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ABSTRACT 

 

Productivity and Trophic Interactions in the Missouri River Impoundments 

Mark J. Fincel 

December, 2011 

 

Standardized monitoring is a vital component of fisheries assessment in Missouri 

River impoundments.  In South Dakota, annual variation in fish growth and abundance is 

used to monitor changes in fish populations and develop strategies (i.e. regulations) for 

managing recreational fishes.  Although variation in fish abundance provides important 

insight into the status of fish populations, it can be difficult to link these changes to 

environmental conditions (i.e. hydrology) without concurrent information about 

reservoir productivity.  Measures of nutrient concentration, algal biomass, and 

zooplankton composition/abundance provide important insights into reservoir 

productivity, but standardized approaches for collecting these measures have not been 

developed for Missouri River impoundments in South Dakota.  Furthermore, 

development of protocols that account for spatial and temporal variation in these 

parameters would enhance our ability to understand factors affecting fish populations.    

Inter- and intra- reservoir variation in prey fish composition and abundance has 

an important effect on sport fish populations in the Missouri River.  Coldwater habitat in 

Lake Oahe, for example, provides refuge for rainbow smelt Osmorus mordax --- a forage 

species that contributes significantly to walleye Sander vitreus production.  In contrast, 
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prey fish populations in downstream impoundments are dominated by gizzard shad 

Dorosoma cepedianum, cyprinids, and age-0 recreational fishes.  In the late 1990s, the 

decline of rainbow smelt in Lake Oahe had significant impacts on walleye production.  

Although the smelt population has been recovering since the early 2000s, low water 

levels combined with the recent expansion of gizzard shad in Lake Oahe, have resulted 

in a unique food web never before observed in this system.  As a result, factors affecting 

gizzard shad abundance, distribution, and their contribution to the growth dynamics of 

walleyes in Lake Oahe are poorly understood.   

In addition to the trophic interactions of walleye and gizzard shad, 

similarities/differences between foraging patterns of walleye and sauger Sander 

canadenses, two similar species found throughout the Missouri River impoundments, 

were examined.  Sauger is of particular concern in the Missouri River reservoirs due to 

population decline throughout the Midwest over the past 50 years. One hypothesis that 

could explain this downward trend in abundance is competition with walleye, a highly 

sought sport fish, which is frequently stocked in waters containing sauger.  Examining 

isotopic overlap and variability in sympatric walleye and sauger populations could 

provide quantitative insight into energy transfer and diet breadth of each species.  

Linkages between Sander spp. diet and hybridization have yet to be addressed 

though likely important.  I also wanted to develop protocols that can be used to monitor 

trophic linkages and energy flow using stable isotope analysis.  More directly, I 

determined the feasibility of using nonlethal tissues for isotope analysis of walleye, and 
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if whole fish can be substituted for muscle plugs for isotope determinations of common 

Missouri River prey species. 

To evaluate the need to document productivity throughout the Missouri River 

impoundments, to reveal gizzard shad population characteristics and their contribution to 

walleye growth dynamics, to examine isotopic characteristics between walleye and 

sauger, and to better standardize tissue use in future stable isotope analysis studies, I 

developed six primary objectives. These include: (1) develop protocols for indexing 

productivity in Missouri River impoundments, (2) determine gizzard shad population 

characteristics (age, growth, recruitment, larval growth rates, time of spawning, 

spawning duration) in Lake Oahe and compare these characteristics to those of gizzard 

shad populations in the lower Missouri River impoundments, (3) quantify the energetic 

contribution of gizzard shad and rainbow smelt to walleye growth, (4) compare isotopic 

overlap and variability between walleye and sauger in three Missouri River 

impoundments, (5) enhance the protocols used in stable isotope analysis and determine 

the usefulness of non-lethal tissues in isotope determination of South Dakota walleye 

and (6) compare/contrast prey fish isotope signatures using difference tissue analysis.  

For my first objective, I documented nutrient and 1o and 2o productivity trends in 

Lakes Oahe, Sharpe, Francis Case and Lewis and Clark in South Dakota. In general, 

nutrients and 1o and 2o productivity tend to be highest in the transitional zones, or middle 

reaches, of each of reservoir.  Moreover, sample sizes required to effectively monitor 

these parameters were minimal, with five nutrient samples, three chlorophyll a samples 

and ten zooplankton samples per site needed to precisely describe these indices. 
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For my second objective, I evaluated larval gizzard shad hatch timing, growth 

and density in Lake Oahe, South Dakota.  In 2008, I collected larval gizzard shad from 

six sites throughout Lake Oahe from 1 May through 31 July. Subsets of gizzard shad 

were aged and growth and hatch date determined.  I found that Lake Oahe gizzard shad 

exhibit reservoir wide bimodal spawning trends during the early summer months; 

warming water conditions in the upper-most part of the reservoir had earlier hatch dates 

compared to the lower portion.  Peak larval gizzard shad density ranged from 0.6 to 33.6 

(#/100m3) and was significantly different spatially (F5,18=5.83; P=0.002). Larval gizzard 

shad growth ranged from 0.242 to 0.579 (mm/day) and also differed spatially within the 

reservoir (H5=103.595; P<0.001).  Pollock and Minneconjou site locations tended to 

have greater growth and density of larval gizzard shad while Spring Creek and 

Whitlocks tended to be lower.  I found no relationship between larval gizzard shad 

growth or density and large or small-bodied zooplankton density (P>0.05).  Because 

gizzard shad exhibit delayed spawning, slow growth and low densities, they should be a 

suitable prey option for sport fishes in Lake Oahe, South Dakota. 

For objective three, I evaluated the importance of gizzard shad to walleye growth 

and condition in Lake Oahe.  Current walleye consumption and growth rates were 

compared to the mid 1990s, when rainbow smelt abundance was high, and the early 

2000s, when both smelt and shad abundances were low. In 2008, gizzard shad were the 

dominant prey item of walleye, representing 60% of the diet by weight. However, in 

2009, gizzard shad declined appreciably in the diet (22%) and were absent from walleye 

stomach contents in 2010. Conversely, rainbow smelt abundance has increased since 
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2008, representing 12%, 27% and 90% of walleye diets in 2008, 2009 and 2010, 

respectively. Comparison of walleye growth when diets consisted of 1) primarily 

rainbow smelt (mid 1990s), 2) few rainbow smelt or gizzard shad (early 2000s), or 3) 

primarily gizzard shad (2008), revealed that growth rates of walleye preying on gizzard 

shad were intermediate to those feeding predominantly on rainbow smelt or few rainbow 

smelt and gizzard shad. Because gizzard shad only become available for consumption in 

August, walleye achieved approximately 50% of their yearly maintenance energy 

requirements during this short time period.  Conversely, rainbow smelt, which are 

available and consumed by walleye year round, provided a continuous source to help 

walleye meet their yearly maintenance energy requirements. In conclusion, gizzard shad 

in the Missouri River system, when abundant, can provide an important subsidy to 

fluctuating rainbow smelt populations.   

For objective four, I examined isotopic characteristics of sauger and walleye in 

three South Dakota Missouri River impoundments that exhibit varying levels of 

hybridization; 22% in Lake Lewis and Clark, 4% in Lake Francis Case and 2.6% in Lake 

Oahe. I found high isotopic overlap between walleye and sauger in all reservoirs, 

suggesting similar diet composition.  However, decreasing hybridization levels 

corresponded to differences in isotopic variability between Sander spp.  In Lake Lewis 

and Clark, isotopic variability was similar between walleye and sauger (approximately 

0.5 mean absolute residuals [MAR] for both species and both isotopes (δ15N and δ13C ). 

However, in Francis Case, I found similar δ15N variability, but δ13C variability was 

significantly increased for sauger compared to walleye (0.76 and 0.38 MAR, 
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respectively).  In Oahe, I found increased isotopic variability in sauger, compared to 

walleye in both isotopes (δ15N 1.56 and 0.48 MAR and δ13C 0.73 and 0.28 MAR for 

sauger and walleye, respectively).  My results suggest that in all three systems, diets of 

walleye and sauger were largely overlapping. However, sauger exhibit increased isotope 

variability, while walleye exhibited decreased isotope variability, as hybridization rates 

between the two species declined.  Differences in isotopic variability could be the result 

of difference in prey availability associated with varying habitat quantity or quality 

between reservoirs, factors that likely influence hybridization rates in these systems. 

For objective five, I compared stable isotope values of muscle (lethal) to those 

from fins and scales (non-lethal) in walleye from multiple systems, size classes and 

across a range of isotopic values. I also compared isotopic variability among tissues 

within populations to determine the usefulness of non-lethal tissues for diet variability 

analyses. Muscle-derived isotope values were enriched compared to fins and depleted 

relative to scales. A split-sample validation technique and linear regression was used.  

This method indicated that isotopic composition of walleye fins and scales were 

significantly related to muscle tissue for both δ13C and δ15N (r2 = 0.79 to 0.93). 

However, isotopic variability was significantly different in two of the six populations for 

δ15N and three of the six populations for δ13C. Although species and population specific, 

these findings indicate that a large proportion of the variation in isotopic composition of 

muscle tissue can readily be explained by non-lethally obtained tissues.   

For my last objective, I examined the differences in isotopic variation of five 

prey fish species using whole fish, whole fish with the gut contents removed, and dorsal 
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muscle only.  I found significant differences in both δ15N and δ13C between the three 

tissue treatments.  In most cases, muscle tissue was enriched compared to whole 

specimens and gut-removed specimens. Moreover, differences in mean δ15N within a 

species were up to 2‰ among treatments.  This would result in a change of over half a 

trophic position based on a 3.4‰ increase per trophic level.  However, there was no 

apparent relationship between tissue isotope values in fish and gut fullness (i.e., more 

prey tissue present). I suggest that muscle tissue should be used as the standard tissue for 

determining isotope composition of prey fish or age-0 recreational fishes, especially 

when determining enrichment for mixing models, calculating trophic position, or 

constructing aquatic food webs.   
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Chapter 1: Introduction and Background 

Productivity in South Dakota Missouri River impoundments 

Water quality attributes, such as nutrient concentration, algal biomass, and water 

clarity, are frequently used in lake classification systems to document the trophic status 

of lakes and reservoirs (Carlson 1977, Goldman 1988).  The trophic state of lakes and 

reservoirs is typically calculated by integrating several surrogate measurements, such as 

chlorophyll a, Secchi disk depth, and phosphorus concentration (Carlson 1977).  

In reservoir systems, longitudinal changes in trophic status arise from variation in basin 

morphology, water depth, flow regime, and water clarity (Carillo 1979, German 1997, 

Wetzel 2002).  These longitudinal patterns are typically associated with three zones that 

include: (1) the riverine zone, (2) the transition zone and (3) the lacustrine zone.  Each 

zone is unique with respect to productivity, with the transition zone often being the most 

productive zone in reservoir systems. 

 Use of chlorophyll a as a surrogate for algal biomass has been widely used in 

aquatic environments (Smith 1979, Morin et al. 1999).  Despite a high correlation 

between measures of chlorophyll a and primary productivity, productivity estimates 

based on chlorophyll a concentrations generally have low precision (Morin 1999).  

Factors such as turbidity, nutrient concentration (i.e. N:P ratios), plant physiology and/or 

food web effects can effect chlorophyll a concentration independent of primary 

productivity (Behrenfeld and Falkowski 1997).  Nonetheless, as a relative measure of 

trophic status, chlorophyll a is a frequently measured water quality parameter that can be 

easily collected in the field and processed in the laboratory (Wetzel and Likens 1991). 
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 Nutrient concentrations (primarily phosphorus and nitrogen) are also used as 

surrogates to index primary productivity (Brylinksy and Mann 1973).  In most cases, 

phosphorous has been shown to be a limiting nutrient to primary production in 

freshwater lakes and reservoirs (Dillon and Rigler 1974, Birch et al. 1980, Goldman 

1988).  In some systems, total phosphorus is a better predictor of mean daily 

photosynthesis than chlorophyll a, and utilization of phosphorus as a surrogate removes 

some biases caused by algal species composition and grazing by zooplankton and other 

planktivores (Smith 1979).   

The use of nutrients and/or algal biomass to index productivity can be influenced 

by food web interactions in lakes and reservoirs.  In whole lake manipulations, 

planktivore dominated lakes had substantially higher chlorophyll a and primary 

productivity than did lakes with piscivore dominated systems (Carpenter et al. 2001).  

Evaluating primary productivity in systems with equal nutrient loadings, but with 

differing food web structures have yielded results that suggests that the number of 

trophic levels in a system has significant effects on primary productivity (Carpenter et al. 

1987).   

During the filling of the Missouri River impoundments, monitoring programs 

were established to document chemical and biotic factors in the reservoirs.  Variables 

measured included zooplankton community composition, as well as water quality 

attributes (June 1974).   In 1969, Lake Oahe zooplankton communities were dominated 

by cladocerans, with highest densities collected at stations in the northern, riverine 

segment of the reservoir (Selgeby 1974).  Early hypotheses were developed that with 
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reservoir age, the more northern part of the reservoir (i.e. riverine zone) would become 

increasingly oligotrophic (Selgeby and Jones 1974).  These surveys also found that 

tributary inputs had important effects on the chemistry and nature of the reservoir 

systems (Selgeby and Jones 1974).  Spatial variation in productivity has not been 

documented in South Dakota’s Missouri River reservoirs.  Understanding longitudinal 

changes in trophic status is important for developing standardized sampling protocols 

and identifying future monitoring stations.  

The highly variable nature of Lake Oahe’s rainbow smelt population likely 

affects zooplankton communities and hence, prey availability for other zooplanktivorous 

fishes.  Similarly, gizzard shad are known to have an important impact on zooplankton 

prey and can limit foraging opportunities for other fishes (e.g., centrarchids).  

Unfortunately, zooplankton abundance and/or biomass are not routinely collected in 

Missouri River reservoirs, owing to the time and cost of collection and processing.   

Recent advances in laser technology, however, have been used to develop instruments 

that significantly reduce processing time and labor costs for zooplankton analysis.  One 

such instrument, an optical plankton counter, provides rapid assessment of size 

distribution and total biomass of zooplankton samples, and significantly reduces 

processing time compared to traditional approaches (Wieland et al. 1997, Sprules et al. 

1998, Phelps et al. 2007).   

Measurements of aquatic productivity are time consuming and costly.  As a 

result, several measures are frequently used as surrogates for productivity.  These 

surrogates include measures of nutrient concentration, chlorophyll a, dissolved organic 
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carbon, water transparency, and zooplankton composition/abundance.  Although these 

measures relay information about system productivity, no protocols exist that provide 

recommendations on sample sizes required, spatial variability, or seasonal variation in 

these parameters in Missouri River impoundments.  Protocols established in this study 

will aid in maximizing limited resources (i.e., man hours and cost) for accurately 

monitoring reservoir productivity. 

Lake Oahe Gizzard Shad Population Characteristics 

Gizzard shad (Dorosoma cepedianum) are found throughout the U.S. – and range 

from the southeast U.S. as far north as North Dakota (Carufel and Witt 1963).  Gizzard 

shad are native to the Missouri River but their northern distribution is believed to be 

limited by winter severity (Walburg 1964).  They have been stocked throughout the 

United States in efforts to improve sport fish production (Bremigan and Stein 1999). 

Their abundance varies between systems from 1 to 475 kg/ha (Jenkins 1967), with 

estimates in two South Dakota reservoirs ranging from 0.3 to 6.0 individuals/m3 (Ward 

2005).  From 1990 through 1994, gizzard shad were stocked in Angostura Reservoir, 

South Dakota (Ward 2005) and have since migrated downstream via the Cheyenne River 

to Lake Oahe, where they have been increasing in abundance (Lott 2000).   

Gizzard shad are known to have concentrated periods of spawning that are 

correlated with rising water levels (Michaletz 1997).  Females have the capacity to 

produce large numbers of eggs, sometimes exceeding 100,000 eggs (Kilambi and Baglin 

1969).  Timing of water level increases is an important factor affecting gizzard shad 

reproduction, because gizzard shad are more likely to spawn when water level rises in 
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early spring (Michaletz 1997b).  In the absence of rising water levels, spawning is 

prolonged, and larva abundance is more evenly distributed among cohorts (Michaletz 

1997).  Temperature also affects spawning success of gizzard shad, and has been shown 

to enhance year class strength in years when spring water temperatures are warm 

(Michaletz 1997b).  

Factors affecting growth rates of age-0 gizzard shad have been documented in 

warm water impoundments of varying productivity (Bremigan and Stein 2001, 

Michaletz 1998, Michaletz 1999).  The main forces driving gizzard shad growth are 

productivity, temperature, and larval density, with growth rates being density dependent.  

Gizzard shad production fluctuates with reservoir productivity and is generally higher in 

more productive systems (Bremigan and Stein 1999, Michaletz 1999).  Factors affecting 

gizzard shad abundances are unclear.  However, it is thought that predation and density 

dependent mortality play key roles (Buynak et al. 1992, Welker et al. 1994).  Gizzard 

shad abundance has been positively correlated with nutrient loading, specifically 

phosphorous, with the highest gizzard shad biomass observed in hypereutrophic 

reservoirs (Bremigan and Stein 2001).  These correlations have led to model predictions 

of gizzard shad biomass across reservoir systems (Bremigan and Stein 2001).  At 

present, the influence of fluctuating water levels on gizzard shad growth and production 

are not known for Missouri River impoundments.  In Lake Oahe, record water level lows 

are coincident with increases in gizzard shad abundance.  Hence, baseline data on 

gizzard shad growth and abundance are necessary to determine the influence of 

increased water levels when the reservoir eventually refills.   
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Gizzard shad are an important prey source for many sport fishes in the United 

States (Noble 1981, Johnson et al. 1988, Storck 1986, Michaletz 1997, Michaletz 

1998b).  Predation of gizzard shad by sport fishes, such as largemouth bass (Micropterus 

salmoides), walleyes (Sander vitreus), white crappies (Pomoxis annularis), and white 

bass (Morone chrysops) is dependent on growth of age-0 gizzard shad (Michaletz 1997, 

Michaletz 1998b).  In some systems, gizzard shad produce slow growing individuals that 

remain vulnerable to sport fish predation for long periods of time (Storck 1986, 

Michaletz 1997B, Michaletz 1998, Allen et al. 1999), thus increasing growth of large 

predators (Michaletz 1997b).  In contrast, in systems where growth rate is high, gizzard 

shad quickly reach sizes that sport fishes cannot exploit (Noble 1981).  Modeling 

approaches have been used to show how gizzard shad consumption by fish changes 

based on their growth (Adams and DeAngelis 1987).  Hence, growth rate of age-0 

gizzard shad has a strong influence on prey availability for predators.   

 Walleye predation on gizzard shad has received less attention than has been 

given other piscivorous fishes (but see Hartman and Margraf 1992, Ward 2005, Hanten 

2007).  In South Dakota lakes and reservoirs, walleye diets have been extensively 

examined, though usually in the absence of gizzard shad (Jackson et al. 1993, Bryan 

1995).  Nevertheless, in three western South Dakota reservoirs, delayed use of gizzard 

shad was shown, with gizzard shad representing an insignificant component of walleye 

diets until August (Ward 2005).  However, once exploited, gizzard shad became the 

dominant prey species for walleyes in August and September.  A narrow temporal 

window of gizzard shad use has also been documented in several studies throughout the 



7 
 

south and midwest (Bonds 2000, Kocovsky and Carline 2001, Michaletz 1997, 

Wickstrom 2006).  In years when age-0 gizzard shad growth was high, they became 

unavailable as prey to largemouth bass as early as October each year (Michaletz 1997b).  

 Although gizzard shad have been identified as a major food source for some 

sport fishes, they can have adverse effects on sport fish recruitment (Dettmers and Stein 

1992, DeVries and Stein 1992, Stein et al. 1995).  Competitive exclusion by age-0 

gizzard shad on zooplankton has been documented with largemouth bass and bluegill 

(Lepomis macrochirus, Dettmers and Stein 1992, DeVries and Stein 1992).  

Consumption of zooplankton by age-0 gizzard shad has the potential to cause mid-

summer zooplankton declines (Dettmers and Stein 1992, DeVries and Stein 1992).  A 

more apparent problem with gizzard shad is the competition between larval gizzard shad 

and age-0 sportfish.  Because of high fecundity and efficiency of grazing on zooplankton 

by gizzard shad, a reduction in larval bluegill has been seen in many reservoirs as 

gizzard shad abundance increases.  Reduction in bluegill recruitment may, in turn, 

influence predator population dynamics that consume this species (DeVries et al. 1991, 

Stein et al. 1991).   

Gizzard shad can positively influence sport fishes by regulating zooplankton 

communities through nutrient uptake and nutrient cycling (DeVries and Stein 1992, 

Schaus et al. 1997, Stein 1995).  Gizzard shad begin to feed on organic detritus within 

the sediment at about 35 mm (Pierce et al. 1987, Mundahl and Wissing 1987).  By 

feeding on benthic detritus, gizzard shad have been shown to (1) transport nutrients from 

the benthos into the water column and (2) convert these nutrients into forms that algal 
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communities can use (Brabrand et al. 1990, Drenner et al. 1986, Schaus et al. 1997).  

Release of phosphorus by gizzard shad, in some systems, can be greater than phosphorus 

inputs from streams entering the reservoir, implying that adult gizzard shad, like other 

detritivores, supply a large amount of nutrients to the pelagic food web (Schaus et al. 

1997). 

Gizzard shad have generally been restricted to the lower Missouri River 

impoundments in South Dakota, where they serve as important prey for walleyes. The 

recent decline of rainbow smelt in Lake Oahe has prompted concern among biologists 

and anglers in South Dakota.  While it is clear that an abundant rainbow smelt 

population contributes to a healthy walleye fishery, in recent years, gizzard shad 

numbers have increased in Lake Oahe potentially affecting the walleye fishery.  With 

increased gizzard shad abundance, many questions arise about their population 

dynamics, how they grow relative to populations further south, where spawning takes 

place, and factors affecting year class strength.  Results from this study will provide age, 

growth, and distribution data and shed light on environmental factors affecting year class 

strength.   

