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ABSTRACT 

A COMPARISON BETWEEN SOUTH DAKOTA AND NORTH AMERICAN 

STANDARD SAMPLING GEARS IN LAKES AND RESERVOIRS  

BRADLEY J. SMITH 

2015 

A statewide gear comparison was performed in South Dakota during 2013 and 

2014 between current South Dakota Department of Game, Fish and Parks (SDGFP) 

sampling gears (i.e., gill nets and modified fyke nets) and their equivalents described in 

Standard Methods for Sampling North American Freshwater Fishes (Standard).  

Adopting Standard gears would provide uniform gear specifications for annual sampling 

statewide, facilitate data sharing within South Dakota and beyond, and allow for large-

scale spatial and temporal analyses relevant to researchers and managers.  Sampling was 

divided between non-Missouri River (non-MR) and Missouri River (MR) systems 

because gill nets used by SDGFP to sample Missouri River reservoirs were double the 

length of gill nets used elsewhere in the state and were constructed of multifilament twine 

instead of monofilament twine.  In non-MR systems, SDGFP gill nets had higher catch 

per unit effort for most species commonly indexed with gill nets including Walleye and 

Yellow Perch while Standard gill nets selected for larger individuals of most species.  In 

MR systems, gill net CPUE was higher for almost all species captured using SDGFP 

multifilament reservoir gill nets because SDGFP nets were over three times longer than 

Standard nets.  Standard gill nets with additional large bar-mesh panels selected for larger 

individuals of most species, including Walleye, than did SDGFP reservoir nets.  

Monofilament was more efficient than multifilament for almost all species investigated.  

Modified fyke net catches were similar for many species between net types though 
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Standard nets captured more Black Crappies and SDGFP nets captured more Black 

Bullheads.  Standard modified fyke nets tended to select for larger Black Crappie and 

Bluegills.  In both MR and non-MR systems, conversion factors for lakewide catch per 

unit effort were developed for each gear type using regression analysis to allow for 

conversion of historic catch data into equivalent Standard CPUE.  Estimates of species 

diversity and evenness did not differ between SDGFP or Standard gears.  Indirect 

estimates of gill net selectivity were performed for 18 species sampled using Standard 

gill nets to identify shape of species and mesh-specific selectivity curves, approximate 

peak modal efficiency for each mesh, and identify overall shape of selectivity curves for 

all meshes combined.  Comparisons of modified fyke nets with restricted and unrestricted 

throat configurations revealed that catch per unit effort was higher for nets with restricted 

throats.  Subsequent escapement trials confirmed that most Black Crappie and Bluegill 

escaped from modified fyke nets with unrestricted throats.  Together, the paired gear 

comparisons between SDGFP and Standard gears and additional investigations of 

Standard gears provided the necessary information to allow for a potential statewide 

transition to North American Standard sampling gears.  
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CHAPTER 1.  

GENERAL INTRODUCTION 

Standardization of gears and methods allows for efficient transfer of reliable and 

universally understood information and is fundamental in scientific inquiry, business, and 

governance (U.S. Environmental Protection Agency 1996; Eaton and Franson 2005; 

European Committee for Standardization 2005).  Standardization reduces extraneous 

variability and increases replicability of results (Maunder and Punt 2004) allowing for 

acquisition of reliable knowledge.  Fisheries science is a relatively new branch of science 

(Nielsen 1999) and efforts to standardize gears and methods used to sample fish are not 

fully established in research and management paradigms (Bonar and Hubert 2002).  

Voluntary standards for sampling fish have been developed independently in both Europe 

and North America in the last decade (European Committee for Standardization 2005; 

Bonar et al. 2009b).  North American standards were published by the American 

Fisheries Society in 2009 under the title Standard Methods for Sampling North American 

Freshwater Fishes.  In this publication, authors identified the appropriate gears and 

sampling methods to use by water type and specify exact dimensions of North American 

standard gears, hereafter referred to as Standard (Bonar et al. 2009b).  Unfortunately, 

adoption of these standards has been a slow process because gears and methods are 

traditionally standardized at local, state, or provincial levels (Bonar and Hubert 2002) and 

there has been resistance within agencies to adopt new standards that would require 

managers and researchers to purchase new equipment, reduce sampling flexibility, and 

potentially compromise historic datasets (Hayes et al. 2003).   
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Concerns about cost and the potential loss of historic data resulting from adoption 

of new gears has been central in the debate over whether the South Dakota Department of 

Game, Fish, and Parks (SDGFP) should adopt North American standard gears  for 

sampling lakes and reservoirs (B. G. Blackwell, personal communication).  Current 

sampling gears used by SDGFP to sample lakes and reservoirs are not standardized 

within the state and do not conform to North American standards but have been used to 

develop water-specific long-term data sets.  Switching to North American standards 

would help promote standardization regionally and beyond (Bonar et al. 2009a) but this 

change should not be made at the expense of long-term monitoring data that are critical 

for detecting changes in populations and ecosystems (Likens 1992).  A gear comparison 

that also encompasses the diversity of fishes and lentic habitats of South Dakota is 

necessary to understand potential biases between SDGFP and North American Standard 

sampling gears (Speas et al. 2004; Peterson and Paukert 2009).  

South Dakotas lakes and reservoirs can be loosely organized into several distinct 

habitat regions including: eastern glacial lakes and prairie reservoirs that tend to be 

shallow and eutrophic (Stukel 2003), Missouri River impoundments (i.e., Lewis and 

Clark, Francis Case, Sharpe, and Oahe) that were created by the Army Corps of 

Engineers during the 1950’s to 1970’s as part of the Flood Control Act of 1944, and 

Black Hills reservoirs that are generally deeper and less productive than lakes in eastern 

South Dakota.  Gill nets are used to sample benthic species (Hubert 1996) in all 

aforementioned water types while modified fyke nets are used to sample littoral fishes 

(Hubert et al. 2012) in eastern lakes and prairie reservoirs.   
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North American standard gill nets and fyke nets are similar to their respective 

SDGFP gears but differ in several key ways.  For instance, Standard gill nets are 24.4-m 

long by 1.8-m deep and include 8 randomly ordered bar mesh panels (i.e., 19, 25, 32, 38, 

44, 51, 57, and 64-mm bar-mesh) each 3.0-m long while SDGFP gill nets are much 

longer at 45.7-m by 1.8-m deep for non-Missouri River gill nets and 91.4-m long by 1.8-

m deep for Missouri River gill nets.  All SDGFP gill nets include 13, 19, 25, 32, 38, and 

51-mm sequentially ordered bar-mesh panels that are 7.6-m long on non-Missouri River 

nets and 15.2-m long on Missouri River nets.  An additional caveat is that twine material 

used for SDGFP gill nets is not standardized; nets used on the Missouri River are 

constructed of multifilament twine while nets used outside the Missouri River system are 

made with monofilament that is generally more efficient at capturing fish (Pycha 1962; 

Collins 1979).  The primary difference between Standard and SDGFP modified fyke nets 

is bar-mesh size; Standard nets have 13-mm knotless bar-mesh while SDGFP nets use 

knotted 19-mm bar-mesh. Both modified fyke net types incorporated restricted throats, 

though inclusion and specifications for such an apparatus are not provided in Standard 

Methods for Sampling North American Freshwater Fishes.  

To understand how gear differences would influence estimates of commonly 

calculated population parameters should SDGFP switch to North American standard 

gears, I performed a statewide gear comparison between differing gill net and fyke net 

types to gain a better understand of potential biases of Standard sampling gears.  The 

specific objectives were to:  

1.) quantify bias in estimates of CPUE, size structure, and diversity between SDGFP and 

Standard gill nets and modified fyke nets used to sample eastern glacial lakes, prairie 
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impoundments, and Black Hills reservoirs and develop conversion factors for CPUE 

between gear types to allow continued usage of historic data;    

2.) quantify bias in estimates of CPUE, size structure, and diversity between multifilament 

SDGFP reservoir and monofilament Standard gill nets used to sample Missouri River 

reservoirs, develop conversion factors for CPUE between gear types to allow 

continued usage of historic data, perform indirect estimates of selectivity for both gill 

net types, and investigate potential differences in efficiency between monofilament 

and multifilament twines; 

3.) perform indirect estimates of selectivity for 18 species commonly collected using 

Standard gill nets in South Dakota to identify shape of species and mesh-specific 

selectivity curves, calculate peak modal efficiencies of capture for each bar-mesh and 

species, and identify shape of overall selectivity curves for each species collected;  

4.) investigate differences in CPUE, size structure, and escapement of fishes from 

Standard modified fyke nets with differing throat configurations to optimize 

recommended gear specifications outlined in Standard Methods for Sampling North 

American Freshwater Fishes; and  

5.) make recommendations about the feasibility of converting to North American 

standard gears that would take into account management concerns.         

Despite the many benefits of using of standardized gears, they may not be 

appropriate in all situations.  Research and management activities that target specific 

organisms at irregular spatial or temporal intervals (e.g., Muskellunge) often demand 

high resolution at small scales making use of standard methods impractical (Peterson and 

Dunham 2010).  Switching to Standard gears may also require more sampling effort if 
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precision of CPUE estimates and sample sizes are inadequate as Koch et al. (2014) 

discovered when Kansas Department of Wildlife, Parks and Tourism transitioned to 

smaller Standard gill nets for reservoir sampling.  Standardizing gears provides the most 

benefit at larger scales by allowing data sharing leading to identification of long-term 

changes at large spatial scales (Bonar et al. 2009a).   Standardization is especially 

relevant to research and management as questions about the influence of land conversion 

(Dodds and Oakes 2006), climate change (Ficke et al. 2007), and human use of fisheries 

resources (Schramm et al. 1991) continue to grow in importance, requiring use of data 

sets generated using similar gears and methods (e.g., fisheriesstandardsampling.org).  The 

ultimate goal of this project is to provide South Dakota Department of Game, Fish and 

Parks with the analysis and interpretation necessary to facilitate a transition to North 

American standard gears, if they so desire.  Should such a transition be made, it would 

benefit not only South Dakota but add momentum to the on-going effort to standardize 

sampling programs across North America.  
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CHAPTER 2. COMPARISON OF SOUTH DAKOTA AND NORTH 
AMERICAN STANDARD GILL NETS AND FYKE NETS 

Abstract 

A paired gear comparison was performed throughout South Dakota to investigate 

the feasibility of switching from South Dakota Department of Game, Fish and Parks 

(SDGFP) standardized gill nets and fyke nets to North American standard (hereafter, 

referred to as “Standard”) gill nets and fyke nets.  Differences in catch per unit effort 

(CPUE), size structure, and diversity were quantified and conversions for CPUE between 

Standard and SDGFP gears were developed using regression analyses.  Longer SDGFP 

gill nets (i.e., 45.7 meter; 13, 19, 25, 32, 38, and 51 mm bar-mesh) yielded higher CPUE 

for bullheads, Northern Pike Esox lucius, Rock Bass Ambloplites rupestris, Walleye 

Sander vitreus, and Yellow Perch Perca flavescens though similar catch rates were found 

between gears for nine commonly collected species.  Standard gill nets (i.e., 24.4 meter; 

19, 25, 32, 38, 44, 51, 57, and 64 mm bar-mesh) generally selected for larger fish due to 

the presence of larger bar-mesh panels and absence of the smallest size bar-mesh panel 

used in SDGFP gill nets.  Black Crappies Pomoxis nigromaculatus were consistently 

sampled in greater numbers by Standard fyke nets while bullhead, Rock Bass, 

Smallmouth Bass Micropterus dolomieu, and Walleye CPUE was higher for SDGFP fyke 

nets.  Size selectivity bias between fyke net types for commonly sampled species took 

one of several forms: Standard nets selected for larger fish (i.e., Black Crappie), SDGFP 

selected for larger fish (i.e., bullheads, White Bass, and Yellow Perch), no difference (i.e. 

Channel Catfish, Common Carp, Rock Bass, and White Sucker), or Standard nets 

simultaneously selected for smaller and larger fish (i.e., Bluegill, Northern Pike, 

Smallmouth Bass, and Walleye).  No differences in species diversity or evenness were 
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detected between gill net or fyke net types.  Regression equations with high strength of fit 

will be useful for converting CPUE data from SDGFP to Standard, allowing for 

continued use of historic data and easing a potential transition to Standard sampling 

gears. 

 

Introduction 

Standardization in data collection has become common in many scientific fields 

(e.g., meteorology, geology, and medicine) and has facilitated the sharing and 

understanding of information among professionals across spatiotemporal boundaries 

(Bonar and Hubert 2002).  However, no standard methods for sampling fishes have been 

universally implemented in the study and management of inland freshwater fisheries in 

North America.  Resistance to standardization in fisheries sampling is driven by concerns 

of cost, reduced creativity in sampling, an inability to use historic data sets, as well as 

perceived infringement on the ability of field biologists to define best sampling practices 

(Bonar and Hubert 2002).  Currently, inland fisheries biologists at the local, state, tribal, 

and federal levels determine their own standard sampling protocols that often vary by 

location, gear used, and sampling design (Gritters 1997; Bonar et al. 2009b).  Sampling 

methods also vary based on type of system being sampled (e.g., pond, lake, reservoir, 

stream, large river) and species targeted for capture (Schreck and Moyle 1990; Murphy 

and Willis 1996).  Differences in methods used to collect fisheries data can inhibit data 

comparison and make data comparisons across large spatial and temporal scales difficult 

(Bonar et al 2009a).  
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In 2009, the Fisheries Management Section of the American Fisheries Society, 

with assistance from fisheries professionals across North America, developed 

standardized fish sampling protocols and published them in the book Standard Methods 

for Sampling North American Freshwater Fishes (Bonar et al. 2009b).  Standard 

sampling protocols incorporate commonly used gears and define standard computation of 

effort by gear (Bonar et al. 2009b). Fish collection methods were standardized by water 

type (e.g., large standing water, warmwater) and targeted fish assemblages.   

South Dakota Department of Game, Fish and Parks (SDGFP) standardized lake 

sampling protocols and gear specifications differ from those outlined in Standard 

Methods for Sampling North American Freshwater Fishes (Bonar et al. 2009b).   

Understanding biases in CPUE, size structure, and diversity between gear types typically 

requires a paired gear comparison whereby two gear types (e.g., standard and 

nonstandard) are simultaneously fished alongside one another.  Regression analyses can 

then be used to compare data between those two gears allowing for development of 

correction factors (Peterson and Paukert 2009).    

Developing standardized fish sampling protocols and a centralized database have 

been identified as objectives for the South Dakota statewide fisheries and aquatic 

resources 2014-2018 strategic plan (Statewide Components Work Group 2014).   

Aligning SDGFP and North American standard (Standard) sampling methodology will 

allow for improved large scale analyses, easier data sharing between fisheries 

professionals in South Dakota and beyond, and will be a necessary component in the 

development of a future statewide fisheries database.  Because of the long-term data sets 

that SDGFP has developed there is reluctance to change to the North American standard.  
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Development of potential correction factors would allow for continued use of historic 

data sets and should reduce this reluctance to change.  To help facilitate a potential 

transition from current SDGFP methods to Standard sampling methods, the objectives of 

this study were to 1) compare catch rates, size structure, and species composition of 

fishes collected in Standard gill nets and fyke nets to SDGFP gill nets and fyke nets; and 

2) develop conversions for commonly collected species that will allow historic South 

Dakota gill net and fyke net data to be converted to North American standard. 

  

Methods 

Study area- Twenty-six lakes were sampled during 2013-2014 including 19 

natural lakes and four prairie stream impoundments in the Prairie Pothole Region (PPR) 

of eastern South Dakota and three Black Hills reservoirs; one reservoir (i.e., Pactola) was 

sampled during both study years.  Natural lakes in eastern South Dakota tend to be 

shallow, wind-swept, turbid, eutrophic to hypereutrophic, have small watersheds, and 

widely fluctuating lake levels (Steuven and Stewart 1996; Table 2).  However, some of 

the lakes included in this research can be classified as mesotrophic and are well drained 

with extensive connections to aquifers, resulting in fairly stable lake levels.  Natural lakes 

in eastern South Dakota rarely stratify, are susceptible to intense algae blooms (Stueven 

and Stewart 1996; Stukel 2003), and host low diversity fish communities dominated by 

percids, moronids, esocids, centrarchids, ictalurids, and cyprinids (Stukel 2003).  

Impoundments of small prairie streams of eastern South Dakota are similar to natural 

lakes of the region and can be described as shallow, turbid, and eutrophic to 

hypereutrophic though they are generally smaller (< 400 ha) and have less fetch than 
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most natural lakes included in this study (Table 2).  Fish communities in impoundments 

are also more likely to include riverine species including Channel Catfish Ictalurus 

punctatus, Freshwater Drum Aplodinotus grunniens, and River Carpsucker Carpiodes 

carpio.  Black Hills reservoirs sampled for this project were located at approximately 

1,396 – 1,800 meters above sea level and were formed by impounding coldwater streams.  

These reservoirs have popular coldwater fisheries that have resulted from stocking efforts 

for Lake Trout Salvelinus namaycush in Pactola Reservoir, Rainbow Trout 

Onchorynchus mykiss in all three reservoirs studied, Brook Trout Salvelinus fontinalis 

and Splake Trout Salvelinus namaycush x Salvelinus fontinalis in Deerfield Reservoir.  

These reservoirs also have a mixture of coolwater fishes including Bluegill Lepomis 

macrochirus, Northern Pike, Esox lucius and Rock Bass Ambloplites rupestris.   

Description of gear types- One lake was sampled each week during June-August 

of 2013 and 2014 in conjunction with SDGFP summer fish community surveys.  South 

Dakota Game, Fish and Parks gill nets were set perpendicular to shore in their established 

fixed locations by SDGFP personnel and were paired with a Standard gill net.  Each 

Standard gill net was randomly assigned to the left or right, approximately 100-m away 

from and parallel to a SDGFP gill net.  All nets were set during the morning and retrieved 

the following morning.  Standard gill nets were 24.8-m long and contain eight randomly 

ordered panels of mesh (19, 25, 32, 38, 44, 51, 57, 64-mm bar mesh) while SDGFP gill 

nets were 47.5-m long with six fixed-order panels (13, 19, 25, 32, 38, 51-mm bar mesh).  

During 2014 sampling, all Standard gill nets included an additional “mini-mesh” add-on 

comprised of three randomly ordered panels (i.e., 10, 13, 19 mm bar mesh) to investigate 

catches of sub-stock fish, primarily Yellow Perch Perca flavescens.  All fish captured in 
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“mini-mesh” add-ons were treated and were not included in subsequent analyses for the 

first objective.  

Fyke netting was completed concurrent with gill netting during June-August of 

2013 and 2014.  Standard fyke nets were randomly assigned to be fished approximately 

100-m to the right or left of SDGFP fyke nets that were set at fixed sampling sites.  All 

nets were set during the morning and retrieved the following morning.  Standard fyke 

nets (0.9 m x 1.8 m frames) were constructed using 10-mm rolled steel bar and 13-mm 

bar mesh and possessed a single throat stretched between the second and fourth hoops 

that tapered to a 203-mm opening at the cod end with a restriction to reduce escapement 

as described by Sullivan and Gale (1999).  In contrast, SDGFP fyke nets (0.9 m x 1.5 m 

frames) were constructed using 25-mm steel tubing and 19-mm bar mesh and possessed a 

single constricted throat stretched between the second and fourth hoops that tapered to a 

152-mm opening at the cod end.  Leads for both fyke net types were 15.2-m long.   

