3 3. 130 0.145 4. 565 0. 448 8. 9 57 0.784 

b) 1 20 . 01 7  2.522 1 3.265  2. 383 12  . 42 6  2. 291  
2 24. 009 3. 290 1 8.439 2. 640 1 9. 796  4. 339 
3 34. 365 4 . 402 18 . 009 1 .  951  3 6. 148 3. 991 

c )  1 2. 3'48 0 . 135  2. 304 0.222 2. 304 0. 304 
2 2.2 61 0. 144 2.478 0.226  3. 391 0.439 
3 3.087 0.153 4. 130 0. 2 54 6. 478 0 . 617  

d)  1 12. 096 1 . 545 1 0. 309 2. 7 75  3. 565 0. 466 
2 1 3.944 2 . 093 9. 344 1.775  5 . 652 0. 676 
3 2 1. 9 1 7  2. 405 1 6. 2 9 6  1. 990 1 3. 304 1. 704 
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Append i x  D .  F-ra tios and s ignificance obtained through two fac tor analys is 
of  variance of  the number of  species and densi ty of each food 
habi ts  group by plot  s ize  as summarized in Table  2 .  a)  1976  
species richness .  b )  1976  dens i ty .  c)  1977  species  richness . 
d )  1977  densi ty . 

J;:A.CTOR F-RATIO SIGNIFICANCE 

a )  Food habits  51 . 984 p . 001 
S ize  12 . 129  p . 001 
Food habits  by  s iz e  interac t ion 7 . 636 p . 001 
Food habi t s  ne s ted wi thin size  24 . 082 p . 001 
Si.ze nes ted within food hab i t s  1 0  . 2 03 p . 001 

b )  Food habits  5 . 59 7  p . 010  
S ize  12 . 2 54 p . 001 
Food habits  by s ize  interac t ion 3 . 479 p . 025  
Food habits  nes t ed within size 4 . 449 p . 001 
S iz e  nes t ed within food habi t s  7 . 9 51 p . 001 

c )  Food hab i t s  14 . 604 p . 001  
S ize  52 . 972 p . 001 
Food habi t s  b y  s iz e  interac t ion 1 1 .  7 74 p . 001 
Food habi t s  nes ted within size  13 . 1 12 p . 001 
Size nes ted within food hab i t s  2 7  . 2 64 p . 001 

d)  }'ood hab i t s  18  . 2 65 p . 001 
S ize  14 . 918  p . 001 
Food habits by size interac t ion 0 . 42 8  p . 100 
Food habi t s  nes ted  within s ize  7 . 009 p . 001 
Size  nes ted within food habi t s  6 . 859 p . 001 



ppendix E. 

Size C lass 

a) 1 
2 
3 

b)  1 

2 
3 

c)  1 
2 
3 

d )  1 
2 
3 

Means and s tandard errors 
of each food habits group 
per s ize  c las s ) . a )  1976  
c )  1977 species richness . 

GRANIVORES 

Mean + SE 

0 , 301 0 . 034 
0 . 256  0 . 033 
0 . 207  0 . 014 

0 . 446 0 . 04 6  
0 . 399  0 . 046 
0 . 3 79 0 . 035  

0 . 366  0 . 032 
0 . 290  0 . 01 6  
0 . 240 0 . 01 6  

0 . 518  0 . 042 
0 . 457 0 . 036  
o . 416 0 . 02 9  

1 63 

of the propor tional representation 
by size class  (N = 23 she l terbel ts  
species richness.  b )  1976  density . 
d )  1977 density . 

OMNIVORES INSECTIVORES 

Mean + SE Mean + SE - -

0 . 2 87 0 . 02 5  0. 412  0 . 02 9  
0 . 330 0 . 040 0 . 4 15  0 . 041 
0 . 277  0 .  02 1 0 . 5 15  0 . 030 

0 . 2 59 0 . 034 0 . 2 79 0 . 036  
0 . 331  0 . 051 0 . 2 64 0 . 037 
0 . 22 1  0 . 020  0 . 3 99  0 . 035 

0 . 326  0 . 02 3  0 . 308 0 . 036  
0 . 312 0 . 02 5  0 . 3 93 0 . 034 
0 . 306 0 . 014 0 . 453 0 . 02 1  

0 . 32 0  0 . 041  0 . 1 62 0 . 029  
0 . 308 0 . 038  0 . 2 3 6  0 . 029  
0 . 32 0  0 . 022  0 . 2 64 0 . 024 
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.p pend i x  F .  F-ratios and s ignificance obtained through two fac tor analysis 
of variance of the proportional representa t ion of each food 
habits  group by plot  s iz e  as su.rrn:narized in Table  4 .  a) 1976  
species r ichness . b )  1976  density . c )  1977  spec ie s richness . 
d )  1977  density . 