Walleye Consumption, Growth and Bioenergetics 

Walleye occur throughout most of North America.  Walleye populations range 

from Quebec, across Canada to the Rocky Mountains, and as far south as the Gulf of 

Mexico and have been enhanced by stocking efforts in non-native habitats (Pflieger, 

1997, Ross 2001).  They prefer large lakes and exhibit crepuscular feeding strategies, 

often moving into shallow water to forage (Rawson 1956, Eddy and Underhill 1974,  
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Ryder 1977, Schupp 1978). Age-0 walleye are planktivorous until they reach a length of 

>30 mm (Jackson 1992).  As juveniles, walleyes generally shift from a benthic 

invertebrate diet to a diet dominated by fishes (Colby et al. 1979).  They generally select 

soft-rayed species (rainbow smelt, cyprinids) but also consume smaller percids, 

moronids, drum and alewifes (Parsons 1971, Wahl and Nielson 1985, Davis 2006, 

Hanten 2007).  In some systems, walleyes rely heavily on invertebrate prey throughout 

most of their life cycle (Johnson et al. 1988).  In highly productive systems (i.e. eastern 

South Dakota glacial lakes), invertebrates may reach densities high enough to compose a 

substantial portion of adult walleye diets (Isaak et al. 1993).  In earlier studies on 

walleye diets in Lake Oahe, Jackson et al. (1992) and Bryan (1995) noted low use of 

macroinvertebrates when rainbow smelt abundance was high.  However, after declines in 

rainbow smelt populations occurred in Lake Oahe, use of invertebrate prey increased 

(Davis 2004, Hanten 2007). 

 Like other reservoir systems, Lake Oahe can be characterized by three distinct 

zones; riverine, transition, and lacustrine zones.  During the growing season (summer 

months), rainbow smelt are generally restricted to the lower, stratified, lacustrine portion 

of the reservoir where cold water habitat exists (Jackson 1992, Davis 2004, Hanten 

2007).  In the 1980’s, rainbow smelt were found in the diets of walleyes collected from 

the lower and middle reaches (lacustrine to transition), but no smelt were found in 

walleyes collected from upper most portion of the reservoir (Jackson 1992).  In contrast, 

Bryan (1995) showed that the frequency of occurrence of smelt in walleye diets was 
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high throughout the reservoir, owing to high water levels, cooler temperatures, and 

coldwater habitat throughout the reservoir.  

 Bioenergetics models have been used extensively to quantify prey consumption 

by fishes.  Bioenergetics modeling is a cost effective method for estimating annual 

forage demand by a predator population (Stewart et al. 1993).  These models provide 

insight into factors affecting growth and consumption in free-ranging fishes and are 

often used to evaluate hypotheses regarding prey use (Adams and Breck 1990).  The 

bioenergetics approach has been applied to address a variety of questions that include the 

influence of water temperature, prey availability, toxin loadings, and food web dynamics 

(Kitchell et al. 1977, Borgemann and Whittle 1992, Schindler et al. 1993).  

Bioenergetics models have been used most often to quantify predator energy demands 

(Lyons 1984, Ney 1990, Bryan 1995).  The basic mass-balance model can be expressed 

as, 

C = (R+S) + (F+U) + (ΔB) 

where C = consumption, R = respiration, S = specific dynamic action, F = egestion, U = 

excretion, and ΔB = change in growth.  Bioenergetics models partition food energy into 

several fractions: 1) energy used for metabolic costs, 2) energy released as heat 

increment (movement, physical processes), 3) energy incorporated into body tissue 

(growth), and 4) energy excreted as waste (Hartman and Brandt 1993).  Each model 

must be parameterized using species-specific physiological estimates of consumption, 

growth, respiration, egestion, and excretion (Kitchell et al. 1977).   
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Walleye bioenergetics in Lake Oahe were first studied in the early 1990’s, when 

rainbow smelt abundance was high and walleye diets were composed primarily of 

rainbow smelt (~95%; Bryan 1995).  During this period, consumption of rainbow smelt 

contributed to some of the highest growth rates reported for Lake Oahe (Figure 1).  

When the rainbow smelt population declined appreciably in the late 1990’s, 

bioenergetics modeling showed that consumption of rainbow smelt by walleyes declined 

appreciably.  During this period, Lake Oahe walleye were meeting basic energy 

requirements only by supplementing rainbow smelt consumption with other prey items 

(i.e. invertebrates and other prey fishes; Figure 2). The severe reduction in rainbow smelt 

use led to reduced growth rates and increased natural mortality, particularly for larger, 

older walleyes (>3 years of age).  Given the recent expansion of the Lake Oahe gizzard 

shad population, it is unclear what role gizzard shad have on growth dynamics of 

walleyes.  Linking new information (bioenergetics modeling) with past modeling efforts 

will provide important baseline data for understanding the effects of variable prey 

populations on walleye growth dynamics.   

The importance of gizzard shad on growth dynamics of Lake Oahe walleyes is 

not known.  Previous studies have shown that when rainbow smelt are abundant, 

walleyes obtain nearly all of their energetic requirements (>90%) from smelt – and grow 

at high rates (Bryan 1995).  When smelt are rare, walleyes must forage on alternative 

prey, resulting in reduced growth and condition (Hanten 2007).  In downstream 

impoundments (i.e. Lakes Sharpe) gizzard shad represent an important diet item for 

walleyes (M. R. Wuellner - personal communication).  With the recent expansion of 



12 
 

gizzard shad into Lake Oahe, information about the energetic contribution of gizzard 

shad to walleye growth is needed.     

Specific questions that need to be addressed are 1) what is the energetic 

contribution of gizzard shad to annual growth rates of Lake Oahe walleyes, 2) do gizzard 

shad provide a subsidy to rainbow smelt (which are slowly recovering, but still well 

below levels seen in the mid 1990s)?, and 3) has the Lake Oahe food web become more 

similar to those observed downstream?  This study will determine to what extent Lake 

Oahe walleye are foraging on gizzard shad, quantify the energetic contribution of 

gizzard shad to walleye growth, and evaluate temporal patterns in energy flow across 

Missouri River impoundments.  Additionally, the timing of this study will allow us to 

document and compare walleye food habits to previous studies in Lake Oahe (Jackson 

1992, Bryan 1995, Hanten 2007).   

Use of Stable Isotope Analysis in Revealing Trophic Linkages in the South Dakota 

Missouri River Impounments 

Stable isotope analyses (SIA) have become increasingly useful in identifying 

trophic relationships in aquatic and terrestrial environments.  SIA does not provide direct 

dietary information, but can be used to quantify long-term feeding relationships of an 

organism.  SIA is currently used to address a variety of topics, such as determining 

dietary shifts from pelagic to benthic prey (Vander Zanden et al. 1998), modeling 

contaminant bioaccumulation in piscivorous fishes (Kidd et al. 1996) and monitoring the 

effects of eutrophication on aquatic food webs (Cabana and Rasmussen 1996).  

Additionally, SIA can reveal feeding interactions not detected by traditional gut content 
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analyses -- identifying those prey items actually assimilated by the consumer.  Stable 

carbon ratios (12C:13C) and nitrogen ratios (14N:15N) can also provide temporal 

information about energy flow (Kling et al. 1992, Cabana and Rasmussen 1994).  

Stable isotope signatures can provide predictable changes from food source to 

consumer (Johnson et al. 2002).  13Carbon signatures (δ13C) depend upon the 

photosynthetic pathway used to sequester carbon.  A consumer’s carbon signature is 

similar to its food source, with an enrichment of approximately one part per thousand per 

trophic level, due to loss of 12C during respiration (Fry and Sherr 1984, Johnson et al. 

2002, Vander Zanden and Rasmussen 1997).  15Nitrogen signatures (δ15N) are usually 3 

to 4 ‰ enriched relative to diet, due to loss of 14N in nitrogenous wastes (Johnson et al. 

2002, Vander Zanden et al. 1997).  Hence, δ13C can be used to compare energy sources 

between consumers (e.g. benthic production vs. pelagic production) and δ15N can be 

used to identify important trophic relationships and energy pathways. 

 White muscle has been the choice of isotope analyses because of low lipid 

content and ease of homogenation, with carbon and nitrogen values in dorsal white 

muscle matching closely those of the food items consumed (De Niro and Epstein 1978, 

Pinnegar and Polunin 1999).  Liver, gonadal tissue, bone collagen, otoliths, brain and 

whole fish (on smaller specimens) are other tissues used for isotope determinations 

(Pinnegar and Polunin 1999).  The problem with using these tissues, or whole fish 

specimens, is that fish must be sacrificed to obtain them, which can be undesirable when 

working on rare species, species of concern, or large, mature sport fishes. 
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With increased interest in using stable isotopes for food web analysis, and 

concerns over protecting the resource being studied, questions arise on the validity of 

sacrificing large numbers of specimens. While SIA generally required fewer samples 

compared to traditional gut content analysis, development of non-lethal protocols for 

isotope determinations would eliminate the need to sacrifice organisms.  Using non-

lethal tissues for stable isotope analyses would increase sample size without affecting 

population size, removing the resource from the system, or reducing the gene pool 

(Kelly et al. 2006).   

Fins and scales have been used as surrogates for determining isotope signatures, 

however, little information exists on how these results compare to lethally attained 

tissues (Perga and Gerdeaux 2003, Kelly et al. 2006).  Kelly et al. (2006) compared 

isotope signatures between white muscle, fins and scales in sculpin and sunfishes and 

found strong correlations in isotope signatures between the different tissues, with fins 

being indistinguishable from muscle when analyzing δ13C.  A high correlation was also 

found between muscle and scales when evaluating δ15N, though a correction factor was 

needed to predict food web characteristics.  The applicability of using scales for SIA 

extend beyond that of present diet studies -- archived scale collections, catalogued for 

growth studies, could provide a unique opportunity for retrospective isotope studies. 
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Abstract 

Measures of nutrient concentration, algal biomass, and zooplankton 

composition/abundance provide important insight into reservoir productivity.  However, 

standardized approaches have not been developed for Missouri River impoundments.  

Developing protocols that account for spatial and temporal variation in these parameters 

would 1) improve the cost effectiveness of reservoir sampling, 2) enhance our ability to 

document reservoir productivity, and 3) contribute to a better understanding of factors 

that affect fish populations.  In this study, I quantify spatiotemporal patterns in nutrient 

concentration, algal biomass and primary consumers (zooplankton) in Lakes Oahe, 

Sharpe, Francis Case and Lewis and Clark in Central South Dakota.  In general, 

measures of productivity were highest in the transitional zones of each reservoir (i.e. 

middle reaches) and decreased in downstream areas (i.e., lacustrine zones).   The 

location of tributary inputs was associated with localized increases in reservoir 

productivity likely owing to increased nutrient inputs from these sources.  I found that 

nutrient concentration and standing stock of algae and zooplankton collected during 

spring (April-May) were correlated to mean, summer averages and were also generally 

less variable.  Moreover, sample sizes required to effectively monitor site-specific 

productivity were relatively low, with five nutrient samples, three chlorophyll a samples 

and ten zooplankton samples needed to reliably (±12%) quantify these parameters.  

Accounting for seasonal and spatial variation in reservoir productivity is important for 

developing cost-effective monitoring programs that could ultimately be linked to 
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fisheries stock assessment data to enhance management decisions in Missouri River 

impoundments.    
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Introduction 

Limnological data can be important for understanding the impact of changing 

ecological processes and management actions in freshwater systems (Carpenter et al. 

1985).  Reservoir productivity can significantly affect fish production (i.e., bottom up 

biotic controls; Yako et al. 1996) and ultimately sport fish populations (Hokanson and 

Lien 1986, Peterson et al. 2006).  Similarly, higher trophic levels can influence primary 

and secondary productivity and as a result, stocking of piscivorous fishes has often been 

used to improve water quality (i.e., biomanipulation; Arcifa et al. 1986; Carpenter et al. 

1987, 2001; Jacobsen et al. 1997).  Because of the interdependent role of primary and 

secondary productivity on fish production, many state agencies routinely monitor 

measures of productivity to better forecast sport fish production and(or) document food 

web changes associated with management actions.   

In reservoirs, longitudinal changes in productivity arise from variation in basin 

morphology, water depth, flow regime, and water clarity (Carillo 1979, German 1997, 

Wetzel 2002).  These changes can typically be classified into three distinct zones: (1) the 

riverine zone, (2) the transition zone and (3) the lacustrine zone (Wetzel 2002).  Each 

zone is defined by unique in patterns in nutrient availability and productivity with the 

transition zone often being the most productive zone.  While most reservoirs contain 

these three distinct zones, the length of each zone, location of each zone within the 

reservoir and the impact of localized nutrient inputs (through urban or tributary inputs) 

can vary by reservoir.  Furthermore, reservoirs often contain tributaries that can have 

local effects on productivity (Stanford 1994).  Water quality attributes, such as nutrient 
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concentration, algal biomass, and water clarity are frequently used to document trophic 

status of lakes and reservoirs (Carlson 1977, Goldman 1988).  One common measure of 

productivity is the trophic state index (TSI) that is typically calculated using surrogate 

measures such as chlorophyll a, Secchi disk depth, and(or) phosphorus concentration 

(Carlson 1977). 

During the filling of the Missouri River impoundments, monitoring programs 

were established to document chemical and biotic changes in reservoir productivity.  

Variables measured include zooplankton community composition and water quality 

attributes (June 1974).  In 1969, Lake Oahe zooplankton communities were dominated 

by cladocerans, with the highest densities found at stations in the northern, riverine 

segment of the reservoir (Selgeby 1974).  These monitoring programs also found that 

tributary inputs greatly affected the chemistry and nature of the reservoir system 

(Selgeby and Jones 1974). 

Spatial variation in productivity has not been documented in South Dakota’s 

Missouri River reservoirs since the early 1970s.  Understanding longitudinal changes in 

trophic status is important for developing standardized sampling protocols and 

identifying future monitoring stations.  Of particular interest, is highlighting the number 

of samples required to effectively describe nutrient and productivity dynamics while 

minimizing the amount of resources used to complete the endeavor.  In this study, my 

objectives were to document spatial and temporal patterns in reservoir productivity 

metrics in four South Dakota Missouri River impoundments.  I also comment on the 
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need for establishing a long term reservoir monitoring program that can be used to 

supplement fisheries stock assessment data. 

Methods 

Study Reservoirs 

Lake Oahe is the second largest impoundment, out of a series of six 

impoundments, on the Missouri River (Figure 2-1).  It extends from Bismarck, ND to 

Pierre, SD.  At normal pool, the South Dakota portion of Lake Oahe has a surface area 

of approximately 145,000 ha; with a mean depth of approximately 19 m and a maximum 

depth of 67 m.  Lake Sharpe is located in central South Dakota and extends from Oahe 

Dam to Big Bend Dam.  At normal pool, Lake Sharpe has a surface area of 

approximately 25,000 ha and mean and maximum depths of 9.5 and 23.7 m, 

respectively.  Lake Francis Case extends from Big Bend Dam to Fort Randall Dam in 

central South Dakota.  At normal pool, Lake Francis Case has a surface area of 

approximately 25,000 ha and mean and maximum depths of 15.2 and 42.6 m, 

respectively.  Lake Lewis and Clark is the furthest downstream, and the smallest 

Missouri River reservoir.  Lake Lewis and Clark extends from Fort Randall Dam to 

Gavin’s Point Dam in south central South Dakota.  At normal pool, Lake Lewis and 

Clark has a surface area of 10,500 ha and mean and maximum depths of 5 and 16.7 m, 

respectively, which is considerably shallower than the other study reservoirs.  Lake 

Lewis and Clark is unique in that it contains 70 km of riverine habitat and delta 

formation within the reservoir (Niobrara River Delta).   
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I chose six sites within each of the South Dakota Missouri River impoundments.  

All sites within each reservoir were equidistant from one another (see appendix 1 for a 

list of sites with geo-referenced coordinates).  Primary and secondary productivity 

metrics and physiochemical parameters were collected from each site in April, June, and 

August of 2008.  

Water Chemistry 

 At each site, I determined Secchi depth, turbidity (using a LaMotte® turbidity 

meter), dissolved oxygen and water temperature using a YSI® datasonde (Yellow 

Springs Instruments, Yellow Springs, OH).  I used an integrated water sampler to collect 

replicate water samples from the water surface to twice the Secchi depth or at a depth 

not to exceed the thermocline (if present).  Water samples were transferred to 1 L acid 

washed containers, placed on ice and transported to SDSU Northern Plains Biostress 

Laboratory.  Determinations of total phosphorous, total kjeldahl nitrogen and total 

suspended solids were conducted by the Water Resource Institute at South Dakota State 

University.  For chlorophyll a determination, 250 ml of water was filtered through a 0.7 

μm Whatman GF/F filter in the field, wrapped in aluminum foil, placed on ice, and 

transported to the SDSU Northern Plains Biostress Laboratory for processing.  I 

determined chlorophyll a concentration as outlined by APHA (1998).  This procedure 

involved extracting chlorophyll a for 24 hours in 90% acetone and then measuring its 

concentration using a Turner TD-700 fluorometer.    

Zooplankton Collection and Processing 
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 Zooplankton samples were collected concurrently with water chemistry in each 

of the four reservoirs.  Samples were obtained using a conical shaped Wisconsin net (10 

cm diameter, 150 μm mesh) towed vertically from twice the Secchi depth to the surface 

(or from 1 m above the sediment to the surface if water depth was less than twice the 

Secchi depth).  I preserved zooplankton samples in 10% Lugol’s solution and 

transported to SDSU Northern Plains Biostress Laboratory.  In the laboratory, 

approximately 10% of the original sample was used for zooplankton identification and 

enumeration (in increments of 2 ml sub samples).  The total number of zooplankton in 

each sample (ZPDSS) was extrapolated from the number found in the zooplankton 

subsamples.  I then calculated zooplankton density (ZP; # of zooplankton / L) by  

ZP = (ZPDSS*VOLSS)*1000 / VOLTS 

where ZPDSS is the number of zooplankton in the entire sample, VOLSS is the volume of 

sample liquid (ml) and VOLTS is the total water column sampled in the field (L). 

Sample Size Determination 

 Because I wanted to develop protocols for quantifying zooplankton and 

physiochemical parameters in Missouri River impoundments, sample size estimators 

were used to determine the minimum number of samples needed to be confident that 

samples collected expressed the true mean.  For chlorophyll a, total phosphorus, total 

Kjeldahl nitrogen, total suspended solids and zooplankton density, I calculated the 

minimum sample size (SS) required to be 95% confident that the sample mean was ± 

12.5% the true mean.  I used the equation  

SS = [(s / X)2]*[(t2
α / r2)*100]2 
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where s = standard deviation of the samples, X is the sample mean, t2

α = Student’s t with 

n – 1 df for 1 – α level of confidence, and r = desired relative error (Krebs 1999). 

Statistical Analysis 

 Because nutrient dynamics and productivity metrics (algae and zooplankton) 

change seasonally, I compared these metrics between reservoirs within each season (i.e., 

April, June and August).  When analyzing productivity metrics, tests of normality 

(Shapiro-Wilk test) were rarely met.  Thus, I compared mean concentration and sample 

sizes required for chlorophyll a, total phosphorus, and total kjeldahl nitrogen between 

reservoirs using an ANOVA on ranks (α=0.05) with a Dunn’s multiple comparison test 

to reveal significant differences.  Zooplankton samples were normally distributed, so I 

used an ANOVA to compare cladoceran density and sample size requirements among 

reservoirs.   

Results 

 Water temperature in South Dakota Missouri River impoundments generally 

increased from upstream to downstream sites within each reservoir (Appendix 1).  

However, due to hypolimnetic releases from each dam, tailrace reaches were generally 

cooler than surface water temperatures above the dam, causing discontinuity in river 

water temperatures from the upstream reaches of Lake Oahe to the most downstream site 

in Lewis and Clark Lake.  Among the reservoirs, Secchi depth (m) ranged from 0.2 to 

3.4, 0.1 to 6.0 and 0.2 to 3.9 in April, June and August, respectively, and turbidity 

(NTU) ranged from 0.53 to 15.50, 0.62 to 68.20 and 1.70 to 25.10 in April, June and 

August, respectively. Secchi depth generally exhibited an inverse bell-shaped 



40 
 
relationship from upstream to downstream sites, with higher water clarity in the upper 

and lower reaches within each reservoir.  Turbidity, as expected, tended to exhibit a 

reciprocal relationship with Secchi depth where the highest turbidity tended to be in the 

middle reaches of the reservoir.  Conductivity (ᶙs/cm2) and pH were variable throughout 

the reservoirs systems with no discernable trends with rkm. 

Mean chlorophyll a concentration was significantly higher in Lakes Oahe and 

Lewis and Clark than Lakes Sharpe in April (H3=13.675; P=0.003; Figure 2-2).  I found 

no differences in mean chlorophyll a concentration among reservoirs in June or August. 

Mean chlorophyll a concentration was highest in upstream Lake Oahe and decreased 

downstream (Appendix 2).  Conversely, mean chlorophyll a concentration was lowest in 

Lake Lewis and Clark tailrace and increased downstream.  Both Lakes Sharpe and 

Francis Case exhibited bell-shaped relationships with regard to rkm with peak mean 

chlorophyll a concentrations occurring in the middle of the reservoirs.  Sample size 

requirements for chlorophyll a were generally low (approximately 1) for all reservoirs, 

seasons and sites.  One exception to low sample size requirements was Lake Lewis and 

Clark in June and August where required  chlorophyll a samples were increased in sites 

4 and 6 (Figure 2-2).  There were no significant differences in sample size requirements 

between reservoirs (p>0.05) seasonally. 

 Total phosphorus (TP) was similar between all reservoirs seasonally (p>0.05; 

Figure 2-3).  Lakes Oahe, Sharpe and Francis Case exhibited bell-shaped relationships 

between TP and reservoir location with the highest TP concentration occurring in the 

middle of the reservoirs (Appendix 2).  Conversely, Lake Lewis and Clark exhibited 
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increased TP concentration with rkm.  Sample size requirements for TP were generally 

low for all reservoirs, seasons and sites.  However, specific sites within Lakes Oahe 

(Mobridge and Whitlock), Francis Case (Elk Creek) and Lewis and Clark (Gavin’s Point 

Dam) where abnormal and exhibited high variability and subsequently, increased sample 

size requirements (Figure 2-3).  There were no significant differences in sample size 

requirements between reservoirs (p>0.05) seasonally. 

 Total kjeldahl nitrogen (TKN) was similar between reservoirs in June and 

August; however, in April, Lake Lewis and Clark had significantly higher TKN 

concentration than Lake Sharpe (H3=11.275; p=0.01; Figure 2-4).  Lakes Oahe, Sharpe 

and Francis Case exhibited bell-shaped trends in TKN with the highest TKN 

concentrations occurring in the reservoir center (Appendix 2).  Lake Lewis and Clark 

exhibited low TKN in the tailrace and increased TKN with rkm (similar to TP).  Sample 

size requirements for TKN were generally low (between 2 and 4 samples) in April and 

June, but increased in August.  No differences in sample size requirements were found 

among reservoirs seasonally (p>0.05).  Moreover, nutrients, chlorophyll a, and 

zooplankton measured during spring (April/May) were positively correlated to mean 

summer values in each reservoir (Figure 2-5), implying that spring sampling provided a 

reasonable time frame for indexing relative productivity. 