Statistical Analysis- Collected fish were measured for total length (TL; mm), 

weighed (g), and released.  Only widespread and relatively abundant species were 

included for analysis with the exception of two coldwater species found only in the Black 

Hills.  Black Bullhead Ameiurus melas (N=29,006 from all gears) and Yellow Bullhead 

Ameiurus natalis (N=453 from all gears) are sometimes treated collectively for 

management purposes, so data for these two species were combined and will be referred 

to hereafter as “bullheads.”  Fish used in analysis of catch per unit effort (CPUE) were at 

least stock length as identified by Gabelhouse (1984) and Bister et al. (2000).  Replicate 

units for CPUE comparisons were the species-specific arithmetic mean number of stock-

length fish captured per net/night/lake.  For coldwater species abundant enough to be 
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included in this analysis (i.e., Lake Trout and Rainbow Trout), the individual net was the 

replicate unit due to low sample size of populations where these species are found.  

Assumptions of normality and homoscedasticity were tested using the Shapiro-Wilk and 

Levene tests, respectively, and CPUE data was LOG10(x +1) transformed when necessary 

to normalize data.  

Analysis of covariance (ANCOVA) was used to identify whether slopes or 

intercepts differed between the observed regression of Standard (i.e., independent 

variable) against SDGFP (i.e., dependent variable) CPUE and a hypothetical 1:1 

regression line that would imply no difference in CPUE between gears across lakes.  A 

difference in intercept indicated that one gear has a higher CPUE relative to the other 

gear while differing slopes indicate higher capture efficiency for one gear as lake-wide 

relative density of fish increases.   

Gill nets received additional statistical attention due the large difference in overall 

length between gill net types and concern over a possible “leading” effect whereby fish 

are more likely to encounter a longer net (Rudstam et al. 1984) and less likely to swim 

around the net before trying to pass through.  This phenomenon is suspected to inflate 

CPUE of longer nets (Hamley 1975; Davis and Schupp 1987).  A higher catch per area 

would be expected in the longer net if leading effects existed because the surface area of 

the net is directly correlated with the panel length.  We converted CPUE data into bar 

mesh panel-specific catch per m2 data to correct for the difference in panel surface area 

between gears then.  These corrected values were then compared between gear types by 

species for each bar mesh size shared in common between both gears (i.e., 19, 25, 32, 38, 

and 51-mm bar mesh) using the Kruskal-Wallis Test (Conover 1999).  Mini-mesh add-
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ons were assessed qualitatively due to limited and highly variable data applicable only to 

Yellow Perch.    

Size-related bias was investigated between gears by comparing length frequencies 

and commonly calculated population indices.  Species-specific length-frequency 

distributions of total fish sampled were compared between gear types using the 

Kolmogorov-Smirnov test with individual fish as replicate units (Conover 1999).   

Proportional size distribution of quality (PSD) and preferred-length fish (PSD-P) were 

calculated by gear and species as outlined in Neumann and Allen (2007) and compared 

using a Chi-Square test.   

Species diversity and evenness were calculated and compared by gear type.  

Species diversity was calculated using the Shannon-Wiener index (i.e., Shannon’s H’) 

and is calculated as 

′ܪ ൌ	െሺሻ
ௌ
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where S = number of species and pi = proportion of total sample represented by ith 

species (Kwak and Peterson 2007).  An evenness score (i.e., Shannon’s J’) was 

calculated as 
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where H’max = loges =  maximum Shannon’s index score and s = number of species 

sampled (Kwak and Peterson 2007).   Comparisons of species diversity and evenness 

between gears types were performed using analysis of variance (ANOVA) with 

Shannon’s H’ or J’ scores as response variables, gear as a class variable, and lake as a 

blocking factor (Eggleton et al. 2010).  
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Correction factors- To address the second objective, regression analysis was used 

to develop species-specific conversions for lake-wide LOG10(X +1) transformed mean 

stock CPUE between gears by species.  Standard CPUE (i.e., independent variable) was 

regressed against SDGFP catch per unit effort (i.e., dependent variable) with associated 

95% confidence intervals.  Regression equations were constructed for each species 

captured in each gear type (i.e., gill net and fyke net).  The utility of the correction factors 

was determined by the precision of the estimates (i.e., adjusted R2 values or ܴௗ.
ଶ ).  A 

higher ܴௗ.
ଶ   indicated that variation in CPUE resulted from gear differences while lower 

ܴௗ.
ଶ  values indicated that little of the variation in CPUE between gears could be 

explained by differences in gear type.  All calculations were performed using R version 

3.0.2 “Frisbee Sailing” (The R Foundation for Statistical Computing 2013) and α = 0.05 

was assumed for all tests. 

  

Results 

 A total of 14,997 fish of 34 species were collected using Standard and SDGFP 

gill nets (Table 3).  The SDGFP gill nets produced significantly higher CPUE for 

bullhead, Northern Pike, Rock Bass, Walleye Sander vitreus, and Yellow Perch, but no 

difference in CPUE was detected for Black Crappie Pomoxis nigromaculatus, Bluegill, 

Channel Catfish Ictalurus punctatus, Common Carp Cyprinus carpio, Lake Trout, 

Rainbow Trout, Smallmouth Bass Micropterus dolomieu, White Bass Morone chrysops, 

and White Sucker Catostomus commersonii between gill net types (Figure 1).  No 

“leading” effect was detected for any species or bar mesh panel size with the exception of 

Common Carp captured in the 51-mm panel where SDGFP gill nets produced higher total 
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catch/m2 than Standard nets ( χ2=5.663, p=0.017).  Mini-mesh add-ons seldom caught 

fish, but sub-stock Yellow Perch were caught in great abundance in Bullhead Lake and 

Lake Cochrane (Table 4).  Length-frequency distributions were similar between gill net 

types for Black Crappie, Bluegill, Northern Pike, Rainbow Trout, and Rock Bass while 

Standard gill nets selected for larger bullhead, Channel Catfish, Common Carp, Lake 

Trout, Walleye, Smallmouth Bass, White Bass, White Sucker and Yellow Perch (Figure 

2).  Standard gill nets produced significantly higher values of PSD for bullhead, Northern 

Pike, Smallmouth Bass and Walleye and higher values of PSD-P for bullhead, Common 

Carp, Smallmouth Bass, Walleye, and Yellow Perch (Table 5).  Measures of species 

diversity and evenness were similar between gill net types (Figure 3). 

Standard and SDGFP fyke nets collected a total of 39,710 fish of 26 species 

during this study (Table 3).  Comparisons between fyke net types revealed that similar 

values of CPUE were observed for almost all species sampled (i.e., Bluegill, Channel 

Catfish, Common Carp, Northern Pike, White Sucker, White Bass, and Yellow Perch) 

although Standard nets yielded higher CPUE for Black Crappie and SDGFP fyke nets 

produced higher CPUE for bullhead, Rock Bass, Smallmouth Bass, and Walleye (Figure 

4).  Length frequencies were similar between fyke net types for Channel Catfish, 

Common Carp, Rock Bass, and White Sucker.  Standard fyke nets selected for larger 

Black Crappie, Bluegill, Northern Pike, Smallmouth Bass and Walleye while SDGFP 

fyke nets selected for larger bullhead, White Bass, and Yellow Perch (Figure 5).  

Standard fyke nets yielded significantly higher PSD values for Black Crappie, Bluegill, 

bullhead, Northern Pike, and Smallmouth Bass while PSD values for Channel Catfish 

were higher in SDGFP fyke nets (Table 5).  Standard fyke nets had higher PSD-P values 
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for Bluegill, Northern Pike, and Smallmouth Bass (Table 1).  No significant difference in 

species diversity or evenness was detected between fyke net types (Figure 3). 

Equations to convert LOG10(X + 1) transformed CPUE data between SDGFP and 

Standard gears were developed for 14 species collected from gill nets and 12 species 

collected from fyke nets (Table 6).  Strength of fit as determined by ܴௗ.
ଶ  was high for 

most gill net comparisons with 29.2% to 95.7% of the variation in CPUE being explained 

by gear differences except for Lake Trout and Rainbow Trout where only 1.0% and 5.7% 

of variation was explained by gear type, respectively.  No detectible difference in slope 

between the actual regression and hypothetical 1:1 line was found for any species 

sampled except for White Sucker.  Intercept values were significantly greater than zero 

for all comparisons except those for White Bass (Figure 6).  Regression analysis of 

CPUE data for fyke nets generated conversions equally useful as those found for gill nets 

and resulting strength of fit for these models interpreted from ܴௗ.
ଶ 	was variable though 

over half the variation in CPUE was explained by gear type for all fyke net models fitted 

(Figure 7).   

 

Discussion  

This project demonstrated the feasibility of converting from current South Dakota 

Game, Fish and Parks lake and small impoundment sampling gears to voluntary 

standards outlined by Bonar et al. (2009b).  Biases in CPUE, size structure, and species 

composition were quantified and reliable conversion factors for CPUE were developed.  

Taken together, these comparisons provide the information necessary to pursue a 

transition in sampling gears.   



20 

Gill Net Interpretation – Surprisingly, 7 of 14 species effectively sampled by gill 

nets had similar CPUE between Standard and SDGFP gears but, as expected, all 

significantly higher catches were produced by longer SDGFP gill nets.   Analogous 

catches for seven species between gill net types likely resulted from the presence of 44, 

57, and 64-mm meshes on Standard gill nets that compensated for differences in net 

length by broadening selectivity of the net, particularly for Channel Catfish, Common 

Carp, Smallmouth Bass, and White Bass that were more vulnerable to larger bar mesh 

sizes.  Higher CPUE of bullhead, Northern Pike, Rock Bass, Walleye and Yellow Perch 

in SDGFP gill nets resulted primarily from the greater length of SDGFP gill nets but for 

small-bodied species may also be attributable to lower vulnerability to unique larger bar 

mesh sizes of Standard gill nets.  Lake Trout and Rainbow Trout comparisons were 

hampered by high variability resulting from use of individual nets as replicate units.  For 

both trout species, but especially for Rainbow Trout, it is difficult to interpret what 

relationship exists between gear types without further sampling that would allow lakes or 

lake-years to be used as replicates instead of individual nets.     

Additional metrics investigated for gill net CPUE including comparisons of 

catch/m2 and utility of “mini-mesh” add-ons improved the understanding of gill net 

selectivity.  Failure to detect a “leading effect” was consistent with previous research that 

found either no difference or decreasing CPUE with increasing net length (Minns and 

Hurley 1988; Acosta 1994).  The implication of this finding was that analogous CPUE 

between gill net types were attributable to mesh sizes not shared by both nets because 

catch/m2 was similar between gear types when correcting for bar-mesh size.  Addition of 

“mini-mesh” add-ons may be useful in sampling strong year classes of sub-stock Yellow 
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Perch and requires little additional labor to check because few fish are susceptible to the 

smallest mesh sizes and has the added benefit of broadening the total selectivity of the 

gill net.    

Consistent size selective bias with Standard nets selecting for larger fish was 

attributable to presence of 44, 57, and 64 mm bar-mesh panels and simultaneous absence 

of the 13 mm bar mesh that shifted size structure towards larger fish.  Selectivity for 

smaller Yellow Perch by SDGFP gill nets was attributable to a few high catches of sub-

stock fish in the 13 mm bar-mesh panel that was present on SDGFP gill nets but absent 

from Standard nets.  Standard gill nets did not select for larger Northern Pike even with 

three larger mesh sizes not shared by SDGFP nets.  This result may be explained in part 

by observations during this study that Northern Pike are often captured by tangling after 

attacking a prey fish (i.e., Yellow Perch) already captured in a smaller mesh of the gill 

net potentially distorting gear selectivity for this species and violating the assumption of 

geometric similarity whereby selectivity of the mesh is explained by the girth of the fish 

alone (Baranov 1914).  Failure to detect differences in species diversity or evenness 

indicates that both gill net types are sampling fish communities in a similar manner.   

Fyke Net Interpretation - Directionality of bias for CPUE between fyke net types 

was inconsistent.  Higher catches of Black Crappie in Standard fyke nets are consistent 

with the findings of Fischer et al. (2010) who found smaller mesh sizes in fyke nets 

correspond to higher catches of centrarchids.  Higher catches of bullhead by SDGFP nets 

may result from more constricted throat dimensions leading to reduced escapement as 

demonstrated by Porath et al. (2011) who found increased escapement rates of ictalurids 

between restricted and unrestricted nets with increasing density.   Channel Catfish 



22 

catches appear to follow a similar trend though small sample size and comparatively high 

variability preclude detection of a significant difference.  Failure to detect differences in 

CPUE between fyke net types for Northern Pike is consistent with results of Clark and 

Willis (1989) that found similar CPUE for Northern Pike between varying fyke net types 

in glacial lakes.    

Size selectivity varied between gears and species primarily due to bar-mesh size 

and behavioral attributes of targeted species.  Standard fyke nets with smaller mesh size 

selected for larger Black Crappie unlike results of a Nebraska study where larger mesh 

sizes caught larger Black Crappie (Jackson and Bauer 2000).  There were three species 

where SDGFP nets sampled larger fish (i.e., bullhead, White Bass and Yellow Perch) and 

for all three the major difference was in retention of sub-stock fish; Standard nets retained 

many sub-stock fish of the three species due to a smaller 13-mm bar-mesh size while 

most sub-stock fish swam through the larger 19-mm bar mesh of SDGFP nets.  One 

caveat is that PSD was significantly higher for bullhead in Standard nets while there was 

no difference for PSD-P.  Failure to detect differences in size structure between nets for 

Channel Catfish, Common Carp, Rock Bass, or White Sucker may be an artifact of low 

sample size though for Channel Catfish PSD was significantly higher for SDGFP nets 

while PSD-P and KS tests indicated that size structure was similar.  My finding that 

Standard nets selected for larger and smaller individuals of four species (i.e., Bluegill, 

Northern Pike, Smallmouth Bass, and Walleye) was unanticipated and both observations 

may be explained by the same factor, smaller bar mesh size of Standard fyke nets; the 

smallest fish are physically retained by smaller bar mesh, and because Standard nets have 

more net material in the water,  larger fish may perceive Standard nets as thicker cover to 
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use for shelter or ambush purposes (Hansen 1944).  Jackson and Bauer (2000) found that 

smaller 13-mm mesh selected for smaller Bluegill compared to 16-mm mesh and Latta 

(1959) speculated that larger panfish may be more active in finding cover.  Other 

researchers have noted that fyke nets rarely sample fish as small as the minimum size 

imposed by the dimensions of the gear (Latta 1959; Shoup et al 2003) though Standard 

nets began retaining bluegill at approximately 65 mm.  Larger panfish in the net may also 

exclude smaller ones that selectively escape when in the presence of larger conspecifics 

(Patriarche 1968).  Hansen (1944) found that up to 86% of Bluegills can escape from 

passive entrapment gear.  Regardless of the explanation this phenomenon of broadened 

selectivity is clearly ideal for standardized sampling purposes.  My observation for 

Northern Pike size structure was not found by previous researchers who reported no 

difference in size structure between fyke nets of differing mesh size (Clark and Willis 

1989).  The observation that fyke nets produce similar estimates of diversity and 

evenness should ease concerns that switching sampling gears would result in biased 

estimates of fish community composition (Figure 3). 

 Conversion Factors - Regression analyses of CPUE between SDGFP and 

Standard gears for both gill nets and fyke nets yielded reliable conversion factors for 

most species with a few exceptions making comparisons by regression techniques 

appropriate (Table 6).  Regression models with poor strength of fit leave much variability 

unaccounted for and these regression models should be used with caution.  Poor strength 

of fit for several species in either gill or fyke nets may be of limited concern because not 

all species included in these analyses are primarily indexed for CPUE and size structure 

using these gears in South Dakota.  For instance, Smallmouth Bass are included in both 
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gill and fyke net comparisons because they are commonly sampled with these gears, but 

for management purposes, they are more effectively sampled by boat electrofishing 

(Milewski and Willis 1991; Bacula et al. 2011).   

Additional caveats of this study include methods used to analyze size structure 

and the usage of data for conversions. Kolmogorov-Smirnov tests using individual fish as 

the experimental unit to compare length frequencies were likely influenced by the large 

sample sizes for several species used in this analysis (Neumann and Allen 2007) but 

comparisons of PSD and PSD-P helped corroborate or clarify results of the Kolmogorov-

Smirnov tests.  The benefit of the Kolmogorov-Smirnov test was the ability to compare 

whole length frequencies instead of only stock-length fish.  Both methods collectively 

provided an understanding of size structure bias between gears.  Regression analyses 

yielded equations useful for converting Standard CPUE of stock-length fish to their 

equivalent lake-wide SDGFP catch per unit effort thus facilitating the use of historic 

CPUE data collected by SDGFP.  Conversions of data between sampling gears should be 

done with caution due to increased bias from making interpolations based on an index of 

abundance, and Peterson and Paukert (2009) suggested that converted data should be 

identified as such in any long-term database where the data are contained.   

This study and similar gear comparisons in Iowa (Fischer et al. 2010) and Kansas 

(Koch et al. 2014) have demonstrated benefits and shortcomings of proposed standard 

sampling gears.  By providing a thorough analysis of biases between SDGFP and 

Standard gears there is little doubt that switching to Standard gears would continue to 

provide managers and researchers in South Dakota with reliable fisheries data.  

Converting to Standard sampling gears would not only benefit South Dakota but, as 
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Bonar et al. (2009a) noted, would allow for larger scale analyses facilitated by open-

source databases (i.e. fisheriesstandardsampling.org) that allow researchers to compare 

their data to continent-wide averages and potentially tackle broader questions in fisheries 

science.        
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Table 1.- Selected references for usage of gill nets and fyke nets when sampling select North American freshwater fish species. 