FACTOR F-RATIO S IGNIFICANCE 

a) Food habits  24 . 910 p . 001 
S iz e  1 . 308 p . 100 
Food habits  by size interac t ion 3 . 048 p . 02 5  
Food habits  nes ted within s iz e  11 . 550 p . 001 
S ize  nes ted within food habit s 2 . 870 p . 02 5  

b )  Food habits  6 . 224 p . 001 
S ize 0 . 081 p . 100 
Food habits  by s ize  interact ion 2 . 744 p . 050 
Food habits  nes ted  within s iz e  4 . 083 p . 001 
S ize  nes ted within food hab i t s  2 . 644 p . 02 5  

c )  Food h abits  5 . 435  p . 01 0  
Size 0 . 822  p . 1 00 
Food habits  by  s ize  interac t ion 6 . 240 p . 001 
Food habits  nes ted  within s ize  5 .  882 p . 001 
S ize  nes ted within food habits  5 . 89 8  p . 001 

d)  Food habits  24 . 9 57 p . 001 
Size 1 . 286  p . 100 
Food habits  by  s iz e  interac t ion 1 . 3 63 p . 100 
Food habits  nes t ed with in s iz e  9 . 244 p . 001 
S ize nes ted within food hab i t s  1 . 344 p . 100 
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Append i x  G .  Commo n a nd sc i ent i f i c names , gu i l d c l a s s i f i ca t i o n ,  a nd the 
num ber o f  p l ot s  i n  wh i c h  the b i rd spec i es c ensu sed d u r i ng 
1 97 6  a nd both  1 977  br eed i ng sea so n cou nts were f ou nd . 

COil.i�ON �·IA!J. E 

Mou rn i ng dove 
Corwno n g rac k I e 
Amer i ca n  rob i n  
Hou se spar ro.,., 
Orc ha rd or i o l e 
Brori n  thra sher 
Vies ter n  k i ngb i rd 
Ea stern k i ng b i rd 
Amer i ca n  go l c f  i nc h  
Red w i ng b l ac k b i rd 
Ye l l o v:throa t 
Hou se wren 
Brown- headed .:0v1 b  i rd 

Song spa rro·,1 
Common f I i c ker 
Ea ster n wood pewee 
B l ac k- b i I l ed cuc koo 
Mort  hem or i o l e  
B l u e  j a y  
Wa r b I i n g  v i r eu 
Red -headed wood p ee  ker 

Sta r I i n� 
Ye l l ow wa r b l er 
Vesper spa r row 
B l ac k-�apped c h i c ka d ee 
C l a y-co l orcd spa r rm, 
Ch i p p  i ng spa rro1" 
Downy wood pec ker 
S\oi-a i nsc n '  s thrush  
R i ng - nee �ed phea sa nt 
Gra y catb i rd 

B l ac k- head ed g rosbea k 

Corrr:,o n c r o.,.,. 
Ea stern moajow l a r k  
Swa i nso n '  s ha•11 k  
Grea t- ho, ,ed ow l 
Rose- brca sted g ro sbea k 
Amer i c a n  Mag p i e  
D i c ke i sse l 
B l u e  g ros bea k 

SC I ENT I F  I C  NAi-lE 

Zena.idu:ra maoroura 
Quisoalus quisoula 
TuI>dus migratorius 
Passer domes tiaus 
Iater..A.s spurius 
Toxos toma ruf'.))71 
Tyrannus verticaZ is 
Tyrarmus tyranr.us 
Cardue lis � . � .  

