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ABSTRACT 

A PHYSIOLOGICAL ASSESSMENT OF WETLAND HABITATS FOR SPRING-

MIGRATING DUCKS IN THE AGRICULTURAL LANDSCAPES OF THE 

SOUTHERN PRAIRIE POTHOLE REGION 

ADAM K. JANKE 

2016 

The conversion of grassland and wetland ecosystems in the Prairie Pothole 

Region (PPR) has been a pervasive challenge for conservationists dating back to the early 

1900s. The legacy of ever-increasing agricultural intensity in the southern portions of the 

PPR, including eastern South Dakota, has left many wetland ecosystems in a matrix of 

intensive agricultural production. With little surrounding nesting cover, these wetlands 

are thought to have limited potential for waterfowl reproduction but may still play an 

important role facilitating migration of waterfowl en route to northern breeding areas 

during spring. My research sought to understand the contributions of wetlands in 

intensively-farmed landscapes for spring-migrating ducks. I measured a number of biotic 

attributes of wetlands including the density of aquatic invertebrates and submersed 

macrophytes and abundance of spring-migrating ducks. I also measured concentrations of 

lipid metabolites circulating in plasma of female lesser scaup (Aythya affinis) and blue-

winged teal (Anas discors) to understand refueling performance of migrants using 

wetlands with variable biotic and abiotic characteristics. Duck abundance, refueling 

performance, and prey abundance were generally similar across the upland cultivation 

gradient, if not slightly greater in more intensely-farmed landscapes. These results 

suggested wetlands in intensively-farmed landscapes in eastern South Dakota currently 
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confer similar benefits to migrating waterfowl as those in less intensively-farmed 

landscapes. An analysis on wetland covariates and migrant refueling performance 

revealed density of fathead minnows (Pimephales promelas) in wetlands was negatively 

associated with refueling performance. Further analyses suggested this finding was likely 

the result of trophic effects of fathead minnows on invertebrate and plant communities in 

the wetlands. Taken together, my results suggested wetlands in agricultural landscapes in 

eastern South Dakota can provide novel refueling habitats for migrating ducks when 

factors such as artificial connectivity or water permanency that facilitate fathead minnow 

colonization and persistence are controlled. Further, they raise questions about whether 

wetlands in intensively-farmed landscapes are indeed resilient to adjacent land use or 

simply compensate for degradation through increased productivity characteristic of 

landscapes with intensive crop production. Answering this latter question is key for 

understanding agricultural impacts and setting wetland restoration priorities in the region. 
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CHAPTER 1: ON CULTIVATION, CONSERVATION, AND MIGRATION IN 

NORTH AMERICA’S DUCK FACTORY: AN INTRODUCTION 

The challenges posed by agriculture for waterfowl conservation in North 

America’s Duck Factory, the Prairie Pothole Region (PPR), have defined the discourse of 

conservationists for decades. Speaking about the state of the prairie breeding grounds at 

the first North American Wildlife and Natural Resources conference in 1936a, John 

Huntington vice president of More Game Birds in America, the precursor to Ducks 

Unlimited, said,  

“Settlement and utilization of the land (principally for agriculture) have 

brought about changes in this part of the producing plant which have been 

truly disastrous to the ducks. In the wake of the plow, approximately 80% 

of all duck breeding places have dried up. Of those that remain many have 

become so unattractive to the ducks that they are no longer used by them” 

In that same lecture, Huntington concluded, despite conservation and restoration 

efforts planned and ongoing, “… it seems doubtful whether maximum production of all 

the breeding grounds in the United States will ever again supply a sizable percentage of 

the continental duck crop.” At the same time, those convened at the meeting and 

elsewhere were laying the ground work for North American wildlife conservation efforts 

to proceed throughout the 20th and early 21st century by developing innovative funding 

mechanisms like the Federal Aid in Wildlife Restoration Act of 1937 and the Migratory 

Bird Hunting Stamp Act of 1934 and organizing political and private financial support 

for wildlife conservation in the prairies through for example the incorporation of Ducks 

                                                 
a U. S. Government Printing Office (1936) Proceedings of the North American Wildlife Conference, 518–

523 
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Unlimited in the U.S. and Canada in 1937. So started a comprehensive approach for 

funding and delivering waterfowl conservation in North America, with a specific eye to 

the duck factory, that continues to present and has produced volumes of scientific 

literature, expended millions of dollars, conserved thousands of acres of grassland and 

wetland habitats, and yielded record waterfowl population size estimates. Despite the 

success of waterfowl conservation, the same fundamental challenges remain today, 

evidenced by recent conclusions of Hagy and colleaguesb at the close of the 6th North 

American Duck symposium in 2013 where they said, 

“…unless there is an immediate and significant change in a) wetland 

protection measures and b) agricultural policies that provide a 

disincentive to wetland drainage and conversion, the recent “good old 

days” of abundant wetlands for waterfowl are likely coming to a close”  

Whether the “good old days” lamented as perhaps bygone by Hagy and 

colleagues were the same as those lamented by Huntington, and his contemporaries like 

Frederick Lincoln, Logan Bennett, Jay “Ding” Darling, and other conservation icons at 

that 1936 conference we will perhaps never know. What is clear however, is that 

landscape modifications associated with agriculture are the premier challenge for 

waterfowl conservation, a fact as true today as it was in the heart of the dust-bowl era in 

1936. Add to the mix the emerging, complex challenges of a changing climate and a few 

billion additional human mouths to feed, and the task for ensuring sustainable waterfowl 

and other wildlife populations in North America’s Bread Basket during the 21st century 

seems evermore daunting. If, however, these challenges are going to be met it will be 

                                                 
b Hagy et al. (2014) Wildfowl Special Issue 4, 343–367 
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done through sound policy and public engagement, founded on scientific understanding 

of the interactions between agricultural land uses, wetlands, and waterfowl and the 

cultural and economic benefits they confer. It is with this backdrop that my dissertation 

research was conducted, and it is my sincere hope that the insights gained here and the 

additional questions explored in response to this work may make a small, incremental 

step towards the decades-long effort to conserve the ecological contributions of North 

America’s Duck Factory for future generations. 

STUDY DESIGN 

The primary question I set out to address in my dissertation was; what is the 

current condition of prairie wetlands in agricultural landscapes with respect to their 

potential contributions to spring-migrating ducks? Volumes have been written on the 

factors influencing wetland use and spatial distribution of breeding ducks in the PPR. 

Perhaps less appreciated and certainly less studied are the contributions prairie wetlands 

make to ducks moving through the southern PPR, en route to northern breeding ranges in 

the northern contiguous U.S., Canadian prairies, Boreal Forest, and Alaska. Millions of 

ducks annually use the PPR as the ‘gateway’ to the rest of North America’s prime 

breeding habitats, but to date the role of the region for migrants, particularly wetland-

foraging migrants, has received little consideration. Because well-over 95% of the 

southern PPR is outside the direct-management control of state or federal wildlife 

conservation agencies, addressing this question meant I needed to conduct a majority of 

my research on working farms and ranches where thousands of wetlands remain and are 

exposed to a wide-variety of disturbances and management strategies.  
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I conducted my research in the PPR of eastern South Dakota, an area decidedly 

important for breeding waterfowl in the U.S., but also a region with a relatively longer 

legacy of intensive agricultural production than northern portions of the PPR. The climate 

and geography of the region have precluded the near-complete conversion to agriculture 

as seen in the other southern portions of the PPR in southwestern Minnesotac and Iowad. 

Therefore, eastern South Dakota seemed ideally suited to answer my research question 

because migrant ducks move through the region en masse annually and, in this landscape, 

I was able to find a diversity of wetlands distributed across a gradient of crop production 

intensity.  

All counties east of the Missouri River in South Dakota comprise the PPR in the 

state with a total area of nearly 92,000 km2
. I constrained my study to area to the glaciated 

portions of the region that had at least 4 ha/km2 of wetlands mapped by the National 

Wetlands Inventory in 1985e to exclude areas with low wetland densities. The final study 

area was 46,770 km2 and comprised the core of the PPR in the state. The U.S. Fish and 

Wildlife Service or South Dakota Department of Game, Fish and Parks owned and 

managed only 2.4% of the land area, leaving the rest for private or tribal ownership and 

management. I stratified the area into 3 categories of upland cultivation intensities by 

calculating the proportion of non-developed uplands that were cultivated based on 

available satellite-based land cover mapsf. The resulting classification divided the study 

area into high (18.3%), medium (47.6%) and low (34.1%) crop-intensity strata, from 

which I drew a random sample of 30 study areas to visit and sample wetlands and ducks. 

                                                 
c Oslund et al. (2010) Journal of Fish and Wildlife Management 1, 131-135 
d Miller et al. (2009) Wetlands 29, 1146-1152 
e Johnson & Higgins. (1997) Wetland resources of eastern South Dakota. South Dakota State University 
f Fry et al. (2011) Photogrammetric Engineering and Remote Sensing 77, 858-864 
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These study areas had a comparable ownership pattern as the rest of the study area: 97% 

of the 1,500 km2 of land included in my study was privately owned, with most of it used 

for some kind of agricultural production, either pastoral or cultivation.  

With the cooperation of over 300 farmers, ranchers, and landowners, I sampled 

305 wetlands during three spring migration periods in 2013, 2014, and 2015. The 

wetlands ranged in size and character — ranging from a 500 m2 seasonal basin to a 733 

ha fishing lake — but were all potentially usable by spring-migrating ducks. Most 

wetlands were between 1 and 15 ha and had semipermanent hydroperiods. Only 2% of 

these wetlands were on lands completely owned by a state or federal wildlife agency, 

11% had split public-private ownership, and the remaining 87% were owned entirely by 

private land owners. I set out to measure the potential contributions of these wetlands to 

migrating ducks, focusing specifically on their utility for migrants and the abundance of 

aquatic invertebrate prey.  

Measuring habitat quality for a breeding duck is arguably simple: count the 

number of eggs laid and estimate their prospects of successfully hatching or fledging and 

compare those metrics across the range of habitat conditions of interest. Measuring 

habitat quality for migrants however, is more complex because migrants spend short 

periods at individual stopover locations and then depart for far-away breeding habitats, 

stopping in additional landscapes along the way. In a landscape like the PPR, where 

potential stopover locations number in the 100s of thousands, measuring the contribution 

of an individual location seems almost infeasible. However, we know migrants need 

energy-dense fats to fuel their flightsg and, for female ducks, the need for those fats 

                                                 
g Jenni & Jenni-Eiermann. (1998) J. Avian Biol. 29, 521-528 
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extends beyond the migratory period and factors into their ability to successfully lay 

clutches of eggs once they arrive on the breeding groundsh. Therefore, indexing lipid 

metabolism at an individual stopover location should be a suitable metric to measure the 

quality of a migratory stopover. The only direct-method to measure fat accumulation 

efficiency would be to capture the same individual on multiple occasions on the same 

stopover location to measure changes in fat content or an index thereof, like body mass 

— a daunting task for any study, and almost certainly impossible to pull off at any 

meaningful scale for migrating ducks in the PPR. Fortunately, measuring concentrations 

of metabolites circulating in plasma has been identified as an alternative to successive 

captures to index the trajectory of lipid reserves in a migrant from a single capture eventi. 

Metabolites are like the fingerprints of metabolism, leaving a trail of evidence behind on 

the recent nature of metabolism by an individual, rising and falling during transitions 

among metabolic states. By measuring concentrations of key lipid metabolites circulating 

in plasma of migrating ducks, we can approximate the recent trajectory of lipid 

metabolism in birds collected among contrasting habitats — perhaps the ideal metric for 

measuring the quality of a habitat for a migrating bird. I used this approach with lipid 

metabolites in migrating ducks collected in my study areas to combine with more 

traditional habitat-quality metrics, like migrant abundance and food abundance, to 

comprehensively evaluate the contributions of wetlands in agricultural landscapes in the 

southern PPR.  

My research focused on two duck species — blue-winged teal (Anas discors) and 

lesser scaup (Aythya affinis). Key similarities and differences between these two species 

                                                 
h Ankney et al. (1991) Condor 93, 1029-1032 
i Jenni-Eiermann & Jenni. (1998) Biol Cons Fauna 102, 312-319 
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made them ideally-suited to address my research questions. Both species are wetland-

dependent during migration, meaning they spend all their time courting, resting, or 

foraging during migration on wetlands, in contrast to many waterfowl species that find 

substantial quantities of foods in the form waste grain in agricultural fields. Therefore, I 

could link the physiology of these two species to the quality of the wetlands in the 

landscape in which I encountered them. The second desirable attribute these two species 

shared was that they were ubiquitous and therefore could be reliably found across the 

range of land uses and wetland types that were the focus of my research. Finally, both 

species had diets comprising mainly invertebrates during migration and transition to 

breeding in the PPR, and therefore were thought to likely respond physiologically to 

factors influencing the abundance of their primary prey in wetlands. The two species 

diverged in their use of specific wetland types for foraging, with blue-winged teal using 

shallow-water foraging habitats in small wetlands or along the margins of larger wetlands 

and lesser scaup using large-open water foraging habitats. Therefore, collectively, the two 

species could conceivably use the entire range of possible foraging habitats for wetland-

foraging ducks available during migration in the PPR. Collectively, these shared and 

divergent attributes made these two species ideal for addressing my research questions 

and for drawing broader inferences about the condition of wetlands for ducks in the 

southern PPR.  

DISSERTATION CONTENT AND DIRECTION 

In addressing my central research question, I have prepared 7 chapters in this 

dissertation. This introductory chapter and the final conclusions chapter were both written 

in first person and with a decidedly non-technical tone. I surmised that the reader would 
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find sufficient technical writing in the research chapters of my dissertation, leaving the 

introductory material and conclusion chapters to communicate first the intent of the 

dissertation and then the implications thereof in a simpler, more accessible manner. It is 

my hope that biologists and conservationists interested in my results can find the most 

relevant information in the conclusions chapter, without concern for the important but 

dense technical details contained in the research chapters. I wrote my research chapters 

(2-6) using plural pronouns because they, like most scientific endeavors, were 

collaborative efforts and will ultimately be published with coauthors. Despite use of 

plural pronouns, I assume all responsibility for the content and conclusions in the 

chapters in their present form. The methods and procedures used throughout this 

dissertation were reviewed and approved by the Institutional Animal Care and Use 

Committee at South Dakota State University (12-013A) and authorized by the U.S. Fish 

and Wildlife Service (Scientific Collecting Permit MB068976) and South Dakota 

Department of Game, Fish and Parks (Scientific Collector’s Permits Number 25 and 7). 

In my first two research chapters, I explored questions about the utility and 

possible limitations of using plasma metabolite concentrations in migration ecology 

research: first examining the consequences of sample quality on potential inferences 

drawn in such studies (Chapter 2) and then examining the utility of compositing two lipid 

metabolites into one index of refueling performance (Chapter 3). Building on insights 

gained in the first two chapters, I then explored the question central to my dissertation in 

Chapter 4 — what is the current contribution of wetlands in intensively farmed 

landscapes for spring-migrating ducks? — by combining all aspects of the data collected 

for my research. Building on understanding gleaned in Chapter 4, I then set out to 
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examine wetland-specific factors influencing refueling performance of blue-winged teal 

and lesser scaup collected on wetlands in which I had collected substantial additional 

landscape and wetland-specific information. Finally, in Chapter 6, I took advantage of 

interannual variability in phenology of the four springs I sampled to evaluate how diets 

and physiological condition of blue-winged teal and lesser scaup varied among years.  

It is my hope that the findings of this dissertation will find applications in the 

challenging, but perpetually important, work of conservation in the Duck Factory and 

perhaps more broadly. 
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CHAPTER 2: CONSIDERATIONS FOR SAMPLE QUALITY IN AVIAN PLASMA 

METABOLITE STUDIES 

ABSTRACT 

Field studies are increasingly employing concentrations of key metabolites 

circulating in plasma of wild birds to infer variation in physiological performance. An 

implicit assumption is that plasma samples collected in field environments yield unbiased 

measurements of concentrations of metabolites circulating in plasma. We explored the 

extent and apparent consequences of hemolysis on measurements of four common 

metabolites commonly used in field studies. We found extensive hemolysis, indicated by 

plasma hemoglobin concentrations, in our samples taken postmortem from ducks. The 

degree of hemolysis in a sample affected metabolite concentration estimates by 

artificially increasing absorbance or interfering with reactions. We also found 

investigator-associated variation in degree of hemolysis, suggesting inter-investigator 

variation in sampling methods or handling techniques could lead to variation in sample 

quality, which could subsequently be mistaken for spatial variability in metabolite 

concentrations. Research in hospital emergency departments has shown high-pressure 

environments are a catalyst for poor sample quality and manifest in poor patient 

outcomes. We suggest challenging environments characteristic of avian field studies have 

the same consequences for sample quality, and could lead to poor scientific inferences if 

the consequences of sample quality are not given full consideration. 

INTRODUCTION 

The utility and application of plasma metabolite concentrations for indexing daily 

lipid and protein dynamics in avian research has been the subject of considerable 
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empirical research in field and laboratory settings (e.g., Jenni-Eiermann and Jenni 

1994;1998, Guglielmo et al. 2005, Anteau and Afton 2008, Smith and McWilliams 

2009). This proliferation of research was feasible because of the ease of blood sampling 

from capture birds and relatively inexpensive, high-throughput capabilities of modern 

metabolite assays conducted on microplate spectrophotometers. Accordingly, researchers 

from a wide variety of ecological or conservation disciplines are increasingly collecting 

plasma samples to address applied and theoretical questions. A liability of widespread 

adoption of metabolite concentrations in field research is that investigators with varying 

experiences with phlebotomy may be unfamiliar with potential pitfalls of improper blood 

sampling and handling. Several intricate steps are involved in procuring quality blood 

samples and there is great potential for sample degradation (Owen 2011); moreover, 

sampling under field conditions adds to the risk of sample degradation. Accordingly, 

there is a clear need to evaluate sources of sample degradation to ensure inferences drawn 

from metabolite concentrations are unbiased.  

We recently noted the tendency for substantial variation in plasma coloration 

(e.g., Figure 1) in field studies on waterfowl across a range of conditions and 

investigators. Although plasma has natural color variation associated with circulation of 

pigments (Tella et al. 1998), some variation we observed seemed to fall outside values 

expected for carotenoids and therefore indicative of hemolysis, which has potentially 

negative consequences for inferences in avian metabolite studies (Owen 2011). 

Hemolysis is the rupturing of red-blood cell membranes that can occur during sample 

extraction or processing. When hemolysis occurs, it releases hemoglobin and other 

intracellular substances into surrounding plasma. Hemolysis can impact a wide variety of 
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clinical metrics measured in blood through several mechanisms, including direct 

interference with reagents or reactions, dilution of plasma, or release of additional 

molecules of the substance being measured into plasma (Andreasen et al. 1996, Brady 

and O'Leary 1998, Cohen et al. 2007, Lippi et al. 2008). The potential for biased 

inferences based on hemolyzed samples in clinical applications has received considerable 

study and led to the formation of strict blood sampling and handling protocols to attempt 

to minimize such biases in the biomedical fields (confer Lippi et al. 2008). Here, we 

present the results of an evaluation of the extent of hemolysis that can occur in a field 

study, explore the apparent consequences of hemolysis on observed metabolite 

concentrations, and evaluate the nature of hemolysis impacts with a spike-recovery 

experiment with hemolyzed samples. We use these results and a review of the biomedical 

literature on hemolysis to discuss considerations for improving plasma sample quality in 

avian field research.   

METHODS 

We collected plasma samples from spring-migrating female lesser scaup (Aythya 

affinis) and blue-winged teal (Anas discors) associated with ongoing research in eastern 

South Dakota. We used shotguns to collect birds in situ so as to not bias metabolite 

concentrations with bait-capture methods (e.g., Dieter et al. 2009). Immediately after 

collection, we drew a ca. 1 mL blood sample via cardiac puncture with a 3 mL 

heparinized syringe and 16-21 gauge 38 mm needles. We removed the needle and 

transferred blood to a heparinized 1.5 mL microcentrifuge tube in the field and stored it 

in a cooler with ice packs. Field protocols specified that blood samples be handled 

carefully to avoid hemolysis and stored in a way that avoided freezing prior to 
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centrifuging. We centrifuged whole blood within 4 hours of collection in the field with 

microcentrifuges that ran on power inverters in vehicles. After centrifuging for 5-10 

minutes at 4,000 - 6,000 rpm, we transferred plasma to a non-heparinized 

microcentrifuge tube and stored it on ice packs until freezing at -20 C the evening of field 

sampling. We transferred plasma to a -80 C freezer within 1 month of collection until 

processing.  

We measured concentrations of 4 metabolites (triglycerides, glycerol, uric acid, 

and β-hydroxybutyrate) and the concentration of plasma hemoglobin (Hb) in all samples. 

The four metabolites were each commonly used in avian research for indexing lipid 

metabolism (triglycerides, glycerol, and β-hydroxybutyrate) or protein breakdown (uric 

acid; e.g., Jenni-Eiermann and Jenni 1994, Guglielmo et al. 2005, Smith and McWilliams 

2010). We measured all metabolite concentrations in duplicate on 96-well microplates 

and developed unique standard curves for each plate with duplicate wells of serially-

diluted standards. We diluted all samples 3-fold with 0.9% NaCl solution. We followed 

protocols adjusted for small sample volumes and using commercially available reagents 

and standards following common protocols used in avian research (Guglielmo et al. 2005, 

Appendix 2). We reran all duplicates with coefficient of variation >15%.  

We measured free glycerol (GLYC) with the Free Glycerol Reagent (Sigma 

Catalog F6428), reading absorbance at 540 nm and subtracting a background absorbance 

at 750 nm. We added Triglyceride Reagent (Sigma Catalog T2449) and reread 

absorbance (540 nm) and background absorbance (750 nm) to measure total triglycerides 

(TRIG), which includes the fraction of free glycerol measured in the first step. We used a 

serial dilution of the Glycerol Standard Solution (Sigma G7793) for plate standards. We 
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subtracted free GLYC from total TRIG to calculate true TRIG. Package documentation 

for TRIG and GLYC reagents indicated highly hemolyzed or icteric samples should be 

avoided but did not provide information on the nature of hemolysis impacts on 

concentration estimates. Background readings we used were intended to correct for 

interference from background color variation, trace solids, or absorbance by microplate 

wells.  

We measured concentration of β-hydroxybutyrate (BUTY) with a kinetic assay 

and the D-3 Hydroxybutyric Acid Assay Kit (R-Biopharm 10907979035) and β-

Hydroxybutyrate Linearity Standards (Stanbio 2450). The assay read absorbance with no 

background reading at 492 nm every minute for 40 minutes and estimated BUTY 

concentration from change in absorbance over the first 30 minutes against change in 

absorbance in the last 10 minutes. The assay documentation did not explicitly note 

impacts of hemolysis on performance but noted interfering substances were possible and 

spiking trials could be used to evaluate robustness of the assay against such substances. 

We measured concentration of uric acid (URIC) with endpoint assay (Teco 

Diagnostics U580) and a 2.97 mmol/L standard solution mixed from uric acid powder 

(Sigma G7126). We did not use the kit standard because it was too low for values 

commonly seen in birds (Seaman et al. 2005). We measured absorbance at 520 nm and 

background absorbance at 700 nm. The kit documentation did not report any potential 

interference from hemolysis in samples, but Cohen et al. (2007) previously reported 

hemolysis can interfere with URIC acid concentration estimates in avian plasma.  

We were interested in quantitatively estimating the degree of hemolysis in our 

plasma samples, rather than subjectively scoring color variation as has been reported in 
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some previous work (e.g., Cohen et al. 2007). Hemolysis releases contents of red blood 

cells, including hemoglobin (Hb), into plasma. Although plasma has low baseline 

concentrations of Hb (0.03 g/dL in humans; Lippi et al. 2008), we surmised that color 

variation indicative of hemolysis could be quantitatively expressed based on 

concentration of Hb. We measured Hb in plasma with an endpoint assay with the 

Hemoglobin Colorimetric Assay Kit from Cayman Chemical Company (700540). We 

predicted increases in plasma Hb concentrations would reflect increased hemolysis in 

samples and capture color variation noted in our samples, which was qualitatively 

supported by inspection of samples and Hb concentrations in our study (e.g., Figure 1).  

We tested for differences in mean concentration of Hb in plasma samples between 

the 2 species in our study with a t-test. We tested for differences in mean Hb 

concentration among 5 investigators that did a majority of the collections in our study 

(≥30 samples each, range: 31 to 292 samples per investigator) with an Analysis of 

Variance (ANOVA). All investigators used the same type of equipment (e.g., needles, 

syringes, centrifuges, heparin) and collection methods (shooting with shotguns) and were 

trained in the same manner, so we should expect no inter-investigator variation. We 

surmised any variation in Hb concentrations among investigators may indicate sensitivity 

of Hb concentrations, and thus hemolysis, to handling methods that varied slightly among 

investigators. We tested for investigator differences with an Analysis of Covariance 

(ANCOVA) that included a covariate for species and used a Tukey Honest Significant 

Difference test for post-hoc multiple comparisons. Hb concentrations were right-skewed, 

so we natural log-transformed concentrations in all analyses. We plotted the relationship 

between each individual metabolite and log-transformed Hb concentrations to evaluate 
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systematic biases in metabolite concentrations estimates associated with Hb. We tested 

for linear relationships between metabolites concentrations and log-transformed Hb with 

a simple linear model and interpreted slope coefficients to quantify the strength of the 

relationship between Hb and metabolite concentration estimates. To evaluate potential 

exclusion rules for Hb concentrations in plasma, we plotted the Pearson’s correlation 

coefficient between log-transformed Hb and metabolite concentrations across a range of 

cutoff values from the 5th to the 95th percentile of log-transformed Hb concentrations 

observed in our study. We truncated the data set at each sequential cutoff value and 

plotted the correlations and the proportion of the sample excluded.  

 To evaluate the impacts of hemolysis on estimates of metabolite concentrations 

we conducted a spiking-recovery experiment with a random sample of 50 plasma samples 

distributed across a range of Hb concentrations. We sorted samples from birds collected 

in 2015 (n = 104) into 6 equally-spaced Hb concentration bins and randomly selected 

equal portions (or all samples in the bin in cases with low numbers) to reach a total 

sample size of 50. We loaded each sample into 4 wells on each plate, following the same 

assay procedures described above for all 4 metabolites (BUTY, GLYC, total TRIG, and 

URIC). We spiked 2 wells for each sample with 5 μL of dH20 and 2 wells for each 

sample with 5 μL of a mid-concentration standard from the serial dilution for each assay. 

We used the 0.705 mmol/L standard for the TRIG and GLYC assays, 1 mmol/L standard 

for the BUTY assays, and 0.7425 mmol/L for the URIC assays. We re-ran all four wells 

for a sample in cases where spiked or non-spiked duplicates had CV >20% and diluted 

and reran samples when concentrations were outside the standard curve.   
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 Our analyses of the spiking experiment sought to evaluate whether Hb 

concentrations interfered with the recovery of the spiked concentration in each individual 

sample. Therefore, we included all 4 wells from each sample in a generalized linear 

mixed effects model that included a random intercept term for the sample and tested for a 

significant interaction between log-transformed Hb concentration and a dummy variable 

indicating whether the sample was spiked. Using each individual well as the sample unit 

and an associated random intercept term allowed us to functionally test whether variation 

introduced by Hb was greater than intra-assay variation in sample concentration 

estimates. The additive spike term accounted for the predicted increase in metabolite 

concentration for each spiked sample and a significant interaction with Hb would indicate 

concentrations changed differently in response to the spiking treatment at different Hb 

concentrations. No support for the interaction term would therefore suggest Hb in the 

sample did not interfere with the recovery of the spiked concentration. We tested the 

significance of the spike term with ANOVA on a model without the interaction term with 

all other main and random effects. We conducted the analysis for each metabolite except 

true-TRIG, because it is a calculation from assays of total TRIG and GLYC, rather than 

directly measured.  

RESULTS 

We included 318 female blue-winged teal and 231 female lesser scaup plasma 

samples in our study. Hb concentrations for both species were right-skewed (Figure 2). 

Mean Hb concentration was 0.556 g/dL (SD = 0.732, range = 0.009 – 8.096 g/dL) for 

blue-winged teal and 0.731 g/dL (SD = 0.683, range = 0.069 – 4.594 g/dL) for lesser 

scaup. Lesser scaup had higher mean log-transformed Hb concentrations than blue-
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winged teal (t = -4.973, P < 0.001). There was variation in mean log-transformed Hb 

concentrations among the 5 primary investigators in the study (F4,525 = 11.65, P < 0.001; 

Figure 3). The multiple comparisons test revealed Investigator 2 had lower (P ≤ 0.003) 

mean Hb concentrations than all but 1 other investigator (P = 0.212; Figure 3). Log-

transformed Hb concentration was positively associated with all the metabolites but had 

varying magnitudes of effects (Figure 4). Listed in increasing order of slope estimates (b 

± SE) were: BUTY (0.156 ± 0.030, P < 0.001), URIC (0.169 ± 0.032, P < 0.001), true 

TRIG (0.282 ± 0.044, P < 0.001), GLYC (0.744 ± 0.049, P < 0.001), and total TRIG 

(1.026 ± 0.057, P < 0.001). The correlation and cut off value analysis revealed similarly 

variable correlations among the metabolites and generally increasing correlations with 

higher Hb cut off values (Figure 5). Log-transformed Hb did not have a significant 

impact on the recovery of known concentrations of GLYC (P = 0.418), total TRIG (P = 

0.528), or BUTY (P = 0.427). There was however a slight impact of Hb on recovery of 

URIC spikes (P = 0.048) and the regression coefficient on the spike-by-Hb interaction 

indicated increased Hb concentrations reduced recovery of the 0.743 mmol/L spike (b = -

0.024,SE = 0.012, t = -1.97). 

