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EFFECTIVENESS OF SHELTERBELTS IN IMPROVING MICROCLIMATIC 

CONDITIONS FOR PHEASANTS IN EASTERN SOUTH DAKOTA 

Abstract 

To evaluate wintering habitat for ring-necked pheasants (Phasianus 

colchicus), this study compared microclimate regimes, as determined by 

wind and temperature, between shelterbelts containing 1 or 2 rows of 

coniferous tree species with shelterbelts comprised entirely of 

deciduous tree species and between wetland and shelterbelt habitats. 

Maximum temperatures within both shelterbelt types, particularly 

deciduous shelterbelts, were cooler than outside ambient air temperature 

during summer. Throughout November, December, and January, minimum 

temperatures in coniferous shelterbelt types were significantly (P � 

0.04) warmer than deciduous shelterbelt types. Effectiveness of 

shelterbelts in reducing wind velocity decreased from an average of 71�� 

during summer to 28% during winter. Horizontal vegetation density at 

roost sites in wetlands was significantly (P = 0.001) more dense than 

that found in shelterbelts. Wind velocity at roost sites in wetlands 

was reduced 95�� more than that found in shelterbelts. 

implications concerning design of shelterbelts for 

�!anagement 

improving 

microclimatic conditions for pheasants during winter are discussed. 

Key words: ring-necked pheasant, South Dakota, shelterbelt, wetlands, 

microclimate, cover use 
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INTRODUCTION 

The Timber Culture Act of  1873 and South Dakota's tree planting 

bounty laws of 1890 and 1920 were the initial monetary incentives for 

planting 0. 4-16. 0 ha tracts o f  trees, called tree claims, on the 

prairies of South Dakota (Griffith 1976) . Passage of The Prairie States 

Forestry Project of 1935-1942 resulted in the subsequent planting of 

32,000 km of multi-row shelterbelts in 6 of  the Great Plains States 

including South Dakota. Shelterbelts were designed to protect topsoil 

from wind erosion, control drifting snow, protect crops from hot drying 

wind during summer, and add beauty to South Dakota's prairie landscape. 

An unplanned benefit of  these shelterbelt plantings has been their value 

to many species of wildlife (Walker and Suedkamp 1977) . 

Although farmstead shelterbelts, field windbreaks, and other wooded 

habitats comprise < 3% of  the total area in the Great Pl ains (Griffith 

1976), the value of these wooded habitats has been demonstrated for 

several species of wildlife (Popowski 1976, Martin 1978) . M,any field 

windbreaks are being removed to make more land available for 

agricultural production or to make way for the installation and use of 

irrigation systems. In South Dakota, 99, 190 ha of shelterbel ts have 

been established during the l ast 60 years. Over the past 22 years, 

7 ,287 ha 9f shelterbelt habitat have been allowed to deteriorate into 

marginal or poor condition. An additonal 16, 600 ha will similarly 

deteriorate or be removed during the next 10 years unless actions are 

taken to rejuvenate these shelterbelts (Walker and Suedkamp 1977) . 

The effects of shelterbelts on pheasant numbers have been reported 
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for many states (Lyon 1959, Hanson and Labisky 1964, May 1978, Yahner 

1981, and Warner and David 1982). In Illinois, Hanson and Labisky 

(1964) found that shelterbelts were used in winter primarily for 

shelter, while the cool and moist microclimate offered by woody cover 

was beneficial for brood rearing. They felt autumn woody cover was more 

important to pheasant survival than the protection offered by woody 

cover during winter. 

Warner and David (1982) found that mortality and the subsequent 

decline in pheasant populations were due in part to exposure to 

precipitation and severe wind chill during winter. Pheasants use woody 

cover as loafing sites in winter because it provides protection from 

adverse weather, predators, and man (Robertson 1958). During periods of 

low temperatures and moderate to high winds, shel terbelts modify the 

microclimate, thus affecting foraging strategies, habitat use, and 

metabolic demands of birds (Grubb 1977, Mayer et al. 1979). Small trees 

and shrubs, which offer more protection because of plant growth form and 

irregular distribution, were used by pheasants during the winter in 

Illinois (Hanson and Labisky 1964). Although Warner and David (1982) 

observed that mortality was evident even in dense deciduous plantings, 

survival of pheasants may have been enhanced where multiple row 

plantings of conifers and other dense cover plantings were abundant. 

The extent of pheasant use of shelterbelts may be a function of 

snow depth, fluctuations in pheasant population densities, or proximity 

to alternative food sources (Gates and Hale 1974, May 1978, Yahner 

1981). Bue (1949) determined a maximum of 0.8 km travel radius around 

pheasant winter loafing areas in South Dakota, and Grondahl (1953) and 
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Weston (1954) reported winter travel radii of O. 63 km and O. 74 km, 

respectively, in I owa. 

Sather-Blair and Linder ( 1980) evaluated use of wetlands by 

wintering pheasants in eastern South Dakota. They found that wet land 

size and presence of emergency cover (tall woody and herbaceous cover) 

around a wetland were the most important factors influencing the amount 

of pheasant use . In years of heavy snowfall, pheasants move into 

coniferous and dense deciduous shelterbelts after wetland areas become 

filled with snow (Hanson 1958, Trautman 1982). Shelterbelts can be an 

important form of emergency cover for pheasants in South Dakota, 

particularly during cold winters with abnormal amounts of snow (Trautman 

1982). 

While shelterbelts and riparian woodlands are generally recognized 

as important habitat components for ring-necked pheasants (Yahner 1981, 

Walker and Suedkamp 1977), there is a need to identify specific 

shelterbelt characteristics important to pheasants in order to improve 

management efforts and generate wildlife habitat criteria for 

shelterbelt design. 

OBJECTIVES 

This study was initiated to compare seasonal characteristics of 

shelterbelts containing 1 to 2 rows of coniferous tree species with 

shelterbelts comprised entirely of deciduous tree species and to 

evaluate wetlands and shelterbelts as wintering habitat for pheasants. 

Microclimate regimes, as determined by wind and temperature, in relation 

to habitat structure of shelterbelts and wetlands were evaluated and 
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compared . The following null-hypotheses were formulated to test 

differences in shelterbelt and wetland habitats. 

1. The effects of vegetation structure on microclimate are not 

significantly different (P � 0. 05) between conifer and 

deciduous shelterbelt types . 

2. Microclimate within a shelterbelt, as determined by wind and 

temperature, is not significantly different (P � 0. 05) than 

microclimate at roosting sites of pheasants in wetlands. 

Several field objectives were identified to provide the data 

necessary to test these null-hypotheses. To evaluate shelterbelt 

quality as winter habitat for ring-necked pheasants, microclimate and 

habitat characteristics of shelterbelts containing coniferous trees were 

compared with shelterbelts comprised of deciduous trees only. 

Microclimate was quantified in wetlands at roosting sites and was 

compared to general shelterbelt habitats. Long axis orientation of all 

shelterbelts was evaluated to determine drifting patterns of snow and 

its effects on pheasant use. Ground cover, tree density, shrub density, 

and sapling density were evaluated for the shelterbelts. 

STUDY AREA 

The study area lies· in the Coteau des Prairie region of eastern 

South Dakota. Shelterbelts used in the study were located in Brookings, 

Lake, and Kingsbury counties in east-cent:.ral South Dakota (Fig. 1) . 

Topography varies from flat to undulating hills. Shelterbelt densities 

in these 3 counties are among the highest in South Dakota ranging from 

4. 1 shelterbelts planted per 2. 6 km 2 (1 mi 2 
) in Lake county to 2.9 per 
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Fig. l. Location of s helterbelt study plots in east-central South Dakota. Squares <•) 

indicate location of deciduous shelterbelt types and circl es (e) indicate 
location of coniferous shelterbelt types. 
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2. 6 km2 in Brookings county (Walker and Suedkamp 1977). Land use in 

eastern South Dakota is primarily livestock production and cultivation 

of small grain and corn. The growing season extends from April through 

September. 

The region is dominated by a continental climate with annual 

temperature extremes ranging from -29 C during winter to 38 C in the 

summer (Spuhler et al. 1971). The mean annual temperature range in the 

state is 9 C in the south to 7 C in the north. Subhumid conditions 

prevail with mean annual precipitation of 63. 5 cm. 

snowfall is 60. 1 cm per year (Spuhler et al 1971). 

