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ABSTRACT 

CHARACTERIZATION OF SMALL NONCODING RNAS IN THE SEMINAL 

PLASMA OF BEEF BULLS WITH PREDICTED HIGH AND LOW FERTILITY 

STEPHANIE PERKINS 

2016 

MicroRNAs (miRNAs) are a family of small non-coding RNAs (sRNA) that play a key 

role in regulating gene expression by binding to their complementary mRNA and altering 

translation.  It has been reported that this down-regulation of specific areas of the genome 

plays a role in male fertility.  Piwi-interacting RNAs (piRNAs) are another class of 

germline-specific non-coding RNAs that form silencing complexes to maintain germline 

genome integrity.  In bovine seminal plasma, piRNAs have not previously been 

characterized.  Thus, the objective of this study was to investigate a potential relationship 

between expression of these sRNAs and fertility in beef bulls and to characterize piRNA 

expression in bull seminal plasma.  Semen samples were collected from 35 beef bulls and 

analyzed for Arachis hypogaea/peanut agglutinin (PNA) and Lens culinaris agglutinin 

(LCA) scores.  PNA reveals acrosomal damage or malformation and LCA indicates an 

altered sperm surface.  LCA and PNA are both correlated with ubiquitin, a negative 

protein biomarker found on sperm cells, which indicates poor overall fertility.  Divergent 

cohorts consisting of 3 bulls with high PNA/LCA scores (H) and 3 bulls with low 

PNA/LCA scores (L) were chosen.  The sRNAs were extracted from the seminal plasma 

of these bulls.  Sequence libraries were prepared using the Illumina TruSeq Small RNA 

preparation kit and sequenced on an Illumina MiSeq.  Using the NCBI database of known 

human, porcine, mouse, and bovine miRNAs and known human piRNAs, expressed 
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sequences were identified and mapped to the Bovine genome (Bta_4.6.1).  A weighted 

FDR-corrected t-type test statistic was used to identify differentially expressed sRNAs 

between the H and L groups.  Of the 617 sRNAs that were discovered, 9 miRNAs that 

were differentially expressed (FDR P<0.05) and 49 piRNAs that were differentially 

expressed (FDR P<0.05) were identified.  All of the identified piRNAs in seminal plasma 

have previously been reported in human male germlines. Differentially expressed miR-

181a-2 and miR-181b-2 were up-regulated in the L group and have been previously 

characterized in embryos, small intestine, and as a cluster in the thymus. Also, miR-181a-

1 was found to be significantly related to male infertility diagnoses in humans.  

Additionally, other significant miRNAs identified in this study have been previously 

identified in embryonic, brain, and mammary tissues.  Real-time RT-PCR was performed 

on 33 bulls with PNA/LCA scores using candidate piRNAs selected based on sequencing 

results.  The association between the PNA and LCA markers and piRNA expression was 

analyzed using a linear model including age as a covariate.  It was found that PNA was 

significantly related to pi-30961 and pi-32679 (P˂0.05) and LCA exhibited a trend 

towards significance with pi-32679 (P=0.08).  These identified candidate miRNAs and 

piRNAs support the hypothesis that miRNAs and piRNAs correlate with differences in 

fertility of beef bulls.     

  



1 

 

 

Chapter 1  

LITERATURE REVIEW  
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Introduction  

The fertility of beef bulls is a key component to successfully maintaining a cattle 

herd.  In beef cattle herds, bulls are often responsible for successfully impregnating 

multiple females.  It has been found that 20 to 40% of bulls in an unselected population 

exhibit reduced fertility (Kastelic and Thundathil, 2008).  This suboptimal performance 

of the bull can lead to a greater impact on calf numbers then a single female’s infertility.  

This impact makes being able to identify overall bull fertility important for producers.   

The class of small non-coding RNAs (sRNA), known as microRNAs (miRNA) 

are known to play a key role in regulating gene expression by binding to their 

complementary mRNA and altering translation.  MicroRNAs could play a role in male 

fertility (Yadav and Kotaja, 2014; Hu et al., 2014; Houwing et al., 2007).  Another class 

of sRNAs, piwi-interfering RNAs (piRNA) are germline-specific non-coding RNAs that 

form silencing complexes to maintain germline genome integrity.  These piRNAs have 

not previously been characterized in bovine seminal plasma.  The use of next-generation 

sequencing (NGS) techniques have made researching sRNAs and their potential link to 

various biological functions much more feasible.    

 Research into protein biomarkers has discovered numerous proteins that are 

correlated with semen quality, including ubiquitin and various lectin proteins.  Higher 

ubiquitin levels are positively correlated with abnormal sperm morphology (Odhiambo et 

al., 2011).  Increased expression of the lectin proteins Arachis hypogaea/peanut 

agglutinin (PNA) and Lens culinaris agglutinin (LCA) are also positively correlated with 

increased ubiquitin and lower fertility levels in beef bulls (Sutovsky et al., 2015).   
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 Identifying connections between sRNA actions and fertility in beef bulls will 

allow for greater understanding of the underlying biological mechanisms involved in bull 

fertility.  This information could eventually allow for selection of bulls based on 

predicted fertility measures identified from their genetic makeup.  Furthermore, sRNA 

expression may be manipulated to impact semen quality.   This literature review will 

cover the key components of male fertility, specifically in beef bulls as well as measures 

that can be used to predict fertility.  The other topic covered in detail will be different 

classes of sRNAs and their link to fertility.   
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Male Fertility 

Reproductive performance in cattle is an economically important trait.  Within 

cow-calf operations, the overall fertility level of the herd affects calving intervals and 

number of calves produced.  An increase in calving interval or a decrease in calf numbers 

can lead to serious economic losses for a producer.  If a cow fails to conceive when she is 

first bred, it either goes undetected or she is re-bred.  If the cow fails to produce a calf, 

producers who chose to retain the cow will pay for her feed and care without a return on 

that investment.  It is highly unlikely that a non-pregnant cow will be able to generate 

enough profit in the future to offset a single missed calf (Mathews and Short, 2001).  

Bulls specifically can have a major impact upon fertility, as individual bulls will service 

multiple females during a breeding season.  The current method of measuring a bull’s 

ability to successfully breed cows is the breeding soundness exam (BSE).  However, 

fertility of bulls can be affected by a plethora of factors at any point in their life and a 

BSE only provides a snapshot in time rather than an estimate of the bull’s fertility 

throughout its lifetime.       

Breeding soundness exams were designed to test the likelihood of a bulls ability 

to successfully establish pregnancy in more than 25 females over a 65-70 day breeding 

season (Kastelic et al., 2008).  Thus, these exams cannot be performed until a bull 

reaches puberty.  A BSE examines physical traits of the bull as well as characteristics of 

their ejaculate.  These characteristics include scrotal circumference, sperm motility, 

sperm morphology, and physical defects.   
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To pass the BSE, bulls under 15 months of age must have a scrotal circumference 

of at least 30cm.  For bulls older than 15 months, scrotal circumference should be at least 

32cm.  Scrotal circumference is one of the few traits measured in regards to bull fertility 

that has genetic predictions available.  Larger scrotal circumferences have been 

genetically correlated with decreased days to puberty in males and females (Brinks et al., 

1978).  Bulls are also examined for physical abnormalities, as abnormalities of the 

scrotum, testes, or accessory sex glands can cause reduced fertility in a bull.  These 

defects indicate that a bull has been injured, is sick, or that the reproductive tract failed to 

properly develop (Ellis, 2007).  Sperm motility is another factor included in a BSE.  To 

test for motility, a drop of undiluted semen is placed on a warm slide and examined under 

a light microscope.  Sperm should be progressively motile, or moving forward across the 

field of view (Amann and Hamerstedt, 1993) and should exhibit over 30% motility to 

pass a BSE (Kastelic and Thundathil, 2008).  Extreme temperatures and environmental 

contamination of the semen sample can decrease motility.   

Sperm morphology is examined under a light microscope using oil immersion.  

This characteristic may have the largest impact on pregnancy rates; a 10% increase in 

semen quality based on morphology resulted in a 5% increase in pregnancy rates in the 

U.S. (Wiltbank et al., 1986).  Abnormalities can be classified as primary or secondary 

abnormalities. Primary defects include double, elongated, misshapen and detached heads, 

crater defect, and ruffled acrosome, and are often considered developmental 

abnormalities.  Secondary defects include coiled or bent tail, doubled midpiece or tail of 

the spermatozoan, and the majority of these abnormalities (i.e. coiled and bent tails) are 

considered to occur due to semen handling.  Other abnormalities involve proximal or 
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distal droplets.  Bulls must exhibit at least 70% morphologically normal sperm to pass a 

BSE (Saacke, 2008).   