 

 

Common Name Scientific Name Selected References 

Gill Nets bullheads Ameiurus spp. Hanchin et al. 2002, Pope et al. 2009
Channel Catfish Ictalurus punctatus Elrod 1974
crappies Pomoxis spp. Guy et al. 1996
Freshwater Drum Aplodinotus grunniens Minns and Hurley 1988
Lake Trout Salvelinus namaycush Hansen et al. 1997, Hansen et al. 1998

Northern Pike Esox lucius Pierce et al. 1994
Rainbow Trout Oncorhynchus mykiss Losanes 1992

Walleye Sander vitreus Willis et al. 1985, Willis 1987, Henderson and Nepszy 1992
White Bass Morone chrysops Willis et al. 1985, Henderson and Nepszy 1992
White Sucker Catostomus commersoni Minns and Hurley 1988, Henderson and Nepszy 1992
Yellow Perch Perca flavescens Kraft and Johnson 1992

Fyke Nets Bluegill Lepomis macrochirus Cross et al. 1995, McInerny and Cross 2004, Schultz and Haines 2005, Fischer 2010
bullheads Ameiurus spp. Hanchin et al. 2002, McInerny and Cross 2004, Fischer 2010
crappies Pomoxis spp. Willis 1984, Guy and Willis 1991, Gritters 1997, Shoup et al. 2003
Northern Pike Esox lucius Guy and Willis 1991, McInerny and Cross 2004
Pumkinseed Lepomis gibbosus Gritters 1997, Shoup et al. 2003, McInerny and Cross 2004
Rock Bass Ambloplites rupestris Laarman and Ryckman 1982, Hoffman et al. 1990
Smallmouth Bass Micropterus dolomieu Milewski and Willis 1991, McInerny and Cross 2004
Walleye Sander vitreus Guy and Willis 1991, Rogers et al. 2003
Yellow Perch Perca flavescens Guy and Willis 1991, Kraft and Johnson 1992, McInerny and Cross 2004
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Table 2.- Characteristics of lakes sampled during June-August 2013 and 2014 including 

effort used by both sampling regimes (i.e. Standard and SDGFP) in each lake.  Fyke nets 

were not used in all lakes.  Trophic state was determined based on Trophic State Index 

outlined by Carlson (1977).  Several water bodies including all Black hills impoundments 

were sampled with gill nets only. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lake Lake Type Surface Area (ha) Max depth (m) Trophic State Gill Nets Fyke Nets 
Alvin Prairie Stream Impoundment 42 7.9 Eutrophic 3 10
Bitter Glacial lake 6070 8.5 Eutrophic 8 18

Blue Dog Glacial lake 251 2.7 Eutrophic 6 18
Bullhead Glacial lake 66 4.6 Eutrophic-Hypereutrophic 3 12
Clear Glacial lake 192 6.7 Mesotrophic-Eutrophic 6 18
Cochrane Glacial lake 58 7.3 Eutrophic 3 12
Deerfield Black Hills Impoundment 176 29.0 Mesotrophic 4

East Krause Glacial lake 70 6.1 Eutrophic 3 12
Enemy Swim Glacial lake 868 7.9 Mesotrophic-Eutrophic 6 24

Kampeska Glacial lake 2125 4.9 Eutrophic 6 21

Madison Glacial lake 1069 4.9 Eutrophic 5 10

Mina Prairie Stream Impoundment 326 8.2 Eutrophic 6 18

Mitchell Prairie Stream Impoundment 271 8.8 Eutrophic 4 12
North Rush Glacial lake 1133 3.7 Eutrophic-Hypereutrophic 6

Pactola Black Hills Impoundment 318 50.6 Oligotrophic 12

Pickerel Glacial lake 397 12.5 Eutrophic 6 12

Richmond Prairie Stream Impoundment 335 8.8 Eutrophic 6 18

Roy Glacial lake 831 6.4 Eutrophic 6 24

Scott Glacial lake 43 3.4 Eutrophic 3 5

Sheridan Black Hills Impoundment 155 29.3 Mesotrophic 2

Sinai Glacial lake 735 10.1 Eutrophic 4 10

South Buffalo Glacial lake 724 4.3 Eutrophic 6

Thompson Glacial lake 5041 7.9 Eutrophic 5 10
Wall Glacial lake 84 7.3 Eutrophic 3 5
Waubay Glacial lake 6289 9.4 Hypereutrophic 8 32
West 81 Glacial lake 554 6.7 Hypereutrophic 5 10
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Table 3.- Total catch of Standard and SDGFP gill nets and fyke nets used to sample 26 

lakes across South Dakota during June-August of 2013 and 2014.    

 
 
 
 
 
 
 
 

Common Name Scientific Name Standard SDGFP Standard SDGFP  Total
Bigmouth Buffalo Ictiobus cyprinellus 4 3 22 43 72

Black Bullhead Ameiurus melas 1567 2889 8451 15289 28196
Black Crappie Pomoxis nigromaculatus 91 147 1014 798 2050
Bluegill Lepomis macrochirus 96 207 2084 2012 4399
Bluegill Hybrid Lepomis macrochirus x Lepomis spp. 1 179 491 671
Brook Trout Salvelinus fontinalis 3 23 26

Brown Trout Salmo trutta 3 13 16
Channnel Catfish Ictalurus punctatus 123 163 74 119 479

Cisco Coregonus artedi 5 3 8

Common Carp Cyprinus carpio 82 122 2044 1437 3685

Emerald Shiner Notropis atherinoides 1 1 2

Eurasian Rudd Scardinius erythrophthalamus 1 1
Flathead Catfish Pylodictis olivaris 1 1

Freshwater Drum Aplodinotus grunniens 48 58 11 15 132

Golden Shiner Notemigonus crysoleucas 1 1 2

Green Sunfish Lepomis cyanellus 1 59 47 107

Green Sunfish Hybrid Lepomis cyanellus x Lepomis spp. 1 2 3

Lake Trout Salvelinus namaycush 29 87 116

Largemouth Bass Micropterus salmoides 3 3 28 9 43

Northern Pike Esox lucius 181 402 215 214 1012

Orangespotted Sunfish Lepomis humilis 1 1 2

Pumkinseed Lepomis gibbosus 1 7 10 18
Rainbow Smelt Osmerus mordax 29 29
Rainbow Trout Oncorhynchus mykiss 38 49 87
River Carpsucker Carpiodes carpio 3 4 3 3 13
Rock Bass Ambloplites rupestris 31 79 51 273 434
Shorthead Redhorse Moxostoma macrolepidotum 1 2 3 6
Smallmouth Bass Micropterus dolomieu 76 100 180 484 840
Splake Trout Salvelinus fontinalis x Salvelinus namaycush 1 10 11
Spottail Shiner Notropis hudsonius 5 5
Walleye Sander vitreus 534 1199 176 446 2355
White Bass Morone chrysops 142 251 710 382 1485
White Crappie Pomoxis annularis 18 33 18 33 102
White Sucker Catostomus commersonii 228 224 102 94 648
Yellow Bullhead Ameiurus natalis 6 13 50 384 453
Yellow Perch Perca flavescens 1195 4362 1114 527 7198

Grand Total 4511 10486 16598 23112 54707

Gill Net Fyke NetSpecies
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Table 4.- Total catch of “mini-mesh” panels used in conjunction with Standard “core-

mesh” gill nets in nine eastern South Dakota lakes during June-August 2014. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Common Name Scientific Name 10 mm 13 mm 16 mm  Total
Black Bullhead Ameiurus melas 2 3 5
Black Crappie Pomoxis nigromaculatus 2 1 3
Bluegill Lepomis macrochirus 1 1
Channnel Catfish Ictalurus punctatus 1 1
Common Carp Cyprinus carpio 1 3 3 7
Northern Pike Esox lucius 1 1
Smallmouth Bass Micropterus dolomieu 4 1 5
Spottail Shiner Notropis hudsonius 9 2 11
Walleye Sander vitreus 1 5 6
White Bass Morone chrysops 4 6 3 13
Yellow Perch Perca flavescens 72 282 71 425

Grand Total 88 302 88 478

Species Bar Mesh Size
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Table 5.  Calculated values of proportional size distribution (PSD) and proportional size 

distribution of preferred length fish (PSD-P) for Standard and SDGFP gill nets and fyke 

nets collected in South Dakota lakes during June-August 2013-2014 shown with results 

of Chi-Square Test where α = 0.05 for all comparisons. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Gear Species Standard SDGFP χ² p-value Standard SDGFP χ² p-value
Fyke nets Black Crappie 89 85 6.365 0.015 * 53 48 3.224 0.073

Bluegill 75 55 167.404 < 0.001 * 31 17 102.61 < 0.001 *
Bullhead 73 62 51.077 < 0.001 * 14 15 1.209 0.272
Channel Catfish 59 76 5.036 0.025 * 21 14 0.785 0.376
Common Carp 94 89 1.826 0.177 61 56 0.658 0.417
Northern Pike 79 64 10.110 0.001 * 23 14 4.98 0.026 *
Rock Bass 74 61 2.336 0.126 14 13 0.002 0.966
Smallmouth Bass 57 40 10.942 < 0.001 * 33 18 14.576 < 0.001 *
Walleye 42 33 3.632 0.057 15 11 1.301 0.254
White Bass 99 100 0.306 0.580 89 93 3.522 0.061
White Sucker 94 91 0.211 0.646 89 82 1.665 0.197
Yellow Perch 20 26 3.378 0.066 2 2 0 1.000

Gill nets Black Crappie 95 93 0.231 0.631 70 77 0.987 0.321
Bluegill 72 82 3.061 0.080 28 23 0.543 0.461
Bullhead 63 50 50.010 < 0.001 * 8 5 11.943 < 0.001 *
Channel Catfish 70 60 2.517 0.113 10 8 0.262 0.607
Common Carp 91 90 0 1.000 70 45 4.344 0.037 *
Lake Trout 67 49 1.880 0.170 19 16 0 1.000
Northern Pike 74 64 4.975 0.026 * 15 10 2.261 0.133
Rainbow Trout 8 0 1.659 0.198 3 0 0.004 0.950
Rock Bass 37 34 < 0.001 0.981 7 3 0.233 0.629
Smallmouth Bass 73 53 6.242 0.012 * 46 29 4.600 0.032 *
Walleye 36 29 8.039 0.005 * 13 5 36.493 < 0.001 *
White Bass 100 99 0.128 0.720 96 92 2.648 0.104
White Sucker 98 95 1.690 0.194 96 91 3.831 0.050
Yellow Perch 40 40 0.041 0.839 13 10 4.757 0.029 *

PSD PSD-P
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Table 6. Species-specific regression equations useful as conversion factors for lake-wide 

LOG10(X + 1) transformed Catch Per Unit Effort (CPUE) data between North American 

Standard and South Dakota Game, Fish and Parks gill nets and fyke nets.  For Lake Trout 

and Rainbow trout net set was the replicate unit.    

 
 
 
 
 
 
 
 
 
 
 
 

Gear Species Standard to SDGFP SDGFP to Standard
Gill nets Black Crappie SDGFP = 0.827 * (Standard) + 0.085 Standard  = (SDGFP - 0.085)/0.827 

Bluegill SDGFP = 0.730 * (Standard) + 0.230 Standard  = (SDGFP - 0.230)/0.730 

Bullhead SDGFP = 1.053 * (Standard) + 0.155 Standard  = (SDGFP - 0.155)/1.053
Channel Catfish SDGFP = 0.983 * (Standard) + 0.084 Standard  = (SDGFP - 0.084)/0.983 
Common Carp SDGFP = 0.664 * (Standard) + 0.050 Standard  = (SDGFP - 0.050)/0.664
Lake Trout SDGFP = 0.360 * (Standard) + 0.448 Standard  = (SDGFP - 0.448)/0.360 
Northern Pike SDGFP = 1.187 * (Standard) + 0.135 Standard  = (SDGFP - 0.135)/1.187 

Rainbow Trout SDGFP = 0.099 * (Standard) + 0.402 Standard  = (SDGFP - 0.402)/0.099
Rock Bass SDGFP = 1.139 * (Standard) + 0.114 Standard  = (SDGFP - 0.114)/1.139

Smallmouth Bass SDGFP = 0.858 * (Standard) + 0.097 Standard  = (SDGFP - 0.097)/0.858 

Walleye SDGFP = 0.798 * (Standard) + 0.424 Standard  = (SDGFP - 0.424)/0.798 

White Bass SDGFP = 1.175 * (Standard) + 0.005 Standard  = (SDGFP - 0.005)/1.175 

White Sucker SDGFP = 0.892 * (Standard) + 0.041 Standard  = (SDGFP - 0.041)/0.892 
Yellow Perch SDGFP = 0.940 * (Standard) + 0.420 Standard  = (SDGFP - 0.420)/0.940 

Fyke nets Black Crappie SDGFP = 0.632 * (Standard) + 0.130 Standard  = (SDGFP - 0.130)/0.632 

Bluegill SDGFP = 0.891 * (Standard) + 0.166 Standard  = (SDGFP - 0.166)/0.891 

Bullhead SDGFP = 1.063 * (Standard) + 0.229 Standard  = (SDGFP - 0.229)/1.063

Channel Catfish SDGFP = 1.077 * (Standard) + 0.141 Standard  = (SDGFP - 0.141)/1.077

Common Carp SDGFP = 0.938 * (Standard) - 0.036 Standard  = (SDGFP + 0.036)/0.938

Northern Pike SDGFP = 0.950 * (Standard) - 0.006 Standard  = (SDGFP + 0.006)/0.950 

Rock Bass SDGFP = 2.589 * (Standard) + 0.048 Standard  = (SDGFP - 0.048)/2.589 

Smallmouth Bass SDGFP = 1.597 * (Standard) - 0.007 Standard  = (SDGFP + 0.007)/1.597 
Walleye SDGFP = 1.225 * (Standard) + 0.087 Standard  = (SDGFP - 0.087)/1.225 
White Bass SDGFP = 1.010 * (Standard) - 0.032 Standard  = (SDGFP + 0.032)/1.010 
White Sucker SDGFP = 0.907 * (Standard) + 0.009 Standard  = (SDGFP - 0.009)/0.907 
Yellow Perch SDGFP = 0.892 * (Standard) + 0.121 Standard  = (SDGFP - 0.121)/0.892
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List of Figures 
 

1.) Regressions of Standard against SDGFP gill net catch per unit effort plotted against a 

1:1 line for 14 species with results of analysis of covariance (ANCOVA) shown 

where β0 and β1 indicate results for differences in slope and intercept, respectively.  

All fish sampled across South Dakota during June-August 2013-2014.  Solid lines 

indicate actual regressions and dotted lines indicate 1:1 regressions. 

 

2.) Length frequency distributions for 14 species sampled using Standard and SDGFP 

gill nets in South Dakota during June-August 2013-2014 shown with results of 

Kolmogorov-Smirnov Test. 

 

3.)  Box plots of Shannon’s diversity and evenness for Standard and SDGFP gill nets 

shown with results of blocked analysis of variance (ANOVA).  Fish collected using 

gill nets (N=26 lakes) and fyke nets (N=21 lakes) across South Dakota during June-

August 2013-2014. 

 

4.)  Regressions of Standard against SDGFP fyke net catch per unit effort plotted against 

a 1:1 line for 12 species with results of analysis of covariance (ANCOVA) shown 

where β0 and β1 indicate results for differences in slope and intercept, respectively.  

All fish sampled across South Dakota during June-August 2013-2014.  Solid lines 

indicate actual regressions and dotted lines indicate 1:1 regressions. 
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5.) Length frequency distributions for 12 species sampled using Standard and SDGFP 

fyke nets in South Dakota during June-August 2013-2014 shown with results of 

Kolmogorov-Smirnov Test. 

 

6.) Regressions of Standard against SDGFP gill net catch per unit effort shown with 

associated 95% confidence intervals, regression equation and adjusted R2 value for 14 

species sampled across South Dakota during June-August 2013-2014. 

 

7.)  Regressions of Standard against SDGFP fyke net catch per unit effort shown with 

associated 95% confidence intervals, regression equation and adjusted R2 value for 12 

species sampled across South Dakota during June-August 2013-2014. 

 

 
 
 
 



42 

 
 

Figure 1. Smith, B  
 
 



43 

 
 

Figure 1-continued. Smith, B 
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Figure 1-continued. Smith, B 
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Figure 1-continued. Smith, B 
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Figure 2. Smith, B 



47 

 
 
Figure 2-continued. Smith, B. 
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Figure 2-continued. Smith, B 
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Figure 3. Smith, B 
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Figure 4. Smith, B 
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Figure 4-continued. Smith, B 



53 

 
 

Figure 4-continued. Smith, B 
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Figure 5. Smith, B 
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Figure 5-continued. Smith, B 
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Figure 6. Smith, B 
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Figure 6-continued. Smith, B 
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Figure 7. Smith, B 
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CHAPTER 3. COMPARISON OF MULTIFILAMENT GILL NETS WITH 

MONOFILAMENT NORTH AMERICAN STANDARD GILL NETS ON MISSOURI 

RIVER IMPOUNDMENTS IN SOUTH DAKOTA 

 

Abstract 

A paired gear comparison was performed between current multifilament South 

Dakota Game, Fish and Parks (SDGFP) Missouri River reservoir sampling gill nets and 

newly proposed monofilament North American Standard (Standard) gill nets on four 

impoundments of the Missouri River in South Dakota.  Multifilament SDGFP nets were 

92-m long by 1.83-m deep and included 13, 19, 25, 32, 38, and 51- mm bar-mesh while 

monofilament Standard nets were 25-m long by 1.83-m deep and included eight 

randomly ordered panels of 19, 25, 32, 38, 44, 51, 57, and 64-mm bar-mesh.  This study 

was part of a larger effort to standardize sampling gears statewide and required 

development of conversion factors to ensure utility of historic data after switching to 

Standard gears.  Catch per unit effort (CPUE) was higher for most species collected in the 

longer SDGFP nets while Standard gill nets generally selected for larger individuals due 

to additional large bar-mesh panels not included in SDGFP nets.  Monofilament twine 

was found to be more efficient than multifilament twine and the Standard net with eight 

panels had broader selectivity than SDGFP nets with six panels. Both net types sampled 

similar fish assemblages.  Conversion factors developed using regression analyses had 

adjusted R2 values ranging from 0.118 to 0.955 and will allow for CPUE data to be 

converted from one gear to the equivalent CPUE of the other gear for commonly 

collected Missouri River reservoir species in South Dakota.   The increased efficiency 
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and broader selectivity of the Standard gill net make conversion to North American 

Standard gill nets advisable and timely given the push within the fisheries science to 

standardize gears and methods across North America.         
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Introduction 

 Recently, the American Fisheries Society (AFS) proposed standard gears and 

methods for sampling freshwater fishes (Bonar et al. 2009) and currently efforts are 

underway in several states to implement these standards.  At the state level, South Dakota 

Game, Fish and Parks (SDGFP) has prioritized standardization of annual sampling gears 

statewide and is considering whether to adopt North American Standard gears, hereafter 

referred to as Standard (State Components Work Group 2014).  However, potential loss 

of long-term data sets resulting from adoption of North American standards has caused 

concern among management biologists.  Thus, a gear comparison between current and 

potential new standards is necessary to understand and correct for biases between gears 

and allow for continued use of long-term data sets (Bonar et al. 2009a). 

 Of paramount importance to SDGFP is continued use of data collected with 

current SDGFP multifilament gill nets on mainstem Missouri River impoundments (i.e., 

Lakes Oahe, Sharpe, Francis Case, and Lewis and Clark) that support robust Walleye 

Sander Vitreus fisheries (Graeb et al. 2008).  Standard monofilament “core-mesh” gill 

nets recommended for sampling in large lakes and reservoirs (Miranda and Boxrucker 

2009) vary drastically from current SDGFP multifilament gill nets creating concern due 

to the highly selective nature of gill nets (Hamley 1975).   

 Comparisons of varying gill net configurations have led researchers to conclude 

that variability in virtually every feature of gill nets generates bias (Hamley 1975, Jester 

1977, Yokota 2001).  Bar-mesh size is the most selective feature of gill nets though mesh 

material (e.g., cotton, multifilament, and monofilament) also plays an important role in 

gill net selectivity (Hamley 1975).  Attempts to increase efficiency have driven 
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innovation in gill net construction.  For example, gill nets used to be constructed with 

cotton and later multifilament (Pycha 1962) until monofilament was found to be the most 

efficient material available (Washington 1973, Collins 1979, Henderson and Nepszy 

1992).  Aside from reducing visibility to fishes monofilament may also yield larger size 

structure for some species due to increased elasticity that allows larger fish to become 

wedged (Hansen 1974).  

 With the continued confusion surrounding gill net biases and a desire to 

standardize sampling gears, we performed a paired-gear comparison to quantify 

differences in CPUE, size structure, efficiency, selectivity and diversity between 

multifilament SDGFP gillnets and monofilament “core-mesh” Standard gill nets in four 

mainstem impoundments of the Missouri River in South Dakota.  Conversion factors for 

CPUE data were developed to allow for continued use of long-term data sets.  The utility 

of mini-mesh add-ons to the “core-mesh” Standard gill nets was also assessed.    