DISCUSSION 

Our results provide evidence for potential biases in plasma metabolite studies 

resulting from unaccounted variation in hemolysis and have implications for design and 

analysis of plasma metabolite studies. In general, most samples had low Hb 

concentrations, as expected for plasma. However, there was a long-right tail on the 

distribution of Hb concentrations for both species, indicating substantial hemolysis had 

occurred in the process of collecting and preserving some samples. Our analyses of 
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metabolite concentrations and our spike-recovery experiment suggested that, for some 

assays (mainly total triglycerides and glycerol), Hb can bias concentration estimates high 

and, for others (uric acid), Hb can interfere with detection of the metabolite in the sample, 

potentially biasing estimates low. Further, our analyses suggested variation in blood 

sampling or handling skill by individuals following the same protocol can produce 

variation in sample quality. Such unaccounted for variation in sampling methods and 

biases in metabolite concentration estimates has potential for negative impacts on 

inferences drawn in metabolite studies and should therefore be given full consideration in 

study design, training protocols, and data analyses. 

Many factors during sampling and processing could have given rise to the 

hemolysis we measured during our study. First, we are unaware of any studies evaluating 

the consequences of taking blood samples postmortem. Although blood samples in our 

study were taken within seconds or minutes of mortality, blood was not circulating at the 

time of sampling, which may directly or indirectly lead to hemolyzed samples. Anecdotal 

accounts from personal experience of the authors sampling live and dead birds supports 

the notion that darker-red samples are more common from postmortem samples, though 

lighter shades of red in plasma samples seem ubiquitous (D. Swanson, University of 

South Dakota personal communication; personal observations). The occasional difficulty 

in extracting blood postmortem could result from the lack of circulation or 

exsanguination following shooting and may lead to overly aggressive blood sampling 

methods (e.g., too much negative pressure on the syringe plunger) that ruptures red blood 

cells. Evaluating potential biases associated with sampling blood postmortem may be 

merited in light of the increasing number of studies collecting plasma from dead birds 
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(e.g., Tidwell 2010, Anderson and Lovvorn 2011, Anteau and Afton 2011, Casady 2013). 

Investigator differences in Hb concentrations we found however seem to suggest post-

collection (i.e., after-shooting) methodological variation may account for a majority of 

hemolysis observed in our study. The investigator that had the lowest mean Hb 

concentrations in our study was also the most familiar with factors influencing plasma 

quality, suggesting thorough training and protocols and emphasizing patience could 

potentially guard against factors leading to hemolysis. Such factors include, the size of 

the needles used during blood draw; the presence of positive or negative pressure on the 

syringe during blood draw; the anticoagulant used (EDTA can lead to hemolysis); the 

stability of blood storage temperatures after collection and before centrifugation; the 

balance, speed, and duration of centrifugation; and incidental transfer of red-blood cells 

below the supernatant to the plasma vial.  

 Our results suggest exclusion of highly-hemolyzed samples is necessary to gain 

appropriate insights for all 4 metabolites we measured. The presence of Hb in the sample 

appeared to directly interfere with detection of uric acid based on the results of the 

spiking experiment, which is consistent with previous work on avian plasma (Cohen et al. 

2007). BUTY, TRIG, and GLYC all tended to elevate in the response to increased Hb, 

either because additional molecules were released from red-blood cells after hemolysis or 

because interfering substances associated with hemolysis (i.e., Hb) absorbed at the same 

wavelengths as the reactions in the assay. This latter conclusion is consistent with the 

tendency for Hb to absorb most intensively between 540 and 580 nm (see figure 2 in 

Sonntag 1986), the range in which GLYC and TRIG (540 nm) assays read absorbance 

and well outside background absorbance readings (700 nm). There was a comparatively 
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weak correlation between Hb and BUTY concentrations, which was likely because the 

kinetic assay, where concentration is estimated from changes in absorbance through time 

rather than at a single point as in endpoint assays, corrects for increased baseline 

absorbance in the presence of Hb (Guder 1986). Similarly, true TRIG was less correlated 

with Hb than GLYC and total TRIG, which may have resulted from control over baseline 

Hb absorbance in the GLYC determination step. 

The biomedical community classifies any sample with >0.03 g/dL plasma Hb as 

hemolyzed (Lippi et al. 2008). In our study, only 2 samples from each species fell below 

this cut off, which probably suggests baseline plasma Hb concentrations in birds are 

higher than in humans, though we were unable to find baseline concentration estimates in 

the literature. The cut off analysis (Figure 5) does not seem to offer much promise in 

identifying a cut off value under which there is little correlation between Hb and total 

TRIG, true TRIG, or GLYC concentrations unless an appreciable proportion (i.e., >80%) 

of the data are excluded. Inspection of the plots suggests that log-transformed Hb 

concentrations > 0 (1 g/dL Hb) are consistently problematic for both species, so this 

value may serve as a suitable minimum cutoff. This criteria would exclude 11.6% of 

blue-winged teal and 22.1% of lesser scaup samples in our study. Discriminating highly-

hemolyzed samples without the additional analytical step of quantitative Hb 

measurements used here may be feasible with the intensity of red coloration in the 

samples (Figure 1). However, this technique may need further evaluation because of the 

latent color variation in plasma and demonstrated inconsistencies among observers in 

ranking coloration of plasma (Tella et al. 1998). Further work with that directly simulates 

hemolysis in otherwise clean samples (e.g., Andreasen et al. 1996) would be an 
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improvement over the correlational and spike-recovery methods we used and may 

provide a more concise approximation of an ideal cutoff criteria.  

The high-stakes, high-pressure environment of emergency departments has long 

been recognized in the biomedical community as a substantial liability for the accuracy 

and reliability of laboratory diagnostics and ultimately patient outcomes (Lippi et al. 

2011). If the conditions of the emergency department are enough to lead to poor sample 

quality among highly-trained professionals in biomedical disciplines, it seems the 

challenging conditions of field research and likely low familiarity with phlebotomy 

among field ecologists, may be a catalyst for poor sample quality. Therefore, we 

encourage investigators to give full consideration to the factors likely to impact sample 

quality and to consider exclusion criteria for highly hemolyzed samples. Careful blood 

handling techniques should include the following considerations (Lippi et al. 2008, Owen 

2011): use the largest-diameter needle feasible (<21 ga. for postmortem samples); take 

the smallest blood volumes necessary for experiments and suitable replication; expel 

whole blood from syringes after removing needles; ensure blood samples are cooled and 

remain at a constant temperature before centrifuging; centrifuge samples as soon as 

feasible; ensure centrifuges are balanced and running at appropriate speeds and for 

appropriate durations; and ensure only plasma from the supernatant is transferred to the 

final vial. Although our study and review has focused on plasma metabolites, hemolysis 

can plague a diversity of other commonly measured substances in plasma (e.g., creatine 

kinase; Sonntag 1986, Lippi et al. 2008) and should therefore receive consideration 

across a broad portfolio of research methods employing avian blood samples.  
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Figure 1. Observed color variation and associated hemoglobin concentrations of plasma 

samples taken postmortem from spring-migrating lesser scaup and blue-winged teal in 

eastern South Dakota.  
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Figure 2. Histogram of observed hemoglobin (Hb) concentrations in plasma samples 

taken postmortem from spring-migrating lesser scaup and blue-winged teal in eastern 

South Dakota.  
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Figure 3. Least-squared means (±95% CI) of log-transformed hemoglobin (Hb) 

concentrations in plasma samples from spring-migrating lesser scaup and blue-winged 

teal collected postmortem by 5 different investigators in eastern South Dakota. Least-

squared means control for species differences. Letters below each observation represent 

differences in a post hoc multiple comparisons test among each individual investigator 

pair. 
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Figure 4. Scatter plots of log-transformed hemoglobin (Hb) concentrations and metabolite concentrations measured in plasma of 

spring-migrating lesser scaup and blue-winged teal collected in eastern South Dakota.  
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Figure 5. Pearson’s correlation coefficient between log-transformed plasma hemoglobin 

and metabolite concentrations for samples across a range of exclusion criteria along the 

x-axis. The secondary y-axis corresponds to the background fill and indicates the 

proportion of samples excluded at each hemoglobin concentration cutoff value. Samples 

are pooled observations from lesser scaup and blue-winged teal plasma collected 

postmortem from spring-migrating females in eastern South Dakota.   
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CHAPTER 3: TOWARDS A GENERALIZABLE MEANS OF INTERPRETING 

AVIAN LIPID METABOLITE PROFILES 

ABSTRACT 

Concentrations of lipid metabolites circulating in plasma of birds can reflect 

recent lipid dynamics, which is important in the regulation of migration and subsequent 

breeding success across taxa and ecosystems. Two lipid metabolites with greatest 

potential applications – triglycerides (TRIG) and β-hydroxybutyrate (BUTY) – each 

individually index either lipid deposition (TRIG) or lipolysis (BUTY) and are generally 

used individually to interpret patterns of lipid metabolism. Here, we evaluated the 

potential utility of compositing both of these metabolites into a single index of refueling 

performance, taking advantage of the contrasting responses and partial redundancy of 

each metabolite. We developed a composite index from both metabolites based on 

previous independent research and called the resulting standardized score the refueling 

index. We evaluated correspondence between this refueling index and more traditional 

means of expressing variation in metabolite concentrations with metabolite 

concentrations from 17 species, compared the refueling index with 18 previously 

published predictive models of mass change, and evaluated the utility of the refueling 

index for predicting mass change in an independent field study. Our review of the 

literature and evaluation with independent data revealed the potential utility of the 

refueling index for compositing information contained in lipid metabolites and may 

facilitate stronger inferences into the lipid dynamics of birds across gradients of interest. 
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INTRODUCTION 

The last 20 years have seen a surge of studies reporting concentrations of key 

lipid metabolites circulating in plasma as indicators of metabolic state and thus realized 

habitat quality for birds. Such studies are common in migration research because of the 

demonstrated importance of lipid metabolism for migration (Jenni and Jenni-Eiermann 

1998) and cross-seasonal life-history constraints imposed by poor refueling performance 

among migrating birds (e.g., Drent et al. 2006, Newton 2006, Drent et al. 2007). Plasma 

metabolite profiles offer high potential for avian research (Jenni-Eiermann and Jenni 

1998) and have been used to address a breadth of questions ranging from basic ecological 

adaptations of birds (e.g., Jenni-Eiermann et al. 2010, Seewagen et al. 2013) to impacts of 

anthropogenic modifications on migrant physiology (e.g., Cerasale and Guglielmo 2010, 

Anteau et al. 2011, Seewagen et al. 2011, Liu and Swanson 2014).  Concomitant with the 

proliferation of plasma metabolite field studies has been the growth of a body of literature 

evaluating the potential utility, limitations, and applications of various lipid metabolites 

in characterizing lipid and mass dynamics in birds.  

Plasma metabolite research has focused primarily on 2 key lipid metabolites – 

triglycerides (TRIG) and β-Hydroxybutyrate (BUTY) – to characterize lipid dynamics 

(Jenni-Eiermann and Jenni 1994, Cerasale and Guglielmo 2006a). Triglycerides are 

elevated in response to increased dietary intake or de novo lipogenesis and therefore 

concentrations circulating in plasma are indicative of an anabolic state. β-

hydroxybutyrate is a ketone body that accumulates during lipid catabolism associated 

with fasting or exercising, and therefore is indicative of a catabolic state (Ramenofsky 

1990). These two metabolites index contrasting metabolic states, and are therefore used 
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independently or in combination to indicate the short-term trajectory of lipid metabolism 

in an individual or mean lipid dynamics of a sample.  

Although the utility of each metabolite to indicate recent mass change is well-

established (e.g., Jenni-Eiermann and Jenni 1994, Williams et al. 1999, Jenni and 

Schwilch 2001, Cerasale and Guglielmo 2006a, Zajac et al. 2006), an approach to 

combine information contained in both metabolites into a generalizable composite index 

of relative mass change has received little attention. Rather, most investigators report 

results for each metabolite separately and some studies have reported inconsistent signals 

in TRIG and BUTY concentrations in the same samples (e.g., Seaman et al. 2006, Lyons 

et al. 2008). Given their stated utility for indexing contrasting metabolic states, such 

contrasting results imply unexplained variation may reside in the underlying relationship 

between TRIG and BUTY that may help to approximate individual or study-site-level 

refueling performance (Schaub and Jenni 2001). Here, we developed a method to 

composite both metabolites into a single index of refueling performance and then 

evaluated its utility across a number of studies and species. Our review of the literature 

and preliminary evaluation of the utility of this combined index provides an initial 

attempt towards generalizing results of metabolite concentrations into a single index that 

captures information contained in both metabolites simultaneously. Such an approach 

offers potential utility for interpreting lipid metabolite profiles in studies of migrants or 

other times in the annual cycle where primarily lipid-based mass changes are common 

and of interest (e.g., winter fattening, egg production).  
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METHODS 

Refueling index development 

We were interested in evaluating correspondence between previously published 

approaches to composite information contained in each lipid metabolite. Previous work 

has combined information about TRIG and BUTY using 2 techniques; multiple 

regression models (Jenni-Eiermann and Jenni 1994, Anteau and Afton 2008) and 

Principal Components Analysis (PCA) of concentrations (Schaub and Jenni 2001). A 

PCA is calculated within each individual study based on the correlation between each 

individual metabolite, whereas multiple regression procedures fit models to observed 

mass change data and metabolite concentrations. We found 3 studies that reported using 

multiple regression models to predict mass changes with concentrations of BUTY and 

TRIG (Jenni-Eiermann and Jenni 1994, Cerasale and Guglielmo 2006a, Anteau and 

Afton 2008) and only 2 of these reported equations. We evaluated correspondence 

between model predictions from these two models and then evaluated the relative utility 

of multiple regression and PCA later with independent observation from metabolite 

concentrations from previous studies. The first predictive equation for mass change and 

TRIG and BUTY was published by Jenni-Eiermann and Jenni (1994) for mass change 

over ~6 hours in the morning for garden warblers (Sylvia borin);  

∆𝑚𝑎𝑠𝑠 = 0.259 + 0.120 × 𝑇𝑅𝐼𝐺 − 0.350 × ln(𝐵𝑈𝑇𝑌 + 0.5) 

The Jenni-Eiermann and Jenni (1994) model had an r2 value of 0.608. The second 

published model with both metabolites we found was from Anteau and Afton (2008) for 

daily mass change of lesser scaup (Aythya affinis);  

∆𝑚𝑎𝑠𝑠 =  −54.49 + 11.82 × 𝑇𝑅𝐼𝐺 − 28.65 ×  ln(𝐵𝑈𝑇𝑌) 
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The Anteau and Afton (2008) model had an r2 value of 0.750. Direct comparisons 

of these two models was constrained by the different sizes of the birds (Garden Warbler = 

18.2 g and Lesser Scaup 850 g; Dunning 1992) and the different time-scales over which 

mass change was calculated. To facilitate direct comparisons, we generated predictions 

from each model with 1000 random values of TRIG and BUTY concentrations generated 

from a mean distribution from Guglielmo et al. (2005) and z-standardized the predictions 

from each equation. These standardized predictions therefore weighted each metabolite 

proportionally to the original scale, but were on the same standardized scale of relative 

mass change. Thus, correspondence between these two standardized predictions would 

indicate high relative correspondence between the two independent predictive models. 

We plotted predictions for each model and reported their correlation. We then took the 

median standardized prediction from the 2 models and fit a new regression equation to 

predict median standardized scores based on the original TRIG and transformed BUTY 

(+0.5) concentrations. We used the natural-log plus 0.5 transformation to maintain 

consistency with previous studies that used the transformation to improve model fit. The 

resulting regression equation predicted average standardized scores from the two original 

equations and became the focus of the rest of our inferences here. We called the resulting 

prediction the refueling index because it is a relative score indicating the recent nature of 

mass change based on information contained in both TRIG and BUTY concentrations.  

Refueling index evaluation 

Comparison with other metrics—To understand the generalizability of the 

refueling index across a range of taxonomic groups, seasons, and study areas we used 

measurements of TRIG and BUTY from ongoing or completed studies (Thomas and 
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Swanson 2013, Liu and Swanson 2014, this dissertation) on migrating birds captured in 

the Upper Midwest USA. All metabolite concentrations were measured following 

standard protocols on a microplate spectrophotometer with commercially available 

reagents and standards (Guglielmo et al. 2005, Liu and Swanson 2014, Appendix 2). We 

included 18 data sets from 17 unique species ranging in study-specific body masses from 

6.3 g (ruby-crowned kinglet Regulus calendula) to 716 g (lesser scaup). Our sample 

included a diversity of foraging guilds and habitats as well as seasonal variation between 

fall migrants and spring migrants, and therefore represented a wide variety of 

applications of metabolite concentrations. We calculated the refueling index for each 

individual and then evaluated similarities between the refueling index and individual 

metabolite concentrations and the first axis from a PCA on the correlation matrix of 

TRIG and BUTY. We reported the coefficient of determination (r2) on a regression 

between each metric and the refueling index to quantify similarities across the range of 

observed metabolite concentrations in each data set.  

Comparison with other models—We reviewed the literature to find and report 

linear regression models that predicted change in body mass with concentrations of single 

metabolites (TRIG or BUTY) to evaluate correspondence between our refueling index 

and other predicted mass change estimates. In cases where only slope estimates were 

provided, we estimated intercepts from figures by digitally measuring axes. We reported 

coefficients of determination when available or calculated them from reported test 

statistics. We took a random sample of 20 individuals from each data set described above 

for a test data set of 360 independent TRIG and BUTY concentration observations. We 

calculated the Pearson’s correlation coefficient between model predictions and the 
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refueling index for each individual in this test data set. We followed procedures for 

transformations described in each study (e.g., ln, log10) and mean-centered concentrations 

within each data set to mimic the behavior of residuals when used. Limiting our analysis 

to 20 individuals from each study ensured any species-specific variation in BUTY and 

TRIG correlations were not overrepresented in the evaluation of mean correlation 

coefficients across taxa and studies. Evaluating the correlation coefficient of model 

predictions and the refueling index allowed us to evaluate the correspondence between 

the refueling index and relative predictions from independent studies of mass change and 

metabolite concentrations.  

Comparison with independent data—We evaluated the potential utility and 

limitations of the refueling index for indexing changes in body mass of individuals on 

short (i.e., daily) time scales with independent mass change and metabolite 

concentrations from a field study that replicated techniques used by Anteau and Afton 

(2008). We measured 24-hour mass change and metabolite concentrations in plasma of 

hatch-year, flighted blue-winged teal (Anas discors) prior to onset of fall migration in 

north-central South Dakota during August 2014. We focused on flighted hatch-year birds 

to ensure individuals were not actively growing or undergoing remigial molt, which we 

assumed would not be representative of conditions experienced in other periods of the 

annual cycle (i.e., migration). We determined age following standard protocols (Carney 

1992) and weighed and drew blood from individuals with fully-grown 9th primary 

feathers. We captured individuals in swim-in style traps baited with corn left out 

overnight and checked once between 0800 and 1200. We weighed and uniquely marked 

birds on the first capture occasion and drew blood and took repeat mass measurements on 
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birds recaptured on subsequent days. We weighed birds to the nearest gram with a 500 g 

Pesola spring-scale in the field and palpated crops to ensure there was not substantial 

day-to-day variation in undigested food in the crop that may bias mass measurements. 

We prioritized recaptured individuals to minimize time between removal from the trap 

and sampling blood to avoid associated biases (<25 minutes; Guglielmo et al. 2002). 

There was a dry roosting platform and abundant food available for birds in the traps prior 

to removal each morning, so traps should not have induced fasting directly or stressed 

captured birds (until arrival of investigators).  

We measured BUTY and TRIG concentrations with commercially available 

reagents and standards (Appendix 2). Preliminary analyses indicated regression analyses 

sensu Anteau and Afton (2008) were not predictive of raw mass change on successive 

days. Further exploratory analyses revealed larger individuals had lower daily mass 

changes than smaller individuals. Therefore, we evaluated whether metabolite 

concentrations or combinations thereof improved model fit on a regression of recapture 

mass that included an offset term for initial mass (previous day mass). We evaluated the 

contributions of four expressions of metabolite concentrations; concentration of TRIG 

and BUTY individually, the first principal component from a PCA on the correlation 

matrix of TRIG and BUTY (Schaub and Jenni 2001), and our refueling index. We 

interpreted the utility of each metric based on improvements in model fit based on 

regression coefficients and associated test statistics.   

RESULTS 

The standardized model predictions from Jenni-Eiermann and Jenni (1994) and 

Anteau and Afton (2008) were highly correlated (Pearson’s r = 0.999; Figure 1). The 
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resulting regression model to predict the median standardized score from each model, or 

the refueling index, was: 

 𝑅𝑒𝑓𝑢𝑒𝑙𝑖𝑛𝑔 𝑖𝑛𝑑𝑒𝑥 =  −0.162 + 2.700 ×  𝑇𝑅𝐼𝐺 − 8.207 × ln(𝐵𝑈𝑇𝑌 + 0.5) 

 There was a moderately strong relationship between raw TRIG concentrations and 

the refueling index among the 18 data sets we included (mean r2 = 0.335, range = 0.008-

0.670; Table 1). The relationship with BUTY tended to be stronger (mean r2 = 0.795, 

range 0.474 – 0.958; Table 1). The relationship with the PCA was generally strong as 

well (mean r2 = 0.745; Table 1) but 3 data sets had low r2 values (<0.2; Table 1). 

Inspection of the PCA results for those 3 data sets indicated TRIG and BUTY both 

loaded in the same direction on the first axis, whereas in all other models the terms 

loaded in opposite directions and had stronger correlations (r2 mean = 0.883, range = 

0.674 – 0.983). 

We found 7 studies reporting a total of 18 individual models that predicted mass 

change over time scales ranging from hours to 7 days (Table 2). All studies reported a 

significant negative correlation between mass change and BUTY concentrations and one 

of these studies reported non-linear effects (Table 2). Predictive equations within these 

studies had a mean r2 of 0.532 (Table 2). Five of the studies reported significant positive 

association between TRIG concentrations and mass change, while two reported 

insignificant associations between mass change and TRIG concentrations (Table 2).  The 

mean r2 value of studies reporting a significant effect of TRIG was 0.489, which dropped 

to 0.380 when 0 was included in for 2 models without TRIG effects (Table 2). 

Correlations between predictions from these models and refueling index from our diverse 

taxa were all positive and generally strong (mean r = 0.706, range = 0.482-0.897; Table 
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2). Models with BUTY tended to be more closely correlated with the refueling index 

(mean r = 0.844) than models with TRIG (mean r = 0.529). 

 We recorded 1-day mass change and collected plasma samples from 49 

individuals in the recapture study. Concentration of TRIG at recapture (b ± SE = 5.49 ± 

2.40, t = 2.40, P = 0.026), the PCA (3.21 ± 1.59, t = 2.02, P = 0.049), and the refueling 

index (1.63 ± 0.72, t = 2.25, P = 0.029) all marginally improved prediction of recapture 

mass from initial mass, but BUTY concentration alone did not (-11.81 ±14.02, t = -0.842, 

P = 0.404). 

DISCUSSION 

Our literature review demonstrates the utility of TRIG and BUTY to index 

changes in mass of birds from single capture events, which has found wide application in 

field studies. However, generalizing concentration estimates of TRIG and BUTY 

simultaneously has received comparatively little attention, and our initial assessment here 

suggests this is a meaningful avenue to consider in future research. Although limited in 

replication in the literature, our evaluation of two independent composite indices of TRIG 

and BUTY revealed remarkably strong correspondence between standardized model 

predictions, which then had generally high correlations with predictions from other 

single-metabolite models across a range of study species and experimental diets. This 

result, coupled with results from other field and laboratory studies reviewed here, 

suggests generalizing the two concentrations into a single composite index of refueling 

performance for comparison within a study could improve understanding of the 

significance of metabolites and their implications for gauging refueling performance 

beyond inferences gained from interpreting concentrations individually.  
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Our review of the literature revealed substantial inter-study variation in the 

strength of relationships between mass change and metabolite concentrations. Some 

studies reported no correlation between mass change and TRIG (Seaman et al. 2005, 

Dietz et al. 2009) while others showed strong effects (Table 2). Similarly, within the 

same study, Cerasale and Guglielmo (2006a) reported a fourfold difference in slopes of 

TRIG and mass change among three similarly-sized passerines. Concentrations of BUTY 

were more consistently negatively correlated with mass change, but the strength of the 

relationships were variable, and in one study non-linear with functionally no correlation 

to mass change during mass loss (Cerasale and Guglielmo 2006a). These results, coupled 

with documented effects of dietary-associated variation in metabolite concentrations 

(Smith et al. 2007, Smith and McWilliams 2009), suggest that a universal approach to 

converting metabolite concentrations to mass change is unlikely. However, among 

studies we reviewed there were general patterns which suggested compositing lipid 

metabolites into a single index such as ours would aid in interpreting the likely relative 

trajectory of lipid metabolism of individuals with comparable diets.  

Among the mass-change equations in our literature review, BUTY was more 

consistently (all studies) and significantly (higher r2 values) related to mass change than 

TRIG. This was also the case in both of the multiple regression equations included in the 

refueling index, where BUTY had steeper and more significant slopes (Jenni-Eiermann 

and Jenni 1994, Anteau and Afton 2008). This finding contrasts with conventional 

recommendation to focus inferences on TRIG for indexing mass change among free-

living birds (e.g., Jenni-Eiermann and Jenni 1994, Schaub and Jenni 2001, Cerasale and 

Guglielmo 2006b). Using TRIG alone has been advocated because it is directly involved 
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with lipid deposition (i.e., mass gain) following dietary intake and hepatic lipogenesis 

(Ramenofsky 1990), whereas BUTY elevates in response to fat catabolism (i.e., mass 

loss) but also during transition among metabolic states (Jenni-Eiermann and Jenni 1991). 

Thus, TRIG is a leading indicator of transition from feeding to fasting, whereas BUTY is 

a lagged indicator of recent starvation or catabolism (Seaman et al. 2006). However, the 

consistent support for BUTY in models predicting mass change in the literature perhaps 

suggests its utility in field studies has been understated, or at least suggests it stands to 

contribute to understanding of physiological condition of birds in addition to TRIG 

concentrations.  

Considering TRIG and BUTY in the same model seems to improve predictions of 

mass change consistently. Jenni-Eiermann and Jenni (1994) reported individual and 

combined coefficients of determination, which increased from 0.436 for TRIG alone, to 

0.511 for BUTY alone, to 0.608 with both combined. Anteau and Afton (2008) only 

reported test statistics (t-values) for individual terms, but converting them to r2 values 

(which ignores the intercept) revealed a similar increasing pattern from 0.227 for TRIG 

alone, to 0.492 for BUTY alone, to 0.750 for the model combining both terms and the 

intercept. Cerasale and Guglielmo (2006a) passingly reported that including BUTY and 

TRIG in the same model raised r2 from 0.350 from individual models to 0.390 in a 

combined model for yellow-rumped warblers (Setophaga coronata). Further, some 

studies have found utility in compositing both metrics with the PCA approach to draw 

inferences from both metabolites simultaneously (Schaub and Jenni 2001). However, our 

analysis of concentrations from many different species and studies indicated PCA may be 

volatile, and in some cases misleading, when axes fail to load in the biologically 
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meaningful opposite directions. Such failures may be the product of the either small 

sample sizes, inconsistencies in metabolite concentration estimates (e.g., Chapter 2), or 

from rapid transition to a feeding state following a fast, where both metabolites would 

remain high. The refueling index we have proposed would not fall victim to this data-

specific constraint, because it explicitly expresses the directional effects of each 

metabolite on refueling performance, but otherwise generally relates closely to inferences 

drawn from a properly loaded PCA.  

Our evaluation with independent mass change served as an initial case study to 

evaluate the relative utility of the refueling index against other approaches. Our field 

study was constrained by a number of factors, including using spring scales for mass 

measurements with potentially low precision and working with non-migrating hatch-year 

birds with access to supplemental food. Despite these potential short-comings, the 

evaluation showed the potential robustness of the refueling index to capture individual 

variation in daily mass dynamics, even when only one metabolite (TRIG) was predictive 

of mass change on its own. This result, coupled with the literature review above and the 

correspondence between individual metabolite concentrations and model predictions 

across many species suggests the index is consistent with inferences gained from 

individual metabolites. Further, the results suggest in some cases the refueling index may 

reveal additional variation included in the partial redundancy of both metabolite 

concentrations that would be missed when only examining one concentration. 

 The refueling index is advantageous because it conforms to the general patterns 

highlighted in our literature review, which showed relatively strong predictive value for 

BUTY concentrations and slightly reduced but still important predictive value for TRIG 
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concentrations for mass change in a variety of species. Similarly, it could be applied 

without constraints of underlying correlation structure or sample size that constrain the 

utility of PCA. It is important to note that this model would not overcome issues with 

interpreting plasma metabolite profiles with interfering factors such as sampling variation 

(Guglielmo et al. 2002, Mandin and Vézina 2012), sample quality (Chapter 2), or dietary 

variation (Smith et al. 2007, Smith and McWilliams 2009). However, if investigators 

control for these factors through regression or study design, an improved ability to draw 

inferences from both metabolites together seems likely. Further research comparing the 

refueling index against individual metabolite concentrations for predicting mass change 

or for distinguishing between study sites with independent mass change observations 

would be useful to validate the refueling index and understand its generalizability. 

Similarly, important questions remain about how dietary variation may influence 

interpretation of lipid metabolites. If dietary shifts in metabolite concentrations are only 

additive (i.e., increase or decrease concentrations proportionally) the refueling index 

would still lead to robust differentiation of relative refueling rates. However, if dietary 

variation changed the ratio of TRIG to BUTY, the refueling index may over or 

underestimate differences in refueling performance among individuals in a study. 

Nevertheless, we argue the refueling index is likely to provide a better approximation of 

mass change trends than individual metabolites alone, and could therefore find wide 

application in studies of the relative trajectory of lipid metabolism of wild birds.  
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Figure 1. Correspondence between z-standardized model predictions of relative mass 

change based on concentration of random Triglycerides and β-hydroxybutyrate 

concentrations from models reported by Anteau and Afton (2008) and Jenni-Eiermann 

and Jenni (1994). The black line is a 1-to-1 line indicating the location of perfect 

correspondence between z-standardized predictions in the 2 models.  
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Table 1. Coefficient of determination (r2) of regression models between the refueling index described in the text and individual 

triglycerides (TRIG) concentrations, β-hydroxybutyrate (BUTY) concentrations, and the first axis of a Principal Component Analysis 

(PCA) of the correlation matrix between TRIG and BUTY for a diversity observations from previous studies of migrating birds in the 

Upper Midwest U.S.  