Spermatogenesis results in the generation of millions of spermatozoa being produced 

each minute.  However, the molecular events occurring to produce these spermatozoa 

must be absolutely accurate in order to allow for the transmission of genetic information 

to potential offspring (Yadav and Kotaja, 2014).  Spermatogenesis occurs in the 

seminiferous tubules of the testes. In order for spermatozoa to be produced, there are 

three main endocrine requirements:  (1) gonadotropin-releasing hormone (GnRH) 

secretion from the hypothalamus, (2) follicle stimulating hormone (FSH) and luteinizing 

hormone (LH) release from the pituitary gland, and (3) testosterone and estrogen 

secretion.  In females, the hypothalamus contains a tonic and surge center that controls 

GnRH release.  The tonic center releases basal levels of GnRH at all times, while the 

surge center releases a preovulatory surge of GnRH once during the estrous cycle 

(Senger, 2003).  The male lacks this surge center.  Instead, hormone pulses occur every 

few hours (Figure 1.1) and each hormone causes a different reaction throughout the male 

body.  A pulse of GnRH causes the release of LH and FSH from the anterior pituitary 

gland. The actions of these hormones eventually leads to negative feedback on GnRH, 

stopping the release of LH and FSH and creating the pulses seen in Figure 1.1.   The LH 

binds to the Leydig cells in the testes, which produce progesterone to be converted into 

testosterone.  In the seminiferous tubules, testosterone is essential for the continuation of 

spermatogenesis.  Part of the testosterone will enter circulation while the rest will be 

transported to the Sertoli cells.  The FSH binds to the Sertoli cells, located in the 

seminiferous tubules, which helps to convert testosterone into dihydrotestosterone (DHT) 
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and estrogen.  Without FSH, the Sertoli cells do not function.  Sertoli cells also produce 

inhibin, which travels to the anterior pituitary and suppresses the release of FSH.  

Estradiol and DHT exert negative feedback effects on the hypothalamic release of GnRH 

(Sharpe, 1994).  All of these processes remaining in balance within their self-regulating 

system are necessary for the maintenance of spermatogenesis. 

 Spermatogenesis is split into 3 phases: the proliferation phase, the meiotic phase, 

and the differentiation phase.  The proliferation phase involves primitive spermatogonia 

undergoing mitotic divisions, which is regulated by FSH actions upon Sertoli cells.  

These mitotic divisions generate large numbers of spermatogonia.  Most of the 

spermatogonia enter the next phase of spermatogenesis, while a few spermatogonia revert 

back to primitive spermatogonia for later mitosis.  This renewal is what allows for the 

continuity of spermatogenesis.  The meiotic phase involves primary and secondary 

spermatocytes.  During this step, DNA replication and crossing over of the chromosomes 

occurs, producing genetically diverse haploid spermatids.  The differentiation phase 

(spermiogenesis) does not involve any more division of cells.  This phase is when the 

round spermatids transform into the oblong spermatozoon with a head, midpiece, and tail.  

All major morphological changes like acrosome and flagellum formation and chromatin 

condensation occur during spermiogenesis (Yadav and Kotaja, 2014).   

The differentiation stage is also divided into four stages: the Golgi phase, the cap 

phase, the acrosomal phase, and the maturation phase.  During the Golgi phase, the 

acrosomic vesicle, containing the acrosomic granule, forms.  Centrioles also migrate 

towards the nucleus during the Golgi phase.  Eventually, the centrioles will develop into 

the sperm tail, which is imperative for movement after ejaculation.  During the cap phase, 
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the acrosomic vesicle spreads over the nucleus and the primitive flagellum, or tail, forms. 

The acrosomal phase involves continued spreading of the acrosome and elongation of the 

cytoplasm and nucleus (Leblond and Clermont, 1952).  The acrosome plays a key role in 

fertilization because it contains proteolytic enzymes.  When the sperm binds to the 

embryo, the acrosome releases its contents, which allows the sperm to penetrate the zona 

pellucida of the embryo.  Finally, the maturation phase results in a spermatozoon.  The 

mitochondria assemble themselves along the midpiece and the postnuclear cap made 

from microtubules has been completed (Senger, 2003).  Mitochondrial assembly along 

the midpiece functions as the ‘powerplant’ of the sperm, propelling the flagellum and 

giving the sperm its ability to swim.   

Mitotic divisions of the proliferation phase result in 256 spermatids from each 

starting cell. Thus, if any defects are present in the DNA of the initial spermatids, the 

defect is replicated over and over again in each spermatid.  Once the spermatids have 

undergone spermiogenesis, the DNA is tightly packaged within the head of the sperm. 

Due to limited space, it is not possible for DNA modifications to be made, meaning that 

abnormalities at this point will not be corrected. The process of spermatogenesis is 

continuous and at any given time, each step involved in generating a sperm cell is 

occurring simultaneously in different areas of the seminiferous tubules (Leblond & 

Clermont, 1952).   

After spermatogenesis, spermatozoa pass into the head and body of the 

epididymis and finally into the tail of the epididymis.  Sperm are stored in the epididymal 

tail until the sperm travel through the ductus deferens and into the pelvic urethra, where 

the sperm cells are combined with seminal plasma and are ready for ejaculation. 
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 In a bull, spermatogenesis takes 61 days (Senger, 2003).  Should any insult to the 

testes occur, 61 days would elapse before the bull can ejaculate normal spermatozoa. 

These insults can involve a physical injury to the testes or elevated temperatures.  The 

testes are pendulous in many species because heat (body temperature included) has a 

negative effect on quality of sperm.  Understanding the timeframe of the spermatogenic 

process is particularly important when preparing bulls for the breeding season.  A BSE 

may be able to identify fertility problems but it will take at least 2 months after resolution 

of the problem for the bull to be ready for breeding.  

Although a helpful tool for producers, the BSE has limitations.  The BSE can 

detect changes in sperm quality, but it does not diagnose the problem causing these 

changes.  Even though a BSE is performed, sperm motility and morphology measures are 

subject to the variation between performing veterinarians and are only representative of a 

bull’s potential at that single point in time.  A BSE does not test for the presence of 

disease or libido level, and will only pass or fail a bull.  Being able to identify bulls with 

inherently superior fertility earlier in their lifetime would be extremely helpful to 

producers’ breeding programs. 
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Measures for Predicted Fertility  

 A number of proteins have been associated with sperm quality.  One such protein 

is ubiquitin.  Ubiquitin is a 76 amino acid protein that weighs 8.5kDa and targets 

substrates for proteolysis. Ubiquitination is a mechanism for protein recycling that 

involves the attachment of one or more ubiquitin molecules that serve as a marker for 

degradation (Sutovsky et al, 2001a).  Research has reported that this protein serves as a 

marker for defective sperm in semen of bulls, rhesus monkeys, humans, mice, and boars 

(Sutovsky et al., 2001b).  Ubiquitin is expressed by epithelial cells of the epididymis, 

which is the location at which ubiquitination of sperm cells occurs.  Ubiquitin 

concentration per sperm cell has been highly correlated with lifelong, average percentage 

of primary and total sperm cell abnormalities.  Beef bulls vary in their median ubiquitin 

fluorescence concentrations and the proportion of sperm with abnormal morphology is 

positively correlated with ubiquitin fluorescence (r=0.63; P<0.001; Sutovsky et al., 

2002).   

 These fluorescence concentrations are detected using the Sperm-Ubiquitin Tag 

Immunoassay.  This assay works by using specific antibodies with fluorescent dye that 

attach to the ubiquitin proteins.  The intensities of the ubiquitin fluorescence are detected 

using flow cytometry.  Thus this assay allows the amount of ubiquitin to be quantified 

and serve as a measurement for the quality of sperm cells.  This process has been used in 

male humans and farm animals such as bulls, boars, and rams (Sutovsky, 2009).    

 Other proteins have been identified which correlate with ubiquitin concentrations 

and sperm cell quality.  Lectins specifically can be used as a marker for acrosomal 

integrity.  Lectins will bind rapidly to specific sugar residues, which are exposed when 
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the acrosome is damaged (Cheng et al, 1996).  Two of these lectins are Arachis 

hypogaea/peanut agglutinin (PNA) and Lens culinaris agglutinin (LCA).   

The precedent for using lectins to assess acrosomal integrity began in the late 

1980s and early 1990s with research in humans, mice, boars, stallions, and bulls (Cheng 

et al, 1996).  In cattle, 12 lectins that would bind to bull sperm were examined in order to 

identify one that preferentially attached at the acrosomal region.  Of these 12 lectins, 

PNA exhibited almost no detectable binding to sperm surface receptors, but exhibited 

intense binding to areas of the acrosome (Cross and Watson, 1994).   The lectin PNA has 

a high affinity for binding to disaccharides with a terminal galactose, which means PNA 

binds to the exposed outer acrosomal membrane when it is exposed which occurs with 

acrosomal damage or during sperm capacitation (Kennedy et al., 2014).   Ubiquitin is 

also positively correlated with PNA levels (Odhiambo et al., 2011).  The lectin LCA has 

an affinity for D-glucose and D-mannose residues, so LCA binds to the acrosomal 

surface of normal spermatozoa and the entire surface of defective spermatozoa (Graham, 

2001).  Both lectin markers have been validated in multiple species.  Their correlation 

with ubiquitin and sperm morphology makes them useful as predictors for sperm quality 

and therefore predictors of fertility based on an ejaculate.   