Trophic state index (TSI) values ranged from eutrophic (>60) to oligotrophic 

(<40) throughout the study reaches (Figure 2-6).  TSI values in Lakes Oahe, Sharpe and 

Francis Case were lowest in the lower reservoir and tailrace locations and increased in 

the middle reaches of the reservoirs.  Conversely, TSI values in Lake Lewis and Clark 
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were lowest in the tailrace section of the reservoir and steadily increased with decreasing 

rkm. These relationships between TSI values and rkm were consistent despite season, in 

all reservoirs.  Tributaries seemed to increase local TSI values, especially near the mouth 

of the Moreau, Cheyenne, Bad and White rivers (Figure 2-6).  

 Cladoceran density (#/L) was similar between reservoirs in April and June 

(p>0.05) but Lake Francis Case had significantly higher cladoceran density than other 

reservoirs in August (Figure 7; F3,20=7.114; p=0.002).  Within reservoirs, cladoceran 

density exhibited bell-shaped trends, similar to TKN, TP and chlorophyll a, where the 

center of the reservoirs had the highest cladoceran density and values declined in the 

upper and lower reaches (Appendix 2).  Sample size requirements for cladoceran density 

were higher in April (approximately nine) and generally lower in June and August 

(approximately four).  There were no differences in sample size requirements among 

reservoirs in April or August (p>0.05); however, required sample sizes in Oahe were 

significantly higher than the other reservoirs in June (F3,19=8.799, p<0.001). 

Discussion 

Seasonal and spatial trends in productivity metrics for Lakes Oahe, Sharpe and 

Francis Case were similar to those reported for other reservoirs (Carpenter 2001).  

However, Lake Lewis and Clark was noteable in that nutrients, and subsequent 

productivity, was lowest in the tailrace above the reservoirs and increased with 

decreasing rkm. Lake Lewis and Clark is also unique in that it contains 70 km of riverine 

habitat and 25 km of delta formation within the reservoir (i.e., Niobrara River delta).  As 

a result of this unique habitat, it is likely that nutrients remain suspended into the 
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lacustrine zone, thus leading to the substantial increase in productivity throughout the 

lower reaches of Lake Lewis and Clark (Schreck 2010). 

 In Lakes Sharpe, Francis Case and Lewis and Clark, TSI values exhibited a bell-

shaped relationship with reservoir location.  In contrast, Lake Oahe exhibited the highest 

TSI values in the upper reaches, with values declining with decreasing rkm.  This is 

congruent with findings from 2001 and 2002 when Bolgrien et al. (2009) documented 

TSI trends in Lake Oahe to be highest in the riverine section of the reservoir and lower 

in the transitional and lacustrine zones.  Because Lake Oahe extends 140 km into North 

Dakota, it is likely that the bell-shaped TSI trend observed in the other reservoirs would 

also occur here.  However, because my sampling effort started at the South Dakota 

border, I was unable to identify the lower TSI values associated with tailrace reaches 

below Garrison Dam.    

Zooplankton densities in the Missouri River impoundments were intermediate to 

densities found in temperate lakes and reservoirs (see Pinto-Coelho et al. 2005 for 

review).  However, spikes in June and August zooplankton samples far surpassed levels 

found in temperate lakes and reservoirs and were more indicative of eutrophic sub-

tropical reservoirs (Havens et al. 2000).  Fish  production can be highly influenced by 

zooplankton abundance (Dai and Miner 1997; Hoxmeier et al. 2004; Bremigan and Stein 

2011) and it is important that the timing of zooplankton blooms overlaps with critical 

periods in  fish life histories (match/mismatch hypothesis; Burrow et al. 2011).  Because 

many age-0 fishes undergo an ontogenetic feeding shift away from zooplankton early in 

their life stages (Graeb et al. 2004; Galarowicz, et al. 2006) it is unlikely that 
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zooplankton spikes in August can be readily utilized by these fishes.  However, 

zooplankton spikes in June can have far reaching benefits promoting gizzard shad 

growth (a primary prey resource in Lake Sharpe; Wuellner et al. 2010) and increasing 

growth and survival of warm water sport fishes. 

In South Dakota, upstream impoundments seem to dictate downstream 

temperature, water clarity, TP, TKN, chlorophyll a, and cladoceran density, with tailrace 

reaches having decreased physiochemical and 1o and 2o productivity compared to 

downstream reaches.  These system “breaks” have been termed serial discontinuity 

(Ward and Stanford 1983) and disrupt the normal progression of nutrient, productivity 

and biotic relationships along longitudinal gradients in lotic waters (Baldwin et al. 

2010).  The tailwaters of the South Dakota Missouri River reservoirs are largely depleted 

in nutrients and characterized by low nutrient, algae and zooplankton concentrations.  

However, I found that tributaries in the Missouri River appear to enhance local reservoir 

productivity owing to increased nutrients, warmer water, or a combination of both.  

These tributaries increased localized 1o and 2o productivity, and in the case of the 

Niobrara River in Lake Lewis and Clark, can have far reaching effects on reservoir 

productivity.  Downstream tributary inputs have been shown to alleviate some of the 

disturbance conditions associated with dams (Selgeby and Jones 1974; Stanford 1994).  

Often times, streams large enough to make substantial contributions to temperature and 

nutrients of  impaired tailwaters are far downstream or absent entirely.  In some 

instances, 100 to 1000 km stretches of tailwaters can remain impaired and lack nutrient 

inputs (Stanford 1994; Stevens et al. 1997).  In each of the South Dakota Missouri River 
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impoundments, there appears to be a tributary large enough to mediate the low 

temperatures and reduced productivity associated with hypolimentic releases of the 

upstream dams. 

 Increases in reservoir water levels are often associated with productivity ‘pulses’, 

created by  increased nutrient inputs and mineralization (Straskraba et al. 1993; 

Ostrofsky 2007).  At the time of my study, Lake Oahe water levels were the lowest since 

the reservoir was filled in the late 1950s.  By fall 2009, high water inflows resulted in the 

re-filling of Lake Oahe in merely a year.  Thus, results reported here can serve as 

important baseline information to compare physiochemical and productivity metrics to 

those during high water years to evaluate the effects of fluctuating water levels on 

reservoir productivity. 
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Figure 2-1. Map of the South Dakota Missouri River impoundments in central South 

Dakota. 

 

Figure 2-2. Mean chlorophyll a (top panels; mg/l) and the number of samples required to 

estimate the true sample mean +/- 12.5% (bottom panels; #) by season (left 

panels) and site (right panels)  for Missouri River impoundments (Lake Oahe - 

open bars; Lake Sharpe - filled bars; Lake Francis Case - large hash; Lake Lewis 

and Clark - small hash). Different letters represent significant differences 

(ANOVA of ranks; p<0.05) in mean chlorophyll a concentration seasonally.  

Error bars represent 1  standard error.  

 

Figure 2-3. Mean total phosphorus (top panels; mg/l) and the number of samples 

required to estimate the true sample mean +/- 12.5% (bottom panels; #) by 

season (left panels) and site (right panels)  for in the South Dakota Missouri 

River impoundments (Lake Oahe - open bars; Lake Sharpe - filled bars; Lake 

Francis Case - large hash; Lake Lewis and Clark - small hash).  Error bars 

represent 1 unit of standard error. 

 

Figure 2-4. Mean kjeldahl nitrogen (top panels; mg/l) and the number of samples 

required to estimate the true sample mean +/- 12.5% (bottom panels; #) by 

season (left panels) and site (right panels)  for in the South Dakota Missouri 

River impoundments (Lake Oahe - open bars; Lake Sharpe - filled bars; Lake 
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Francis Case - large hash; Lake Lewis and Clark - small hash). Different letters 

represent significant differences (ANOVA of ranks; p<0.05) in mean chlorophyll 

a concentration seasonally.  Error bars represent 1 unit of standard error.  

 

Figure 2-5. Mean chlorophyll a, mean kjeldahl nitrogen (TKN), mean total phosphorus 

and mean cladoceran density collected from April/May compared to mean 

summer values.  Filled circles represent Lake Oahe, open circles represent Lake 

Sharpe, filled triangles represent Lake Francis Case and open triangles represent 

Lake Lewis and Clark. 

 

Figure 2-6. Trophic State Index (TSI) values for South Dakota Missouri River 

impoundments from upstream (left panels; starting with Lake Oahe) to 

downstream (right panels; ending with Lewis and Clark).  Top panels represent 

samples collected in April, middle panels represent samples collected in June and 

bottom panels represent samples collected in August. Closed circles represent 

TSI values calculated using Secchi depth, open circles represent TSI values 

calculated using chlorophyll a, and closed triangles represented TSI values 

calculated using total phosphorus.  Vertical dashed lines represent tributary input 

locations. 

 

Figure 2-7. Mean cladoceran density (top panels; #/l) and the number of samples 

required to estimate the true sample mean +/- 12.5% (bottom panels; #) by 
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season (left panels) and site (right panels)  for in the South Dakota Missouri 

River impoundments (Lake Oahe - open bars; Lake Sharpe - filled bars; Lake 

Francis Case - large hash; Lake Lewis and Clark - small hash). Different letters 

represent significant differences (ANOVA; p<0.05) between reservoirs 

seasonally.  Error bars represent 1 unit of standard error.  
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Figure 2-1. 
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Figure 2-2. 
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Figure 2-3. 
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Figure 2-4. 
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Figure 2-5 
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Figure 2-6.  

River kilometer

0

20

40

60

80

Oahe

0

20

40

60

80

100

Tr
op

hi
c s

ta
te 

in
de

x

0

20

40

60

80

Sharpe Francis Case Lewis and Clark

Grande 
River

Moreaux 
River

Cheyanne 
River

Bad
River

White
River

Niobrara
River

1970 1928 1889 1856 1804 1751 1726 1720 1677 1650 1624 1591 1588 1558 1513 1482 1468 1424 1416 1370 1352 1339 1320 1305

 

 60 



61 
 

Figure 2-7. 
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Chapter 3: Spatial and Temporal Variation in Larval Gizzard Shad Abundance in 

Lake Oahe, South Dakota: A Species at the Northern Edge of its Range 

  



63 
 

Abstract 

Gizzard shad Dorosoma cepedianum have generally been restricted to the lower 

Missouri River impoundments in South Dakota.  In recent years, gizzard shad numbers 

have increased in Lake Oahe, marking the northern most natural population and these 

increases could potentially affect recreational fishes.  Specifically, questions arise about 

larval gizzard shad growth dynamics and if age-0 gizzard shad in Lake Oahe will exhibit 

fast or slow growth; both of which can have profound effects on piscivore populations in 

this reservoir.  In this study, I evaluated larval gizzard shad hatch timing, growth and 

density in Lake Oahe, South Dakota.  I collected larval gizzard shad from six sites in 

Lake Oahe from May through July, 2008 and used sagittal otoliths to estimate growth, 

and back-calculated hatch date.  I found that larval gizzard shad densities exhibited 

bimodal peaks that were linked to water temperatures in Lake Oahe; hatching occurred 

earlier in the upper part of the reservoir compared to the lower portion. Peak larval 

gizzard shad density ranged from 0.6 to 33.6 (#/100m3) and varied significantly among 

reservoir sites.  Larval gizzard shad growth ranged from 0.24 to 0.57 (mm/day) and 

differed spatially within the reservoir.  I found no relationship between larval gizzard 

shad growth or density and large or small bodied zooplankton density (P>0.05).  

Because this population exhibits slow growth and low densities, gizzard shad should 

remain a suitable forage option for recreational fishes in Lake Oahe, South Dakota. 
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Introduction 

Gizzard shad Dorosoma cepedianum are an important prey resource for a suite of 

sport fishes (Storck 1986, Michaletz 1997, Michaletz 1998B).  Gizzard shad are 

common in reservoirs and lakes throughout the Midwest and Southeastern U.S. and 

often represent a dominant component of the fish assemblage (Johnson et al. 1988; 

DeVries and Stein 1990).  As an important prey resource, gizzard shad can strongly 

influence growth, recruitment and survival of predatory fishes (DeVries and Stein 1990; 

Garvey and Stein 1998; Bauer 2002).  Predation of gizzard shad by recreational fishes, 

such as largemouth bass Micropterus salmoides, walleyes Sander vitreus, white crappies 

Pomoxis annularis, and white bass Morone chrysops is dependent on growth of age-0 

gizzard shad (Michaletz 1997, Michaletz 1998).  In some systems, gizzard shad produce 

slow growing individuals which remain vulnerable to fish predation for longer periods of 

time (Storck 1986, Michaletz 1997, Michaletz 1998, Allen et al. 1999), thus increasing 

growth of large predators (Michaletz 1997).  In contrast, in systems where age-0 shad 

growth rates are high, shad quickly reach sizes that fishes are unable to exploit (Noble 

1981).  Hence, growth rate of age-0 gizzard shad has a strong influence on the quantity 

and timing of prey availability for predators.   

One key difference in larval gizzard shad characteristics in the Northern Great 

Plains is the timing of gizzard shad availability.  Because of colder water temperatures 

and subsequent delay in gizzard shad reproduction, the availability of shad is reduced 

compared to warmer, more southern reservoirs (see Wuellner et al. 2008 for review).  

Despite this late availability, gizzard shad in the Northern Great Plains show remarkable 



65 
 

growth rates, the highest observed in North America (Wuellner et al. 2008).  This high 

growth rate could be problematic when comparing the size of age-0 gizzard shad to the 

gape limitations of South Dakota piscivores.  For instance, Kocovsky and Carline (2001) 

found that rapid growth rates of age-0 gizzard shad caused age-0 gizzard shad to be 

absent from walleye Sander vitreus diets in less than ten weeks post gizzard hatch.  

In systems with slower larval gizzard shad growth, walleye exhibit increased 

growth rates (Santucci and Wahl 1993; Quist et al. 2002) and condition (Hartman and 

Margraf 2006) when foraging on shad alone.  In addition, gizzard shad are particularly 

important when other forage species are dominated by spiny-rayed fishes (Wahl and 

Stein 1988; Einfalt and Wahl 1997).  In Angostura Reservoir in western South Dakota, 

gizzard shad were stocked in 1990.  In months prior to gizzard shad availability (both 

natural reproduction and stockings of pre-spawn adults), walleye growth is low but 

increases dramatically post gizzard shad stocking (Ward et al. 2007). 

 Recently, natural gizzard shad populations have become established in Lake 

Oahe in Central South Dakota and this marks the northern most range of gizzard shad in 

the United States.  Because of the relationship between hatch timing, density and growth 

of larval gizzard shad to piscivore consumption and growth, I examined larval shad 

characteristics for this newly established population.  Specifically, I examined hatch 

timing and related this to water temperatures throughout the reservoir.  I also examined 

spatial differences in larval gizzard shad growth and density throughout Lake Oahe and 

compared these metrics to zooplankton densities.   

Methods 
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Study area 

Lake Oahe is the second largest impoundment on the Missouri River and extends 

from Bismarck, ND to Pierre, SD (Figure 3-1).  At normal pool, the South Dakota 

portion of Lake Oahe has a surface area of approximately 145,000 ha, with a mean depth 

of approximately 19 m and a maximum depth of 67 m.  The lower reservoir thermally 

stratifies in the summer and maintains an oxygenated hypolimnion; this coldwater 

habitat encompasses approximately 48,000 ha at operating pool. 

I selected six equidistant sites within Lake Oahe to collect larval gizzard shad.  

These sites included from upstream to downstream Pollock, Mobridge, Swan Creek 

(Swan Crk.), Whitlock, Minneconjou and Spring Creek (Spring Crk.). Mobridge, Swan 

Crk., and Minneconjou sites are located directly downstream from large tributaries 

(i.e.,Grand, Moreau and Cheyenne Rivers, respectively; Figure 3-1).  Additionally, 

Pollock and Whitlock sites are located adjacent to large embayments.  The Spring Crk. 

site is novel because it has neither a local tributary nor large embayment in close 

proximity. 

 I placed temperature loggers in three locations within Lake Oahe representing 

upper (Pollock and Mobridge), middle (Swan Crk. and Whitlock) and lower 

(Minneconjou and Spring Crk.) Lake Oahe.  Temperature loggers were placed one to 

three m below the water surface and averaged hourly water temperatures were recorded.  

These average temperatures were used to quantify mean daily water temperature from 

14-April through 30-October. 

Gizzard shad collection 
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 I collected four ichthyoplankton samples per site every ten d from 1-May through 

31-July.  Samples were obtained using a 1-m conical ichthyoplankton trawl with 1,000 

µg mesh (bar mesh).  Surface circle trawls were towed for a minimum of 5 min, but did 

not exceed ten min in the open water portion of the reservoir.  A flowmeter was mounted 

in the mouth of the trawl to estimate the volume of water filtered.  I calculated larval 

gizzard shad density as the number of shad per 100 m3 of water filtered. 

 In the laboratory, gizzard shad were enumerated and sagittal otoliths removed 

from ten randomly selected larval shad per sample.  Hatch date for these fish was 

determined by counting the number of daily rings in the otoliths and adding 3.5 d to 

account for the first daily ring being formed 3.5 d post hatch (Davis et al. 1985).  Daily 

growth of age-0 shad was determined by taking total length at time of capture, 

subtracting 5 mm for average length at hatching (Carlander 1969), and dividing by the 

adjusted age of the fish in days. 

Zooplankton collection  

 I collected ten zooplankton samples at each site between 19- and 23-June.  

Samples were collected using a conical shaped Wisconsin net (10 cm diameter, 150 μm 

mesh), which was towed vertically from twice the Secchi depth to the surface (or from 1 

m above the sediment to surface if water depth was less than twice the Secchi depth).  I 

preserved zooplankton samples in 10% Lugol’s solution and transported them to SDSU 

Northern Plains Biostress Laboratory.  Zooplankton were subsampled (10%) for 

identification and enumeration and expressed as a volumetric density (#/L).  Since larval 

gizzard shad exhibit differences in growth, density and survival when feeding on 
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different size zooplankton (Bremigan and Stein 1997), I separated zooplankton samples 

based on relative size.  The total number of large bodied zooplankton (primarily 

cladocerans >0.75 mm) or small bodied zooplankton (primarily copepod nauplii or 

calanoid copepods, <0.75 mm) was estimated for each sample.   

Statistical analysis 

 I used a repeated measure ANOVA with a Tukey’s pairwise comparison test to 

compare peak larval gizzard shad density between sites.  Because larval gizzard shad 

growth rate data failed to meet normality requirements (Shapiro-Wilk Normality test 

P>0.05), I used an Kruskal-Wallis test order) to compare larval growth data with a 

Dunn’s multiple pairwise test to test for significant differences in growth rates among 

sites. For all tests, I set α = 0.05.  I used a correlation matrix to examine relationships 

between larval gizzard shad growth and density and zooplankton density. 

Results 

 Spring water temperatures were consistently higher in the upper reservoir, 

intermediate in the middle reservoir, and lowest in the lower reservoir (Figure 3-2).  

However, water temperatures increased at similar rates in the upper (1.3 °C/d), middle 

(1.2 °C/d) and lower (1.2 °C/d) sections of Lake Oahe. Larval gizzard shad hatch dates 

exhibited bimodal peaks in five of the six sites, which seemed to correspond to warming 

trends in the reservoir.  Upper reservoir sections in Lake Oahe exhibited the earliest 

hatch dates (4-May in Pollock and 10-May in Mobridge), middle reservoir sections 

exhibited intermediate hatch dates (14-May in Swan Crk. and 21-May in Whitlock) and 
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lower reservoir sections exhibited the latest hatch dates (18-May in Minneconjou and 

19-May in Spring Crk.; Figure3-3).  

Peak larval gizzard shad density ranged from 0.6 to 33.6 (#/100 m3) at Spring 

Creek and Minneconjou, respectively, and was significantly different between sites 

(F5,18=5.83; P=0.002; Figure 3-4).  Peak larval gizzard shad density was significantly 

higher in Minneconjou compared to Spring Crk. or Whitlock. Similarly, larval gizzard 

shad growth ranged from 0.242 to 0.579 (mm/d) at Spring Creek and Minneconjou sites, 

respectively, and was significantly different among sites (H5=103.595; P<0.001; Figure 

3-5).  Larval gizzard shad growth was significantly higher in Minneconjou compared to 

all other sites, and larval gizzard shad growth rates were higher in Pollock compared to 

Mobridge and Spring Crk (Figure 3-5).  

Small bodied zooplankton density ranged from 201 to 1225 (#/L) in Pollock and 

Minneconjou, respectively.  Large bodied zooplankton density ranged from 15 to 166 

(#/L) in Pollock and Mobridge, respectively.  Weak, non-significant positive 

relationships were found between small bodied zooplankton density (r = 0.39; p=0.16) 

and growth (r = 0.65; p = 0.57) of larval gizzard shad (Figure 3-6).  I also found weak, 

non-significant negative relationships between both larval gizzard shad density (r = -

0.62; p = 0.52) and growth (r = -0.34; p = 0.57) and large body zooplankton density 

(Figure 3-7).  There was a strong, significant positive relationship between larval gizzard 

shad density and larval gizzard shad growth (r = 0.82; p = 0.046; Figure 3-8) 

Discussion 
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 Bimodal patterns in estimated hatch dates for gizzard shad revealed about a one 

month difference between the first hatch peak and the second peak in Lake Oahe.  The 

exception to the bimodal hatching trend was the Spring Creek site, which is unique in 

that it has no associated tributary or large backwater embayment.  One mechanism that 

could be contributing to bimodal gizzard shad spawning in Lake Oahe is that shad are 

exhibiting repeated spawning in this reservoir.  An initial spawning takes place early 

with the second spawning bout a much lower magnitude.   In Kansas reservoirs, gizzard 

shad are known to be fractional spawners (Willis 1987).  

Because of the significant riverine (tributary) inputs in Lake Oahe, another 

plausible explanation for the bimodal peaks  is that the initial spawn occurred in 

tributaries and(or) large embayments, that typically warm quicker than the main 

reservoir.  Eventually, when the main lake warms to a suitable temperature-- a second, 

less pronounced, spawn appears to take place.  Water temperature is known to be an 

important factor in the initiation of gizzard shad spawning (Scott and Crossman 1973), 

but because I did not measure water temperature in tributaries and back bays, this 

hypothesis needs further evaluation.  Nonetheless, in other Missouri River 

impoundments, I have observed gizzard shad spawning first in back waters and 

tributaries prior to spawning in the main reservoir (Wuellner et al. 2008; B.D.S. Graeb, 

personal observation). 

In either scenario, the bimodal spawning distribution likely increases the size 

variability of age-0 gizzard shad for piscivores.   This prolonged spawn could have large 

benefits to cool water recreational fishes.  For instance, in southern reservoirs, larval 



71 
 

gizzard shad and warmwater recreational fishes often overlap in spawn timing.   As a 

result, they compete for zooplankton as a prey source, a scenario which often has a 

detrimental outcome for recreational fishes (DeVries and Stein 1992; Stein et al. 1995).  