Average annual 

Soils vary from level, medium to fine-textured in the bottomlands 

to gently sloping, medium-textured in the central upland. Soil types in 

the area are Entisols, Mollisols, and Inceptisols (west in and Malo 

1978) . 

Tree species planted in shelterbelts vary according to soil types. 

Shelterbelts vary in size and composition and are comprised of a variety 

of tree and shrub species. Green ash (Fraxinus pennsylvanica), Siberian 

elm (Ulmus pumila), and Tartarian honeysuckle (Lonicera tartaria). are 

found in the majority of shelterbelts throughout South Dakota (\..'alker 

and Suedkamp 1977). 
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METHODS AND MATERIALS 

Microclimate Measurements 

Microclimate measurements were recorded within shelterbelts from 11  

July 1983 through 30 March 1984. Each month during the summer (July -

September) and fall (October - November) , maximum/minimum thermometers 

and a recording thermograph (WEATHERtronics Inc . ,  West Sacramento, CA) 

were placed in 2 coniferous and 2 deciduous shelterbelt types for a 

period. of io to 12 days. During the winter (December March), 

thermometers also were placed in 2 deciduous and 2 coniferous 

shel terbelt types for a period of 10 days , but then moved to 4 other 

randomly choosen shel terbel ts for continuous monitoring of temperature 

differences. Maximum and minimum temperatures were recorded every 

24-hours during each study period. To reduce bias in the maximum 

reading due to reflectance of the sun, thermometers were placed on the 

north side of trees O. 3 m above ground level. Maximum and minimum 

temperatures at each roosting site in a wetland were taken for 1, 

24-hour period and compared to shelterbelt temperatures during the 

winter. Data from the climatological station at South Dakota State 

University were used to compare microclimate temperatures in 

shelterbelts with ambient air temperature outside shelterbelts. 

Wind velocity was recorded using 2 totalizing anemometers 

(WEATHERtronics Inc.) with 1 anemometer being located at randomly chosen 

areas in the center of each shelterbelt and the other being placed 75 m 

on the t,,;indward side of the shelterbelt to get an unobstructed wind 

reading. Six wind readings of 2 min. each were taken at 2 min. 
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intervals inside shelterbelts that contained thermometers. A 

simultaneous wind reading was taken outside the shelterbelt on the 

windward side . Wind readings were taken once a month during summer and 

fall in each shelterbelt that contained thermometers and in all 

shelterbelts during the winter. Wind velocity also was measured at 

roosting sites in wetlands and was compared with randomly chosen sites 

in the center of  the nearest shelterbelt. All wind velocity 

measurements were made at 0. 3 m above ground level. 

Vegetation 

Vegetation data for shelterbelts were collected from 8 August, 

through 10 September, 1983 . Vegetation measurements consisting of 

Robel-pole, number and average heights of saplings and shrubs, and 

canopy cover were obtained for 15 randomly-located O. 001 ha circular 

plots in each shelterbelt. Placement of  the first plot was determined 

by walking a random bearing and distance, as determined by a random 

numbers table, from the northeast corner of each shelterbelt. 

Successive plots were located by walking a �andom distance and bearing 

from the center of the preceeding plot. Bearing and distance 

combinations may have been modified to keep the entire plot within the 

shelterbelt. This process was repeated until 15 plots were completed in 

each shelterbelt. 

All shrub stems and saplings with a diameter at breast height (DBH) 

< 7. 7 cm were counted within the 0. 001 ha plot and an average shrub and 

sapling height was obtained for each plot. Canopy coverage was 

estimated using a single Model C densiometer (Lemmon 1957) which was 

read at waist level in each of 4 cardinal directions from the center of 
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the plot. Four Robel-pole (Robel et al. 1970) readings were obtained to 

estimate herbaceous horizontal density. Each reading was taken at a 

distance of 3 m and a height of 1 m in each of 4 cardinal directions 

from the center of the plot. 

The point-centered quarter technique (Cottam and Curtis 1956) was 

used to obtain a sample of 4 trees in which tree species, frequency, 

density, and DBH were obtained. The center of each O. 001 ha plot was 

used as the starting point for all measurements. A condition class 

rating ranging from 1 to 5, with 1) indicating no apparent sign of 

insect, disease, or mechanical injury, through 5) all 4 trees dead, was 

assigned subjectively to the 4 trees utilized for the point-centered 

quarter technique. 

using a clinometer. 

Height of the tallest of the 4 trees was measured 

At 50 random locations throughout each shelterbelt, herbaceous 

vegetation cover was sampled using a 20 cm x 50 cm Daubenmire frame 

(Daubenmire 1959). A transect was established running parallel to .. and 

in the center of each shel terbelt. A random bearing and distance was 

used at increments of 14 m along the transect to determine the location 

of each Daubenmire plot. Within the plot, grass species were identified 

and recorded. Coverage of each forb and grass species was visually 

estimated to the nearest cm2 Height of the tallest grass and forb 

species within the plot was measured with a meter stick. 

Winter vegetation density measurements in wetlands and shelterbelts 

were estimated using a 1 m x 1 m checkerboard. One hundred squares, 

each 100 cm 2 
, were inc 1 uded on the board. Density measurements were 

taken at each roost site in wetlands and at random locations in 
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shelterbelts. At each site and location a density measurement was taken 

from a distance of 5 m and at a height of 1 m above the snow in each of 

4 cardinal directions. Total number of squares obstructed were counted 

for each sample. A square was considered obstructed when any part: of 

the square was covered by vegetation. 

Cover Mapping 

Land-use types were cover-mapped for the entire study area. 

Agricultural Stabilization and Conservation Service (ASCS) aerial 

photographs (1:8000) were used to delineate field boundaries on the 

cover maps. Land-use types were field verified using the cover maps and 

later transfered to the ASCS aerial photographs for telemetry plotting. 

Capture and Marking 

Attempts were made to capture pheasants with hand-held nets in 

conjunction with a spotlight powered by a backpack generator from 

February through Hay 1983. After 55 man-hours of spotlighting, this 

method was determined to be ineffective. On every occasion pheasants 

flushed before we were close enough to capture them with hand-held nets. 

From May through August 1983, pheasant nests were located by 

dragging a cable and multi-layered chain between 2 vehicles through 

upland cover (Higgins et al. 1969). Hen pheasants found on nests were 

later captured using spotlighting and hand-held nets. Four hen 

pheasants weighing greater than 800 g were fitted with a backpack radio 

transmitter, Model RBS (Telonics Inc. , Mesa, AZ) using this technique. 

Nightlighting, using a four-wheel drive truck with a cluster of 6 

roof-mounted floodlights was used during the fall (Labisky 1968). The 

floodlight cluster consisted of four 150,000 candlepower and two 300,000 
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candlepower floodlights. The floodlights were adjusted to yield a 

semicircle of light extending approximately 10 m on either side of the 

vehicle and 30 m forward. Pheasants were located at night by cruising, 

at about 2 .  4 m/s (5 mph), through fields that offered roosting cover, 

such as hayfields, edges of wetlands, and idle upland cover. When a 

roosting bird was observed in the arc of the floodlights, an additional 

hand-held spotlight was switched on, pinpointing the location of the 

bird with the spolight beam, and the overhead floodlights were switched 

off. Hand-held nets were then used to capture the blinded pheasants. 

Twenty-one hen pheasants were fitted with a backpack radio transmitter 

using this method. 

Walk-in traps baited with corn were used to capture pheasants 

during the winter of 1983. Backpack radio transmitters were placed on 2 

hens captured using this method . 

Sex, tarsus length, wing length, and weight were recorded for each 

pheasant captured. An aluminum leg band, size 16, was placed o� 1 leg 

and a plastic bandette leg band (National Band and Tag Co. , Newport, KY) 

was placed on the other leg of each pheasant. Pheasants that had 

transmitters attached were anesthetized using methoxyflourine to reduce 

handling trauma (Smith et al. 1980) . An elastic loop was placed around 

each wing to attach the transmitter to -:he pheasant. The lithium 

battery powered transmitters were equipped with mortality sensors and 

weighed 33 g. 