 When comparing PNA and LCA, PNA is the preferred measurement due to its 

limited tendency to bind to other areas of the spermatozoon (Odhiambo et al., 2011).  The 

largest limitation of these assays when looking at fertility is that lectins only indicate 

sperm morphology.  Admittedly, sperm morphology and acrosome integrity is imperative 

to overall fertility.  However, other defects could cause serious decreases in fertility that 

are not recognized by lectin binding.   
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Small RNAs 

The central dogma of molecular biology states that the transfer of genetic information 

proceeds from deoxyribonucleic acid (DNA) to ribonucleic acid (RNA) to protein (Crick, 

1958).   Historically, approximately 1.5% of the genome contained protein-coding 

sequences, while 98% was thought to be non-coding “junk” (Collins, et al., 1998).  

Further research into this “junk” DNA has proved that the “junk” DNA (non-protein 

coding sequences) often has a function in cells.  Approximately 80% of noncoding 

sequences play a role in gene expression as short- and long-non-coding RNAs (sRNA & 

lncRNA; Lander et al., 2001).   

Multiple categories of each type of non-coding RNA exist.  The two main categories 

are long non-coding RNAs, such as transfer RNA or ribosomal RNA, and short non-

coding RNAs (sRNA), which include small interfering RNAs (siRNAs), repeat-

associated small interfering RNAs (rasiRNAs), small nuclear RNAs (snRNAs), 

microRNAs (miRNAs), and piwi-interacting RNAs (piRNAs). Each of these short non-

coding RNAs has a different function: siRNAs are involved with gene regulation and 

viral defense, rasiRNAs orient heterochromatin in centromere activity, snRNAs function 

with the spliceosome complex, miRNAs are involved with gene regulation, and piRNAs 

help regulate transposon activity (Gavazzo et al., 2013; Dogini et al., 2014).   

The importance of miRNAs was first identified in nematodes. Researchers working 

with C. elegans observed that the sRNA lin-4 bound to and prevented translation of lin-

14 (Lee et al., 1993; Wightman et al., 1993).  Although initially considered a highly 

uncommon occurrence, a second miRNA, let-7, was discovered in C. elegans (Reinhart et 
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al., 2000).  Let-7 appears to control late temporal transitions during development of 

species like Drosophila.  Let-7 was also found to be present in a wide range of animal 

species including vertebrates, arthropods, and molluscs (Pasquinelli et al., 2000).  Further 

research into C. elegans discovered 55 more miRNAs, several of which had potential 

cohorts in the human and Drosophila genome (Lau et al., 2001).  As the number of 

identified miRNAs grew, a collaborative effort worked to establish a centralized naming 

system and database called miRBase (Griffiths-Jones et al., 2006).  The latest release for 

miRBase (Release 21, http://www.mirbase.org) contains over 28,000 entries.  

A miRNA is a small sequence ranging from 18 to 26 nucleotides long that can alter 

genome expression by down-regulating the translation of mRNA (Hutvagner, 2005).  

These small sequences act by binding to their complementary mRNA and down-

regulating the translation of that area by blocking the translational activities.  

Approximately 60% of mammalian genes undergo regulation by miRNAs (Friedman et 

al., 2009).  The miRNA genes span the entire genome, including introns, exons, and 

intergenic regions (Rodriguez et. al., 2004).   

In mammals, the biogenesis of miRNAs begins in the nucleus (Figure 1.2).  The 

miRNA genes are transcribed by RNA polymerase-II to form the primary miRNA.  

Primary miRNAs have an imperfectly base-paired stem and hairpin loop structure that is 

approximately 70 nucleotides in length (Lee et al., 2002; Ambros et al., 2003).  The stem 

and loop structure contains both the mature miRNA and the hairpin turn; the stem and 

hairpin loop will be cleaved from the rest of the primary miRNA by Drosha, creating pre-

miRNAs.  These pre-miRNAs, which are still stem and loop structures, are transported 

into the cytoplasm by exportin-5 (Yi et al., 2003).  Pre-miRNAs are a complex of the 

http://www.mirbase.org/
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mature miRNA and the miRNA*.  Dicer cleaves the hairpin loop, leaving only the stem 

(miRNA:miRNA* duplex).  The RNA-induced silencing complex (RISC) identifies the 

mature miRNA and then targets specific binding sites on the 3̍ messenger RNA (mRNA) 

transcripts (Lai, 2005).  The miRNA* is usually degraded, although recent research has 

found that some miRNA* act to alter translation themselves (Lytle et al., 2007). Since 

determining that miRNA* can both regulate translation, miRNA and miRNA* are now 

referred to as 3̍ miRNA and 5̍ miRNA.  These miRNAs may target only a specific, single 

mRNA, or target multiple mRNAs for translational down-regulation (Lim et al., 2005).   

In miRNAs, the ‘seed’ region is the nucleotides from base 2 to base 8 or 9 (Lewis et 

al., 2005).  The seed area is particularly important for target recognition although the 

entire miRNA sequence is important for down-regulation of transcripts (Grimson et al., 

2007).  A single mRNA can be regulated by numerous miRNAs (Yanaihara et al., 2006).  

In mammals, around a third of miRNAs show tissue specificity and other miRNAs appear 

to vary in expression level across tissues (Malone and Hannon, 2009).   

The piRNAs were discovered while screening for factors involved in germline cell 

maintenance in Drosophila melanogaster (Lin and Spradling, 1997).  After their initial 

discovery in D. melanogaster, piRNAs were also found in other organisms (Cox et al., 

1998), including mouse and rat germ cells (Aravin et al., 2006, Girard et al., 2006; 

Grivna et al., 2006; Lau et al., 2006; Watanabe et al., 2006).  The piRNAs are slightly 

larger than miRNAs, (26 to 30nt in length) and are chiefly found in germ cell lines 

(Ghildiyal and Zamore, 2009).  These piRNAs primarily function to regulate transposon 

activity and chromatin states through argonaute (AGO) and Piwi proteins (Malone and 

Hannon, 2009).  Mutations disrupting piRNA pathways in fish and mice have been found 
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to cause germline-specific cell death and sterility (Aravin et al., 2007).  Little is known 

about the biogenesis of piRNAs, apart from the fact that piRNAs are generated from 

RNaseIII cleavage of single-stranded DNA (Brennecke et al., 2007).  Biogenesis of 

piRNAs differs among species (Carmell et al., 2007).  Biogenesis of piRNAs does not 

appear to require a double-stranded RNA precursor or the activity of Dicer, leading to the 

suggestion that precursors of piRNAs are long segments of single-stranded DNA that are 

preferentially cleaved at uridine residues (Houwing et al., 2007).  In mice, three Piwi 

proteins are required for male fertility: MILI, MIWI, and MIWI2, each of which is 

expressed at different stages of development (Carmell et al., 2007).   Expression of MILI 

begins in the embryonic stages and persists through adulthood, coinciding with 

primordial germ cell migration into the developing gonad.  The MIWI protein is 

expressed in adult testes, coinciding with the onset of meiosis in spermatogenesis. 

Expression of MIWI2 begins after MILI and ends three days postpartum, correlating with 

cell cycle arrest (Aravin et al., 2008).   

The function of piRNAs primarily involves the suppression of transposons.  

Transposon activity is repressed by piRNAs through a transcriptional mechanism called 

the ping-pong cycle.  Primary piRNAs recognize their complementary targets, at which 

point Piwi proteins are recruited to slice the RNA strand on either side of the transcript, 

producing a secondary piRNA.  The secondary piRNAs then bind to the targets.  Due to 

the high occurrence of Piwi proteins to contain catalytic domains, these proteins are very 

capable of target slicing (Brennecke et al., 2007).   

In both mammals and Drosophila, piRNAs are transcribed from genomic clusters 

ranging from 50 to 100 kilobases (kb).  The piRNAs can also be found within the 3̍ 
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untranslated region (UTR) of protein coding genes.  Regardless of their derivation, the 

majority of piRNA clusters are specifically active in germ cells (Brennecke et al., 2007).  

It would appear that piRNAs play a larger role in epigenetic regulation rather than post-

transcriptional regulation, as in the case of miRNAs (Kim et al., 2006).  Epigenetic 

regulation describes the occurrence of external or environmental factors causing the 

modification of gene expression through changes in DNA methylation patterns, histone 

modification, or small RNAs.  This revelation has led to the suggestion that the Piwi-

piRNA pathway helps maintain biological robustness (Gangaraju et al., 2011).  This 

process, also known as canalization, describes a population’s ability to continue 

exhibiting the same phenotype, despite environmental or mutational affects that might 

drive a change in phenotype.    