However, when compared to coolwater recreational fishes that spawn earlier in the 

spring, larval competition with gizzard shad is minimal, because they are rarely the same 

size classes to compete for zooplankton resources (Roseman et al. 1996). 

Fast growing larval gizzard shad populations have been associated with reduced 

use by piscivores due to age-0 shad quickly moving past gape limitations of predators 

(Noble 1981; Adams and DeAngelis 1987).  However, Lake Oahe shad populations have 

remarkably slower growth compared to other populations within South Dakota 

(Wuellner et al. 2008) and the Midwest (Dettmers and Stein 1992, DeVries and Stein 

1992, Stein et al. 1995).  For instance, larval gizzard shad growth rates in Lakes Sharpe, 

Francis Case and Lewis and Clark (South Dakota Missouri River impoundments) in 

2003 and 2004 ranged from approximately 0.7 to 1.2 mm/d compared to the fastest 

growth witnessed in Lake Oahe at 0.6 mm/d.   In western South Dakota reservoirs, slow 

growing age-0 gizzard shad are found in walleye diets as late as September (Ward et al. 

2007).  Despite the relatively early hatch dates, because of the slow growth that Lake 

Oahe shad exhibit, they appear to provide a suitable resource for piscivores in Lake 

Oahe.  This is supported by observations of gizzard shad in Lake Oahe walleye diets as 

late as October in 2008 (Chapter 4).  

In Lake Oahe, South Dakota, peak larval gizzard shad density exhibited a 

significant positive relationship to larval gizzard shad growth.  This relationship is likely 
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the result of the availability of suitable spawning areas or localized differences in adult 

gizzard shad population numbers, and further strengthens the argument that this is a low 

density population.  In areas of higher peak larval densities, the habitat is suitable for 

adults (owing to the increased larval denisty) as well as for the fry.  Essentially, in more 

productive areas, there are more spawners and subsequently more fry; and because it is 

more productive, the fry grow better. 

In mesocosm experiments, larval shad growth is positively related to zooplankton 

density (Bremigan and Stein 1997) and results in substantial increases in larval gizzard 

shad survival.  I found only weak non-significant relationships between growth and 

density of larval gizzard shad and both small and large bodied zooplankton density. 

However, the timing of zooplankton sampling was confounded as I collected 

zooplankton in late June, possibly when early hatching gizzard shad had switched 

foraging strategies to phytoplankton or detritus (Cramer and Marzolf 1970; Mundahl and 

Wissing 1987).  To the contrary, back calculated larval gizzard shad growth rates in 

Lake Oahe were slow (i.e., < 0.6 mm/d) resulting in larvae ranging from seven to 20 mm 

in length at capture; therefore it is likely that these fish had not made the ontogenetic diet 

shift to phytoplankton or detritus.  

In Lake Oahe, the slow gizzard shad growth rates make it an ideal prey resource 

for piscivores in this system.   In more southern systems, age-0 gizzard shad have higher 

growth rates which allow them to quickly surpass many piscivore gape limitations.  This 

scenario can result in depressed growth and condition of recreational fishes (Garvey and 

Stein 1998; Kim and DeVries 2000).  In addition, Sander spp., the most popular sport 
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fish in South Dakota (Gigliotti 2007), exhibit strong positive relationships between 

growth and condition to gizzard shad presence (Ward et al 2007; Wuellner et al. 2010). 

Moreover, stockings of Sander spp., are currently being conducted to coincide with peak 

gizzard shad densities to maximize Sander spp. growth and survival (Stahl and Stein 

1994).  Gizzard shad are also currently being stocked in small Western South Dakota 

reservoirs to bolster prey resources for walleye (Ward et al. 2007).  In Lake Oahe, and 

other reservoirs in the northern Great Plains, it appears that larval gizzard shad exhibit 

temporal and spatial variability in abundance and growth; however, growth remains 

generally slow and density low compared to more southerly systems.  These 

characteristics appear to make gizzard shad a suitable prey resource in reservoirs in 

South Dakota and throughout the northern Great Plains.  
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Figure 3-1.  Seasonal water temperature (oC) from lower (solid line), middle (dottedline) 

and upper (hashed line) Lake Oahe, South Dakota, from 21-April through 28-July, 2008. 

 

Figure 3-2.  Mean hatching frequency (%) of gizzard shad collected from upper (Pollock 

and Mobridge), middle (Swan Crk. and Whitlock) and lower (Minneconjou and Spring 

Crk.) Lake Oahe, South Dakota, from 21-April through 14-July.  Dates for peak hatching 

dates at each site are shown. 

 

Figure 3-3.  Peak larval gizzard shad density (#/100m3) from upper (Pollock and 

Mobridge), middle (Swan Crk. and Whitlock) and lower (Minneconjou and Spring Crk.) 

Lake Oahe, South Dakota.  Sampling site means with the same letter are not 

significantly different (P>0.05). 

 

Figure 3-4.  Larval gizzard shad growth (mm/day) from upper (Pollock and Mobridge), 

middle (Swan Crk. and Whitlock) and lower (Minneconjou and Spring Crk.) Lake Oahe, 

South Dakota.  Sampling site means with the same letter are not significantly different 

(P>0.05). 

 

Figure 3-5.  Peak larval gizzard shad density (#/100m3; top panel) and growth rate 

(mm/day; lower panel) in relation to small bodied zooplankton density (#/L) for upper 

(Pollock and Mobridge), middle (Swan Crk. and Whitlock) and lower (Minneconjou and 

Spring Crk.) Lake Oahe, South Dakota.  Although non-significant, a weak positive 
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relationship is observed between small bodied zooplankton density and density and 

growth of larval gizzard shad. 

 

Figure 3-6.  Peak larval gizzard shad density (#/100m3; top panel) and larval gizzard 

shad growth (mm/day; lower panel) compared to large bodied zooplankton density (#/L) 

for upper (Pollock and Mobridge), middle (Swan Crk. and Whitlock) and lower 

(Minneconjou and Spring Crk.) Lake Oahe, South Dakota.  Although non-significant, a 

weak positive relationship is observed between large bodied zooplankton density and 

growth and density of larval gizzard shad. 

 

Figure 3-7. Peak larval gizzard shad density (#/100m3; top panel) and larval gizzard shad 

growth (mm/day; lower panel) compared to larval gizzard shad growth (mm/day) at six 

locations from Lake Oahe, South Dakota.   
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Figure 3-1. 
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Figure 3-2. 
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Figure 3-3. 
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Figure 3-4. 
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Figure 3-5. 
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Figure 3-6 
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Figure 3-7 
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Chapter 4: The Influence of Variable Prey Abundance on Walleye Growth in a 

Large Missouri River Reservoir 
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Abstract 

Prey availability influences growth and condition of walleye in large reservoirs.  

In Lake Oahe, South Dakota, rainbow smelt are a primary prey of walleye, but their 

abundance varies significantly from year to year.  Recently, gizzard shad have become 

established in Lake Oahe and their abundance has increased considerably.  To evaluate 

the role of gizzard shad on walleye growth and condition in Lake Oahe, I compared 

recent estimates of walleye feeding and growth to that observed in the mid 1990s, when 

smelt abundance was high, and the early 2000s, when both smelt and shad abundances 

were low.  In 2008, gizzard shad were the dominant prey item of walleye, representing 

about 60% of the diet by weight.  However, by 2009, gizzard shad declined appreciably 

in the diet (22%) and were completely absent from walleye diets by 2010.  Conversely, 

rainbow smelt abundance has increased since 2008 and represented 12%, 27% and 90% 

of walleye diets in 2008, 2009 and 2010, respectively.  Analysis of long-term data 

revealed that growth rate of walleye foraging on gizzard shad (2008-2009) was 

intermediate to that of walleyes feeding on predominantly rainbow smelt (1993-1994) or 

mixed prey resources of invertebrates and fishes (2001-2002).  Because gizzard shad are 

available during short time periods (< 2 months) in late summer, walleye can only 

achieve about 50% of their yearly maintenance requirements from this prey source.  

Conversely, rainbow smelt, which are available and consumed year round, provide a 

continuous energy source that contributes to high growth rates.  Nonetheless, when 

abundant, gizzard shad can provide an important subsidy to Lake Oahe walleyes during 

periods of low rainbow smelt abundance.   
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Introduction 

Prey fish availability is an important factor regulating piscivore growth and 

survival in large reservoirs (Ney and Orth 1986; Porath and Peters 1997; Meerbeek et al. 

2002).  In the absence of a dominant prey base, piscivores are often forced to consume a 

wide range of prey types resulting in increased energy expenditures and reduced growth 

and survival (Graeb et al. 2008).  Thus, documenting the importance of prey availability 

to fish growth can have important implications for management – particularly in systems 

characterized by variable prey resources.  Bioenergetics models (BEMs) have been used 

as a tool to document the importance of prey resources and the energy allocation they 

provide for predator growth (BEMs; Chipps and Wahl 2008).  

Walleye Sander vitreus are a top-level piscivore that are widely distributed in 

North America (Henry et al. 2008).  They represent a popular sport fish in the United 

States (Hushak et al. 1986) and are the most sought game fish in South Dakota (Gigliotti 

1999).  Lake Oahe, a large impoundment on the Missouri River, is nationally recognized 

as a trophy walleye fishery.  In 1999, Lake Oahe had the largest percentage of total 

resident and nonresident angling trips of any body of water in South Dakota (Gigliotti 

1999).  During the mid-1990s,studies showed that walleye diets consisted primarily of 

rainbow smelt Osmerus mordax (~95%; Bryan 1995) and bioenergetics modeling 

revealed that consumption of rainbow smelt contributed to some of the fastest walleye 

growth rates ever reported for the Missouri River (Graeb et al. 2008).   

By the early 2000s, the rainbow smelt population in Lake Oahe declined, owing 

to high water levels in the Missouri River and subsequent entrainment of smelt through 
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Lake Oahe dam (Unkenholz 1998).  The reduction in consumption of rainbow smelt led 

to reduced growth rates and increased natural mortality of walleyes, particularly for 

larger, older fish (>3 years of age; Graeb et al. 2008).  Angling effort for walleyes during 

the early 2000s was considerably lower than all previous estimates from the 1990s (Lott 

et al. 2000), and about 50% below the Lake Oahe Strategic Plan goal of 1 million-angler 

h (South Dakota Game, Fish and Parks, unpublished data).  The decrease in angling 

pressure was due directly to the decrease in the average size of walleye caught (Lott et 

al. 2000). 

In recent years, gizzard shad Dorosoma cepedianum have become established in 

Lake Oahe and their numbers have increased considerably (Figure 4-1).  Furthermore, 

rainbow smelt have been increasing in abundance in Lake Oahe since the early 2000s, 

though their population remains below that observed in mid 1990s.  Given the recent 

expansion of the gizzard shad population, it is unclear what role gizzard shad have on 

feeding and growth dynamics of walleye.  Linking new information with previous 

bioenergetics modeling efforts will provide important data for understanding the effects 

of variable prey populations on walleye growth dynamics.  Thus, the objective of this 

study was to document changes in feeding, growth and energy allocation for walleye as 

influenced by variable prey abundance in Lake Oahe. 

Methods 

Study area 

Lake Oahe is the second largest impoundment on the Missouri River, and 

extends from Bismarck, ND to Pierre, SD (Figure 4-2).  At normal pool, the South 
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Dakota portion of Lake Oahe has a surface area of approximately 145,000 ha, with a 

mean depth of approximately 19 m and a maximum depth of 67 m.  The lower reservoir 

thermally stratifies in the summer and maintains an oxygenated hypolimnion, and this 

coldwater habitat encompasses about 48,000 ha at operating pool. 

Walleye collection 

 I collected walleye seasonally (May, July and October) from 2008 through 2010 

in Lake Oahe.  Six sites were chosen at equal distances to encompass all reservoir zones 

within the South Dakota portion of the lake.  Because walleye feed predominantly at 

night and during crepuscular periods (Forney 1977), I set experimental mesh gill nets 

before sunrise and retrieved them within two h.  Captured walleye were measured for 

total length (TL; mm) and weight (g), then immediately placed on ice and stomachs 

removed within one hr.  Stomach contents were preserved in ethanol for later 

identification.   

In the laboratory, sagittal otoliths were removed from walleyes and used for age 

determination.  Each otolith was aged independently by two experienced technicians.  

Any discrepancies in walleye age were reviewed by a third individual to finalize the age 

of the fish.   

Walleye growth 

 I calculated mean monthly length at age for walleye and used these data to derive 

a von Bertalanffy growth function (Gallucci and Quinn 1979).  Initial and final lengths 

for each year class were determined using the equation 

Lt = L∞{1-e[-k(t- t
0

) ]} 
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where Lt= length (mm) at time t, and L∞, K and t0 are fitted parameters in the von 

Bertalanffy growth function (Table 4-1).  Walleye length was converted to initial or final 

mass using weight-length regression equations derived from each year (Table 4-1).  Age-

specific annual growth rate (g/year) was used as input into the bioenergetics model to 

estimate annual consumption for Lake Oahe walleyes (see below).   

Bioenergetics modeling 

 I used a bioenergetics model (Fish Bioenergetics 3.0; Hanson et al. 1997) to 

estimate age-specific consumption by walleyes collected from 2008-2010.  The walleye 

bioenergetics model used here has been applied in a number of field and laboratory 

studies (Ney 1993; Whitledge 2006; Lantry et al. 2008; Madenjian et al. 2010) to 

quantify prey use.  To evaluate the influence of gizzard shad on walleye energetics, I 

compared my results to those reported by Graeb et al. (2008) for two time periods: a 

period characterized by high rainbow smelt use (1993-1994) and a period were rainbow 

smelt and gizzard shad were poorly represented in the diet (2001-2002).  Input data for 

the model included age-specific growth, mean weekly water temperature, seasonal diet 

composition of walleyes, prey energy density, and walleye energy density. 

Data on water temperature were collected using temperature loggers (Hobo Inc.) 

placed 2-3 m below the water surface at three equidistant locations in Lake Oahe.  Mean 

weekly water temperatures were averaged across the reservoir and used as input in the 

model.  In general, seasonal patterns in water temperature were similar from 2008 

through 2010; however, due to increasing water levels from above average rainfall, 2009 

showed a faster warming trajectory than 2008 or 2010 (Figure 4-3). 
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Walleye diets 

 In the laboratory, stomach contents of walleyes were identified to species when 

possible, enumerated and weighed for wet mass.  Because prey digestion was minimized 

by my short-term gill net sets, unidentifiable prey represented < 6% percent of total diets 

(by weight).  Prey items found in the stomachs of walleye were assumed representative 

of consumption during the previous night of feeding (Lantry et al. 2008).  I calculated 

the percent composition by weight for prey items in individual walleye stomachs and 

averaged this by year class to use as input in the bioenergetics model. 

Prey and predator energy density 

 Prey fish were collected in August of 2008, 2009 and 2010 using standard 

seining techniques (Bonar et al. 2009).  No cold water prey fish were collected during 

the standard prey fish collections, so 15 rainbow smelt were obtained by South Dakota 

Game, Fish and Parks (SDGFP) personnel and ten Chinook salmon Oncorhynchus 

tshawytscha were obtained from a SDGFP hatchery.  All prey fish were measured (mm), 

weighed (g) and dried at 60oC for 72 h. Energy density of prey fishes was then 

determined using bomb calorimetry.  

After removing stomachs and otoliths, walleye were weighed to obtain a wet 

weight and then dried to a constant weight at 60°C to obtain dry weight.  Dry-to-wet 

weight ratio of each fish was calculated and used to estimate energy density (J g wet wt-

1) as reported by Hartman and Brandt (1995).  I then averaged walleye energy densities 

from all individuals within each sampling time period and used the seasonal energy 

densities as input parameters in the bioenergetics models.   
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Modeling input was based on the average individual of each year class and 

simulations were run from May 1 through October 31 (184 days) to encompass the 

typical walleye growing season in Lake Oahe (Carlander 1997; Davis 2004).  I estimated 

age-specific, total consumption of 1) rainbow smelt, 2) gizzard shad, and 3) other prey 

(as combined categories) for 2008-2010 and compared these estimates to values reported 

by Bryan (1995) and Graeb et al. (2008). 

Because water temperature, fish size, and prey quality can affect the relationship 

between growth and consumption, I calculated net consumption (kcal/year) by 

subtracting maintenance cost incurred over the year from gross annual food consumption 

(Hewett and Kraft 1993).  A positive value for net consumption indicates the amount of 

surplus energy available for growth after accounting for maintenance costs.  A negative 

value implies that fish did not obtain sufficient energy to meet minimum maintenance 

requirements (i.e., they lost weight over the sampling interval).  To compare age-specific 

energy intake among years (1993-1994, 2001-2002, 2008-2010), I expressed gross 

annual consumption for each prey category as a percentage of total maintenance cost.  

This index allowed us to make relative comparisons of prey-specific consumption that 

were standardized to the maintenance requirement of the fish.  

Results 

Walleye diets and growth 

 I collected a total of 836 walleye from 2008-2010. Of these, the number of fish 

that had diet items in their stomachs was relatively high with 206 (79.5%), 208 (75.1%) 

and 210 (70.0%) walleye containing diet items in 2008, 2009 and 2010, respectively.  
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Gizzard shad were present in walleye diets in 2008 and 2009, but were only present in 

the summer and fall sampling periods.  Gizzard shad were completely absent from 

walleye diets in 2010 (Table 4-2). Conversely, rainbow smelt were present in walleye 

diets in every sample except for spring of 2008.  Invertebrates, primarily ephemeridae 

mayflies, were an important diet item in the spring of 2008 and 2009, but declined 

appreciably in 2010.  Nine other fishes were observed in walleye diets and included 

Chinook salmon Oncorhynchus tshawytscha, white bass Morone chyrsops, channel 

catfish Ictaluris punctatus,spotail shiner Notropis husonius, emerald shiner Notropis 

atherinoides, yellow perch Perca flavescens, lake herring Coregonus artedii,freshwater 

drum Aplodinotus grunniens, and white crappie Pomoxis annularis.  Annual stocking of 

Chinook salmon overlapped with the 2008 spring diet sampling; thus, Chinook salmon 

represented a large portion of the spring walleye diets in 2008.  However, this is likely a 

localized and short lived occurrence as salmon are only stocked in one location and 

susceptibility likely declines appreciably after stocking.  In the summer of 2009, Lake 

Oahe experienced a large white bass year class and these fishes were numerically 

dominant in the summer of 2009 walleye diets.  

Growth rates of walleyes varied among years.  In general, mean weight of ages 1 

through 3 walleye was similar from 2008-2010, and also similar to values reported from 

1993 to 1994 (Figure 4-4).  However, in 2010 mean weight of age-4 and older walleye, 

was generally greater than other years, except when rainbow smelt were abundant in 

1993-1994. In 2008 and 2009, gizzard shad represented an important component of the 

diet (i.e., > 40%) and walleye displayed greater growth rates compared to 2001-2002, 
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when few shad or smelt were represented in the diet (Figure 4-4).  However, growth of 

walleyes greater than age 4 was notably lower in 2008 and 2009 than that observed when 

smelt abundance was high (i.e., 1993-1994; Figure 4-4).  Age 1 through 3 fish in 2008 

through 2010 were larger than previous years, but growth rates and weight at age of 

older fish (>4) was greater for 1993-1994 compared to other periods. 

Bioenergetics modeling 

 Bioenergetics estimates of gross annual consumption ranged from 1,453 to 3,663, 

1,578 to 4,099 and 847 to 2,357 kcal/year for walleyes collected in 2008, 2009 and 2010, 

respectively.  During this time period, gross annual consumption was generally higher 

compared to 2001-2002 (421 to 2857 kcal/year), but less than that reported during the 

high rainbow smelt period in 1993-1994 (801 to 6274 kcal/year; Graeb et al. 2008).  

Although a significant part of walleye diets in 2008-2009, gizzard shad alone 

were not sufficient to meet maintenance energy requirements of walleye.  Gizzard shad 

represented between 28% to 64% and 24% to 44% of their maintenance energy 

requirements in 2008 and 2009, respectively (Figure 4-5).  Gizzard shad were not 

observed in walleye diets in 2010.  Unlike gizzard shad, rainbow smelt where present in 

all years and walleye were able to exceed maintenance energy requirements in 2010 by 

consuming only rainbow smelt alone.  Depending on walleye size (age), rainbow smelt 

represented between 1% to 59%, 6% to 45%, or104% to 127% of walleye maintenance 

requirements in 2008, 2009 and 2010 respectively.  The contribution of other prey types 

(non- shad or smelt) to walleye energy requirements was similar in 2008 and 2009, but 

lower in 2010 (Figure 4-5). 
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Wuellner et al. (2010) documented high levels of gizzard shad consumption by 

walleye in Lake Sharpe (immediately downstream from Lake Oahe) starting in late July.  

High rates of gizzard shad consumption remained constant from August through 

October. In Lake Sharpe, gizzard shad hatch dates are generally earlier than Lake Oahe 

(Wuellner et al, 2008; M. Fincel unpublished data).  Nonetheless, density of appropriate-

sized gizzard shad could have peaked in Lake Oahe during August of 2008 and 2009 but 

not been documented by my sampling schedule.  To account for this potential bias, I 

modeled gizzard shad consumption by applying the observed diet composition in 

October to August 1 (day 93 of simulation) – which likely provided a liberal estimate of 

gizzard shad use.  Despite the potential increase of gizzard shad consumption, walleye 

still failed to meet maintenance energy demands by foraging on gizzard shad alone 

(Figure 4-6).  In 2008 and 2009, the potential energetic contribution of gizzard shad, 

averaged by age class, was 56% and 45% of walleye yearly maintenance requirement 

(Figure 4-6). 

Discussion 

 In the absence of other dominant prey types (i.e., rainbow smelt), gizzard shad 

are an important resource for walleye. In Lake Oahe, walleye derived between 40% and 

60% of their maintenance energy requirements by consuming gizzard shad alone.  

Compared to the early 2000s, when overall consumption was low, this represents an 

important subsidy to Lake Oahe walleye when rainbow smelt abundance is reduced.  

Other studies report similar findings where walleye growth (Santucci and Wahl 1993; 

Quist et al. 2002) and condition (Hartman and Margraf 2006) are enhanced by the 



99 
 

availability and use of gizzard shad. In addition, gizzard shad are particularly important 

when the forage base is dominated by spiny-rayed fishes (Wahl and Stein 1988; Einfalt 

and Wahl 1997).  In Angostura Reservoir, South Dakota, walleye growth is slow during 

months prior to shad availability, but increases appreciably once walleye switch to 

foraging on gizzard shad (Ward et al. 2007). 