Telemetry 

Pheasants were monitored using vehicle-mounted, double-yagi, 

antenna systems in conjunction with a null-peak combiner (Telonics Inc., 



Mesa AZ) attached to scanning recievers (Model TR-2 

Telonics Inc. ) Frequency range was from 150. 000 to 

12 

and Mode 1 TS-1, 

152. 000 MHz. A 

majority of the data was obtained using 2 trucks each having a dual, 

2-element yagi antenna system mounted in the bed (Hallberg et al .  1974) . 

Winter data were obtained using antenna systems mounted through the roof 

of each pickup (Greig D .  Jones, Boone, IA, pers. comm. ). Each antenna 

system consisted of a dual, 4-element yagi (Advanced Telemetry Systems, 

Inc . ,  Bethel MN) in conj unction with a null-peak combiner . Winter 

weather severity made telemetry readings difficult with the original 

antenna system. Three simultaneous triangulations from known positions 

were made on each pheasant to increase location accuracy. Accuracy of 

the first antenna systems were calibrated at ± 2 . 45 degrees (P � 0 . 05) 

up to a distance of 1. 6 km using 4 transmitters placed at known angles 

from given locations . Accuracy of the second system which was mounted 

through the roof was calibrated at ± 1. 45 degrees (P � 0. 05) using the 

same methods as described earlier . Although both systems utilized a 

compass rose to obtain bearings, the latter system used during the 

winter was more efficient, accurate, and durable .  

Telemetry observations for each radio-tagged pheasant were made 

once every 48 hours during 1 of 3 time p�riods : morning (0500-1000), 

noon ( 1030-1600), and evening ( 1630-2200). Observation periods were 

rotated in a random systematic manner to reduce bias. Telemetry data on 

each pheasant were col lected as a series of 6 fixes which resulted in 3 

pairs of simultaneous readings. 
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Telemetry P lotti ng  

All telemetry fixes were first ma nually drawn to scale on cover 

maps. Each map contained land- use data for the a rea occupied b y  each 

pheasant . I f  a n  aberra nt fix was noted, that fix wa s not used in the 

analysis, whereas if multiple aberrant fixes were not ed, the entire set 

of 6 fixes was not used in the a nalysis. The remaining sets of fixes, 

for individual b irds, were then plotted using the computer progra m TELEM 

(an int eractive computer system to a na lyze radio telemetry data) (Koeln 

1980) in conj unction with a Model 8 I BM 3 031 comput er a nd a CALCO�P 1051 

drum plott er. To locate each pheasant location, TELEM comb ined the 

usable fixes a nd plott ed 1 average location from every combination of 

pairs of possible fixes using the CALCOMP drum plotter. The CALCOMP 

plots, a t  the sa me scale as the cover maps were overlaid on the l a nd-use 

cover maps. The respective placement of each pheasant location was 

plotted on the cover map and land- use was recorded. Land- use b y  

pheasants wa s recorded b y  season a nd time period. Dista nces from the 

plotted pheasant locations to the nearest s helterbelt (any tree lot 

consisting of 4 or more r ows) a nd wetland ( edge of semipermanent 

wetland) were measured a nd dista nces were recorded. 

Data A n a lys i s  

Data w ere a nalyzed using S tat istical Analysis S ystems ( SAS) 

software packages (Ray 1982) in conj unction wit h a M odel 8 I BM 303 1 

computer at S outh Dakot a  S tat e U niversit y ,  B rookings, S out h  Dakota. 

Test s  w i th P � 0 . 05 were considered stati stically si gnif i ca nt .  
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RESULTS 

Microc l imate Measu rments 

During periods of low temperatures and moderate to high winds in 

winter, sheltered habitat can reduce energetic and food requirements for 

birds (Grubb 1976) . The ability o f  2 she 1 terbel t types to moderate 

winter temperature and wind velocity was analyzed. Differences between 

average maximum (avemax) and average minimum ( avemin) temperatures 

inside coniferous and deciduous shelterbelt types were tested using 

nested analysis of variance for each 10 to 12-day study period (Table 

1) . In July, avemax temperatures were significantly (P = 0. 013) higher 

in coniferous than in deciduous shelterbelt types. The temperature 

discrepancy may be due to the dense overhead canopy found in deciduous 

shelterbelt types resulting in more shade during the day. Avemax 

temperature in October was significantly (P = 0. 009) warmer in deciduous 

shelterbelts than in coniferous shelterbelt types. Throughout November, 

December, and January, avemin in coniferous shelterbelt  types remained 

significantly (P � 0. 04) warmer than deciduous shelterbelt types. Leaf 

drop may a llow more light to penetrate deciduous shelterbelts during the 

day and also allow more heat to escape through the now reduced overhead 

canopy at night (McLennan and Robinette 1976) . 

Reduced vertica l diffusion and mixing of the air usually results 

in higher daytime air temperatures and lower nightime temperatures in 

sheltered habitat than ambient air temperature during summer (Rosenberg 

1976) . Differences between avemax inside shelterbelts and maximum 

ambient temperature were tested using a paired t-test to determine if 

, ,  .. 
- -� 
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Table 1 . t-fean maximum and minimum temperatures recorded inside 
she lterbe lt types for 1 0 - 1 2  day periods in eastern South Dakota, 
1983-84 . F-values are from analysis of temperature differences between 
coniferous and deciduous shelterbelt types. 

MAX IMUM M IN IMUM 

DATE TYPE N x ( s .  e . ) F - va l ue N x ( s . e . ) F - va l ue 

Conif er .  2 0  3 0. 3 (0 . 5 7 )  20 20 . 1  (0 . 5 5 )  
July 9 . 94 *  0 . 40 

Dec id .  20  29 . 6  (0 . 60 )  20 20 . 0  (0 . 53 )  

Conifer .  22 29. 2 (0 . 36 )  22 1 9 . 0 (0 . 4 3 )  
Aug . 0 . 00 0. 1 6 

Decid . 22 29 . 1 (0. 48 )  22 1 9 .  1 (0 . 4 7 )  

Conifer .  2 0  1 6. 0  (1 . 1 4 )  20 4 . 7  ( 1 . 1 6 )  
Sept . 4. 69 1 .  39 

Decid . 20 1 5 . 3  (0 . 99) 20 4 . 9  (1 , 09) 

Conifer . 20  1 3 . 8  ( 1 . 1 8 )  20  4 . 2  (0 . 7 5 )  
Oct .  1 0 . 90** 0. 1 7  

Decid .  2 0  1 4. 3 (1 . 1 4 )  20 4. 3 (0 . 64 )  

Conifer. 20  2 . 9  (0 . 48 )  20 -0 . 4  (0 . 30 )  
Nov . 0 . 87 8. 04* 

Dec id . 20 3 . 1  (0 . 6 1 )  20 - 1 . 0 (0 . 39) 

1 2 / 3- Conifer . 20 -5 . 2  ( 1 .  06)  20  - 1 7 . 1 (0. 83 )  
1 2 / 1 2  0 . 00 19 . 6i.* 

Decid .  20  -5 . 2  (0. 94 ) 20 - 1 8 , 1  (0 . 94 )  

1 2 / 1 3- Conifer. 20  - 1 5 . 7  (2 . 1 3 )  20 -24 . 9  ( 1 . 7 7 )  

12 /22 0 . 02 8 , 25* 
Decid . 20 - 1 5 .  7 (2. 1 5 )  20 -25 . 3  ( 1 . 7 6 )  

1 2 / 30- Conifer . 20  -0 . 5  (1 . 1 6 )  20 - 9 . 3 (1 . 7 1 ) 
1 / 1 0  7 . 00* 7 . 00* 

Decid .  20  0 . 7 (0 . 91 )  20 - 1 0. 2  ( 1 .  80)  

l / 1 1  Conif er .  20 - 1 3. 5  ( 1 .  07 ) 20 -22 . 1  (1 . 29) 
1 /2 1  1 . 90 1 0 . 1 5* 

Decid .  20  - 1 4 . 0  (0 . 88 )  20 -23. 6 ( 1 .  30)  

1 /24 Conifer .  24 0 . 5  (0 . 4 5 )  24 - 7. 9 (0 . 72 )  
2 / 4  3 . 94 0 . 09 

Dec id . 24 1 .  0 (0. 49)  24 - 7 . 9  (0 . 7 0 )  
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Table 1 . Continued . 