Previous Research in miRNA and piRNA 

Extensive research has revealed the role that miRNAs play in mammals.  A study 

involving Dicer mutations in zebrafish showed abnormal morphogenesis during 

gastrulation, brain formation, somitogenesis, and heart development (Giraldez et al., 

2005).  These results suggest that miRNAs play an essential role in overall animal 

development.  A series of studies performed in knockout mouse models helps to illustrate 

the potential importance that miRNA and piRNA pathways play in murine development 

and spermatogenesis.  Dicer plays a role in the function of Sertoli cells, which help to 

produce sperm cells, as well as the miRNA generation pathway.  One study looked at the 

removal of Dicer in primordial germ cells (PGCs) of mice after embryonic day 10.  This 

removal resulted in proliferation defects and issues with post-natal spermatogenesis 

(Maatouk et al., 2008).  Due to the damage to PGCs, this model was not appropriate for 
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investigating the exact role of Dicer in spermatogenesis.   When Dicer was deleted in 

mice after birth, meiotic progression of spermatocytes was delayed and haploid 

differentiation was severely affected (Greenlee et al., 2012; Wu et al., 2012).  Chang et 

al. (2012) used a Dicer knockout model that was activated later in the spermatogenic 

process after birth, resulting in post-meiotic defects like abnormal head morphology.  The 

takeaway message from all of these studies is that Dicer is important for maintenance of 

spermatogenesis.  The earlier in time the Dicer knockout occurred, the more defects were 

seen.  Dicer plays a key role in the processing of miRNAs, suggesting that some of the 

effects seen in the knockout models could be due to a lack of miRNA regulation.  In a 

study characterizing the piRNAs of the mouse, there were differences in the predicted 

piRNAs for elongating spermatids and round spermatids.  These results also support the 

hypothesis that piRNAs suppress specific genes to ensure germ cell development (Yuan 

et al., 2016).   

Research involving miRNAs in livestock species usually investigate miRNAs in 

relation to traits with economic importance.  Studies have characterized miRNAs in cattle 

embryos, brain, liver, and muscles, to mention a few studies (Coutinho et al., 2007; Jin et 

al., 2009).  Comprehensively, these studies show that miRNAs may be expressed in all 

tissues or be tissue-specific.  Some appear to play key roles in altering translation via 

high expression abundance while others appear to be lowly expressed.  Expression of 

miRNAs has been reported to change at different points of development.  In regards to 

fertility, much of the research has focused on the females, investigating oocytes, ovarian 

tissues, and embryonic tissue (Miles et al, 2012; Huang et al., 2011; Coutinho et al., 

2006).  The miRNAs in the tissue of the testes across species have been characterized, 
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but to the best of our knowledge no research investigating the relationship between 

expression of miRNAs in seminal plasma and fertility levels in bulls has been published.  

 Populations of miRNAs also differ based on developmental stage of the animal.  

Lian and others (2012) completed a study that involved the sequencing of small RNAs 

from swine testes.  Samples of testicular tissue were collected from sexually immature 

piglets 30 days after birth and mature boars 180 days after birth. The RNA was extracted 

and samples from each group (mature and immature) were pooled for sequencing.  The 

sRNA sequences were generated using Solexa deep sequencing and mapped to the swine 

genome.  Despite having a similar number of clean reads, the mature pigs had 1.5-fold 

higher numbers of unique sequencing reads than the immature pigs, suggesting a 

difference in the composition of miRNAs present.  Differences in the average length of 

small RNAs between the two groups were also observed.  The immature pool reads were 

primarily 21 to 23nt in length, indicating that most of the sRNAs expressed were 

miRNAs.  In the mature pool, the majority of the read lengths ranged from 26 to 30nt, 

indicating higher levels of piRNA expression.  A total of 122 known miRNAs were 

differentially expressed between mature and immature pig testes (Lian et al., 2012).  The 

results from this study support the idea that miRNA pathways are activated or inactivated 

at certain stages of mammalian development in the gonadal tissue.  This study also 

reveals differences in sRNA populations at different stages in development, suggesting 

miRNA drives development and piRNAs play a larger role after sexual maturity is 

reached.  These results are supported by a study characterizing sRNAs in human 

spermatozoa.  The researchers found that, of the sRNAs extracted, 17% were piRNAs 

and 7% were miRNAs (Krawetz et al., 2011).   
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 A similar study was completed on Holstein bulls and cows slaughtered at two 

different time points (Huang et al., 2011).  Two cows and two bulls were slaughtered 3 

days after birth and then two cows and two bulls were slaughtered at 2.5 years of age.   

Tissue samples from the testis and ovaries were collected to compare miRNA expression 

pre- and post-sexual maturity.  All samples of the same gender were pooled together prior 

to sequencing.  Solexa deep sequencing was performed and samples were compared to 

miRBase and mapped to the bovine genome.  A total of 122 and 136 novel miRNAs were 

discovered in the testes and ovarian tissue, respectively.  Six of these novel miRNAs are 

considered to be cattle-specific.  In the testes, eight known miRNAs accounted for 63.5% 

of the total sequencing reads.  In the ovarian tissue, seven miRNAs were dominantly 

expressed, each with more than 100,000 reads.  Around 30.5% of the known bovine 

miRNAs showed >2-fold expression differences between the different tissue types 

(Huang et al., 2011).  

 Although less work has been completed investigating sRNA expression and 

fertility, at least one bovine study and several studies in humans have been published.  

Sperm cell miRNAs from high and low fertility bulls based on an industry progeny 

testing program were isolated to examine the relationship between miRNA expression 

and male fertility (Govindaraju et al, 2012).  Four Holstein bulls were selected and 

ranked based on conception rates from their breeding records adjusted for environmental 

and herd factors.  All of the bulls had acceptable progeny rates, however they were the 

most divergent of the 998 bulls considered. The miRNAs were extracted from the sperm 

cells of each bull.  The samples were centrifuged to separate sperm cells and seminal 

plasma, which was discarded.  The sperm cell pellet left behind was the source of RNA 
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used for sequencing.  Only seven differentially expressed miRNAs that matched with 

miRNAs previously identified in humans were discovered between high and low fertility 

groups.  The differentially expressed miRNAs appear to be conserved across species, but 

have not yet been annotated so the functions remain unknown.  These results supported 

their hypothesis that miRNAs played a potential role in the regulation of genes, which 

affect aspects of spermatogenesis (Govindaraju et al., 2012).   

Differences in seminal miRNA expression in men with conditions that cause male 

infertility have previously been discovered (Wu et al., 2012; Wu et al., 2013; Wang et 

al., 2011).  Human male infertility research has the convenience of using specific 

infertility diagnoses within their research.  Males who exhibited azoospermia (no sperm 

cells in the semen) and asthenozoospermia (highly decreased motility of sperm cells) 

were sampled and compared with fertile controls (Wang et al., 2011).  Samples were 

pooled for sequencing and RT-PCR was used to verify the results.  The sequencing 

analysis found 19 differentially expressed miRNAs between the patient groups and 

controls.  RT-PCR results indicated seven miRNAs that were significantly decreased in 

azoospermia and increase in asthenozoospermia patients.  These results indicate that 

differences in miRNA expression could contribute to different types of infertility.  Other 

studies also examined the relationship between miRNAs and infertility diagnoses.  An 

initial study investigating a few specific miRNAs in conjunction with azoospermia and 

oligozoospermia (low concentrations of sperm cells) led to an overall characterization of 

miRNAs in the seminal plasma of patients with these infertility diagnoses (Wu et al., 

2011; Wu et al., 2012).  
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Within a semen sample, sRNAs may originate from the testes, epididymis, seminal 

vesicles, prostate, or bulbourethral glands.  The objective of this next study was to 

identify whether sRNAs originated from the testes and epididymis or other male 

reproductive tissues (Hu et al., 2013).  The major goal of this study was to identify 

potential biomarkers for male infertility.  For a biomarker to be reliable, it should be 

specific to the tissue or organ of interest, or secreted specifically from the tissue of 

interest.  For male infertility, this meant identifying sRNAs that are specifically secreted 

into the seminal plasma by the testes or epididymis.  Vasectomized semen samples were 

compared with normal semen samples.  The miRNA profiles between healthy donors and 

vasectomized men (no sperm in seminal fluid) were compared, providing an interesting 

perspective on miRNA profiles not seen in the livestock studies.  The healthy donors’ 

seminal plasma contained secretions from the testis, epididymis, seminal vesicles, 

prostate, and bulbourethral glands.  This study found 84 miRNAs that appeared to be 

predominantly derived from the testes and epididymis.  This study only identified 

piRNAs in seminal plasma from the healthy donors.  The miRNA results were validated 

using qRT-PCR and additional samples, and confirmed that 61 of these miRNA were 

present in samples including testis and epididymal secretions at considerably higher 

levels (>4-fold) than in the vasectomized samples (Hu et al., 2013).  This study also 

found that there were certain miRNAs that were expressed at similar levels in both 

treatment groups, implicating the seminal vesicles and prostate and potential secretory 

sources of miRNAs.   
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Conclusion 

The studies described previously make an argument for investigating the miRNA and 

piRNA profiles in the seminal plasma of beef bulls.  Although miRNAs have been 

studied in the spermatozoa of beef bulls, miRNAs in the seminal plasma have not yet 

been investigated.  The discovery of miRNA expression differences between fertility 

levels in the seminal plasma of human males suggests it could be worth exploring the 

sRNA expression in seminal plasma.  Studies have also shown that piRNAs play a role in 

fertility in mice and human males, which suggests that they might also be a factor in bull 

fertility.    
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Figure 1.1 Relationship between GnRH, LH, and FSH in the Male (Senger, 2003)  
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Figure 1.2 MiRNA Biogenesis in the Animal Cell (McDaneld, 2009).  
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Chapter 2 

Characterization of miRNAs and piRNAs in the Seminal Plasma of Beef Bulls with 

Predicted High and Low Fertility 
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Introduction  

 Reproductive performance in cattle has a significant economic impact on the beef 

industry (Ramsey et al., 2005).  A failure to breed in a single bull is much more 

economically costly to a producer than the same failure in a single female.  A single bull 

will service multiple females in a breeding season and therefore has a higher impact on 

the number of successful pregnancies within a herd.  Although most bulls undergo 

breeding soundness exams (BSE) prior to the breeding season, the information gathered 

provides a single snapshot in time of their semen quality.  Being able to consistently 

identify bulls with superior fertility earlier in their lifetime would be helpful to producers’ 

breeding programs.   