      Refueling Index   TRIG   BUTY   PCA 

Studya n Mean SD   Mean SD r2   Mean SD r2   r2 

Thomas and Swanson 2013              

 Least sandpiper 67 -0.778 7.26  1.927 1.08 0.337  2.113 1.80 0.843  0.886 

 Semipalmated sandpiper 52 2.992 6.39  1.690 0.83 0.348  1.030 1.36 0.885  0.883 

Liu and Swanson 2014, Fall              

 Lincoln's sparrow 40 -2.297 5.36  0.830 0.80 0.237  1.519 1.33 0.836  0.849 

 Myrtle warbler 42 -3.226 4.91  0.714 0.54 0.011  1.725 1.73 0.911  0.175 

 Nashville warbler 41 -2.146 5.39  0.699 0.43 0.265  1.474 1.67 0.958  0.794 

 Orange-crowned warbler 66 -5.118 4.92  0.636 0.61 0.256  2.085 1.43 0.892  0.847 

 Ruby-crowned kinglet 23 -0.501 4.63  0.634 0.56 0.175  0.978 0.94 0.893  0.827 

5
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Red-eyed vireo 22 0.753 2.91  0.583 0.30 0.008  0.651 0.45 0.921  0.674 

 Warbling vireo 100 -0.496 3.68  0.751 0.52 0.177  0.957 0.70 0.852  0.817 

Liu and Swanson 2014, Spring             

 Common yellowthroat 31 2.203 4.58  1.377 0.70 0.521  0.793 0.63 0.854  0.943 

 Least flycatcher 40 5.902 2.80  1.316 0.65 0.426  0.265 0.26 0.592  -0.026 

 Swainson's thrush 47 4.921 4.05  1.689 1.08 0.605  0.489 0.37 0.474  0.973 

 Tennessee warbler 22 1.419 3.72  1.070 0.62 0.570  0.734 0.41 0.827  0.970 

 Traill's flycatcher 36 3.990 2.97  0.949 0.51 0.264  0.368 0.34 0.777  0.010 

 Warbling viero 28 -1.479 4.61  0.938 0.82 0.346  1.273 0.88 0.766  0.930 

 Yellow warbler 51 2.027 5.74  1.410 1.04 0.434  0.925 0.94 0.770  0.920 

Janke spring 2012              

 Blue-winged teal 48 1.212 3.29  1.505 0.74 0.379  0.966 0.57 0.626  0.957 

  Lesser scaup 43 3.273 4.61   2.094 1.08 0.670   0.892 0.55 0.632   0.983 

5
1
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aleast sandpiper, Calidris minutilla; semipalmated sandpiper, C. pusilla; Lincoln's sparrow, Melospiza lincolnii; Myrtle 

warbler, Dendroica coronata; Nashville warbler, Oreothlypis ruficapiilla; orange-crowned warbler, Oreothlypis celata; 

ruby-crowned kinglet, Regulus calendula; red-eyed vireo, Vireo olivaceus; warbling vireo, Vireo gilvus; common 

yellowthroat, Geothlypis trichas; least flycatcher, Empidonax minimus; Swainson's thrush, Catharus ustulatus; Tennessee 

warbler, Oreothlypis peregrina; Traill's flycatcher, Empidonax alnorum; Yellow warbler, Setophaga petechial; blue-winged 

teal, Anas discors; lesser scaup, Aythya affinis 

 

5
2
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Table 2. Predictive equations from published studies evaluating relationships between individual mass change and concentrations of 

triglycerides (TRIG) or β-hydroxybutyrate (BUTY) and associated correlation coefficient (r) with the composited refueling index 

described in the text.  

Study and speciesa n 

Body 

mass 

(g)b 

Response 

units Equation 

Equation 

r2 

r with 

Refueling 

Index 

Jenni-Eiermann and Jenni 1994       

 Garden warbler 80 18.2 g/morning -0.082 + 0.204 x TRIG 0.436 0.586 

 Garden warbler 80 18.2 g/morning 0.669 - 0.495 x ln(BUTY+0.5) 0.511 0.897 

Williams et al. 1999       

 Western sandpiper 20 27.8 g/day -0.05 + 7.61 x residual ln(TRIG) 0.368c 0.572 

 Western sandpiper 19 27.8 g/day -0.30 - 1.74 x residual ln(BUTY) 0.588c 0.893 

Jenni and Schwilch 2001       

 Reed warbler 76 12.3 g/hour 0.146 + 0.116 x ln(TRIG) - 0.40272d 0.470 0.512 

 Reed warbler 77 12.3 g/hour 0.185-0.133 x ln(BUTY+0.5) - 0.0444d 0.490 0.897 

5
3
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Seaman et al. 2005e      
 

 Western sandpiper - low fat diet 16 27.8 g/day -0.1 - 0.3 x residual ln(BUTY) 0.829c 0.744 

 Western sandpiper - high fat diet 28 27.8 g/day 0.25 - 0.06 x residual ln(BUTY) 0.133c 0.744 

Cerasale and Guglielmo 2006a       

 Cedar waxwing 36 31.6 g/hour 0.14 + 1.79 x residual log10(TRIG+1) 0.720 0.482 

 Cedar waxwing 36 31.6 g/hour Non-linear regression with BUTY 0.710 --- 

 White-crowned sparrow 32 24.4 g/hour 0.1 + 0.92 x residual log10(TRIG+1) 0.630 0.482 

 White-crowned sparrow 32 24.4 g/hour Non-linear regression with BUTY 0.710 --- 

 Yellow-rumped warbler 39 11.8 g/hour 0.06 + 0.4 x residual log10(TRIG+1) 0.350 0.482 

 Yellow-rumped warbler 39 11.8 g/hour 0.06 - 0.43 x residual log10(BUTY+1) 0.350 0.757 

Cerasale and Guglielmo 2006b       

 White-crowned sparrow 45 24.4 g/hour (log10(TRIG+1) - 0.44) x 0.43-1 0.449c 0.587 

 

White-crowned sparrow - high 

phospholipid diet 14 24.4 g/hour (log10(BUTY+1) - 0.46) x -0.88-1 0.661c 0.892 

5
4
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White-crowned sparrow - low 

phospholipid diet 13 24.4 g/hour (log10(BUTY+1) - 0.43) x -0.32-1 0.425c 0.892 

Dietz et al. 2009e       

  Red knot 202 148 g/day -1.121 - 2.285 x ln(BUTY) 0.440 0.880 

agarden warbler, Sylvia borin; western sandpiper, Calidris mauri; reed warbler, Acrocephalus scirpaceus; cedar waxwing, 

Bombycilla cedrorum; white-crowned sparrow, Zonotrichia leucophrys; yellow-rumped warbler, Setophaga coronata 

bBody mass estimates from Dunning (1992) 

cr2 values calculated from F statistics reported in citation 

d Additional additive term is from time covariate held at constant of 6 hours as in citation 

eAuthors reported testing TRIG model and found no significant relationship 

5
5
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CHAPTER 4: EVALUATING THE FUNCTIONAL ROLE OF WETLANDS IN AN 

INTENSIVELY FARMED LANDSCAPE FOR SPRING-MIGRATING DUCKS  

ABSTRACT 

 Understanding stressors imposed by agricultural land uses is a challenge for 

wildlife conservation across a breadth of ecosystems. The challenge is pervasive in 

temperate grassland ecosystems, where climate and rich organic soils have facilitated 

widespread conversion to intensive agricultural production. In the Prairie Pothole Region 

of central North America, an expansive agricultural footprint has grown since settlement 

in the late 19th century and intensified with improvements in technology and government 

supports. The unique coupled grassland-wetland ecosystem in the region has been altered 

extensively, but many wetland ecosystems remain in a matrix of intensively-farmed 

uplands. Here, we comprehensively evaluated contributions of those wetlands for spring-

migrating ducks by studying two wetland-obligate foragers — lesser scaup (Aythya 

affinis) and blue-winged teal (Anas discors) — as they attempted to accumulate or 

maintain lipid reserves en route to their northern breeding ranges during spring migration. 

We measured three metrics important to these species during migration in wetlands 

distributed across a range of upland cultivation intensities expressed at fine and coarse 

scales. We found no systematic negative responses in invertebrate prey abundance, 

abundance of migrants, or lipid metabolism of migrant females across the upland 

cultivation gradient. Further, some metrics, namely abundance and physiology of blue-

winged teal and some key invertebrate prey densities were higher in more intensively 

farmed landscapes. Collectively, these results suggested wetlands in modern intensively 

farmed landscapes make important contributions to spring-migrating ducks in the region, 
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despite the likely negative impacts of upland cultivation surrounding them. Further, our 

results raise important questions about the factors underlying the apparent resiliency of 

wetlands in intensively farmed landscapes in the region to upland cultivation that have 

implications for restoration and conservation in these landscapes. 

INTRODUCTION 

Grassland and wetland ecosystems and the organisms that depend on them are 

threatened globally by conversion to agriculture and other land uses. These pressures are 

heightened in temperate regions, where increasing global demands for food and biofuels 

are exerting unprecedented pressures for conversion of native ecosystems (Fargione et al. 

2008, Clay et al. 2014). In many locations, these pressures are outpacing efforts to 

conserve biodiversity and ecosystem integrity, leading to widespread declines in 

populations and species extinctions (Tilman et al. 1994, Hoekstra et al. 2005). These 

pressures have been pervasive in the Prairie Pothole Region (PPR) of southern Canada 

and northern U.S., where closely-coupled wetland-grassland ecosystems have been 

extensively converted to agriculture, threatening migratory birds and many other 

organisms that depend on these ecosystems (Samson and Knopf 1994, Askins et al. 2007, 

Doherty et al. 2013).  

The full extent of the agricultural footprint in the PPR is difficult to estimate 

because of pastoral land uses and the paucity of information on historical wetland 

function or extent. Doherty et al. (2013) reported 54% of the US portion of the PPR was 

converted to cropland by 2006, and recent studies have reported substantial additional 

grassland conversion since that time (Wright and Wimberly 2013, Johnston 2014, 

Reitsma et al. 2015) driven by increased commodity prices and government programs 
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(Claassen et al. 2011, Mehaffey et al. 2011, Rashford et al. 2011). Widespread wetland 

drainage and alteration in the region coincided with upland conversion, reducing the total 

extent of wetlands (Dahl 1990, Miller et al. 2009, Oslund et al. 2010) and changing the 

character of remaining wetlands (Genet and Olsen 2008, Miller et al. 2011, McCauley et 

al. 2015). Despite intense anthropogenic modifications to the PPR, the region remains a 

globally important ecosystem for migratory birds and annually hosts over half of the 

breeding populations of many of North America’s waterfowl (Anatidae; Batt et al. 1989). 

This distinction has earned the region its colloquial designation as ‘North America’s 

Duck Factory’ and made it a focal point for conservation and restoration of wetlands in 

proximity to grassland nesting habitats important for upland-nesting waterfowl (NAWMP 

2012, Reynolds et al. 2006, Doherty et al. 2015).  

In addition to the widely recognized importance of the PPR for breeding 

waterfowl, the region lies between key wintering areas, in the southern U.S. and central 

America, and breeding areas, in the northern contiguous U.S., Canada, and Alaska 

(Baldassarre 2014), and is used extensively by waterfowl during migration (e.g., Haukos 

et al. 2006, Gray 2010, Krementz et al. 2011, Finger 2013). Conditions experienced by 

migrants during spring can impact individual reproductive success and population 

productivity (Arzel et al. 2006, Drent et al. 2006, Newton 2006, Devries et al. 2008). 

Many waterfowl studies have demonstrated carry-over effects from conditions 

experienced on wintering areas to population reproductive success on breeding areas 

(e.g., Kaminski and Gluesing 1987, Raveling and Heitmeyer 1989, Drent et al. 2007, 

Guillemain et al. 2008), leading to an increased appreciation of the importance of non-

breeding habitats for completion of the annual cycle (Sedinger and Alisauskas 2014, 
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Alisauskas and DeVink 2015). Accordingly, the value of wetlands in the PPR for 

continental waterfowl production extends beyond breeding to include an important role in 

facilitating spring migration.  

Despite this important annual function of PPR wetlands, little is known about the 

condition of wetlands used by spring-migrating waterfowl in the region or the impacts of 

agricultural intensification on these wetlands. Spring-migrating waterfowl need to 

accumulate or at least maintain nutrients necessary for reproduction and to fuel migration 

(Ankney et al. 1991, Jenni and Jenni-Eiermann 1998). All species use wetlands in some 

capacity, with some foraging mostly in uplands and gaining supplemental nutrition or 

roosting on wetlands (LaGrange 1985, Lagrange and Dinsmore 1989, Abraham et al. 

2005, Pearse et al. 2011, Stafford et al. 2014), whereas others depend entirely on 

wetlands for invertebrate or plant diets, roosting, and courtship. Myriad factors associated 

with agricultural intensification, including altered hydrology (Euliss and Mushet 1996, 

van der Kamp et al. 1999, van der Kamp et al. 2003, Voldseth et al. 2007, McCauley et 

al. 2015), increased sedimentation (Gleason and Euliss 1998, Gleason et al. 2003), altered 

disturbance pathways (Kantrud et al. 1989), and introduction of agricultural chemicals 

(Donald et al. 1999, Sura et al. 2012, Main et al. 2014), have been predicted to degrade 

wetlands in intensively farmed regions of the PPR. These degradation pathways could 

thus constrain migrants and ultimately lead to delayed reproduction and reduced 

population productivity (Anteau and Afton 2004, Drent et al. 2007, Anteau and Afton 

2011).  

We sought to understand the condition of wetlands for spring-migrating 

waterfowl across a gradient of upland crop cultivation intensity in the southern PPR in 
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eastern South Dakota. We focused our analyses on two sentinel species — lesser scaup 

(Aythya affinis) and blue-winged teal (Anas discors) — that were ubiquitous in the 

region, relied exclusively on wetland-based foods during migration, and used a diversity 

of wetland types. These differences in our study species allowed us to comprehensively 

evaluate the status of many wetland types, from shallow water foraging habitats of blue-

winged teal, to large, deep-water foraging habitats of lesser scaup, that comprised the 

whole range of potential wetland foraging conditions used by waterfowl during migration 

in the region. We used a spatially-explicit stratified sampling strategy to sample a 

diversity of wetland types distributed across a gradient of upland cultivation intensity. 

We evaluated three key response variables across this land use gradient to evaluate the 

potential contributions of wetlands in different landscape contexts for spring migrating 

waterfowl. We first examined variability in the availability of the primary invertebrate 

prey of both species in likely foraging locations in wetlands across the land use gradient. 

Next we evaluated the numerical responses of both species to variation in upland 

cultivation to evaluate whether they were selecting for or avoiding wetlands with variable 

upland cultivation intensities. Finally, we measured the tendency for females of each 

species to accumulate or catabolize lipid reserves on wetlands distributed across the 

upland cultivation gradient based on concentrations of key lipid metabolites circulating in 

plasma (Jenni-Eiermann and Jenni 1994, Guglielmo et al. 2005). Measuring the 

physiological responses of migrating birds in response to the upland cultivation gradient 

yielded a more objective measure of habitat quality for migrants than coarser indices of 

food availability or numerical abundance alone (Van Horne 1983, Jones 2001). 

Collectively, these three response variables represented a comprehensive assessment of 
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the contributions of wetlands to migrating ducks in the PPR and provide implications for 

conservation and restoration of wetlands in this intensely modified landscape.  

METHODS 

Study area selection 

We evaluated the condition of a diversity of wetland types along the southern 

edge of the PPR. The PPR is characterized by millions of small depressional wetlands 

created by a rapid retreat of the Wisconsin Glacier ca. 10,000 years BP. The PPR was 

historically a range of tall grass prairie in the eastern and southern extents and mid- to 

short-grass prairie dominating with a decreasing precipitation regime to the west. We 

focused our analyses in the southeastern corner of the PPR in eastern South Dakota, 

where temperatures were comparatively mild and precipitation relatively greater than in 

the rest of the region (Millett et al. 2009). The eastern portion of the state was 90.5% 

privately owned (Doherty et al. 2013), with only 1.8% of the land owned and managed by 

state or wildlife federal conservation agencies. Most of the area was converted from 

grasslands to annual crop production (49.0%) or was managed grasslands used for 

grazing or hay production for livestock (40% grassland, pasture, hay; Han et al. 2012). 

Despite widespread crop production in the region, a number of social and ecological 

factors have combined to facilitate continued persistence of landscapes with relatively 

low crop production intensity throughout eastern South Dakota (Figure 1). Further, the 

region still hosts exceptionally high densities of prairie wetlands distributed across a 

gradient of land uses (Johnson and Higgins 1997). This gradient of land uses and 

associated wetland ecosystems was the focus of our study. 
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To facilitate sampling across this cropping intensity gradient in our study area, we 

developed a spatially-explicit sampling frame from which to draw fixed-area study sites 

with variation in upland land use. We used a 4-km radius (50 km2 area) moving window 

over the 2006 National Land Cover Dataset (NLCD; Fry et al. 2011) to characterize the 

intensity of upland cultivation for each 30 x 30 m raster cell inside the study area. This 

moving-window approach allowed for a gradient-wise assessment of land use across the 

entire study area, rather than constraining sample site selection to fixed geopolitical 

boundaries. Further, the moving window size (4 km radius) represented a biologically 

meaningful spatial scale for our analyses because 4 km was the approximate mean 

minimum daily movement rate of radio-marked lesser scaup monitored during spring 

migration in the PPR (A.D. Afton, Louisiana State University, unpublished data). We 

defined upland cultivation intensity for each pixel as the ratio of pixels classified as 

cultivated crops to the sum of pixels defined as upland cells, which included all 

categories except developed lands (i.e., houses, roads, or developments), open water (i.e., 

large wetlands, lakes or rivers) or barren land. Therefore, the resulting classification 

strategy represented the proportion of lands that could have been cropped that were, 

based on classifications in the NLCD. The resulting raster had values ranging from 0 to 

98%. 

We further constrained potential candidate pixels in the study area by calculating 

the area of seasonal and semipermanent wetlands mapped by the National Wetlands 

Inventory (NWI; Wilen and Bates 1995) within the 4 km radius surrounding each cell. 

The NWI was based on ca. 1985 wetland imagery, and was therefore not a perfect 

approximation of wetland abundance for each pixel, but did provide a coarse 
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approximation of the abundance and type of wetlands across the study region. We added 

2 wetland-based constraints to our sampling frame. First, we excluded all areas that had 

<200 ha of seasonal or semipermanent wetlands within the 4 km radius. Excluded cells 

generally fell in large lakes, urban areas, or areas outside the extent of the prairie pothole 

landscape along the southern and eastern margins of the study area. We then stratified the 

remaining cells into those containing ≥200 ha of semipermanent wetlands (hereafter high 

wetland density) and those containing <200 ha of semipermanent wetlands (hereafter low 

wetland density).  This constraint ensured we sampled across a range of wetland densities 

and crop production intensities within the study area, and that we maintained 

representation of wetlands suitable for spring migrating lesser scaup (i.e., large 

semipermanent wetlands; Anteau and Afton 2009, Kahara and Chipps 2012). The area 

included in the sampling frame was 46,770 km2, approximately 51% of the area east of 

the Missouri River in South Dakota. 

We classified the upland cultivation intensity layer into 3 strata — low (0-33.3% 

of uplands cropped), medium (33.3-66.6% of uplands cropped), and high (>66.6% of 

uplands cropped) — and then merged it with the 2 wetland density strata to yield 6 

unique strata. We used a Generalized Random Tessellation Stratified (GRTS) sample to 

select study site centroids within each stratum. GRTS samples combine elements of 

simple random and systematic sampling designs to generate a spatially balanced stratified 

sample (Stevens and Olsen 2004). GRTS ensured sites in each stratum were distributed 

across the study area appropriately, rather than spatially clustered in regions with higher 

densities of candidate cells. For example, more candidate cells were in the low upland 

cultivation intensity stratum in the northwest corner of the study area than in the southern 
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portion of the state, where annual crop production was more intensive (Figure 1). This 

spatial pattern in candidate sites could potentially confound with variables that follow a 

similar latitudinal gradient (e.g., migration physiology or chronology, geologic history of 

landscapes) and thereby constrain inferences from a simple random sample that would 

have followed a similar clustered distribution. The spatially balanced stratified sample 

ensured sites were distributed evenly across latent gradients that could have confounded 

with the upland cultivation intensity gradient that was the focus of our study. We selected 

6 study area locations from the initial sampling frame and included 18 additional sites in 

an oversample to use in cases where drought prohibited sampling or we could not gain 

sufficient access to privately-owned lands. We sampled 2 sites per stratum (12 sites) 

during 2013 and 2014 and 1 site per stratum (6 sites) during 2015 for a total of 10 study 

areas in each upland cultivation intensity strata and a total of 30 study areas over the 3 

years of the study. Sites from previous years were not revisited in subsequent years to 

allow for greater spatial replication in the study over the 3 years.  

Wetland selection 

We manually digitized all seasonal, semipermanent, and permanent wetlands on 

each study area following classification procedures described in Johnson and Higgins 

(1997) and Cowardin et al. (1979) to serve as a sampling frame for wetland surveys. We 

mapped wetlands based primarily on their extent during a relatively wet year (2010) and 

assigned hydrological classes based on apparent permanency of the basin between the 

wet year (2010) and a drier year (2012). We used National Aerial Imagery Program 

(NAIP) images for wetland classification, which were high resolution (1 m) true-color 

images acquired during later summer or early fall. We stratified wetlands into 2 
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categories (seasonal wetlands and semipermanent or permanent wetlands) and then 

randomly selected wetlands with a simple random sample weighted by the area of the 

basin within the study area boundary to randomly sort the wetlands for sampling 

prioritization. The area-based weighting strategy ensured numerically abundant small 

wetlands were not overrepresented in our sample. We sought permission to sample the 

first n wetlands in each category, where n was 10 times the proportion of the total area of 

each wetland category within the study site, or 2 if the proportion was <20%. We 

sequentially pursued permission from land owners to sample wetlands until 10 wetlands 

had been identified (hereafter survey basins). If we found a wetland to be dry or 

vegetation-choked, and therefore unusable for our study species, at the start of the season, 

we replaced it with the next wetland in the sample. In the rare occasion where nearly all 

wetlands in study areas were dry during the study year, we sampled all available wetlands 

in the study area. If there were < 8 wetlands with open water on the study area or if we 

were denied permission for >50% of the wetlands, we sampled on the next suitable study 

area in the stratum.   

Duck surveys 

We conducted two duck abundance surveys on each basin timed to coincide first 

with peak migration of earlier-migrating lesser scaup and then to coincide with the later 

peak of migrating blue-winged teal. We gauged migration progression each spring to 

capture early and late migration peaks and conducted survey rounds across all study areas 

within 11 days, progressing among study areas from south to north. The timing between 

successive surveys varied with the chronology of migration, averaging 10 days between 

surveys in the late spring of 2013 and 18 days between surveys in the warm spring of 
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2015. All surveys were conducted when we estimated at least 70% of the surface water of 

all basins in the study area were ice-free, to ensure all basins were available for foraging. 

Most basins were completely ice-free during surveys, particularly by the second survey 

round, but in cold years (i.e., 2013), peak migration of lesser scaup coincided with late 

ice thaws. We conducted surveys from shore or small boats following established 

methods for waterfowl counts on prairie wetlands (Cowardin et al. 1995, Reynolds et al. 

2006). We started surveys within a study area at approximately sunrise on days without 

heavy precipitation that impaired visibility and with winds <30 kph. Whenever possible, 

we surveyed basins from vantages with high-powered spotting scopes and binoculars to 

not flush birds to unsurveyed basins. On basins with emergent vegetation or low-

visibility, we walked in and around the basin to ensure we could see all open water 

(Cowardin et al. 1995). To minimize potential for double-counting individuals on near-by 

basins, we attempted to survey large, roosting wetlands first and minimized flushing, then 

surveyed smaller wetlands where birds were less likely to relocate after being flushed 

later in the survey day. All basins on a study area were surveyed the same day, generally 

before 12:00 hrs. No collections, sampling, or other study-related disturbances were 

conducted on the study areas 5 days prior to a survey to avoid biasing counts with 

disturbances.   

Wetland sampling 

We characterized aquatic invertebrate prey abundance for lesser scaup and blue-

winged teal in likely foraging locations in each randomly selected wetland. Both species 

consume large quantities of invertebrates during migration (Chapter 6, Anteau and Afton 

2008a, Hitchcock 2009, Tidwell et al. 2013) and on breeding grounds in spring (Swanson 
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et al. 1974, Afton and Hier 1991); thus, we were interested in evaluating if key 

invertebrate prey abundances varied across the upland cultivation intensity gradient. We 

established 2-5 (depending on basin area) sampling transects in each wetland by 

extending random compass bearings from the center of the wetland. We sampled prey 

abundance for blue-winged teal along the margins or in shallow water at 2 locations on 

each transect in all wetlands. In wetlands without an open water zone or with interspersed 

vegetation before the transition to the open water zone, the first sampling location 

occurred at the first open water patch >1 m from shore and the second location was half-

way from the first location to the center of the basin, or 5 m from the edge of the 

emergent vegetation in the open water zone. In wetlands with a defined open water zone 

and no emergent vegetation or a thick ring of emergent vegetation, the sampling locations 

were 1 and 5 m from shore or the edge of dense emergent vegetation. At each of these 

sampling locations, we took a 0.5 m long horizontal sweep-net sample in the top 20 cm of 

the water column with a D-framed sweep net. In depths <20 cm, we sampled the entire 

water column. We presumed 20 cm was the maximum foraging depth of blue-winged teal 

(Guillemain et al. 2007) and therefore invertebrates captured in the sample represented 

potential invertebrate prey abundance. We characterized lesser scaup invertebrate prey 

abundance in all semipermanent or permanent wetlands that had an open water zone >0.5 

ha and ≥0.5 m deep. We used a 0.5 m long horizontal D-framed sweep-net sample along 

the surface of the benthos to characterize invertebrate prey availably for lesser scaup at 2 

locations along each transect (<3 m deep). The first sampling location was 10 m from the 

edge of the wetland or emergent vegetation ring and the second location was 50 m 

beyond the first location. We rinsed samples in a 750 μm wash bucket in the field, 
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uniquely labeled samples, and preserved them in 70% ethanol dyed with Rose Bengal in 

Whirl-Pak bags (Nasco Company, USA).  

We recorded electrical conductivity with a multiparameter meter (HI 8731N, 

Hanna Instruments, USA) along each sampling transect to characterize the chemical 

characteristics of the wetlands that could influence invertebrate communities (Euliss et al. 

2004). We also sampled fish communities in all wetlands. We deployed 2-5 Gee-style 

minnow traps overnight to characterize small-bodied fish densities and species 

composition in all wetlands with sufficient water depths to submerse the entrance to the 

traps. We set 1 experimental gill net in wetlands >0.5 m deep with an open water zone to 

characterize large-bodied fish species composition and relative abundance. All fish 

sampling on a site was done within the same 2 days on the latter-end of the sampling 

season.   

Duck collections 

We attempted to collect spring-migrating female lesser scaup and blue-winged 

teal on the randomly-selected wetlands within all study areas. In some cases (7% of blue-

winged teal and 13% of lesser scaup collected), we opportunistically collected ducks 

within the study area boundaries but off the randomly selected wetlands because of 

logistical constraints or low abundance on the randomly selected wetlands. We were not 

able to collect any female lesser scaup on 6 of the study areas because of low abundance 

or complete absence during migration. All collections were done using shotguns with 

non-toxic shot (Envrion-metal, Inc., Sweet Home, OR) from shore or small boats. We 

attempted to focus collections on actively foraging individuals when possible and noted 

whether the individual was observed foraging prior to collection. We did not commence 
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collections until ≥6 hours past sunrise to ensure individuals had an opportunity to forage 

within the landscape in which they were collected and to allow metabolite concentrations 

in plasma samples to asymptote following potential overnight fasts or migratory flights 

(Mandin and Vézina 2012). Immediately after collection we extracted a small (ca. 1 mL) 

blood sample via cardiac puncture with a heparinized syringe and 16-21 ga. needle and 

transferred it to 1.5 mL heparinized microcentrifuge tubes. We stored blood samples in a 

cooler until centrifuging in the field within 4 hours at 4,000-6,000 rpm for 5-10 minutes. 

We transferred plasma to a new 1.5 mL microcentrifuge tube and froze the sample at -20 

C the evening of collection. Within 1 month of collection, we transferred samples to -80 

C until processing. 

Laboratory methods 

 We composited samples from benthic and surface locations in each wetland in the 

laboratory and rinsed them in a 500 μm sieve. We searched samples under 10X 

magnification dissecting scopes to enumerate and preserve key forage taxa. We focused 

our analyses and sampling on 3 taxa that are important prey items for spring-migrating 

lesser scaup and blue-winged teal (Chapter 6, Appendix 1, Anteau and Afton 2008a, 

Hitchcock 2009, Tidwell et al. 2013): Mollusca, which included all Gastropoda and 

Sphaeriidae; Amphipoda and; Chironomidae. We identified all Gastropoda to families 

and Amphipoda to genus (Hyalella spp. or Gammarus spp.). We calculated biomass (mg 

dry weight) of each taxa to convert counts to biomass to better approximate forage 

availability. We calculated mean individual dry mass of each Amphipoda genus and 

Mollusca family with a random sample of individuals from wetlands across all 3 years of 

the study dried to a constant mass at 60 C. Chironomidae larvae were ubiquitous in our 
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samples and demonstrated substantial inter-wetland variation in size, likely because of 

the high taxonomic diversity of the family and potential variation in instar stages among 

wetlands. To account for this inter-wetland variability in biomass, we weighed a 

randomly-selected sample of 30 individuals from each wetland with ≥30 individuals. We 

then used the mean individual dry weight from these wetlands to convert counts from 

wetlands with <30 individuals to biomass.  