MAXIMU M  MIN I MUM 

DATE TYPE N i ( s  . e . ) F-va lue N i ( s .  a . ) F - va l ue 

2 / 1 9- Con if er . 20 3 . 3  ( 0 . 6 5 )  20 - 2 . 7 ( 1 . 1 5 )  
2 / 28 0 . 92 0 . 14 

Decid . 20 3 . 5 ( 0 . 7 5 )  2 0  -2 . 6 ( 1 . 1 5 )  

3/8- Conifer . 20 �2 . 0 ( 0 . 8 5 )  20 - 1 4  7 ( 1 . 86 )  
3 / 1 7  1 . 3 0  0 . 4 6 

Dec id 20 - 2 . 1 ( 0 . 8 3 )  20 - 1 4 . 5  ( 1 . 85 )  

3 / 2 1 - Conifer . 20 4 . 4  ( 0 . 48 )  20 -2 . 4 ( 0 . 53 )  
3 / 30 1 1 .  82**  4 . 29 

Decid . 20 4 . 0  ( 0 . 4 4 )  20  -2 . 6  ( 0 . 57 )  

* P :f O .  OS 
** P � 0 .  0 1  
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daytime temperatures inside shelterbelts were higher due to decreased 

air movement and reflected and reradiated solar warmth. Although both 

shelterbelt types had significantly (P � 0. 03) lower avemax temperatures 

than outside ambient air temperatures, in July and August, avemax 

temperatures in deciduous shelterbelt types were consistently lower than 

avemax temperatures in coniferous shel terbelt types (Table 2). Avemax 

in both shelterbelt types was usually warmer than maximum ambient 

temperatures from October 1983 through March 1984. Avemax in deciduous 

shelterbelts were significantly (P � 0. 04) warmer within the shelterbelt 

than ambient air temperatures during November , 3 December through 12 

December, and 24 January through 4 February. Both shelterbelt types 

were significantly (P � 0. 005) warmer within the shelterbelts than 

ambient air temperatures from 8 March through 17 March 1984. I n  order 

to determine if shelterbelts allowed less heat to escape during 

evenings, a paired t-test compared differences between avemin and 

minimum ambient temperatures (Table 3) . No difference was found between 

minimum temperatures except for one 10 day study period in January. 

Wind velocity is a major factor in the severity of wind chill. 

For example , a -18 C ( 0 F) ambient temperature with a calm wind has no 

appreciable wind chill whereas a wind speed of 7. 2 m/s ( 15 mph) has a 

wind chill of -32 C (-2 6  F) with the same ambient temperature. In order 

to determine if shelterbelts effectively reduced wind velocity, a paired 

t-test was used to compare average wind speed in coniferous and 

deciduous shelterbelt types with wind speed on the unobstructed windward 

side of each shelterbelt. Shelterbelts of both types significantly ( P S 

0. 04) reduced wind velocity during all 3 seasons (Table 4) . 



Table 2. Mean maximum temperatures taken inside and outside shelterbelt 
types for 10- 12 day periods in eastern South Dakota, 1983-84. Paired 
t-values are from analysis o f  temperature differences between inside 
maximum and outside maximum temperatures 

I N S I DE 
MAX I MUM 

OUTS I DE 
MAX I MUM 

DATE TYPE N i ( s . e . )  N x ( s . e . ) t- va l ue 

Conifer . 20 30. 3 (0. 5 7 )  3 , 88** 
July 10 3 1 . 6  (0 . 89 )  

Decid , 20 29 . 6  (0 . 60) 8 . 84 ** 

Conifer . 22 29 . 2  (0. 36) 2 . 50* 
Aug . 1 1  30, 8 (0 . 68 )  

Decid . 22 29 . l  (0 . 48 )  2 . 98*  

Conifer . 20 16 . 0 ( 1 . 1 4 )  0 . 68 
Sept. 10 1 7 , 4  (2 . 26) 

Decid . 20 1 5 . 3  (0 . 99 )  1 .  3 3  

Conifer . 20 1 3 . 8 ( 1 . 1 8 )  0 , 44  
Oct .  10  12 . 6  (1 . 40) 

Decid . 20 1 4 . 3  (1 . 14 )  1 . 16 

Conifer . 20 2 . 9  (0. 48 )  1 . 60 
Nov . 10 2 . 4  (0 . 9 3 )  

Dec id . 20 3 . 1 (0 . 61 )  

1 2 / 3- Conifer . 20 -5 . 2  ( 1 . 06) 
1 2 / 12  

Dec id . 20 -5 . 2  (0. 9 4 )  

1 2 / 1 3- Conifer . 20  - 1 5 . 7  (2 . 1 3 )  
1 2/22 

Decid . 20 - 1 5 . 7  (2 . 1 5 )  

1 2 / 30- Conifer . 20 -0 . 5  ( 1 . 1 6) 
1 / 10 

Decid. 20 0. 7 (0. 9 1 )  

1 / 1 1 - Conifer . 20 - 1 3 . 5  (1 . 07 )  
1 / 2 1  

Decid . 20 - 1 4 . 0  (0 . 88 )  

1 /24- Conifer . 2 4  0 . 5 (0. 4 5 )  
2 / 4  

Dec id . 24 1 . 0 (0 . 49 )  

1 0  -7 . 7  (0 . 7 5 )  

1 0  - 1 8 . 5  (2 . 25 )  

10  -0. 8 (1 . 79) 

10 - 1 3 . 9  ( l . 27 )  

1 2  0 . 4 (0 , 64 )  

2 . 45* 

2 . 02 

2 . 34*  

1 .  5 7  

1 .  50 

0 . 63 

1 .  94 

1 . 82 

1 . 09 

0. 26 

2 . 25*  
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Tab le 2 .  Continued . 

I N S I DE O UTS I DE 
MAX I MUM MAX I MUM 

DATE TYPE N i ( s . e . ) N x ( s . e . ) t- va l ue 

2 / 1 9- Conifer . 20 3 . 3 ( 0 . 65)  1 .  98  

2 / 28 1 0  2 , 5  ( 1 .  06 ) 
Decid . 20 3 . 5  ( 0 . 7 5 )  1 . 94 

3 / 8- Conifer . 20 -2 . 0  ( 0 . 85 )  3 .  72** 

3 / 1 7  1 0  -4 . 0  ( 1 .  30)  
Decid . 20 -2 . 1  ( 0 . 83 )  3 . 65** 

3 / 2 1- Conifer . 20 4 . 4  ( 0 . 48 )  1 .  3 8  

3 /30 1 0  4 . 0  ( 0 . 82 )  

Decid . 20 4 . 0  ( 0 . 44 )  0 . 33 

* p s 0 . 05 
** P s 0 . 0 1 
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Table 3.  Mean minimum temperatures taken inside and outside shelterbelt 
types for 10 - 12 day periods in eastern South Dakota , 1983-84. Paired 
t-values are from analysis of temperature differences between inside 
minimum and outside minimum temperatures 

INS I DE 

M IN IMUM 

OUTS I D E  

M I NIMUM 

DATE TYPE  N x ( s . e . ) N x ( s . e . ) t- va l ue 

Conifer . 20 20 . 1 (0 . 55 )  0 , 43  
July 1 0  20 . 3  (0 . 93 )  

Decid . 20 20 . 0  (0 . 53 )  0 . 9 1  

Conifer . 22 1 9 . 0 (0 . 43 )  0 . 00 
Aug . 1 1  1 8 . 9  (0 . 68 )  

Decid . 22 1 9 .  l (0 . 4 7 )  0 . 5 3 

Conifer . 20 4 . 7  (1 . 16) 0 . 74 
Sept . 10  5 . 3  ( 1 . 70 )  

Decid . 20 4 . 9  ( 1 . 09 )  0 . 46 

Conifer 20 4 . 2  (0 . 7 5 )  0 . 76 
Oc t .  1 0  3 . 1 ( 1 . 00)  

Nov . 