v1'1-S v'1..S 

Age Zaius phoeniceus 
Geothlypis trio has 
Troglody tes aedon 
/.Jo lo t}LY>Us a ter 
/.1eZospiza me l.odia 
Co laptes auratus 
Contopus virens 
C oooy 22,1,.3 ery tl;1•oph tha lrrr,,,w 
Io terus galfod,a 
Cyanoci t ta cristata 
Vireo gilvus 
/.f e lanerpes 

ery throcepr.a Zus 
Sturnus VY- lgaris 
Derdroica petechia 
Pooeaetes grar.rineus 
Parus a tri::!api 7, l1ts 
Spi?.e lla pa Z l �ia 
Spize lla passerina 
Picoides pubescer;s 
Ca tharus us tu.lat:: 
Phasia.nus colehic�s 
Dwnete Zla caro linensis 
Pheuo tious 

me lan.oc epha lus 
C or-vu D b rac htrr11rJ.C i:os ..., � 
Sturne i la rnagr.a 
Buteo sz.xiinsoni 
Bubo virgir.ic.nus 
Phe:w ticus lu.dovi::Jianus 
Pica pica 
Spiza ar.rer>icar.a 
Guiraca caeru l.ea 

. Ga 

1 23 
1 34 
323 
3 54 
254 
223 
255 
24 5 
1 44 
334 
234 
234 
1 44 
334  
2 1 1 
24 5 
244 
244 
344 
254 
2 1 1 

3 54 
244 
334 
242 
1 34 
344 
2 1 1 
223 
1 22 
234 
344 

334 

334 
334 

TOT b 7 6c 77 1 d 7729 -- --
1 96 6 1  67 68 
1 9 1  62 64 65 
1 54 56 4 9  4 9  
1 44 5 1  4 5  48 
1 33 4 1  4 6  4 6  
1 1 4 39 38 37 
1 03 36  33 34 
1 03 37 33 33 
93 35  28 30  
80  27 27 26 
68 24 22 22 
58 1 8  20 20 
54 1 4  20 20 
4 5  1 2  1 6  1 7  
3 9  1 2  1 3  1 4  
38 1 3  1 2  1 3  
27 1 2  6 9 
25 6 1 1  8 
20 8 6 6 
1 9  3 8 8 
1 5  7 4 4 

1 4  1 1  I 2 
1 1  3 4 4 
8 4 2 2 
a 3 2 3 
7 2 2 3 

7 2 2 3 
7. 2 2 3 
7 3 2 2 
7 3 2 2 
6 I 3 2 
6 2 2 2 

5 2 2 
2 I 

4 2 I 
3 I I 
3 I I 
3 I I 
2 2 -
2 



Append i x  G .  cont . 

COMMON MAME 

Lar k sparrow 
So I i tary vireo 
Harris ' sparrow 
Common nighthawk 

SCIENT I FIC NAt-1 E 

Chondestes gramrra.cus 
Vireo soZita.rius 
Zonotricha Z eucophrys 
Chordei Zes mir.or 

aGui Id classification : 

323 
254 
334 

2 
I 
I 
I 
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First number = primary food habits; I = granivore, 2 = omnivo 
2 = insec tivore , 3 = omn i vore.  
Second number = foraging stratum most commonly used ; I = bark , 
2 = ground , 3 = low , 4 = middle, 5 = high canopy. 
Third number = foraging method ; I = bark dri 1 1 ,  2 = bark glean, 
3 = ground glean, 4 = foliage glean , 5 = sally. 

bTotal number of plots each species was fou nd for a l l three censuses. 

cl976 census. 

dFirst 1977 census .  

eSecond 1977 census. 



1 67 

pend i x  H .  Means and s tandard errors for each food habi t s  group  by size  
c lass (N = 2 3  shel terbe l t s  per size  c las s ) .  a )  S pecies 
r ichness. b )  Dens i ty. c)  Proport ional s pecies  re presentat ion. 
d )  Proport ional dens ity repres entat ion. 

GRANIVORES OMNIVORES INSECTIVORES 

S ize  C lass Mean + SE Mean + SE Mean + SE -
a) 1 2. 142 0. 123 1. 986 0. 1 92 2. 520 0. 2 79  