 One of the key processes contributing to bull fertility is spermatogenesis, the 

process during which the male produces sperm samples for ejaculation. Spermatogenesis 

requires a precise, specific series of molecular events to prevent genetic abnormalities in 

the offspring.  Part of this process involves the development of the acrosome.  The 

acrosome contains proteolytic enzymes which degrade the zona pellucida of an oocyte, 

allowing sperm to penetrate the oocyte and complete fertilization.  Ubiquitin is a protein 

that targets substrates for proteolysis.  Ubiquitin concentrations have been correlated with 

overall fertility in bulls (Sutovsky et al., 2001).  Lectins, such as Arachis 

hypogaea/peanut agglutinin (PNA) and Lens culinaris agglutinin (LCA), are also 

correlated with ubiquitin and can be used to estimate fertility of a bull (Sutovsky et al., 

2015).  However, these assays are not conducive to large-scale implementation.  If a 

biomarker were discovered, a quick PCR test could be developed, making 

implementation into large-scale production more feasible.  Finding an easily identifiable 
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marker in semen samples indicating overall fertility would be beneficial to beef 

producers. 

 Small non-coding RNAs, specifically microRNAs (miRNAs) and piwi-interacting 

RNAs (piRNAs), have been reported to play a role in fertility in multiple species (Yadav 

and Kotaja, 2014; Houwing et al., 2014).  The miRNAs post-transcriptionally regulate 

gene expression, while piRNAs are germline-specific sRNAs that help to regulate 

transposon activity.  However, the relationship of miRNA and piRNA expression with 

markers of semen quality in beef bulls is unclear.  Further, piRNAs have not been 

characterized in seminal plasma of beef bulls.  Our objective was to characterize and 

identify differentially expressed sRNAs in the seminal plasma of bulls with different 

predicted fertility levels of semen samples, as determined by expression of lectins PNA 

and LCA.  Discovered sRNAs have the potential to be used as a biomarker for overall 

fertility in beef bulls.      
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Materials and Methods  

 Sample Collection  

Semen samples were collected from 35 bulls 1.2 ± 0.6 years old via electro-

ejaculation.  Bulls belonged to three different herds: the SDSU Research and Teaching 

Unit, Brookings, SD (n = 24), a herd in Scotland, SD (n = 9), and a herd in Olivet, SD (n 

= 2).  Breed composition varied from purebred Angus to Angus-influenced.  Semen 

samples were snap frozen using liquid nitrogen.  Samples were centrifuged at 1200 x g 

for 15 minutes at 4 °C to separate seminal plasma and sperm cells.  Seminal plasma for 

each sample was removed and stored in a new microcentrifuge tube.  Phosphate buffered 

saline (PBS; 1.5mL) was added and tubes were centrifuged a second time for 15 minutes 

at 1,200 x g at 4 °C to ensure complete separation of sperm cells and seminal plasma.  

Supernatant was removed and stored in a new microcentrifuge tube.  Both sets of tubes 

were stored at -80 °C prior to use.  The sperm cell pellet was mixed with another 1.5 mL 

of PBS with 4% paraformaldehyde.  The mixture of PBS and paraformaldehyde ensured 

sperm cells were fixed for later analysis.  These cells were subsequently shipped to the 

University of Missouri for lectin analyses.   

Lectin Analyses  

Sperm samples were analyzed by Dr. Peter Sutovsky’s laboratory at the 

University of Missouri (UM) for fertility markers PNA and LCA by flow cytometry 

(Odhiambo et al., 2011).  The cut-off point used to discard debris and non-cellular junk 

was determined based on the forward scatter (FSC) vs side scatter (SCC) plots and the 

FSC log vs SCC log plots.  These plots are based on size distribution of cells, allowing 
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lectins to be identified and quantified.  Samples identified by the laboratory at UM as 

potentially bad samples due to poor staining or excess cellular debris were discarded.  

Samples were then ranked based on their PNA values.  The three samples with the 

highest PNA scores and the three lowest PNA scores were identified.  The same process 

was followed with the LCA values for each sample and the six samples identified using 

PNA matched those found using LCA.  Based on these results, three semen samples that 

had high predicted fertility and three semen samples with low predicted fertility were 

selected.   

RNA Isolation   

Total RNA, including sRNA, was extracted from all seminal plasma samples 

using the Qiagen (Qiagen, Redwood City, CA) miRNeasy Serum/Plasma kit following 

manufacturer’s instructions (Appendix A).  Quantity and quality of RNA was assessed 

using a Nanodrop1000 (Thermo Scientific, Waltham, MA).  The RNA quality of samples 

being sequenced was assessed using an Agilent Bioanalyzer 2100 (Agilent Technologies, 

Santa Clara, CA).    

Sequencing Libraries   

 The six samples selected based on divergent PNA and LCA binding were 

prepared for sequencing at the USDA Meat Animal Research Center (MARC) in Clay 

Center, NE.  Samples were prepared using the Illumina TruSeq Small RNA Library 

PrepKit v2 (Illumina, San Diego, CA) according to manufacturer’s recommendations.  

The first step of the library preparation involved ligating adaptors onto the 5̍ phosphate 

and 3̍ hydroxyl group of the miRNAs.  The adaptors are specifically designed to bind to 
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the 3̍ hydroxyl group and 5̍ phosphate groups that result from the enzymatic cleavage by 

processing enzymes, including Dicer, that process miRNAs in the bull.  The single-

stranded cDNA sequence was synthesized through RT-PCR using primers that can bind 

to the adaptors.  This cDNA strand was amplified via PCR with a common primer and a 

primer containing an index sequence.  Each of the six selected samples was prepared with 

a different index sequence.  These indices were used to identify the sequence products of 

each sample after sequencing.  After index sequences were added, cDNA constructs were 

purified and selected based on size (15-40 bp) using polyacrylamide gel electrophoresis.  

These final samples were checked for quality using an Agilent Bioanalyzer 2100.  

Samples were sequenced on an Illumina MiSeq using the MiSeq Reagent Kit v2 – 50 

cycles at the USDA MARC facility. Paired-end reads were sequenced on a single-lane 

flow cell.  

Bioinformatics Approach 

After being sequenced, samples were uploaded to BaseSpace 

(http://basespace.illumina.com), Illumina’s web-based platform for analysis and sharing 

of sequencing results.  Using BaseSpace, the adaptors were trimmed from the sequence 

reads and the paired-end reads were separated.  A number of pathways could be followed 

in order to analyze the sequencing data and identify differentially expressed miRNAs and 

piRNAs.  The process followed for this study involved comparing the sequences to 

already discovered sRNAs and testing for differential expression between predicted 

semen fertility levels (Figure 2.1).   

Paired-end reads were transferred into CLC Genomics Workbench (CLC Bio, 

Qiagen, Waltham, MA 02451).  Adaptors were trimmed from sequences and bases with 

http://basespace.illumina.com/
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quality scores less than 20 were discarded.  Reads were compared to known miRNAs and 

piRNAs.  MiRBase (Release 21, http://www.mirbase.org) is the database for all known 

miRNAs and is linked with CLC Genomics workbench.  Known bovine, porcine, murine, 

and human miRNAs were included.  No central location for all known piRNAs exists.  

Therefore, all known piRNAs that could be identified through the NCBI database were 

uploaded to CLC Genomics workbench for comparison.  Expression levels of known 

sRNAs discovered within the sequence data were compared between high and low 

fertility marker groups.  The CLC Genomics software utilized a Baggerley’s test, or a 

weighted T-test, to test for statistical significance between groups.  The Baggerley’s test 

also compares the proportions of counts in one sample group versus another and the 

groups are weighted based on the size of their read counts (Baggerly et al., 2003).  Fold 

changes, weighted proportions, Bonferroni-adjusted P-values, and false discovery rate 

(FDR)-corrected P-values were also calculated between high and low fertility marker 

groups.   