The timing of gizzard shad availability in the Northern Great Plains plays a key 

role in walleye bioenergetics.  Because of colder water temperatures and the subsequent 

delay in reproduction of gizzard shad, the availability of shad is reduced compared to 

warmer, more southern reservoirs (see Wuellner et al. 2008 for review).  In Lake Sharpe, 

Wuellner et al. (2010) showed that gizzard shad represented 80% of walleye diets as 

early as June; however, this was during a drought period with unusually mild winters 

and earlier summers.  Despite late spawning, gizzard shad in the Northern Great Plains 

show remarkable growth rates at these northern latitudes (Wuellner et al. 2008).  Such 

fast growth rates could limit foraging opportunities by walleye, given the importance of 

gape-limitation and its effects on foraging efficiency.  For instance, Kocovsky and 

Carline (2001) found that because of rapid growth, age-0 gizzard shad were absent from 

walleye diets as early as September as they grew too large for fish to consume.  

Lake Oahe marks the northern range of gizzard shad in the Great Plains 

(Wuellner et al. 2008).  Variable climactic conditions (i.e., long, harsh winters) likely 

constrain overwinter survival of gizzard shad and create ‘boom’ or ‘bust’ cycles in shad 

recruitment.  Mild winters and drought conditions from 2000-2005 may have provided 

favorable conditions for gizzard shad in Lake Oahe.  However, since 2007, South 
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Dakota has experience more severe winters with greater snowfall and subsequent 

increased water levels in Lake Oahe.  Water levels rose appreciably from 2009 to 2010 

leading to cooler, spring water temperatures in Lake Oahe;  these conditions were 

associated with a reduction in gizzard shad abundance, as indicated by the absence of 

gizzard shad from field surveys and walleye diets in 2010.   

 Given the likelihood for increased warming in the Northern Great Plains (Poiani 

et al. 1996) gizzard shad occurrence may become more frequent in Lake Oahe and other 

systems throughout the Northern Great Plains.  In addition, gizzard shad have recently 

been stocked in several lakes and reservoirs of the Dakotas where they are viewed as a 

benefit to piscivore growth and size structure (see Wuellner et al. 2008 for a review).  

Although walleye predation demand is larger than the observed gizzard shad biomass 

(determined by gizzard shad accounting for ~50% of maintenance energy; Cyterski et al. 

2003), in the absence of a large rainbow smelt population, gizzard shad appear to be an 

important alternative forage resource and energetic subsidy. 

Since the population increase of gizzard shad in Lake Oahe, rainbow smelt 

numbers have been increasing (Figure 4-7).  This is likely a function of increasing 

reservoir productivity and/or increased coldwater habitat owing to increased water levels 

since 2007.  However, gizzard shad likely aided in the recovery of the rainbow smelt 

population by acting as an alternative prey resource for walleye, thus releasing predation 

on rainbow smelt.  In a related example, alewives appear to buffer predation of stocked 

brown trout by walleye by acting as an alternative prey resource (Johnson and Rakoczy 

2004).  As a result, Johnson et al. (2009) recommended stocking windows of brown trout 
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to coincide with peak abundance of alewives to promote alternative predation on 

alewives.  Future research may examine the potential to use gizzard shad as an 

alternative forage resource to mediate predation on declining rainbow smelt populations. 
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Table 4-1.Von Bertalanffy and weight length regression parameters from Lake Oahe 
walleye in 1994, 2001 and 2008 through 2010. 

 

 

von Bertalanffy growth 
parameters Weight length regression parameters 

Year L∞ K t0 intercept slope r2 
a1994 1025 0.097 -1.475 -5.5838 3.2277 0.988 
a2001 714 0.116 -1.810 -5.4580 3.1530 0.996 
2008 690 0.165 -2.155 -5.2730 3.0940 0.983 
2009 718 0.146 -2.352 -5.4900 3.1770 0.970 
2010 720 0.165 -1.869 -5.4410 3.1640 0.978 

aGrowth parameters obtained from Graeb et al. (2008), and length-weight regression 

parameters obtained from Bryan (1995) and Davis (2004) 
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Table 4-2. Percent composition (wet weight) of the diets of walleye collected from Lake 

Oahe in 1994, 2001, and 2008 through 2010. 

 

Year Season bInvertebrates Gizzard shad Rainbow smelt aOther fish 
c1994 Spring 0.0 0.0 76.6 22.5 

 
Summer 0.0 0.0 88.3 10.6 

 
Fall 0.0 0.0 96.8 1.9 

d2001 Spring 68.0 0.0 18.0 11.0 

 
Summer 28.0 0.0 22.0 50.0 

 
Fall 0.0 11.0 56.0 33.0 

2008 Spring 25.0 0.0 0.0 75.0 

 
Summer 29.0 13.1 32.4 25.7 

 
Fall 0.0 80.1 16.1 3.7 

2009 Spring 58.0 0.0 38.4 3.6 

 
Summer 7.4 16.5 13.4 62.7 

 
Fall 1.5 49.7 44.6 4.2 

2010 Spring 3.1 0.0 95.3 1.6 

 
Summer 0.7 0.0 83.5 15.9 

  Fall 0.1 0.0 93.4 6.5 
aOther fish included Chinook salmon Oncorhynchus tshawytscha, white bass Morone 

chyrsops, channel catfish Ictaluris punctatus,spotail shiner Notropis husonius, emerald shiner 

Notropis atherinoides, yellow perch Perca flavescens, lake herring Coregonus artedii, 

freshwater drum Aplodinotus grunniens, and white crappie Pomoxis annularis 

binvertebrates included ephemeridae, chironomidae, Odonataand crustacean zooplankton 

c1994 diet data obtained from Bryan (1995) 

d2001 diet data obtained from Davis (2004) 
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Figure 4-1.  Estimated rainbow smelt density (open bars) and age-0 gizzard shad CPUE 

(hashed bars - catch per unit effort) in Lake Oahe, South Dakota from 1999 through 

2005.   

 

Figure 4-2.Map of Lake Oahe in Central South Dakota. 

 

Figure 4-3.  Mean daily water temperature (0C) taken every two weeks in 2008 (filled 

circles), 2009 (open circles) and 2010 (filled triangles) collected from May 1st through 

October 31st in Lake Oahe, South Dakota. 

 

Figure 4-4.  Mean mass (g) of age-1 through age-6 walleye collected from Lake Oahe, 

South Dakota in 1994 (open squares), 2001 (open triangles), 2008 (filled triangles), 2009 

(open circles), and 2010 (filled circles).   

 

Figure 4-5.  Percent maintenance energy estimates for age 2 through 6 walleye collected 

from Lake Oahe, South Dakota in 1994, 2001, 2008, 2009 and 2010.  Open bars 

represent energy derived through consumption of rainbow smelt, hashed bars represent 

energy derived from consumption of gizzard shad and filled bars represent energy 

derived from other prey resources. Horizontal hashed line represents energy required to 

meet 100% of minimum maintenance energy requirements. 
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Figure 4-6. Percent maintenance energy estimates averaged for age 2 through 6 walleye 

collected from Lake Oahe, South Dakota in 2008 and 2009.  Filled bars represent total 

energy consumption, open bars represent energy obtained from observed gizzard shad 

consumption, and hashed bars represent potential energy obtained from gizzard shad 

consumption only.   Horizontal hashed line represents energy required to meet 100% of 

minimum maintenance energy requirements. 

 

Figure 4-7. Rainbow smelt population estimates (open bars) and gizzard shad CPUE 

(hashed bars) during the study period of 2008 through 2010.  No gizzard shad were 

caught in 2010 and rainbow smelt population estimates were unreliable in 2009 (K. 

Edwards SDGF&P personal communication). 
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Figure 4-1. 
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Figure 4-2. 
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Figure 4-3. 
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Figure4-4. 
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Figure 4-5. 
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Figure 4-6. 
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Figure 4-7. 
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Chapter 5: Diet Variation in Sauger and Walleye Inferred from Stable Isotope 

Ratios: Implications for Hybridization in Missouri River Impoundments 
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Abstract 

Sauger populations have declined throughout the Midwest, United States over the 

past 50 years.  One hypothesis proposed to explain declines in sauger abundance centers 

on potential competition with walleye that are frequently stocked in waters containing 

sauger.  Stable isotope analysis provides a robust approach for quantifying energy 

acquisition by fishes and comparing measures such as diet breadth and variability among 

sympatric species.  In this study, I examined isotopic characteristics of sauger and 

walleye in three Missouri River impoundments which exhibit varying levels of 

hybridization; 22% in Lake Lewis and Clark, 4% in Lake Francis Case and 2.6% in Lake 

Oahe.  I found high isotopic overlap between walleye and sauger in all reservoirs, 

suggesting similar diet composition.  However, isotopic variability (IVAR), indexed from 

residual analysis of length versus isotope biplots, generally increased with decreasing 

hybridization levels.  In Lake Lewis and Clark, IVAR was similar between walleye and 

sauger (~0.5) for both δ15N andδ13C. However, in Lake Francis Case, IVAR was similar 

for δ15N but for δ13C, was significantly greater for sauger (0.076) compared to walleye 

(0.38).  In Lake Oahe, I found greater IVAR in sauger compared to walleye for both δ15N 

(sauger =1.56; walleye = 0.48) and δ13C (sauger = 0.73; walleye=0.28).  These findings 

imply that in all three systems, diets of walleye and sauger are largely overlapping.  

However, sauger exhibit increased isotopic variability, while walleye exhibit decreased 

isotope variability, as hybridization rates between the two species decline.  Differences 

in isotopic variability could be the result of varying habitat quantity or quality between 

reservoirs; factors further facilitating hybridization rates in these systems. 
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Introduction 

Sauger Sander canadensis are a native predator in large, turbid rivers throughout 

the United States and Canada (Scott and Crossman 1973) that have been declining in 

abundance and distribution throughout their range (Nelson and Walburg 1977; Hesse 

1994; Pegg et al. 1997; McMahon and Gardner 2001).  Evidence suggests that these 

declines may be linked to resource competition and/or hybridization with walleye 

Sander vitreus (Bellgraph et al. 2008; Graeb et al. 2010).  The negative effects of 

walleye on sauger populations appears minimized in unaltered riverine environments 

(Swenson 1977; Rawson and Scholl 1978; Schlick 1978), but increases with 

anthropogenic disturbance (i.e., river regulation or reservoir construction; Gangl et al. 

2000; Rawson and Scholl 1978; Fitz and Halbrook 1978; Mero 1992).  For instance, 

Bellgraph (2006) found increased resource overlap between walleye and sauger in the 

regulated Missouri River compared to the unregulated Yellowstone River. 

Sauger and walleye are native to the Missouri River, with sympatric populations 

found in all South Dakota Missouri River impoundments (Hoagstrom et al. 2007).  

Recently, Graeb et al. (2010) showed that hybridization rate varied with reservoir size 

and increased downstream from Lake Oahe (2%) to Lewis and Clark Lake (22%).  

Although specific mechanisms regulating hybridization were not studied, Graeb et al. 

(2010) suggested that habitat availability may be responsible for differential 

hybridization rates.  Many studies of sympatric walleye and sauger populations have 

shown high diet overlap between these predators (Priegel 1963; Swenson and Smith 
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1976; Fitz and Holbrook 1978; Mero 1992; Bellgraph et al. 2008) although the extent of 

diet overlap has not been linked to hybridization rates between species.   

Diet composition represents a critical component for understanding food web 

interactions (Bearhop et al. 2004).  One key aspect generally overlooked in comparing 

diets of two species is the level of feeding variability, or the degree of specialization or 

generalization each species exhibits.  Criteria defining a useful and robust measure of 

feeding variability should allow direct comparison among individuals, populations and 

species.  Criteria should also combine information on richness and evenness of diet 

composition that permit integration of dietary information over spatial and temporal 

scales (Bearhop et al. 2004).  Traditional diet studies have been used to reveal diet 

overlap within and among species (Wiens and Rotenberry 1979; Svanback and Persson 

2004).  However, several practical problems arise when using diet analysis.  Diet studies 

only represent a snapshot of diet composition and do not offer time-dependent 

integration of dietary information.  Additionally, gut content analysis can be misleading 

since it is difficult to assess assimilation of prey and their energetic contribution to the 

consumer (Kling et al. 1992).  In large and species rich systems, labor and costs are often 

too prohibitive to allow successful examination of large-scale spatial and temporal 

variation, especially when predator diets and prey resources are variable (Rybczynski et 

al. 2008).   

Stable isotope analysis is a common tool used to monitor energy sources and 

trophic linkages in aquatic systems.  Stable isotope analysis (SIA) offers time-integrated 

analysis of carbon (δ13C) and nitrogen (δ15N), which is reflective of the energy 
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assimilated by consumers.  Further, SIA offers the ability to assess energy flow and 

feeding relationships within aquatic food webs (Minagawa and Wada 1984, Kling et al. 

1992, Cabana and Rasmussen 1996, Vander Zanden et al. 1997, Vander Zanden et al. 

2000, Lake et al. 2001).  Stable isotope analysis is used to address a variety of topics 

including diet shifts from pelagic to benthic prey (Vander Zanden et al. 1998), 

contaminant bioaccumulation in fishes (Kidd et al. 1996) and effects of eutrophication 

on aquatic food webs (Cabana and Rasmussen 1996).  Only recently has stable isotope 

analysis been used to determine differences in isotopic variability between populations 

and species (Bootsma et al. 1996; Vander Zanden 2000; Limen et al. 2005; Paterson et 

al. 2006).  Stable isotope analysis provides a means for determining diet variability that 

allows for direct comparison among individuals, populations and species.  Stable isotope 

analysis also allows for temporal integration of dietary information over different time 

scales using minimal sampling. 

In this study, I quantified isotopic overlap and diet variability of walleye and 

sauger in three South Dakota Missouri River impoundments where these species co-

occur.  Using data on isotopic composition, I address two questions: (1) does diet 

overlap vary between populations with different hybridization rates and (2) does feeding 

variability vary with hybridization rate? 

Methods 

Study area 

Lake Oahe is the second largest of a series of six impoundments on the Missouri 

River and extends from Bismarck, ND to Pierre, SD (Figure 5-1).  At normal pool, the 
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South Dakota portion of Lake Oahe has a surface area of approximately 145,000 ha with 

a mean depth of approximately 19 m and a maximum depth of 67 m. Lake Oahe has 

little riverine habitat and no established delta formations within South Dakota.   

Lake Oahe has a diverse fish assemblage.  Sport fishes include walleye, sauger, 

rainbow trout Oncorhynchus mykiss, chinook salmon Oncorhynchus tshawytscha, 

northern pike Esox lucius, channel catfish Ictalurus punctatus, and smallmouth bass 

Micropterus dolomieui.  Primary prey resources include rainbow smelt Osmorus 

mordax, spottail shiners Notropis hudsonius, lake herring Coregonus artedi, white bass 

Morone chrysops, yellow perch Perca flavescens, freshwater drum Aplodinotus 

grunniens, emerald shiners Notropis atherinoides, white crappie Pomoxis annularis, 

gizzard shad Dorosoma cepedianum, age-0 sport fish, and various invertebrates.  The 

sauger population in Lake Oahe is relatively small, averaging less than 0.5 fish per net 

night (gill net catch per unit effort; Figure 5-2) compared to 5 to 7.5 fish per net night in 

downstream impoundments (see below). 

Lake Francis Case is the fifth most upstream reservoir on the Missouri River and 

extends from Big Bend Dam to Fort Randall Dam in central South Dakota.  At normal 

pool, Lake Francis Case has a surface area of approximately 25,000 ha, with mean and 

maximum depths of 15.2 and 42.6 m, respectively.  Sport fishes in Lake Francis Case 

include walleye, sauger, northern pike, channel catfish, and smallmouth bass.  Primary 

prey resources include spottail shiners, white bass, yellow perch, freshwater drum, 

emerald shiners, white crappie, gizzard shad, age-0 sport fish, and various invertebrates.  

Lake Francis Case contains superficially similar fish species as Lake Oahe but differs in 
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that it contains common riverine species within the small delta region of the reservoir 

(i.e., lateral delta of the White river).  These riverine species include river carpsucker 

Carpiodes carpio, flathead chub Platygobio gracilis, creek chub Semotilus 

atromaculatus, etc.  Lake Francis Case also has more species present within the delta-

system (>30 spp. collected in 2010) than Lake Oahe (Schreck 2010).  The Lake Francis 

Case sauger population is generally more abundant than Lake Oahe, averaging 4.95 fish 

per gillnet night (Figure 2). 

Lake Lewis and Clark is the smallest and furthest downstream reservoir on the 

Missouri River.  Lake Lewis and Clark extends from Fort Randall Dam to Gavin’s Point 

Dam in south central South Dakota.  At normal pool, Lake Lewis and Clark has a 

surface area of 10,500 ha, and is considerably shallower than the other two study lakes 

with mean and maximum depths of 5and 16.7 m, respectively.  Lake Lewis and Clark is 

unique in that it contains 70 km of riverine habitat and a large delta region formed by 

sediment inputs from the Niobrara River.  As a result of the extensive delta habitat 

(>25km), Lake Lewis and Clark contains similar species as Lake Francis Case although 

much more delta habitat is available compared to Lake Francis Case (Schreck 2010).  

Lake Lewis and Clark’s sauger population is greater than both lakes Oahe and Francis 

Case with an average catch per unit effort of 7.52 fish per gillnet night (Figure 5-2).  

During standardized surveys, however, gill nets are generally not set in the delta region 

which is likely the optimal habitat for sauger in Lake Lewis and Clark (Scott and 

Crossman 1973; Graeb et al. 2009).  Thus, reported CPUE of sauger in Lake Lewis and 

Clark is probably a conservative estimate. 
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Fish collection 

Walleye and sauger were collected from Lakes Oahe, Francis Case and Lewis 

and Clark in August of 2007 using experimental mesh gill nets.  Fish were identified to 

species by common phenotypic characteristics and potential hybrids were excluded from 

the study.  I used phenotypic metrics described by Ward and Berry (1995), to 

characterize sauger, walleye and their potential hybrids.  Using this approach, Ward and 

Berry (1995) showed that approximately 90% of fish were correctly identified as 

parental types or hybrids.  All fish collected were placed on ice and transported to South 

Dakota State University for processing.  In the laboratory, white muscle samples (~2 g) 

were removed from the dorsal region of each fish, above the lateral line and anterior to 

the dorsal fin.  Skin was then removed from each muscle sample using a fillet knife and 

all samples were rinsed with deionized water and frozen at -20 °C prior to analysis. 

Stable isotope analysis 

 Samples were thawed, rinsed, and dried at 70°C for 72 h before being pulverized 

with a mortar and pestle.  Ground muscle samples (2.4-2.6 mg) were then placed into 

4x6 mm tin capsules for isotopic analysis.  Stable carbon (δ13C) and nitrogen (δ15N) 

isotope values were determined using a Europa 20-20 mass spectrometer.  Isotope values 

were reported in δ notation, as per mille (‰) deviations from a standard material (Pee 

Dee Belemnite carbon or atmospheric nitrogen) using the equation  

( ) 1000*1513




 −

=
std

stdsample
R

RRNorC δδ  

 (1) 
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where Rsampleis the isotopic ratio of the sample and R std is the isotopic ratio of the 

standard.  Carbon-to-nitrogen (C:N) ratios for all tissue types were less than four, 

indicative of non-fatty tissue (Gray et al. 2004; Sanderson et al. 2009).  Thus, I did not 

perform lipid extraction on tissue samples prior to analysis (Sanderson et al. 2009).   

Statistical analysis 

I used a randomization test to examine differences in mean δ13C and δ15N 

between sauger and walleye (Peres-Neto and Olden 2001; Manly 2007).  To accomplish 

this, I calculated the observed difference (MeanDiff) between mean δ13C or δ15N for 

sauger and walleye within each reservoir.  I then randomly sorted data into two new 

samples (n1 and n2) equal in size to the original data and calculated the difference 

between mean values (MeanDiffrandom) for δ13C or δ15N.  I repeated the latter process 

until I reached n=5000 permutations.  I then compared the observed mean difference 

(MeanDiff) between walleye and sauger to the normal distribution of randomized values 

(MeanDiffrandom).  If observed MeanDiff values were located outside the 2.5 or 97.5 

percentiles of the normal distribution for randomized values (i.e., α=0.05 of two tailed 

test), I considered the difference to be significantly different (Manly 2007; Chipps and 

Garvey 2007).  Estimated p-values based on the randomization test were calculated from 

a frequency distribution of MeanDiffrandom values as, 

Number of MeanDiffrandomvalues> (or <)  observed mean difference 

5,000. 

To test for differences in isotopic variability between species, I used regression 

analysis to examine the relationship between isotopic values and total length (mm) of 
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walleye or sauger from each reservoir.  The regression analysis allowed us to take into 

account any length-related bias in isotope signatures (Vander Zanden and Rasmussen 

1999).  Using the fitted regression line, I then calculated the mean, residual value for 

each species (i.e., the absolute distance each individual’s isotopic signature was from the 

population mean; Fincel et al. 2011) and used this as an index of isotopic variability 

(IVAR).  I used the same randomization procedure previously described to compare IVAR 

values (δ13C and δ15N) between species within each reservoir (Vander Zanden and 

Rasmussen 1999).  

Because I did not have baseline isotope data for each reservoir, I only compared 

mean isotope values (δ13C and δ15N) of walleye and sauger within each reservoir (Post 

2002).  However, variability in isotopic composition (i.e.,IVAR) can be compared 

between systems as baseline corrections are not needed.  Thus, I compared isotope 

variability of each species between reservoirs using the randomization procedure 

described above.  

Results 

I collected a total of 103 walleye from Lakes Lewis and Clark (n=47), Francis 

Case (n=21), and Oahe (n=35) in 2007.  Total length of walleye ranged from173 to 565 

mm in Lake Lewis and Clark, 232 to 449 mm in Lake Francis Case, and 219 to 619 mm 

in Lake Oahe.  Because of low sauger abundance in Lakes Oahe and Francis Case, I 

collected few sauger that could be reliably identified as non-hybrids.  Only 42 total 

sauger were caught, ranging in length from 180 to 525 mm in Lake Lewis and Clark 

(n=32), 232 to 411 mm in Lake Francis Case (n=5), and 343 to 399 mm in Lake Oahe 
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(n=5).  There were no significant differences in TL (ANOVA; F5,136=0.789; p=0.56) or 

mass (ANOVA; F5,136=1.495; p=0.19) between walleye and sauger. 

 In general, I found poor relationships between isotope signatures and total length 

of walleye and sauger (Table 5-1).  On average, total length explained between 18 to 

32% of the variability in δ15N values of walleyes and sauger, respectively.  Similarly, 

total length explained 11 to 45% of the variability inδ13C values of walleye and sauger.  

For saugers in Lake Oahe, however, total length explained 92 and 89% of the variation 

in δ13Cand δ15N values, implying that variation in isotopic signatures was length-

dependent (P<0.10; Table 5-1). 