2 2. 089 0. 138 2. 288 0 . 195  3. 1 59 0. 331  
3 2 . 82 6  0.113  3. 405 0. 2 39 5. 7 55 0. 441 

b) 1 14. 739 1 . 895 10. 698 1. 997  5. 7 32 0 . 701 
2 1 7. 631 2 . 342 12. 201 1. 482 7. 433 0. 899 
3 24. 157 2. 298 1 7. 464 1. 797  1 6. 558 2. 056 

c) 1 0. 350 0. 02 1 0. 296  0. 02 3 0. 354 0 . 02 8  
2 0. 283 0. 023 0. 3 1 7  0. 02 7 o .  397  0. 030 
3 0. 247 0. 015  0. 2 85 0. 015 0. 4 68 0. 019 

d )  1 0. 488 0. 032 0. 312 0. 034 0. 190  0. 024 
2 0. 435 0. 028 0. 340 0. 028 0. 225  0. 02 9 
3 0. 410  0. 020 0. 306 0. 019  0. 2 82 0. 019 
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�ppend i x  I .  F-ra t ios  and s ignificance obtained through two fac tor ana lysis 
of variance of food habi t s  groups and plo t sizes , as sunr.:arized 
in Table 3 .  a )  S pec ies richness .  b) Dens i ty .  c )  Propor tional 
s pec ies representa t ion . d )  Propor t ional dens ity representat ion . 

FACTOR F-RATIO PROBABILITY 

a) Food hab i t s  35 . 062 . 001 
Siz e  5 7 . 305  . 001 
Food habits  by s ize interac t ion 13 . 768 . 001 
Food habits  nes t ed within s ize  2 2 . 92 7 . 001 
Size nes te::d within food hab i t s  31 . 196  . 001 

b) Food habits  30 . 710 . 001 
S ize 14 . 9 74 . 001 
Food habits  by  s ize interac t ion 0 . 891 . 1 00 
Food habits  nes t ed wi thin s ize  11 . 887 . 001 
Size nes ted within food hab i t s  9 . 038 . 001 

c)  Food habi t s  14 . 835 . 001 
Siz e 0 . 000 . 1 00 
Food habits  by s iz e  int e rac t ion 5 . 768  . 001 
Food habits  nes ted within s ize  9 . 863 . 001 
Size nes ted within food hab i t s  5 . 759 . 001 

d )  Food habits  34 . 843 . 001 
Size o. 724 . 1 00 
Food habi ts  by s iz e  interac t ton 1 . 991  . 100 
Food habiti  nes ted wi thin size  12 . 906 . 001 
Size nes ted within food habi t s  1 . 982 . 100 
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Appendix J .  Explanat i on of var i able Mnemon i cs and the mean and 

� 1NP.!ON I C  

ACSA 
ACME 
AGE 
AREA 
CAAR 
CAN HT 
cc 
CEOC 
co�IVOL 
ELA"! 
CULT I VAT 

FRPE 
GC 
GRLI 
GR1,'.E 
GP.S E  
GRZ 
. •  IHT 

. HLJi.W� 
JUVI 
l I V ESTOCK 
LOTA 
MORU 
t.10','IED 
NL 
NSHSPP 
NSR 
t..J'P� 
t..J'TRSPP 
PASTURE 
PIPO 
PIPU 
PLDEtJ 
PODE 

PRN1 
PRAR 
PRPU 
PRTO 
PRV I 
rsi.;E 

· standard error for those varia bles for the 69 study 
shelterbelts. 

r 1EN-l 

0 . 007 
2 . 4 13 

2 1. 536 
7 532 . 835 

7 , 448 
9 . 597 

54 . � 20 
l . 855 

3 1. 744  
6 . 8 26 
0 . 739 

' '  . 826 
8 1  . 0 15  

0 . 0 1 5 ·  
0 . 1 0 1 
0. 073 
0 . 464 
0 . 5 13 
1 . 290 
I . 874 
I . 84 1 
7. 828 
0 . 203 

_ 0 .  087 
2. 029 
I .  536 
I . 667 
5. 290 
2. 34 1 
0 . 507 
0 . 507 
0 . 4 :)6 

85 . 942 
2. 007 

10. 475 
0 . 26 1  
0 . 663 
I .  7 57 
I .  l 94 
0 .  225 

SE  

0 . 007 
0 . 809 
I . 290 

778 . 7 03 
I . 625 
0 . 994 
2 .  124 
0 . 674 

1 1 . 267 
I • 2.1 4 
0 . 053 

I .  954 
2 . 667 
0 . 0 14 
0 . 037 
0 . 03 1  
0. 1 16 
0. 033 
0. 099 
0 . 566 
0 .  1 83 
I . 67 0  
0 . 193 
0 . 034 
o . oao 
0. 173 
0 . 208 
0. 29 1 
0 . 2 12 
0 . 06 1  
0. 292 
0 . 4 05 
4 . 537 
I . 03 5  