We conducted necropsies on all birds to confirm individuals had not commenced 

rapid follicle growth (RFG) based on the diameter of the 3 largest ovarian follicles. We 

did not find any evidence for RFG in lesser scaup but did incidentally collect blue-

winged teal that had ovaries indicative of RFG (mean size of 3 largest follicles > 5mm; 

Janke et al. 2015), which we subsequently removed from analyses. We measured 

concentrations of key lipid metabolites circulating in plasma to index refueling 

performance of the migrating females we collected. We used commercially available 

assays and standards to measure concentration of 2 key lipid metabolites in plasma 

samples — β-Hydroxybutyrate (BUTY) and triglycerides (TRIG: Appendix 2). We 

measured BUTY with a kinetic assay with the D-3 Hydroxybutyric Acid Assay Kit (R-

Biopharm 10907979035) and β-Hydroxybutyrate Linearity Standards (Stanbio 2450). 

BUTY is a ketone body that elevates during lipid catabolism and remains elevated during 

transitions from fasting to feeding, and therefore serves as an index of mass loss or lipid 

catabolism (Ramenofsky 1990). We measured TRIG with two sequential endpoint assays 

by first measuring total free glycerol with the Free Glycerol Reagent (Sigma Catalog 

F6428) and then measuring total TRIG with Triglyceride Reagent (Sigma Catalog 

T2449). We calculated true TRIG as total TRIG minus free glycerol and used that in all 
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analyses. TRIG indicates the opposite metabolic state as BUTY because it elevates in 

response to lipid accumulation associated with dietary intake and hepatic lipogenesis and 

is therefore indicative of improved foraging conditions. Together, these two metabolites 

indicate the relative trajectory of lipid metabolism over short (i.e., hours to days) time 

scales, which facilitates inferences specifically to the landscape where we collected the 

individual (Jenni-Eiermann and Jenni 1994, Williams et al. 1999, Anteau and Afton 

2008b). More static indicators of physiological condition, such as size-corrected body 

mass or lipid reserves, respond more slowly to variation in foraging conditions, and 

therefore would not have been suitable for our analyses. Metabolites functionally provide 

a real-time assessment of the foraging conditions experienced by migrants within a small 

spatial scale (Guglielmo et al. 2005). 

Geospatial analyses 

Water surface area and availability is highly dynamic in prairie wetlands (Kahara 

et al. 2009, Niemuth et al. 2010), so we anticipated static wetland availability maps used 

for wetland sampling would not represent availability of wetlands in each study area 

during migration. Therefore, we acquired high-resolution (≤1.5 m) true-color (2013, 

2014) or color-infrared (2015) aerial imagery from fixed-winged aircraft during May of 

the year of sampling (Niemuth et al. 2010). We mosaicked and geographically referenced 

imagery to use as a base map to identify and classify all available surface water within 2 

km of the boundary of each study wetland or collection location. We classified surface 

water into 3 categories distinguishable in the imagery and relevant for our study species: 

1) non-wetland surface water, which included all lotic water bodies (i.e., rivers, streams, 

open drainage ditches) and artificial surface water (e.g., stock dams, waste-water 
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treatment facilities); 2) interspersed wetlands, which included all wetland surface water 

with interspersed persistent emergent vegetation or patch sizes <0.5 ha and; 3) open 

wetlands, which included all open water patches in wetlands or lakes >0.5 ha.  

 We manually digitized upland land use in each study year based on study year 

photographs, recent NAIP imagery, and LANDSAT-based remotely sensed land cover 

surfaces (i.e., NLCD or CROPSCAPE; Han et al. 2012, Homer et al. 2015). We defined 

uplands as all areas outside the extent of wetlands in a wet year image used for the 

sampling frame described previously. By focusing on upland habitats outside of wetland 

basins, we were able to draw similar comparisons of cropping extent among study areas 

with variable wet-areas during the study year. This approach would underestimate total 

upland area in sites where wetland area declined because of drier conditions during the 

study years, but was preferable because it provided a static indicator of upland cultivation 

intensity on each site, independent of climatic conditions during the study year. We 

focused upland classification on distinguishing between perennial herbaceous vegetation 

and cultivated crops, excluding land uses associated with developments (e.g., houses, 

buildings, roads), trees, or non-wetland surface water. Perennial herbaceous vegetation 

primarily comprised grazed grasslands but also included hay fields (including alfalfa), 

idle herbaceous vegetation associated with conservation practices (e.g., Conservation 

Reserve Program) or publicly owned lands, and idle herbaceous vegetation on wetland 

margins. We included alfalfa in the grassland category for logistical reasons (i.e., it was 

difficult to distinguish between hayed fields and alfalfa in study year photographs) and 

because it represents a perennial vegetation type that is likely hydrologically and 

structurally more comparable to grasslands than annually disturbed cultivated crops 
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(Voldseth et al. 2007). Land classified as crops included all fields that were cultivated in 

the previous growing season, including winter wheat. To characterize land-use at spatial 

scales beyond those captured in our study year aerial imagery, we used the 2011 National 

Land Cover Database (Homer et al. 2015), classified into upland and crop categories 

described with our study area selection procedures. We maintained consistency with the 

classifications in the manual digitizing by classifying upland cells as all pixels classified 

as shrub/scrub, herbaceous, hay/pasture, and cultivated crops, excluding developed lands, 

water, and tree categories and expressing upland cultivation as the ratio of cropped pixels 

to upland pixels.  

Statistical analyses 

 We were interested in understanding how three key response variables we 

identified as most consequential for spring migrating ducks varied across the upland 

cultivation gradient. We used a space-for-time design to address this question, 

substituting substantial spatial replication for temporal replication or randomization to 

address our question. This space-for-time approach introduces the potential for variation 

in response variables that is unrelated to the land use gradient. Therefore, we employed a 

2-stage analytical approach to control for latent variability in response variables among 

wetlands and then tested for an influence of the upland cultivation covariates across 

‘average’ (i.e., controlled-for) wetland conditions. Introducing this control on the 

response ensured we did not find variation across the upland cultivation gradient that was 

related to underlying spatially autocorrelated factors, such as water permanency or fish 

presence that often increases in intensively farmed landscapes (e.g., Anteau et al. 2011, 
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Wiltermuth 2014, McCauley et al. 2015) but is not a direct result of upland cultivation 

itself.  

We used generalized linear mixed models with each individual response term and 

associated covariates (see below) with the lmer function in the lme4 package in Program 

R (Bates et al. 2015). Mixed models were advantageous for our analyses because they 

allowed us to control for dependency in observations made in the same year and on the 

same study areas with random effects while retaining statistical power for main effects of 

covariates and the upland cultivation terms. In the first stage of each analysis, we 

identified the best baseline combination of covariates that we predicted a priori to 

influence comparisons of the response variable across space. We describe each individual 

covariate suite below for each individual response variable. We had no a priori 

predictions or interest in specific combinations of covariates, but rather were interested in 

finding the most parsimonious combination of covariates that controled for variability 

among wetlands. Therefore, we tested all possible combinations of each covariate and 

used the model with the lowest Akaike’s Information Criteria (AIC) value as the baseline 

model. We then added the upland cultivation main effect term to the baseline model and 

evaluated the impact of the term with a parametric bootstrap with the PBmodcomp 

function in the pbkrtest package in R (Halekoh and Hojsgaard 2014). The parametric 

bootstrap procedure described by Halekoh and Hojsgaard (2014) iterated 1000 

Likelihood Ratio Tests with simulated data from the baseline model and calculated a P-

value from the observed test statistic in the fully constrained model with the land use 

term. The bootstrapping procedure is superior to a Likelihood Ratio Test on the two 

models alone because it explicitly accounts for variation explained by the random effect 
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terms. We interpreted the direction and strength of the upland cultivation term when the 

bootstrapping procedure indicated significant support (α = 0.05) based on the regression 

coefficient estimate and 95% confidence interval. We reported marginal and conditional 

r2 for baseline models following Nakagawa and Schielzeth (2013) to indicate the strength 

of the main effects (marginal r2) and random and main effects (conditional r2). In cases of 

significant support for the land use term indicated by the parametric bootstrapping 

procedure, we reported improvements in conditional and marginal r2 of the fully 

constrained model. We z-transformed all continuous covariates to improve model 

convergence and to allow for direct interpretation of the upland cultivation term 

(Schielzeth 2010). 

We expressed upland cultivation intensity at 3 spatial scales for wetland-specific 

analyses (invertebrate prey abundance and duck abundance) and 2 scales for collection 

locations in the physiology analysis. The first scale we considered on wetlands was a 50 

m buffer around the maximum wet-area extent of the wetland. This fine-scale buffer size 

allowed us to evaluate associations between immediately adjacent land use and our 

response variables without regard for larger-scale land use surrounding the wetland. We 

expressed upland cultivation at this scale as the proportion of the area surrounding the 

wetland basin that was classified as cropland in the manual digitizing. Because our 

inferences in the physiology analysis was on individual collection locations, rather than 

specific wetlands, we did not include this scale in that analysis. The second scale we 

considered was a 2-km radius buffer around the margins of wetlands and collection 

locations to characterize the local landscape in which the wetland or bird occurred. We 

expressed upland cultivation at this scale as the proportional area of manually-digitized 
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cropland to upland area (perennial vegetation + cropland) within the buffer. The final 

scale we evaluated was a 4 km radius buffer around collection locations and wetlands. 

Four-kilometers is the maximum extent of mean daily movement rates reported for non-

breeding ducks in recent satellite-telemetry studies (Beatty et al. 2014, Beatty et al. 2015; 

A. D. Afton, Louisiana State University unpublished data) and therefore served as an 

approximation of the relevant landscape available to a migrant during a single stopover 

event. Our manually digitized land cover layer only extended 2 km from basin margins, 

so we used NLCD cropland and upland categories at this scale to quantify the proportions 

of uplands that were cropped. An exploratory analysis comparing our manually digitized 

land cover and NLCD upland cultivation within 4 km circular buffers (50 km2) found 

high correspondence (r = 0.93) between the two estimates, suggesting NLCD provided 

suitable resolution in this 4 km buffered area.  

Invertebrate prey abundance – We conducted three separate analyses for 

invertebrate prey abundance, one each for the 3 taxa we identified as most important prey 

types for our study species. We converted sample biomass to densities (mg/m2) by 

correcting for the mean width of the D-framed net that was submerged at the sampling 

location and the horizontal length of the sample (0.5 m). We natural-log transformed 

densities (+1) to approximate a normal distribution and improve model fit. We evaluated 

8 individual covariates for inclusion in the baseline model to control for latent variability 

in factors potentially influencing invertebrate abundance. We included a categorical 

variable for basin hydroperiod (seasonal, semipermanent, or permanent) to control for 

potential variation in invertebrate communities among basins with variable water 

permanency (Kantrud et al. 1989). We also included a continuous covariate for basin 



77 

 

depth and basin perimeter-to-area ratio, to control for variation in water permanency 

(indexed by depth) or the shape of the wetland and vegetation interspersion (Weller and 

Spatcher 1965, Fairbairn and Dinsmore 2001). We included a covariate for the square-

root of conductivity of the wetland, which indexes connectivity with ground water and 

has substantial impacts on biotic communities of wetlands (Euliss et al. 2004, van der 

Kamp and Hayashi 2009). Similarly, we included three candidate covariates to account 

for variable climatic conditions leading up to the sampling event to account for variable 

water inputs or drought conditions (Euliss et al. 2004). We used the Standardized 

Precipitation and Evapotranspiration Index (SPEI) to provide a spatially explicit 

approximation of climatic conditions in the time leading up to sampling (Vicente-Serrano 

et al. 2013). We calculated SPEI values over 6, 12, and 72 month time horizons with 

temperature and precipitation observations from the Parameter-elevation Regressions on 

Independent Slopes Model (PRISM Climate Group, Oregon State University) for each 

wetland basin (Post van der Burg et al. 2016). We included 2 covariates to account for the 

influence of fish on aquatic invertebrate communities and densities in prairie wetlands 

(e.g., Zimmer et al. 2000, Anteau et al. 2011, Hanson et al. 2012, Maurer et al. 2014). 

The first fish covariate was a binomial term to indicate the presence or absence of fish in 

the wetlands detected with either minnow traps or the gill nets. The second fish covariate 

was a quadratic term for fathead minnow (Pimephales promelas) catch per unit effort 

(CPUE; mean captures per day, corrected for trapping duration and number of traps), 

which have been previously shown to influence prey abundance for lesser scaup in the 

study region (Anteau et al. 2011) and have trophic impacts on wetland biotic 

communities (Zimmer et al. 2002). 
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Duck abundance – We used total counts of lesser scaup and blue-winged teal on 

each basin across the 2 survey periods as the response variable in abundance analyses. 

Lesser scaup were most abundant during the first survey and blue-winged teal were most 

abundant on the second survey. However, combining counts across both periods allows 

for annual variation in the attenuation of migration and should have more appropriately 

quantified the cumulative use of wetlands during migration. We natural log-transformed 

total counts (+1) to improve model fit. We constrained the lesser scaup analysis to basins 

>0.5 m deep and with an open water zone >0.5 ha to focus inferences on potentially 

suitable habitats (Anteau and Afton 2009, Kahara and Chipps 2012). We evaluated three 

individual covariates for inclusion in baseline models to account for basin size and shape 

that we predicted could influence duck abundance. The covariates were basin depth, log10 

transformed basin-to-perimeter ratio of the survey wetland, and log10 transformed basin-

to-perimeter ratio of all wetlands within a 2 km radius buffer of the wetland margin. The 

latter covariate accounted for variation in potential foraging habitat surrounding the 

wetland that could influence the distribution and abundance of migrating ducks (Fairbairn 

and Dinsmore 2001, Webb et al. 2010). 

Duck physiology – We composited TRIG and BUTY into a single index (hereafter 

refueling index) following Chapter 3. The refueling index is a relative account of the 

trajectory of lipid accumulation or catabolism predicted from the relationship between 

TRIG and BUTY. Lower scores indicated reduced refueling performance, and by 

extension may be suggestive of reduced refueling conditions in wetlands. Before 

compositing the metabolite concentrations, we conducted an exploratory analysis to 

ensure concentrations did not vary systematically with time from sunrise or time until 
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sunset, a relative date of collection within the migration season, year, pair status or 

foraging status of the individual upon collection (Guglielmo et al. 2002, Mandin and 

Vézina 2012). We did not find any systematic variation in these factors so we used raw 

metabolite concentrations to calculate the index. We excluded highly-hemolyzed samples 

with plasma hemoglobin concentrations >1 g/dL to avoid associated biases (Chapter 2). 

We evaluated a covariate for the basin-to-perimeter ratio of the wetland on which the bird 

was collected (square-root transformed) and the basin-to-perimeter ratio (log10 

transformed) of available wetlands within 2 km radius buffer of the collection location to 

control for wetland and landscape-scale variation in potential foraging habitats that may 

influence refueling performance (Chapter 5). 

RESULTS 

Wetland sampling 

We sampled 305 wetlands on 30 unique study areas over 3 years. Most wetlands 

had semipermanent hydroperiods (65%), 30% had seasonal hydroperiods, and 5% were 

large permanent water bodies (i.e., lakes) generally managed for recreational fisheries. 

Only 3.6% of wetlands (n = 11) were cultivated in the previous growing season as 

indicated by the absence of persistent emergent vegetation or presence of crop residue in 

the basin. All of the basins that were cultivated in the previous growing season were 

classified as having seasonal hydroperiods. Most wetlands were entirely privately owned 

(86%), 3% were entirely on lands managed by the U.S. Fish and Wildlife Service or 

South Dakota Department of Game, Fish, and Parks, and 11% were mixed public-private 

ownership. The upland cultivation terms for the 3 spatial scales considered around 

wetlands generally ranged from 0 to 100% (Figure 2). Upland cultivation was right-
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skewed at the 50 m scale because many wetlands had small perennial vegetation buffers 

immediately adjacent to them even when in otherwise intensively farmed landscapes 

(Figure 2). 

Invertebrate prey abundance 

We included 304 wetlands in the analysis on invertebrate prey abundance in 

surface water foraging habitats of blue-winged teal. The baseline model for Mollusca 

densities included the binomial term for fish presence or absence, log10 transformed basin 

perimeter-to-area ratio, and both SPEI terms and explained 63% (conditional r2) of the 

variation in Mollusca densities (Table 1). The upland cultivation terms did not have 

significant additional support over the baseline model at any spatial scale (P ≥ 0.277; 

Table 1). The baseline model for Amphipoda densities included terms for the hydrologic 

regime and maximum depth of the wetland, and the quadratic fathead minnow CPUE 

term. The baseline model explained 28% of the variation in Amphipoda densities (Table 

1). There were no associations between Amphipoda densities and upland cultivation at 

any of the spatial scales (P ≥ 0.053; Table 1). The baseline model for Chironomidae 

densities included the hydrologic regime categorical covariate and the 6-month SPEI 

term and explained 42% of the variation (Table 1). Chironomidae densities did not vary 

with upland cultivation at the 50 m or 2 km scales, but were significantly greater in 

wetlands with higher upland cultivation intensity in the 4 km buffer (P = 0.032; b ± SE, 

0.164 ± 0.069; Table 1). 

We included 128 wetlands in the analysis of invertebrate prey abundance along 

the benthos in open-water foraging habitats for lesser scaup. The baseline model for 

Mollusca densities included a term for log10 transformed basin perimeter-to-area ratio and 
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explained 37% of the variation in Mollusca densities (Table 1). There was no support for 

the upland cultivation terms influencing Mollusca densities (P ≥ 0.276; Table 1). The 

baseline model for Amphipoda densities included the 6 month SPEI term and explained 

13% of the variation (Table 1). There was evidence for higher Amphipoda densities in 

wetlands with more upland cultivation within the 50 m band surrounding the wetland (P 

= 0.013; 0.346 ± 0.141; Table 1) but no associations at the other 2 scales (P ≥ 0.064; 

Table 1). The baseline model for Chironomidae densities included the categorical term 

for hydroperiod and the 6-month SPEI term. The model explained 36% of the variability 

in Chironomidae densities (Table 1). There was no association between Chironomidae 

densities and upland cultivation at any of the scales (P ≥ 0.083; Table 1).  

Duck abundance  

 We included 304 wetlands in the abundance analysis for blue-winged teal. The 

best baseline model included a term for log10 transformed basin perimeter-to-area ratio 

and explained 33% of the variation in abundance (Table 2). There was a positive 

association between blue-winged teal abundance and upland cultivation at the 50 m scale 

(P = 0.041; 0.174 ± 0.077; Table 2) and the 2 km scale (P = 0.013; 0.224 ± 0.092; Table 

2). Abundance and upland cultivation were not significantly related in the 4 km scale (P 

=0.051). We included 128 semipermanent or permanent wetlands with an open water 

zone and maximum depth ≥0.5 m in the lesser scaup abundance analysis. The baseline 

model included a term for log10 transformed basin perimeter-to-area ratio and explained 

52% of the variation in abundance (Table 2). There was no support for inclusion of any 

of the upland cultivation terms (P ≥ 0.926; Table 2).  
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Duck physiology 

We included 233 female blue-winged teal collected on 125 unique wetland basins 

in the physiology analysis. The baseline model included a term for the perimeter-to-area 

ratio of the basin on which the individual was collected and explained 27% of the 

variability in the refueling index (Table 3). There were no significant associations 

between the refueling index and upland cultivation at the 2 km scale (P = 0.061; Table 3) 

but there was a positive association with upland cultivation in the 4 km scale (P = 0.010; 

0.739 ± 0.271; Table 3). We included 137 female lesser scaup collected on 62 unique 

wetland basins in the lesser scaup physiology analysis. The baseline model included a 

term for the perimeter-to-area ratio of the basin on which the individual was collected and 

explained 15% of the variability in refueling index (Table 3). There was no evidence for 

any association between the refueling index and upland cultivation in either of the 2 

spatial scales (P ≥ 0.426; Table 3).  

DISCUSSION 

 Our study was the first intensive attempt to understand contributions of wetlands 

in intensively-farmed landscapes to wetland-foraging waterfowl during spring migration 

in the PPR, an otherwise intensively studied region of global significance for waterfowl 

production. Results of our comprehensive assessment suggested upland cultivation 

around wetlands in the region was not associated with any detectable decreases in forage 

availability, duck abundance, or physiological performance and, in some cases, was 

associated with increases in the key metrics we monitored over those in less intensively-

farmed landscapes. Across all metrics we monitored on a wide-spectrum of wetland types 

used during migration, we observed few significant associations with upland cultivation 
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and among those metrics in which we found significant variation, the direction of the 

effects were always positive. These results imply that ‘average’ wetlands in modern 

intensively-farmed landscapes in eastern South Dakota currently confer at least 

comparable or perhaps better migration habitats for wetland-foraging ducks en route to 

northern breeding ranges during spring. This finding has implications for understanding 

the potential for agricultural landscapes to play a relevant role in migrations of wetland-

foraging waterfowl and raises questions about the underlying mechanisms giving rise to 

observed similarities of wetlands across the wide range of upland land uses we examined.  

 The apparently equivocal association between upland cultivation and our metrics 

seem to contrast with the implicit assumption that factors associated with upland 

cultivation such as increased sedimentation (Martin and Hartman 1987, Gleason and 

Euliss 1998), nutrient enrichment (Neely and Baker 1989), hydrologic alterations (van 

der Kamp et al. 2003, Voldseth et al. 2007), or pesticide inputs (Grue et al. 1986, Main et 

al. 2014) would manifest in measurable impairments. Extensive sampling in a diversity of 

lotic ecosystems has clearly linked agricultural land use practices to biotic impairments in 

those systems (e.g., Allan et al. 1997, Genito et al. 2002, Allan 2004) and some work 

even in the PPR has shown negative consequences of crop production on microfauna in 

ephemeral wetlands (Euliss and Mushet 1999) or in controlled experiments (e.g., Dieter 

et al. 1996). However, other than the well-established negative association between 

breeding waterfowl densities and upland cultivation (e.g., Austin et al. 2001), studies 

have consistently shown equivocal relationships between intensive agricultural land use 

and biotic communities in wetlands in the PPR (Guntenspergen et al. 2002, Tangen et al. 

2003, Hanson et al. 2012). Further, the tendency for apparent resiliency of wetland-
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invertebrates to anthropogenic disturbances extends beyond prairie wetlands and is 

characteristic of aquatic invertebrate communities in a diversity of wetland ecosystems 

globally (Batzer 2013).  

 Considering the underlying mechanisms that gave rise to similar wetland function 

across the upland cultivation gradient is useful for understanding the true consequences 

of upland cultivation on prairie wetlands. First, it is important to recall the question we 

asked in this research, which was what are the current contributions of wetlands in 

intensively farmed landscapes, relative to those observed in modern landscapes that are 

not intensively farmed? This question does not however address a more salient question, 

which is if we were to restore grasslands to all the cultivated uplands in this system, what 

response would we expect to see in wetlands we sampled? Understanding the 

mechanisms giving rise to the similar condition of wetlands across the upland cultivation 

gradient is necessary to answer the latter question and has substantial implications for 

understanding these wetlands and evaluating potential management and conservation 

strategies in this landscape. Here we explore two potential hypotheses to explain the 

similarities we observed and discuss their respective implications.  

The first hypothesis to explain the relatively similar wetland conditions across the 

upland cultivation gradient is that wetlands in this system were inherently resilient to the 

presumed pathways for degradation in response to upland cultivation. The dynamic 

nature of wetland ecosystems has conceivably favored evolution of life-history traits 

among wetland-dependent organisms that are tolerant of a wide range of ecological 

perturbations (Batzer 2013). Therefore, although agricultural land use practices change 

nutrient balances, sedimentation patterns, or introduce pesticides, these disturbances may 
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simply mimic historical processes with which wetland invertebrates and waterfowl 

evolved, leading to no detectable negative impacts of upland cultivation. Further, the 

positive responses in some invertebrate taxa we observed that were reflected in increased 

abundance, and to a lesser extent improved physiology, of blue-winged teal could result 

from enrichment of wetlands conferred by upland cultivation. Increased nutrient inputs 

associated with crop production have been shown to impact invertebrate communities in 

prairie wetlands (Hann and Goldsborough 1997), which could benefit blue-winged teal. 

Similarly, conversion of upland catchments from perennial vegetation to cropland alters 

water-level dynamics in prairie wetlands (Euliss and Mushet 1996, van der Kamp et al. 

1999), which could facilitate increased sediment oxidation and improve potential 

productivity of wetlands in intensively farmed landscapes. Finally, climate-driven 

variation in water levels of prairie wetlands (e.g., Niemuth et al. 2010) facilitates frequent 

disturbances by land owners seeking to farm or hay margins of dry wetlands. These 

disturbances, namely burning, disking, or mowing, have been shown to positively impact 

invertebrate production in managed wetland ecosystems throughout North America (e.g., 

Murkin et al. 1982, de Szalay and Resh 1997, Gray et al. 1999, Davis and Bidwell 2008), 

and arguably could have comparable, albeit unintended, positive impacts on wetlands in 

agricultural landscapes (Davis and Bidwell 2008). 

 The second hypothesis to explain observed similarities in wetland quality for 

migrating ducks across the upland cultivation gradient is that wetlands in intensively 

farmed landscapes have been degraded due to negative agricultural impacts discussed 

above (e.g., sedimentation, nutrient enrichment, pesticide inputs), but that degradation 

has only lowered the productivity of the wetlands to the level seen in modern unfarmed 
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wetlands. This pattern could result because upland crop production is not a randomly 

applied ‘treatment’; rather, constraints in soil productivity, climatic conditions, and 

economic factors interact to drive conversion of grasslands to crop production (Stephens 

et al. 2008, Rashford et al. 2011) and land-retirement programs prioritize parcels with 

less crop production potential (Claassen et al. 2008). In South Dakota, lands with the 

fewest constraints to crop production (e.g., steep slopes or poor drainage) are farmed 

most intensively and those with the most constraints are generally not cropped (Reitsma 

et al. 2015). Arguably, the same factors driving the distribution of upland cultivation 

could drive productivity potential of wetlands. If this were true, we might find improved 

wetland quality metrics in landscapes where there is currently more upland cultivation, if 

the negative constraints attributed to upland cultivation were to be removed. Therefore, 

the similarities we observed across the upland cultivation gradient may actually be a 

signal of degradation that occurred in these landscapes. If this hypothesis is true, it 

suggests there is potential to achieve improved wetland ecosystem function in modern, 

intensively farmed landscapes if the most salient impacts of upland cultivation were 

removed.    

It is important to note that the statistical control we used in our analyses (i.e., 

wetland size, depth, recent climate, and fish communities) could have masked impacts of 

factors that reduce wetland function in intensively farmed landscapes but are not directly 

associated with upland cultivation. First, we only sampled extant wetlands in these 

landscapes because drained or filled wetlands were by definition unavailable to ducks. A 

number of studies in the PPR and anecdotal accounts on our study areas revealed that 

drained wetlands are more common in intensively farmed landscapes (Miller et al. 2009, 
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Oslund et al. 2010). Furthermore, consolidation of wetlands through surface or 

subsurface drainage is a common practice in intensively farmed landscapes (Turner et al. 

1987, Bartzen et al. 2010) and leads to reduced availability of small, seasonal wetlands 

and increased prevalence of large wetlands with more permanent hydroperiods (Miller et 

al. 2011, Anteau 2012, Wiltermuth 2014, McCauley et al. 2015, Vanderhoof and 

Alexander 2015). The attendant increase in water permanency and artificially inflated 

connectivity, which is naturally low among prairie wetlands (Leibowitz and Vining 

2003), can lead to increased colonization and persistence of fish, which have cascading 

and well-documented impacts on wetland function for waterfowl (Chapter 5; Bouffard 

and Hanson 1997, Zimmer et al. 2002, Hanson et al. 2005, Anteau et al. 2011, Maurer et 

al. 2014). Studies in prairie wetlands have demonstrated within-wetland factors, such as 

fish or submersed macrophyte communities, have more detectable impacts on 

invertebrate communities than watershed factors, such as upland cultivation (Tangen et 

al. 2003, Anteau et al. 2011, Hanson et al. 2012). We have shown that those within-

wetland factors manifest in physiological impacts for spring migrating waterfowl 

(Chapter 5). Therefore, although we show that wetlands in a matrix of extensive upland 

cultivation have no detectable differences for spring-migrating waterfowl, subsurface and 

surface drainage practices associated with intensive upland cultivation can alter the 

ecology of remaining wetland ecosystems in intensively farmed landscapes (Genet and 

Olsen 2008, Blann et al. 2009, Miller et al. 2011, Wiltermuth 2014, McCauley et al. 

2015). Accordingly, our study aids in framing the appropriate focus for restoration or 

conservation of wetlands in agricultural landscapes. Our results suggest looking beyond 

upland cultivation to factors that systematically alter the hydrology, and by extension 
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biotic communities, of prairie wetlands should be the principal focus for restoration or 

management in agricultural landscapes.  

Regardless of the underlying mechanisms giving rise to the observed consistency 

in wetland function across the upland cultivation gradient, our results illustrate potential 

for remaining prairie wetlands in modern agricultural landscapes to confer refueling 

benefits for spring-migrating waterfowl en route to northern breeding ranges. Wetlands in 

intensively farmed prairie landscapes have historically not received attention in 

conservation efforts because of demonstrated degradation of more ephemeral wetlands 

(Euliss and Mushet 1999) and a focus on landscapes with high perennial cover for upland 

nesting birds (Reynolds et al. 2006). Our results suggest wetlands in intensively farmed 

landscapes, which comprise a large area of the southern PPR, perhaps confer novel 

habitats for spring-migrating waterfowl. Further, because of the importance of aquatic 

invertebrates for breeding waterfowl (Swanson et al. 1974, Swanson et al. 1985, Cox et 

al. 1998), our results suggest wetlands in agricultural landscapes may provide comparable 

potential for breeding ducks if constraints on upland nesting cover or nest success in 

those landscapes are understood and addressed (Higgins 1977, Cowardin et al. 1985, 

Stephens et al. 2005). Additional research in the region could seek to understand the full 

potential of wetlands in intensively farmed landscapes and understand the underlying 

mechanisms giving rise to comparable wetland function for migrant ducks across the 

wide range of upland cultivation intensities in our study. Understanding these 

mechanisms will improve ecological understanding of wetlands, but more importantly 

provide a better picture of the restoration and conservation potential of remaining 
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wetlands in the intensively farmed regions of this globally important agricultural and 

wetland ecosystem.  
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Table 1. Model summaries and parametric bootstrapping results comparing baseline models of key blue-winged teal and lesser scaup 

invertebrate prey densities with more constrained models including covariates for upland cultivation in 50m, 2 km, or 4 km buffers 

surrounding wetlands sampled in eastern South Dakota during April and May 2013 through 2015. P-values are based on a parametric 

bootstrap comparing the less constrained baseline-model with each individual land use term. Regression coefficients and associated 

standard error and t-statistics are shown for each individual land use term.  