Decid . 20 4 . 3  (0 . 64 )  

Conifer . 2 0  -0 . 4  (0 . 3 0 )  

Decid . 20 - 1 . 0  (0 . 39 )  

1 2 / 3- Conifer . 2 0  - 1 7 . 1 (0 . 83 )  
12 / 1 2  

Dec id . 20 - 1 8 . 1 (0 . 94 )  

1 2 / 1 3- Conifer . 2 0  -24 . 9  ( 1 . 7 7 )  
12 /22 

Dec id . 20  -25 . 3  ( 1 . 76) 

1 2 / 30 Conifer . 20 -9 . 3  (1 . 7 1 )  
1 / 1 0 

Decid . 20 - 1 0 . 2  ( 1 . 80 )  

1 / 1 1- Conifer . 20 -22 . 1 (1 . 29 )  
1 /2 1  

Decid . 20 -23 . 6  (1 . 30)  

1 /24- Conifer . 24  -7 . 9  (0 . 72 )  
2/4 

Decid . 24 -7 . 9  (0 . 7 0 )  

1 0  - 1 . 0  (0 , 4 1 )  

1 0  - 1 7 . 6  ( 1 , 65 )  

1 0  -25 . 3  (2 , 59 )  

1 0  - 1 1 .  l ( 2 ,  64 ) 

1 0  -20 . 6  ( 1 . 68 )  

12 -8 . 6  (l , 14 )  

1 .  3 3  

1 . 83 

a . so 

0 . 55 

0 . 3 1 

0. 84 

0 , 22 

l .  4 5  

0 . 58 

3 .  7 7 ** 

0 .  7 3  

1 . 25 

l .  39  
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Table 3 .  Continued . 

INS I D E  O UTS I DE 
M I N I MUM M I NIMUM 

DATE TYP E  N x ( s . e . ) N x ( s  . a . ) t-va l ue 

2/ 19- Conifer . 20 -2 . 7  ( 1 .  1 5 )  1 .  30 
2 / 28 1 0  -4 . 3  (0 . 7 1 )  

Decid . 20 - 2 . 6  ( l ,  1 5 )  1 . 39 

3/8- Conifer . 20 - 14 . 7  ( 1 . 8 6 )  o .  7 7  
3 / 1 7  10  - 1 4 . 3  ( 2 . 49 )  

Decid . 20 - 14 . 5  ( 1 . 85 )  0 , 3 1 

3 /2 1- Conifer . 20 - 2 . 4  ( 0 .  5 3 ) . l .  73 
3 /30 to -2 . 0  (0 . 84 )  

Decid . 20 - 2 . 6 ( 0 .  5 7 )  2 . 84 

** p s 0 . 0 1 
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Table 4 .  Means and paired t -values of average wind speed (m/ sec) in 
coniferous and deciduous shelterbelts as compared to unobstructed wind 
speed outside of each shelterbelt in eastern South Dakota , 1983 -84 . 

CON I FEROUS DEC I D UOUS 

DATE LOCATION N x ( s . a . ) t· va l ua N x ( s  . a . ) t- va l ue 

Inside 1 2  1 .  20 ( 0 . 2 6 )  1 2  0 . 4 0  ( 0 . 26 )  
July 7 . 1 6** 1 5 . 07** 

Outside 1 2  2 . 20 ( 0 . 50)  1 2  1 .  9 0  (0 . 008 ) 

Inside 1 2  o .  70  ( 0 . 09 )  1 2  0 . 4 0 ( 0 . 0 1 )  

Aug . 9 . 29** 28 . 99*:', 

Outside 1 2  3 . 60 ( 0 . 6 1 )  1 2  2 . 7 1  (0 . 1 2 )  

Inside 1 2  0 . 20 ( 0 . 00 )  1 2  0 . 36 (0 . 04 )  

Sept . 5 . 37 ** 6 . 53** 

Outside 1 2  1 .  2 2  ( 0 . 40)  12  0 , 9 0 (0 . 05) 

Ins ide 1 2  0 . 98 ( 0 . 1 6 ) 1 2  0 . 56 ( 0 . 1 4 )  
Oc t .  4 . 62** 1 8 . 2 1 ** 

Outside 1 2  2 . 09 ( 0 . 4 7 )  1 2  2 . 4 7 (0  . 1 7 )  

Inside 1 2  0 . 58 ( 0 . 03 )  1 2  0 . 1 5 (0 . 05 )  
Nov . 4 .  27** 1 1 .  35** 

Out s ide 1 2  1 .  39 ( 0 . 49 )  1 2  0 . 70 (0 . 03 )  

Inside 3 6  1 .  7 3  ( 0 .  7 1 ) 30 2 . 22 (0 . 66)  

Dec . 1 3 . 45** 7 . 62** 

Out s ide 36  4 . 55 ( 0 . 3 5 )  30  4 . 94 (0 , 45 )  

Inside 36  1 .  67 ( 0 . 3 6 )  3 0  1 .  30  (0 . 1 8 )  
Jan .  2 . 24* 4 .  70** 

Outside 36  1 .  9 6  ( 0 . 2 1 )  30 2 . 1 8 (0 . 32 )  

Inside 3 6  2 . 5 1 ( 0 . 4 2 )  3 0  2 . 33 ( 0 . 1 1 ) 

Feb . 2 . 1 4*  5 .  1 2** 

Outs ide 36  2 .  7 2  ( 0 . 4 7 )  3 0  2 . 90 (0 . 23 )  

Ins ide 36 1 .  28  (0 . 07 )  3 0  0 . 98 (0 . 1 3 )  
Mar . 5 . 90** 8 . 65** 

Outside 36  1 .  7 2  ( 0 . 1 7 )  3 0  1 .  5 6  (0 . 18)  

* p s. 0 . 05 
** p 5: 0 . 0 1  
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Proport ional wind reduct ion was tested between she 1 terbel t types 

using a 2 x 4 contingency table (Table 5) . Coniferous and dec iduous 

shelterbelt types each reduced wind velocity an average of 67. 9�� and 

7 3. 5% , respect ively, dur ing the summer. In fa ll , dec iduous shelterbelts 

reduced wind velocit ies (78 . 4��) significant ly ( P  = 0 . 0 01) more than 

coniferous shelterbelt types (50 . 0%) . The effect iveness of shelterbelts 

to reduce w ind veloc ity decreased in w inter to 32. 6�� in deciduous and 

24 . 3,� in coniferous shelterbelt types . Wind reduct ion capabilit ies of 

both shelterbelt types changed s ignifi cant ly ( P  = 0 .  0 0 1) dur ing the 3 

seasons . Leaf drop dur ing fall , and snow accumulat ing in shelterbelts 

dur ing w inter , may have decreased the effect iveness of shelterbelt 

habitat to reduce wind velocity. 

Analysis of var iance was used to determine if there were 

differences in microclimate var iables between roost ing sites in wetlands 

and random locat ions in shelterbelts . Wetland habitat reduced w ind 

velocity significantly ( P  = 0 . 0 01) more than shelterbel t  habitat (Table 

6 ) . Maximum temperatures at roost s ites in wetlands were significantly 

(P � 0. 04 ) warmer than maximum temperatures in shelterbelts. No 

significant ( P  � 0. 22) differences were found between m inimum 

temperatures (Table 7 ) .  

reflectance of the sun . 

Vegetational Measurements 

Maximum temperatures may have been biased by 

Nested analysis of var iance was used to determ ine if there was a 

st ructural difference in vegetat ion var iables measured in con iferous and 

dec iduous shelterbelt types (Appendix 1 ) .  No s ignificant (P � 0 . 44) 

structural d ifference was found in any of the var iables except forb 
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Table 5 .  Mean wind speed reduction (%) from unobstructed wind outside 
shelterbelts to inside shelterbelts at a height of O. 3 m in eastern 
South Dakota 1983 -84 .  Chi-square values are from analysis of 
proportional wind speed reduction between shelterbelt types and seasons. 

CON I FEROUS DEC I D UOU S  CH I - SQUARE 

x ( N )  x ( N )  

Summer 67. 9 (6) 7 3. 5  (6) 2. 28 

Fall 50. 0 (4) 78 . 4  ( 4) 15. 92*": 

Winter 24 . 3  (24) 32 . 6  (20) 19 . 08** 

Season 58. 75,�,,� 6 6. 6 1** 

** P S  0 . 01 
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Table 6 .  Mean wind speed (m/sec) of simultaneous readings taken in 
shelterbelts and at roost sites in wetlands during February, 1984 in 
eastern South Dakota. F-values are from analysis of wind speed 
differences between shelterbelt and wetland habitat tYPes. 