2. 7 5(> 
0. 26 1 
0 . 4  ! 2 
0 . 8 1 0 
0. 6 17 
0. 225 

DEF l l !IT I Ot J  

Acer sacc�ar i nurn l. - S l i ver maple 
Acar r.cau ndo L .  - 3ox elder 
Age of the shelterbelt 
Area of the shelterbelt ( in m-) 
Caranana arhorescen s lam . - Caragana 
Canopy �e i g ht ( in � )  
Canopy coverage 
Celt is occicent?.I i s  L. - �ac kberry 
Conif erous fol i= '.Je volume (in r,3 ) 

Ela e��nus a nau st i fo l  i a  l. - Ru c;s i an-o l iv"! 
Presence-absence of on ad jacent cu It ivated 

field . 
Fraxanus pennsylvanica :,1arsh. - Green ash 
Ground coverage 
Light grazing 
Medi uri grazing 
Severe grazing 
Cuw.ulative grazing index 
Herb height (in m) 
Proximity of a human resid ence 
Junioerus virq i ana L. - Eastern redcedar 
Proximity of a I ivestoc k f eedlot 
Lonicera tatarica L. - Tatarian honeysuc kle 
r,:orus alba tata rica L. - Russian mulberry 
Presenc"e=abser.ce of mO\v i ng 
Number of layers - herb, shrub ,  or tree 
r�umber o f  shru'b species 
Number of shrub rows 
Number of tree rows 
Number of tree species 
Presence-absence of an adjacent pasture 
Pinus ponderosa Lavis . - Ponderosa p i ne 
Picea punaens Enge l m. - Blue spruce 
Dens i ty of trees a nd shrubs combined 
Popu l us deltoides Bartr . - Eastern 

cottom:ood 
Prunus a�ericana 1 '.arsh. - Amer ican plum 
Prunus a r�en i aca sibiriea - S i berian a cr i cot 
Prunus ou�i la besseyi L .  - Western sandc herry 
rru r,us rcr.icnt'.)sa L. - i iank i ng cherry 
Pru r.us virciana L .  - Com-non c :1okecherry 
Ps�u�ot suoa mensies i i  glauca Franco -

Douglas-fir 



Appendix J ,  cont. 

l·iME'.Ot� IC 
RI 
ROADS 
ROPS 
SHAR 

SHRLHT 
SHRRHT 
SHRVOL 
SNAG 
SYVU 
TNR 
TOTU:�D 
TRCLA 11·1 
TRVOL 
ULNl 
ULPU 
UNDSHR 
V EGD I V  
WATER 
WOODY 

r.lEMJ 

1 . 290 
I , 309 
0 . 39 1  

0 . 317 
2 . 00 1  

142 . 204 
8 .  542 
2 . 0 1 2 
6. 957 
6 . 739 
0.  I 0 1  

872 . 468 
8 . :)36 

38. 646 
0 . 44 9  
I . 1 4 0  
I. 478 
I .  188 

S E  

0 . 075 
0 ,585 
0 . 39 1  

0 . 077 
0 . 173 

24 . 028 
1 . 107 
0 . 823 
0. 348 
0 . 689 
0. 037 

69 . I 04 
I . 435 
4 . 211 
0 .  102 
0. 063 
0 . 125 
0 . 081 

DEF I �J I T f  Qq 

Proximity of a road 
Robin i a  p seudoacacia L. - Black locust 
Sheperdia argentca Nutt. - S i  Iver 

buf f  a I oberry 
S hrub layer height (in m) 
Shru� row height (in m) 
Shrub fo l iage vo l ume ( in m3) 
Snag dens i ty 
Syringa vulqar is L .  - Common I i l ac 
Tota I number of rm,s 
Tota l unc erstory density 
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Presence-absence of an ad jacent tree c l a im 
Tree foliage volume (in m3 ) 
U l mus  amer ica na L. - Americnn elm 
U J mus purr. i I a L. - S iberian e Im 
Presence-absence of understory shrubs 
Shann�ri index of vegetation d i vers ity 
Prox imity of an open water sourc e 
Proximity of the nearest other woody cover 

1 Any mnemon i c  starting 1vith the letter "R '\ except road s and rops , 
i ndicates the relative density of a vegetation species idb�tified 
by ·the rf)St of the mnemonic fo I I owing the "R'' . 