Species/ Response variable Marginal r2 Conditional r2 P b SE t 

Blue-winged teal       

 Mollusca density       

  Baseline model 0.175 0.627 --- --- --- --- 

  50 m buffer 0.175 0.626 0.942 -0.001 0.119 -0.008 

  2 km buffer 0.174 0.628 1.000 -0.022 0.168 -0.132 

  4 km buffer 0.179 0.626 0.277 0.208 0.186 1.119 

 Amphipoda density       

  Baseline model 0.184 0.281 --- --- --- --- 

  50 m buffer 0.190 0.295 0.053 0.097 0.048 2.003 1
0
7
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2 km buffer 0.185 0.288 0.384 0.054 0.055 0.985 

  4 km buffer 0.186 0.284 0.396 0.045 0.057 0.797 

 Chironomidae density       

  Baseline model 0.318 0.429 --- --- --- --- 

  50 m buffer 0.321 0.429 0.165 0.078 0.058 1.346 

  2 km buffer 0.329 0.436 0.137 0.109 0.069 1.573 

  4 km buffer 0.337 0.425 0.032 0.164 0.069 2.364 

Lesser scaup       

 Mollusca density       

  Baseline model 0.059 0.370 --- --- --- --- 

  50 m buffer 0.071 0.395 0.276 -0.258 0.225 -1.148 

  2 km buffer 0.074 0.414 0.431 -0.259 0.309 -0.838 

  4 km buffer 0.060 0.380 0.959 0.014 0.325 0.042 

 Amphipoda density       

  Baseline model 0.076 0.135 --- --- --- --- 

1
0
8
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50 m buffer 0.115 0.134 0.013 0.346 0.141 2.459 

  2 km buffer 0.077 0.142 0.723 0.064 0.158 0.406 

  4 km buffer 0.075 0.141 1.000 -0.015 0.160 -0.095 

 Chironomidae density       

  Baseline model 0.174 0.363 --- --- --- --- 

  50 m buffer 0.174 0.370 0.793 -0.051 0.142 -0.363 

  2 km buffer 0.202 0.381 0.083 0.276 0.158 1.751 

    4 km buffer 0.185 0.372 0.313 0.173 0.162 1.070 

1
0
9
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Table 2. Model summaries and parametric bootstrapping results comparing baseline models of blue-winged teal and lesser scaup 

abundance with more constrained models including covariates for upland cultivation in 50 m, 2 km, or 4 km buffers surrounding 

wetlands surveyed in eastern South Dakota during April and May 2013 through 2015. P-values are based on a parametric bootstrap 

comparing the less constrained baseline-model with each individual land use term. Regression coefficients and associated standard 

error and t-statistics are shown for each individual land use term.  

Species Marginal r2 Conditional r2 P b SE t 

Blue-winged teal             

 Baseline model 0.239 0.334 --- --- --- --- 

 50 m buffer 0.253 0.338 0.041 0.174 0.077 2.249 

 2 km buffer 0.265 0.343 0.013 0.224 0.092 2.428 

 4 km buffer 0.260 0.349 0.051 0.205 0.100 2.059 

Lesser scaup       

 Baseline model 0.451 0.516 --- --- --- --- 

 50 m buffer 0.449 0.516 0.966 -0.008 0.128 -0.059 

 2 km buffer 0.449 0.517 0.926 0.016 0.133 0.119 

1
1
0
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  4 km buffer 0.449 0.518 1.000 0.004 0.133 0.027 

1
1
1
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Table 3. Model summaries and parametric bootstrapping results comparing baseline models of blue-winged teal and lesser scaup 

refueling performance with more constrained models including covariates for upland cultivation in 2 or 4 km circular buffers 

surrounding collection locations. Refueling performance was measured with concentrations of key lipid metabolites circulating in 

plasma of migrating females of each species in eastern South Dakota during April and May 2013 through 2015. P-values are based on 

a parametric bootstrap comparing the less constrained baseline-model with each individual land use term. Regression coefficients and 

associated standard error and t-statistics are shown for each individual land use term.  

Species Marginal r2 Conditional r2 P b SE t 

Blue-winged teal             

 Baseline 0.025 0.274 --- --- --- --- 

 2 km buffer 0.044 0.269 0.061 0.502 0.257 1.950 

 4 km buffer 0.066 0.282 0.010 0.739 0.271 2.723 

Lesser scaup       

 Baseline 0.053 0.153 --- --- --- --- 

 2 km buffer 0.053 0.174 0.767 0.173 0.367 0.470 

  4 km buffer 0.061 0.201 0.426 0.401 0.387 1.035 

  

1
1
2
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Figure 1. Location of 30 randomly selected study areas sampled during spring migration 

(April – May) during 2013 to 2015 across a gradient of upland cultivation intensity in 

eastern South Dakota. The inset map shows the location of the Prairie Pothole Region 

(PPR; shaded region) and the location of eastern South Dakota in North America (black 

box). Areas outside the landscape gradient in eastern South Dakota were excluded from 

the sampling frame because they have too few wetlands or laid outside the traditional 

extent of the PPR in the state. 
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Figure 2. Box plot and violin plot showing the distribution of observations of upland 

cultivation metrics in 3 buffer sizes around 305 wetlands sampled during spring 

migration in eastern South Dakota during 2013 through 2015. The boxplots show range, 

inter-quartile range, and medians of observations in each buffer while the violin plots 

show the density of observations across the range of upland cultivation.  
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CHAPTER 5: IMPACTS OF WETLAND CONDITIONS ON REFUELING 

PERFORMANCE OF TWO SPRING-MIGRATING DUCKS 

ABSTRACT 

 The capacity of a migrating bird to accumulate and maintain sufficient lipid 

reserves to fuel migration and facilitate subsequent reproduction is the ideal currency for 

gauging the contribution and quality of migration stopover habitats. We used 

concentrations of lipid metabolites circulating in plasma of spring-migrating female 

lesser scaup (Aythya affinis) and blue-winged teal (Anas discors) to evaluate the 

consequences of variation in biotic and abiotic attributes of stopover wetland habitats on 

lipid dynamics, or refueling performance, of migrants. We found little evidence for most 

wetland attributes to influence blue-winged teal refueling performance. Lesser scaup 

refueling performance was positively associated with density of Chironomidae in 

foraging locations, density of submersed aquatic vegetation in wetlands, relative density 

of conspecifics using the wetland during migration, and size and shape of surrounding 

wetlands. Refueling in both species was negatively correlated with high densities of 

fathead minnows (Pimephales promelas). Taken collectively, the biotic factors associated 

with improved refueling performance of lesser scaup are known from previous work to 

respond negatively to high densities of fathead minnows, suggesting changes in wetland 

trophic structure coincident with the introduction and proliferation of fathead minnows 

were the primary attribute affecting lipid dynamics of lesser scaup, and to a reduced 

extent blue-winged teal, during migration. Such impairments to lipid accumulation during 

migration could manifest in cross-seasonal and cross-ecosystem effects as breeding ducks 

recoup lipid deficits accrued during migration on the breeding grounds. Accordingly, 
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restoration and management actions aimed at reducing impacts of fathead minnows on 

stopover habitats used by spring-migrating ducks may have positive impacts on migration 

performance and ultimately population productivity of these species.   

INTRODUCTION 

 North American migratory waterfowl (Anatidae) comprise a wide range of 

foraging, migrating, and breeding strategies and occur throughout the entire continent, 

from southern wintering areas in South America to northern breeding ranges on the 

Arctic coastal plain (Baldassarre 2014). Such ecological diversity, along with their 

demonstrated socioeconomic importance (e.g., Vrtiska et al. 2013), has prompted 

research on their ecology and management throughout the annual cycle, with a focus on 

reproduction and over-winter survival (Kaminski and Elmberg 2014). Reproductive 

ecology studies have demonstrated the importance of early arrival and clutch formation 

on the breeding grounds in determining individual reproductive success (e.g., Dzus and 

Clark 1998, Blums et al. 2005, Elmberg et al. 2005), which is facilitated by physiological 

condition during the transition to breeding (Prop et al. 2003, Devries et al. 2008). Further, 

waterfowl use nutrient reserves during early clutch formation nearly universally across a 

breath of body sizes and breeding latitudes (Ankney et al. 1991, Klaassen et al. 2006, 

Alisauskas and DeVink 2015, Janke et al. 2015). Therefore, some role of nutrient 

reserves among waterfowl during the transition from wintering to breeding is functionally 

universal, suggesting a comprehensive understanding of waterfowl ecology must extend 

beyond conditions experienced at the poles of their annual cycle and include the critical 

spring-migratory period (Arzel et al. 2006, Sedinger and Alisauskas 2014, Stafford et al. 

2014). 
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 The potential for conditions experienced off the breeding grounds to impact 

population productivity of waterfowl has arguably been best illustrated by the substantial 

population growth of midcontinent snow geese (Chen caerulescens; Alisauskas 2002). 

Despite liberalization of harvest to impose additional mortality on this relatively K-

selected population, they have sustained record population sizes and reproduction in 

years with suitable climatic conditions (Alisauskas et al. 2011) because of functionally 

unlimited food supplementation during winter and spring migration (Jefferies et al. 2004, 

Abraham et al. 2005). Although these Arctic breeding, large-bodied birds are more reliant 

on nutrients they carry with them to the breeding grounds than smaller-bodied temperate 

breeding ducks, the insights gained about the potential for non-breeding conditions to lift 

constraints on population growth are compelling reasons for understanding the ecology of 

other waterfowl populations during spring. Indeed, research on the smaller-bodied 

mallard (Anas platyrhynchos) and Northern pintail (Anas acuta) has revealed apparent 

linkages between wintering areas and population productivity (Kaminski and Gluesing 

1987, Raveling and Heitmeyer 1989), which are by extension mediated by conditions 

experienced during spring migration. Mallards and Northern pintails are buffered from 

many potential nutritional constraints during spring migration however because of their 

tendency to exploit waste-grain in crop fields in the same manner of snow geese 

(LaGrange 1985, Pearse et al. 2011). Few studies have examined the ecology of spring-

migrating waterfowl that do not exploit waste-grain during migration.  

Two exceptions exist for the paucity of information on migration ecology of 

wetland-foraging ducks: a comprehensive body of work on the ecology of Eurasian teal 

(Anas crecca) in Western Europe and recent work on lesser scaup (Aythya affinis) 
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migration ecology in the upper Midwest. As noted for mallards and Northern pintail, 

Eurasian teal population productivity relates to conditions on wintering areas, suggesting 

an important role of spring migration in mediating annual productivity (Guillemain et al. 

2008). Work throughout the primary migration route of Eurasian teal revealed foraging 

conditions encountered during spring migration were essential because they relied 

exclusively on dietary intake to fuel migration rather than using nutrient reserves (i.e., 

‘income migrants’; Arzel et al. 2007), and that food availability was often low during 

migration (Arzel et al. 2009). In North America, concern over reduced population 

abundance of lesser scaup led to predictions about the role of spring migration habitats in 

reducing population recruitment capacity (Austin et al. 2000, Afton and Anderson 2001). 

Field studies examining this so-called Spring Condition Hypothesis documented declines 

in lipid reserves among lesser scaup during spring migration and upon arrival at breeding 

areas (Anteau and Afton 2004; 2009a) that provided credence to the role of spring habitat 

conditions in mediating population productivity and was subsequently supported with 

evidence for reduced population recruitment over the same time frame (Arnold et al. In 

press).  

Clearly, conditions encountered during spring migration can have important 

impacts on population dynamics of wetland-foraging ducks, and therefore understanding 

factors associated with improved physiological outcomes for ducks using wetland 

habitats would improve management of these systems. In work further evaluating the 

ecology of spring-migrating lesser scaup, Anteau and Afton (2011) argued that 

concentrations of key lipid metabolites circulating in plasma of lesser scaup collected 

throughout the upper Midwest indicated they were actively catabolizing lipid reserves, 
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perhaps in response to reductions in invertebrate prey densities due to wetland 

degradation (Anteau and Afton 2008a). Although this work provided a circumstantial link 

between observed reductions in lipid reserves at northern latitudes and wetland habitats 

encountered during spring migration, it does not explicitly tie the physiology of the ducks 

to specific wetland attributes associated with lipid catabolism. Such a direct link between 

wetland attributes and lipid metabolism of spring-migrating wetland-foraging ducks is 

arguably the ideal metric for characterizing wetland habitat quality during this important 

life-history phase (sensu Van Horne 1983, Jones 2001). Therefore, we sought to evaluate 

fine-scale relationships between migrant lipid metabolism and attributes of wetlands used 

by two wetland-foraging ducks in the southern Prairie Pothole Region (PPR) of the 

northern U.S. We focused our analyses on lesser scaup and blue-winged teal (Anas 

discors) because they forage exclusively in wetlands during migration, are ubiquitous, 

and use a diversity of wetland types. Additionally, comparison of the two species offers 

interesting contrasts with regard to body size variation (i.e., small-bodied blue-winged 

teal and larger lesser scaup), timing of migration (late-migrating blue-winged teal and 

early lesser scaup), and ultimate location of breeding habitats (comparatively lower 

latitudes among blue-winged teal). Our analysis should elucidate the role of wetland 

heterogeneity in determining the physiology of migrating females as they accumulate or 

maintain lipids for migration or the forthcoming breeding season. 

METHODS 

Study wetland selection 

We worked in the Prairie Pothole Region of eastern South Dakota that comprised 

most counties east of the Missouri River. The region was characterized by thousands of 
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isolated prairie wetlands in a matrix of intensive agricultural land used for crop 

production, grazing, or conservation (Johnson and Higgins 1997, Naugle et al. 2001). A 

majority of the region (ca. 96%) was privately owned, interspersed with small tracts of 

publicly owned and managed lands for waterfowl and other wildlife. We sampled 30 

unique 50 km2 study areas that comprised a total of 1500 km2 that were 97% privately 

owned. Sites were selected with a Generalized Random Tessellation Stratified Sample to 

assure broad spatial coverage across eastern South Dakota and stratified across an 

agricultural land use gradient that was the focus of a concurrent study (Chapter 4). We 

sampled 12 study areas during April to May 2013 and 2014 and 6 study areas during 

April to May 2015.  

We manually digitized wetlands on each study area based on aerial imagery from 

a wet year (2010 Farm Services Agency National Aerial Imagery Program [NAIP] 

images; 1 m resolution) to define a sampling frame to randomly select study wetlands. 

We distinguished between 2 wetland categories in this mapping procedure: wetlands with 

a seasonal hydroperiod and those with a semipermanent or permanent hydroperiod 

(Stewart and Kantrud 1971). We defined seasonal wetlands as those that were 

distinguishable with wetland vegetation in the 2010 NAIP photograph but then dry in the 

2012 NAIP photograph from that dry year. Semipermanent wetlands had water or visible 

persistent emergent wetland vegetation in both years. We also informed our classification 

strategy with previous wetland classifications from the National Wetlands Inventory 

(Wilen and Bates 1995) based on the Cowardin et al. (1979) wetland classification 

methods and ca. 1985 imagery. We used an area-weighted random sample to select 10 

wetlands on each study area to pursue permission from land owners to include in our 
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study. We used an area-based weighting to avoid over-sampling small, numerically-

abundant basins. We stratified the sample to include seasonal and semipermanent or 

permanent basins in equal proportion to their availability (area) on the study areas based 

on the digitized wetland maps. We omitted and replaced basins when we were denied 

permission, or in cases where the basin was entirely vegetation-choked or dry, until we 

had obtained permission to sample 10 wetlands or all available wetlands on the study site 

in cases of low wetland densities.  

Field methods 

We attempted to collect spring-migrating female lesser scaup and blue-winged 

teal on as many of the randomly-selected basins as possible within constraints imposed 

by use or abundance of each species on the basin, feasibility of collecting on the basin, 

and permits that allowed for ca. 10 individuals per study area per year. Therefore, our 

inferences are constrained first by the use of the wetland by the species and then by our 

ability to collect on the basin. The first constraint (use) is relevant for our inferences, 

because we were only interested in evaluating variation in wetlands used by each species 

during migration. The second constraint could introduce an unknown bias into the study 

because of underlying factors that may constrain our ability to collect on some wetlands 

(e.g., surrounding vegetation, size, depth). Comparison of the collection and survey data 

from all wetlands included in our study indicated we collected a migrating female lesser 

scaup on 52% of wetlands on which we detected them during migration and a migrating 

blue-winged teal on 45% of the wetlands on which we detected them during migration. 

Our explicit focus on randomly-selected study areas and then randomly selected wetlands 
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within those relative small study areas is unique among most studies collecting migrating 

ducks and may minimize potential biases associated with our collection method.  

We collected ducks from shore and small boats with shotguns and non-toxic shot 

(Envrion-metal, Inc., Sweet Home, OR). We noted the location of the collection on aerial 

photographs in the field and later geographically referenced them in ArcGIS. We 

constrained the time of collections to ≥6 hours after sunrise to improve the likelihood 

individuals had not recently arrived from nocturnal migration and had opportunity to 

forage in the landscape in which we collected them. We also attempted to focus 

collections on actively foraging individuals to further tie the individual and associated 

metabolite profiles to the basin on which it was collected. Immediately after collection, 

we drew a 0.5-1.5 mL sample of whole blood from the heart of the dead bird with a 

heparinized 3 mL syringe and 16-20 gauge 38 mm needles. We transferred whole-blood 

to a heparinized 1.5 mL microcentrifuge tube and stored it near ice packs to avoid 

freezing. Within 4 hours, we centrifuged whole-blood at 4,000 – 6,000 rpm for 5-10 

minutes to separate plasma from red blood cells. We transferred plasma to a non-

heparinized microcentrifuge tube and froze it at -20 C. Within a month of collection we 

transferred plasma to a -80 C freezer until further processing.  

 We conducted surveys of lesser scaup and blue-winged teal abundance on each 

basin twice during spring migration. The 2 survey occasions were timed to coincide with 

peak migration of lesser scaup early in the season and with peak blue-winged teal 

migration later (ca. 2 weeks) in the season. We used conventional survey methods used 

for waterfowl counts on prairie wetlands (e.g., Cowardin et al. 1995, Reynolds et al. 

2006) to count all individuals on the basin and minimize the potential for double-
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counting individuals on multiple basins. We commenced surveys around sunrise on days 

with low winds (<30 kph) and high visibility. We first observed basins from high vantage 

points with high-powered spotting scopes and binoculars. We then walked through 

emergent vegetation when present to ensure we counted all individuals not visible from 

high vantage points. We did not collect ducks or otherwise disturb wetlands for 5 days 

preceding surveys to minimize investigator-related biases in counts. 

 We sampled aquatic invertebrates, fish, and vegetation on each wetland on one 

occasion during the spring migration period. We established 2-5 sampling transects on 

the basin radiating from the center with random compass bearings. We sampled 

invertebrate availability for blue-winged teal at 2 locations along transects by passing a 

D-framed sweep net through 0.5 m distance of surface water. At sampling locations >20 

cm deep, the net only sampled the top 20 cm of the water column, which was the 

maximum height of the net and represented the likely maximum foraging depth for blue-

winged teal and similarly-sized dabbling ducks (Guillemain et al. 2007). The first 

sampling location was 1 m from the edge of the water or the first open water area in 

which a blue-winged teal could land and forage along the transect. The second sampling 

location was half-the-distance from the middle of the basin to the first sampling location, 

or 5 m from the edge of the emergent vegetation zone in wetlands with an open water 

zone. We sampled invertebrate availability for lesser scaup at 2 locations along the 

transect in wetlands with an open water zone >0.5 ha (Anteau and Afton 2008a). We 

passed the sweep net along the benthos for 0.5 m length to sample the likely foraging 

location of diving lesser scaup in open water areas. Sampling locations were constrained 

to water depths <3 m. The first sampling location was 10 m beyond the edge of the 
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emergent vegetation ring and the second location was 50 m beyond the first. We recorded 

the sampling depth at each sampling location to calculate the area of the net that was 

submerged and to characterize the depth profile of the basin. We rinsed samples through 

a 750 μm sieve in the field, separately composited blue-winged teal and lesser scaup 

invertebrate samples across all transects, and stored samples in 70% ethanol dyed with 

Rose Bengal in Whirl-pak bags.  

We used a 36-tine lake rake at 3 locations perpendicular to transects at each 

individual sampling location to characterize the abundance of submersed aquatic 

vegetation (SAV) in the wetland. Although SAV had not started growing at the time of 

our sampling, we sampled residual SAV from the previous growing season, which related 

to aquatic invertebrate abundance and wetland quality for spring-migrating ducks in 

previous studies in the region (Anteau and Afton 2008a). SAV density was expressed as 

the proportion of tines obstructed by SAV across all sampling locations in the wetland. 

We sampled fish to document presence/absence, characterize communities and relative 

abundance among all wetlands in the study. We used 2-5 Gee-style minnow traps in all 

wetlands deep enough to submerse the traps (>20 cm) and used an experimental gill net 

in wetlands with an open water zone and ≥1 m deep. We recorded the time we set traps 

and the time we returned on the following day to account for total effort of each trap. We 

enumerated fish by species and released them back into the wetland.  

Laboratory methods 

We rinsed invertebrate samples in the lab in a 500 μm sieve and searched under 

10X magnification dissecting scopes to enumerate and preserve all aquatic invertebrates. 

We generally identified key taxa to families, except for Amphipoda, which we identified 
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to genus (Hyalella and Gammarus). The same investigator (AKJ) conducted quality 

control on identification of all organisms to ensure consistency across sites and years. We 

converted counts to biomass estimates based on the average dry weight (mg/individual) 

of a random subset of individuals in each taxa taken across samples from all 3 years of 

the study. We noted substantial inter-wetland variation in size of Chironomidae larvae 

and therefore measured basin-specific biomass of Chironomidae larvae in each sample 

with ≥30 individuals and used the mean mass for samples with fewer than 30 individuals.  

We conducted necropsies on all birds to confirm they had not transitioned into 

reproductive state based on the size of the 3 largest ovarian follicles. We did not note 

evidence of rapid follicle growth in any lesser scaup but collected blue-winged teal with 

mean follicle size >5mm indicative of transition into breeding (Janke et al. 2015). Those 

individuals were removed from analyses. We measured concentrations of β-

hydroxybutyrate (BUTY) and true triglycerides (TRIG) in plasma to serve as an 

indication of recent (ca. 1 day; Jenni-Eiermann and Jenni 1994, Anteau and Afton 2008c) 

lipid metabolism. β-hydroxybutyrate is a ketone body and elevates in plasma coincident 

with the breakdown of somatic lipids, and has therefore been reported to negatively 

correlate with recent changes in lipid mass (i.e., lipid catabolism; Jenni-Eiermann and 

Jenni 1994). Conversely, true-triglycerides measured in plasma indicates lipid transport 

from dietary break-down or de novo lipogenesis to somatic tissue and therefore correlates 

with short-term increases in lipid mass (i.e., lipid accumulation; Jenni-Eiermann and 

Jenni 1994). We used commercially available assays adjusted for small volumes to 

measure TRIG and BUTY by means of endpoint assays and kinetic assays, respectively, 

as described in Appendix 2. We ran all samples in duplicate and re-ran samples with high 
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inter-assay variation in concentration estimates (CV > 20%). We also measured 

concentration of plasma hemoglobin with a colorimetric assay (Hemoglobin Colorimetric 

Assay Kit, Cayman Chemical Company, Ann Arbor, MI) to identify and exclude highly-

hemolyzed samples (defined as plasma hemoglobin ≥1g/dL) that could impair 

measurements of metabolite concentrations (Chapter 2). 

We obtained high-resolution (≤1.5 m) geographically referenced true color (2013, 

2014) or color infrared (2015) aerial imagery of each of the study sites during May of the 

year the site was sampled to quantify the availability of surface water. Imagery was 

acquired from small, fixed-winged aircraft flying over the study sites and taking digital 

photographs that were later mosaicked and geographically referenced (Niemuth et al. 

2010). We manually digitized all available surface water from the imagery in ArcGIS 

10.3 (ESRI, Redlands, CA). We classified surface water into 3 categories: 1) non-wetland 

surface water, which included streams, drainage ditches, and excavated ponds (i.e., 

waste-water treatment facilities, stock dams); 2) interspersed wetlands, which included 

wetlands or portions of wetlands with interspersed emergent vegetation or patches <0.5 

ha deemed usable by blue-winged teal but not by lesser scaup and; 3) open wetlands, 

which included open water patches >0.5 ha without emergent vegetation. We mapped 

surface water in these categories within a 2 km radius buffer of collection locations to 

quantify the area of potentially suitable wetland habitat around each individual. Previous 

work with radio-marked non-breeding ducks indicated that daily movement rates were 

generally <4 km/day (Beatty et al. 2014, Beatty et al. 2015; A. D. Afton, Louisiana State 

University unpublished data), so we assumed that a 4 km diameter area was 
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representative of the landscape immediately available to ducks during spring migration 

stopovers.  

Analysis methods 

We conducted an exploratory analysis with diagnostic plots and linear regression 

on metabolite concentrations and variables including date, time-since sunrise, relative day 

within the migrating period in the year, latitude of collection, and whether the individual 

was observed foraging or paired upon collection to ensure there were no associated biases 

(Guglielmo et al. 2002, Mandin and Vézina 2012). We found no systematic variation in 

metabolite concentrations and any of these variables, so we proceeded with analyses on 

raw metabolite concentrations. We were interested in characterizing the refueling 

performance of spring-migrating lesser scaup and blue-winged teal with respect to a suite 

of wetland-related covariates. We used the refueling index proposed in Chapter 3 to 

composite information contained in each lipid metabolite into a single index of refueling 

performance on an individual. The refueling index was advantageous over individual 

metabolite concentrations because it accounts for unique information contained in 

BUTY, an indicator of lipid catabolism, and TRIG, a leading indicator of lipid 

accumulation, while also accounting for the inherit redundancy in information contained 

in the two contrasting metabolic indicators.  

 We evaluated the importance and impacts of wetland covariates describing biotic 

and abiotic factors associated with collection wetlands and surrounding wetland 

availability on variation observed in the refueling index for each species. The covariates 

we examined fell into 3 general categories, representing the biotic community 

(invertebrates, submersed macrophytes, fish, and ducks), structural attributes of the 



128 

 

wetland (area, shape, and depth), and availability of additional wetlands in the 

surrounding landscape. The first category of covariates comprised information about 

invertebrate prey availability. Invertebrate prey can constitute a majority of food 

consumed by spring-migrating lesser scaup and blue-winged teal during migration 

(Chapter 6, Appendix 1; Anteau and Afton 2008b, Hitchcock 2009, Tidwell et al. 2013), 

so we predicted improved refueling performance in individuals collected on wetlands 

with high prey abundance. We focused our analyses on 3 taxa — Amphipoda, 

Chironomidae, and Mollusca (including all Gastropoda and Sphaeriidae) — that were 

abundant in diets of lesser scaup and blue-winged teal in our study (Chapter 6, Appendix 

1) and others (Anteau and Afton 2008b, Hitchcock 2009). We converted biomass of each 

taxa to densities (mg/m2) by accounting for the area sampled by the sweep net based on 

depth of the water at the sampling location and the area of the net submersed at 1 cm 

depth increments (to account for the D-shape of the net in cases where the entire net was 

not submerged).  

 We included the relative density of SAV in the wetland as a covariate, expressed 

as the percentage of lake-rake tines obstructed by SAV across all samples in the wetland. 

Submersed aquatic vegetation can represent a prey item for spring-migrating lesser scaup 

and blue-winged teal because both species consume aquatic plant seeds (Anteau and 

Afton 2008b, Hitchcock 2009). It can also can confer improved habitat for invertebrate 

prey in wetlands (Murkin et al. 1991, Anteau et al. 2011). Therefore, we predicted that 

increased SAV could improve forage availability for both species and therefore positively 

impact refueling performance.  
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 Fish have well-documented negative impacts on invertebrate and plant 

communities in prairie wetlands (Bouffard and Hanson 1997) so we predicted covariates 

related to fish presence would be negatively associated with the refueling index. The first 

covariate we included for fish was a binomial term indicating whether we had detected 

any fish in the wetland with either sampling gear. The second fish covariate we tested 

was the relative density of fathead minnows (Pimephales promelas) expressed as average 

catch-per-unit-effort (CPUE) of minnow traps on wetlands. We calculated CPUE as the 

mean count for a single trap on the wetland over a 24 hour period. Fathead minnows have 

strong impacts on prairie wetland ecology (Zimmer et al. 2002) and are ubiquitous 

throughout the upper Midwest because of their ecological tolerances for wetlands and 

dietary flexibility (Duffy 1998, Herwig and Zimmer 2007, Anteau and Afton 2008a). 

Therefore, we surmised their density may have the greatest effect on wetland attributes of 

concern for spring-migrating lesser scaup and blue-winged teal, perhaps more so or at 

least in addition to the binary variable indicating whether or not any fish were present in 

the wetland. Further, previous work in the region has indicated fathead minnow impacts 

are non-linear (Anteau et al. 2011), so we fit the covariate with a quadratic effect to allow 

for variable impacts between low-densities (main effect) and high densities (quadratic 

effect) of fathead minnows.  