Within each reservoir, mean δ15N was similar for sauger and walleye ranging 

from 15.7 to 17.8 for sauger and 15.2 to 17.7 for walleye (Figure 5-3).  Mean δ13C 

values were similar for sauger and walleye in Lewis and Clark and Francis Case 

reservoirs, but differed significantly between these species in Lake Oahe.  Mean δ13C 

was significantly greater for sauger than for walleye in Lake Oahe (randomization test 

p=0.003; Figure 5-3).  Variation in δ15N signatures, as indexed by IVAR, ranged from 

0.02 to 2.05 for sauger and 0.01 to 1.96for walleye.  Similarly, variation in mean δ13C 

isotope values ranged from 0.01 to 1.99 for sauger and 0.00 to 1.76 for walleye. 

 Isotope variability for both δ13C and δ15N was similar between walleye and 

sauger in Lewis and Clark reservoir (Table 5-2); however, δ13C variability was greater 

for sauger in Francis Case and both δ13C and δ15N variability was greater for sauger than 

for walleye in Lake Oahe (Table 5-2).  Comparison of species-specific variation in 

isotope values showed that walleye δ15N variability was similar among reservoirs 
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whereas δ13C variability increased from Lake Oahe downstream to Lewis and Clark 

Lake (Figure 5-4).  Conversely, isotopic variability for sauger generally decreased from 

Lake Oahe downstream to Lewis and Clark Lake for both δ15N and δ13C. 

Discussion 

Isotopic overlap was high for walleye and sauger in Lakes Lewis and Clark and 

Francis Case but differences in mean δ13C in Lake Oahe suggest possible diet 

partitioning of Sander spp. in this reservoir.  Lake Lewis and Clark has a diverse fish 

assemblage, due to its large riverine and delta habitats promoting the potential for 

specialization and likely allowing for increased diet divergence between Sander spp.  

However, δ15N and δ13C were similar, with minimal variability, between sauger and 

walleye in Lake Lewis and Clark suggesting common foraging strategies between these 

two species.  Although walleye and sauger have similar isotopic composition, they may 

not necessarily be feeding on similar prey.  Different prey items, with similar isotope 

signatures, could be consumed by each species resulting in similar isotope signatures for 

walleye and sauger (Bootsma et al. 1996).  However, most literature to date confirms 

high overlap in foraging behavior between walleye and sauger (Priegel 1963; Swenson 

and Smith 1976; Fitz and Holbrook 1978; Mero 1992; Belgraph et al. 2008).  Due to the 

high isotopic overlap of these two species in Missouri River impoundments the potential 

for competition between walleye and sauger is likely high (Swenson and Smith 1976; 

Bellgraph et al. 2008).  

 Although many studies have revealed high diet overlap of sauger and walleye 

(see Chipps and Graeb 2011 for a review), no studies have examined differences in diet 
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variability of sympatric walleye and sauger populations.  In the present study, I found 

that diet variability was similar between walleye and sauger in Lewis and Clark, but 

diverged as hybridization rate decreased (i.e., moving upstream).  This was expected: as 

resources are shared between species, hybridization potential likely increases.  

Conversely, as interactions between the two species decline (i.e. greater diet breadth of 

one or both species); it is likely that hybridization rates will decrease (Johannesson 

2001).   

The species composition in Lake Oahe is generally less variable compared to 

Lake Lewis and Clark; thus, I thought diet variability would be lowest in Lake Oahe 

(which was true for walleye).  However, Lake Oahe sauger exhibited the greatest δ15N 

variability compared to Lakes Francis Case and Lewis and Clark, and increased δ13C 

variability compared to Lake Lewis and Clark.  These results suggest that sauger in Lake 

Oahe were feeding on a wider range of prey types compared to sauger in Lake Lewis 

and Clark and to a lesser extent, sauger in Lake Francis Case.  Conversely, walleye were 

feeding on a relatively narrow range of prey types in all reservoirs (i.e., no difference in 

δ15N variability and a slight decrease in δ13C variability among reservoirs).  A larger 

isotopic variance in Lake Oahe sauger suggest a larger diet breadth or reduced diet 

consistency (Vander Zanden et al. 2000).  

Bellgraph (2006) examined trophic position (TP) of walleye and sauger in the 

Missouri and Yellowstone Rivers (Montana) using stable isotopes.  Sauger in the 

Missouri River had a higher variation in TP compared to walleye, whereas sauger had a 

lower variation in TP compared to walleye in the Yellowstone river.  These comparisons 
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are notable because the Missouri River sites were described as having increased 

anthropogenic disturbances compared to the Yellowstone River sites, suggesting diet 

variability is connected to habitat quality.  It appears that in unaltered systems, sauger 

feed on a narrow range of prey types, but as habitat is altered they broaden their forage 

base (Bellgraph 2006). 

Sauger are adapted to large river systems (Scott and Crossman 1973) and are 

known to decline in systems after human alteration (Nelson and Walburg 1977; St John 

1990; Hesse 1994).  Although no data exist on sauger population parameters in the 

Missouri River in South Dakota prior to dam construction, the extensive delta 

development in Lake Lewis and Clark (and to a lesser extent Lake Francis Case) in 

many ways mirrors pre-impoundment habitats (Schreck 2010).  Previous diet studies 

have shown considerable diet overlap between sauger and walleye; however, all of these 

studies were conducted in lentic and reservoir habitats (Priegel 1963; Swenson and 

Smith 1976; Fitz and Holbrook 1978; Mero 1992).  In more natural lotic habitats, sauger 

appear to consume a narrower range of prey types, compared to lentic environments 

(Bellgraph 2006).    

The use of stable isotopes provides important insight into feeding behavior (i.e., 

diet specialist or generalist) of species cohabitating similar aquatic ecosystem 

compartments (Paterson et al. 2006).  In this study, I found that isotopic variability of 

sauger was lowest in Lake Lewis and Clark and highest in Lake Oahe.  This suggests 

that in Lake Lewis and Clark sauger display a more specialist feeding behavior.  

Conversely, in Lake Oahe, which has a reduced forage base, sauger exhibit a generalist 
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feeding behavior.  These differences in foraging behavior correspond to observed trends 

in Sander spp. hybridization.  Hybridization rates are lowest in Lake Oahe (estimated ~ 

2.6 %) and increase downstream (4% in Lake Francis Case and 21% in Lake Lewis and 

Clark; Graeb et al. 2010).  In Lake Oahe, walleye and sauger apparently forage on a 

different range of prey, thus reducing potential dietary overlap of these two species.  

This is supported by my observation that isotopic differences (mean and variability) 

between these species were generally greatest in Lake Oahe compared to downstream 

reservoirs.  Conversely, in Lake Lewis and Clark, resource overlap may be relatively 

high (Bellgraph et al. 2008) as indicated by similar isotopic composition and reduced 

variation in sauger isotope values.   

One mechanism that could be driving observed isotopic trends in Sander spp. is 

the occurrence of suitable habitat for sauger.  In Lake Lewis and Clark, the delta region 

provides suitable habitat for sauger yet diet variability is reduced in this system.  

Decreased diet variability could explain why sauger are specialist in Lake Lewis and 

Clark.  Being a specialist enables them to reduce foraging energy expenditure and could 

explain the increased sauger abundance in this reservoir (SDGF&P 2000B).  Perhaps, in 

South Dakota impoundments, sauger exhibit a connected relationship to habitat, feeding 

behavior, degree of hybridization and subsequent population size.  In this theoretical 

model, feeding strategy and subsequent population size and hybridization rates are 

dependent on the quantity of suitable habitat (i.e., the riverine and delta habitats found 

throughout Lake Lewis and Clark and to a lesser extent, Lake Francis Case).  Therefore, 

the detrimental effects of walleye on sauger may be less severe than hypothesized where 
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sauger abundance is less dependent on walleye presence and abundance, but linked to 

suitable habitat.  In other words, habitat that benefits walleye production may be 

detrimental to sauger, and vice versa, however, this needs to be studied in more detail. 
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Table 5-1.Regression parameters of the relationships of total length (mm) and isotopic 

composition (δ15N and δ13C) for walleye or sauger collected from three South Dakota 

Missouri River reservoirs. 

 

Species Lake Isotope n Intercept Slope P r2 
Walleye Lewis and Clark δ15N 47 15.60 0.0004 0.611 0.01 

  
δ13C 47 -23.40 0.0028 <0.001 0.22 

 
Francis Case δ15N 21 13.17 0.0055 0.107 0.13 

  
δ13C 21 -22.28 -0.0007 0.731 0.01 

 
Oahe δ15N 35 14.31 0.0058 <0.001 0.42 

  
δ13C 35 -24.48 -0.0014 0.510 0.11 

Sauger Lewis and Clark δ15N 32 15.41 0.0005 0.722 0.00 

  
δ13C 32 -23.75 0.0044 <0.001 0.42 

 
Francis Case δ15N 5 14.97 0.0010 0.715 0.05 

  
δ13C 5 -22.86 0.0020 0.689 0.06 

 
Oahe δ15N 5 42.41 0.0718 0.100 0.92 

    δ13C 5 -36.26 0.0330 0.016 0.89 
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Table 5-2.Isotopic variability (δ15N and δ13C) compared between sauger and walleye 

collected from three Missouri River impoundments.  MeanDiff represents the observed 

difference in mean isotope variability (MAR) between species.  All comparisons p<0.05 

represent significant differences in isotopic variability between species. 

 

  
 

Randomization test 

Reservoir Isotope MeanDiff Estimated  p 

  Oahe δ15N 1.08 <0.001 

  

 

δ13C 0.45 0.002 

  Francis Case δ15N -0.17 0.439 

  

 

δ13C 0.37 0.025 

  Lewis and Clark δ15N 0.11 0.273 

    δ13C -0.01 0.892 
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Figure 5-1.  Map of three South Dakota Missouri River impoundments:  from 

downstream -- Lakes Lewis and Clark, Francis Case and Oahe.  

 

Figure 5-2. Gillnet catch per unit effort (number of fish collected / net night) of sauger 

collected in Lakes Oahe (solid bars), Francis Case (open bars) and Lewis and Clark 

(hashed bars) in 1996 through 2000. Lake Francis Case was not sampled in 1996. 

Insufficient sauger were collected from Lake Oahe in 2000 to create summary statistics.  

Error bars represent one unit of standard error.  Caution must be taken when interpreting 

catch rates because gill nets were set in open water habitats, and evidence suggests that 

sauger may use back waters, riverine area and deltas in greater occurrence than open 

water habitat.  Data recreated from SDGF&P (2000a; 2000b; 2001). 

 

Figure 5-3.Mean δ15N (top panel) and δ13C (bottom panel) values from walleye (white 

bars) and sauger (grey bars) collected from three South Dakota Missouri River 

impoundments. Isotopic overlap was compared between walleye and sauger within each 

reservoir using a randomization test and asterisks denote significant differences found in 

mean isotopic composition at p<0.05.  Error bars represent one unit of standard error.  

 

Figure 5-4.Mean isotopic variation (Ivar) forδ15N (top panel) and δ13C (bottom panel) of 

walleye (white bars) and sauger (grey bars) collected from three South Dakota Missouri 

River impoundments.  Isotopic variability was compared between reservoirs for walleye 

or sauger using a randomization test (see text for details).Groupings with different letters 
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(‘a’ and ‘b’ for walleye and ‘y’ and ‘z’ for sauger) represent significantly different mean 

residual values at the P<0.05 level.  Error bars represent one standard error. 
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Figure 5-1. 
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Figure 5-2. 
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Figure 5-3. 
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Figure 5-4. 
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Chapter 6: Non-lethal Sampling of Walleye for Stable Isotope Analysis: A 

Comparison of Three Tissues 
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Abstract 

Stable isotope analysis of fishes is often performed using muscle or organ tissues 

that require sacrificing animals. Non-lethal sampling provides an alternative for 

evaluating isotopic composition for species of concern or individuals of exceptional 

value. Stable isotope values of white muscle (lethal) were compared to those from fins 

and scales (non-lethal) in walleye, Sander vitreus (Mitchill), from multiple systems, size 

classes and across a range of isotopic values. Isotopic variability was also compared 

among populations to determine the potential of non-lethal tissues for diet-variability 

analyses. Muscle-derived isotope values where enriched compared to fins, and depleted 

relative to scales. A split-sample validation technique and linear regression found that 

isotopic composition of walleye fins and scales were significantly related to that in 

muscle tissue for both δ13C and δ15N (r2 = 0.79 to 0.93). However, isotopic variability 

was significantly different between tissue types in two of six populations for δ15N and 

three of six populations for δ13C. Although species and population specific, these 

findings indicate that isotopic measures obtained from non-lethal tissues are indicative of 

those obtained from muscle.   
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Introduction 

Stable isotope analysis (SIA) is a useful approach for quantifying energy flow 

and trophic relationships in aquatic and terrestrial ecosystems (Kling et al. 1992; Cabana 

& Rasmussen 1994). Stable isotope values in fish tissue have been used to address a 

variety of questions that include quantifying diet shifts (Vander Zanden et al. 1998), 

modeling contaminant accumulation (Kidd et al. 1998) and monitoring the effects of 

eutrophication (Cabana & Rasmussen 1996). Although diet composition is difficult to 

assess using SIA, it offers time-integrated information about important energy sources 

assimilated by consumers. Further, unlike traditional gut content analysis, SIA is not 

hampered by empty stomachs and allows more efficient use of specimens collected for 

analysis (Vander Zanden et al. 1998). In most SIA applications, tissue samples from 

white muscle, liver, gonads, bone, otoliths, brain or entire fish are used for isotope 

determinations (De Niro & Epstein 1977; Pinnegar & Polunin 1999). One drawback with 

using these tissues is that fish generally are sacrificed to obtain them, which can be 

undesirable when working with species of special concern or large, mature individuals of 

recreational value (Sanderson et al. 2009).   

The use of non-lethal tissues in SIA has received increased attention in food web 

studies (Jardine et al. 2005; Kelly et al. 2006b; Sanderson et al. 2009). Comparative 

studies have shown that isotopic values for δ13C or δ15N derived from lethal and non-

lethal sampling are strongly correlated for a variety of fishes (Perga & Gerdeaux 2003; 

Jardine et al. 2005; Kelly et al. 2006b; Sanderson et al. 2009); however, because 

turnover rates differ among tissue types (Fry 2006), isotope values derived from lethal 
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and non-lethal sampling may not be equally informative (Kelly et al. 2006b; Sanderson 

et al. 2009). Sanderson et al. (2009) demonstrated that simple regression models can be 

used to estimate muscle stable isotope values from non-lethally obtained fins and scales 

for a variety of fishes.  

The ability to estimate muscle δ13C or δ15N values from fins or scales has several 

advantages: it allows for comparability between studies that use muscle tissue versus 

those that use fin or scale tissue. One limitation to estimating muscle isotope values from 

non-lethally obtained tissues is that predictive models are often species and life-stage 

specific (Kelly et al. 2006b; Sinnatamby et al. 2008). Moreover, it is important that 

models are developed across multiple populations and fish sizes to account for 

variability in diet composition, growth rate or system productivity.  

A novel but increasing application of SIA is the use of a population’s isotope 

variability to determine trophic niche width or feeding variability within and between 

populations (Bearhop et al. 2004). As a measure of trophic niche width, greater isotope 

variability is indicative of greater diet breadth and consistency, whereas low variability 

can be attributed to either high population diet breadth with little consistency or low 

population diet breadth (Vander Zanden et al. 2000). Although few studies have used 

SIA for analyzing feeding variability within and between populations, recent results 

suggest that change in isotopic variability offer a promising tool to study population-

level diet variation (Paterson et al. 2006; Syvaranta & Jones 2008). In addition to direct 

comparisons using non-lethal and lethal tissues for SIA, non-lethal tissues have never 

been examined for determining trophic breadth based on isotopic variability. 
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The objectives of this study were 1) to quantify and compare isotope values from 

muscle, fins and scales in walleye, Sander vitreus (Mitchill), from six populations 

encompassing differences in lake productivity and walleye size classes, 2) to develop 

and evaluate a model for predicting muscle-derived δ13C or δ15N from non-lethal 

samples across six walleye populations, 3) to determine whether non-lethal tissues can 

be used as surrogates for white muscle tissue when analyzing diet variability using SIA 

and 4) to assess relationships between fish length and δ15N. 

Methods 

Study site  

Walleye were collected from six populations that included three natural, glacial 

lakes (Lardy, East Krause, Middle Lynn lakes) and three Missouri River reservoirs 

(Lake Oahe, Lake Sharpe, Lake Francis Case) in South Dakota, USA. Natural lakes were 

located in the Glaciated Plains ecoregion and ranged in surface area from 70 ha (East 

Krause Lake) to 280 ha (Middle Lynn Lake). Glacial lakes are classified as mesotrophic 

to eutrophic based on July trophic state index (TSI; Carlson 1977) values (53.9 to 60.1; 

VanDeHey et al. In Press). Walleye diets in the Glaciated Plains ecoregion are 

dominated by yellow perch, Perca flavescens (Mitchill), fathead minnows, Pimephales 

promelas (Rafinesque), and various invertebrates (VanDeHey 2011). Missouri River 

reservoirs were located in the Northwestern Glaciated Plains ecoregion and ranged in 

surface area from 22,600 ha (Lake Sharpe) to 202,000 ha (Lake Oahe), with summer TSI 

values ranging from eutrophic in the riverine and transitional zones to oligotrophic in the 

lacustrine zones (Lake Francis Case = 56.4 to 28.7; Lake Oahe = 64.6 to 38.5; Lake 
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Sharpe = 61.7 to 37.0; M.J. Fincel, unpublished data). Walleyes diets in Lake Oahe are 

generally dominated by rainbow smelt, Osmerus mordax (Mitchill), white bass, Morone 

chrysops (Rafinesque), freshwater drum, Aplodinotus grunniens (Rafinesque), gizzard 

shad, Dorosoma cepedianum (Lesueur), and invertebrates (Davis 2004). Gizzard shad 

and rainbow smelt are dominant prey items in Lake Sharpe (Wuellner et al. 2010), and 

walleye diets are largely unknown in Lake Francis Case. 

Sample collection 

Walleye were collected from August to September 2007 using experimental 

mesh gill nets set for 2-4 h. In the Missouri River impoundments, walleye were collected 

from all reservoir zones. A total of 95 fish ranging from 178- to 682-mm total length 

were collected from the six populations. Because of the limited amount of tissue 

obtained from smaller fish, specimens smaller than 175 mm were not included in the 

study. Captured fish were placed on ice for up to 2 h until tissue samples were obtained. 

White muscle samples (~2 g) were removed from the dorsal region of each fish above 

the lateral line and anterior to the dorsal fin. Scales were obtained from the dorsal region 

of each fish above the lateral line, and whole pelvic fins were excised. Tissue samples 

were then frozen and stored at -20 °C until analysis. Although some previous studies 

acid washed scales to remove carbonates in preparation for SIA (Perga & Gerdeaux 

2003), scales were not acid washed in this study because of poor support in favor of the 

technique and possible increased variability in δ15N caused by scale acidification (Bunn 

et al. 1995; Blanco et al. 2009; Rennie et al. 2009).   

Stable isotope analysis 
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 All samples were dried at 70°C for 72 h. Dried muscle and fin tissue were 

pulverized using a mortar and pestle. Due to the difficulty of manually grinding scales, 

scale samples were processed using a Wig-L-Bug® grinding mill (Dentsply-Rinn Inc. 

Elgin, IL). Ground tissues (0.4-0.6 mg) were then placed into 4x6 mm tin capsules for 

isotopic analysis. Stable carbon (δ13C) and nitrogen (δ15N) isotope values were 

determined using a Europa 20-20 mass spectrometer. Isotope values were reported in 

δ notation, as per mille (‰) deviations from a standard material (Pee Dee Belemnite 

carbon or atmospheric nitrogen) using the equation  

( ) 1000*1513




 −

=
std

stdsample
R

RRNorC δδ , 

 (1) 

where R sample is the isotopic ratio of the sample and R std is the isotopic ratio of the 

standard.  Lipid extraction on tissue samples was not performed prior to analysis; 

carbon-to-nitrogen (C:N) ratios for all tissue types were less than four, indicative of non-

fatty tissue (Sanderson et al. 2009).   

Data analysis 

 Muscle-derived δ15N, and hence trophic position, generally increases with 

walleye body size as fish prey become more important in the diet (Overman & Parrish 

2001). Thus, the influence of body size on muscle-derived δ15N values was explored for 

each population using correlation analysis. Paired t-tests were used to test the hypothesis 

that muscle isotope values did not differ from those of fins or scales. When differences 

between muscle isotope values and those from fins or scales were significant at P<0.10, 
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a linear regression analysis was used to develop a predictive model for estimating 

muscle isotope values. To evaluate the reliability of model predictions, a split-sample 

validation approach was used where data were randomly divided into two groups of 

equal sample size (i.e. development and evaluation data sets; Steyerberg 2001). This 

resulted in a total of 43 fish being used for the muscle:fin comparison and 33 fish being 

used for the muscle:scale comparison from the development data set. Linear regression 

analysis was applied to one group of data (development data set) to generate predictive 

models for estimating muscle isotope values (Muscle(Pred)) as,  

( ) ( ) bNonlethalaMuscle valueed *Pr +=  

 (2) 

where Nonlethal(value) is the observed isotope value obtained from the non-lethal tissue 

sample (fin or scale), b = slope and a = intercept parameter. The model was then used to 

predict muscle isotope values from the evaluation data set. Sources of error between 

predicted and observed muscle isotope values were evaluated by decomposition of mean 

square error (MSE) as 

( ) ( ) ( ) ( ) 22222 111
AApii SrrSSAPAPin

n
MSE +−−+−=−=






= ∑  

 (3) 

where n is the number of paired observations, Pi and Ai are predicted and observed 

muscle isotope values, P and A are the means of Pi and Ai, Sp and SA are the standard 

deviations of Pi and Ai, and r is the correlation coefficient (Theil 1961). The MSE, 

obtained from least-squares regression of predicted values on observed values, 

represents the variance around the 1:1 line (i.e. unity) and is expressed by 
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1 ESZ ++= ; 

 where Z is the error due to differences in the mean values, S is the slope component or 

error due to deviations of the slope from unity and E is the residual component due to 

random error (and Z<S; Theil 1961). 

 Differences in the isotopic variability in each tissue type were assessed by 

comparing mean absolute residuals (MAR; i.e., the magnitude of variability around the 

mean) for δ15N and δ13C among the six walleye populations. An ANOVA with a 

Tukey’s test was used to determine which tissue types had significantly different 

absolute isotopic variability within each population. Because there were multiple 

comparisons (n=12), a Bonferroni correction was used to adjust P (α=0.008).  

 To estimate the minimum sample size required for developing accurate isotopic 

relationships between lethal and non-lethal tissues, a re-sampling with replacement 

protocol was used to identify at what sample size r2 was maximized and the sample size 

at which the slope and intercept values were similar to those observed in the full model. 