A ppend ix K .  Data on tree speci e s  selec ti on and ne st heigh t placement 
by bird speci e s  f ou nd ne sting in shelter be l t s. 

T RSPa HTb LDC DTd T RSP HT LO OT T RSP HT LD 

Mou r ni ng d ove 

ULPU 8 I 20 ULPU 7 I 20 ULPU 6 I 
ULPU 5 3 20 ULPU 8 0 15 ULPU 6 I 
ULPU 7 0 10 ULPU 15 0 7 ULPU 9 0 
ULPU 12 0 25 ACNE 8 0 8 ULAM 13 0 
JUV I  4 I 12 CEOC 4 0 30 E LAN 12 0 
ULPU 8 4 25 ULPU 8 2 25 ELAN 9 0 
JUV I  3 2 8 JUV I  6 0 5 JUV I  6 0 
JUV I  4 0 10 ELAN 8 0 20 ELAN 3 0 
LOTA 5 0 6 ELAN 6 0 20 ELAN  12 0 
UL PU 5 0 30 U L PU 18 0 3 U L PU 10 2 
ULPU 15- 5 15 ULPU 10 0 20 ULPU 10 0 
ULPU 20 0 10 ULPU 5 0 20 U L PU 12 4 
ULPU 4 0 30 ACNE 4 6 12 ACME 3 10 
CEOC 20 0 30 ULPU 20 0 20 ULPU ,  5 3 
ULPU 4 2 30 U L PU 5 I 30 U L PU 5 0 
ULPU 4 2 35 PRAM 3 0 3 ULPU 6 0 
ULPU 7 0 15 PRAM 5 3 7 U L PU 5 2 
ULPU 3 I 35 ULPU 7 3 30 U LPU 6 3 
ULPU 12 I 20 ULPU 5 3 50 ULPU 5 5 
ULPU 6 I 15 ULPU 6 2 10  ULPl!J 10 0 
ULPU 12 0 35 U L PU 12 4 20 ACl�E 12 0 
JUV I  7 4 25 PRAM 4 0 10 ULPU 5 I 
ULPU 3 I 10 ULPU 5 I 20 ULPU 6 I 
ULPU 5 0 30 PODE 12 0 3 ULPU 6 I 
U LPU 6 2 25 PRA:-1 5 0 3 PRAM 2 0 
PRAM 5 0 5 ULPU 7 3 25 ULPU 5 3 
ULPU 5 2 20 ULPU 5 3 20 ULPU 8 3 
ULPU 6 3 20 ULPU 6 3 20 ULPU 6 3 
ULPU 6 3 35 ULPU 8 I 25 U LPU 7 2 
ULPU 10 0 20 

Comm on gr ac k I e 

ULPU 15 0 15 ULPU 1 8  0 12 ELAN  20 0 
ULPU 4 0 20 ULPU 10 1 0  0 U LPU 12 0 
ULPU 9 0 20 ULPU 20 0 10 U LA.J 6 0 
ULPU 6 0 25 U L PU 22 0 8 U LPU 6 0 
PRAM 5 0 6 ULPU 4 0 20 ULPU 30 0 
ULPU 25 0 10 ULPU 25 0 15 ULPU 30 4 

ULPJ 35 0 10 ULPU 20 D 25 U L PU 30 0 

17 1 

DT 

20 
1 0  
10 
25 
20 
20 

3 
25 
1 5  
30 
15 
20 

4 
30 
10 
20 
35 
35 
50 
40 
30 

8 
15 
25 
10 
20 
15 
30 
20 

4 

15 
25 
12 
5 

15 
15 
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Append i x  K .  cont i nu ed .  

TRSP
a 

HT
b 

LDC 
DT

d 
TRSP HT LO DT TRSP HT LD DT 

Cor.imon g rac k l e (cont . ) 

ULPU 35  0 1 0  U L PU  1 5  2 30  U LPU 20 0 20 
U LPU 25 0 20 U LPJ 30 3 1 5  U LPU 3 0  4 1 0  

Western k i ng b i rd 

ULPU 1 5  4 25 ULPU 22 0 45  PODE 30 0 5 
PODE 25 0 1 0  ULPU 30 0 20 U L PU  22 0 25 
U LPU 1 5  0 1 5  U LPU 8 2 20 U LPU 7 0 25 
ULPU 8 0 20 U LPU 1 5  0 25 U LPU 1 2  0 25 
PODE 25 0 5 ULPU f 4  2 28 U L PU 7 0 20 
U LPU 1 7  0 30  U LPU 1 5  0 25 U LPU 8 0 25 
U LPU 1 0  0 20 U LPU 6 0 30 U LPU 3 0 1 5  
U LPU 6 0 25 ULPU 9 0 25 ULPU 20 0 22 
ULPJ 8 0 1 5  U L PU 25 0 1 5  

