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ABSTRACT 

COOPERATION AND PUNISHMENT IN THE ARBUSCULAR 

MYCORRHIZAL SYMBIOSIS: IMPLICATIONS FOR RESOURCE 

EXCHANGE & BIOLOGICAL MARKET DYNAMICS 

JERRY A. MENSAH 

2016 

The arbuscular mycorrhizal (AM) symbiosis is arguably the world’s most abundant and 

important mutualism, and brings together the roots of the majority of land plants and AM 

fungi to great mutual advantage. The AM symbiosis can increase the uptake of nutrients, 

such as phosphorus (P) and nitrogen (N), and improves the abiotic and biotic stress 

resistance of the host plant. AM fungi have the potential to act as biofertilizers and 

bioprotectors in sustainable agriculture. However, despite its significance, the 

mechanisms that control the resource exchange between both partners in the arbuscular 

mycorrhizal symbiosis are largely unknown. The main aim of this research project is to 

better understand the physiological mechanisms that control the cost to benefit ratios in 

the AM symbiosis, and to investigate how cooperation between partners is stabilized in 

the AM symbiosis on a cellular, whole plant and whole plant community level. This 

knowledge about AM interactions could help farmers to increase crop productivity under 

conditions that will very likely threaten food production in the future, e.g. drought by 

climate change, and the need to reduce fertilizer inputs.  

The research project addresses the following research gaps: 
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1. How is cooperative behavior between symbionts enforced? 

2. Is the fungal partner able to distinguish cooperative partners and to allocate 

resources accordingly? 

3. Is plant growth benefit correlated to the P and N metabolism of the AM fungus? 

4. Are all AM fungi equally beneficial? 

5. Is carbon a trigger that stimulates P and N transport in common mycelia 

networks? 

We addressed these gaps in the AM symbiosis using in vitro root organ cultures and 

whole plant systems at the physiological and molecular level. The results indicate that 

plants reward better fungal partners with more carbohydrates while in return; fungal 

partners enforce cooperation by providing more nutrients to plants that provide more 

carbohydrates. This reciprocal reward system is analogous to a market economy, where 

trade is favored with partners offering the best rate of exchange. Our results also 

demonstrate that fungi are able to distinguish among host plants interconnected by 

common mycorrhizal networks (CMN) that differ in the benefit they provide for the 

CMN and that AM fungi allocate P and N to the host plants within their CMN that are 

able to provide more carbon. Plant growth benefit was highly correlated to the efficiency 

with which AM fungi were able to take up N, P and to the capability of the AM fungus to 

store P. Overall, our results demonstrate our hypotheses that biological market dynamics 

theory regulate the resource exchange and the evolutionary stability in the AM symbiosis.        
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CHAPTER 1: LITERATURE REVIEW 
 

1.1 ARBUSCULAR MYCORRHIZAL SYBIOSIS 
 

One of the world’s greatest agricultural problems that we face in the future will be 

food production. With the increase in the world’s population, required production 

increases can only be met with the application of artificial fertilizer in agricultural 

production. The production of crops is directly correlated to the accessibility of nitrogen 

(N) and phosphorus (P) and the costs of fertilizers have increased in recent years. In the 

U.S. alone, farmers spend $24.8 billion for fertilizer, lime and soil conditioners in 2012 

averaging $25,164 per farm according to the U.S Department of Agriculture (2013). But 

fertilizers are not only costly, but also damage the environment. The extensive use of N 

fertilizer in U.S. corn production alone is responsible for 30% of the non-renewable 

energy consumption and for 70% of the greenhouse gas emissions in corn production 

(Kim & Dale, 2008). The use of P fertilizers will even become more critical because 

phosphate rock that is used for the production of P fertilizers will likely be depleted in 

about 50-100 years (Vance et al., 2003). The use of these fertilizers is responsible for a 

number of environmental costs in agricultural production, including the degradation of 

soil and water quality, eutrophication of marine ecosystems, photochemical smog and 

increasing concentrations of greenhouse gases.   