After identifying the differentially expressed (P < 0.05) miRNAs, the potential 

targets of these miRNAs were identified using Exiqon’s miRSearch 3.0 program (Exiqon 

Inc, Woburn, MA).  Exiqon does not include bovine miRNAs, so the sequences were 

compared with the human miRNAs.  miRSearch provides potential target genes, disease 

information, and tissues where the miRNA has been previously discovered.   

Real-Time RT-PCR     

Candidate piRNAs were selected based on sequencing results of the initial six 

seminal plasma samples.  From the list of piRNAs that were differentially expressed 

http://www.mirbase.org/
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between high and low fertility samples, candidates were chosen based on having fold 

change >5 between high and low samples and a high number of read counts.  Low 

numbers of reads do not indicate a reliable difference in sRNA expression.   

Complementary DNA (cDNA) was reverse-transcribed using the miScript II RT 

kit (Qiagen) following manufacturer’s instructions (Appendix B).  These reactions 

included 50ng of RNA in a 20 uL reaction.  A pooled RNA sample was prepared by 

mixing equal amounts of each RNA sample.  This RNA pool was used to generate cDNA 

to be used for generation of standard curves and the no reverse-transcriptase control.   

    Real time-polymerase chain reaction was performed using the Qiagen SYBR 

Green master mix kit and universal primers (Appendix C).  Sequences for the candidate 

piRNAs were acquired using the National Center for Biotechnology Information (NCBI, 

www.ncbi.nlm.nih.gov) database and miScript forward primers were designed using the 

custom design option offered by Qiagen.  The universal primer is a reverse primer 

designed by Qiagen to work in conjunction with their miScript forward primer assays.  In 

place of a housekeeping gene, a spiked-in synthetic miRNA (C. elegans miR-39-1) was 

added to each sample during the RNA extraction at a concentration of 5.6x108 copies/uL.  

Since research in miRNA has not identified any single candidate miRNA that is 

consistently present in tissues that could be used to normalize PCR results, the spike-in 

control was used instead.  The 25 uL reactions contained 1 uL of cDNA, 2.5 uL of the 

universal primer, 2.5 uL of the pi-RNA specific primer assay, 12.5 uL of SYBR green 

master mix, and 6.5uL of RNase-free water.  The standard curve was generated using a 

serial dilution of the pooled RNA sample.  This dilution resulted in an exponential 

difference in copies of the spike-in control: 1x106 copies/uL, 1x105 copies/uL, 1x104 

http://www.ncbi.nlm.nih.gov/
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copies/uL, and 1x103 copies/uL.  The cDNA was amplified on an MxPro3005P real-time 

thermocycler (Agilent Technologies, Santa Clara, CA).  The thermocycler was 

programmed for an initial incubation of 15 minutes at 95 °C and then 42 cycles of 15 

seconds at 94 °C, 30 seconds at 55 °C, and 30 seconds at 72 °C. A dissociation curve was 

generated at the end of this process.  A standard curve, RNA-free control, and no reverse-

transcriptase control was included on each plate.  Based on the known copy numbers of 

spike-in control for the standard curve, relative concentrations of each sample were 

calculated by the MxPro software. 

Statistical Analysis  

 The association between the PNA and LCA markers and piRNA expression was 

analyzed using a linear model in SAS with PROC REG with the following model:  

𝑦 = 𝑏𝐿𝑒𝑐𝐿𝑒𝑐 + 𝑏𝐶𝑡𝑟𝑙𝐶𝑡𝑟𝑙 + 𝑏𝐴𝑔𝑒𝐴𝑔𝑒 + 𝑒 

In this equation, y represents the piRNA concentration, x1 represents PNA or LCA, x2 

represents the spike-in control concentrations, x3 represents age of the bull, e represents 

residual effects, and b1. b2, and b3 represent parameter estimates for each independent 

variable.  The relative concentrations of piRNA were dependent variables, LCA, PNA, 

the spike-in control concentrations and age of bull were independent variables.  The LNA 

and PCA values were evaluated independently.   
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Results  

 Average PNA and LCA values were 42.7 (±19.9%) and 57.7 (±21.5), respectively 

(Table 2.1), with the PNA and LCA values ranging between 16 - 93.5% and 18.3 – 92%, 

respectively.  Eight PNA and nine LCA samples were marked as potentially poor samples 

by the laboratory due to incomplete staining or excessive debris.  These samples were 

excluded from consideration during the selection of samples for sequencing.  However, 

all lectin results were included for real-time RT-PCR results.   

 Five of the samples sequenced had between 5.5 million reads and 6.5 million 

reads.  However, sample 5123 (high PNA/LCA group) had only 2.8 million reads.  A 

negligible number of reads were removed based on the quality standards for all libraries 

(less than 1%).  For the initial comparison of sequence data to miRBase 21 and known 

piRNAs in the NCBI database, 617 known sRNAs matched at least one sequencing read.  

After differential expression analysis between high PNA/LCA and low PNA/LCA 

groups, 58 sRNAs were differentially expressed (FDR P<0.05;  Table 2.2).   Of these 

significant sRNAs, nine were miRNAs and 49 were piRNAs.  All 49 of these piRNAs 

were previously identified in human male germlines but their functions remain unknown 

(Girard et al., 2006).  Of these piRNAs, seven piRNAs were down-regulated in the high 

PNA/LCA group while the other 42 piRNAs were up-regulated.  All nine of the miRNAs 

were up-regulated in the high PNA/LCA groups.  Overall, there was a trend of up-

regulated sRNAs in the bulls with low PNA/LCA scores.   

 These nine miRNAs were analyzed for putative mRNA targets using Exiqon.  The 

number of putative targets for each miRNA ranged from less than 100 to nearly 1,000 
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(Table 2.5).  Of note, miR-181-a-2 was predicted to bind to all four of the “deleted in 

azoospermia” (Daz) mRNAs.  Azoospermia is the lack of sperm cells in a semen sample.  

The miR-3184 sequence was predicted to bind to Tex-26 mRNA, a testes-specific protein 

with unknown function.  Most importantly, mir-181-a-1 was previously identified in a 

human male fertility study in seminal plasma (Wang et al., 2011).  The other miRNA 

putative targets were less specific.  The miR-17 had been identified in human blood 

serum and was associated with numerous cancers, including prostate cancer.  Other 

significant miRNAs found in blood serum were miR-21, miR30a, and miR-181b-2.  Each 

had a number of putative targets and were associated with cancers.  Another association 

for miR-21 was heart failure and miR-181b-2 has been characterized in conjunction with 

inflammatory responses.   Found in both lymphocytes and blood serum, mir-30d is also 

associated with a number of cancers.  Conversely, mir-1291 had 971 putative targets and 

many disease associations, suggesting this is a ubiquitous miRNA.   

Seven piRNAs were evaluated for an association with semen fertility markers in 

31 of the samples.  This experiment was designed to investigate the potential relationship 

of significantly expressed sRNAs across our sample population.  The piRNAs were 

chosen because of their association with fertility markers in the RNA-seq experiment.  

These piRNAs were pi-30961, pi-32374, pi-32679, pi-36037, pi-37213, pi-44984, and pi-

57498. Three primer sets (pi-32374, pi-44984, and pi-57498) did not amplify the 

appropriate piRNA and thus were not analyzed further.  The PNA fertility marker was 

significantly associated with pi-30961 and pi-32679 expression (P<0.05;  Table 2.3).  

The LCA fertility marker approached statistical significance with pi-32679 expression 

(P=0.08;  Table 2.4).  The direction of association from the regression model matches the 
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predicted direction from the sequencing results for all but one of the associations tested.  

The associations between PNA and pi-36037 were not found to be statistically 

significant, nor were the associations between LCA and pi-30961 and pi-36037.   
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Discussion  

 The units used to measure lectin is a percentage of staining, indicated as ‘PNA + 

%PI’ and “LCA + %PI’.  Propidium Iodide (PI) is a DNA stain that is used to verify that 

the fluorescent lectins were bound to sperm cells and not cellular debris.  Both PNA and 

LCA are positively correlated with ubiquitin (r = 0.66; r = 0.65;  Kennedy et al., 2014).  

The PNA fertility marker was positively correlated with damaged sperm cell acrosomes 

(r=0.47; P<0.001;  Odhiambo et al., 2011).  The use of LCA as a fertility marker has 

been investigated but is not as well-supported as PNA (Sutovsky et al., 2001).  The lectin 

PNA binds to the acrosome only when there is damage, while LCA binds to normal 

spermatozoa at low levels and damaged spermatozoa at high levels.  Thus, interpreting 

PNA results is more straightforward than LCA results (Kennedy et al., 2014).  During 

processing of semen samples, the formaldehyde used as a fixative to ship the sperm cells 

was not ultrapure grade, which led to difficulty during staining.  More cellular debris was 

found than expected and a number of the samples exhibited poorer fluorescence than is 

considered ideal.   