Brown thra sher 

ULPU 8 0 1 5  PRAM 3 0 1 0  U L PU 6 0 20 
PRN\ 8 0 5 PRAM 6 0 1 2  PRAM 6 0 8 
PRAM 5 0 7 PRAM 3 0 1 2  PRAM 3 0 9 

E LAN 4 0 1 5  PRAM 5 0 6 U LPU 6 0 1 8  
U LPU 3 0 20 U LPU 1 2  0 1 5  PRAM 4 0 8 

Amer ica n rob i n  

ACNE  6 0 1 5  J UV I 6 0 5 U L PU  6 0 20 
U LPJ 8 1 2  0 U LPU 1 2  0 2 · U L PU  9 0 20 

U LPU 4 0 1 5  U LPU 25 0 8 U LPU 5 2 1 5  
ULPU 8 3 1 5  U L PU  8 I 25 U L PU 6 0 20 
U LPJ 1 0  I 1 5  U LPJ 4 0 20 ULPU 6 0 1 5  

Ea stern k i ng b i rd 

ULPU 22 0 25 PODE 25 0 0 PODE I I 0 1 5  
U LPU 1 1  0 1 5  U LPU 1 4  I 1 0  ULPU 25 0 1 0  
U L PU 1 8  0 1 5  PRAM 9 0 7 PRAM 6 0 9 



173 

Append i x  K. continued. 

TRSP8 
HTb LDC DTd TRSP: HT LD DT TRSP HT LD OT 

Blue jay  

ULPU 8 0 25 ULPU 1 0  25 ULPU 1 0  0 30 
ULPU 9 0 25 

Orchard oriole 

ACNE 18 0 1 5  ULPU 30 0 5 ULPU 25 0 1 0  

a Tree species - mnemonic d efined i n  Appendix J .  

bHe ight a bove ground ( in ft ) .  

clateral d i stance out from main stem . 

do I sta nee to the top of. ·the tree above the nest . 
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Append i x  L .  Area , i n  m2 , o f  a l  I she l terbe l ts stud i ed .  

PLOT AREA PLOT AREA 

07 984 . 2  56 7003 . 3  
06 1 205 . 0  60 7046 . 9  
69 1454 . 6  28 7289 . 2  
47 1672 . 0  39 7430 . 0 
27 1 80 1  . 8  3 5  745 1 . o  
45 1956 . 2  04 7462 . I 
1 5  2094 . 2  66 8002. 2  
33 2264 . 4  59  8456 . 0  
05 2266 . 3  65 859 1 . o  
1 3  2406 . 7 14  9826 . 8  
34 24 1 1 .  I 40 10 174 . 5  
03 2580 . 2  4 1  10533 . 6  
30 29 1 4 . 6  23 1 149 1 . 2  
44 3000 . 4 50 1 1838 . 9  
02 3004 . 3  54 12 184 . 3  
68 3009 . 6  67 12523 . 3  
08 1 100 . 8  6 1  1 3338 . 0  
17 3208 . 2  25 14027 . 7  
43 3213 . 6 53 1 4656 . 6  
49 3356 . 2  52 1 4723 .  I 
09 337 1 . 8  38 17 168 . 4 
36 3534 . 0  5 1  17665 . 4  
55 3682 . 2  26 2 133 1 . 0  
3 1  3770 . 6  63 2 1 536 . 1 
42 3309 . 3  62 27 137 . 5 
0 1  3888 . 0  48 27629 . 0  
32 4006. 0 29 29230 . 7  
22 4 183 . 8  
37 4 555 . 4  
24 4623 . 8  
46 4643 . 3  
18 4847 . I 
20 4887 . 0  
2 1  493 1 .  6 
1 2  5006 . 5 
64 538 1 . 6  
57 5476 . 9  
1 6  5626 . 2  
10 603 1 . 4  
58 6446 . 7 
1 1  6487 . 4  
19 69 17 . 9 
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