COVER TYPE N x ( s  . e . ) F - va l ue 

Nielson Shel terbel t g 1 .  0 7  (0 . 05) 
353 . 1 4 ** 

Nielson Wet land 8 0 . 08 (0 . 0 1)  

Peterson Shel terbel t  9 0 . 8 6 (0 . 08) 
1 1 3 . 98** 

Peterson Wetland 9 0 . 04 (0 . 0 1) 

Stime Shelterbel t 7 1 . 88  (0 . 1 5) 
1 40 . 3 1 ** 

Stime Wet land 7 0 . 03 (0 . 03) 

Thompson Shelterbel t  5 2 . 3 5 (0 . 04) 
433 . 78** 

Thompson Wetland 5 0 . 1 7  (0 . 09) 

Madsen Shelterbel t 6 0 . 9 1 (0 . 1 5) 
37. 22** 

Madsen Wetland 6 0 . 00 (0 . 00) 

** p s 0 . 0 1 
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Table 7. �ean maximum and minimum temperature readings taken at roost 
sites in wetlands and at random locations in the center of shelterbelts 
in eastern South Dakota , February , 1984 . F-values are from analysis of 
temperature differences between shelterbelt and wetland habitat types. 

MAXIMUM M I N I MUM 

COVER TYPE N x ( s .  e . ) F - va l u e  N x ( s .  e . )  F - va l ue 

Nielson shelterbelt 3 2 . 0  (0 . 00) 3 0 . 3  (0 . 33 )  
5 . 58* 1 .  57  

Nielson wetland 8 3 . 2  (0 . 3 1 )  8 0 . 7  (0 . 16) 

Peterson shelterbelt 3 7 . 3  (0 . 67 )  3 0 . 3  (0 . 34 )  
56 . 26** 1 .  7 1  

Peterson wetland 9 1 1 .  3 (0 . 22 )  9 0 . 9  (0 . 22) 

Stime shelterbelt 2 0 . 5 (0 . 50 )  2 - 1 2 . 5  (0 . 50) 
302 . 76** 1 .  65 

Stime wetland 7 1 2 . 8  (0 . 34 ) 7 - 1 3 . 4  (0 . 32 )  

Thompson shelterbelt  2 1 . 0 (0 . 00) 2 - 1 3 . 5  (0 . 50) 
29 . 97** 0 . 04 

Thompson wetland 5 6 .  1 (0 . 56) 5 - 1 3 . 6  (0 . 25 )  

* p _$ .. , 0 .  05 ** p .s 0 . 0 1 
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height (P = 0.02) and forb density (P = 0.01) . Deciduous shelterbelt 

types had a mean forb density of 21. 8% as compared to a mean of 10. 4% 

for coniferous shelterbelt types . Since few structural differences were 

found between shel terbel t types , it would indicate that only 1 row of 

coniferous tree species in a s helterbelt did not alter the structural 

characteristics of the entire shelterbelt. 

Dense horizontal cover reduces wind velocity and can enhance 

survival of pheas ants during periods of high winds and low temperatures 

(Grubb 1976) . I n  order to determine if wetlands provided more 

horizontal cover during winter than shelterbelts,  nested anal ysis of 

variance was used to test differences in density board readings (Table 

8) . Wetland vegetation density was significantly (P = 0. 001) more dense 

than that found in shelterbelts. 

Telemetry and  Cover U se 

Thirty-seven hen pheas ants and 25 cock pheas ants were captured and 

marked during summer, fall, and winter, 1983-84 .  Transmitters were 

placed on 27 hens during the 3 seasons (Table 9) . One hundred and 

forty-five telemetry locations were determined for hens during summer , 

100 during fall, and 23 during winter. The small s ample size during 

winter was due primarily to transmitter failure and a high pheasant 

mortality rate during severe winter storms.  

Contingency tests were utilized to determine if  hen pheas ants used 

cover types in equal proportions during 3 designated time periods 

(morning, noon, and evening) or during 3 seasons. No significant 

difference (P � O .  11) was found for cover-use in any time period or 

season. 
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Table 8 .  �ean density board readings taken randomly in shelterbe lts  and 
at roost sites in wetlands in eastern South Dakota, February 1984. 
F-values are from analysis of density board readings between shelterbelt 
and wetland habitat types . 

COVER TYPE N 

Shelterbelt 5 

Wetland 5 

,':-,': P S O .  0 1  

24 . 96 

96 . 58 

( s . e . ) 

( 2 . 38 )  

(0. 49) 

F - va l ue 

221 . 9** 



Table 9 .  Fate o f  2 7  pheasant hens f i t ted wi th  rad io backpacks i n  eas tern Sou th  Dako t a  1 983-84 . 

ID  DATE TRA N SM I SS ION TRAN SM I S S ION CA USE OF 

NUMBER RAD IOED TERM I N ATED LONG E V I TY TERM I NATION 

( Days ) 

2002 06/08/83 06/29/83 2 1  Av ian predator  

2003 06/08/83 1 0/08/8 3 1 22 Transmi t ter fel l o f f  

2005 06/27/8 3  0 1 /07/84 1 94 Transmi t ter fa i lure 

2004 06/20/8 3  0 1 /07/84 1 87 Transmi t ter fa i l u re 

2045 1 0/08/83 0 1 /20/84 1 04 Mamma l ian predator  

2046 1 0/08/83 1 1  /29/83 5 2  Unknown 

2048 1 0/08/83 0 1 / 1 4/84 98 Transmi t ter f a i l ure 

2039 09/30/83 0 1 /07/84 99 Transm i t ter fa i l u re 

2027 09/24/83 1 2/24 /83  9 1  Transm i t ter fa i l ure 

201 1 09/1 6/83 1 2/24/83 8 3  Transmi t ter fa i l ure 

20 10  09/1 6/83 1 2/24 /83  83  Transmi t ter fa i l ure 

2009 09/ 14/8 3  0 1 /07/84 1 1  S Transm i t ter fai lure 

2030 09/29/8 3  0 1 /09/84 1 02 Unknown 

2054 1 0/29/83  0 1 /3 1 /84 94 Unknown 



Table 9 .  Con t inued . 

I D  DATE TRANSM I SSION 
N UMBER RAD IOED TERMI NATED 

2059 1 0/ 2 9/83  l l /04 /83  

2060 1 0/ 2 9/83  l l / 1 8/83  

2055 1 0/ 2 9/83  0 1 /3 1 /84 

2024 09/ 22/83  O l /07 / 84 

20 1 8  09/ 2 2/83  1 1 / 20/83 

20 1 9  09/ 22/83  1 0/ 1 7 / 8 3  

2020 09/ 22/83  0 1 /07/83  

205 1  1 0/ 2 7 /83  1 2/07/83  

2052 1 0/ 2 7 /83  0 1 /07 / 84 

2062 1 1 / 02/83  0 1 /09/ 84 

2063 1 1 /03/83  0 1  /07  / 81� 

2067 01 / 30/84 02/05/84 

2066 0 1 / 30/84 02/07 /84 

TRANSM I SSION 
LONGEV I TY 

( Days)  

6 

20  

94 

1 07 

59 

2 5  

1 07 

4 1  

7 2  

68 

65 

6 

8 

CA USE OF 
TERM INATION 

Unknown 

Mamma l ian preda tor 

Unknown 

Transm i t ter fail u re 

Unknown 

Mammal ian predator  

Transm i t ter f a i l ure 

Unknown 

Exposure 

Exposure 

Unknown 

Exposure 

Exposure 

w 

0 
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Contingency tests were used to test if  hen pheasants were closer 

to wetlands or shelterbelts. Hen pheasants remained significantly (P = 

0 .  04) closer to wetlands than shel terbelts. No di fference was found 

when distances to shelterbelts and wetlands were tested against time 

periods (morning , noon, and evening). 

Contingency tests were used to determine if pheasant use of 

certain cover types is related to win.d velocity or wind chill factors. 

No significant difference (P � 0. 09) was found indicating that pheasants 

exhibited no land-use preference during periods of high winds or low 

wind chills. The small sample size (23) of telemetry locations during 

winter may have been partially responsible for the l ack of a significant 

difference in cover-use. 