 The final biotic covariate we evaluated was the relative density of conspecifics 

using the wetland during migration. This covariate allowed us to evaluate whether 

density of each species on a wetland during migration was associated with the refueling 

performance of the ducks. Understanding the relationship between refueling and densities 

could reveal interesting patterns related to factors influencing the spatial distribution of 
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ducks in potential foraging patches during migration. Under an ideal-free distribution, we 

would expect there to be no variation in refueling performance with increasing 

conspecific density on the wetland (Fretwell and Lucas 1970). However, we also 

surmised that increased density of individuals on the wetland may convey advantages for 

foraging individuals with respect to trade-offs in foraging and vigilance times, which may 

be reflected with greater refueling performance in the presence of higher conspecific 

densities (Arzel et al. 2007, Guillemain et al. 2007). We expressed the relative density of 

conspecifics on each wetland based on the residuals of a regression on the square-root of 

the total number counted on the two survey occasions and the log of the area open water 

on the basin during the study year. This regression procedure corrected for variation in 

wetland size and served as a relative index of conspecific density on the wetland during 

migration.  

 The next category of covariates we examined described structural attributes of the 

wetland and included the maximum depth of the wetland recorded during sampling and 

the size and shape of the basin. To characterize the shape and size of the basin in one 

term, we used the perimeter to area ratio of open water. This ratio accounts for the 

availability of edge habitats, which are preferred by blue-winged teal and avoided by 

lesser scaup, and the total availability of water (Fairbairn and Dinsmore 2001). The ratio 

is negatively correlated with wetland area (Figure 1) and greater on wetlands with 

interspersed patches of open water and vegetation with more edge (i.e., hemimarsh; 

Weller and Spatcher 1965). Therefore, we predicted blue-winged teal would have 

improved refueling performance on wetlands with higher ratios (i.e., more interspersion 

of vegetation and water) and lesser scaup would have lower refueling performance on 
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wetlands with lower ratios because it would represent less open-water foraging habitat 

availability. 

  The final category of covariates we examined represented the availability of 

potential foraging habitats within a 2 km radius (12.5 km2). We included a covariate for 

the perimeter-to-area ratio of open water to index the total availability of open-water 

foraging locations for lesser scaup and edge habitats for blue-winged teal. As with the 

collection basin-specific perimeter-to-area ratio described above, we predicted blue-

winged teal refueling performance would be positively and lesser scaup refueling 

performance would be negatively associated with the score. This index did not perfectly 

characterize water availability for blue-winged teal because it only pertained to open 

water patches (≥0.5 ha) of wetlands, whereas we observed blue-winged teal using small 

wetland patches and other surface water during our study. Therefore, we included a 

covariate for the total area of open water habitats and a covariate for total non-open water 

availability (including interspersed wetlands, small open water patches <0.5 ha, and river 

and streams with available surface water). We included the same open water availability 

covariate in the lesser scaup analysis, but did not include the term for non-open water 

because they were not used by lesser scaup. In the rare (3%) case where there were no 

open water patches around blue-winged teal collection locations we assigned the bird the 

highest value of the index score observed among birds with open water in the 

surrounding buffer. We used the highest score, rather than for example the median, 

because we assumed landscapes with no available open water were more similar to high 

perimeter-to-area landscapes than any other landscape (Figure 1).  
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We had no a priori predictions or explicit interest on how individual covariates 

may collectively impact the response variable together, but rather were interested in the 

average effect of each individual covariate on the refueling index. Therefore, we used a 

variable selection procedure to draw inferences on the average impact of each individual 

covariate on refueling performance. To do this, we tested all possible covariate 

combinations and evaluated their individual significance based on model-averaged 

regression coefficients and relative importance values from models that included the 

covariate (Burnham and Anderson 2002). We interpreted the significance of a parameter 

estimate based on whether 85% confidence intervals around the parameter excluded 0. 

We choose 85% confidence intervals to approximate the behavior of traditional model-

selection procedures common in the literature (Arnold 2010). We used the methods 

described in Burnham and Anderson (2004) to estimate adjusted standard errors of the 

regression coefficients. We used generalized linear mixed effects models in the lme4 

package in R to perform regression analyses. Mixed effects models were advantageous 

for our study design because they allowed us to control for dependency among 

individuals collected on the same study sites and in the same year with random intercept 

terms, and then allowed us to focus inferences on main effects associated with the 

wetland covariates of interest. We square-root transformed invertebrate densities, fathead 

minnow CPUE, and landscape wetland availability covariates to minimize the influence 

of extreme observations. We z-transformed all continuous covariates (all covariates 

except the fish presence/absence term) to facilitate direct-comparisons of covariate 

effects that were measured on widely varying scales and to improve model fit (Schielzeth 

2010). We reported summary statistics on covariates to facilitate comparisons with other 
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studies and standardizations (Table 1; Schielzeth 2010). We tested all z-transformed 

covariates for multicollinearity and removed one covariate from highly correlated 

(|r|≥0.6) pairs. 

RESULTS 

We included 120 female lesser scaup in the analysis (25 in 2013, 61 in 2014, 34 in 

2015). We collected lesser scaup on 50 different wetland basins on 23 different study 

areas. Two covariate pairs were highly correlated in the lesser scaup data set: the 

collection basin perimeter to area ratio and the perimeter to area ratio within the 2 km 

buffer (r = 0.68) and the total open wetland area and the perimeter-to-area ratio of open 

water in the 2 km buffer and the total open water area in the 2 km buffer (r = -0.71). We 

therefore excluded the total open water area and the open water perimeter to area ratio of 

the basin from the analyses and retained the perimeter to area ratio within the 2 km buffer 

to draw inferences on the three related terms and reduce the number of variables in our 

analyses. Five of the 10 individual covariates we evaluated had 85% confidence intervals 

that did not contain 0 (Figure 2; Table 2). Chironomidae density, SAV density, maximum 

depth, perimeter-to-area ratio of the collection basin and open water patches within the 2 

km buffer were all positively associated with the refueling index. The quadratic fathead 

minnow CPUE term was the only covariate with a significant negative association with 

the refueling index of lesser scaup and indicated that fathead minnow densities had 

negative impacts on refueling at high densities (Figure 2; Table 2).  

We included 218 female blue-winged teal in the analysis (71 in 2013, 94 in 2014, 

53 in 2015). We collected blue-winged teal on 29 different study areas and 111 unique 

wetland basins. Total open wetland area and perimeter-to-area ratio of water in the 2 km 
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buffer were highly correlated in the blue-winged teal data set (r = -0.82) so we excluded 

the total open water term from the models. The quadratic fathead minnow CPUE 

covariate was the only covariate with 85% confidence intervals that did not contain 0 

(Figure 2; Table 2) and indicated decreased refueling performance at higher fathead 

minnow densities.  

DISCUSSION 

 The two wetland-foraging ducks we examined had variable physiological 

responses to conditions in or surrounding wetlands used during migration in our study 

area. Among blue-winged teal, our analyses showed equivocal relationships with key 

prey abundances and structural attributes of the wetlands. In contrast, lesser scaup 

refueling performance varied in association with all the covariate categories we 

examined, including biotic factors such as conspecific abundance and prey availability 

and abiotic factors associated with wetlands used during migration or surrounding those 

wetlands. Both species converged however in their negative response to high densities of 

fathead minnows in wetlands suggesting ecosystem alterations associated with high 

fathead minnow densities have impacts that extend beyond those demonstrated within the 

aquatic food web (Zimmer et al. 2002, Hanson et al. 2005). Together, these varied 

responses to wetland conditions and their convergence on fathead minnow densities offer 

compelling insights into the factors influencing lipid accumulation and metabolism 

during migration for each species and have implications for consideration in restoration 

or conservation of wetland habitats in the region.  

The weak association with blue-winged teal and wetland attributes compared with 

lesser scaup could have resulted from their different behavior and habitat use patterns 
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during migration. Blue-winged teal tended to use small, shallow wetlands or margins of 

larger wetlands, which together were comparatively more abundant than deeper water 

habitats used by lesser scaup (Anteau and Afton 2009b, Kahara and Chipps 2012). This 

may have resulted in higher movement rates of blue-winged teal among wetlands than 

lesser scaup. Regular switching among wetlands would mask variation in refueling 

performance in response to wetland conditions because it would become the sum product 

of multiple different wetlands in close proximity, rather than the single wetland on which 

the individual was collected. Field observations supported this behavioral difference, 

because blue-winged teal frequently switched among wetlands in response to disturbance, 

whereas lesser scaup tended to move to different areas on the same basin in response to 

disturbance. Therefore, we may expect lesser scaup refueling performance to reflect the 

wetland where we collected them and blue-winged teal refueling performance to be less 

reflective of individual basin attributes. This explanation would also fit with observed 

associations between blue-winged teal and fathead minnow densities, because fathead 

minnows would only occur on relatively larger wetlands (Herwig et al. 2010, Wiltermuth 

2014), where perhaps blue-winged teal were less likely to leave in response to 

disturbance. 

 An alternative, or additional, factor leading to the contrasting results between 

blue-winged teal and lesser scaup refueling performance and wetland conditions is 

variation in migration and breeding nutrient allocation strategies used by females of each 

species. Blue-winged teal are a small-bodied temperate breeder, whereas lesser scaup are 

comparatively larger and have high breeding densities at more northern latitudes 

(Baldassarre 2014). Accordingly, lesser scaup would be predicted to maintain and 
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accumulate more lipids during migration than blue-winged teal because their larger body 

size (Witter and Cuthill 1993) and their tendency to breed in comparatively shorter time-

windows at northern latitudes. This prediction fits with observations of the interannual 

variation in lipid reserves of lesser scaup and the lack thereof among blue-winged teal 

discussed in Chapter 6. Blue-winged teal appear to be income-migrants, fueling 

migratory flights with nutrients acquired en route, without obtaining additional nutrients 

for breeding or future constraints during migration. This behavior is supported by work 

with similar-sized ducks in Europe that used a similar strategy (Guillemain et al. 2004, 

Arzel et al. 2007) and the tendency for female blue-winged teal to accumulate 

appreciable nutrients for reproduction after cessation of migration on the breeding 

grounds (Janke et al. 2015). In contrast, lesser scaup appear to accumulate or maintain 

supplemental lipid reserves during migration as conditions allow (Chapter 6) and these 

reserves have demonstrated importance for subsequent reproductive success (Afton and 

Ankney 1991, Esler et al. 2001). Therefore, in maintaining or accumulating additional 

reserves during migration, we may expect more spatial variation in refueling performance 

of lesser scaup as conditions allow, whereas blue-winged teal would demonstrate more 

stasis in refueling performance as they maintain base-line condition rather than 

opportunistically increasing nutrient intake.   

 Regardless of the underlying behavioral or life-history factors leading to variable 

responses between these two species, our results with lesser scaup indicated sensitivity to 

wetland conditions experienced during migration, which has been previously predicted 

from coarser-scale studies on wetlands and migrating lesser scaup in the region (Anteau 

and Afton 2009a;2011) and has implications for management and restoration of their 
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habitats. The associations between refueling and significant covariates seemed to be 

categorized into 2 broad classes; those associated with the size of the wetland and 

surrounding wetlands and those associated with the biotic communities in wetlands.  

Covariates describing the perimeter-to-area ratio of open water in the surrounding 

12.5 km2 landscape had a strong standardized effect on refueling performance. This term 

was also positively associated with wetland-specific perimeter-to-area ratios and 

collectively these terms indicated a positive association with higher perimeter-to-area 

ratios, which conflicted with our original prediction of increased refueling performance 

with more large open water areas (lower ratios). This result suggested landscapes with 

larger open water bodies (i.e., lakes) seem to provide relatively poorer refueling 

conditions for lesser scaup in eastern South Dakota. This result has implications for the 

changing landscapes in the southern PPR where recent studies have illustrated a tendency 

towards increased basin sizes because of increased connectivity and inputs associated 

with artificial drainage (Miller et al. 2011, McCauley et al. 2015, Vanderhoof and 

Alexander 2015). Low basin perimeter-to-area ratios can therefore be a symptom of 

concomitant biotic impacts of increasing basin size or permanency, namely fish 

colonization and persistence (Herwig et al. 2010), which have cascading negative impacts 

on aquatic invertebrate and wetland plant communities (Hanson and Riggs 1995, Anteau 

et al. 2011, Hanson et al. 2012, Maurer et al. 2014).  

Four biotic covariates — Chironomidae biomass, submersed aquatic vegetation, 

conspecific density, and high densities of fathead minnows — all had significant impacts 

on the refueling index score. The positive association with the relative density of 

conspecifics on the wetland was an interesting result in revealing how lesser scaup may 
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distribute during migration to improve individual fitness. Adherence to an ideal free 

distribution (sensu Fretwell and Lucas 1970) would predict no association with 

conspecific abundance and physiology, but rather that all individuals would be distributed 

in densities that conferred equivalent potential foraging success, and by extension 

equivalent refueling performance. Our results indicating a positive association suggests 

lesser scaup may distribute disproportionally into habitats that confer the best refueling 

performance, or that refueling performance in enhanced by the presence of more 

conspecifics, which could allow for more foraging and less vigilance time, favoring 

increased refueling (Arzel et al. 2007, Guillemain et al. 2007). Regardless of the 

mechanism of these slightly positive effects of conspecific abundance, the result suggests 

density of lesser scaup in wetlands during migration is arguably a suitable indicator of the 

realized quality of those wetlands for refueling (sensu Van Horne 1983, Jones 2001).  

If indeed densities are a suitable indicator of realized habitat quality for lesser 

scaup during migration, this conclusion helps interpret other patterns we observed in our 

biotic covariates in the context of previous work on abundance of migrating lesser scaup. 

Our analyses showed there to be no association between refueling performance and 

densities of Amphipoda, despite the purported importance of Amphipoda in lesser scaup 

diets during migration (Anteau and Afton 2006). Amphipoda densities were predictive of 

lesser scaup abundance during migration in our study region (Anteau and Afton 2009b), 

and we found a similar pattern of higher mean Amphipoda densities on occupied 

wetlands compared to unoccupied wetlands surveyed during our study (unpublished 

data). Thus, selection for Amphipoda densities may be occurring at broader landscape 

scales such that within used wetlands, variation in Amphipoda densities were 
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inconsequential. Another consideration in interpreting the lack of an impact of 

Amphipoda in refueling performance is that other work has indicated Amphipoda 

densities are depressed throughout the upper Midwest (Anteau and Afton 2008a) perhaps 

because of factors leading to increased persistence and occurrence of fathead minnows in 

wetlands (Anteau et al. 2011). This interpretation is consistent with low consumption of 

Amphipoda by lesser scaup during our study (Chapter 6, Appendix 1) and with other 

biotic covariates that collectively implicate wetland conditions associated with 

colonization and perpetuation of fathead minnows as the driving factor in lesser scaup, 

and to some extent blue-winged teal, refueling performance in our study.  

Fathead minnows are omnivorous and can therefore directly compete with 

waterfowl for invertebrate prey (Duffy 1998, Herwig and Zimmer 2007). However, their 

primary route of impacts are through trophic alterations in aquatic ecosystems from 

consumption of smaller invertebrates (i.e., zooplankton) and detritus, and associated 

changes in turbidity and light attenuation that inhibits submersed aquatic vegetation 

growth and decreases invertebrate densities (Figure 3; Hanson et al. 2005, Zimmer et al. 

2006, Herwig and Zimmer 2007, Maurer et al. 2014). Such trophic impacts of fathead 

minnow densities have been well-established in shallow lakes and wetlands in the Upper 

Midwest and potential to impact waterfowl has been inferred (Bouffard and Hanson 

1997, Cox et al. 1998, Anteau and Afton 2009a;2011). Our results however, are the first 

to explicitly link a key physiological parameter to the trophic alterations associated with 

fathead minnows. If fathead minnows (or comparable fish communities) are abundant in 

wetlands at broad scales in southern the PPR, as reported in other studies (Anteau and 

Afton 2008a, Herwig et al. 2010, Wiltermuth 2014), our results provide a mechanism that 



140 

 

could lead to cross-seasonal effects of fathead minnow densities on reproduction in lesser 

scaup breeding at higher latitudes. Further, wide-spread nutrient deficiencies in the 

southern PPR due to fathead-minnow induced reduction in lipid acquisition could lead to 

cross-ecosystem interactions, because nutrient deficits accrued in the PPR would need to 

be compensated for by increased nutrient acquisition on breeding areas.   

 Our results could be useful in surmising prescriptive wetland conditions most-

favorable to refueling by spring migrating lesser scaup, and to a reduced extent blue-

winged teal. However, we recognize the primary limitation of our study is that our 

inferences were constrained to available wetlands and to wetlands used by lesser scaup 

and blue-winged teal. The initial constraint is relevant because we may have not been 

able to sample across a range of potentially suitable landscapes that were under-

represented because of widespread modifications to this landscape associated with 

wetland drainage and upland cultivation (Dahl 1990, Oslund et al. 2010, McCauley et al. 

2015). This distinction seems particularly relevant in the context of the Amphipoda 

results. Amphipoda could provide forage that increases refueling performance for 

migrating ducks in the absence of negative effects of fathead minnows; however, in the 

current landscape it seems that Amphipoda densities may be constrained by artificially 

inflated densities of fathead minnows. A second important distinction for our results is 

the constraint imposed by our design of collecting ducks in situ. Many wetland and 

landscape factors likely drive wetland use by both species, and those underlying 

constraints had to be met in order for us to be able to sample a duck on a wetland. Once 

those constraints were met however, our results reflect factors associated with improved 

refueling performance of spring migrating ducks. In general, relatively small wetlands, 
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free of fathead minnows and associated tropic impacts on SAV and invertebrates, 

provided the best refueling habitat for lesser scaup. Restoration and management in the 

region could first focus on precluding wetland alterations that facilitate fathead minnow 

colonization and persistence wherever possible (i.e., consolidation drainage; Figure 3; 

Wiltermuth 2014, McCauley et al. 2015, Vanderhoof and Alexander 2015). In cases 

where fathead minnows are present, restoration methods to restore hydrology of 

remaining wetlands could treat the root cause (e.g., Anteau 2012), or biomanipulation 

techniques could help alleviate some symptoms (e.g., Potthoff et al. 2008), yielding 

potential improvements in wetland foraging habitats for lesser scaup and other spring-

migrating ducks. 
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Table 1. Summary statistics on response variable (refueling index) and covariates used in regression analyses evaluating the impacts 

of wetland covariates on blue-winged teal and lesser scaup refueling performance during spring migration in eastern South Dakota 

2013-2015. Variable definitions and explanations can be found in the text.  

  Blue-winged teal   Lesser scaup 

  Percentiles   Percentiles 

Variable Mean (SD) 25% 50% 75%   Mean (SD) 25% 50% 75% 

Refueling index 0.81 (3.31) -1.13 0.72 2.51  2.53 (3.62) 0.39 2.58 4.80 

Conspecific abundance index 0.00 (3.02) -2.02 -0.36 1.31  0.00 (4.83) -2.53 -0.20 3.08 

Amphipoda density (mg/m2)a 0.71 (1.74) 0.00 0.00 0.77  3.99 (5.00) 0.00 2.79 6.02 

Chironomidae density (mg/m2)a 2.02 (2.02) 0.00 1.80 3.02  7.71 (5.13) 3.73 6.62 11.64 

Mollusca density (mg/m2)a 4.98 (7.4) 0.00 2.25 6.91  15.36 (21.52) 1.46 6.12 17.79 

Fathead minnow CPUEa 1.19 (2.90) 0.00 0.00 0.00  2.44 (4.46) 0.00 0.00 2.11 

Submersed aquatic vegetation density (%) 5.33 (12.32) 0.00 0.00 2.11  9.83 (15.44) 0.00 2.78 12.81 

Maximum depth (m) 0.67 (0.56) 0.30 0.55 0.80  1.58 (0.86) 0.90 1.33 2.00 

Basin perimeter:area (m/m2)a 0.24 (0.12) 0.16 0.22 0.30  0.12 (0.04) 0.10 0.12 0.14 

1
5
3
 



154 

 

Surrounding non-open water (m2/ha)a 7.85 (3.27) 5.88 7.09 9.27  --- --- --- --- 

Surrounding open water perimeter:area (m/m2)a 0.17 (0.06) 0.13 0.16 0.21   0.13 (0.03) 0.10 0.13 0.14 

aIndicates mean, sd, and percentiles are for square-root transformed values       
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Table 2. Model-averaged regression coefficients, associated standard errors, and relative importance values for covariates included in 

an analysis on factors influencing refueling performance of spring-migrating lesser scaup and blue-winged teal collected in eastern 

South Dakota during 2013-2015. 

  Blue-winged teal   Lesser scaup 

Variable RIa ba SEa   RIa ba SEa 

Intercept --- 1.318 0.875  --- 3.419 0.828 

Conspecific abundance index 0.192 -0.096 0.238  0.546 0.628 0.399 

Amphipoda density 0.198 -0.113 0.239  0.292 -0.136 0.431 

Chironomidae density 0.205 -0.117 0.252  0.858 0.996 0.378 

Mollusca density 0.221 -0.178 0.231  0.437 0.498 0.402 

Fish presence/absence 0.456 -0.047 0.901  0.547 -0.840 0.880 

Fathead minnow CPUE 0.951 0.911 0.806  0.850 0.833 0.851 

Fathead minnow CPUE quadratic 0.951 -0.643 0.292  0.850 -0.692 0.328 

Submersed aquatic vegetation density 0.195 -0.126 0.223  0.832 0.910 0.397 

Maximum depth 0.192 0.053 0.256  0.467 0.557 0.458 

1
5
5
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Basin perimeter:area 0.257 0.226 0.258  --- --- --- 

Surrounding non-open water 0.220 -0.097 0.293  --- --- --- 

Surrounding open water perimeter:area 0.261 0.222 0.301   0.738 0.844 0.392 

aRI = relative importance (sum of model weights including variable); b = model-averaged regression 

coefficient;  SE = model-averaged regression coefficient standard error 

  

1
5
6
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Figure 1. Relationship between square-root transformed basin area and open water 

perimeter-to-area ratio of wetlands on which female lesser scaup were collected during 

spring migration in eastern South Dakota during spring 2013 to 2015. 
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Figure 2. Model-averaged regression coefficient estimates (±85% confidence intervals) 

for wetland covariates predicted to influence refueling performance measured with 

concentrations of key lipid metabolites circulating in plasma of lesser scaup and blue-

winged teal collected on wetlands in eastern South Dakota during spring migration 2013-

2015. All covariate effects are directly comparable within each species except for the 

binomial fish presence-absence (Fish P/A) term. Gray bars indicate parameters that have 

85% CI’s that contain 0, whereas black bars indicate significant effects. See text for 

description of individual covariates.  

 

 

  



159 

 

Figure 3. Conceptual model of pathways that influence the colonization and persistence 

of fathead minnows (A) and pathways their presence influences biotic communities in 

wetlands and shallow lakes (B). Light arrows with lower case letters indicate mechanisms 

explored in previous work, with a representative citation provided. The dark bold arrows 

(C) are the likely pathways in which fathead minnow densities influenced refueling 

performance of spring-migrating lesser scaup and blue-winged teal in our study. 
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CHAPTER 6: INTERANNUAL PHYSIOLOGICAL AND DIETARY VARIABILITY 

IN SPRING-MIGRATING DUCKS  

ABSTRACT 

Environmental stochasticity encountered during spring migration can have 

negative demographic consequences on individuals and populations through direct 

reductions in survival or cross-seasonal impacts associated with nutrient reserves 

necessary for breeding or successful migration. We took advantage of substantial 

interannual variation in the timing and progression of spring migration conditions over 

four years to examine annual variation in the physiology and diets of two wetland-

foraging obligate ducks during spring migration. We collected female lesser scaup 

(Aythya affinis) and blue-winged teal (Anas discors) during spring migration in wetlands 

in eastern South Dakota and measured annual variation in lipid and protein reserves, an 

index of recent lipid metabolism based on concentrations of lipid metabolites in plasma, 

and diets. We found interannual variation among these metrics in both species, 

contrasting mainly between the warmest, earliest spring and the latest, coldest spring. 

Lesser scaup had reduced lipid and protein reserves in the coldest year, showed no 

interannual variation in the index of lipid metabolism, and seemed to reduce consumption 

of energy-rich prey in the cold, late spring. Blue-winged teal similarly had reduced 

protein reserves in the cold, late spring, but maintained constant lipid reserves among 

years, perhaps facilitated by increased consumption of energy-dense seeds as reflected in 

diets and the index of lipid metabolism. These contrasting responses to interannual 

variability suggest lesser scaup may have been caught in inclement spring conditions 

directly leading to reductions in lipid reserves that could not be compensated for with 
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increase dietary intake of lipid-rich prey as seen with blue-winged teal. Our results 

provided insights into impacts of environmental stochasticity on these species and have 

implications for consideration of factors influencing annual recruitment following 

variable spring migration conditions or degradation of spring migration habitats.  

INTRODUCTION 

Environmental stochasticity during migration poses direct threats to migratory 

birds (Newton 2007) and has potential to erode physiological condition in a way that 

impedes migration or constrains reproduction upon arrival on breeding grounds (Drent et 

al. 2006, Newton 2006). Accordingly, migratory birds have evolved diverse physiological 

and behavioral mechanisms to anticipate environmental stochasticity and minimize its 

effects on individual fitness. During migration, birds make energetically costly long-

distance flights, often over inhospitable terrain to escape environmental stochasticity 

characteristic of seasonal breeding habitats. Although migration strategies are timed to 

minimize exposure to seasonality, time constraints for breeding at mid-to-high latitudes 

often lead migrants to experience environmental stochasticity during transition from 

wintering to breeding which could strongly influence individual fitness and population 

productivity.  

Early breeding is adaptive among migratory birds because improvements 

conferred to offspring fitness (Blums et al. 2005, Drent et al. 2006). Therefore, 

individuals transitioning into the breeding season often push the limits of their ecological 

tolerances to arrive relatively early. Environmental stochasticity during this period can 

delay reproduction directly by inhibiting movement to the breeding grounds (Richardson 

1978) or indirectly by altering foraging conditions that delay the tempo of migration 
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(Lindstrom and Alerstam 1992, Bauer et al. 2008) or acquisition of nutrients necessary 

for breeding (Drent et al. 2007). Delays may result in later nest initiation dates and 

reduced reproduction or reproductive failure (Skinner et al. 1998, Krapu et al. 2000, 

Alisauskas 2002, Devries et al. 2008).  

The ultimate factor controlling progression of migration in many populations is 

the accrual and use of nutrient reserves (namely lipids) to fuel migration (Jenni and Jenni-

Eiermann 1998) and for subsequent allocation to reproduction after arrival (Drent et al. 

2006). Impediments to nutrient accumulation or maintenance at stopover locations can 

slow progression and delay arrival (Lindstrom and Alerstam 1992, Drent et al. 2003, 

Smith and McWilliams 2014). Faster migration and earlier arrival confers energetic 

advantages for birds limited by nutrient acquisition prior to breeding (i.e., capital 

breeders sensu Drent and Daan 1980), because it allows time to acquire nutrients for use 

in clutch formation (Klaassen et al. 2006) or territory establishment and maintenance 

(Krapu 1981, Smith and Moore 2005). Thus, nutrient reserve balances during the 

transition to breeding among many birds, and particularly waterfowl (Ankney et al. 

1991), are strong predictors of onset of reproduction and ultimate productivity (Esler and 

Grand 1994, Ebbinge and Spaans 1995, Alisauskas 2002, Devries et al. 2008).  

Considerable empirical research has been conducted on long-distance migratory 

geese across the Holarctic regions, to understand potential impacts of interannual climatic 

variability on migration ecology. However, these populations are unique with respect to 

their capacity to store nutrients, because their large body size and near-universal tendency 

to exploit anthropogenic foods from agricultural (e.g., Krapu et al. 1995, Madsen 1995, 

Alisauskas 2002, Jefferies et al. 2004, Fox et al. 2005). Most research on inter- and intra-
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annual variation in nutrient reserves of smaller-bodied ducks has been conducted on the 

breeding grounds, after spring migration. These studies have clearly shown the 

importance of nutrient reserves accumulated either en route to the breeding areas (Krapu 

1981, Esler and Grand 1994, Esler et al. 2001, Devries et al. 2008) or on the breeding 

grounds after arrival (Alisauskas and Ankney 1994, Cutting et al. 2011, Janke et al. 

2015). However, few studies have examined how and when ducks accumulate nutrient 

reserves during spring migration and most research in North America has been on ducks 

that can forage in terrestrial environments during migration (e.g., Lagrange and Dinsmore 

1988, Pearse et al. 2011). Understanding factors affecting nutrient reserve dynamics 

among ducks across of range of environmental conditions could help explain patterns in 

annual productivity, improve allocation of conservation efforts for those species (Arzel et 

al. 2006), and anticipate the consequences of changing migration conditions in future 

climate scenarios (Marra et al. 2005).  

  We evaluated annual variation in physiology and diets of two species of spring-

migrating, wetland-foraging ducks — lesser scaup (Aythya affinis) and blue-winged teal 

(Anas discors) — in a key migration area at the southern edge of each species core 

breeding range. These two species make for interesting contrasts to previous migration 

research and with each other. They are both wetland-foraging obligates during migration, 

meaning all nutrients acquired are derived from plant or animal prey in wetlands, rather 

than supplemented by terrestrial food sources (e.g., Abraham et al. 2005, Pearse et al. 

2011). They also occupy two extremes of a continuum of foraging strategies and habitat 

use: lesser scaup are diving ducks that use large permanent and semi-permanent wetlands 

(Anteau and Afton 2009b, Kahara and Chipps 2012), whereas blue-winged teal are 
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surface-feeding ducks that show considerable flexibility in wetland use, ranging from 

ephemeral to permanent wetlands (Baldassarre 2014). Both species demonstrate potential 

for substantial dietary plasticity during migration (Anteau and Afton 2006, Hitchcock 

2009), but transition to nearly exclusive animal-based diets during breeding (Swanson et 

al. 1974, Afton and Hier 1991). Finally they differ with respect to the timing of their 

arrival on our study areas, with lesser scaup generally arriving soon after ice-out on 

semipermanent or permanent wetlands (Austin et al. 2002), and blue-winged teal arriving 

relatively late among waterfowl. We conducted our study during four highly-variable 

springs with respect to weather that comprised the range of temperature variability 

observed over the previous 30 years. Our comparisons of the migration ecology of 

wetland-foraging ducks provided insights into factors affecting nutrient reserves of each 

species and the consequences of environmental stochasticity encountered during 

migration.   