 

Methods 

 Study area – The Missouri River was impounded at four locations in South 

Dakota for the primary purpose of flood control during the 1950’s and 1960’s as part of 

the Pick-Sloan Plan creating four reservoirs that vary in size from 10,500 ha (Lewis and 

Clark Lake) to 145,000 ha (Lake Oahe).  Reservoir conditions vary greatly between 

upstream and downstream portions within each reservoir.  Upstream lotic sections tend to 

be turbid and eutrophic followed by a more mesotrophic transition zone and at the lowest 

portion conditions are oligotrophic (Fincel 2011).  Fish communities are similarly 

complex and reflect the diversity of conditions available in these reservoirs. Native 
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riverine species intermingle with intensively managed Walleyes and Salmonids (i.e., 

Chinook Salmon Oncorhynchus tshawytscha in Lake Oahe) along thermal and 

productivity gradients within each reservoir (Fincel 2011).  Standard summer gill net 

catches are typically dominated by Channel Catfish Ictalurus punctatus and Walleyes.  

Gear Description- Multifilament SDGFP gill nets used during annual surveys 

were 92-m long by 1.83-m deep and comprised of six bar-mesh panels (i.e., 13, 19, 25, 

32, 38, and 51 mm) but on Lake Oahe an extra 64-mm panel is included to target large 

Walleyes bringing the total length to 107 meters. For the purpose of this study, only the 

six bar-mesh panels common to all SDGFP nets across all reservoirs are included and 

compared with Standard nets.  Data from 64 mm bar-meshes of SDGFP nets were only 

used for a comparison of CPUE between SDGFP gill nets with and without their 64-mm 

panel to assess whether removal of 64-mm bar-mesh data significantly influenced overall 

estimates of CPUE in lake Oahe.  North American Standard monofilament gill nets are 

25-m long by 1.83-m deep and include eight randomly ordered panels (i.e., 19, 25, 32, 

38, 44, 51, 57, and 64 mm bar-mesh) but for experimental purposes three additional mini-

mesh add-on panels (i.e. 10, 13, and 16 mm bar-mesh) were connected to the end of each 

Standard net (Bonar et al. 2009b).  Catches from mini-meshes were not combined with 

catches from the other meshes for analyses (Miranda and Boxrucker 2009). 

 Sampling protocol - Annual summer gill net sampling by SDGFP on Missouri 

River impoundments involves setting between 12 and 54 multifilament gill nets at one to 

nine standard sampling stations on each reservoir.  Half the nets set in shallow water ≤ 7-

m and half are set in water > 7-m.  Lewis and Clark Lake received the least sampling 

effort and Lake Oahe the most.  Multifilament SDGFP gill nets were set for 24 hrs at the 
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first sampling station then checked and moved to the next sampling station.  Paired gear 

comparisons were performed concurrently with this standard gill net survey during 2013 

and 2014 by randomly assigning Standard nets to be set 100 m to the right or left and 

parallel to each SDGFP gill net at all sampling stations on each reservoir during both 

study years.  All fish captured in both gear configurations were measured for total length 

(TL; mm), weighed (g), and the mesh they were captured in was recorded. 

 Data analysis – For species-specific comparisons of CPUE reservoir-years were 

treated as replicate units except for Shovelnose Sturgeon Scaphirhynchus platorynchus 

and White Crappie Pomoxis annularis where station-year was used instead due to the fact 

that they were not found in all four reservoirs.  Mean CPUE was calculated across all nets 

used of each net type during each reservoir-year.  Data were LOG10(X + 1) transformed 

and CPUE of Standard nets were regressed against SDGFP data then compared using 

Analysis of Covariance (ANCOVA) to a 1:1 line that represented a hypothetical 

equivalent CPUE between net types.  Using ANCOVA significant differences in slope or 

intercept between empirical data and the 1:1 line indicated that catch rates between gears 

were not analogous.  

Size structure between net types was compared by two methods using pooled data 

from all four reservoirs and during both sampling years.  First, species-specific length-

frequency distributions were compared between net types using a Kolmogorov-Smirnov 

test (KS; Conover 1999; Neumann and Allen 2007).  Next, proportional size distribution 

(PSD) and proportional size distribution of preferred-size fish (PSD-P; Guy et al. 2007) 

were calculated using length categories provided by Gabelhouse (1984) and Bister et al. 
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(2000) for each species and gear type.  These index values were compared between net 

types using a Chi-Square test (Conover 1999; Neumann and Allen 2007).   

Differences in efficiency between monofilament Standard nets and multifilament 

SDGFP nets were investigated using only mesh sizes common to both gill net 

configurations by calculating species and net-specific density (fish/m2).  Net pairings 

were used as replicates and only non-zero data were included.  Comparisons of fish 

density were analyzed using a Wilcoxon rank-sum test (Conover 1999) due to non-

normality of data. 

 Species-specific selectivities were investigated for each gear type using pooled 

data from all reservoir-years for the highly abundant and recreationally important 

Channel Catfish and Walleye using the Share Each LEngth’s Catch Total (SELECT) 

method developed by Millar (1992) and associated Next Generation R code available at 

(https://www.stat.auckland.ac.nz/~millar/selectware/RNext/).  The SELECT method is 

based on maximum likelihood and fits five potential models (i.e. normal, skew-normal, 

log-normal, bi-normal, and bi-lognormal) to empirical catch data and calculates model 

deviances and residuals.  Models with the lowest model deviances are assumed to provide 

the best fit to empirical data (Millar 1992).  Measures of selectivity can take either of two 

forms; relative efficiency or relative efficiency proportional to mesh size, the latter of 

which accounts for differences in catch between mesh sizes (Millar and Holst 1997).  

Only relative efficiency was investigated for the purpose of this gear comparison because 

I was most interested in the shape of selectivity curves and identifying where gaps in 

selectivity may exist for each net type.  Unfortunately, these analyses do not allow for 
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quantitative comparison between gears but instead provide a qualitative way to assess and 

visualize differences in overall selectivity between net types.  

To address concerns that switching gill net types may bias the fish assemblages 

sampled during annual sampling, I compared fish community metrics produced by each 

gear type.  Metrics chosen for investigation were Shannon’s H for diversity and 

Shannon’s J for evenness (Kwak and Peterson 2007).  Measures of diversity and 

evenness were calculated for each gear and reservoir-year then values were compared 

across reservoir-years using an Analysis of Variance (ANOVA) with lake as a blocking 

factor (Eggleton et al. 2010).     

Conversion factors that would allow for continued use of historic data were 

developed by regressing LOG10(X +1) transformed CPUE data of Standard nets against 

that of SDGFP nets for each species.  Regression equations with the highest adjusted R2 

values were judged to be most useful for converting data while regression equations with 

low goodness of fit should be used with caution.  Additional analyses were performed to 

ensure that exclusion of the 64-mm bar-mesh panel from SDGFP data on Oahe did not 

significantly influence estimates of lake-wide CPUE.  These analyses focused on species 

where > 5% of total catch in Lake Oahe came from the 64 mm panel.  Comparisons of 

CPUE were made between lake-wide CPUE with and without the 64 mm panel using a 

lower-tailed t-test.  Utility of mini-mesh add-ons was performed qualitatively and applied 

only to Standard gill nets.  An α of 0.05 was assumed for all tests and calculations were 

performed in R version 3.0.2 “frisbee sailing” (R Core Development Team, 2013).               

 

Results and Discussion 
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Differences in net length coupled with divergent bar-mesh panel configurations 

and twine materials between gill net types produced many predictable results.  Net length 

effects are often species-specific with CPUE generally increasing with net length, though 

counter-examples do exist (Minns and Hurley 1988, Acosta 1994).  As expected, longer 

SDGFP nets typically produced higher CPUE (Figure 1).  However, the presence of 

larger bar-mesh on Standard nets sometimes resulted in equal (i.e., Goldeye Hiodon 

alosoides, White Bass Morone chrysops, and White Crappie Pomoxis annularis) or 

higher (i.e. Freshwater Drum Aplodinotus grunniens) total catch rates than SDGFP nets 

(Figure 1).  Typically, larger individuals of these four species were collected due to their 

vulnerability to the larger bar-mesh panels found on Standard nets.    

Gill nets are strongly size selective and fish slightly larger or smaller than the 

optimum length for capture are often not retained by wedging or gilling (Baranov 1948).  

Addition of larger bar-mesh sizes explained the tendency for Standard nets to select for 

larger individuals of many species including Channel Catfish and Walleye (Table 1).  

Similar size structure was observed between net types for Northern Pike Esox lucius, 

Sauger Sander canadensis, Shorthead Redhorse Moxostoma macrolepidotum, Shovelnose 

Sturgeon, and Shortnose Gar Lepisosteus platostomus though sample sizes were small 

reducing the power of Chi-Square and KS tests to detect significant differences.  

Generally, Chi-Square and KS tests corroborated each other; although there were 

exceptions where the KS Test (Table 1) found significant differences not detected by 

comparisons of PSD and PSD-P (Table 2).  Use of individual fish of abundant species as 

replicate units can produce large sample sizes and the more sensitive KS test often detects 

significant differences even where the differences may be minor (Neumann and Allen 
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2007).  Both gill net types typically selected for stock-length fish so for management 

purposes the more conservative comparisons of PSD and PSD-P will likely be most 

relevant.    

I found that monofilament was more efficient than multifilament for almost all 

species where sufficient data was available except for Northern Pike, River Carpsucker 

Carpoides carpio, and Shorthead Redhorse (Table 3).  This disparity in efficiency 

between twine materials influenced both CPUE and size structure for each type of 

experimental gill net.  Monofilament is regarded to be more efficient than multifilament 

for capturing most fish species (Hamley 1975; Hubert 1996) including Walleyes 

(Henderson and Nepszy 1992).  Monofilament is more elastic than multifilament due to 

smaller twine diameter (Hansen 1974) and is less visible (Jester 1973) explaining the 

primary differences in efficiency between these twine materials. Henderson and Nepszy 

(1992) speculated that reduced tensile strength of monofilament may allow larger bodied 

fish to break free but I did not observe this in the present study.   

Selectivities of each gill net type were related primarily to bar-mesh size.  

Analyses of gill net selectivities using the SELECT method (Millar 1992; Millar and 

Fryer 1999; Millar and Holst 1997) provided useful visualizations of bar-mesh specific 

selectivity curves for Channel Catfish (Figure 2) and Walleye (Figure 3) in both gill net 

types.  Gill nets are commonly used to sample Channel Catfish (Pope et al. 2009) but 

typically other gears are more efficient (Buckmeier and Schlechte 2009) so studies of gill 

net selectivity for this species are scarce.  Bi-lognormal model fits were most 

parsimonious for Channel Catfish captured in both gill net types though model deviances 

were lower for Standard nets (Table 4).  Inspection of deviance residuals interpreted 
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following methods of Millar and Holst (1997) shows good fit for small bar-mesh sizes 

but poorer fits as bar-mesh size increases suggesting that selectivity curves for small 

meshes are indeed bi-modal with a tight selectivity curve for small individuals captured 

by traditional gilling and a lower, broader second curve for larger individuals captured by 

tangling primarily by pectoral and dorsal spines.   

I found that Walleye selectivity for both net types was best explained by a bi-

lognormal fit indicating an element of both wedging and tangling and deviance residuals 

indicate this trend is strong for small meshes then weakens for increasingly larger meshes 

(Table 5).  Studies of Walleye selectivity are numerous and typically conclude that bi-

modal models have the most support.  Indirect estimates by Vandergoot et al. (2011) 

found that bi-normal fits that incorporated deviations best explained Walleye gill net 

selectivity in Lake Erie.  Direct estimates of selectivity by Hamley and Regier (1973) 

broke down selectivity into two components, wedging and tangling, and found a bi-modal 

selectivity curve.   Selectivity analyses for both species show more thorough coverage by 

Standard nets across the broad range of sizes observed for these two species.  Overall, 

deviance residuals were low compared to similar analyses for Walleye (Vandergoot et al. 

2011) and Yellow Perch (Doll et al. 2014) indicating good model fit to empirical data.       

Throughout all reservoir-years 10,719 individuals representing 28 mostly riverine 

fish species were sampled (Table 6) though not all species were found in each reservoir.  

Lake Oahe was the largest and most diverse reservoir with 23 species sampled while 

Lewis and Clark was the smallest and least diverse with only 15 species collected 

between both gill net types.   Minns and Hurley (1988) found that species richness 

increased with gill net length when sampling Lake Ontario but my comparisons of 
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Shannon’s diversity (F = 3.807, P = 0.092, df = 15) and evenness (F = 4.831, P = 0.064, 

df = 15) identified no significant differences between gill net types of differing lengths 

across reservoir-years reducing concerns that switching net types would bias sampling of 

reservoir fish communities.    

Regression analyses comparing CPUE between gill net types were calculated for 

16 species and goodness-of-fit measured by adjusted R2 was generally greater than 0.50 

except for a few species (Figure 4).  Conversion factors allowing corrections of CPUE 

between gill net types will allow historic SDGFP lake-wide CPUE data to be converted to 

its equivalent lake-wide Standard CPUE (Table 7).  Exemption of the 64-mm bar-mesh 

from SDGFP nets on Lake Oahe made no measurable impact on lake-wide CPUE over 

the two study years except for Common Carp and River Carpsucker where CPUE was 

significantly lower without the 64 mm panel (Table 8). 

Mini-mesh add-ons to the Standard “core-mesh” gill nets sampled 506 individuals 

comprised of 19 species two of which (i.e., Emerald Shiner Notropis atherinoides and 

Spottail Shiner Notropis hudsonius) were not sampled by either Standard or SDGFP 

regular gill net complements (Table 9).  Catches were dominated by Gizzard Shad 

Dorosoma cepedianum (N = 140), Walleye (N = 80), and White Bass (N = 65) but 

overall these mini-meshes were less productive than “core-mesh” panels as expected due 

to the low fishing power of small meshes (Hamley 1975; Hamley and Regier 1973) 

because smaller fish tend to avoid capture in gill nets relative to larger conspecifics 

(Hubert 1996).   The primary purpose for including mini-mesh panels was to broaden 

selectivity of the experimental gill net particularly for prey species (e.g., Gizzard Shad 

and Rainbow Smelt Osmerus mordax) and sub-stock game fish (i.e., Walleye) though 
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comparatively few sub-stock game fish were captured in these panels over the two years 

they were deployed.  Heard (1962) sampled an Alaskan lake with small-mesh gill nets 

and collected the majority of fish species present including juvenile Sockeye Salmon 

Oncorhynchus nerka.  However, this researcher concluded that bar-meshes less than 13 

mm were inefficient and provided only a qualitative method for collecting small-bodied 

fishes.  Regardless of their utility, catches from these mini-meshes or any non-standard 

mesh add-ons should not be included when reporting catches of North American 

Standard gill nets (Miranda and Boxrucker 2007).  Based on low catches and the 

additional cost of purchasing these panels I conclude that mini-meshes are not essential 

when sampling these reservoirs unless there is a specific need for them.    

Synthesis of data collected and analyzed over two years across all four Missouri 

River impoundments in South Dakota has provided thorough understanding of biases 

between current SDGFP and North American Standard gill nets.  Switching from longer 

multifilament SDGFP nets to shorter monofilament Standard nets would produce biases 

between current and future datasets.  However, such biases can be corrected.  My paired 

sampling design allowed simultaneous sampling of similar fish populations and 

assemblages in each reservoir by both gears allowing us to control for extraneous factors.  

Peterson and Paukert (2009) recommended at least ten samples when performing paired 

gear comparisons but this study far surpassed that mark with 219 paired samples.  A 

similar study in the Colorado River, Arizona used 88 paired samples of differing 

electrofishing units to investigate gear bias when sampling Rainbow Trout Oncorhynchus 

mykiss (Speas et al. 2004).  Use of converted data increases variance and reduces power 

to detect significant changes (Cohen 1988) so models with the highest adjusted R2 should 
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be most reliable and those with low R2 should be used with caution.  Historic CPUE data 

will still be useful if converted to equivalent Standard CPUE but should always be 

labeled as converted data (Peterson and Paukert 2009). 

Converting to sampling with North American Standard gill nets would be 

challenging initially as observed in gear standardization efforts in other states but pay off 

in the long-term (Hayes et al. 2003).  Using Standard nets would be more efficient due 

the use of monofilament as twine material and the broader selectivity of the Standard net 

would yield more thorough coverage when monitoring game fish populations.  Switching 

gears would likely require increasing the number of nets used in each reservoir to achieve 

similar sample sizes collected using SDGFP nets because Standard nets are much smaller 

than current SDGFP nets.  When the Kansas Department of Wildlife, Parks, and Tourism 

adopted Standard gill nets for sampling reservoirs, they discovered that precision of 

CPUE estimates for several species was poor given existing levels of effort and 

prescribed additional effort or alternative sampling methods to achieve sampling 

objectives (Koch et al. 2014).  Increased effort would likely improve precision for lake-

wide CPUE estimates (Veijola 1996).  Beyond South Dakota, this project fits into a large, 

long-term, and far-reaching effort within the fisheries science community to standardize 

sampling gears, methods, and reporting procedures across North America.  
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Table 1.  Results of Kolmogorov-Smirnov tests comparing length frequency distributions 

between North American Standard and South Dakota Game, Fish and Parks gill nets for 

16 species sampled during 2013 and 2014 in mainstem impoundments of the Missouri 

River in South Dakota. 

 

 

 

 

 

 

 

 

 

 

 

Species Standard SDGFP D-value P -value
Channel Catfish 1,178 1,974 0.168 < 0.001 *
Common Carp 86 260 0.126 0.257
Freshwater Drum 198 213 0.360 < 0.001 *
Goldeye 184 336 0.095 0.445
Gizzard Shad 107 118 0.231 0.005 *
Northern Pike 28 44 0.123 0.957
River Carpsucker 53 140 0.292 0.003 *
Sauger 90 415 0.080 0.727
Shorthead Redhorse 45 231 0.100 0.842
Shovelnose Sturgeon 78 112 0.101 0.734
Smallmouth Bass 177 192 0.146 0.040 *
Shortnose Gar 17 38 0.184 0.820
Walleye 947 2,458 0.164 < 0.001 *
White Bass 78 159 0.415 < 0.001 *
White Crappie 13 60 0.433 0.036 *
Yellow Perch 60 293 0.211 0.016 *

Sample size
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Table 2.  Proportional Size Distribution (PSD) and PSD of preferred-length fish (PSD-P) for 13 species sampled using North 

American Standard (Standard) and South Dakota Department of Game, Fish and Parks (SDGFP) gill nets across four mainstem 

Missouri River impoundments in South Dakota during 2013 and 2014.  Results of Chi-Square tests are shown for each 

comparison with asterisks denoting significant differences.  