DISCUSSION 

Ring-necked pheasants need 4 discrete types of  winter cover : 

roosting, loafing, emergency, and feeding areas. Shelterbelts, if 

designed properly , can provide pheasants with emergency cover from 

predators and snow and with roosting and loafing cover during periods of 

deep snow (Trautman 1982) . Al though sheh:erbel ts are genera lly 

considered an important source of shade during the summer and cover in 

winter, several authors have found that shel terbel ts did not enhance 

survivability of pheasants during winter (Lyon 1959, Warner and David 

1982) .  Warner and David ( 1982) concluded that the es-cablishment of 

linear woody plantings (especially those comprised entirely of deciduous 

tree species) should not be encouraged to prevent pheasant mortality 

during severe winter storms. Lyon ( 1959) found that woody windbreaks 
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did not function effectively as winter cover in northeastern Colorado . 

In  this study, shel terbel ts containing coniferous tree species 

were compared with shelterbelts comprised entirely of deciduous tree 

species in order to determine which shelterbelt type provided a more 

favorable microclimate for pheasants during winter. Actual tree species 

composition varied between shelterbelts with green ash , and american elm 

(Ulmus americana) being found in all shelterbelts (Table 10) . 

Both shelterbelt types, particularly deciduous, had avemax 

temperatures cooler within the shel terbelt than maximum ambient air 

temperature during summer. Dense overhead canopy and horizontal cover 

offered pheasants an area protected from avian predators and a cool 

habitat in which to raise broods. Hanson and Labisky (1964) found that 

cooler temperatures and moist microhabitat within shelterbelts during 

the intense heat of summer was beneficial to brood rearing. 

From November 1983 through 21 January 1984 minimum temperatures in 

coniferous shelterbelts were warmer than minimum temperatures in 

deciduous shelterbelt types. Coniferous tree species reduce air 

movement and create a zone of placid air in shelterbelts. In  dense 

cover where there is l ittle or no air movement, the temperature within 

the vegetation will approach that of the ground surface, which during 

winter is warmer than the surrounding vegetation (Geiger 1965) .  Warmer 

temperatures are beneficial in reducing energetic and food requirements 

for pheasants during winter. 

As the earth emits heat back to the environment in the form of 

long-wave radiation , obstructions such as tree limbs or canopy cover 

wi l l  absorb and reradiate the heat back to the earth , therefore creating 



Tab l e 1 0 .  Tree and sh rub compos i t ion o f  sl te l terbe l t s s tud ied i n  eastern Sou th  Dakot a  
i nd icate  row p l aceme n t  o f  t ree s pec i e s  from nor t h  to  sou t h .  

Spec ies 

S ibe r i an e lm 
( U lmu s _p_umi l a )  

Ameri can e lm 
( U lmus amer i can a )  

Green ash 
( Frax inus  pennsylvan i ca) 

Co t tonwood 
( Popu lus  de l t o ides) 

Russian o l ive 
( E laegnus cornmu tata) 

Burr oak 
(Quercus mac roc arpa) 

Box e lder 
( Acer  negundo) 

Ponderosa p ine 
( P i nus ponderosa) 

Eastern red cedar 
( Jun iperus v i rgi n iana ) 

Tar t a r i an honeysuck l e  
( Lon i cera t a t ar i ca )  

Common l i lac 
( Syr i nga vu lgar is )  

SB l SB2 SB3  

1 3 , 4 

2 s 5 

3 , 4 , 5  3 ,4 , 7 l , 2 , 6 , 7  

6 

8 

6 

1 ,  2 

7 8 

SB4 SBS SB6 SB7  SB8  

2 l 

3 , 4 , 5  3 , 4 ,  5 6 , 7  2 , 5 , 6  6 , 7 , 8 

1 , 6  l , 6 ,  7 3 , 9  1 , 3 , 4 , 7 ,  3 , 4 , 5  
8 , 9 , J O  

2 4 , 5  

8 

8 

2 

7 

8 1 0  

9 I 

1 983-84 . Numbers 

SB9  SB I O  SB  I I 

1 , 3 ,  7 4 

4 3 , 4  2 , 3 

2 , 6  2 , 5 , 6  5 , 6  

5 

7 

8 7 

w 
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a microclimate with a higher minimum temperature. R adiation is a form 

of thermal energy exchange between an animal and its environment ( � oen 

19 7 3) with each s urface radiating energy at wavelengths that are 

dependent on the temperatures of the emit ti ng s urface (Ge_iger 1965) . 

�loen ( 19 7 3 )  f ound that unobs tructed clear s ky condition p rovided the 

leas t amount of downward radiation while cedar (Thuj a occidentalis ) had 

the mos t amount of downward radiation. Ozoga and Gys el ( 19 7 2) found 

that us e of dens e coniferous cover by white- tailed deer (Odecoi l eus 

virginianus ) increas ed during p eriods of low temperatures and s evere 

wind chill. 

Wind velocity is the major f actor ef f ecting wind chill ( the amount 

of heat los t f rom a unit of area per unit of time) . C onif erous and 

deciduous s hel terbelt typ es reduced wind velocity during s ummer an 

average of 67 . 9% and 7 3 . 5�� .  resp ectively . Whereas in w inter, wind 

velocity was reduced only 32.  6�� in deciduous and 24. 3% in coniferous 

s helterbelt types . S hrub and s ap ling s tems ca� be ef f ective in reducing 

wind vel ocity within the s helterbel t by prov iding horizontal cover. 

Leaf drop as well as s hrub and s ap ling s tems hav ing been buried by s now 

accumulation res ulted in lowered w ind reduction cap abilities of 

s helterbelts . An av erage of 8 2  cm of s now had accumulated in the 

s helterbelts by F ebruary 19 84.  

Heat s tored in an animal is a f actor of metabolic energy , heat 

gained or 

ev aporation 

heat l os t  by 

(Robbins 19 8 3 ) . 

radiation, convection, conduction, and 

the As ambient temperature decreas es , 

animal is i ni ti ally abl e to remain w ithin its thermoneut ral zone 

( temperature range in which thermoregul ation can occur wi thout 
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increasing metabolic heat production) . As continued reductions in 

ambient temperature occur, an increase in metabolic heat production is 

needed if body temperature is to remain constant. In January , a 

pheasant needs an average of 504 kcal/day for warmth and maintenance , 

whereas in September only 114 kcal/day are needed ( Solomon 1984) . In a 

review on pheasant bioenergetics Solomon (1984) , noted that if the 

habitats pheasants utilize were 3 C warmer than the surrounding air 

during winter, pheasants would expend 3% less energy. Three percent 

less energy expenditure during the winter could make the difference 

between survival or death , and between good or poor breeding success. 

With an ambient temperature of -18 C (O F) and a wind velocity of 7. 2 

m/s ( 15 mph) , wind chill in a shelterbelt exhibiting average winter wind 

velocity reduction (31%) would be -31 C as compared to -35 C outside the 

shelterbelt. Decreased wind chill in shelterbelts can allow pheasants 

to expend less energy and have a better chance of survival. Edwards et 

al. ( 1964) found that in some years the reproductive success and 

mortality of hens is partially effected by the severity of winter 

weather. 

Wetland vegetation at roost sites reduced wind velocity an average 

of  95� more than shelterbelt vegetation . Reduced wind velocity in 

wetlands is due to the horizontal cover , consisting of cattails (Typha 

spp . )  and phragmites (Phragmites communis) . If  the reduced wind 

velocity was 7. 2 m/s in a shelterbelt with an ambient temperature of -18 

C, wind chill would be -36 C, while at the same time in adjacent 

wetlands the wind chill would still be -18 C .  During periods of 

moderate wind velocities, wetlands can provide pheasant habitat with a 
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reduced wind chill resulting in a decreased energy demand during winter. 

Wetlands may be a preferred roosting cover during winter due to heavy 

vegetative protection , but shelterbelts become increasingly important to 

pheasants as wetlands become filled with snow (Hanson 1958 , Trautman 

1982) 

Analysis of telemetry data indicated that transmittered hens were 

associated more closely to wetlands than shelterbelts. Cover density 

may have caused pheasants to remain in proximity of wetlands during 

winter weather. Transmittered hens did not appear to be selecting for 

specific cover types during periods of high wind velocities that would 

have caused severe wind chills. Sheltered habitat can reduce excessive 

energetic requirements by providing an area with little or no �ind chill 

(Grubb 197 6 ) .  The small sample size (23) of telemetry locations during 

winter may have been partially responsible for the inability to 

distinguish a difference in cover use. Hen pheasant movements in 

Wisconsin during fall and winter were not found to be related to ambient 

air temperature or survival, but were related to year , snow depth, and 

age of the hen (Gatti et al. 1983 ) .  