METHODS 

Study area  

We conducted our study in the Prairie Pothole Region (PPR) of eastern South 

Dakota, comprising most of the land east the Missouri River in the state. The region was 

described in detail by Johnson and Higgins (1997) who reported that wetlands comprised 

9.8% of the land area in eastern South Dakota. Upland habitats were a mix of row crop 

agriculture (primarily corn and soybeans) and grasslands (Naugle et al. 2001). The region 

was mostly privately owned with scattered small (generally < 260 ha) parcels in public 

ownership that is managed for production of waterfowl and other wildlife. We conducted 

our research on 6 (2012 and 2015) or 12 (2013 and 2014) circular focal areas in the 
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region each year. During 2012, we sampled on publicly owned lands in 8-km radius focal 

areas systematically placed in regions of high public land ownership. During 2013 

through 2015 we worked on both privately and publicly owned lands in randomly-

selected 4 km-radius focal areas selected for a concurrent study. Focal areas changed 

annually but were always distributed throughout the study region (Figure 1) and stratified 

across a gradient of agricultural land-use intensity (Chapter 4). Although repeated 

observations on the same study areas during each year of our study may have been 

advantageous for drawing annual comparisons, we assumed our spatial stratification 

strategy and relatively large annual sample sizes guarded against site-specific biases. This 

assumption was generally supported by other analyses with these data that indicated low 

variation in response to broad land cover patterns (Chapter 4) or latitude, and the high 

interannual variation reported here.  

Spring climate 

We calculated a seasonal climate index for each study year to inform 

interpretation of our results in the context of temperature variation relative to long-term 

conditions (30 year). The climate index was the cumulative mean daily temperature for 

all days during 1 March through 20 May each year. Temperature may be viewed as a 

proxy for the progression of spring-thaw and migration, which has been shown to 

influence the timing and migration ecology of lesser scaup (Austin et al. 2002, Finger 

2013), waterfowl (Murphy-Klassen et al. 2005), and migratory birds in general (Marra et 

al. 2005, Swanson and Palmer 2009). We developed an index for each year during 1985 

through 2015 by extracting daily temperatures for the 30 study areas we sampled during 

2013 through 2015 from the Parameter-elevation Regressions on Independent Slopes 
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Model (PRISM) daily mean temperature rasters available for the continental U.S. 

(PRISM Climate Group, Oregon State University). The sites at which we extracted 

temperature values were evenly distributed throughout the study area, and therefore their 

average provided a suitable approximation of temperatures observed across the study 

region in each year (Figure 1).  

The long-term average cumulative mean temperature on 20 May was 5.5 C (95% 

CI = 4.8-6.2) over the 30 year time series. The cumulative mean temperatures on 20 May 

during our study ranged from 1.4 C to 10.1 C and included the coldest (2013) and 

warmest (2012) observed values in the 30 year time series (Figure 2, Table 1). The other 

2 years in the study fell near the 25th (2014) and 75th (2015) percentile of the cumulative 

mean temperature observations in the last 30 years (Figure 2). Thus, the 4 years of our 

study comprised the whole range of variability in spring temperatures observed in the 

study area over the last 30 years.  

Duck collections 

To ensure we collected across the entire study region in each year, we attempted 

to collect ca. 10 individuals of each species on each focal area, though in some instances 

lesser scaup were not abundant enough on a site to meet this criteria. We began 

collections on a site once surface water was approximately ≥60% ice-free. In later 

springs, this may have precluded sampling the vanguard of the migration because they 

could arrive while some larger wetlands and lakes were still ice-covered. However, we 

attempted to conduct our collections during peak migration in each year, which 

consistently occurred after the ice-out criteria was met, so any bias should be small and 

consistent among years. All collections were done ≥6 hours after sunrise to allow 
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individuals to forage in the study area before being collected. We targeted foraging 

individuals, but opportunistically collected non-foraging birds if they were encountered. 

In all cases, we noted whether the individual was observed foraging or with foraging 

conspecifics. All collections were done with shotguns and non-toxic shot (Envrion-metal, 

Inc., Sweet Home, OR) from shore or small boats without the use of decoys to avoid 

potential biases (Pace and Afton 1999). Immediately after collection, we drew a 0.5-1 mL 

sample of whole blood via cardiac puncture with a 16-21 ga. heparinized needle and 3 

mL heparinized syringe. We transferred whole blood from the syringe to a heparinized 

1.5 mL microcentrifuge tube and then stored the sample in a cooler away from direct-

contact with ice until centrifuging. We slowly injected a small volume (3-5 mL) of 10% 

buffered formaldehyde solution into the upper gastrointestinal (GI) tract to stop 

postmortem digestion and placed a small rubber band around the bill to retain upper GI 

contents. We uniquely labeled each bird and blood sample and placed the bird in a freezer 

bag and stored it at -20 C until further processing. We centrifuged blood samples in the 

field at 4,000-6,000 rpm for 5-10 minutes and transferred plasma to a 1.5 mL 

microcentrifuge tube and froze it at -20 C. Plasma samples were transferred to -80 C 

freezer within 1 month of collecting and stored at that temperature until processing within 

8 months.  

Laboratory analyses 

Necropsies—We conducted detailed necropsies on all individuals following Janke 

et al. (2015) and Afton and Ankney (1991). We measured wet mass of the thawed bird to 

nearest gram and recorded the following morphometrics: total length from tip of the bill 

to the end of the longest retrix, length of the longest retrix, wing chord length, keel 



168 

 

length, and tarsus length. We excised one breast muscle, including the supracoracoideus 

and pectoralis, and one leg and thigh muscle, removed all visible fat and bones, and 

recorded the wet mass. We removed all visible fat deposits in the abdominal cavity, 

including discrete omental fat deposits and all fat associated with the heart, gizzard, and 

intestines and recorded its total wet mass (hereafter abdominal fat). We recorded the wet 

mass of the heart. We removed the gizzard and recorded the wet mass with all contents 

and then rinsed it to remove the contents and recorded the wet mass. We repeated the 

same procedure with intestinal contents and mass to account for the mass of ingesta in the 

lower GI. Finally, we rinsed and froze contents of the esophagus and proventriculus to 

evaluate diets. 

We attempted to time collections to coincide with peak migration but we 

occasionally incidentally collected individuals that had transitioned into breeding. Our 

strategy to gauge migration progression and commence collections immediately after ice 

melt ensured that most collections occurred before transition into breeding, particularly 

after the pilot year in 2012. During 2012 however, we attempted to collect more 

individuals on each site and continued collections into the early breeding season, 

particularly for blue-winged teal (Janke et al. 2015). We collected ducks over 45 days in 

2012, whereas we never exceeded 33 days for lesser scaup, and never exceeded 26 days 

for blue-winged teal in the other 3 years. Therefore, to maintain consistency among years, 

we excluded all birds collected after 30 April in 2012 to avoid including birds that were 

transitioning into breeding status (see Janke et al. 2015) and to focus inferences on peak-

migration timing in that year. We further restricted our analysis to migrants by excluding 

individuals had commenced rapid follicle growth (RFG), which we defined among blue-
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winged teal as having mean size of the 3 largest ovarian follicles >5 mm (Janke et al. 

2015). No evidence of RFG was noted among scaup. 

Proximate analysis—We used proximate analysis to quantitatively determine 

whole-body lipids for a systematic subsample of individuals of each species to build a 

predictive relationship between abdominal fat and whole-body lipids (Devink et al. 

2008). We used a systematic random sample to select 15 individuals of each species 

across the range of abdominal fat measurements recorded in the necropsy, and included 

the individual with the largest and smallest abdominal fat measurements (total n = 17 

individuals/species). We homogenized ingesta-free tissue with all organs, fat, and 

feathers in a Hobart industrial meat grinder (Model 4146, Hobart Corporation, Troy, 

Ohio) and further homogenized the wet sample with a food processor (Model QB900, 

SharkNinja Operating LLC, Newton, Massachusetts). We then took a ca. 100 g 

subsample of the wet homogenate and dried it to a constant mass at 80 C for 24-36 hours. 

We reweighed the dried sample to calculate sample dry mass, and further homogenized 

the sample with a high-speed rotor mill (Retsch Ultra Centrifugal Mill ZM 200, Retsch 

GmbH, Haan Germany) so it could pass through a 2 mm sieve. We submitted a ca. 10 g 

subsample of the homogenate to SGS Laboratories in Brookings, South Dakota to 

perform petroleum ether lipid extraction in a modified Soxhlet apparatus. We determined 

the mass of lipids in the sample by multiplying the proportion of lipids in the subsample 

by the sample dry mass (Afton and Ankney 1991).  

We used simple linear regression to predict total somatic lipids (g) in the sample 

from the mass of abdominal fat (g) recorded during necropsy. We square-root 

transformed abdominal fat to improve model fit (Devink et al. 2008) and evaluated if 
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ingesta-free mass (weight of ingesta from gizzard and intestines subtracted from wet 

mass) improved model fit. We excluded one sample with the highest abdominal fat mass 

among the blue-winged teal because it was a substantial outlier. The final model 

predicted this individual to have 57.8 g of lipids, but the laboratory procedures 

determined it to have 17.8 g. We had noted the presence of conspicuously irregular 

structures of abdominal fat during the necropsy of this bird and therefore feel this 

exclusion was justified. Ingesta-free mass improved model fit for blue-winged teal (P = 

0.003), but not lesser scaup (P = 0.712), so we included it in the former model, but not 

the latter. The final equations to predict somatic lipid reserves of each species were: 

Blue-winged teal somatic lipids (g) =  −55.89 + 15.04 ∗ √𝐴𝐵𝐹 + 0.17 ∗ 𝐼𝐹𝑀 

Lesser scaup somatic lipids (g) =  −27.24 + 35.98 ∗ √𝐴𝐵𝐹, 

where ABF is abdominal fat in grams and IFM is ingesta-free mass in grams. 

Both equations had strong model fit (blue-winged teal adjusted r2 = 0.955, lesser scaup 

adjusted r2 = 0.931) and were used to predict somatic lipids for all individuals in the 

analysis.  

Diet processing—We thawed diets and sorted and identified food items. We 

identified invertebrates into families, except we identified Amphipoda to genus and non-

Amphipoda crustaceans to order (i.e., Copepoda, Ostracoda, Cladacera). We identified 

fish to species. We distinguished between agricultural (i.e., corn) and non-agricultural 

(natural) seeds. We dried contents in each category to a constant mass in a 60 C oven and 

to record dry mass (±0.0001 g). 

Metabolite assays—We measured concentrations of key lipid metabolites in 

plasma samples to index the recent trajectory of lipid reserves of each individual in each 
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year. Metabolites respond relatively quickly (i.e., hours to 1 day) to changes in metabolic 

state (Jenni-Eiermann and Jenni 1998, Guglielmo et al. 2005), and therefore allowed us to 

evaluate if, on average, birds migrating through the study area in each year were 

accumulating or catabolizing lipids at different rates. We focused on 2 key lipid 

metabolites – triglycerides (TRIG) and β-hydroxybutyrate (BUTY) – which each reflect 

contrasting trajectories of either lipid accumulation (TRIG) or catabolism (BUTY). We 

measured concentrations in plasma samples using commercially available kits and 

standards typical in other lipid metabolite studies (Appendix 2).  

Statistical analyses  

Collection weather—We used Analysis of Variation (ANOVA) to test if mean 

temperatures over the span of collection dates in each year differed in the same manner 

that cumulative mean temperatures differed among the 4 years. This allowed us to ask if 

observed variation in diets or physiology among years was most-likely associated with 

variation in temperatures during migration or associated with other factors each spring, 

such as timing of migration within the year or the phenology of wetlands. 

Physiological condition—We tested for differences in mean somatic lipid and 

protein reserves among the 4 years for each species. We used predicted total somatic lipid 

mass from the proximate analysis equations to test differences in lipid reserves. We 

calculated an index of protein reserves by summing 2 times wet mass of breast and leg 

muscles and wet mass of the heart. Muscle mass and heart mass were correlated in both 

species (lesser scaup r = 0.73, blue-winged teal r = 0.43). Breast and leg muscles 

represent important protein pools in waterfowl (Alisauskas et al. 1990, Janke et al. 2015) 

and heart mass is indicative of improved overall physiological condition in migrants 
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(Driedzic et al. 1993). We calculated an index of body size by using the first axis from a 

Principal Components Analysis (PCA) that combined 4 correlated morphometrics: body 

length (total length minus retrix length), wing length, keel length, and tarsus length 

(Afton and Ankney 1991). The first principal component for scaup loaded all terms from 

0.18 to 0.69 and explained 34.4% of the variation in the 4 morphometrics. The first 

principle component for blue-winged teal loaded all terms from 0.47 to 0.54 and 

explained 41.6% of the variation in the 4 morphometrics. We used Analysis of 

Covariance (ANCOVA) with this covariate to test for annual differences in nutrient 

reserves of each species, controlling for structural size variation (Afton and Ankney 

1991). The PCA was significant (P < 0.001) in all analyses except for the lesser scaup fat 

analysis (P = 0.050) but was left in the analysis for consistency.  

We combined concentrations of TRIG and BUTY into a composite refueling 

index for each individual. This refueling index offered advantages over interpreting 

concentrations of individual lipid metabolites separately because it accounts for the latent 

correlation structure between the two metabolites and expresses values in a composite 

index of refueling performance, with higher values indicating relatively improved lipid 

accumulation (Chapter 3). Higher mean values in years indicated birds collected in that 

year were, on average, accumulating more lipids than birds in years with lower mean 

scores. We used ANOVA to test for variation in mean refueling indices among years for 

each species. Before compositing the indices we conducted exploratory analyses on 

metabolite concentrations to ensure there was not bias associated with collection timing 

within the day, latitude of collection, or pair or foraging status of the individual noted at 

the time of collection. We did not find any biases in these metrics, so we continued with 
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raw metabolite concentrations, excluding highly hemolyzed samples (plasma hemoglobin 

concentration >1 g/dL; Chapter 2).  

We tested for potential biases of only sampling on publicly owned lands in the 

first year of the study by testing for additive impacts of land ownership (public vs. 

private) with each individual response variable described above in the latter 3 years of the 

study. The land-ownership term was insignificant in all models (P ≥ 0.208), so we 

assumed there was no bias among study years and reported results from models without 

the land ownership term. 

Finally, we were interested in direct comparisons of physiological condition 

among years between the two species, to compare potentially contrasting nutrient 

strategies or physiological impairments among years. To facilitate direct comparisons 

between the two species, we calculated the ratio of lipids to ingesta-free body mass in 

each year and tested for differences between species and years with an ANCOVA. This 

ANCOVA used PC1 as a covariate, which was interacted with species to mimic the 

species-specific models used above. Significant species-specific effects in the ratio would 

indicate that the two species contrasted in the ratio of lipid reserves to whole body mass 

among years, perhaps indicating different responses to interannual variation in migration 

conditions.  

Diets—We excluded all diet samples with <2 mg (dry weight) of food in the 

upper GI and considered those samples empty to avoid averaging aggregate percentages 

across small samples. We conducted 3 statistical tests on diet data for each year. First we 

used a Chi-square test to evaluate if there was a difference in the number of individuals 

collected in each year that had <2 mg food in their upper GI, as an index of feeding 
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success or frequency for each species among years (Anteau and Afton 2008b). Second, 

we used ANOVA to test for differences among years in the proportion of the diet samples 

composed of animal material (fish and invertebrates) to evaluate annual variation in the 

relative contribution of animal or plant-based foods (seeds and vegetation) to diets of 

each species. Finally, we used Multivariate Analysis of Variation (MANOVA) to test for 

annual variation in the composition of key taxonomic groups of food items in the diets. 

We categorized food items into 7 categories based on previous research that 

demonstrated the relative importance of key food items for lesser scaup and blue-winged 

teal (e.g., Dirschl 1969, Swanson et al. 1974, Anteau and Afton 2008b, Hitchcock 2009, 

Tidwell 2010). We focused on 3 specific categories of invertebrates that both species 

consume in the Northern Plains or during migration — Amphipoda, Chironomidae, and 

Mollusca (including Sphaeriidae and gastropods) — and grouped remaining invertebrate 

taxa into a category called other invertebrates. We examined seed consumption separately 

from other vegetation (algae, tubers, leaves, etc.) to evaluate relative seed consumption 

among years, which is variable in both species (e.g., Hitchcock 2009). We used 

MANOVA to test for annual variation in the proportion of diets comprising the 4 main 

diet items in our analysis; Amphipoda, Chironomidae, Mollusca, and seeds. In excluding 

other invertebrates, vegetation, and fish, we focused our evaluation on the key diet items 

in the study and also reduced dependency among the proportions in the analysis. We used 

a randomization procedure to guard against violations of the multivariate normality 

assumption of MANOVA by randomly reordering the year factor in the data frame and 

calculating Wilk’s Λ for 10,000 simulations (Chipps and Garvey 2007). We then 

compared our test statistic to the distribution of the randomization procedure test statistics 
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to evaluate whether it was in the bottom 5th percentile or lower, indicating significance at 

an α = 0.05. We used a Tukey Honest Significant Difference test to make post-hoc 

multiple comparisons of all ANCOVA and ANOVA analyses and assessed significance 

at α = 0.05. 

RESULTS 

We included 232 lesser scaup and 322 blue-winged teal in the nutrient reserve 

analyses (Table 1). Collection dates among years varied with weather: for example, 75% 

of the scaup collected during the two warmest years, 2012 and 2015, were collected 

before all but 1 individual in the coldest spring of 2013 was collected (Table 1). Although 

there was substantial inter-annual variation in cumulative mean temperatures during the 

study (Figure 2, Table 1), temperatures during collecting did not differ significantly for 

blue-winged teal (F3,90 = 0.515, P = 0.673) or lesser scaup (F3,108 = 1.091, P = 0.356; 

Figure 3).  

 The index of protein reserves of lesser scaup varied significantly among years 

(F3,227 = 11.692, P < 0.001; Figure 4) and the multiple comparisons test revealed that 

2013 had a lower mean and all other years were similar (Figure 4). Blue-winged teal 

protein masses followed the same results, illustrating significant interannual variation 

(F3,317 = 9.306, P < 0.001; Figure 4) and the only paired significant difference was a 

lower mean during 2013 (Figure 4). There was also significant interannual variation in 

lipid masses of lesser scaup among years (F3,227 = 11.3195, P < 0.001; Figure 4) and the 

multiple comparisons test revealed variable differences among years (Figure 4). The 

ANCOVA on lipid masses of blue-winged teal was significant (F3,317 = 3.226, P = 
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0.0228; Figure 4) but the multiple comparisons test revealed no significant differences 

among years (Figure 4).  

We included 181 lesser scaup in the metabolite assays after excluding highly 

hemolyzed samples (range = 28 to 75 samples included annually). There was no 

significant variation in the refueling index among years for lesser scaup (F3,176 = 1.797, P 

= 0.149; Figure 4). We included 285 blue-winged teal samples in the metabolites analysis 

(range = 48 to 94 samples included annually). There was significant annual variation in 

the refueling index (F3,227 = 10.941, P < 0.001; Figure 4), and the multiple comparisons 

test revealed variable differences among years.  

The analysis on the ratio of lipids to ingesta-free body mass revealed significant 

differences among years (F3,544 = 6.347, P < 0.001), species (F1,544 = 152.331, P < 0.001), 

and their interaction (F3,544 = 10.497, P < 0.001). The multiple comparisons procedure 

revealed that lesser scaup had significantly higher ratios than blue-winged teal during 

2012, 2014, and 2015 (mean difference ± SE = 5.17 ± 0.68, 4.71 ± 0.54, and 4.4 ± 0.7, 

respectively; P < 0.001) but did not differ during 2013 (0.29 ± 0.82, P = 0.684; Figure 5).  

We recovered usable diet samples from 228 lesser scaup. Of these, 29 individuals 

(12.7%) had <2 mg of food and were excluded. There was no annual variation in the 

proportion of diet samples containing ≥2 mg of food (Χ2 = 5.352, P = 0.148) and there 

was also no annual variation in the proportion of the diet comprising animal material 

(F3,195 = 1.057, P = 0.368; Figure 6). There was evidence for significant annual variation 

in the composition of diets (Wilks Λ = 0.8954, 4.6th percentile of simulations, P = 0.045; 

Figure 7). The post-hoc ANOVA of individual diet items included in the MANOVA 

indicated that only Mollusca varied significantly among years (P = 0.013). We recovered 
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usable diet samples from 314 blue-winged teal and found 95 individuals (30.2%) had <2 

mg of food. There was no annual variation in the proportion of diet samples containing 

≥2 mg of food (X2 = 0.625, P = 0.8907) and there was significant variation in the 

proportion of the diet comprising animal material among years (F3,215 = 13.232, P < 

0.001; Figure 6). There was also significant interannual variation in the composition of 

diets (Wilks Λ = 0.754, <1st percentile of simulations, P < 0.001; Figure 6). The post-hoc 

ANOVA of diet composition indicated Chironomidae (P < 0.001) and seeds (P < 0.001) 

varied significantly among years.   

DISCUSSION 

We sampled during 4 disparate springs and observed notable interannual variation 

in the physiology of two sympatric wetland-foraging ducks. The similar temperatures we 

observed during collections in each year, despite the month-wide span of collection dates 

among years, suggests variation in physiology and diets was related to factors other than 

the direct effect of ambient temperature experienced by ducks at the time of collections. 

Rather, it seems variation in diets and key physiological metrics of these migrants 

changed in association with climatic variability in each year, which influenced the timing 

of migration and perhaps the phenology of wetland foraging habitats. Such interannual 

variation has implications for understanding factors affecting successful migration and 

associated carry-over effects into breeding among ducks (Sedinger and Alisauskas 2014).  

Springs 2012 and 2013 provided stark contrasts and allow for interesting 

comparisons of 2 extremes of spring migration conditions in our study area. Among the 

metrics we investigated that demonstrated annual variation, 2012 and 2013 always 

contrasted, whereas patterns across the more moderate years of 2014 and 2015 tended to 
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be inconsistent in their relation to cumulative mean temperature or separation from one 

another. The tendency for comparable results between 2014 and 2015 suggests migrant 

physiology is perhaps uninfluenced by conditions in our study areas during average years 

and only varies in response to exceptionally divergent conditions. Indeed, previous 

research on spring migrating ducks in the U.S. has reported generally low interannual 

variation (Strand 2005, Anteau and Afton 2009a, Tidwell 2010). Failure to observe 

physiological variation in more moderate seasons may also be due to confounding factors 

that influence physiological condition across broadly-varying spatial and temporal scales 

beyond those experienced during migration. Many studies have reported variation in 

waterfowl condition within and among wintering areas (e.g., Baldassarre et al. 1986, 

Miller 1986, Whyte et al. 1986, Thompson and Baldassarre 1990, Lovvorn 1994) and 

some studies have linked condition on wintering areas to those on breeding areas 

(Heitmeyer and Fredrickson 1981, Raveling and Heitmeyer 1989, Tamisier et al. 1995, 

Guillemain et al. 2008). Therefore, that we observed variation in our study in 

concordance with weather variability suggests migration conditions in our study area 

exceeded competing influences from distant and diverse wintering areas. In this context, 

we contend it may be appropriate to interpret the two extremes observed in our study as 

representative of a range of likely responses of spring-migrating lesser scaup and blue-

winged teal to annual weather variation that is otherwise difficult to detect in less-

extreme years.  

Mean lipid mass of lesser scaup during 2013 was conspicuously lower than in the 

other 3 years and was almost unprecedented in the literature, particularly among 

migration studies. Among more than 30 lipid reserve estimates we found in the published 



179 

 

literature for lesser scaup, only 1 study reported lipid masses lower than our mean value 

from 2013, and that study (Austin and Fredrickson 1987) was conducted on post-

breeding lesser scaup undergoing remigial molt in late summer. Gammonley and 

Heitmeyer (1990) reported a comparably low (53 g) mean for females they collected 

during spring migration in California but they had a very small sample size (n = 5) and 

high variability (SE = 27). Anteau and Afton (2009a) collected migrating females 

throughout upper Midwest over 3 years and never reported a least-squared mean <70 g. 

We found fewer studies reporting lipid masses of blue-winged teal, but our values were 

functionally identical to those recently reported for spring-migrating blue-winged teal in 

Nebraska (26 g; Tidwell 2010). Therefore, it seems lipid reserves were typical of migrant 

blue-winged teal among the 4 years of our study but sensitive to annual variation among 

lesser scaup.  

Arzel et al. (2007) described spring-migrating Eurasian green-winged teal (Anas 

crecca) as ‘income migrants’ meaning they fueled migration as they progressed to 

breeding grounds, rather than by accumulating reserves at stopovers for future use. This 

strategy appears consistent with our observation that blue-winged teal maintained 

functionally constant levels of lipid reserves annually and had variable annual refueling 

indices. Although we noted a decline in protein reserves among blue-winged teal during 

2013, the consequence of that decline for migrating birds is likely minimal, because 

protein does not constitute an important fuel source (Jenni and Jenni-Eiermann 1998) and 

can be easily recouped by blue-winged teal on their breeding grounds (Ankney et al. 

1991). Annual variation in diet composition and the refueling index also fit this pattern: 

in the year in which lesser scaup lipid reserves declined substantially, blue-winged teal 
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increased intake of energy-rich foods (seeds) and had the highest refueling index score. 

Such a diet shift could explain the maintenance of lipids in that year and the concomitant 

decline in protein, because high dietary intake of invertebrate-rich diets has been 

associated with increases in protein masses in ducks (Alisauskas et al. 1990, Barzen and 

Serie 1990, Alisauskas and Ankney 1994). By extension, we would expect decreases in 

mean protein masses in years with reduced dietary intake of invertebrates.  

Lesser scaup, in contrast, seem more likely to adopt a ‘capital migrant’ strategy 

where they at least maintain nutrient reserves accumulated on wintering or major staging 

areas (Anteau and Afton 2004, Herring and Collazo 2006), and possibly accumulate 

additional reserves en route to the breeding grounds for clutch formation (Afton and 

Ankney 1991, Esler et al. 2001, Anteau and Afton 2009a). Therefore, in contrasting blue-

winged teal and lesser scaup, we would expect to observe relatively high ratios of lipid 

reserves to ingesta-free mass in lesser scaup and static refueling indices as they attempt to 

gain or maintain lipids during migration (Anteau and Afton 2011). We did observe this 

pattern during all 4 years with the refueling index, indicating the same accumulation or 

catabolism in each year, but lipid reserves regressed to low ratios during the 2013 season, 

comparable to those seen in blue-winged teal. Further, it appeared during 2013, the year 

with lowest lipid reserves in lesser scaup, that they decreased intake of dietary energy, 

because consumption of Amphipoda — an energy-rich food (Jorde and Owen 1988, 

Sherfy 1999) — declined (from 12.7% to 0.3% between 2012 and 2013) and 

consumption of mollusks (mainly gastropods) — an energy-deficient food (Jorde and 

Owen 1988, Sherfy 1999, Ballard et al. 2004) — increased (from 10.1% to 26.7% 

between 2012 and 2013). The significance of this protein-focused diet when lipid 



181 

 

reserves were low is unclear, but could reflect a focus on maintenance of protein 

accumulation during migration (Anteau and Afton 2009a) or repair of muscle damage 

sustained during flight or starvation in that extreme year (Suter and Van Eerden 1992, 

Guglielmo et al. 2001). These dietary shifts, without concomitant increases in refueling 

performance, may also suggest lipid-rich prey were unavailable in sufficient quantities 

for lesser scaup to recover from lipid deficits accrued before peak migration through our 

study area. This interpretation would be consistent with a large body of work that 

suggested foraging conditions for lesser scaup are degraded in a way that inhibits lipid 

accumulation or maintenance during migration (Anteau and Afton 2008a; 2008b; 2009a; 

2011).  

Differences in the timing and tempo of migration between the two species could 

also help interpret patterns of nutrient reserve variation. Birds that arrive later in the 

season on average have less inter-annual variation in arrival dates (Murphy-Klassen et al. 

2005), likely because they have less exposure to environmental stochasticity during 

transition from winter to spring. Such a risk-averse migration strategy may explain the 

different patterns we observed between blue-winged teal and lesser scaup. Blue-winged 

teal are comparatively late migrants and therefore likely arrived after the energetic 

burdens of late winter conditions subsided. In contrast, lesser scaup arrived earlier and 

therefore risk exposure to environmental stochasticity. Field observations during 2013 

confirmed this pattern: we observed substantial numbers of migrating scaup prior to the 

onset of a cold-weather pattern during mid-April 2013, whereas we did not observe any 

blue-winged teal until after the pattern had subsided in late April and early May. 

Therefore, the lower mean lipid reserves among lesser scaup in 2013 could have 
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manifested from a combination of unanticipated energetic demands (Suter and Van 

Eerden 1992, Lovvorn 1994), such as increased costs of thermogenesis associated with 

cold temperatures, decreased food availability because of ice cover (Lovvorn 1989), or 

potential energetic costs of reverse migration out of the study area (Richardson 1978). 

This hypothesis coincides with the pattern of lesser scaup lipid dynamics in our study, 

where accumulation (or catabolism) did not vary systematically among years, based on 

the refueling index, but lipid reserves varied considerably, perhaps further supporting the 

notation of degraded refueling habitat for migrant scaup in the region.   

 Regardless of the mechanisms driving annual variation in lipid reserves among 

lesser scaup, we would expect opposite results. That is, in warm years, we should expect 

that arriving on the breeding grounds with high lipid reserves is unimportant, because 

time schedules for breeding (Gurney et al. 2011) would allow time to recruit sufficient 

nutrients for use in clutch formation and incubation on the breeding grounds (Bromley 

and Jarvis 1993, Klaassen et al. 2006, Janke et al. 2015). In contrast, shortened time 

windows between arrival on the breeding grounds and clutch formation during late 

springs would afford less opportunity for local nutrient acquisition and therefore add 

value to nutrient reserves acquired away from breeding grounds (Klaassen et al. 2006). 