        The 450-million-year-old arbuscular mycorrhizal (AM) symbiosis is arguably the 

most important mutualistic symbiosis on Earth, and plays a key role in the nutrient supply 

and abiotic and biotic stress resistance of the majority of land plants. The symbiosis 
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brings together the roots of over 80 % of land plant species (such as wheat, corn, soybean 

and rice)(Wang & Qiu, 2006) and fungi of the phylum Glomeromycota (Schubler et al., 

2001) to great mutual advantage. The AM symbiosis increases the resistance of plants 

against abiotic (drought, heavy metals) and biotic (pathogens) stresses (Smith & Read, 

2010). Fossil records suggest that the AM symbiosis facilitated the transition of plants 

from aquatic to terrestrial environments over 450 million years ago (Heckman et al., 

2001) and that the symbiosis played a critical role during plant evolution. The nutrient 

exchange mechanisms involved between plant and AM fungi are controlled by molecular 

symbiotic toolkits in the colonization and nutrient exchange (Delaux et al., 2013).  

The role of these ubiquitous soil fungi for plant productivity and health has prompted 

agronomic interest in these interactions with regard to a potential use as ‘biofertilizers’ in 

sustainable agriculture. However, despite the significance of this symbiosis, the 

mechanisms that control the resource exchange between both partners in this symbiosis 

are largely unknown. AM fungi are obligate biotrophs, that completely depend on their 

host plant for their survival and reproduction and the roots secrete strigolactones that 

stimulate the germination of the AM fungal spores (Akiyama & Hayashi, 2006). AM 

fungi form hyphopodia on the surface of the root and then penetrate through the root cells 

into the root cortex (Fig. 1). The fungal hyphae enter the apoplast penetrating into the 

cortical cells of the roots. The fungus forms highly branched structures known as 

arbuscules within the root cortical cells, which serve as the active site for the bi-

directional nutrient exchange in the AM symbiosis. Most fungi are also able to form 

intercellular vesicles that serve as fungal nutrient storage compartments within the root 

apoplast. The extraradical mycelium (ERM) of the fungus acts as an extension of the root 
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system and takes up P, N, sulfur and trace elements from the soil, and delivers these 

nutrients via the intraradical mycelium (IRM) to the plant (Jakobsen et al., 1992; 

Hawkins et al., 2000; Allen & Shachar-Hill, 2009; Smith & Smith, 2011). In exchange, 

the plant allocates up to 20 % of its photosynthetically fixed carbon to the fungus (Wright 

et al., 1998), this is equivalent to about 5 billion tons of carbon per year (Bago et al., 

2003) that is sequestered into the soil and that the fungus uses it to maintain its symbiotic 

structures and cell metabolism. 

 

 

 

 

 

 

 

Fig. 1. Life cycle of an AM fungus and the different steps during AM development. 
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Plants can take up nutrients from the soil via the plant or mycorrhizal pathway or 

a combination of both (Fig. 2). The direct uptake of nutrients via the plant root epidermis 

is often limited by the slow movement of some nutrients such as phosphate (Pi) and the 

development of depletion zones around the roots that further limit Pi uptakes 

(Schachtman et al., 1998). However, via the mycorrhizal pathway nutrients are taken up 

through the ERM of the AM fungus and taken up by the plant from the mycorrhizal 

interface. It has been estimated that the ERM can reach 100m of hyphae per cubic cm of 

soil (Parniske, 2008), and the ERM transfers nutrients to the IRM and transfers the 

nutrient across the interfacial apoplast to the plant (Bücking et al., 2012). 
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Fig. 2. Plant and mycorrhizal P uptake pathway. The AM fungus forms the extraradical 
mycelium (ERM) and extends the roots beyond the depletion zone and is able to take up 
nutrients. Within the host root, the fungus forms the intraradical mycelium (IRM) and 
highly branched arbuscules (A) where the exchange of nutrients takes place. Vesicles (V) 
and spores (S) are also formed by the AM fungus (Bücking et al., 2012). 
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Mycorrhizal plants change their nutrient acquisition strategies. Multiple studies 

have indicated that the host plant may acquire the majority of its phosphate from the 

mycorrhizal fungus (Smith et al., 2009). This has been demonstrated in Medicago 

truncatula (Grunwald et al., 2009), where six known phosphate transporters (MtPt 1-6) 

were used as example. Five of the phosphate transporters (MtPt 1-3,5,6) were expressed 

at the plant root epidermis and the interface with the soil solution, while MtPt4 

transporter was induced only in the mycorrhizal plants and localized in arbusculated root 

cortical cells (Harrison et al., 2002). The AM inducible MtPt4 is up-regulated in the 

colonized roots while the other phosphate transporters are down-regulated (Grunwald et 

al., 2009).  