 

Species Standard SDGFP χ² P -value Standard SDGFP χ² P -value
Channel Catfish 61 47 59.344 < 0.001 * 7 5 5.927 0.015 *
Common Carp 93 99 7.591 0.006 * 42 45 0.215 0.643
Freshwater Drum 82 81 0 1.000 39 30 2.328 0.127
Gizzard Shad 25 27 0 1.000
Northern Pike 96 98 0 1.000 52 57 0.070 0.791
River Carpsucker 96 97 0 1.000 91 92 0 1.000
Sauger 74 77 0.186 0.666 34 30 0.294 0.588
Shorthead Redhorse 96 93 0.181 0.671 85 76 1.202 0.273
Shovelnose Sturgeon 99 100 0.015 0.904 99 100 0.015 0.904
Smallmouth Bass 71 68 0.480 0.488 27 40 6.182 0.013 *
Walleye 42 17 53.154 < 0.001 * 4 1 2.316 0.128
White Bass 96 97 0.015 0.904 79 77 0.019 0.890
Yellow Perch 30 42 3.119 0.077 10 16 1.572 0.210

PSD PSD-P
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Table 3.  Wilcoxon Rank-Sum Tests comparing efficiency (fish/m2) between 

monofilament and multifilament mesh panels common to both North American Standard 

(i.e., monofilament) and South Dakota Game, Fish and Parks (i.e., multifilament) gill 

nets.  Sample size is the number of net pairings where at least a single fish of the targeted 

species was captured between both net types.  All fish were collected during summer 

sampling on four mainstem impoundments of the Missouri River during 2013 and 2014.  

 

 

 

 

 

 

 

 

 

Species Sample size Monofilament Multifilament W P -value
Channel Catfish 165 32,124 22,491 1,668 < 0.001 *
Common Carp 15 322 143 11 0.006 *
Freshwater Drum 34 1,729 617 10 < 0.001 *
Goldeye 28 1,067 529 31 < 0.001 *
Gizzard Shad 20 556 264 2 < 0.001 *
Northern Pike 5 40 15 0 0.053
River Carpsucker 9 105 66 11 0.191
Sauger 43 2,341 1,400 120 < 0.001 *
Shorthead Redhorse 18 376 290 67 0.433
Shovelnose Sturgeon 8 83 53 1 0.021 *
Smallmouth Bass 29 1,142 569 21 < 0.001 *
Shortnose Gar 6 57 21 0 0.036 *
Walleye 179 39,792 24,469 2,137 < 0.001 *
White Bass 14 291 115 0 < 0.001 *
Yellow Perch 30 1,232 598 25 < 0.001 *

Sum of ranks
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Table 4.  Parameter and model deviance values calculated for five potential gill net 

selectivity models applied to Channel Catfish data using the SELECT method (Millar 

1997).  Fish were collected using North American Standard and South Dakota Game, 

Fish and Parks gill nets on four mainstem impoundments of the Missouri River during 

2013 and 2014.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fitted
Models parameters Standard SDGFP
Normal 2 555.89 879.10
(fixed spread)

Normal 2 905.90 1379.61
(proportional spread)

Lognormal 2 581.30 882.75

Bi-normal 5 242.23 399.57

Bi-lognormal 5 210.48 268.02

Model deviance
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Table 5.  Parameter and model deviance values calculated for five potential gill net 

selectivity models applied to Walleye data using the SELECT method (Millar 1997).  

Fish were collected using North American Standard and South Dakota Game, Fish and 

Parks gill nets on four mainstem impoundments of the Missouri River during 2013 and 

2014.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fitted
Models  parameters Standard SDGFP
Normal 2 395.14 327.89
(fixed spread)

Normal 2 330.42 845.10
(proportional spread)

Lognormal 2 283.86 354.61

Bi-normal 5 150.28 214.04

Bi-log-normal 5 140.98 133.89

Model deviance
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Table 6. Total catch from North American Standard (Standard) and South Dakota Game, 

Fish and Parks (SDGFP) gill nets during summer sampling on four mainstem 

impoundments of the Missouri River during 2013 and 2014.  

 

 

 

 

 

Common name Scientific name Standard SDGFP Total
Bigmouth Buffalo Ictiobus cyprinellus 4 6 10
Black Bullhead Ameiurus melas 0 1 1
Black Crappie Pomoxis nigromaculatus 5 9 14
Bluegill Lepomis macrochirus 0 1 1
Burbot Lota lota 0 1 1
Channel Catfish Ictalurus punctatus 1,178 2,210 3,388
Chinook Salmon Oncorhynchus tshawytscha 0 1 1

Common Carp Cyprinus carpio 86 261 347
Flathead Catfish Pylodictis olivaris 3 1 4
Freshwater Drum Aplodinotus grunniens 198 216 414
Goldeye Hiodon alosoides 161 188 349
Gizzard Shad Dorosoma cepedianum 109 135 244
Largemouth Bass Micropterus salmoides 0 1 1
Northern Pike Esox lucius 28 44 72
Rainbow Trout Oncorhynchus mykiss 1 1 2
River Carpsucker Carpoides carpio 53 140 193
Smallmouth Buffalo Ictiobus bubalus 4 23 27
Sauger Sander canadensis 90 418 508
Shorthead Redhorse Moxostoma macrolepidotum 46 235 281
Shovelnose Sturgeon Scaphirhynchus platorynchus 78 112 190
Smallmouth Bass Micropterus dolomieu 177 193 370
Shortnose Gar Lepisosteus platostomus 17 38 55
Walleye Sander vitreus 958 2,535 3,493
White Bass Morone chrysops 78 188 266
White Crappie Pomoxis annularis 13 60 73
White Sucker Catostomus commersonii 4 34 38
Western Silvery Minnow Hybognathus argyritis 0 1 1
Yellow Perch Perca flavescens 67 308 375

Total 3,358 7,361 10,719
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Table 7.  Species-specific regression equations to convert lake-wide LOG10(X + 1) transformed Catch Per Unit Effort (CPUE) 

data between North American Standard (Standard) and South Dakota Department of Game, Fish and Parks (SDGFP) gill nets 

used on Missouri River reservoirs in South Dakota.   

 

 

Species Standard to SDGFP SDGFP to Standard
Channel Catfish SDGFP = 1.355 * (Standard) - 0.108 Standard = (SDGFP + 0.108)/1.355
Common Carp SDGFP = 1.033 * (Standard) + 0.159 Standard = (SDGFP - 0.159)/1.033
Freshwater Drum SDGFP = 0.700 * (Standard) - 0.014 Standard = (SDGFP + 0.014)/0.700
Goldeye SDGFP = 1.062 * (Standard) - 0.024 Standard = (SDGFP + 0.024)/1.062
Gizzard Shad SDGFP = 0.993 * (Standard) + 0.043 Standard = (SDGFP - 0.043)/0.993 
Northern Pike SDGFP = 1.073 * (Standard) + 0.032 Standard = (SDGFP - 0.032)/1.073
River Carpsucker SDGFP = 1.515 * (Standard) + 0.042 Standard = (SDGFP - 0.042)/1.515
Sauger SDGFP = 2.157 * (Standard) + 0.080 Standard = (SDGFP - 0.080)/2.157
Shorthead Redhorse SDGFP = 3.337 * (Standard) + 0.006 Standard = (SDGFP - 0.006)/3.337 
Shovelnose Sturgeon SDGFP = 0.906 * (Standard) + 0.132 Standard = (SDGFP - 0.132)/0.906 
Smallmouth Bass SDGFP = 0.094 * (Standard) + 0.206 Standard = (SDGFP - 0.206)/0.094 
Shortnose Gar SDGFP = 1.100 * (Standard) + 0.046 Standard = (SDGFP - 0.046)/1.100
Walleye SDGFP = 1.007 * (Standard) + 0.239 Standard = (SDGFP - 0.239)/1.007
White Bass SDGFP = 1.007 * (Standard) + 0.010 Standard = (SDGFP - 0.010)/1.007
White Crappie SDGFP = 0.551 * (Standard) + 0.162 Standard = (SDGFP - 0.162)/0.551 
Yellow Perch SDGFP = 1.156 * (Standard) + 0.172 Standard = (SDGFP - 0.172)/1.156 
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Table 8. Catch per unit effort (CPUE) for eight species sampled using South Dakota 

Game, Fish and Parks (SDGFP) reservoir sampling gill nets on Lake Oahe with (i.e. 

Oahe) and without (i.e. SDGFP) the 64 mm bar mesh panel.  Results of lower-tailed t-

tests comparing lake-wide CPUE where asterisks indicate significant differences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species Oahe SDGFP t-statistic df P -value
Channel Catfish 14.67 13.65 -0.686 195.49 0.248
Common Carp 2.86 2.13 -2.062 120.01 0.021 *
Freshwater Drum 1.83 1.72 -0.451 104.02 0.327
Northern Pike 1.50 1.41 -0.454 60.95 0.326
River Carpsucker 2.33 1.54 -1.845 48.72 0.036 *
Smallmouth Bass 2.78 2.62 -0.288 98.94 0.387
White Bass 1.93 1.81 -0.495 70.16 0.311
White Crappie 2.36 2.25 -0.154 27.01 0.561

CPUE
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Table 9.  Total catch of mini-meshes tied to North American Standard “core-mesh” gill 

nets used on four mainstem impoundments of the Missouri River, South Dakota during 

2013 and 2014. 

 

 

 

 

 

 

 

 

Common name Scientific name 10 mm 13 mm 16 mm Total
Black Crappie Pomoxis nigromaculatus 2 1 0 3
Channel Catfish Ictalurus punctatus 1 8 6 15
Common Carp Cyprinus carpio 2 2 6 10
Emerald Shiner Notropis atherinoides 5 0 0 5
Freshwater Drum Aplodinotus grunniens 7 25 8 40
Goldeye Hiodon alosoides 0 20 17 37
Gizzard Shad Dorosoma cepedianum 53 45 42 140
Northern Pike Esox lucius 0 1 0 1
River Carpsucker Carpoides carpio 0 1 0 1
Sauger Sander canadensis 2 5 7 14
Shorthead Redhorse Moxostoma macrolepidotum 0 1 0 1
Shovelnose Sturgeon Scaphirhynchus platorynchus 1 4 5 10
Smallmouth Bass Micropterus dolomieu 3 4 0 7
Shortnose Gar Lepisosteus platostomus 1 0 1 2
Spottail Shiner Notropis hudsonius 6 0 1 7
Walleye Sander vitreus 7 28 45 80
White Bass Morone chrysops 9 43 13 65
White Crappie Pomoxis annularis 21 4 1 26
Yellow Perch Perca flavescens 15 3 24 42

Total 135 195 176 506

Bar-mesh 
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List of Figures 

1.) Regressions of Standard against SDGFP gill net catch per unit effort (solid line) 

plotted against a 1:1 line (dashed line) for 16 species with results of analysis of 

covariance (ANCOVA) shown where β0 and β1 indicate results for differences in 

slope and intercept, respectively.  Sampling was performed in four mainstem 

impoundments of the Missouri River, South Dakota during 2013 and 2014. 

2.) Selectivity curves (right panels) and deviance residuals (left panels) for Channel 

Catfish captured using North American Standard (upper panels) and South Dakota 

Department of Game, Fish and Parks (bottom panels) gill nets in four mainstem 

impoundments of the Missouri River, South Dakota  during 2013 and 2014.  For 

deviance residuals solid circles represent positive residuals and open circles represent 

negative residuals where the square of the residual is proportional to circle size.   

3.) Selectivity curves (right panels) and deviance residuals (left panels) for Walleye 

captured using North American Standard (upper panels) and South Dakota 

Department of Game, Fish and Parks (bottom panels) gill nets in four mainstem 

impoundments of the Missouri River, South Dakota during 2013 and 2014.  For 

deviance residuals solid circles represent positive residuals and open circles represent 

negative residuals where the square of the residual is proportional to circle size. 

4.) Regressions of North American Standard (Standard) against South Dakota 

Department of Game, Fish and Parks (SDGFP) gill net catch per unit effort shown 

with associated 95% confidence intervals, regression equation and adjusted R2 value 

for 16 species sampled in four mainstem impoundments of the Missouri River, South 

Dakota during 2013 and 2014. 
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        Figure 1. Smith, B. 
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        Figure 1-continued. Smith, B. 
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        Figure 1-continued. Smith, B. 
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        Figure 1-continued. Smith, B 
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              Figure 2. Smith, B 
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              Figure 3. Smith, B. 
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         Figure 4. Smith, B. 
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        Figure 4-continued. Smith, B. 
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        Figure 4-continued. Smith, B. 
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        Figure 4-continued. Smith, B. 
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CHAPTER 4.  INDIRECT ESTIMATES OF GILL NET SELECTIVITY FOR 18 
NORTH AMERICAN FRESHWATER FISH SPECIES  

 

Abstract 

Indirect estimates of gill net selectivity were calculated for eighteen fish species sampled 

throughout South Dakota with North American standard (Standard) gill nets.   

Monofilament Standard gill nets were 25-m long by 1.83-m deep and included eight 

randomly ordered panels of 19, 25, 32, 38, 44, 51, 57, 64 mm bar-mesh.  Five potential 

models (i.e., normal, skew-normal, log-normal, bi-normal, and bi-lognormal) were fit to 

empirical catch data using the SELECT method.  Models that included bi-modality 

produced the best fit for 14 species including Channel Catfish Ictalurus punctatus, 

Common Carp Cyprinus carpio, Northern Pike Esox lucius, Walleye Sander vitreus, and 

Yellow Perch Perca flavescens indicating that they were caught by wedging and tangling.  

Uni-modal models best described selectivity for Black Crappie Pomoxis nigromaculatus, 

Gizzard Shad Dorosoma cepedianum, Shorthead Redhorse Moxostoma macrolepidotum, 

and Shovelnose Sturgeon Scaphirhynchus platorynchus indicating that these species were 

caught by wedging.  Inspection of model deviances and deviance residuals suggest that 

models of best-fit provide useful estimations of gill net selectivity for these species.  Our 

estimates of selectivity should be broadly applicable for these commonly sampled North 

American freshwater fishes when sampled with Standard gill nets. 

 

 

 

 



106 

Introduction 

Gill nets are commonly used to capture fish in both freshwater and marine 

systems for research and commercial exploitation (Hamley 1975) but are known to be 

highly selective based on fish size (Prchalová et al. 2009), behavior (Rudstam et al. 

1984), and morphology (Reis and Pawson 1999; Carol and Garcia-Berthou 2007).  

Nearly every attribute of gill nets including twine material (Washington 1973), twine 

diameter (Yokota et al. 2001), twine color (Jester 1973), net length (Minns and Hurley 

1988), and bar-mesh size (Baranov 1914) produce bias, and this bias complicates 

attempts by fisheries professionals to interpret gill net catch data.  Moreover, studies of 

gillnet selectivity have generally focused only on abundant or commercially valuable 

species due to the need for reliable estimation of gear selectivity in commercial Great 

Lakes (Collins 1979; Hansen et al. 1997) and marine fisheries (Olsen 1959; Hovgård 

1996).  Selectivity studies have been performed for several freshwater game species 

(Hamley and Regier 1973; Pierce et al. 1994) but few have been completed for non-game 

freshwater fishes (Carol and Garcia-Berthou 2007) resulting in poor understanding of gill 

net selectivity for several frequently encountered species. 

Many methods exist to estimate gill net selectivity but the direct and indirect 

methods described by Hamley (1975) continue to be the most popular (Winters and 

Wheeler 1990; Pierce et al. 1994).  The direct method requires sampling a population of 

known length frequency and is generally regarded to be the most accurate method of 

estimating gear selectivity but is rarely performed because it is cost-prohibitive and time-

consuming (Hamley 1975).  Indirect estimation involves fitting potential selectivity 

curves to empirical catch data and does not require sampling a population of known 
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length frequency, reducing cost and time expenditures but at the expense of accuracy 

(Millar and Holst 1997).  Utility of indirect methods has been aided by development of 

open source code for statistical software programs (e.g., S-PLUS, SAS, and R) that make 

estimation of gill net selectivity easier (Millar and Holst 1997; Next Generation R 

Functions).   

In an effort to standardize sampling gears and methods used to sample freshwater 

fishes across North America, the American Fisheries Society (AFS) published voluntary 

gear standards for sampling fishes in freshwater systems (Bonar et al. 2009).  These 

standards specify how the North American standard (Standard) gill net should be 

constructed including bar-mesh sizes, twine material and diameter, panel length, panel 

depth, and panel order.  Given the recent publication of these standards, there is relatively 

little known about the selectivity of the recommended gill net configuration for 

commonly collected species across North America.  Previous studies of gill net 

selectivity have generally been region-specific for one to several commercially or 

recreationally important species (Bronte and Johnson 1984; Henderson and Wong 1991) 

and rarely have similar gill net configurations been used between studies.  

For a voluntary gill net standard to be adopted, an understanding of selectivity 

must be known for many species across diverse habitats and indirect estimation provides 

a simple method for doing this.  Our objective was to perform indirect estimates of 

selectivity for species commonly sampled with North American standard gill nets in 

South Dakota waters.  Although sampling was completed in South Dakota, all species 

included in this study are widespread across North America and were sampled in diverse 

habitats that should be representative of conditions encountered by many fisheries 
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researchers and managers. We anticipate that this project will provide a timely 

contribution to the current effort to standardize sampling gears in North America and 

provide an understanding of selectivity for this widely used gear type.  

 

Methods 

Study area and sampling design - Gill net sampling took place during June-

October of 2013 and 2014. Study sites encompassed a representative sample of available 

waters, trophic states, and fish community diversity encountered statewide including 19 

natural glacial lakes, 4 prairie stream impoundments, 3 montane impoundments in the 

Black Hills, 5 tributaries to the Missouri River, and all 4 mainstem impoundments of the 

Missouri River in South Dakota (Table 1).  Sampling was performed once at each system 

except Pactola Reservoir in the Black Hills and all four mainstem impoundments of the 

Missouri River in South Dakota where sampling occurred during both study years.  Nets 

used in lakes and impoundments were set on the bottom at fixed sampling sites used by 

South Dakota Department of Game, Fish, and Parks (SDGFP).  Tributaries of the 

Missouri River were sampled by setting gill nets in slack-water areas adjacent to bridges 

or were anchored to sandbars and set downstream.  All nets were set during the afternoon 

then retrieved the following morning.  

Gear description - The North American standard, “core-mesh” gill net, is 

constructed of eight randomly ordered monofilament panels 3.05-m long and 1.83-m 

deep with 19, 25, 32, 38, 44, 51, 57, and 64-mm bar-meshes of varying twine diameter 

for an overall length of 24.38-m.  See Bonar et al. (2009b) for a more detailed description 

of the North American Standard gill net.  To provide a better estimate of juvenile Gizzard 
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Shad  Dorosoma cepedianum and Yellow Perch Perca flavescens selectivity we tied 

mini-mesh add-ons to all “core-mesh” gill nets fished in Missouri River impoundments 

during 2013 and 2014 and all natural glacial lakes and prairie stream impoundments 

sampled during 2014, respectively.  Mini-mesh add-ons were constructed of three 

randomly ordered monofilament panels that were 3.05-m long by 1.83-m deep with bar-

mesh sizes of 10, 13, and 16-mm.  For the purpose of gear standardization and data 

reporting only the “core-mesh” panels are considered to be the North American standard 

and mini-mesh add-ons were treated separately (Peterson and Paukert 2009).  We include 

estimates of selectivity for several species sampled with these mini-mesh add-ons 

because we acknowledge that due to the high selectivity of gill nets these smaller mesh 

sizes may be needed to index the smallest size classes of several important species.  

Researchers have used mini-meshes to sample juvenile Sockeye Salmon Oncorhynchus 

nerka in Alaska lakes (Heard 1962) and Yellow Perch and Alewife Alosa 

pseudoharengus in Lake Michigan (Janssen and Luebke 2004).     