Movement and survival o f  transmittered hens may have been affected 

by the weight of the transmitter packages, since no transmittered hens 

survived the winter. Warner and Etter ( 1983) observed that reproductive 

success or survival beyond 3 months was unlikely for hens equipped with 

radio packages weighing more than 27 g. 

In  South Dakota, severity of winter weather to a large extent 

determines the proportion of the autumn pheasant population that 

survives to participate in the spring breeding season. Hen pheasants in 
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poor condition at the end of w i nter may exhibi t delayed reproducti on, 

low er reproducti ve s ucces s , and hi gher rates of mortali ty (Gates and 

Hal e 19 74). Chances of s urvi val are much better i n  areas w i th abundant ' 

good- quali ty habi tat dis pers ed throughout the w i nter range of pheas ants . 

W etlands are cons i dered the primary w i nter cover type for pheas ants , 

w hereas s helterbelt cover is  important for emergency cover w hen w etl ands 

become filled with s now. Al though s hel terbel ts did not reduce w i nd 

veloci ty as much as w etlands , s helterbel ts di d how ever reduce w i nd 

veloci ty an average of 3U� duri ng w i nter. Additional w i nd veloci ty 

reductions and w armer avemin temperatures could res ult i f  at leas t 2 to 

3 rows of coni ferous tree s peci es , along with s everal rows of s hrubs 

w ere planted in each s hel terbelt . Decreas ed w i nd veloci ty caus ed by 

dens e horizontal cover w ould provi de a s ubs equent reduction i n  w i nd 

chill i n  s helterbelts (F i g. 2) . 

Robbi ns (1983) found that the i ns ul ati ng qual i ty of a bi rds 

plumage is dependent on the extent to w hi ch ai r movement is reduced. 

Reduced ai r movement by coni ferous tree s pecies w oul d therefore act as 

an additi onal i ns ulati ng l ayer for pheas ants duri ng w i ni: er .  Ozoga 

( 1 9 68) s tudied s everal white- tailed deer habi tats during w i nter and 

found that w armer average temperatures , little w i nd movement, and 

minimal s now depth were characteris tic of a dens ely s i: ocked even age 

s tand of mature coni fers . Reduced energetic requi rements duri ng w i nter 

w ou ld al low more pheas ants to s urvive and ent er the b reedi ng s eas on i n  

better conditi on. Hen pheas ants i n  b etter condi ti on during the b r eedi ng 

s eas on w ould have a b etter chance of a s ucces s ful hatch. 

P roperly des igned s helt er belts could reduce the amount of w i nter 



Fig . 2 . Wind chill at  0 ,  25, 50 , and 75% wind veloc ity reduc t ions 
at  an ambient air temperature of -18  C. 
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mortality and allow pheasants to enter the breeding season in better 

condition . Increased good 8uality shelterbelt habitat could result in a 

more stable pheasant population due to decreased winter mortality. 

MANAGEMENT IMP LICATIONS 

Shelterbelts designed for pheasant use should be no less than 6 to 

10 rows wide and should contain at least 2 rows of coniferous tree 

species to J?rovide dense cover near ground level (Fig. 3 ) .  Low dense 

woody vegetation is needed on the windward side of shelterbelts in order 

to keep wind and snow from being funneled at high speed beneath open 

vegetation. Shrub and tree species that provide dense cover during 

winter at a height of O to 3 m above ground level should be promoted in 

the outer 2 rows on the prevailing wind side of shelterbelts. Dense 

shelterbelts which allow little wind to penetrate would be more 

beneficial to pheasants than sparsely vegetated shelterbelts. However, 

wind reduction extends further on the leeward side of sparsely vegetated 

as compared to dense shelterbelts (McLenon and Robinnette 1978 ) .  Three 

to 4 rows of tall deciduous trees including both fast-growing and 

long-lived species should be promoted for the center rows of each 

shelterbelt. Leeward sides of shelterbelts should consist of 2 rows of 

coniferous tree species followed on the outside by a dense shrub row. 

These remaining rows on the leeward side of the shel terbel ts would 

provide the necessary cover for pheasants during severe winter storms. 

The slope of the upper canopy profile should face in the direction of 

the prevailing winds therefore forcing the wind over the top and 

reducing wind velocity within the shelterbelt (Woodruff and Zingg 1953).  



Fig . 3 .  Pro f ile of  an 8 row shel terbelt  for winter protec t ive cover of  pheasan t s . 
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To benefit pheasants and other wildlife volunteer shrub growth 

should be promoted after shel terbel ts are established. Species which 

provide a food source for pheasants during winter such as smooth sumac 

(Rhus glabra) , skunkbrush sumac (Rhus aromatica), wild plum (Prunus 

americana), and russian olive (Eleaghnus angustifolia) should be 

promoted (VanBruggen 1976) . Croplands, rather than pastures should be 

adjacent to the shelterbelt for maximum benefit to wildlife. Several 

rows of crops such as corn or sorghum should be left on the leeward side 

to provide a food source during the winter. Crop plantings should be 

placed on the lee�ard side of shelterbelts since reduced wind velocity 

will cause less stress to pheasants. Johnson (1953) examined placement 

of food plots during winter in relation to various winter cover types 

and found that food plots should be located within 400 m (1/4 mile) of 

the wintering areas. 

Additiona l  Resea rch N eeds 

Additional studies should include microclimate comparisons between 

areas showing heavy , little, or no use by pheasants, and microc limate 

studies near dense cover species such as cedar and shrubs. Microclimate 

measurements at specific sites within a shelterbelt vmuld indicate if 

there are areas within the shelterbelt that provide suffucient cover to 

eliminate any wind chill factor. Winter telemetry studies using light , 

non-metal transmitters would be useful to determine if pheasants utilize 

shelterbelts and wetlands in proportion to what is available. 
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Appendix 1 .  Means of vegetation variables sampled in coniferous and 

a 

deciduous shelterbelt 
September 1983. 

VA R IA B LE 

Robel pole 

Saplings (no . /plot) 

Shrubs (no . /plot) 

Sapling height (cm) 

Shrub height (cm) 

Canopy coverage (%) 

Woody stems (no . /plot) 

Bluegrass a 

density ( % )  

Brome grass b 

density ( % )  

Grass height (cm) 

Farb density (%) 

Farb height (cm) 

Ground cover (%) 

Grass density (%) 

Poa :eratensis 

bB . . romus 1.nerm1.s 

types in eastern 

CON I F E RO U S  

N i ( s . e . ) 

90 1 . 0 ( 0 . 1 1) 

90 13 . 2  (2 . 18) 

90 9 . 6  ( 1 .  5 1) 

90 50 . 4  ( 5 . 26) 

90 7 9 . 3  ( 8 . 78) 

90 8 6 . 8  ( 1 .  08) 

90 22 . 8  (2 . 68) 

300 0 . 3  ( 0 . 53) 

300 2 3 . 5  ( 1 .  54) 

300 22 . 1  ( l . 34) 

300 1 0 . 4  ( 0 . 7 6) 

300 1 0 . 8  ( 0 . 72) 

300 43 . 0  ( 1 .  64) 

300 27 . 0  ( 1 . 6 1) 

South Dakota, August through 

DEC I DUOUS 

N x ( s  . e . )  

7 5  1 . 3  (O . 15) 

7 5  14 . 7  ( 1 . 62) 

7 5  14 . 8  (2 . 0 1) 

7 5  7 5 . 9  ( 8 . 52) 

7 5  84 . 3  ( 7 . 3 1) 

7 5  86 . 3  ( 1. 1 1) 

7 5  29 . 5  (2 . 65) 

250 0 . 4  (O. 7 6) 

250 1 6 . 5  ( l . 46) 

250 23 . S ( 1 .  72) 

250 2 1. 1 ( 0 . 99) 

250 25 . 9  ( 1 . 33) 

250 48 . 2  ( 1 .  55) 

250 20 . 1  ( l . 59) 
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