Studies have shown that both plants and AM fungi can interact with multiple 

partners and form common mycorrhizal network (CMN) (Fellbaum et al., 2014). A host 

plant can interact with multiple AM fungi at the same time (Jansa et al., 2008) while one 

fungal individuum can colonize multiple hosts of the same or of different species that 

provide different growth benefits (Giovannetti et al., 2004; Mensah et al., 2015). The 

interconnection of the CMN improves many-to-many interaction in host plants (Simard 

& Durall, 2004), soil composition (Hodge et al., 2001) and soil microbe composition 

(Hodge, 2000). Recent studies support inter-plant communication in tomato plants under 

attack send herbivore-induced dense signals through CMN to other plants to alert them to 

prime their defense systems too (Barto et al., 2012) before caterpillar or aphid attack 

(Babikova et al., 2013; Song et al., 2014). The interaction between host plants and AM 

fungi in the CMN functions as a biological investment (Walder et al., 2012) between both 

partners, where partners seek to get access to resources at the best exchange rate. 
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1.2 PHOSPHATE NUTRITION 
 

Inorganic phosphate (Pi) is known to be one of the major nutrients in the soil but has 

a low mobility rate in the soil solution (Smith & Smith, 2011). Therefore, AM fungi play 

an important role in the nutrient transfer of P for the plant. Inorganic phosphate (Pi) that 

is taken up by the ERM, and can replenish the metabolically active Pi pool in the hyphae 

that is used for the synthesis of phospholipids, DNA-, RNA- or protein-phosphates, or 

can be converted into long-chained or short-chained polyphosphates (poly-P) (Fig. 3). 

Poly-P are linear polymers of up to several hundred Pi residues linked by energy-rich 

phospho-anhydride bonds. Poly-P are rapidly synthesized in the hyphae of the ERM 

(Ezawa et al., 2004) presumably by the poly-P polymerase/vacuolar transporter 

chaperone complex (VTC; (Tisserant et al., 2012), and this poly-P accumulation is 

followed by a near-equivalent cation uptake by the fungal hyphae (Kikuchi et al., 2014). 

Poly-P play an important role in the storage of P in the fungal hyphae, but also in the 

translocation of P from the ERM to the IRM (Hijikata et al., 2010). In the IRM long-

chained poly-P are broken down first into shorter chain lengths by a vacuolar 

endopolyphosphatase, followed by an exopolyphosphatase that hydrolyzes the terminal 

residues from the short-chain poly-P and releases Pi that can be transferred across the 

mycorrhizal interface to the host (Ezawa et al., 2001; Tisserant et al., 2012).  

        Considering the important role that poly-P play in P and N transport in the AM 

symbiosis, more knowledge about the poly-P metabolism and remobilization may 

contribute to a better understanding of the differences in the growth and nutritional 

benefits across by diverse fungal isolates. AM fungi differ in their poly-P metabolism 

(Boddington & Dodd, 1999) and the regulation of poly-P formation and/or remobilization 
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in the IRM provides the fungus with an instrument to regulate the P and N transport 

across the mycorrhizal interface (Bücking & Shachar�Hill, 2005; Ohtomo & Saito, 

2005; Takanishi et al., 2009). 
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Fig. 3. The model shows the nutrient (N, P) transport from the extraradical mycelium 
(ERM) in the AM symbiosis. The ERM absorbs inorganic orthophosphate (Pi) from the 
soil. The Pi is transformed to long-chained polyphosphates. These long-chained 
polyphosphates are transferred to the intraradical mycelium (IRM) and broken down to 
short-chained polyphosphate. Likewise, nitrogen (N) is assimilated into arginine (Arg) 
through the anabolic arm of the urea cycle and transferred with polyp from the ERM to 
the IRM. Pi and NH4