Indirect estimation of selectivity – Among the numerous methods for estimating 

indirect measures of selectivity (Millar and Fryer 1999) we chose the Share Each 

LEngth’s Catch Total (SELECT) method developed by Millar (1992) because of its 

widespread use in both marine (Treble et al. 1998; Dos Santos et al. 2003) and freshwater 

research (Carol and Garcia-Berthou 2007; Doll et al. 2014) and availability of open-

source code for analyses (i.e., Next Generation R Functions available at 

https://www.stat.auckland.ac.nz/~millar/selectware/RNext/).  This method does not 

require the true length frequency of the sample population to be known a priori.  Using 

Next Generation R Functions the SELECT method involved fitting five potential models 
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(i.e., normal, skew-normal, log-normal, bi-normal, and bi-lognormal) to empirical catch 

data and calculating model deviances and residuals to identify the model of best-fit 

(Millar and Fryer 1999).  Identifying the best model required inspection of deviance 

residuals and overall model deviance (Millar and Holst 1997).  Models of best-fit have 

model deviances approximately equal to their degrees of freedom (df) or smaller 

(Vandergoot et al. 2011).  Model deviances larger than their df indicate some lack-of-fit 

or over-dispersion (Millar and Holst 1997).  

Fishing power is the product of gear efficiency and fishing effort.  Fishing power 

generally increases with larger bar-mesh sizes (Hamley 1975; Miller and Holst 1997) 

because fish vulnerable to those meshes are larger and faster swimming leading to higher 

encounter probability (Rudstam et al. 1984).  We modeled selectivity under the 

assumption of equal fishing power between meshes because we were most interested in 

identifying the shape (i.e., uni-modal or bi-modal) of selectivity curves and approximate 

peak modal lengths of capture for each mesh.  Modeling with fishing power proportional 

to mesh size would not likely change our findings.      

Beyond indirect estimation of selectivity for individual meshes we were interested 

in the species-specific selectivity of the entire net.  Gill nets often select for larger 

individuals (Hubert et al. 2012) relative to other passive gears (Willis et al. 1985).  

Histograms of “core-mesh” gill net data were plotted for each species across all mesh 

sizes, including mini-mesh catches of Yellow Perch and Gizzard Shad.     

Species chosen for analysis were relatively abundant and widespread across South 

Dakota and are also found throughout North America (Froese and Pauly 2014).  Fish 

captured with Standard gill nets were measured for fork length (i.e., Shovelnose 
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Sturgeon) or TL (i.e., all other species) and mesh panel of capture was recorded.  

Selectivity analyses were performed on pooled statewide data for species where ≈ 50 

individuals or more were captured.  Minimum sample size for individual bar-meshes was 

generally 10 individuals.  For each species, a data matrix of catch per bar-mesh panel by 

length bin was constructed.  Bin lengths were 10, 20, 30, or 40-mm and chosen based on 

fish length, quantity of available data, and desired level of resolution.  Species and mesh-

specific peak modal lengths of capture were identified from these matrices and mean TL 

of capture was calculated.  Inspection of model deviances and residuals were used to 

identify the best model fit to empirical catch data.  All calculations were performed in R 

version 3.0.2 “frisbee sailing” (R Core Development Team, 2014).    

  

 Results 

 Bi-lognormal models provided the best fits for 8 of the 18 species investigated.  

Bi-normal fits best explained selectivity for six species, skew-normal fits were best for 

two species, and both normal and log-normal models each explained selectivity for a 

single species (Figure 1).  Inspection of deviance residuals revealed an element of bi-

modality for most species (Figure 2).   Not all meshes could be included for each species 

analysis due to limited data resulting from low likelihood of capture for some species in 

certain mesh sizes (e.g., Yellow Perch in 64-mm bar-mesh).   

Models of best fit were easiest to identify for species with the largest data sets 

(i.e., Black Bullhead Ameiurus melas, Channel Catfish Ictalurus punctatus, Walleye 

Sander vitreus, and Yellow Perch) due to low model deviance relative to other potential 

models and comparatively small deviance residuals (Table 2).  Small data sets for several 
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species (i.e., River Carpsucker Carpiodes carpio, Shorthead Redhorse Moxostoma 

macrolepidotum, and Shovelnose Sturgeon Scaphirhynchus platorynchus) hampered 

efforts to identify a best model fit due to comparatively large deviance residuals for all 

models but similar overall model deviances.  Interpreting these results relied more on 

close inspection of deviance residuals than of model deviances.  For example, the bi-

normal model had the lowest model deviance for Shorthead Redhorse but deviance 

residuals indicated this fit was best for only one mesh and was not likely representative of 

overall selectivity for this species.   

For several species (i.e., Black Crappie Pomoxis nigromaculatus, Gizzard Shad, 

and Shovelnose Sturgeon) there were two-way ties between models for lowest model 

deviance indicating both models equally explained selectivity (Millar 1995).  These ties 

occurred between bi-modal models with five fitted parameters and uni-modal models 

with two fitted parameters.  In these situations deviance residuals were scrutinized for 

evidence of bi-modality and if none was consistently observed we invoked the principle 

of parsimony and chose the model with the fewest fitted parameters (McCullagh and 

Nelder 1989).   

Model deviances for top models were approximately equal to or slightly larger 

than their df indicating little evidence of lack-of-fit or over-dispersion.  Inspection of 

deviance residuals showed consistent bias for some meshes within species models 

indicating lack of model fit to those meshes as demonstrated by Millar and Holst (1997) 

with Sockeye Salmon Oncorhynchus nerka data collected by Holt (1963).  For example, 

there were moderately strong and consistent negative deviance residuals for Goldeye 

Hiodon alosoides captured in the 51-mm bar-mesh indicating poor fit of the bi-lognormal 
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model for large individuals in that mesh (Figure 2).  Walleye and Yellow Perch model 

deviances were high relative to their df but no consistent bias was observed from 

deviance residuals and may indicate over-dispersion. 

Inspection of length-frequency histograms for catch data provides a useful 

visualization of selectivity for Standard gill nets (Figure 3).  Overall, selectivity follows a 

normal distribution for most species despite prevalence of bi-modality for individual 

mesh selectivity curves.  Notable exceptions are Gizzard Shad and Yellow Perch that 

include mini-mesh catch data resulting in strong overall bi-modality for Yellow Perch 

that reflects several high catches of sub-stock fish, and weak bi-modality for Gizzard 

Shad where Standard nets typically target fish smaller than 250 mm TL but still collect 

much larger individuals.  Overall selectivity for Common Carp was also bi-modal and 

resulted from several high catches of sub-stock fish in 19 and 25-mm bar-mesh panels.  

Standard gill nets did not sample the smallest individuals in the population even with 

mini-mesh add-ons but generally collected larger individuals particularly for Black 

Crappie, River Carpsucker, and Shovelnose Sturgeon.   

Peak modal lengths from species and mesh-specific catch data matrices (Table 3) 

corroborated approximate peak modal lengths observed from model fits using the 

SELECT method (Figure 1) and match well for species that were primarily captured by 

gilling or wedging and had large data sets.  Data for larger individuals of most species 

was scarce resulting in divergent estimates of mesh-specific peak modal efficiency 

between empirical data and modeled fits.  Shovelnose Sturgeon serve as a useful example 

because they were sampled infrequently and were often captured by tangling so peak 

modal lengths of capture varied considerably between empirical data and modeled 
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selectivity curves.  Arithmetic mean TL was generally larger than empirical peak modal 

lengths across species and bar-mesh sizes due to bi-modality of gill net selectivity (Table 

3).            

 

 Discussion 

 Our findings build on previous studies by corroborating selectivity studies for 

important recreational species and by applying the SELECT method to many species with 

unknown gill net selectivities.  We found Baranov’s assumption of geometric similarity 

(Baranov 1914) not applicable for many species because selectivity curves broadened as 

fish length and bar-mesh size increased, indicating that larger bar-meshes were more 

efficient and less selective than small ones.  Small meshes are perceived to be more 

visible to small fish and less elastic than larger meshes increasing selectivity of these 

meshes and reducing catch of the smallest fish in the population (Hubert et al. 2012).   

Shape and location of selectivity curves was strongly related to fish morphology.  

Girth is the most important factor influencing fish capture by wedging because girth 

needs to be approximately equal to or slightly larger than the perimeter of the mesh to be 

captured (Baranov 1948; Reis and Pawson 1999; Carol and Garcia-Berthou 2007).  Most 

fish grow allometrically with age (e.g., grow plumper) and get captured by means other 

than wedging around the gills (i.e., gilling) or further back on the body (i.e., wedging) as 

they grow larger.  Vandergoot et al. (2011) found gilling and wedging to be the primary 

means of capture followed by tangling for Lake Erie Walleyes.  Our findings suggest that 

tangling influenced selectivity for many species, especially those with large maxillaries, 

teeth, and spines (e.g., Walleye, Northern Pike, and Channel Catfish).   
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We found that smooth-bodied fish were caught by wedging themselves in the net 

and usually had uni-modal selectivity curves, similar to the streamlined estuarine and 

marine fishes studied by Trent and Pristas (1977); however, the interaction of wedging 

and tangling for most species produced the numerous bi-modal model fits observed in the 

present study, as predicted by Hamley (1975) for species with more than one mode of 

capture (e.g., gilling and tangling by spines).  Pierce et al. (1994) identified tangling as an 

important factor for capturing Northern Pike Esox lucius and our finding of bi-lognormal 

model fit corroborates empirical catch data presented by Neumann and Willis (1994) 

though these researchers did not fit selectivity curves to their data for us to compare 

against.  Northern Pike in the our study were commonly tangled by teeth and maxillaries, 

often after attacking Yellow Perch captured in small meshes producing the broad 

selectivity curve for all meshes.  Bi-lognormal fits for Walleye, a species commonly 

tangled by teeth, maxillaries and spines were similar to the bi-modal model fits described 

by Hamley and Regier (1973) in their direct estimate of selectivity, and closely resembled 

bi-normal model fits of Vandergoot et al. (2011) that incorporated deviations.  Our bi-

lognormal fit for Yellow Perch contradicts Doll et al. (2014) that found log-normal fits to 

be best.  This discrepancy likely exists because bi-modal fits were not included by Doll et 

al. (2014) and inspection of their deviance residuals indicates evidence of bi-modality for 

smaller meshes.  Carol and Garcia-Berthou (2007) did not include bi-modal models in 

their analyses for Common Carp Cyprinus carpio and found no significant model fit.  

When incorporating bi-modality we found the bi-normal model best explained our data.  

Bi-modality occurred because Common Carp were often captured by their serrated dorsal 
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and anal spines, not by wedging alone.  Log-normal fits for Black Crappies were similar 

to selectivity curves found by Guy et al. (1996) for White Crappies in Kansas reservoirs. 

Several species with large model deviances not explained by lack-of-fit were 

probably examples of over-dispersion.  Over-dispersion occurs because not all fish 

behave independently (Berst and McCombie 1963); the result is high model deviance 

without consistent directionality (McCullagh and Nelder 1989).  This phenomenon was 

likely true of Yellow Perch that are known to school with conspecifics of similar size and 

age (Becker 1983).  Small Yellow Perch (≤ 140-mm TL) were sampled infrequently with 

10, 13, and 16-mm bar-meshes but, were locally abundant when found.   Doll et al. 

(2014) sampled Yellow Perch in Lake Michigan with micro-mesh gill nets and found 

similar model deviances to ours with approximately equal sample sizes indicating that 

some degree of over-dispersion may be common for Yellow Perch data.  This finding 

would not likely influence our conclusions because, as McCullagh and Nelder (1989) 

noted, these random processes, regardless of their origin, should have minimal impact on 

model fit.   

Comparing empirical catch data with modeled selectivity curve fits demonstrated 

the utility of modeled mesh-specific selectivity curves fitted using the SELECT method.  

Model fits were most accurate for frequently sampled species primarily captured by 

gilling or wedging.  For infrequently sampled species (e.g., River Carpsucker and 

Shovelnose Sturgeon) and larger individuals there was greater disparity between 

empirical and modeled peak modal efficiency though model fits still reflected the range 

of sizes observed from empirical catch data, allowing models developed using the 

SELECT method to be useful.  Previous studies of gill net selectivity have fit SELECT 
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models to data sets with as few as 19 individuals (Garcia-Berthou 2007) to more than 

6,000 (Millar and Holst 1997).  Individual mesh selectivities have been fit with as few as 

6 fish (Doll et al. 2014), approximately equal to the smallest sample size used in this 

study.    

Selectivity models developed during this study should aid in management and 

conservation of game and non-game species throughout North America.  Our conclusions 

corroborated earlier findings for Walleye selectivity (Hamley and Regier 1973; 

Vandergoot et al. 2011) and built on previous modeling efforts for Yellow Perch (Doll et 

al. 2014) and Northern Pike (Pierce et al. 1994) by including bi-modal models.  Our study 

expanded knowledge of gill net selectivity by including numerous non-game species that 

are often collected in standard gill net sampling.  Inclusion of individual mesh selectivity 

curves fitted using the SELECT method and histograms of overall gill net selectivity 

provide thorough understanding of biases when using Standard gill nets and demonstrate 

the utility of non-standard meshes for targeting Gizzard Shad and Yellow Perch.  Future 

studies may use this information for several purposes including: optimizing gill nets to 

avoid non-target species (see Price and Rulifson 2004), avoiding capture of under-sized 

commercial species (see Kraft and Johnson 1992), monitoring native riverine species, or 

contributing to our understanding of this relatively new standardized sampling gear.  This 

study should aid managers in understanding gill net sampling biases for non-game 

species that have received increased emphasis in recent decades (Cooke et al. 2005).  

Future efforts could expand on this research by including additional species of regional 

interest.   Our understanding of selectivity may also be improved by using more robust 

data sets for species that were sampled in low numbers during the present study.  We 
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used all five models currently available in the Next Generation R Code but incorporating 

additional models to analyses may improve model fit for some species.   

Hamley (1975) warned that no set of selectivity curves could be accurate across 

water bodies unless gears and methods were standardized.  Fortunately, by using a 

standardized gill net with standard sampling methods, our results should be broadly 

applicable for the eighteen species we investigated.  Current efforts to adopt (Bonar and 

Hubert 2002; Bonar et al. 2009) and transition (Koch et al. 2014; Statewide Components 

Work Group 2014) to standard sampling gears makes knowledge of North American 

standard gill net selectivity a valuable addition to our understanding of this widely used 

sampling gear.  This study should provide a broadly applicable source of gill net 

selectivity for managers and researchers and help facilitate further adoption of North 

American standard gears and methods.    
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Table 1.  Description of South Dakota waters sampled and gill net effort (i.e. Net nights) 

used to obtain data for gill net selectivity analyses.  Water body size is river length (km) 

for tributaries to the Missouri River and surface area (ha) for all lakes and impoundments.  

Pactola reservoir and all Missouri river impoundments were sampled during both 2013 

and 2014 while all other water bodies were sampled during only one study year.   

 
 
 
 
 
 

Water Max Net Year(s)
Water body Water body type  body size depth (m) Trophic state nights sampled
Alvin prairie stream impoundment 43 7.9 eutrophic 3 2014
Bad River tributary to Missouri River 259 na na 2 2014
Belle Fourche tributary to Missouri River 470 na na 3 2014
Bitter glacial lake 6,070 8.5 eutrophic 8 2013
Blue Dog glacial lake 251 2.7 eutrophic 6 2014
Bullhead glacial lake 66 4.6 eutrophic-hypereutrophic 6 2014
Cheyenne tributary to Missouri River 475 na na 2 2014
Clear glacial lake 192 6.7 mesotrophic-eutrophic 6 2014
Cochrane glacial lake 58 7.3 eutrophic 6 2014
Deerfield Black Hills impoundment 176 29.0 mesotrophic 4 2014
East Krause glacial lake 70 6.1 eutrophic 3 2013
Enemy Swim glacial lake 868 7.9 mesotrophic-eutrophic 6 2014
Francis Case Missouri River impoundment ≈ 41,000 43.0 eutrophic-oligotrophic 39 2013,2014
Kampeska glacial lake 2,125 4.9 eutrophic 6 2014
Lewis and Clark Missouri River impoundment ≈ 13,000 14.0 eutrophic-oligotrophic 23 2013,2014
Madison glacial lake 1069 4.9 eutrophic 5 2013
Mina prairie stream impoundment 326 8.2 eutrophic 6 2013
Mitchell prairie stream impoundment 271 8.8 eutrophic 4 2014
Moreau tributary to Missouri River 320 na na 2 2014
North Rush glacial lake 1,133 3.7 eutrophic-hypereutrophic 6 2013
Oahe Missouri River impoundment ≈ 150,000 62.0 eutrophic-oligotrophic 108 2013,2014
Pactola Black Hills impoundment 318 50.6 oligotrophic 21 2013,2014
Pickerel glacial lake 397 12.5 eutrophic 6 2013
Richmond prairie stream impoundment 335 8.8 eutrophic 6 2013
Roy glacial lake 831 6.4 eutrophic 6 2013
Scott glacial lake 43 3.4 eutrophic 3 2013
Sharpe Missouri River impoundment ≈ 23,020 24.0 eutrophic-oligotrophic 47 2013,2014
Sheridan Black Hills impoundment 155 29.3 mesotrophic 2 2014
Sinai glacial lake 735 10.1 eutrophic 4 2013
South Buffalo glacial lake 724 4.3 eutrophic 6 2013
Thompson glacial lake 5,041 7.9 eutrophic 5 2014
Wall glacial lake 84 7.3 eutrophic 6 2014
Waubay glacial lake 6,288 9.4 hypereutrophic 8 2013
West 81 glacial lake 554 6.7 hypereutrophic 5 2014
White tributary to Missouri River 930 na na 1 2014
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Table 2.  Sample size, model deviances, and degrees of freedom for each of five models 

calculated for 18 species using the SELECT method of Millar and Holst (1997).  Normal, 

skew-normal, and log-normal models each have three fitted parameters while bi-normal 

and bi-lognormal have five fitted parameters.  Models of best fit, denoted with asterisks, 

were identified using model deviances and deviance residuals.  All fish were sampled 

using North American standard gill nets comprised of 19, 25, 32, 38, 44, 51, 57, and 64 

mm bar-mesh panels throughout South Dakota during June-October of 2013-2014. 
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Species n Model Model deviance df
Black Bullhead 1453 normal 622.35 89

skew-normal 524.07 89
log-normal 456.25 89
bi-normal 126.87 86 *
bi-lognormal 149.76 86

Black Crappie 96 normal 93.54 43
skew-normal 90.20 43
log-normal 83.30 43 *
bi-normal 90.20 40
bi-lognormal 83.30 40

Bluegill 96 normal 92.56 38
skew-normal 109.12 38
log-normal 85.29 38
bi-normal 49.53 35 *
bi-lognormal 85.29 35

Channel Catfish 1380 normal 653.56 145
skew-normal 1061.79 145
log-normal 651.32 145
bi-normal 272.44 142
bi-lognormal 232.90 142 *

Common Carp 182 normal 271.97 117
skew-normal 324.73 117
log-normal 254.82 117
bi-normal 163.87 114 *
bi-lognormal 254.35 114

Freshwater Drum 242 normal 165.98 76
skew-normal 237.71 76
log-normal 215.25 76
bi-normal 96.41 73
bi-lognormal 95.51 73 *
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Gizzard Shad 231 normal 65.43 54
skew-normal 62.78 54 *
log-normal 68.95 54
bi-normal 62.78 51
bi-lognormal 67.89 51

Goldeye 166 normal 77.86 34
skew-normal 105.72 34
log-normal 84.39 34
bi-normal 57.15 31
bi-lognormal 53.08 31 *