To accomplish this, 10% of the observations from the development data set were 

randomly removed and a linear regression analysis used to develop a predictive model 

for estimating muscle isotope values from fin and scale values. The r2 slope and intercept 

were recorded, and data points returned to original data set. This was repeated 10 times 

at increasing intervals of 10% (e.g., 10-100% of the data used). The mean of the r2, slope 

and intercept were then plotted against sample size to estimate the minimal sample sizes 

required to have a similar r2 and regression parameters to those in the full development 

data model. 
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Results 

Muscle δ15N values ranged from 14.7 to 20.9 and, in general, were positively 

related to walleye total length (Table 6-1). Bi-plots of δ15N versus δ13C revealed that 

walleye populations grouped similarly based on muscle and fin values (Figure 6-1). 

Scale-derived isotope bi-plots were less similar to muscle- and fin-derived plots, but 

groupings within populations were tighter compared to muscle- and fin-derived isotope 

bi-plots. Mean muscle, fin and scale δ15N was 17.7 (±1.40), 17.3 (±1.7) and 17.8 (±2.0), 

respectively. Additionally, mean muscle, fin and scale δ13C was -23.3 (±1.6), -23.1 

(±1.9), and -20.6 (±1.6) respectively.  Isotope values for muscle and fin tissue differed 

significantly for both δ15N (t88 = 4.00; P<0.001) and δ13C (t88 = -3.42, P<0.001). Isotope 

values for muscle and scale tissue differed significantly for δ13C (t66 = -47.30, P<0.001) 

but not for δ15N (t66 = 1.50; P<0.138). No trend of differences in isotope values between 

muscle and fin or muscle and scale with walleye size was evident.   

Linear regression of developmental data showed that muscle-derived δ15N or 

δ13C measures were significantly related to those measured from fin or scale tissue 

(Figure 6-2). Comparison of observed muscle isotope values to those predicted by 

applying the developmental data models to the evaluation data set showed that 83-99% 

of the variability in the models could be attributable to random error (Table 6-2). The 

MAR of scales tended to be larger compared to fins, especially for δ13C, mostly due to 

differences between mean values of scales and muscle tissue (Figure 6-3).  

Isotopic variability was significantly different in two of the six walleye 

populations for δ15N and three of the six walleye populations for δ13C (Figure 6-4). 
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Other than Lake Francis Case, in those populations with significantly different δ15N 

variability, both fins and scales tended to have increased isotopic variability compared to 

muscle. East Krause was the only walleye population that showed significantly 

decreased isotopic variability (δ13C) in scales. Conversely, fins had increased variability 

relative to muscle for δ13C in East Krause, Lardy and Lake Sharpe.   

Required sample sizes for developing accurate isotopic relationships between 

lethal and non-lethal tissues were smaller for δ13C than δ15N and generally smaller when 

using fins as the non-lethal tissue type. The r2, slope and intercept values were similar to 

those of the overall model variability at a sample size of approximately 20 fish for δ13C 

(Figure 6-5). These parameters were more variable for δ15N, and a larger sample size of 

approximately 25 fish would be needed to develop a r2, slope and intercept similar to 

those developed in the full model (Figure 6-6). 

Discussion 

 The isotopic signatures obtained from lethal and non-lethal tissues of walleye 

were significantly related in six diverse, South Dakota lakes. Results suggest that stable 

isotope measures from fin tissue can be reasonably substituted for walleye muscle tissue; 

scale stable isotope measures, although significantly related to muscle, tended to be 

more enriched, especially for δ13C, and caution should be made when interpreting 

isotope results based on scale tissue. On average, muscle-derived δ15N values were 

higher than those measured from scales or fins, but the magnitude of these differences 

was small (0.2-0.4 ‰). Conversely, δ13C values varied significantly between muscle and 

scale tissue and on average were 2.4‰ higher in scales. The regression-based corrective 
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equation effectively provided an adjustment to better account for the variability found 

between muscle and scale isotope values in walleye. These results build upon previous 

research that documented correlations between fish tissues within a species (Satterfield 

& Finney 2002; Perga & Gerdeaux 2003; Kelly et al. 2006b; Sanderson et al. 2009). 

 The significant positive correlations of fins and scales with muscle tissue for both 

δ13C and δ15N values from walleye are notable because of the range in fish sizes, ages 

and locations from which these fish were collected. Walleye were collected from 

systems with varying morphology, limnological conditions, productivity and primary 

diet items (Davis 2004; Wuellner et al. 2010). Moreover, fish from 178 to 682 mm TL 

were used to evaluate relationships in tissue isotope composition revealing these 

relationships remained similar despite likely changes in diets both spatially (i.e. large 

oligotrophic reservoirs vs. small eutrophic glacial lakes) and ontogenetically (i.e. size 

and age differences). Including the wide array of fish sizes and geographic locations into 

regression analysis incorporated a large degree of the isotopic variability of walleye 

from lakes and reservoirs throughout the Great Plains (Davis 2004; Wuellner et al. 2010) 

and supports the use of predictive equations developed in this study for estimating 

muscle-tissue isotope levels from fins and scales for walleye collected in other systems 

that exhibit similar trophic status and physical and biotic conditions. 

 Walleye scales have enriched δ13C signatures and depleted δ15N signatures 

relative to muscle values, which may be attributed to the lack of lipids in the scales 

(DeNiro & Epstein 1977; Blanco et al. 2009) but higher concentrations of lipid in muscle 

(DeNiro & Epstein 1977; Jobling et al. 1998). Lipid content was not assessed in any 
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tissues, so this speculation remains unresolved.  Additionally, differences in isotope 

signatures between scale and muscle tissue could be caused by the differences in 

turnover rates in each tissue (Tiesszen et al. 1983; Pinnegar and Polunin 1999).  

Although scales grow continuously throughout life, they are rather stable chemical 

reservoirs (Pruell et al. 2003). Conversely, metabolic turnover and rapid growth can 

change the chemical composition of muscle over shorter time periods.  

 In addition to using non-lethal tissues for food web reconstruction, tracking 

energy flow or determining trophic position, non-lethal tissues may be a suitable 

replacement for comparing diet variability within and between populations. Isotopic 

variability was generally consistent between tissues, but both fins and scales do not 

equally predict muscle δ15N and δ13C. Only one of six walleye populations had 

statistically different δ15N variability between fins and muscle. Additionally, two of six 

walleye populations had statistically different δ15N variability between fins and scales 

suggesting that fins, and to a lesser extent scales, may be a useful non-lethal surrogate 

for assessing δ15N variability. Conversely, three of size walleye populations had 

significantly different muscle and fin δ13C variability, and only one walleye population 

had significantly different muscle and scale δ13C variability; thus, scales may be the 

tissue of choice when estimating δ13C variability. This suggests that determining the 

required isotopic signatures should dictate non-lethal tissue use. 

 The ability to use fin and scale tissue as surrogates for lethally obtained muscle 

tissue in fishes is important when performing SIA on rare species or popular recreational 

fishes (Jardine et al. 2005). Muscle tissue removal can be non-lethal in large animals 
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(Shannon et al. 2001); and, while there is some evidence that muscle biopsy might be a 

non-lethal means of collecting fish tissue for SIA (Osmundson et al. 2000, Hamilton et 

al. 2002), limited research has been done to evaluate survival of fishes following the 

biopsy, especially in wild populations (Baker et al. 2004). Additionally, demonstrating 

the ability to use calcified structures (i.e. scales) for SIA allows the use of archived 

tissue samples for historic food web reconstruction. Many state, federal and non-

governmental agencies collect calcified structures during annual surveys (often used for 

age determination). Although the use of SIA to assess long-term temporal variability in 

diets has become more common, especially in mammals, its use in fisheries remains 

limited (see Dalerum & Angerbjörn 2005 for a review). The majority of fisheries 

research using SIA for analyzing changes in food habits over time have used lethally 

obtained tissues (muscle, whole fish and otoliths; Dalerum & Angerbjörn 2005). 

However, archived scale samples have been used successfully to assess temporal diet 

patterns (up to 30 years) in several Pacific salmonid species (Satterfield & Finney 2002). 

In addition, archived scale samples have been used to identify shifts in δ13C signatures of 

striped bass, Morone saxatilis (Walbaum), in Chesapeake Bay (Pruell et al. 2003); and 

the use of archived scales to identify temporal changes in food webs and assess the 

impacts of species introductions and invasions post hoc is in its infancy.    

 Although use of non-lethal tissues for SIA has merit and provides useful 

estimates of isotopic signatures, care must be taken when determining which tissues will 

be most informative, taking into account the volume of tissue required for isotope 

analysis. In the present study, sufficient scale tissue (i.e., approximately one gram dried 

tissue) was removed from only 33 of approximately 97 captured walleye. Walleye 
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greater than 175 mm long were used in this study. Using smaller specimens for isotope 

analysis may be problematic as more scales will need to be removed, and the lethality of 

removing this quantity of tissue is unknown. Although prior research has revealed little 

impacts of pelvic fin removal on most species (Zymonas & McMahon 2006; Wagner et 

al. 2009), the effects of fin removal on survival and swimming or feeding behavior vary 

by fin and species, and the potential negative consequences should be assessed prior to 

selecting a non-lethal tissue. Second, when possible, a subset of fish should be sacrificed 

to produce predictive equations for estimating muscle-tissue isotope ratios. For walleye 

in this study, the samples sizes required to develop predictive equations were relatively 

small (n<25). Given the strong correlations found between tissues in other species (see 

Kelly et al. 2006b), it is likely that required sample sizes will be similar for other 

species. However, the required sample size may vary with species and systems, and the 

results presented in this study only apply directly to walleye in similar systems. Third, 

using archived scale samples provides a unique opportunity to examine foraging patterns 

of fishes throughout time. However, mixed results in scales compared to muscle tissue 

were found for both mean isotope signatures and isotope variability. When performing 

retrospective studies, care must be taken in the interpretation of the data as some 

substantial differences were found in walleye scales, especially when analyzing 

variability in isotopic signatures between scales and muscle. Moreover, in this study 

scale-envelopes were not used. However, this is a common practice when removing and 

cataloging scales for aging purposes. Different storage methods may alter the isotopic 

signatures of the scale tissue, necessitating the need to identify the impacts of 

preservation techniques (Kelly et al. 2006a; Andvik et al. 2010).  
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Table 6-1. Correlation (r = Pearson’s correlation coefficient) between muscle δ15N values 
and total length (TL; mm) for six walleye populations in South Dakota. 

Population n TL (mm) δ15N range r P 
East Krause Lake  17 178-682 15.8-20.9 0.91 <0.01 
Lardy Lake 17 371-532 17.8-19.6 0.91 <0.01 
Middle Lynn Lake  15 368-591 17.7-19.5 0.37 0.15 
Lake Oahe  25 259-619 14.9-18.1 0.76 <0.01 
Lake Sharpe  12 251-429 14.7-17.1 0.93 <0.01 
Lake Francis Case 9 289-449 14.8-16.0 0.75 0.01 
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Table 6-2.  Mean (SE) observed and predicted muscle stable isotope values for walleyes from six South 
Dakota populations.  Predicted values were obtained using regression parameters in Figure 2 for fin or scale 
isotope measurements.  Sources of error, calculated from decomposition of mean square error, are given for 
comparisons of observed and predicted values. 

      
 

Predicted muscle value 
 

 

Sources of error 
 

Isotope n Observed muscle From fin isotope  From scale isotope  Mean Slope Residual 

δ 15N 44 17.8 (0.21) 17.6 (0.22) 
 

0.05 0.10 0.85 

 
33 18.0 (0.24) 

 
18.0 (0.23) <0.01 0.04 0.95 

δ 13C 44 -23.5 (0.23) -23.5 (0.22) 
 

<0.01 <0.01 0.98 

  
33 

 
-22.9 (0.30) 

 
 

-22.7 (0.29) 
 

0.16 
 

<0.01 
 

0.83 
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Figure 6-1.  Bi-plot of δ 15N versus δ 13C values for six walleye populations in South 

Dakota.   

 

Figure 6-2. Residual differences between observed δ 15N and δ 13C values obtained from 

white dorsal muscle tissue and fin and scale tissues from walleyes collected from six 

populations in South Dakota.     

 

Figure 6-3. Comparison of observed muscle δ 15N and δ 13C with muscle δ 15N and δ 13C 

predicted from fins and scales for walleye from six populations in South Dakota. 

 

Figure 6-4.  Differences in mean absolute residuals for δ 15N and δ 13C between the tissue 

types of walleyes collected from six populations in South Dakota.   Open bars represent 

muscle tissue, large hatched bars represent fin tissue, and small hatched bars represent 

scale tissue. Means with the same letters were not significantly different by ANOVA 

with Bonferroni correction for multiple comparisons α=0.004.   

 

Figure 6-5. Sample sizes (number of fish) required to obtain similar estimates of linear 

regression parameters (r2, slope and intercept) to those parameters generated using all 

data points (horizontal dashed line; n= 43 fish muscle:fin and n=33 muscle:scale) for 

δ13C values when using fins (left panels) or scales (right panels) for walleye from six 

South Dakota populations. Error bars represent mean standard error from the 10 

simulations at each sample size.   
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Figure 6-6. Sample sizes (number of fish) required to obtain similar estimates of linear 

regression parameters (r2, slope and intercept) to those parameters generated using all 

data points (horizontal dashed line; n= 43 fish muscle:fin and n=33 muscle:scale)for 

δ15N values when using fins (left panels) or scales (right panels) for walleye from six 

South Dakota populations. Error bars represent mean standard error from the 10 

simulations at each sample size.   
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Figure 6-1.  
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Figure 6-2. 
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Figure 6-3. 
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Figure 6-4. 

δ15N

M
ea

n 
ab

so
lu

te
 re

si
du

al
s

0

1

2

3

4
Muscle
Fin
Scale

δ13C

Lake

E.Krause Lardy Mid Lynn Francis Case Oahe Sharpe

M
ea

n 
ab

so
lu

te
 re

si
du

al
s

0

1

2

3

B

A A
A

A

A

A

A

B B

A

A A

A

A

A

A

A

A

B

C

A

B

A

A
A

A

A

A

AB

B

A

A

A
A

A

 



183 
 

 

Figure 6-5. 
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Figure 6-6. 
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Chapter 7: Comparing Isotope Signatures of Prey Fish: Does Gut Removal 

Affect δ13C or δ15N? 
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Abstract 

Stable isotope analysis is a quick and inexpensive method to monitor effects 

of food web changes on aquatic communities.  Traditionally, whole specimens have 

been used when determining isotope composition of prey fish or age-0 recreational 

fishes.  However, gut contents of prey fish could potentially alter isotope 

composition of the specimen especially when recent foraging has taken place or 

when the gut contains non-assimilated material that would normally pass through 

fishes undigested.  To assess the impacts of gut content on prey fish isotope 

signatures, I examined the differences in isotopic variation of five prey fish species 

using whole fish, whole fish with the gut contents removed, and dorsal muscle only.  

I found significant differences in both δ15N and δ13C between the three tissue 

treatments.  In most cases, muscle tissue was enriched compared to whole specimens 

or gut-removed specimens. Moreover, differences in mean δ15N within a species 

were up to 2‰ among treatments.  This would result in a change of over half a 

trophic position based on a 3.4‰ increase per trophic level.  However, there were no 

apparent relationships between tissue isotope values in fish with increased gut 

fullness (more prey tissue present). I suggest that muscle tissue should be used as the 

standard tissue for determining isotope composition of prey fish or age-0 recreational 

fishes especially when determining enrichment for mixing models, calculating 

trophic position, or constructing aquatic food webs.   
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Introduction 

Stable isotope analysis (SIA) offers a useful approach for quantifying energy 

flow within food webs (Kling et al. 1992, Cabana and Rasmussen 1994).  Stable 

isotope analysis offers time-integrated analysis of carbon (δ13C) and nitrogen (δ15N) 

reflective of energy assimilated by consumers and provides an analytical approach 

for determining trophic position (TP; Kling et al. 1992, Cabana and Rasmussen 

1996, Vander Zanden et al. 1999).  Trophic position is a continuous variable that 

accounts for omnivory and better quantifies matter and energy flow within a food 

web (Kling et al. 1992, Vander Zanden and Rasmussen 1996, Post 2002). One key 

assumption in developing food web models and calculating TP is developing a 

known measure of enrichment (Δ), or the magnitude of increase of a predator’s 

isotopic value relative to the isotopic value of its prey (i.e., Δ = δ15Nconsumer - δ15Ndiet; 

Vanderklift and Ponsard 2003).  Many studies have attempted to incorporate Δ 

variability to improve the efficiency of mixing models; however, these models are 

contingent on accurate estimates of Δ and further emphasize the need to develop 

accurate Δ estimates when using SIA in food web and energy flow studies (Phillips 

and Koch 2002). 

Many variables affect Δ; these variables include but are not limited to the 

biochemical form of nitrogenous waste, feeding behaviors of the species, taxonomic 

classes, and the type of ecosystem under consideration (see Vanderklift and Ponsard 

2003 for a review).  One variable shown to influence Δ is the type of tissue used; 

however, results of these studies were conflicting (Yoneyama et al. 1983, Hobson 
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and Clark 1992, Vanderklift and Ponsard 2003).  For example, in a review by 

Vanderklift and Ponsard (2003), Δ was examined using both whole fish and dorsal 

muscle, but no clear evidence was established regarding the effect of using whole 

fish on Δ, likely because of small sample sizes of whole fish (n=1, Δ=3.2).   

The use of whole fish in SIA studies has many potential benefits to that of 

dorsal muscle as prey fish vulnerable to predation by larger fish or age-0 recreational 

fishes are generally small, making removal of enough dorsal muscle tissue for 

isotope analysis difficult.  However, isotopic signatures derived from whole fish or 

pooled muscle tissue from multiple small specimens may alter inherent isotopic 

variability found in prey fish or age-0 recreational fish samples (Yoshioka et al. 

1994, Mitchell et al. 1996, Vander Zanden et al. 1998, Johnson et al. 2002, McIntyre 

et al. 2006).  Moreover, no information exists on the isotopic differences found 

between whole fish and dorsal muscle and the impacts of removing gut contents of 

prey fish on their isotopic signatures.  Additionally, small variations in Δ may 

produce significant differences in the output of isotopic mixing models (Ben-David 

and Schell 2001).  Due to the growing use of SIA in food web reconstruction and the 

limited information that exists on isotopic differences between whole fish and dorsal 

muscle, the objective of our study was to determine if differences exist in δ13C and 

δ15N between whole fish, whole fish with the gastrointestinal tract (i.e, gut) removed, 

and dorsal muscle in five prey fish species and to determine if gut fullness had an 

effect on isotopic signatures. 

Methods 
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Thirty specimens from five different prey species [rainbow smelt (Osmerus 

mordax), gizzard shad (Dorosoma cepedianum), yellow perch (Perca flavescens), 

white bass (Morone chrysops), and spottail shiner (Notropis hudsonius)] were 

collected from Lake Oahe, South Dakota, in late August 2008 using standard 

shoreline seining procedures.  All specimens of a single species were collected 

within a single location to minimize potential isotopic disparities caused by 

differences in feeding patterns or isotopic baselines spatially (McKinney et al. 1999).  

Upon capture, all fish were placed on ice and transported to the laboratory.  All 

specimens were rinsed with distilled water to remove external matter, and total 

length and mass were recorded.  I excised and weighed the gastrointestinal tract from 

all individuals.  Ten individuals of each species were then randomly assigned to each 

of the three groups for isotopic analysis.  Groups included whole fish (WF – the 

entire fish used), whole fish with the gut removed (GR), and dorsal muscle tissue 

(DM – only dorsal muscle used).  Samples were placed in individually labeled 

aluminum trays, dried for 72 h, then ground and homogenized using a mortar and 

pestle.  Samples were analyzed for δ15N and δ13C using a Europa 20-20 mass 

spectrometer.   

I tested for differences in δ15N and δ13C between tissue treatments using an 

analysis of variance (ANOVA) with a Tukey’s significance test to determine if 

significant differences existed between treatments.  In addition, since total length 

may affect isotopic signatures due to ontogenetic diet shifts and isotopic ratios of 

δ15N tend to increase at higher trophic levels (Kling et al. 1992), δ15N values should 
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be positively correlated with total length (Vander Zandenet al. 1998, Fincel et al. 

2011).  To account for potential differences in size or feeding patterns between 

groups, I used an ANOVA with a Tukey’s significance test to examine differences in 

total length between treatment groups.  Because gut fullness could also alter isotope 

signatures of treatment groups, I used an ANOVA with a Tukey’s significance test to 

examine differences in gut weight to total weight ratios between the treatment groups 

of each species. For all comparisons, I used a Bonferroni correction for multiple 

comparisons and set the significance level at α=0.001. 

Results 

In general, the DM treatment tended to have higher δ15N and δ13C compared 

to both WF and GR groups for three of the five species studied (i.e., yellow perch, 

gizzard shad, and white bass; Figure 7-1). Spottail shiner and rainbow smelt were the 

only species that had similar isotopic values (both δ15N and δ13C) between the DM 

and GR treatments. Significant differences in δ13C were found between tissue types 

for white bass and spottail shiner (Table 7-1).  White bass was the only species that 

showed consistent enrichment in DM for both the δ13C and δ15N between treatments.  

Other than the DM and GR comparisons for spottail shiner and rainbow smelt, in all 

other significant pair-wise comparisons, the DM treatments were enriched compared 

to WF or GR groups. 

No significant differences were observed in total length between any tissue 

groups (Table 7-2; Figure 7-2). Two of the five species showed significant 

differences in gut weight to total weight (GW/TW).  Yellow perch in the DM 
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treatment group had greater GW/TW compared to the WF or GR treatments.  For 

white bass GW/TW ratios were significantly different among all three tissue 

treatments.  However, no relationships were found relating differences in isotope 

signatures between tissues to differences in GW/TW in any species. 

Discussion 

I found significant differences in isotopic values between DM, WF and GR 

prey fish samples in three of five species, suggesting that substantial error can be 

accrued when analyzing different tissue types for stable isotope analyses and 

subsequent Δ calculation.  For instance, the use of WF yellow perch for Δ estimates 

of δ15N on a Lake Oahe food web study would result in a difference of 2‰ [i.e., over 

half a trophic position based on 3.4‰ Δ by Post (2002)] compared to the DM of 

yellow perch.  This could significantly alter mixing models and estimation of trophic 

position using this species and tissue type.  Similarly, if white bass were an 

important component in the food web, the significant differences in signatures of 

both isotopes between treatment types could dramatically impact interpretation of 

energy flow, food webs and mixing models (Vander Zanden and Rasmussen 2001).  

Therefore, when trying to minimize error associated with Δ, a standard tissue type 

should be used.   