+ transporters play an important role in the uptake of the nutrients 
from the interfacial apoplast by the host. In exchange, sucrose is hydrolyzed in the 
interfacial apoplast to hexoses and taken up by the fungus. 
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1.3 NITROGEN NUTRITION 

Nitrogen (N) is one of the most essential nutrients in the development of the 

plants (Botton & Chalot, 1999; Vitousek & Howarth, 1991)so N deficiency becomes a 

major limiting factor in plant productivity (Graham & Vance, 2000).  Several works have 

demonstrated that N nutrition play an important role in the AM symbiosis (Smith & 

Smith, 2011; Hodge & Storer, 2015). The AM fungal species take up both NO3
- and 

NH4
+ from the soil (Fig. 3) (Johansen et al., 1992, 1993; Tobar et al., 1994; Bago et al., 

1996;Tanaka & Yano, 2005) and transfer N to their host plant (Hawkins et al., 2000; 

Azcón et al., 2001; Vázquez et al., 2001). AM fungi can increase the uptake of organic N 

sources (Hawkins et al., 2000) and the translocation by the fungus can represent a 

significant route of N uptake by the plant (Ames et al., 1983; Johansen et al., 1996). 

Depending on N availability and mobility this may represent an important benefit to the 

plant, but the mobility of N in soils has caused difficulty in assessing the importance of 

the fungal N transfer for plant nutrition (He et al., 2003), and the contribution of AM 

fungi to the N nutrition of the host is still being questioned. However, there can be no 

reasonable doubt that AM fungi do take up N and transfer it to their hosts, and 

experiments in which the fungal extraradical mycelium had access to a completely 

separate compartment indicate that fungal uptake can account for a substantial part of 

total N uptake. For example, (Toussaint et al., 2004) found that in an in vitro mycorrhiza 

where mycorrhizal roots had access to N both by direct uptake and via the mycorrhizal 

uptake at least 21 % of the total N uptake in AM roots came from the fungal extraradical 

mycelium; and Govindarajulu et al., (2005) observed an even larger proportion (> 30 %). 
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1.4  COOPERATION AND PUNISHMENT IN THE ARBUSCULAR 
MYCORRHIZAL SYMBIOSIS 

 

The 450-million-year-old mutualism between plants and AM fungi is one of the most 

ancient, abundant, and ecologically important mutualisms on earth, because AM fungi 

play a key role for the productivity of 65% of all known land plant species, including 

numerous food and bioenergy crops. The mycorrhizal symbiosis is an ideal model system 

that can help to understand the evolution of punishment and cooperation in the symbiosis. 

Host and symbiont interact simultaneously with other individuals (Simard & Durall, 

2004) and create highly dynamic and complex interactions (Selosse et al., 2006). The 

symbiosis is energetically expensive, consuming between 5-20% of plant assimilates 

(Douds et al., 2000), which explains why the hosts are under strong selection pressure to 

resist non-cooperators. The impact of different AM fungi on plant growth highly varies 

ranging from mutualistic to antagonistic (Klironomos, 2003; Egger & Hibbett, 2004; 

Jones & Smith, 2004), and is context –dependent (Fitter, 1991; Jones & Smith, 2004; 

Fitter, 2006). The AM symbiosis increases the resistance of plants against abiotic 

(drought, heavy metals) and biotic (pathogens) stresses (Smith & Read, 2008). Certain 

plants have adopted different structures to restore their nutrients back to the soil by 

forming mutualistic interactions with N-fixing bacteria and AM fungi. The AM fungi 

attacking large runner hyphae would enhance the fungus to colonize new host plants and 

obtain carbohydrates (Graham & Abbott, 2000; Hart & Reader, 2005). The plants are 

able to transfer C to the AM fungus and the increase in sporulation aid in the nutrient 

uptake to the host plant (Douds & Schenck, 1990). When the content of C is low for the 

fungus, less polyphosphate will be remobilized and the cytoplasmic concentration of 
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inorganic P in the IRM decreases and lowers P transport across the interface that results 

in a lower P availability for the host plant.  