But our results for lesser scaup suggest individuals migrating through cold, late springs in 

the northern prairies have energetic burdens to recoup in a short time window before 

onset of clutch formation after arrival at breeding areas. Failure to recover from nutrient 

deficiencies incurred during migration could result in reduced population productivity in 

those years. The same would be true of migrating blue-winged teal, which still 
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experienced a delay in arrival during late springs, and therefore have less time to recruit 

nutrients for early clutch formation.  
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Table 1. Mean average temperature, sample size and collection dates of female lesser 

scaup and blue-winged teal collected during spring migration in eastern South Dakota 

during March through May of 2012 through 2015. 

    Mean 

temp. 

(°C) 

      Collection dates   

Year n   First 

25th 

percentile 

75th 

percentile Last 

Lesser scaup 

 2012 10.1 61  5-Apr 12-Apr 22-Apr 29-Apr 

 2013 1.4 38   23-Aprb 24-Apr 8-May 16-May 

 2014 3.0 88  11-Apr 23-Apr 29-Apr 13-May 

 2015 6.7 45  23-Mar 3-Apr 15-Apr 21-Apr 

Blue-winged teal 

 2012 10.1 60  1-Apr 9-Apr 24-Apr 30-Apr 

 2013 1.4 102  29-Apr 3-May 13-May 16-May 

 2014 3.0 101  21-Apr 24-Apr 5-May 12-May 

  2015 6.7 59   7-Apr 15-Apr 22-Apr 30-Apr 

aMean daily temperature from 1 March to 20 May   

bOne individual was collected on 8-April, prior to the onset of a severe storm that re-

froze wetlands and delayed additional collections and migration until 23-April. 
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Figure 1. Location of focal regions used to study spring-migrating lesser scaup and blue-

winged teal in eastern South Dakota during spring migration (March through May) of 

2012 through 2015. 
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Figure 2. Cumulative spring temperatures in eastern South Dakota over 4 years (2012 – 

2015, black lines) during which we collected spring-migrating female lesser scaup and 

blue-winged teal. Cumulative spring temperatures were a rolling average of all daily 

mean temperatures recorded from the observation date to 1 March in that year. Long-term 

interquartile range (IQR; dark shaded region) and long-term mean (light shaded region) 

were based on daily observations of the cumulative spring temperatures recorded over 30 

years.  
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Figure 3. Boxplot of the range of daily temperature values observed in eastern South 

Dakota across the range of collection dates for spring-migrating blue-winged teal and 

lesser scaup during March through May 2012—2015. The relative constancy of the box 

plots for each species illustrates that although spring temperatures leading up to 

collection periods for each species were highly variable, temperatures during peak 

migration were similar among years.  
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Figure 4. Annual variation in key physiological metrics measured in migrating female 

lesser scaup and blue-winged teal collected throughout eastern South Dakota during 

spring migration (March through May) of 2012 through 2015. Unique letters on figures 

indicate significant differences among years within the species based on a Tukey Kramer 

post-hoc multiple comparisons test (α = 0.05). Means for protein and lipid mass are 

Least-Squared means after controlling for variation in body size.  
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Figure 5. Annual variation in the ratio of lipid mass to ingesta-free body mass of 

migrating female lesser scaup (hollow circles) and blue-winged teal (filled circles) 

collected throughout eastern South Dakota during spring migration (March through May) 

of 2012 through 2015. Asterisks indicate significant species differences within each year 

based on a Tukey Kramer post-hoc multiple comparisons test (α = 0.05). 
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Figure 6. Annual variation in the proportion of food material in the upper GI that was 

animal matter in migrating female lesser scaup and blue-winged teal collected throughout 

eastern South Dakota during spring migration (March through May) of 2012 through 

2015. Unique letters on figures indicate significant differences among years within the 

species based on a Tukey Kramer post-hoc multiple comparisons test (α = 0.05). 
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Figure 7. Annual variation in the aggregate percentages of different food items in the upper gastrointestinal tract of migrating female 

lesser scaup and blue-winged teal collected throughout eastern South Dakota during spring migration (March through May) of 2012 

through 2015.  
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CHAPTER 7: ON CULTIVATION, CONSERVATION, AND MIGRATION IN 

NORTH AMERICA’S DUCK FACTORY: SUMMARY AND MANAGEMENT 

IMPLICATIONS 

Although the utility of the Prairie Pothole Region (PPR) is traditionally assessed 

by its annual capacity to produce a significant proportion of the iconic fall-flights of 

North American waterfowl, a perceptive, comprehensive view of the region can, and 

arguably should, extend beyond its ability to produce ducks. Indeed, North America’s 

Duck Factory is also the gateway to the rest of the duck factories in Canada and Alaska 

and therefore annually plays an important role in the pre-fabrication step – to extend the 

metaphor – of breeding waterfowl, as they acquire nutrients to fuel migration and 

subsequent breeding efforts during their vernal trek northward across the continent. 

Migrants encounter challenging environments during this annual return, chancing 

encounters with brief returns of winter conditions and foraging exclusively on the left-

overs of last growing season’s diminishing prey base. It is in this season, with these 

constraints, in which my dissertation research was conducted, and for those interested in 

understanding the availability and quality of habitats encountered by migrants in the 

southern PPR, my research offers a few new insights and raises new questions.  

The central question for my dissertation research laid out in the introduction was; 

what is the current condition of prairie wetlands in agricultural landscapes with respect to 

their potential contributions to spring-migrating ducks? I started my dissertation by 

examining a few methodological questions that were only necessary precursors to 

addressing this central question. I decided not to summarize those results explicitly here, 

though a brief summary of the main conclusions and implications is found in Box 1. 
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Similarly, in Chapter 6 I addressed 

questions tangential to my central 

research question and showed that my 

two study species were indeed 

foraging extensively on aquatic 

invertebrates and that interannual 

variability in condition of migrants 

exists, clearly adding to the possible 

constraints imposed on waterfowl 

during spring migration.  

Chapter 4 is where I addressed 

my main research question and found 

that after controlling for inter-wetland 

variability, wetlands in intensively 

farmed landscapes in eastern South 

Dakota were providing at least the 

same contributions, and perhaps 

improved conditions, as those found 

in less intensively farmed landscapes 

across the three metrics I examined – invertebrate prey availability, duck abundance, and 

physiology – for blue-winged teal and lesser scaup. This result was surprising in light of 

the well-documented pathways for intensive upland cultivation to negatively impact 

surrounding wetland ecosystems, and raises an important question about the mechanism 
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leading to similarities in wetland conditions across the landscape gradient I sampled, 

which I will revisit in my discussion of additional research questions below. The apparent 

conclusion from these results is that regardless of the mechanisms giving rise to the 

similarities, wetlands in South Dakota’s intensively farmed landscapes have the capacity 

to make substantial contributions to spring-migrating ducks.  

The similarity of contributions of wetlands to ducks across the upland cultivation 

gradient I measured does not of course imply agricultural-associated land use changes, 

namely those related to wetland drainage and modifications, do not impact ducks and 

wetlands. Analyses in Chapter 5, where I examined wetland-specific factors influencing 

the physiology of blue-winged teal and lesser scaup, showed evidence to the contrary. In 

that analysis, I found that variation in refueling performance in lesser scaup, and to a 

reduced degree blue-winged teal, was associated with variation in wetland attributes. 

Lesser scaup were performing better on relatively small, interspersed wetlands that were 

not degraded because of high fathead minnow densities. Extensive and thorough work in 

a diverse body of literature on shallow lakes in Minnesota and elsewhere has shown the 

complex impacts fathead minnow have in altering food webs and therefore whole aquatic 

communities in wetlandsa. These pathways are outlined in Box 2. My results are the first 

to directly link food web impacts of fathead minnows to physiological impacts of ducks 

passing through on migration. Thus, fathead minnows in prairie wetlands introduce 

potential cross-seasonal and cross-ecosystem effects because migrant ducks accruing 

nutrient deficits on wetlands with high fathead minnow densities will then have to offset 

those deficits in other aquatic systems along their migration route or after arriving on 

                                                 
a Hanson et al. (2005) Wetlands 25, 764-775 
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their breeding grounds. These findings also relate back to the central question about 

agricultural landscapes in my dissertation, because research has shown fathead minnows 

benefit from increased water permanency and connectivityb, and both of these factors are 

favored by wetland drainage practices typical in intensively farmed landscapesc.  

IMPLICATIONS FOR POLICY AND MANAGEMENT 

To state the obvious, migrating ducks don’t use fully drained wetlands. Less 

obvious however, but implicit in my results, is that the drainage of those wetlands has 

impacts that reach beyond the loss of an individual stopover location. Combining my 

results with others, we can begin to see the clear trophic impacts that widespread wetland 

drainage can have in altering an entire wetland landscape: by draining small basins into 

larger basins, the hydrology of the landscape changes, which manifests in changes to the 

biotic communities in wetlands, and ultimately in physiological impairments to spring-

migrating ducks. This mechanism was central to the articulation of the Spring Condition 

Hypothesis for explaining lesser scaup declinesd and proposed as a likely mechanism in 

coarse-scale worke,f but never definitively established until now. If indeed fathead 

minnows, or other fish with comparable effects like black bullheadsg or carp are 

sufficiently abundant in the modern prairie wetland landscape, they clearly could be 

having negative physiological consequences for spring-migrating wetland-foraging ducks 

in the region at a large scale. If indeed this is the case, policy makers should consider the 

implications of drainage practices that increase water permanency in remaining prairie  

                                                 
b Herwig et al. (2010) Wetlands 30, 609-619 
c McCauley et al. (2015) Ecosphere 6, 1-22 
d Anteau & Afton. (2004) Auk 121, 917-929 
e Anteau & Afton. (2009) Auk 126, 873-883 
f Anteau & Afton. (2011) PLoS One 6, e16029 
g Maurer et al. (2014) Wetlands 34, 735-745 
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wetlands. Managers can focus on precluding factors that favor colonization and 

persistence of fathead minnows in semipermanent wetlands and, in cases where fathead 

minnows or other benthivorous fish already exist in high densities, consider management 

options to eliminate them.  

Barring the negative consequences of altered hydrologic regimes of wetlands 

associated with drainage practices in agricultural landscapes, my results suggest that such 

wetlands still have capacity to make meaningful contributions to spring-migrating ducks. 

This finding has implications for policy makers in considering wetland-protection 

strategies or wetland restoration practices in agricultural landscapes. Whether these 

wetlands offer utility for breeding ducks likely depends primarily on the availability of 

surrounding upland nesting cover. That comparable densities of aquatic invertebrates can 

be found across the entire cultivation intensity gradient however, certainly implies that 

there is capacity to support reproduction in intensively farmed landscapes if constraints 

on nesting habitats are relaxed.  

ADDITIONAL RESEARCH QUESTIONS 

 I have eluded to a number of potentially important follow-up questions to be 

addressed throughout my dissertation, but I wanted to explicitly highlight the three 

primary questions that I think are central to interpreting my results and understanding the 

potential contributions of wetlands in agricultural landscapes to waterfowl in the southern 

PPR.  These questions are: 

1.  How prevalent are fathead minnows and other benthivorous fish species in 

semipermanent wetlands throughout the southern PPR and what factors 

facilitate their colonization and persistence? Answering this question is central 
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to defining the scope of the potential problem posed by benthivorous fish and 

the trophic modifications they impart, and could help improve wetland 

management strategies or in setting wetland drainage policies that reduce 

potential impacts. Important sub-questions for this research avenue include, 

a. Does agricultural drainage, both surface and subsurface, influence 

fathead minnow or other fish persistence and abundance? 

b. How has the recent wet-period on the U.S. prairies influenced the 

distribution and abundance of fathead minnows and how will a return 

to drier conditions affect their abundance? 

c. What management strategies can be used to reduce the impacts of 

fathead minnows and other fish on wetlands with extant populations? 

2. What underlying mechanisms gave rise to the apparent similarities between 

wetlands in intensively farmed landscapes and those in less disturbed 

landscapes? This question should seek to address whether wetlands in 

agricultural landscapes have been degraded to their current condition or if 

they simply show resiliency to agricultural land uses. Important sub-questions 

for this research avenue include, 

a. What land-use factors favor improved wetland productivity for 

migrants, such as grassed buffers or drainage practices? 

b. What restoration efforts are feasible or merited in intensively farmed 

landscapes, if degradation has indeed occurred? 
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c. Is there a threshold effect of agricultural land uses, namely nutrient 

enrichment, from which it is difficult for wetlands to recover, as 

commonly seen in shallow lakesh? 

3. In light of the evidence in my research for relatively abundant invertebrate 

prey in wetlands in agricultural landscapes during spring, what is the potential 

capacity for these landscapes to support breeding ducks? Important sub-

questions for this research avenue include, 

a. What factors are associated with breeding duck densities in these 

landscapes? 

b. Are the purported increases in predation pressure in these fragmented 

landscapesi too much to result in contributions to annual recruitment? 

c. What is the overall potential for reproduction across the expansive 

agricultural landscapes in the southern U.S. PPR? 

I started the introduction to this dissertation with a quote from the 1936 North 

American Wildlife and Natural Resources conference to provide context and insights 

from the rich legacy of conservation in North America. I thought it fitting then to 

conclude the document with another quote from a conservation icon that spoke at that 

meeting. In his brief address on the importance of private lands for wildlife conservation, 

Aldo Leopoldj remarked, “Few people as yet understand that wildlife is best produced as 

a thin crop. To get either quantity or variety you have to spread it over large areas.” This 

philosophy seems especially key today, as the footprint of anthropogenic land uses, and 

                                                 
h Zimmer et al. (2009) Ecosystems 12, 843-852 
i Cowardin et al. (1985) Wildlife Monographs, 3-37 
j U. S. Government Printing Office (1936) Proceedings of the North American Wildlife Conference, 156-

158 
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specifically agriculture in the mid-continent regions important for waterfowl, has grown 

in the last century, finding places for conservation on a large scale are increasingly 

challenging. In these landscapes, the difficult work to conserve and protect remaining 

native, unmodified grassland and wetland ecosystems are invaluable. But relics alone will 

not suffice. Through scientific understanding of factors influencing ecosystem stability 

and functioning, perhaps the sum contribution of many small parts offers a solution. This 

seems true for the most intensively farmed regions of the eastern and southern PPR in 

which I have shown there remains promise for waterfowl when wetlands are unaffected 

by drainage. In these landscapes, we can still find important wetland habitats serving 

their role in facilitating successful reproduction of waterfowl and providing a diversity of 

ecological services. With a little luck, good science, and sound conservation policies they 

can hopefully continue to do so for many generations to come.  
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APPENDIX 1: DETAILED DIET SUMMARIES 

Detailed taxonomic summary of diets of female lesser scaup (n = 199) and blue-winged 

teal (n = 219) collected in eastern South Dakota during spring migration (March – May) 

of 2012 – 2015. Aggregate percentages are based on dry weight of each taxa.  

Organism 

Lesser scaup   Blue-winged teal 

Aggregate 

percent Freq. of 

occurrence 

 

Aggregate 

percent Freq. of 

occurrence Mean  SE   Mean  SE 

Crustacea        

 Amphipoda        

  Gammarus 0.773 0.470 3.015  0.000 0.000 0.000 

  Hyalella 7.471 1.426 32.161  2.638 0.878 10.046 

 Branchiopoda        

  Cladocera 0.893 0.616 5.025  0.643 0.440 10.959 

  

Cladocera 

resting eggs 0.051 0.026 8.040  0.145 0.065 4.566 

  Laevicaudata 0.001 0.001 1.005  0.255 0.252 0.913 

 Copepoda 0.000 0.000 0.000  0.001 0.001 0.457 

 Isopoda 0.000 0.000 0.000  0.003 0.003 0.457 

 Ostracoda 1.434 0.646 13.568  1.953 0.530 18.721 

Mollusca        

 Bivalvia        

  Sphaeriidae 0.965 0.678 3.518  0.000 0.000 0.457 

 Gastropoda        

  Hydrobiidae 1.361 0.784 1.508  0.145 0.145 0.457 

  Lymnaeidae 4.611 1.198 13.065  6.449 1.305 18.265 

  Physidae 3.685 0.888 20.603  2.360 0.769 10.502 

  Planorbidae 8.568 1.374 44.221  8.048 1.199 40.183 

  Valvatidae 3.913 1.276 7.035  0.417 0.417 0.457 

  

Gastropod 

fragments 0.825 0.500 7.538  2.920 0.639 21.005 

Clitellata        

 Hirudinea        

  Erpobdellidae 0.710 0.296 9.045  0.733 0.458 2.283 

  Glossiphoniidae 0.013 0.009 1.508  0.007 0.007 0.457 

Insecta        

 Arachnida        

  Acarina 0.042 0.011 12.563  0.075 0.036 5.936 
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  Araneae 0.000 0.000 0.000  0.129 0.100 2.283 

 Coleoptera        

  Chrysomelidae 0.002 0.002 0.503  0.000 0.000 0.000 

  Curculionidae 0.000 0.000 0.000  0.010 0.007 0.913 

  Dytiscidae 0.042 0.027 2.010  0.183 0.086 6.849 

  Elmidae 0.000 0.000 0.000  0.004 0.004 0.457 

  Gyrinidae 0.000 0.000 0.000  0.008 0.008 0.457 

  Haliplidae 0.731 0.302 17.588  0.224 0.094 7.306 

  Helophoridae 0.000 0.000 0.000  0.001 0.001 0.457 

  Hydraenidae 0.000 0.000 0.000  0.000 0.000 0.000 

  Hydrophilidae 0.000 0.000 0.000  0.369 0.179 7.763 

  Staphylinidae 0.000 0.000 0.000  0.001 0.001 0.457 

  

Coleoptera 

fragments 0.002 0.002 0.503  0.260 0.198 1.370 

 Diptera        

  Ceratopogonidae 0.019 0.012 3.015  0.209 0.097 5.936 

  Chaoboridae 0.018 0.011 3.518  0.000 0.000 0.000 

  Chironomidae 25.617 2.515 57.286  13.232 1.679 40.183 

  Culicidae 0.000 0.000 0.000  0.001 0.001 0.913 

  Dixidae 0.000 0.000 0.000  0.004 0.004 0.457 

  Dolichopodidae 0.001 0.001 0.503  0.005 0.005 0.457 

  Empididae 0.000 0.000 0.000  0.001 0.001 0.913 

  Ephydridae 0.000 0.000 0.000  0.128 0.128 0.457 

  Psychodidae 0.000 0.000 0.000  0.040 0.027 1.370 

  Stratiomyidae 0.000 0.000 0.000  0.847 0.387 7.306 

  Syrphidae 0.000 0.000 0.000  0.221 0.221 0.457 

  Tabanidae 0.001 0.001 0.503  0.060 0.043 0.913 

  Tipulidae 0.000 0.000 0.000  0.010 0.008 0.913 

 Ephemeroptera        

  Baetidae 0.248 0.116 8.543  0.026 0.026 0.457 

  Caenidae 0.185 0.072 12.060  0.038 0.032 2.283 

 Hemiptera        

  Corixidae 0.451 0.213 9.548  0.677 0.381 4.566 

  Hebridae 0.000 0.000 0.000  0.002 0.002 0.913 

  Notonectidae 0.046 0.046 0.503  0.001 0.001 0.457 

  Pleidae 0.002 0.001 1.005  0.175 0.121 3.196 

 Lepidoptera        

  Pyralidae 0.001 0.000 2.010  0.000 0.000 0.000 

 Odonata        

  Aeshnidae 0.038 0.038 0.503  0.000 0.000 0.000 

  Coenagrionidae 1.793 0.438 26.633  0.067 0.037 3.653 
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  Lestidae 0.011 0.011 1.005  0.000 0.000 0.000 

 Trichoptera 0.759 0.339 13.568  0.137 0.072 2.283 

Miscellaneous 

invertebrates        

 Terrestrial insect 0.837 0.594 2.010  1.056 0.513 7.763 

 

Unidentifiable 

invertebrate 0.002 0.002 1.005  0.099 0.099 0.457 

 

Aquatic insect 

fragments 0.512 0.276 7.538  0.477 0.228 10.046 

 Invertebrate eggs 0.537 0.503 3.015  0.085 0.047 2.283 

Nematoda 0.000 0.000 0.503  0.000 0.000 0.000 

Oligochaeta 0.000 0.000 0.503  0.010 0.007 0.913 

Fish         

 

Pimephales 

promelas 0.612 0.492 1.508  0.000 0.000 0.000 

 Culaea inconstans 0.005 0.005 0.503  0.000 0.000 0.000 

Vegetation        

 Agricultural seeds 0.000 0.000 0.000  1.818 0.862 2.283 

 Natural seeds 29.033 2.759 75.377  45.138 2.668 89.954 

 Algae 0.001 0.001 0.503  0.858 0.596 1.826 

 Tubers 0.365 0.253 2.010  0.722 0.519 1.370 

  

Miscellaneous 

vegetation 2.816 0.629 45.226   5.876 0.924 46.119 
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APPENDIX 2: ASSAY PROTOCOLS 

Protocols for assays used to measure concentrations of metabolites or plasma 

hemoglobin. Metabolite assays were adapted from protocols originally developed and 

provided by Christopher Guglielmo at the University of Western Ontario.  

TRIGLYCERIDE AND FREE GLYCEROL 

Required supplies: 

 Triglyceride Reagent (Sigma – T2449-10ML)- Reconstituted with 10 mL dH20 

 Glycerol Reagent (Sigma – F6428-40ML)- Reconstituted with 40 mL dH20 

 Glycerol Standard Solution (2.82 mmol/L glycerol; Sigma G7793-5ML) 

Supplies notes: Order equal number of bottles of Triglyceride and Glycerol 

reagents; Serum Triglyceride Determination Kit from Sigma (TR0100) contains 

both product but in unequal quantities. Each bottle can do about 125 wells. 

Standard curve: 

Create a serial dilution of the standard solution from 2.82-0.176 and include a 

well with dH20. Make a higher standard of 5.64 by adding 2 volumes of standard 

to the well (10 µl).  

Final serial dilution concentrations (mmol/L): 5.64, 2.82, 1.41, 0.705, 0.3525, 0. 

Sample preparation: 

Dilute samples 3-fold with 0.9% Sodium Chloride (Saline) if necessary for small 

volumes. 

Procedure: 

Load 5 µl of standard or sample to each well in duplicate; ensure that no samples 

have both duplicates on the edge of the plate - Vortex all samples before adding to 

wells 

Load 240µl of the Glycerol Reagent to each well prewarmed to 37 C 

Load plate into reader, prewarmed to 37 C 

Incubate at 37 C 10 minutes 

Shake low 10 seconds at 37 C 

Read absorbance at 540nm and secondary (background) at 750nm 

Eject the plate and add 60µl of the Triglyceride Reagent prewarmed to 37 C to 

each well 

Load plate into reader, prewarmed to 37 C 

Incubate at 37 C 10 minutes 

Shake low 10 seconds at 37 C 

Read absorbance at 540nm and secondary (background) at 750nm 

Calculations: 

 Glycerol estimated by taking reference wavelength minus secondary wavelength 

Total Triglycerides estimated by taking reference wavelength minus secondary 

wavelength 

Multiply all concentration estimates by dilution factor – 3 fold dilution (2 parts 

dH20 1 part sample) is multiplied by 3. 
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Calculate True Triglyceride by subtracting Glycerol from Total Triglyceride  

Procedural notes: 

Inspect results and rerun samples where CV ((SD/mean)*100) is greater than 15% 

Dilute and rerun any samples that were estimated outside the standard curve  

 

URIC ACID 

Required supplies: 

Uric Acid Reagent Set (Teco Diagnostics U580-240) – reconstituted with 12 ml 

dH2O – 1 kit does 1200 wells. 

 Sodium Hydroxide (NaOH; Sigma 415413) 

 Uric Acid (Sigma U0881) 

 Glycine Free Base (Sigma G7126) 

Supplies notes: The standard that comes with the reagent set is too low for 

concentrations observed in birds, which is why additional supplies are ordered to 

mix a custom standard. 

Standard curve: 

Create a serial dilution of the standard solution from 2.97-0.3713 and include a 

well with dH20.  

Final serial dilution concentrations (mmol/L): 2.97, 1.485, 0.7425, 0.3713, 0. 

Sample preparation: 

Dilute samples 3-fold with 0.9% Sodium Chloride (Saline) if necessary for small 

volumes. 

Procedure: 

 Standard preparation: 

First make a 0.1 M glycine buffer at 9.3 pH: Add 0.7507 glycine to 100 ml 

dH20 and adjust pH to 9.3 with NaOH.  

Make a 0.5 mg/ml standard by mixing 0.0250 g (25 mg) Uric Acid powder 

with 50 ml of the glycine buffer. 

The standard solution will be stable at room temperature for a few days 

Load 5 µl of standard or sample to each well in duplicate; ensure that no samples 

have both duplicates on the edge of the plate – Vortex all samples before adding 

to wells 

Load 200µl of the Uric Acid Reagent to each well 

Load plate into reader, prewarmed to 37 C 

Incubate at 37 C 10 minutes 

Shake low 10 seconds at 37 C 

Read absorbance at 520nm and secondary (background) at 700nm 

Calculations: 

Uric Acid concentration estimated by taking reference wavelength minus 

secondary wavelength 

Multiply all concentration estimates by dilution factor – 3 fold dilution (2 parts 

dH20 1 part sample) is multiplied by 3. 

Procedural notes: 

 Inspect results and rerun samples where CV ((SD/mean)*100) is greater than 15% 

 Dilute and rerun any samples that were estimated outside the standard curve  
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Β-HYDROXYBUTYRATE 

Required supplies: 

β-Hydroxybutryrate Linearity Standards (Stanbio-2450; order from Fisher) 

D-3 Hydroxybutryic Acid Assay Kit (R-Biopharm – 10 907 979 035) – One box 

can do 4 trays with 41 samples in duplicate (Solution 2 is the limiting factor) 

Reconstitute Solution 2 with 2.5 mL dH2O 

Reconstitute Solution 3 with 6 ml dH2O 

Standard curve: 

Create a serial dilution by adding the following concentrations of standards from 

the standards kit: 

1. 5 µl Standard 1 – 0.0 mmol/L 

2. 2.5 µl Standard 2 – 0.25 mmol/L 

3. 5 µl Standard 2 – 0.5 mmol/L 

4. 5 µl Standard 3 – 1.0 mmol/L 

5. 7.5 µl Standard 3 – 1.5 mmol/L 

6. 5 µl Standard 4 – 2.0 mmol/L 

7. 7.5 µl Standard 4 – 3 mmol/L 

Sample preparation: 

Dilute samples 3-fold with 0.9% Sodium Chloride (Saline) if necessary for small 

volumes. 

Procedure:  

Prepare a 22.5 ml working solution to be used immediately by gently mixing the 

following parts: 

 15 ml dH2O 

 4.5 ml Solution 1 pre-warmed to 20-25 C 

 1.5 ml Solution 2 pre-warmed to 20-25 C 

 1.5 ml Solution 3 pre-warmed to 20-25 C 

Load 5 µl of standard or sample to each well in duplicate; ensure that no samples 

have both duplicates on the edge of the plate - Vortex all samples before adding to 

wells 

Load 200µl of the Working Solution to each well 

Incubate at 20-25 C for 2 minutes 

Quickly add 4 µl Solution 4 (activator enzyme) to each well- this has to be done 

very quickly and is a source of error in the assay.  

Gently tap the plate on the bench to ensure the activator enzyme dropped into 

each well 

Shake med-high 10 seconds 

Read absorption at 492 nm immediately (t=0) and every minute for 40 minutes 

(n=41 readings) 

Calculations: 

Subtract 3 times the change in absorbance between t=30 and t=40 from the 

change in absorbance between t=0 and t=30; net absorbance = (t30-t0)-3(t40-t30) 

Procedural notes: 

 Inspect results and rerun samples where CV ((SD/mean)*100) is greater than 15% 
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HEMOGLOBIN 

Required supplies: 

Hemoglobin Colorimetric Assay Kit (700540 from Cayman Chemical- 

Reconstitute detector and buffer (if needed for dilutions) following kit 

instructions.  

Supplies notes: Each kit can do slightly more than 3 plates with 40 samples/plate 

in duplicate. 

Standard curve: 

Follow kit instructions to create a serial dilution of the standard. You can double 

the volumes to allow for doing more than one plate at a time. 

Mixed standard solutions are stable at room temperature for 12 hours.  

Final serial dilution concentrations (g/dL): 0, 0.016, 0.040, 0.080, 0.160, 0.240, 

0.320, and 0.400.  

Sample preparation: 

Ideally samples should not be diluted because hemoglobin is naturally low in 

plasma. However, if sample volumes are low, dilutions can be done using the kit-

provided Hemoglobin Sample Buffer (reconstituted with 90mL dH20).  

Procedure: 

All standards and reagents should be equilibrated with room temperature before 

adding to the wells.  

Add 200 µl of each standard solution to the plate in duplicate. 

Load 20 µl of sample to wells in duplicate. 

Load 180 µl of the detector only to the sample wells (it’s already mixed with the 

standards).  

Ensure no bubbles remain at the top of the wells. Don’t expel the last drop into 

the well and lightly blow on the plate before loading.  

Incubate at 20-25C for 15 minutes 

Read absorbance at 575 nm (between 560-590, per kit). 

Calculations: 

Calculated corrected absorbance for each individual plate by subtracting the mean 

absorbance of standard 1 (0.00 g/dL) from all wells. 

Calculate a standard curve from corrected absorbance to predict the concentration 

of Hemoglobin in the wells. 

The final Hemoglobin concentration (g/dL) is 10 x’s the well concentration to 

account for the dilution in the wells.  

Procedural notes: 

Inspect results and rerun samples where CV of absorbance ((SD/mean)*100) is 

greater than 15% 

 Dilute and rerun any samples that were estimated outside the standard curve 
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