Northern Pike 227 normal 148.70 112
skew-normal 188.38 112
log-normal 163.36 112
bi-normal 114.88 109
bi-lognormal 113.60 109 *

River Carpsucker 46 normal 39.15 18
skew-normal 40.87 18
log-normal 38.97 18
bi-normal 29.08 15 *
bi-lognormal 29.74 15

Sauger 91 normal 71.66 31
skew-normal 86.78 31
log-normal 70.65 31
bi-normal 50.07 28
bi-lognormal 51.04 28 *

Shorthead Redhorse 54 normal 24.43 28 *
skew-normal 31.69 28
log-normal 26.44 28
bi-normal 20.78 25
bi-lognormal 26.44 25

Shovelnose Sturgeon 73 normal 59.41 54
skew-normal 56.87 54 *
log-normal 57.93 54
bi-normal 56.87 51
bi-lognormal 57.96 51
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Smallmouth Bass 253 normal 194.51 82
skew-normal 172.69 82
log-normal 152.92 82
bi-normal 107.56 79 *
bi-lognormal 152.92 79

Walleye 1505 normal 685.49 131
skew-normal 658.64 131
log-normal 502.98 131
bi-normal 254.53 128
bi-lognormal 224.60 128 *

White Bass 218 normal 83.12 43
skew-normal 116.36 43
log-normal 94.51 43
bi-normal 46.18 40 *
bi-lognormal 47.14 40

White Sucker 228 normal 66.52 38
skew-normal 81.16 38
log-normal 64.08 38
bi-normal 27.99 35
bi-lognormal 26.98 35 *

Yellow Perch 2094 normal 2813.70 142
skew-normal 2383.70 142
log-normal 2107.05 142
bi-normal 1254.70 139
bi-lognormal 1211.78 139 *
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Table 3.  Species-specific sample size parameters relevant to indirect estimates of 

selectivity for eighteen freshwater fish species collected in South Dakota during 2013 and 

2014 using gill nets constructed to specifications outlined in Standard Methods for 

Sampling North American Freshwater Fishes.  Bin widths were necessary for 

construction of data matrices used in selectivity analyses and were chosen based on 

maximum fish length and sample size.  Only bar-meshes with sufficient data to warrant 

analyses were included.  Mini-meshes (i.e., 10, 13, and 16-mm bar-meshes) are included 

for Gizzard Shad and Yellow Perch due to their utility in collecting smaller individuals of 

those species.    
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Bin width Bar-mesh Modal length Mean TL Minimum Maximum
Species (mm) (mm) N bin (mm) (mm) TL (mm) TL (mm)
Black Bullhead 20 19 47 120 178 121 279

25 245 180 204 160 314
32 490 220 235 177 344
38 358 260 262 175 321
44 234 100 283 161 336
51 46 300 272 186 342
57 21 na 296 212 391
64 13 280 281 239 325

Black Crappie 20 19 8 100 127 101 240
25 8 na 235 129 295
32 26 260 273 201 310
38 10 180 228 189 278
44 29 260 254 209 295
51 15 280 271 239 292

Bluegill 20 19 5 na 164 106 207
25 24 120 143 110 215
32 29 140 173 143 253
38 11 180 181 160 210
44 18 200 195 142 220
51 9 200 204 162 235

Channel Catfish 30 19 72 170 314 165 632
25 164 230 336 145 746
32 259 350 369 234 705
38 195 350 396 161 672
44 245 410 454 214 696
51 195 500 500 161 700
57 143 500 532 358 694
64 107 590 566 298 713
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Common Carp 40 19 27 100 266 108 747
25 20 140 271 132 614
32 11 460 450 210 693
38 19 220 326 222 713
44 13 na 422 242 636
51 15 380 522 390 773
57 29 420 516 281 779
64 48 500 536 376 757

Freshwater Drum 30 25 10 320 336 193 439
32 17 230 256 81 378
38 19 230 289 117 416
44 63 290 337 91 630
51 65 350 364 275 435
57 39 350 383 303 445
64 30 410 427 379 491

Gizzard Shad 10 10 51 60 68 56 142
13 44 90 92 68 109
16 40 110 117 95 139
19 66 130 142 117 167
25 31 na 179 161 189

Goldeye 30 25 20 300 344 225 461
32 37 300 341 251 426
38 48 330 355 227 466
44 54 360 379 281 475
51 8 360 430 378 580

Northern Pike 40 19 22 na 584 305 808
25 33 420 529 284 835
32 43 500 563 276 916
38 51 500 584 262 832
44 41 na 632 373 874
51 14 820 717 370 930
57 23 780 755 364 1020

River Carpsucker 30 51 12 390 441 371 565
57 18 420 417 327 580
64 16 450 469 431 548
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Sauger 30 19 16 na 294 185 454
25 35 300 337 235 496
32 33 360 388 337 474
38 7 390 408 356 472

Shorthead Redhorse 30 25 18 na 317 214 395
32 21 330 330 232 395
38 10 360 395 327 470
44 6 na 424 376 495

Shovelnose Sturgeon 30 19 4 580 636 590 747
25 17 610 640 550 936
32 12 640 631 523 709
38 7 na 642 369 735
44 11 640 621 546 690
51 13 580 653 573 786
57 8 580 681 586 788
64 6 na 635 585 696

Smallmouth Bass 30 19 5 150 165 151 184
25 27 180 215 179 279
32 41 240 281 189 429
38 47 270 304 221 488
44 59 300 331 223 421
51 29 330 375 331 509
57 27 390 389 247 467
64 18 na 395 257 473

Walleye 30 19 202 190 271 167 612
25 418 280 318 173 721
32 375 340 366 226 527
38 252 370 392 210 686
44 119 430 435 215 617
51 58 460 459 246 625
57 43 520 508 211 680
64 40 370 496 233 684

White Bass 30 32 33 320 303 214 379
38 23 290 330 241 577
44 41 320 345 246 595
51 70 320 361 315 447
57 28 350 384 345 431
64 17 410 402 328 441
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White Sucker 30 38 25 na 417 285 554
44 51 380 417 354 549
51 61 410 443 343 550
57 56 440 463 370 536
64 24 500 473 382 537

Yellow Perch 20 10 85 60 84 69 161
13 418 100 108 75 359
16 172 100 122 74 255
19 703 140 163 68 284
25 363 180 206 140 363
32 223 220 236 142 356
38 78 240 258 115 329
44 25 280 284 152 331
51 18 200 223 190 286
57 4 100 265 206 303
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List of Figures 
 

Figure 1.  Gill net selectivity curves for models of best fit identified using the SELECT 

method of Millar and Holst (1997) for 18 freshwater fish species sampled using North 

American standard gill nets constructed to specifications outlined in Standard Methods 

for Sampling North American Freshwater Fishes in South Dakota during June-October of 

2013-2014.  Bar-meshes (mm) are identified for each selectivity curve. 

 

Figure 2.  Deviance residuals for models of best fit calculated for 18 freshwater fish 

species by bar-mesh (mm) and length (mm) using the SELECT method of Millar and 

Holst (1997).  Solid circles represent positive residuals and open circles represent 

negative residuals where the square of the residual is proportional to circle size.  All fish 

were sampled using North American standard gill nets constructed to specifications 

outlined in Standard Methods for Sampling North American Freshwater Fishes 

throughout South Dakota during June-October of 2013-2014. 

 

Figure 3.  Histograms of total catch across all mesh sizes for 18 freshwater fish species 

sampled using North American standard gill nets constructed to specifications outlined in 

Standard Methods for Sampling North American Freshwater Fishes throughout South 

Dakota during June-October of 2013-2014.  Gizzard Shad and Yellow Perch plots 

include catches from mini-meshes (i.e., 10, 13, and 16-mm bar-mesh) because these 

meshes were highly effective in collecting small individuals.  Normal curves were fitted 

to catch data to visualize overall selectivity.  
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Figure 1- Smith, B. 
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Figure 1-continued. Smith, B. 
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Figure 1-continued. Smith, B. 
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Figure 1-continued. Smith, B. 
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Figure 1-continued. Smith, B. 
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Figure 1-continued. Smith, B. 
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Figure 1-continued. Smith, B. 
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Figure 1-continued. Smith, B. 
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Figure 1-continued. Smith, B. 
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Figure 2- Smith, B. 
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Figure 2-continued. Smith, B. 
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Figure 2-continued. Smith, B. 
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Figure 3- Smith, B. 
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Figure 3-continued. Smith, B. 
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Figure 3-continued. Smith, B. 
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Figure 3-continued. Smith, B. 
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Figure 3-continued. Smith, B. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



155 

CHAPTER 5. 

ESCAPEMENT OF FISHES FROM MODIFIED FYKE NETS WITH DIFFERING 
THROAT CONFIGURATIONS 

Abstract 

Information concerning potential fish escapement from modified fyke nets with 

differing throat configurations is lacking.  We performed a paired gear comparison and 

subsequent density-dependent escapement trials to identify species-specific differences in 

catch per unit effort, 24-hr retention and escapement, and sizes of collected fish between 

North American standard modified fyke nets with and without restricted throat 

configurations.  During paired gear comparisons nets with restricted throats yielded 

higher estimates of CPUE for stock-length fish of the dominant species sampled.  Mean 

total length (TL; mm) of Black Crappie Pomoxis nigromaculatus captured with restricted 

nets was 31 mm larger than unrestricted nets and 21 mm larger for Bluegill Lepomis 

macrochirus.  Nets lacking throat restrictions sampled more sub-stock crappies Pomoxis 

spp.  Throat configuration did not influence sizes of Black Bullheads Ameiurus melas 

captured.  During escapement trials Black Bullhead retention rates were similar between 

restricted (48.0%) and unrestricted (53.9%) throat configurations.  Retention rates were 

higher for Black Crappie (95.6%) and Bluegill (89.7%) in nets with restricted throats than 

in nets with unrestricted throats (i.e., 28.3% and 41.6% for Black Crappie and Bluegill, 

respectively).  Mean TL of Bluegills retained in restricted nets was 9 mm larger than 

stocked fish while mean TL of Black Bullheads retained in unrestricted nets was 12 mm 

larger than stocked fish.  We urge researchers to consider the influence of varying throat 

configurations on calculated population metrics and recommend inclusion of this feature 

in gear specifications for North American standard modified fyke nets.  
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Introduction 

Many gears and techniques exist for sampling fishes and currently efforts are 

underway to standardize gears used to sample North American freshwater fishes to 

improve comparability of data (Bonar and Hubert 2002).  Passive entrapment gears are 

common for sampling fishes in lotic and lentic systems and numerous studies have 

sought to identify differences in selectivity between these gear types by species (Hubert 

1996).  Modified fyke nets are among the most commonly used gears used to sample 

fishes lentic systems and have been recommended as a standard gear when sampling 

lentic systems (Miranda and Boxrucker 2009; Pope et al. 2009).  Modified fyke nets are 

commonly used to capture active fish (e.g., Centrarchids, Ictalurids, Esocids, and Percids) 

in littoral areas of lakes and reservoirs by intercepting them with a mesh lead attached to 

shore and directing them towards progressively narrower mesh funnels of the net towards 

a terminal, or cod, end from which escape is difficult (Hubert 1996; Pope et al. 2009).  

However, minor differences in bar mesh size and frame diameters (Willis et al. 1984; 

Gritters 1997; Fischer et al. 2010) and throat diameter (Shoup et al. 2003) are known to 

produce bias.  Information concerning the bias produced by differing throat 

configurations designed to reduce escapement is lacking for modified fyke nets (Porath et 

al. 2011).  

For fish to be sampled by entrapment gear they must encounter the net, become 

trapped, and retained until the gear is checked (Hubert 1996).  Varying levels of throat 

restriction can influence the ability of a net to retain fish (Hansen 1944; Porath et al. 

2011).  Retention and escapement of trapped fish from modified fyke nets have been 

quantified for several species (e.g., Brown Bullhead Ameiurus nebulosus, Bluegill, and 
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Largemouth Bass Micropterus salmoides) and higher escape rates were attributed to fish 

size and behavioral attributes (Latta 1959; Patriarche 1968).  However, escapement from 

modified fyke nets resulting from varying throat configurations including restricted and 

unrestricted forms remains an often un-quantified source of bias.   

Restricted throats in hoop nets reduce fish escapement by creating a physical 

barrier to fish trying to swim out of the cod end (Hansen 1944; Porath et al. 2011).  

Several common varieties of throat restrictions are used in hoop nets including a 

restricted form that looks like a cone constructed of twine strings that begin at the end of 

the throat and taper back to a ring that is secured to the terminal hoop forcing the 

apparatus to remain taught when the net is set (see Porath et al. 2011 for more detailed 

description).   

Fish escapement rates may also be influenced by the presence of a predatory fish 

in the net.  Counter intuitively, some prey fish species (i.e., Banded Killifish Fundulus 

diaphanus, Bluntnose Minnow Pimephales notatus, and Round Goby Neogobius 

melanostomus) are less likely to leave a net stocked with a single predator fish (i.e., 

Bowfin Amia calva) than a net without a predator (Breen and Ruetz III 2006).  

Escapement may also be influenced by density of conspecifics in the net (Patriarche 

1968).  Researchers in Nebraska found Channel Catfish Ictalurus punctatus escapement 

from hoop nets was largely unaffected by fish density in nets with restricted throats but 

without throat restrictions, escapement doubled at low fish densities and tripled at high 

fish densities (Porath et al. 2011).   

Presence or absence and specific throat restrictions in modified fyke nets have not 

been specified in pre-eminent texts on freshwater sampling (e.g., Fisheries Techniques, 
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Murphy and Willis 1996; Standard Methods for Sampling North American Freshwater 

Fishes, Bonar et al. 2009) leading to potential confusion.  To quantify this largely 

unexplored source of bias associated with modified fyke nets, we performed a field 

experiment that compared differences in catch per unit effort (i.e., CPUE), retention and 

escapement, and potential size-selective bias of North American Standard modified fyke 

nets with and without restricted throat configurations.  

 

Methods 

 Study Area – Sampling was completed at five eastern South Dakota lakes 

including: Pickerel Lake (June 2013), South Buffalo (June-July 2014), Mitchell (July 

2014), Enemy Swim (July 2014), and Clear Lake (September 2014).  Four of these study 

lakes are of natural glacial origin (i.e., Pickerel, South Buffalo, Enemy Swim, and Clear) 

and are located in northeastern South Dakota and one (i.e., Lake Mitchell) is an 

impoundment located in south-central South Dakota.  Study lakes vary in size from 192 

to 868 ha and are generally shallow and eutrophic with fish communities variously 

dominated by fishes of the families Percidae, Ictaluridae, Esocidae and Centrarchidae 

(Table 1; Stukel 2003). 

 Paired gear comparisons - Paired gear comparisons were performed between 

North American Standard modified fyke nets with and without restricted throat 

configurations but otherwise constructed to the specifications described in Bonar et al. 

(2009).  The recommended North American standard modified fyke net has two frames 

0.9-m by 1.8-m with four hoops of 0.77-m diameter all constructed of 10-mm rolled steel 

and bar mesh of 13-mm with a single throat between hoops one to three tapering to an 



159 

opening of 165-mm.  Restricted nets were given restricted throat configurations 

constructed of 24 lengths of #15 (i.e., 1.32-mm diameter) twine approximately 380-mm 

long while additional nets were left without this modification and identified as 

unrestricted (Figure 1).   

 Restricted nets were set adjacent to unrestricted nets at a distance of 

approximately 100 m within similar habitat.  Effort was approximately equal between 

gear types on all lakes but total effort varied between lakes depending on surface area 

(Table 1).  Nets were fished for 24 hr, lifted to remove fish and moved to a new sampling 

site each day for two to three consecutive days, resulting in 10-18 net nights of effort per 

throat type in each lake.  All fish captured in either net type were measured for total 

length (TL; mm) then given a day-specific fin clip and placed in a net pen for use in 

escapement trials.   

Escapement trials- During initial sampling on Pickerel Lake during 2013 re-

stocking rates were not controlled for by density but rather fish were removed from the 

net, marked and measured, then returned to the same net at a different location. 

Recaptured fish were released to reduce stress-induced mortality.  During 2014, restricted 

and unrestricted nets were set in pairs and stocked with equal densities of known length 

fish of several species at varying densities.  We identified three ranges of density (i.e., 

low, medium, and high) for stocking each species commonly sampled in eastern South 

Dakota lakes.  Density ranges were calculated from the range of non-zero North 

American Standard modified fyke net catches from 16 commonly sampled lakes in 

eastern South Dakota during 2013.  Catches corresponding to the 25th percentile were 

judged to be low, values between the 25th and 75th percentile were medium, and catches 
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above the 75th percentile were high.  In the case of medium density we generally used the 

median value.  These fish were randomly assigned to be stocked into restricted or 

unrestricted nets at prescribed densities (i.e., low, medium, high) and each net pair was 

stocked at the same rate.  After all nets had been retrieved each day, the paired gears were 

re-set at new locations and stocked.  At each lake, replicates of all three densities were 

sought for each species though small sample sizes limited replication of high density 

treatments in several lakes.  After 24 hr all nets were lifted and fish were removed, 

measured, weighed, and inspected for marks and nets re-set and stocked with newly 

marked fish.  Previously marked fish were released to reduce stress-induced mortality.  

Data Analysis – Mean catch per unit effort (CPUE) was calculated for all fish 

captured (Total) and stock-length fish (Stock) as the number of fish captured per 24 hr set 

for each species and net type where at least 30 fish were sampled between both net types.  

Comparisons of CPUE between net types for Total and Stock data sets were performed 

using analysis of variance (ANOVA) and for species sampled in multiple lakes we used 

lake as a blocking factor.  Differences in size selectivity between gears was assessed by 

comparing mean TL of all fish captured between net types for the three most abundant 

species (i.e., Black Bullhead Ameiurus melas, Black Crappie Pomoxis nigromaculatus, 

and Bluegill) using ANOVA with lake as a blocking factor.  Retention was evaluated on 

a species-specific basis and was calculated as the proportion of fish marked the day 

before remaining in the net after 24 hr while escapement was calculated as the proportion 

of fish marked the day before that were absent from the net 24 hr later.   Differential 

retention rates between net types for the three most abundant species (i.e., Black 

Bullhead, Black Crappie, and Bluegill) were compared between gear types using analysis 
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of covariance (ANCOVA) with stocked fish as a covariate and recaptured fish as a 

response variable with individual net sets as replicates.  Normality was assessed with 

Shapiro-Wilk tests and non-normal data were LOG(X+1) transformed.  Pearson’s 

product-moment correlation was used to investigate whether species-specific mortality 

was correlated with stocking density.  Size-selective escape and retention were explored 

by comparing overall mean total lengths of fish stocked into a net to those retained in the 

same net the following day using an upper-tailed paired t-test.  All tests assumed an α of 

0.05 and computations were performed using R version 3.0.1 “Frisbee sailing” (The R 

Foundation for Statistical Computing, 2013). 

 

Results 

 Paired Gear Comparison - Catches in both net types were dominated by Black 

Bullhead, Black Crappie, and Bluegill (Table 2).  Channel Catfish and White Crappie 

were sampled only in Lake Mitchell (Table 2).  Restricted nets captured significantly 

more stock-length Black Bullhead, Black Crappie, Bluegill, Channel Catfish, and 

Smallmouth Bass than unrestricted nets.  In no instance did unrestricted nets yield 

significantly higher CPUE than restricted nets for stock-length fish.  When total catch 

was analyzed, restricted nets still yielded higher CPUE for Black Bullhead, Bluegill, and 

Channel Catfish but unrestricted nets had higher CPUE for Black and White Crappies.  