Consistent with a previous study examining human male fertility, miR-181a-1 

was found to be up-regulated in the low PNA/LCA group.  In the previous study, miR-

181a-1 was found to be up-regulated in patients that exhibited asthenozoospermia (lack 

of sperm motility) and down-regulated in patients exhibiting azoospermia (lack of sperm 

cells altogether) when compared to the control group (Wang et al., 2011).  Exiqon 

software predicted that miR181a-2 targets all four DAZ mRNAs.  Deleted in 

azoospermia (DAZ) genes are germ cell proteins, which are important fertility factors in 

many animals (Fu et al., 2015).  The loss of DAZ family proteins can cause an extreme 



50 

 

 

reduction in the production of sperm (Ferlin et al., 2007).   Testis-expressed sequence 26 

protein (TEX26) is a non-functional protein that was characterized in the transcriptome of 

human males during spermatogenesis (Zhu et al., 2016).  The TEX26 mRNA was found 

to be a target for miR-3184.  

 All of the significantly expressed piRNAs were previously characterized in the 

human male germline (Girard et al., 2006).  However, the goal of that study was to 

characterize piRNAs present without investigating their functions within germ cell lines.  

Discovering these piRNAs in bovine seminal fluid reiterates the possibility that some of 

these piRNAs might play a role in male fertility.  Further research into the precursors and 

targets of these piRNAs might shed more light on how these piRNAs are interacting with 

the genome to affect male fertility.   

Two samples, one from the high PNA/LCA group and one from the low group, 

showed decreased numbers of reads compared to the other four libraries.  Sample 5123 

had about half of the number of input reads compared to the other libraries.  This 

difference could be attributed to an error during the library preparation or poor RNA 

quality.  Sample 327 showed consistently lower reads compared to the other libraries in 

the low PNA/LCA groups for the candidate piRNAs that we used for real-time RT-PCR.  

However, since the statistical analysis weighted the reads based on size before calculating 

differential expression, this should not have affected the results.   

Sequencing the sRNAs of more bulls could provide more information as to 

whether these differences in reads were specific to the bulls we sampled or are consistent 

between many bulls.  Due to the cost of sequencing, only six samples were chosen for the 
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sequencing step of the experiment.  A larger sample size would help determine whether 

the results that were shown here were specific to these chosen bulls or were 

representative of the population.  Sequencing more sRNAs from the seminal plasma 

samples of bulls would also allow for the verification of the 58 significant differentially 

expressed sRNAs found in this experiment.   

Although the piRNAs that were selected for real-time RT-PCR were chosen based 

on their relative fold change from RNA-seq, overall the piRNAs exhibited low read 

counts for each sample.  The low expression levels of these piRNAs could have 

contributed to our ability to demonstrate a significant association between piRNA 

expression and fertility biomarkers.  All of the bulls sampled came from three separate 

herds.  The majority of the bulls were 1 year olds at the time of sampling, and those bulls 

that were not came from two different herds.  Thus, age and herd were confounded 

variables and so only age was included in the statistical model.  However, herd may also 

have had an effect on the fertility of the bulls tested.  Finally, sRNAs may also not have a 

linear relationship with these bull fertility markers.  For example, only low levels of these 

sRNAs may be associated with lower fertility, while moderate to high levels of sRNAs 

have no effect.  The trend of up-regulated sRNAs in the group of bulls with low PNA 

scores indicates the possibility that the sRNAs are blocking transcription of mRNAs that 

have a negative effect on fertility.   

Another factor to consider is that most of the bulls tested passed their BSE.  

Although PNA and LCA values ranged from 16 – 93.5% and 18.3-92%, respectively, 33 

of the bulls sampled passed a BSE.  The three bull included in the low predicted fertility 

group all passed the BSE.  It is possible that more widely applicable candidate sRNAs 
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could be found if more bulls that did not pass the BSE were included.  In human fertility 

studies that investigated relationships between miRNAs and male fertility, the infertility 

phenotype used was more specific than the lectin analyses used in this study (Wu et al., 

2012; Wu et al., 2013; Wang et al., 2011).  These studies evaluated sperm based on 

quantity of sperm cells and sperm motility, rather than just acrosome status.  Both PNA 

and LCA are both measures of acrosome integrity.  Acrosome integrity is an important 

factor in the fertilization of an embryo, but it is not the only factor that affects sperm 

quality.   
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Conclusions  

Based on predicted fertility measures using PNA and LCA, 59 differentially 

expressed sRNAs were discovered in bovine seminal plasma.  Several of these sRNAs 

had previously been associated with fertility in other species.  Specifically, miR-181-a-1 

was previously found to have a relationship with both sperm quantity and motility in 

human males.  For the first time, piRNAs in bovine seminal fluid have been sequenced 

and 49 of these piRNAs were differentially expressed between the high and low 

PNA/LCA groups.  Association of two of these piRNAs with PNA fertility markers was 

confirmed by real-time RT-PCR.  Overall, the study supported the hypothesis that 

miRNAs and piRNAs had a relationship with fertility in beef bull seminal plasma.  

Further investigation into the sRNAs that were found to be differentially expressed could 

lead to the establishment of a biomarker for fertility levels in beef bulls.   
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Figure 2.1 Bioinformatics Flowchart for Analyzing Sequencing Data   
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Table 2.1 PNA and LCA Percentages for Sperm Samples  

Sample ID PNA+%PI LCA+%PI 

304 42.5  63.2 

310 20.9* 60.9* 

314 29.2  33.6 

327 21.9 34.1 

329 32.8 86.7 

333 39.8 52.3 

334 40.2 45.2 

339 24.9* 84* 

344 47.6 67.8 

353 40.2 48.4 

355 16 18.3 

357 23 32 

359 27* 77* 

366 54.3* 62.7* 

367 36.4* 86.9* 

378 35 40.2 

382 41.1 54.2 

389 29 19.6 

392 40* 72.5* 

3110 25.4 35.3 

3101 35.8 40.4 

502 67.9 64 

742 93.5 87.6 

832 70.2 67.1 

866 84.1 92 

2852 63.2 71.9 

2111 65.6 58.9 

5123 79.2 83.5 

Lot 4 16.6* 28.4* 

Lot 5 67.2 89 

953 33.2 42.4 

345 54.7* 62.8* 

355b 18.1 29.9 

1633 36.9 42.3* 

3108 40.9 84.4 

Averages 42.7 57.7 
 

‘*’ indicates potentially bad samples   
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Table 2.2 Differentially Expressed Small RNAs between High and Low PNA/LCA Samples Sequencing Results  

   High PNA Read Numbers Low PNA Read Numbers 

ID  Fold Δ 
FDR-adj   
p-value 742 866 5123 Avg 357 355b 327 Avg 

piR-31355 4.37 0.0 1658 1324 13 998.33 10153 2782 164 4366.33 

piR-44984 5.49 0.0 141 174 0 105.00 1235 469 25 576.33 

piR-33423 1.04 0.0 70 139 11 73.33 37 33 158 76.00 

piR-35468 4.81 0.0 14 73 1 29.33 258 3 162 141.00 

piR-36038 4.16 0.0 1561 1168 10 913.00 8948 2315 141 3801.33 

piR-36039 4.37 0.0 1653 1324 11 996.00 10132 2768 167 4355.67 

piR-36040 4.37 0.0 1665 1324 10 999.67 10156 2769 169 4364.67 

piR-36041 4.37 0.0 1659 1325 12 998.67 10154 2782 165 4367.00 

piR-36339 1.03 0.0 186 357 18 187.00 93 96 391 193.33 

piR-57516 1.23 0.0 5 15 2 7.33 14 8 5 9.00 

piR-43773 -1.05 0.0 50 102 5 52.33 39 18 92 49.67 

piR-36245 -3.04 0.0 52 19 2 24.33 15 4 5 8.00 

piR-35407 -2.95 0.0 1027 1408 56 830.33 605 174 65 281.33 

piR-56450 -1.24 2.32E-74 175 323 7 168.33 263 61 84 136.00 

piR-33160 -2.82 1.10E-45 14 33 1 16.00 10 1 6 5.67 

piR-45884 1.70 7.14E-17 6 16 1 7.67 28 6 5 13.00 

piR-31924 6.50 4.44E-12 4 10 0 4.67 43 46 2 30.33 

piR-32679 3.34 8.88E-11 13 19 0 10.67 53 52 2 35.67 

piR-35467 5.01 1.42E-10 11 74 0 28.33 258 3 165 142.00 

piR-35466 4.82 5.17E-10 12 76 0 29.33 258 2 164 141.33 

piR-31925 5.65 6.23E-10 4 13 0 5.67 43 50 3 32.00 

piR-35469 4.55 4.52E-09 13 80 0 31.00 255 3 165 141.00 

piR-49145 2.72 9.27E-08 85 237 1 107.67 406 175 299 293.33 

mir-181a-2 2.16 1.88E-07 31 42 0 24.33 72 43 43 52.67 
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mir-181a-1 2.18 2.08E-07 30 41 0 23.67 72 42 41 51.67 