Across species, the WF treatment was depleted in δ13C for four of five 

species compared to both DM and GR treatments.  Additionally, the WF treatment 

was depleted in δ15N for four of five species relative to DM treatments. Several 

potential explanations may exist for WF treatments being depleted in δ15N and δ13C 
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compared to DM or GR. One reason could be that food items or undigested waste 

product altered whole prey fish isotopic signatures relative to the DM or GR 

treatments.  However, this comparison was only statistically significant in five (of 

10) WF to DM comparisons and one WF to GR comparison.  Another reason for the 

consistent isotopic depletion in WF could be related to the gut weight to fish weight 

ratios.  However, in our study GW/TW ratios did not appear to significantly alter 

isotopic signatures. 

I saw no differences in TL between tissue groups for any species, which was 

expected. However, I did find significant differences in gut fullness (GW/TW). 

White bass showed significant differences in gut fullness, as the DM treatment had 

greater GW/TW compared to the WF treatment and the GR treatment had at least 

twice the ratio as that of the other two treatment groups.  However, due to the 

randomization process, the fullest guts were in DM and GR treatments and not in the 

WF treatment.  Some of the isotope signature of the whole fish is likely undigested 

waste (explaining the lower signature of whole fish relative to other treatment 

groups), which would not likely be incorporated into predators’ diets (Vanderklift 

and Ponsard 2003, Jardine et al. 2005, Caut et al. 2009).  If gut contents did in fact 

decrease specimen isotope values, I did not reveal this scenario, because the WF 

treatment had the lowest GW/TW compared to the other treatments. Including 

individuals with full stomachs in WF treatments should be considered in future 

studies. In addition, gut evacuation rates vary among species (Brooke et al. 1996, 

Irigoien 1998, Miyasaka and Genkai-Kato 2009) by water temperature (Chipps 
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1998) and by diet (Targett and Targett 1990).  Though I did not quantify gut 

evacuation rates, I collected specimens in August when warmer water temperature 

likely facilitated high gut evacuation rates. This coupled with differences in gut 

evacuation rates between species could aid in the non-significant isotopic depletion 

in the WF treatments relative to other tissues. 

Another explanation for the observed differences between WF, GR, and DM 

treatments may be the incorporation of lipid-rich tissues into the isotopic signatures 

of WF and GR groups. Generally, white muscle is more δ15N-enriched compared to 

the heart, liver, and red muscle, a likely result of increased tuarine or other amino 

acids in white muscle tissue (Wilson and Poe 1974, Pinnegar and Polunin 1999). By 

simply removing the gastrointestinal tract, I left those tissues with decreased lipids 

and potentially lowered the δ15N signature of the specimen compared to muscle 

alone.  Moreover, lipids are relatively depleted in δ13C (DeNiro and Epstein 1977), 

which could explain the relative similarities in δ13C between WF, GR, and DM 

treatments compared to the differences observed in δ15N. The DM group was only 

significantly enriched in δ13C for two of five species.  In spottail shiners, the DM 

group was not significantly different than GR, which may be a function of gut 

contents being assimilated into the δ13C signature of the specimen. Future research 

may focus on removing liver, heart, and other lipid-depleted tissues to determine 

whether differences are still observed between treatments. 
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Table 7-1. ANOVA results for differences between whole fish (WF), gut removed 

whole fish (GR) and dorsal muscle (DM) treatments in δ15N and δ13C for gizzard 

shad, rainbow smelt, spottail shiner, white bass, and yellow perch collected from 

Lake Oahe, South Dakota.  Due to multiple comparisons, α=0.001. 

           

  δ15N δ13C 

Species df F-Value P-value F-Value P-value 

gizzard shad 2,27 6.12 0.006 2.51 0.100 

rainbow smelt 2,27 2.96 0.069 0.19 0.830 

spottail shiner 2,27 5.54 0.010 5.947 0.007 

white bass 2,27 8.29 0.002 10.33 <0.001 

yellow perch 2,27 19.28 <0.001 1.82 0.181 
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Table 7-2. ANOVA results for differences between whole fish (WF), gut removed 

whole fish (GR) and dorsal muscle (DM) treatments for total length and gut weight 

to total weight for gizzard shad, rainbow smelt, spottail shiner, white bass, and 

yellow perch collected from Lake Oahe, South Dakota.  Due to multiple comparisons 

α was set at 0.001. 

           

  Total Length Gut weight / Total weight 

Species df F-Value P-value F-Value P-value 

gizzard shad 2,27 1.21 0.315 1.15 0.332 

rainbow smelt 2,27 0.60 0.556 3.80 0.035 

spottail shiner 2,27 1.09 0.349 2.65 0.089 

white bass 2,27 0.38 0.687 62.05 <0.001 

yellow perch 2,27 0.40 0.671 13.20 <0.001 
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Figure 7-1.  ANOVA results for differences among tissues (whole fish [WF] – dark 

bars, gut removed whole fish [GR] – hashed bars, and dorsal muscle tissue [DM] – 

open bars) in A) δ15N and B) δ13C.  Those tissues with different letters are 

significantly different (p<0.01).  Species include gizzard shad (GZD), rainbow smelt 

(RBS), spottail shiner (STS), white bass (WTB), and yellow perch (YLP)collected 

from Lake Oahe, South Dakota.  Error bars represent one unit of standard error. 

 

Figure 7-2. ANOVA results for differences among tissues (whole fish [WF] – dark 

bars, gut removed whole fish [GR] – hashed bars, and dorsal muscle tissue [DM] – 

open bars) in A) total length and B) the ratio of gut weight to total weight (GW/TW).  

Those tissues with different letters are significantly different (p<0.01). Species 

include gizzard shad (GZD), rainbow smelt (RBS), spottail shiner (STS), white bass 

(WTB), and yellow perch (YLP) collected from Lake Oahe, South Dakota.  Error 

bars represent one unit of standard error. 

  



203 
 

Figure 7-1. 
M

ea
n 
δ1

5 N

8

10

12

14

16

18

20

Species

YLP RBS WTB STS GZD

M
ea

n 
δ1

3 C

-30

-28

-26

-24

B

A

B

AAA

A
A

A

A

A
A

B

B

A

A

A
A

A A
B

A

AA
A

AA

B

A

B
A

A

 

 

Figure 7-2. 



204 
 

A
To

ta
l l

en
gt

h 
(m

m
)

40

60

80

100

120

140

160

B

Species

YLP RBS WTB STS GZD

G
W

 / 
W

T

0.00

0.05

0.10

0.15

0.20

AA

A
A A

A AA

A

A A A

A A
A

A

B

AA

A

A

A

A

AAA
A

A

B

C

 

 



 205 
 

Chapter 8: Management Recommendations 

Productivity Attributes in South Dakota Missouri River Reservoirs  

Monitoring of physiochemical characteristics and productivity are vital for 

addressing local water quality problems, environmental processes and productivity 

forecasting (Yako et al. 1996; Popovičová 2009).  Post hoc analyses of water quality 

and productivity estimates are informative, but can suffer from limited sample sizes 

(Bolgrien et al. 2009).  One goal of this project was to develop protocols to monitor 

physiochemical and productivity estimates in the Missouri River impoundments.  

These protocols sought to maximize the information, while minimizing the sampling 

time and effort.  For nutrients and chlorophyll a, minimal samples were found to be 

needed for monitoring programs.  Although spikes in these parameters occurred, 

sample size requirements were generally uniform and a suite of recommendations 

can be made from the data.  For TKN and TP, three 1 L integrated water samples 

(not to exceed twice the Secchi depth) can be collected in April, from the lower 

lacustrine zone of each reservoir and these samples will accurately describe nutrient 

dynamics.  Three chlorophyll a samples should also be collected simultaneously with 

the April nutrient collections.  Moreover, ten zooplankton samples using a conical 

shaped Wisconsin net (10 cm diameter, 150 μm mesh) towed vertically from twice 

the Secchi depth to the surface (or from 1 m above the sediment to the surface if 

water depth was less than twice the Secchi depth) would be sufficient to account for 

the variability observed in South Dakota Missouri River impoundments.  These 
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could be collected at any time, but to improve efficiency, April zooplankton 

collections would be optimal.   

Larval Gizzard Shad Characteristics in Lake Oahe, South Dakota 

In Lake Oahe, slow gizzard shad growth rates make this species an ideal prey 

resource for piscivores.  In this system, and other reservoirs in the northern Great 

Plains, larval gizzard shad appear to exhibit temporal and spatial variability in 

abundance and growth; however, growth remains generally slow and density low, 

compared to more southerly systems.  These characteristics appear to make gizzard 

shad a suitable prey resource in reservoirs in South Dakota and throughout the 

northern Great Plains.  When examining the relationship between gizzard shad and 

walleye, the most popular sport fish in South Dakota (Gigliotti 2007), there exists a 

strong positive relationship where walleye growth and condition is positively related 

to gizzard shad presence (Ward et al 2007; Wuellner et al. 2010).  Thus, gizzard shad 

are frequently stocked in small Western South Dakota reservoirs to bolster walleye 

prey resources (Ward et al. 2007).  Future work should evaluate the potential for this 

practice in Lake Oahe, South Dakota. 

Walleye Consumption and Growth in Lake Oahe, South Dakota 

In Lake Oahe, South Dakota, walleye can attain between 40% and 60% of 

their maintenance energy requirements from gizzard shad, when abundant.  During 

times of low rainbow smelt abundance, shad can be an important subsidy to Lake 

Oahe walleye consumption and subsequent growth.  Despite a limited window of 

availability and high age-0 growth rates, this resource provides a significant energy 
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source to Lake Oahe walleye.  Additionally, gizzard shad may act as an alternative 

prey resource to buffer predation effects on recovering rainbow smelt populations.  

Because of the observed use of gizzard shad by walleye in Lake Oahe, South Dakota 

Game, Fish and Parks will begin a gizzard shad stocking strategy to manipulate prey 

resources for Lake Oahe piscivores.  This strategy will hopefully provide an 

alternative prey resource for Lake Oahe piscivores and lower predation rates on other 

prey resources. 

Isotopic Variability of Sauger and Walleye in South Dakota Missouri River 

Impoundments 

In three South Dakota Missouri River impoundments, differences in isotope 

variability between sauger and walleye, with varying levels of hybridization and 

potential habitat quality (i.e., level of anthropogenic disturbance), were documented.  

Previous studies have demonstrated high diet overlap of these two species (Priegel 

1963; Swenson and Smith 1976; Fitz and Holbrook 1978; Mero 1992; Bellgraph et 

al. 2008); however, diet variability has never been examined.  In systems where 

isotopic composition (i.e., mean and variability) between walleye and sauger are 

similar (i.e., relatively greater resource overlap), increased hybridization rates were 

found.  Conversely, in Lake Oahe, where walleye and sauger exhibit differences in 

isotopic composition, hybridization rates are relatively low.  Thus, there seems to be 

a strong correlation between the degree of Sander spp. hybridization and the overlap 

in habitat and/or resource use.  Future research should focus on identifying those 
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specific resources or habitats that promote cohabitation of niche compartments likely 

facilitating higher hybridization between the two species. 

Non-Lethal Sampling of Walleye for Stable Isotope Analysis 

Because of the disparities in isotopic signatures between muscle, fins and 

scales, muscle tissue should be utilized whenever available.  If performing SIA on 

special species of concern (i.e., rare or endangered, large sport fish of recreational 

value), a small subset of organisms can be sacrificed to develop corrective equations 

to produce more accurate isotope estimates for tissue comparisons.  When muscle 

tissue is not available, fins tend to be the next best alternative.  However, if 

examining dietary niche partitioning (through absolute population variability in 

isotope signatures), researchers should use scales instead of fins, since the variability 

in this tissue best matches that of muscle.  When performing retrospective studies 

using catalogued scales (collected for age determination), care must be taken with 

data interpretation as some substantial differences were found in walleye scales, 

especially when analyzing variability in isotopic signatures between scales and 

muscle. 

Comparing Isotope Signatures of Prey Fish 

Comparing isotopic signatures of various organ systems within an individual 

solidify the need to standardize tissue use in stable isotope analysis for food web 

reconstruction, calculating trophic position, and the development of mixing models.  

Small differences in Δ can reflect large changes in mixing models (Caut et al. 2009), 

and one method to reduce Δ variability is through the use of muscle tissue (or 
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creating a standardized tissue).  Although I recognize that prey fish and age-0 

recreational fishes are often too small for SIA, researchers should try to use muscle 

tissue when possible.  If whole fish are to be used, I recommend caution when 

interpreting the effects on food webs, trophic position estimates or mixing models.  
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Appendix 1. 

Water chemistry estimates from South Dakota Missouri River impoundments in 

April (Table 1), June (Table 2) and August (Table 3) in 2008.  River kilometer (RKM) is 

the distance upstream (in km) from the confluence of the Missouri and Mississippi 

Rivers, and site coordinates (N and W) where each sample was collected. Dashes 

represent parameters that were not taken during sampling events. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



212 
 

 
 
 
Table 1. 

Lake RKM N W Secchi 
(m) 

Turbidity 
(NTU) 

Temperature 
(oC) 

Dissolved 
Oxygen  (mg/l) pH 

Water 
Depth 

(m) 

Conductivity 
(ms/cm2)  

Total Suspended 
Solids (g/l)  

Oahe 
1970 45o51.656' 100o23.004' 0.3 13.30 9.91 -- 8.63 4.0 677 66.00 

1928 45o34.037' 100o28.575' 0.9 4.20 6.30 -- 8.55 10.0 598 39.00 

1889 45o17.535' 100o18.125' 0.9 4.51 6.16 -- 8.57 10.0 618 36.20 

1856 45o01.923 100o16.963' 1.7 2.24 5.76 -- 8.53 20.0 653 34.65 

1804 44o45.172' 100o40.502' 1.3 2.96 7.91 -- 8.59 13.0 728 33.40 

1751 44o32.271' 100o31.431' 3.4 0.53 5.09 -- 8.57 41.0 706 23.40 
Sharpe 

1726 44o26.199' 100o23.243' 3.2 1.71 4.32 -- 8.57 4.0 710 24.60 

1720 44o20.692' 100o20.330' 3.0 1.78 4.32 -- 8.56 5.0 713 45.80 

1677 44o15.597' 99o55.819' 0.2 15.50 8.35 -- 8.53 2.5 713 67.60 

1650 44o08.096' 99o47.479' 0.6 7.21 9.94 -- 8.55 8.0 719 46.40 

1624 44o11.478' 99o41.471' 1.8 3.81 7.98 -- 8.54 5.0 711 35.75 

1591 44o03.803' 99o31.068' 1.9 1.23 5.94 -- 8.56 18.0 682 -- 
Francis 

Case 1588 44o02.264 99o25.429' 1.0 4.97 6.08 -- 8.56 7.0 681 31.35 

1558 43o49.789' 99o20.251' 0.8 14.10 9.40 -- 8.47 5.0 689 54.65 

1513 43o33.965' 99o19.321' -- -- -- -- -- -- -- -- 

1482 43o23.316' 99o08.012' 1.4 4.33 7.81 -- 8.54 15.0 712 21.25 

1468 43o17.219' 99o01.304' 1.4 3.56 6.02 -- 8.53 22.0 701 24.05 
 

1424 43o04.591' 98o40.088' 1.8 1.98 4.86 -- 8.50 30.0 736 39.25 
Lewis 
and 

Clark 
1416 43o03.250' 98o33.375' 2.0 1.87 4.71 -- 8.56 2.7 737 13.80 

1370 42o49.844' 98o09.287' 1.2 5.50 7.60 -- 8.48 2.4 735 13.30 

1352 42o46.300' 97o58.561' 1.0 5.11 9.26 -- 8.46 2.5 749 23.25 

1339 42o51.348' 97o53.029' 0.6 9.01 8.60 -- 8.45 2.3 858 20.60 

1320 42o51.282' 97o41.636' 0.5 8.87 9.07 -- 8.52 3.0 773 
27.85 

1305 42o51.314' 97o32.332' 0.6 9.13 8.16 -- 8.56 12.0 694 11.00 
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Table 2.  

Lake RKM N W Secchi 
(m) 

Turbidity 
(NTU) 

Temperature 
(oC) 

Dissolved 
Oxygen  (mg/l) pH Water 

Depth (m) 
Conductivity 

(ms/cm2)  
Total Suspended 

Solids (g/l)  

Oahe 1970 45o51.656' 100o23.004' -- -- -- -- -- -- -- -- 
 

1928 45o34.037' 100o28.575' 1.2 5.59 20.02 9.83 8.68 6.0 674 31.50 
 

1889 45o17.535' 100o18.125' 2.1 2.14 20.82 10.12 8.72 13.0 669 17.30 
 

1856 45o01.923 100o16.963' 3.4 1.87 20.87 9.43 8.61 10.0 629 13.65 
 

1804 44o45.172' 100o40.502' 1.7 2.05 22.22 10.70 8.74 13.0 1065 17.80 
 

1751 44o32.271' 100o31.431' 3.1 0.51 20.06 11.13 8.73 27.0 712 31.85 
Sharpe 

1726 44o26.199' 100o23.243' >3.4 0.78 14.42 10.90 8.60 3.4 700 25.40 

1720 44o20.692' 100o20.330' 0.3 10.49 19.31 10.76 8.60 3.4 753 31.90 

1677 44o15.597' 99o55.819' 0.5 10.95 23.21 9.83 8.82 3.5 872 27.65 

1650 44o08.096' 99o47.479' 3.7 2.20 21.30 9.23 8.69 7.0 733 18.40 

1624 44o11.478' 99o41.471' 4.4 1.25 21.75 9.11 8.70 8.0 723 16.05 

1591 44o03.803' 99o31.068' 6.0 0.62 19.84 9.57 8.72 18.0 727 22.65 
Francis 
Case 1588 44o02.264 99o25.429' 2.1 3.56 19.41 9.12 8.62 8.0 718 18.60 

1558 43o49.789' 99o20.251' 1.7 3.91 21.28 10.15 8.89 8.4 637 32.35 

1513 43o33.965' 99o19.321' 2.5 3.51 21.15 8.86 8.65 5.0 694 25.55 

1482 43o23.316' 99o08.012' 1.5 2.30 20.87 10.15 8.80 16.0 724 22.45 

1468 43o17.219' 99o01.304' 1.1 3.53 21.42 10.07 8.77 20.0 707 32.50 

1424 43o04.591' 98o40.088' 5.6 0.93 18.98 9.00 8.57 21.0 724 15.85 
Lewis 
and 

Clark 
1416 43o03.250' 98o33.375' 3.9 2.14 11.69 10.23 8.42 4.0 739 18.65 

1370 42o49.844' 98o09.287' 0.1 49.60 15.15 9.23 8.45 6.0 733 86.55 

1352 42o46.300' 97o58.561' 0.1 43.40 17.86 9.42 8.43 0.9 755 71.25 

1339 42o51.348' 97o53.029' 0.1 68.20 18.69 8.78 8.37 2.0 744 81.50 

1320 42o51.282' 97o41.636' 0.2 17.00 22.56 6.90 8.40 3.0 690 
28.53 

1305 42o51.314' 97o32.332' 0.5 14.70 22.38 8.89 8.48 8.0 659 26.85 
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Table 3. 

Lake RKM N W Secchi 
(m) 

Turbidity 
(NTU) 

Temperature 
(oC) 

Dissolved 
Oxygen  (mg/l) pH Water 

Depth (m) 
Conductivity 

(ms/cm2)  
Total Suspended 

Solids (g/l)  

Oahe 
1970 45o51.656' 100o23.004' 0.7 6.70 21.18 8.78 8.85 9.0 679 44.55 

1928 45o34.037' 100o28.575' 1.1 5.16 21.91 7.59 8.74 12.0 700 38.40 

1889 45o17.535' 100o18.125' 1.3 3.72 21.67 7.47 8.72 13.0 694 13.60 

1856 45o01.923 100o16.963' 1.6 2.92 21.33 7.56 8.74 18.0 679 23.95 

1804 44o45.172' 100o40.502' 0.8 6.06 22.19 7.15 8.76 17.0 909 27.20 

1751 44o32.271' 100o31.431' 3.0 1.97 20.09 7.89 8.78 26.0 728 27.00 
Sharpe 

1726 44o26.199' 100o23.243' 2.9 2.47 18.50 8.17 8.76 4.0 725 21.05 

1720 44o20.692' 100o20.330' 1.4 3.77 19.28 8.31 8.72 6.0 724 30.15 

1677 44o15.597' 99o55.819' 0.2 25.10 19.80 8.12 8.76 3.0 733 67.30 

1650 44o08.096' 99o47.479' 0.4 13.50 20.88 7.76 8.73 6.0 729 52.40 

1624 44o11.478' 99o41.471' 0.5 9.94 22.17 7.34 8.74 5.0 734 50.70 

1591 44o03.803' 99o31.068' 1.4 4.65 23.18 7.69 8.78 4.0 737 31.15 
Francis 

Case 1588 44o02.264 99o25.429' 1.0 7.38 22.93 7.2 8.75 5.0 736 29.55 

1558 43o49.789' 99o20.251' 0.3 17.90 22.12 7.24 8.78 4.0 743 29.15 

1513 43o33.965' 99o19.321' 0.5 9.28 21.47 7.34 8.78 3.0 751 26.15 

1482 43o23.316' 99o08.012' 1.0 6.38 24.46 7.34 8.77 16.0 738 9.65 

1468 43o17.219' 99o01.304' 1.5 3.82 24.62 7.13 8.74 23.0 735 12.50 

1424 43o04.591' 98o40.088' 3.9 1.70 24.62 7.25 8.75 20.0 737 12.50 
Lewis 
and 

Clark 
1416 43o03.250' 98o33.375' 1.6 3.49 23.30 6.65 8.61 3.0 736 8.34 

1370 42o49.844' 98o09.287' 0.9 9.22 22.69 6.91 8.62 8.0 737 11.65 

1352 42o46.300' 97o58.561' 0.5 14.90 22.41 6.13 8.34 1.6 747 29.85 

1339 42o51.348' 97o53.029' 0.4 15.80 21.89 6.06 8.33 2.0 752 33.50 

1320 42o51.282' 97o41.636' 0.3 19.30 22.43 7.12 8.62 7.0 751 24.85 

1305 42o51.314' 97o32.332' 0.4 15.10 22.90 8.06 8.73 9.0 739 
14.20 214 
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Appendix 2. 

Spatially explicit maps of Lakes Oahe (Figure 1.), Sharpe (Figure 2), Francis Case 

(Figure 3) and Lewis and Clark (Figure 4) describing total phosphorus (upper left; blue; 

mg/L), total kjeldahl nitrogen concentration (lower left; yellow; mg/L), chlorophyll a 

concentration (upper right; green; µg/l), and total cladoceran density (lower right; red; 

#/L) averaged throughout 2008. 
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Figure 1 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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