No difference in mean TL was detected between net types for captured Black Bullhead 

but unrestricted nets selected for smaller Black Crappie and Bluegill (Table 3).  Sample 

sizes of Channel Catfish, Northern Pike Esox lucius, Rock Bass Ambloplites rupestris, 
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Walleye Sander vitreus, Smallmouth Bass Micropterus dolomieu, and White Crappie 

Pomoxis annularis were too small to warrant comparisons of size structure. 

 Escapement trials - Rates of 24-hr retention and escapement could only be 

estimated for Black Bullhead, Black Crappie, and Bluegill due to low sample sizes of 

other species.  Combined mortality of stocked Bluegill and Black Crappie ranged from 

zero in Pickerel Lake to 46% in Lake Enemy Swim with higher mortality of Bluegill in 

restricted nets (t = -1.89, df = 11, p-value = 0.042) and no difference between net types 

for Black Crappies (t = -0.89, df = 6, P= 0.204).  Mortalities were not correlated with 

stocking density for Black Crappies in restricted (r = 0.629, t = 1.40, df = 3, P = 0.256) 

and unrestricted (r = -0.395, t = -0.744, df = 3, P = 0.511) nets but positively correlated 

with stocking density for Bluegill in both restricted (r = 0.919, t = 6.17, df = 7, P < 0.001) 

and unrestricted (r = 0.874, t = 4.401, df = 6, P = 0.005) nets.  Stock-retention 

relationships were plotted (Figure 2) with mortalities in the net treated as retained (i.e., 

Unadjusted; left panels) and where mortalities were removed from analysis altogether 

(i.e., Adjusted; right panels).  These plots indicated that regardless of inclusion or 

exclusion of mortalities the same trend was observed for all three species so we used 

unadjusted data for further analyses.  We assumed that mortalities were related to stress 

from handling and warm water temperatures exacerbated by inability to escape from the 

net.  Throat configuration did not significantly influence retention rates of Black 

Bullhead and overall approximately half of stocked Black Bullhead escaped regardless of 

throat configuration.  Plots of empirical Black Bullhead data show a curvilinear 

relationship between conspecific stocking and recapture rates for both throat 

configurations (Figure 2).  Unlike Black Bullhead, escapement rates for Black Crappie 
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and Bluegill were highly influenced by throat configuration (Table 4).  Overall retention 

of Black Crappie in restricted nets was 95.6% with only 4.4% escapement while in 

unrestricted nets the opposite trend was observed with 28.3% retention and 71.7% 

escapement and this difference was significant (Table 5).  Inspection of plotted data 

showed that nearly all Black Crappies escaped from unrestricted nets regardless of 

stocking density (Figure 2).  A similar pattern was observed for Bluegill where restricted 

nets had retention rates of 89.7% with 10.3% escapement compared to unrestricted nets 

where only 41.6% were retained and 58.4% escaped.  Smaller Bluegill tended to escape 

restricted nets leaving behind larger individuals and the same was true of Black Bullhead 

in unrestricted nets (Table 6). 

 

Discussion 

I found that modified fyke nets with restricted throats generally produced higher 

CPUE, selected for larger size structure, and had lower escapement rates than nets 

without a throat restriction.  Failure to account for this bias resulting from a difference in 

gear construction would likely influence calculations of CPUE and potentially 

management decisions if throat configurations were not standardized.   

Differences in CPUE between stock-length and total catch data produced 

conflicting results for Black and White Crappies whereby, CPUE was higher for these 

species in restricted nets when considering just stock-length fish, but the opposite was 

true when all fish captured were included.  The smallest crappies (<130 mm TL) appear 

less likely to pass through restricted throats and more likely to swim through unrestricted 

throats.  We caution that this observation was heavily influenced by several large catches 
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from a few unrestricted nets in Lake Mitchell and that White Crappies were only sampled 

in Lake Mitchell.  

Previous comparisons of varying throat configurations concluded that addition of 

restricted throats reduce fish escapement, though most studies have focused on Channel 

Catfish captured in hoop nets (Guy et al. 2009; Porath et al. 2011).  Similar to these 

results, we found that inclusion of a restricted throat lowered escapement of several 

dominant fish species from North American Standard modified fyke nets.  Analogous 

escapement rates between throat configurations for Black Bullhead were unexpected 

because we captured them at a higher rate in restricted nets and Porath et al. (2011) found 

increased escapement of ictalurids from unrestricted nets with increasing conspecific 

density.  Black Bullheads used in escapement trials had already been in the nets overnight 

and may have been more adept at escapement given the extra 24-hr period after re-

stocking.  Our escapement trials for this species may have been improved by using a 

different gear for initial capture.  

Lower escapement rates for Black Crappie and Bluegill from restricted nets may 

indicate that once these cover-seeking fish became trapped they were less willing or less 

able to leave than their counterparts in unrestricted nets.  This interpretation is 

corroborated by results from a Michigan study that found fish escapement rates declined 

at increasing densities of conspecifics (Breen and Ruetz III 2006).  Researchers have long 

speculated that fish are attracted to aggregations of conspecifics making passive gears 

particularly effective (Munro 1974).   Our finding that smaller Bluegills selectively 

escape from restricted nets leaving behind larger individuals verifies earlier studies 

indicating escapement of smaller centrarchids from fyke nets (Latta 1959; Patriarche 
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1968).  Failure to detect a similar finding for unrestricted nets was likely due to the open 

throat that allowed for high escapement of all Bluegills.   

   Due to the paired nature of our study design we are confident that differences in 

CPUE, escapement, and retention were due to differences in throat configurations.  Our 

study investigated only two potential throat configurations but others exist (e.g., 

fingered).  Future studies should investigate effectiveness of other throat configurations 

with different fish communities.  Due to limited sample size of many species we were 

only able to perform in-depth analyses for Black Bullhead, Black Crappie, and Bluegill 

but these results may differ for other species.  Miranda and Boxrucker (2009) noted that 

crappies and fishes of the genus Lepomis are among the most commonly targeted fishes 

when using modified fyke nets.  We conclude that managers and researchers should be 

cognizant of the effects that varying throat configurations have on catch dynamics when 

sampling with the North American Standard or other modified fyke nets.  When 

publishing gear specifications, we urge reporting of the presence or absence of throat 

configurations including throat diameter because all of these features have the potential to 

bias catches.  This study demonstrates the need to not only standardize overall net 

dimensions but throat configuration as well when sampling freshwater fish with the North 

American standard modified fyke net.  
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Table 1.  Description of eastern South Dakota lakes sampled using restricted and unrestricted North American Standard 

modified fyke nets. 

 

 

Surface Max
Lake area (ha) depth (m) Trophic state Restricted Unrestricted Month Year
Clear 192 6.7 Mesotrophic-eutrophic 17 18 September 2014
Enemy Swim 868 7.9 Mesotrophic-eutrophic 12 13 July 2014
Mitchell 271 8.8 Eutrophic 11 11 July 2014
Pickerel 397 12.5 Eutrophic 12 12 June 2013
South Buffalo 724 4.3 Eutrophic 16 18 June-July 2013

Effort (net nights) Sample Period
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Table 2.  Number of fish captured and mean Catch Per Unit Effort (CPUE) for stock-length (Stock) and all fish (Total) 

captured with restricted and unrestricted modified fyke nets.  Results of analysis of variance (ANOVA) comparing mean 

CPUE between restricted and unrestricted nets for all fish captured (Total) and stock sized fish (Stock) are shown.  Lake was 

used as a blocking factor for all species except Channel Catfish and White Crappie.  All fish were sampled in five eastern 

South Dakota lakes during June 2013 and June-October 2014.  Asterisks denote significant differences.    

 

Species Restricted Unrestricted Restricted Unrestricted F-value df Pr > F
Stock Black Bullhead 1937 940 52.35 ± 15.75 22.59 ± 10.97 20.35 73 < 0.001 *

Black Crappie 385 100 6.62 ± 0.97 1.60 ± 0.24 32.30 119 < 0.001 *
Bluegill 697 469 10.72 ± 2.08 6.20 ± 1.02 13.38 129 < 0.001 *
Channel Catfish 51 8 10.20 ± 3.02 1.40 ± 0.87 12.20 9 0.008 *
Northern Pike 22 16 0.92 ± 0.18 0.58 ± 0.15 2.06 47 0.159
Rock Bass 20 22 1.25 ± 0.37 1.38 ± 0.52 0.02 31 0.877
Smallmouth Bass 30 11 1.20 ± 0.17 0.44 ± 0.22 17.19 49 < 0.001 *
Walleye 15 22 0.58 ± 0.22 0.96 ± 0.19 3.35 47 0.074
White Crappie 5 9 0.60 ± 0.40 1.60 ± 0.4 2.70 9 0.139

Total Black Bullhead 1937 942 52.35 ± 15.75 22.65 ± 10.97 19.84 73 < 0.001 *
Black Crappie 464 601 7.29 ± 1.06 9.41 ± 3.95 4.48 125 0.036 *
Bluegill 773 570 11.71 ± 2.40 7.15 ± 1.13 6.83 130 0.010 *
Channel Catfish 51 8 10.20 ± 3.02 1.40 ± 0.87 12.20 9 0.008 *
Northern Pike 22 17 0.88 ± 0.18 0.60 ± 0.14 1.41 49 0.241
Rock Bass 20 24 1.25 ± 0.37 1.50 ± 0.58 2.10E-03 31 0.964
Smallmouth Bass 38 44 1.15 ± 0.20 1.22 ± 0.36 0.36 64 0.551
Walleye 15 27 0.58 ± 0.22 1.04 ± 0.20 3.71 49 0.061
White Crappie 13 71 1.38 ± 1.02 3.75 ± 1.00 6.71 15 0.021 *

Catch Mean CPUE
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Table 3.  Comparison of mean total length (TL; mm) between restricted and unrestricted 

modified fyke nets for Black Bullhead, Black Crappie, and Bluegill sampled in five 

eastern South Dakota lakes.  Results of analysis of variance (ANOVA) blocked by lake 

are shown with asterisks denoting significant differences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species Restricted Unrestricted df F-value Pr > F
Black Bullhead 291 ± 6 287 ± 6 58 0.01 0.920
Black Crappie 254 ± 7  223 ± 11 110 8.03 0.006 *
Bluegill 190 ± 4        169 ± 6 125 12.30 < 0.001 *

Mean TL (mm) ± Standard error 
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Table 4.  Results of analysis of covariance (ANCOVA) tests identifying potential 

differences in slope and intercept between restricted and unrestricted forms of modified 

fyke nets used to sample Black Bullhead, Black Crappie, and Bluegills in five eastern 

South Dakota lakes.  Stocking rate was the covariate and recapture rate was the response 

variable.  Black Bullhead data was LOG(X+1) transformed due to strong deviation from 

normality.  Asterisks denote significant differences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species Parameter df F-value Pr > F
Black β 29 3.04 0.092
Bullhead α 30 1.46 0.236

Black β 42 116.61 < 0.001 *
Crappie α 43 15.31 < 0.001 *

Bluegill β 56 37.59 < 0.001 *
α 57 27.63 < 0.001 *
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Table 5.  Total number of fish stocked into restricted and unrestricted modified fyke nets 

with subsequent recaptures and associated mortalities.  Escapement and retention rates 

for each species captured by each net type were calculated without adjustment for 

mortalities.  Escapement trials were performed on five eastern South Dakota lakes during 

June 2013 and June-October 2014.  

 

 

 

 

 

 

 

 

 

Species Stocked Retained Mortalities Escapement (%) Retention (%)
Restricted Black Bullhead 419 201 0 52.0 48.0

Black Crappie 206 197 13 4.4 95.6
Bluegill 341 306 72 10.3 89.7
Channel Catfish 21 9 0 57.1 42.9
Northern Pike 4 4 1 0.0 100.0
Rock Bass 10 8 2 20.0 80.0
Smallmouth Bass 36 25 5 30.6 69.4
Walleye 7 5 0 28.6 71.4

Unrestricted Black Bullhead 425 229 0 46.1 53.9
Black Crappie 92 26 7 71.7 28.3
Bluegill 305 127 37 58.4 41.6
Channel Catfish 21 14 0 33.3 66.7
Northern Pike 12 10 2 16.7 83.3
Rock Bass 11 8 1 27.3 72.7
Smallmouth Bass 19 8 3 57.9 42.1
Walleye 9 6 1 33.3 66.7

Number
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Table 6.  Mean total length (TL) of marked and retained Black Bullhead, Black Crappie, 

and Bluegill in restricted and unrestricted modified fyke nets.  Results of upper-tailed 

paired t-tests using individual nets as replicates are shown with asterisks denoting 

significant differences.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean of
Species Marked Retained  difference (mm) df t Pr > t

Restricted Black Bullhead 288 ± 6 290 ± 6 2.25 15 0.60 0.279
Black Crappie 272 ± 5 272 ± 4 0.77 23 0.26 0.399
Bluegill 184 ± 5 193 ± 5 8.99 30 2.84 0.004 *

Unrestricted Black Bullhead 284 ± 9 296 ± 10 12.30 14 3.25 0.003 *
Black Crappie 247 ± 16 258 ± 15 11.71 12 1.00 0.168
Bluegill 181 ± 7 182 ± 8 0.30 20 0.04 0.483

Mean TL (mm) ± SE 
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List of Figures 

Figure 1.  Depiction of restricted and unrestricted throat configurations for modified fyke 

nets used to compare catch, retention, escapement, and potential size-selective bias in 

modified fyke nets with and without restricted throats.   

 

Figure 2.  Relationship between number stocked and number of fish retained for Black 

Bullhead (Top), Black Crappie (Middle), and Bluegill (Bottom) sampled with restricted 

(i.e., solid lines, open circles) and unrestricted (i.e., dashed lines, open triangles) fyke 

nets.  Stocking and recapture rates were not adjusted (Left) and adjusted (Right) for 

mortalities.  Black Bullhead data was best explained by a quadratic fit while Black 

Crappie and Bluegill data was best explained by a linear fit.   Equations are shown 

adjacent to their respective lines of best fit. 
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        Figure 1.  Smith et al., 2014 
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      Figure 2. Smith et al., 2014 
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CHAPTER 6.   

SUMMARY AND RESEARCH NEEDS 

 

Comparisons between gill nets and modified fyke nets described in Standard 

Methods for Sampling North American Freshwater Fishes (Standard; Bonar et al. 2009) 

and current South Dakota Department of Game, Fish and Parks (SDGFP) gill nets and 

modified fyke nets provided the necessary information to allow for a transition to 

Standard gears statewide.  Current SDGFP gill nets used on Missouri River (MR) and 

non-Missouri River (non-MR) systems were longer than Standard gill nets resulting in 

higher catch per unit effort (CPUE) and larger sample sizes for most species.  Additional 

large bar-mesh panels on Standard gill nets resulted in selectivity for larger individuals of 

most species commonly indexed using gill nets.  Walleye and Yellow Perch are most 

commonly indexed with gill net catch data and for these species CPUE was higher in 

SDGFP nets while Standard nets selected for larger individuals of both species.  

Measures of species diversity and evenness were similar between Standard and SDGFP 

gill nets used in MR and non-MR systems.  Monofilament was more efficient at catching 

fish than current multifilament used in MR systems.  Gill net CPUE data yielded reliable 

conversion factors for MR and non-MR systems.   

 Bias between Standard and SDGFP modified fyke nets was largely influenced by 

differences in bar-mesh size.  Modified fyke nets are most commonly used in South 

Dakota to index abundance and size structure of Black Crappie and Bluegill.  Estimates 

of CPUE were higher for Black Crappie and analogous for Bluegill when using Standard 

nets relative to SDGFP nets.  Standard nets selected for larger individuals of both species 
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despite having smaller bar-mesh size.  Both net types sampled similar measures of fish 

diversity.  Conversion factors for CPUE were most reliable for species comparisons with 

high adjusted r2 values.              

Selectivity of Standard gill nets is now well understood for commonly collected 

species.  Most species exhibited bi-modal mesh-specific selectivity curves indicating 

capture by wedging or gilling and tangling.  Most species commonly indexed using gill 

nets in South Dakota had bi-modal selectivities including Black Bullhead, Channel 

Catfish, Northern Pike, Sauger, Walleye, White Bass, and Yellow Perch.  Peak modal 

efficiencies were approximated for each species by individual bar-mesh allowing 

managers to better understand mesh-specific selectivity.  Mini-mesh add-ons were most 

useful for capture of sub-stock Gizzard Shad and Yellow Perch though capture of Yellow 

Perch in these mini-meshes was infrequent.     

 Escapement from modified fyke nets was unacceptably high in nets lacking 

restricted throats.  Black Crappie CPUE was higher in restricted nets and they were most 

adept at escapement with nearly all stocked individuals managing to escape from nets 

lacking restricted throats.  Bluegill CPUE was also higher in restricted nets and Bluegills 

readily escaped from unrestricted nets.  Black Bullheads were caught in greater 

abundance using restricted nets but escapement was analogous between restricted and 

unrestricted nets.  No consistent bias in size structure was detected between nets of 

differing throat types.  When using modified fyke nets I recommend inclusion of a 

restricted throat to reduce escapement.   

 Conversion to standardized gears and methods was identified as a strategic goal 

by South Dakota Department of Game, Fish and Parks that would improve quality of 
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annual sampling data allowing for improved fisheries management (Statewide 

Components Work Group 2014). Knowledge of bias between North American Standard 

and SDGFP gears and appropriate conversion factors for lakewide CPUE should allow 

for transition to North American Standard sampling gears statewide.   

Several logical conclusions follow from analyses and interpretation of data 

collected during this study that provide an overview of what South Dakota Department of 

Game, Fish and Parks can expect if they transition to Standard gears.  The largest 

difference would be lower lakewide gill net CPUE for most species due to shorter length 

of Standard gill nets; as a result, management objectives for CPUE would need to be 

modified.  Simultaneously, we would expect higher estimates of PSD and PSD-P for 

most species sampled with gill nets.  For modified fyke net data, little would change 

except for slightly increased CPUE and estimates of PSD and PSD-P for Black Crappie 

and lower CPUE for Black Bullhead.  Conversion factors would allow continued use of 

historic data in long-term analyses.  However, despite thorough examination of likely 

trends, there are several research questions that still need to be addressed. 

Research needs: 

1.) Future studies should investigate differences in precision of CPUE estimates between 

SDGFP and Standard gears.  When Kansas Department of Wildlife, Parks, and 

Tourism transitioned to North American Standard methods they found poor precision 

of Standard nets and recommended increasing effort to index CPUE for several 

species (Koch et al. 2014).  

2.) Related to estimates of precision there should be investigation of potential changes in 

effort needed to provide adequate sample sizes to calculate PSD and PSD-P, 
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especially for gill nets used in Missouri River and non-Missouri River systems 

statewide. 

3.)  Gill net comparisons for Lake Trout and Rainbow Trout in Pactola and other Black 

Hills reservoirs should continue for several years to allow lake-years to be used as 

replicate units leading to higher confidence in regression analyses used for conversion 

factors. 

Addressing these research questions should provide the last pieces of information 

necessary to facilitate a transition to Standard gears.  I anticipate that information and 

analysis provided in this study will prove useful to researchers and managers should 

South Dakota Department of Game, Fish and Parks decide to adopt Standard methods. 
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