      The distinction performance of some AM fungi are based on their environmental or 

molecular strategies. These fungi are able to distinguish host plants that differ in the 

benefit that they provide and allocate P accordingly to the host plants that are able to 

provide more carbon (Kiers et al., 2011). Also, plants reward better fungal partners with 

more carbohydrates and in return; fungal partners enforce cooperation by providing more 

nutrients to plants that provide more carbohydrates. This reciprocal reward system is 

analogous to a market economy, where trade is favored with partners offering the best 

rate of exchange. 

 

 

1.5 QUESTIONS, HYPOTHESES AND APPROACH 
 

       P nutrition has been shown to play an important role in the AM symbiosis and recent 

work has demonstrated that fungal partners are able to discriminate among host plants 

and preferentially allocate P and N (Bücking & Shachar�Hill, 2005; Hammer et al., 

2011). Our main focus is to use cooperation in the AM symbiosis to understand the 

evolutionary context of enforced cooperation (West et al., 2007) and to investigate how 

cooperation is stabilized in the AM symbiosis on a cellular, whole plant and whole plant 

community level. This would allow us to determine the physiological mechanisms that 

stabilize evolutionary cooperation as exerted by both partners in the AM symbiosis and 

the biological market that control cost to benefit ratios. 
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The following questions will be addressed to fill these gaps in our knowledge: 

1. How is cooperative behavior between symbionts enforced? 

2. Is the fungal partner able to distinguish cooperative partners and to allocate 

resources accordingly? 

3. Is plant growth benefit correlated to the P and N metabolism of the AM fungus? 

4. Are all AM fungi equally beneficial? 

5. Is carbon a trigger that stimulates P and N transport in common mycelia 

networks? 

The following chapters answer these questions with different experiments using root 

organ cultures and whole plant mycorrhizal systems. The experiments were carried 

out by different approaches to better understand how plant-microbe interactions drive 

the ecological processes and evolutionary trajectories of natural and agricultural 

ecosystems. 
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2.1 ABSTRACT 
 
 
Plants and their arbuscular mycorrhizal fungal symbionts interact in complex 

underground networks involving multiple partners. This increases the potential for 

exploitation and defection by individuals, raising the question of how partners maintain a 

fair, two-way transfer of resources. We manipulated cooperation in plants and fungal 

partners to show that plants can detect, discriminate, and reward the best fungal partners 

with more carbohydrates. In turn, their fungal partners enforce cooperation by increasing 

nutrient transfer only to those roots providing more carbohydrates. On the basis of these 

observations we conclude that, unlike other mutualisms, the symbiont cannot be 

‘enslaved’. Rather, the mutualism is evolutionarily stable because control is bidirectional. 

Partners offering the best rate of exchange are rewarded. 

 

2.2 INTRODUCTION 
 

The symbiosis between plants and arbuscular mycorrhizal (AM) fungi is arguably the 

world’s most prevalent mutualism. The vast majority of land plants form AM 

interactions, in which plants supply associated AM fungi with carbohydrates, essential 

for fungal survival and growth (Parniske, 2008) (Fig. S1). In exchange, AM fungi 

provide their host plants with mineral nutrients (e.g. phosphorus (P)) and other benefits 

such as protection against biotic (pathogens, herbivores) and abiotic stresses (e.g. 

drought) (Smith et al., 2010). This partnership, which evolved long before mutualisms 

among insects or vertebrates (Leigh, 2010), is credited with driving the colonization of 
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land by plants, enabling massive global nutrient transfer and critical carbon sequestration 

(Bonfante & Genre, 2010; Smith et al., 2010). 