piR-33387 3.47 4.57E-07 9 6 0 5.00 31 19 2 17.33 

piR-30961 32.00 1.04E-06 1 0 0 0.33 20 12 0 10.67 

piR-36256 1.60 2.34E-05 21 26 0 15.67 18 6 51 25.00 

piR-35229 2.00 8.49E-05 12 14 0 8.67 23 29 0 17.33 

piR-37213 23.00 9.88E-05 0 1 0 0.33 13 4 6 7.67 

piR-61645 5.67 2.33E-04 1 5 0 2.00 16 17 1 11.33 

piR-35952 21.00 2.63E-04 1 0 0 0.33 14 7 0 7.00 

piR-50725 N/A 3.91E-04 0 0 0 0.00 12 5 1 6.00 

piR-35176 N/A 3.91E-04 0 0 0 0.00 12 6 0 6.00 

piR-61647 2.91 4.97E-04 4 7 0 3.67 17 14 1 10.67 

piR-30229 1.02 8.85E-04 59 56 0 38.33 58 31 28 39.00 

piR-57498 6.00 8.85E-04 1 3 0 1.33 11 12 1 8.00 

piR-61646 4.13 9.11E-04 2 6 0 2.67 18 15 0 11.00 

piR-61648 2.38 1.92E-03 5 8 0 4.33 16 15 0 10.33 

piR-35175 N/A 2.69E-03 0 0 0 0.00 11 3 0 4.67 

mir-3184 1.27 5.55E-03 56 49 1 35.33 95 26 14 45.00 

mir-21 2.55 5.79E-03 31 229 0 86.67 347 69 247 221.00 

piR-61644 3.50 7.11E-03 2 6 0 2.67 13 15 0 9.33 

piR-36243 1.25 7.12E-03 20 24 0 14.67 16 7 32 18.33 

mir-1291 N/A 7.12E-03 0 0 0 0.00 3 8 1 4.00 

piR-32374 14.00 7.20E-03 0 1 0 0.33 11 3 0 4.67 

piR-36242 1.28 8.74E-03 19 21 0 13.33 16 5 30 17.00 

piR-36706 N/A 1.11E-02 0 0 0 0.00 7 4 0 3.67 

mir-17 N/A/ 1.11E-02 0 0 0 0.00 8 0 3 3.67 

mir-30a 1.53 1.77E-02 135 302 2 146.33 391 84 196 223.67 

piR-36255 1.19 1.90E-02 20 22 0 14.00 13 5 32 16.67 

piR-41435 1.92 1.97E-02 7 6 0 4.33 9 2 14 8.33 
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piR-33487 2.00 3.36E-02 8 7 1 5.33 21 8 3 10.67 

mir-30d 1.76 3.72E-02 207 575 0 260.67 921 140 312 457.67 

mir-181b-2 1.77 4.38E-02 5 8 0 4.33 16 3 4 7.67 

piR-41209 -2.55 4.54E-02 19 30 2 17.00 14 3 3 6.67 

piR-36037 40.00 4.79E-02 0 2 0 0.67 68 10 2 26.67 

piR-36249 -3.12 4.99E-02 292 215 1 169.33 124 13 26 54.33 
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Table 2.3 Linear Model of RT-PCR Expression, Spike-in Control, Age of bull, and PNA 

piRNA Variables Effect Size  SE  P value R2 

pi-30961 PNA 0.98 0.37 0.014 0.272 

 Spike-in Ctl  -6.28 11.75 0.598  

 Age of Bull -14.00 10.30 0.186  

pi-32679 PNA 0.05 0.02 0.009 0.319 

 Spike-in Ctl  -0.63 0.55 0.269  

 Age of Bull -0.34 0.49 0.489  

pi-36037 PNA 0.02 0.01 0.171 0.084 

 Spike-in Ctl  -0.17 0.35 0.630  

 Age of Bull -0.40 0.31 0.210  
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Table 2.4 Linear Model of RT-PCR Expression, Spike-in Control, Age of bull, and LCA  

piRNA Variables Effect Size  SE  P value R2 

pi-30961 LCA 8.50 5.88 0.160 0.146 

 Spike-in Ctl  10.40 10.08 0.312  

 Age of Bull -5.68 10.77 0.602  

pi-32679 LCA 0.50 0.28 0.082 0.208 

 Spike-in Ctl  0.20 0.47 0.676  

 Age of Bull -2.38E-17 0.51 1.000  

pi-36037 LCA 0.09 0.17 0.596 0.025 

 Spike-in Ctl  0.11 0.29 0.704  

 Age of Bull -0.21 0.31 0.506  
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Table 2.5 Significant miRNA Targets from Exiqon  

miRNA Targets Tissues IDed in Applicable associations  

miR-17 356 Blood serum Associated with prostate cancer 

miR-21 230 Blood serum Associated with heart failure 

miR-30a 79 Blood serum Associated with ovarian cancer 

miR-30d 82 
Lymphocytes; Blood 
serum Associated with various cancers 

miR-181a-1 171 
Blood serum; 
Seminal Plasma Associated with human male infertility 

miR-181a-2 370 Plasma Associated with DAZ1-4 proteins 

miR-181b-2 349 Blood serum 
Associated with cancers and 
inflammation 

miR-1291 971 Ubiquitous Many associations 

miR-3184 156 Blood serum Associated with Tex26 
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Appendix A: QIAGEN MiRNA Extraction Protocol  

 Seminal plasma samples were thawed.  750uL of QIAzol Lysis reagent was added 

to 150uL of seminal plasma.  This incubated at room temperature for 5 minutes.  3.5uL of 

the miRNeasy Serum/Plasma Spike-In Control was added at the concentration of 1.6 x 

108 copies/uL.  150uL of chloroform was added to each sample, vortexed for 15 seconds, 

and then incubated for 3 minutes at room temperature.  Samples were centrifuged for 15 

minutes at 12,000xg at 4°C.  500uL of the upper aqueous phase was transferred to a new 

collection tube.  750uL of 100% ethanol was added to each sample, mixed, and then 

600uL of the solution was pipetted onto the provided MinElute spin column with 

collection vial.  Tubes were centrifuged at 12,000xg for 15 seconds at room temperature.  

The flow through was discarded and this step was repeated until all of the ethanol-sample 

mixture was filtered.  700uL of RWT Buffer was added to the spin columns, which were 

then centrifuged for 15 seconds at 12,000xg.  This flow-through was also discarded.  

500uL of RPE Buffer was added to the spin column and then centrifuged for 15 seconds 

at room temperature.  Finally, 500uL of 80% ethanol was added to the spin column.  The 

tubes were centrifuged for 2 minutes at 12,000xg and the collection tube was discarded.  

Columns were spun dry for 5 minutes at 12,000xg.  A new 1.5mL collection tube was 

attached to the spin column and 14uL of RNAse-free water was added.  Column was 

spun for 1 minute at 12,000xg.  RNA was stored at -80°C.   
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Appendix B: QIAGEN RT II miRNA cDNA synthesis protocol  

  cDNA reactions were designed to use 50ng of RNA.  For each reaction, 2ul of 5X 

HiFlex Buffer was used.  This specific buffer was chosen based on the variety of small 

RNAs involved in the downstream applications.  1uL of 10X nucleics mix, 1uL of 

reverse transcriptase mix, 50ng of cDNA, and variable amounts of water to bring the final 

volume of the reaction up to 20uL are also added.  Once all the reagents are combined, 

the tubes are incubated for 60 minutes at 37°C, 5 minutes at 95°C, and then stored 

directly at -20°C.   

 This procedure was performed for each individual RNA sample, pooled RNA 

samples with spike-in control for generating a standard curve, and a no reverse-

transcriptase control samples.   
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Appendix C: QIAGEN SYBR Green PCR Protocol  

 The cDNA samples generated for the standard curve were diluted to a 

concentration of 1x106 copies/uL, 1x105 copies/uL, 1x104 copies/uL, and 1x103 

copies/uL.  The reaction mix for the standard curve samples involves 2uL of 

cDNA/spike-in control, 12.5uL of SYBR green master mix, 2.5uL of Universal primer, 

2.5uL of the specific miScript Primer assay, and 5.5uL of water for a total volume of 

25uL.  For all other cDNA samples, the reaction mix involves 1uL of cDNA/spike-in 

control, 12.5uL of SYBR green master mix, 2.5uL of Universal primer, 2.5uL of the 

specific miScript Primer assay, and 6.5uL of water for a total volume of 25uL. cDNA 

was pipetted onto 96-well plates, master mix containing the SYBR green, two primers, 

and water was added.  PCR plates were briefly centrifuged and loaded onto the 

thermocycler.  The plate was incubated for 15 minutes at 95°C and then went through 42 

cycles of 15 seconds at 94°C, 30 seconds at 55°C, and 30 seconds at 70°C.  The samples 

then underwent a gradual increase in temperature to generate a dissociation curve.  Plates 

were then stored at -20°C.   
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