The selective forces maintaining cooperation between plants and AM fungi are unknown 

(Johnson et al., 1997; Fitter, 2006; Kiers & Heijden, 2006; Bonfante & Genre, 2010; 

Leigh, 2010). Providing nutritional benefits can be metabolically costly, leading to the 

expectation that partners may defect from mutualistic duties (Kiers & Heijden, 2006; 

Douglas, 2008). If individual host plant and fungal symbiont interests are tightly aligned 

(Poulsen & Boomsma, 2005), fungal symbionts will increase their own fitness by helping 

plants grow (Frank, 1996), and vice versa. However, plants are typically colonized by 

multiple fungal strains (Vandenkoornhuyse et al., 2007) and fungal ‘individuals’ can 

simultaneously interact with multiple host plants (Mikkelsen et al., 2008) or species 

(Selosse et al., 2006)(Fig. S1). This can select for ‘cheaters’ that exploit the benefits 

provided by others, while avoiding the costs of supplying resources (Douglas, 2008; 

Leigh, 2010). It is possible that plants have evolved mechanisms to enforce cooperation 

by fungi, analogous to the sanctions against uncooperative partners demonstrated in 

diverse mutualisms (Pellmyr & Huth, 1994; Kiers et al., 2003; Goto et al., 2010; Jandér 

& Herre, 2010). However, sanction mechanisms in other systems appear to rely on a 

single host interacting with, and controlling the fate of, multiple partners. In contrast, the 

AM symbiosis involves a complex series of many -to- many interactions with multiple 

fungal strains (Vandenkoornhuyse et al., 2007) and multiple hosts (Selosse et al., 2006), 

and so it is not clear whether sanctions could operate in the same way. 

An alternative explanation for the stability of the plant-mycorrhizal mutualism is that 

both plants and fungi are able to detect variation in the resources supplied by their 
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partners, allowing them to adjust their own resource allocation accordingly. Such 

exchange of resources, in economic terms, represents a ‘biological market’, in which 

partners exchange commodities to their mutual benefit (Noë & Hammerstein, 1995; 

Schwartz & Hoeksema, 1998; Bshary & Noë, 2003; De Mazancourt & Schwartz, 2010). 

However, whilst mutualism market analogies have a strong theoretical basis (Schwartz & 

Hoeksema, 1998; Hoeksema & Kummel, 2003; Cowden & Peterson, 2009), plants may 

be unable to discriminate among intermingled fungal species on a fine enough scale to 

reward individual fungi (Bever et al., 2009). Empirical tests have previously been 

constrained by our inability to track host resources into diverse AM assemblages, and 

difficulties in manipulating the cooperative behavior of both fungal and plant partners.  

We resolve these constraints by allowing fungal genotypes that differ in their cooperative 

behavior to compete directly on a single root system. We used stable isotope probing to 

track and quantify plant resource allocation to individual fungal species (SIP, Fig. S2) 

(Vandenkoornhuyse et al., 2007), and hence test for host discrimination against less 

cooperative partners. We also employ in-vitro root organ culture approaches (Pfeffer et 

al., 1999) to manipulate cooperative behavior of both plant and fungal mutualists to 

examine patterns of reciprocal rewards in response to variable levels of cooperation. 

(Material). 

We used the model plant Medicago truncatula and three arbuscular mycorrhizal fungal 

species within the cosmopolitan sub-genus Glomus Ab (Glomus intraradices, G. custos, 

and G. aggregatum). These AM fungi exhibit either high or low levels of cooperation 

(symbiont quality), based on plant growth responses, costs of carbon per unit P 

transferred, and resource hoarding strategies, with the two less-cooperative species 
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directing more carbon resources either into storage vesicles (G. aggregatum) or spores 

(G. custos) compared to the cooperative species (Figs. S3, S4). We used closely-related 

species to avoid potential confounding factors attributed to differences in life history 

traits not linked to nutrient exchange (Powell et al., 2009). We do not categorize our less-

cooperative species as unequivocal ‘cheats’, noting that they may confer other benefits 

not measured here (Material). 

We grew Medicago hosts with one, two (G. intraradices vs. G. aggregatum) or all three 

AM fungal species. We followed the C-flux through the plant to the fungal partners by 

tracking plant-assimilated C after 6 h in a 13CO2 atmosphere (Vandenkoornhuyse et al., 

2007). We harvested the roots after 6, 12 and 24 h to follow the incorporation of host 

carbon into the RNA of the AM fungal community. We focused on RNA because it better 

reflects immediate C allocation patterns relative to DNA (Manefield et al., 2002). Total 

RNA extractions were then subjected to ultracentrifugation to separate fractions based 

upon the level of 13C incorporation. By quantifying ribosomal rRNA transcripts via 

quantitative PCR, we were able to track the relative C allocation to each of the AM 

fungal species (Fig. S2, S9, S10). 

We found that more carbon was supplied to the more cooperative fungal species. In both 

the two-species and three-species experiments, the RNA of the cooperative fungus, G. 

intraradices, was significantly more enriched with host 13C than the RNA of both less-

cooperative species of the same genus (Fig. 1). 
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Fig. 1. Pair-wise comparisons of carbon allocation patterns to co-exisiting AM fungal 
species based on C-enrichment. Values above zero line indicate preferential allocation to 
species above the line. (A) More carbon was allocated to the cooperative species (G. 
intraradices) compared to the less cooperative species (G. aggregatum) in a two-species 
experiment. (B) When host plants were colonized with three AM fungal species, the 
RNA of the cooperative species (G. intraradices) was again significantly more enriched 
than that of the two less-cooperative species (G. aggregatum and G. custos). There was 
no significant difference in RNA enrichment between the two less-cooperative species. 
Data from all harvest times were pooled because no significant effect of time on RNA 
enrichment (Kruskal-Wallis, P > 0.05 for all three fungal species). Middle lines of box 
plots represent median values (n=11) with bars showing value ranges (minimum to 
maximum). P-values refer to nonparametric sign tests for differences of sample median 
from zero. 
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We reject the hypothesis that the less-cooperative species were simply incompatible 

partners because colonization in all single-species controls were above 80% (Fig. S4). 

Moreover, we found a significant effect of host preference on fungal abundance. G. 

aggregatum decreased by 36.7% (F1,8 = 6.39, P = 0.035) and G. custos by 85% (F1,8 = 

63.6, P < 0.001) in communities where a high-quality partner was available (Fig. S5), 

suggesting either a shift in resource supply by the host to the more cooperative species or 

changes in competitive dynamics among the fungi (Material). 

The extent to which cooperation can be effectively enforced depends upon the scale at 

which hosts discriminate against less-cooperative fungal symbionts. For plant hosts, this 

detection would have to occur at very fine spatial scales (e.g. ~cm or smaller), because 

genetically-distinct fungi can form closely intermingled networks within host root 

systems (Parniske, 2008). However, it has been argued that plants cannot discriminate 

among mixed fungi once colonization has been established (Bever et al., 2009). 

Discrimination on the basis of fungal signaling is unlikely because there is no reason that 

fungi would have to signal honestly (Leigh, 2010) 

To resolve this potential paradox, we tested whether fine-scale host discrimination occurs 

between fungal hyphae colonizing the same host root. We used an in-vitro triple split-

plate system, with one mycorrhizal root compartment and two fungal compartments 

composed of the same fungal species, but varying in P supply. This allowed us to mimic 

cooperation or defection by fungal partners connected to the same host root, and track 

how this influences C allocation back to the fungus (Fig. 2 A, B). If hosts rely on nutrient 

transfer as a tool to discriminate between partners on the same root (Fitter, 2006; Kiers & 
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Heijden, 2006), we would predict higher C allocation to the hyphae with access to higher 

P resources. 

 

 

	

 
Fig. 2. Triple-plate experiments to mimic partner cooperation or defection. We found a 
significant effect of P-availability on C allocation patterns (F3,20 = 5.29, P = 0.0075), with 
preferential allocation of C to the fungal compartments with access to more P in (A) G. 
intraradices, but not in (B) G. aggregatum. In the reciprocal experiment, we found a 
significant effect of the C supply on P allocation patterns (F7,58=7.298, P <0.0001) with a 
higher allocation of fungal P (measured as polyphosphate, PolyP) to root compartments 
with higher C in both (C) G. intraradices and (D) G. aggregatum. However, the less-
cooperative species, G. aggregatum, remobilized a smaller percentage of its long-chained 
PolyP into short-chained PolyP, indicative of a hoarding strategy (figs. S6, S8). Asterisks 
show significant differences between treatment means (Student- Newmans- Keuls test, P 
≤ 0.05). Bars represent the means of 8-10 replicates ± 1 standard error. 
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We found that hosts rewarded fungal hyphae that were supplied with greater P resources. 

As predicted, four days after the addition of 14C labeled sucrose to the root compartment, 

we found that significantly more C was transferred to the fungal hyphae with access to 

more P (Fig. 2A). In the cooperative species, G. intraradices, even small quantities of 

available P (e.g. 35 µM) resulted in a 10-fold increase in C allocation to the hyphae, 

relative to the hyphae with no access to P. We found no C allocation differences when 

hosts were colonized by the less-cooperative species, G. aggregatum (Fig. 2B). 

Like their plant hosts, AM fungi interact with multiple partners in nature (Selosse et al., 

2006). Consequently, fungi may also enforce cooperation by rewarding increased C 

supply with greater P transfer. We used a reciprocal triple split-plate experimental design, 

with one fungal and two root compartments, to test whether the fungal partner would 

preferentially allocate P to the host providing more carbohydrates (Fig. 2 C,D). We found 

that the cooperative species transferred more P into roots with greater access to C 

resources (Fig. 2C), confirming it could discriminate among hosts differing in C supply. 

In contrast, the less-cooperative species, G. aggregatum, responded very differently. Like 

the cooperative species, it transferred more P to the root compartment with access to 

more C, showing it was able to assess and respond to the rate of C supply (Fig 2D).  

However, this species predominately stored the P resources in a host inaccessible form 

(long-chained polyphosphates (Takanishi et al., 2009)(Fig. S6). This type of resource 

hoarding reduces P availability for competing fungi and P directly available for host 

uptake (Fig. S8), and illustrates key differences in fungal strategies, with G. intraradices 

being a ‘reciprocator’, and G. aggregatum a less-cooperative ‘hoarder’. 
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To track simultaneous resource exchange between partners, and hence test whether AM 

fungi are stimulated to provide more P in direct response to a greater host C supply, we 

used a two-compartment Petri plate design. Host roots were exposed to labeled U-14C 

sucrose in either high or low concentrations, while labeled 32P was added to the fungal 

compartment. We found that increasing C supply stimulated P transfer by the cooperative 

fungal species G. intraradices, but not the less-cooperative species G. aggregatum (Fig. 

3A). 
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Figure 3. Simultaneous labeling of P and C exchange. (A) Higher C availability 
stimulated increased P transfer by the cooperative species, G. intraradices (F3,22 = 3.07, 
P=0.0489), but not by the less cooperative species, G. aggregatum. (B) When supplied 
with 25 mM sucrose, the carbon costs per root P of G. aggregatum were more than 2 
times higher than with G. intraradices (F1,11= 8.27, P = 0.0151). Dpm=Disintegrations 
per minute. Asterisks indicate significant differences between treatment means (Student-
Newman-Keuls test, P ≤ 0.05). Bars represent means of 6-8 replicates ± 1 standard error. 
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As above, the cooperative species responded to C rewards with a reciprocal P increase, 

while the less-cooperative species utilized the extra C to increase P storage in the host 

inaccessible form (Fig. S7). Finally, we compared the ratio of C costs for P transferred in 

both species (Fig. 3B), confirming that colonization by the less-cooperative species 

resulted in significantly higher host costs. This result supports the findings of our SIP 

experiments (Fig. 1), and explains why the plant host consistently allocated more C to the 

cooperative species when given a choice. 

Overall, our results suggest that stability of the AM mutualism arises in a significantly 

different way compared to other mutualisms. A general feature of many mutualisms is 

that one partner appears to be ‘in control’ (West & Herre, 1994), and has either 

domesticated the other partner (Poulsen & Boomsma, 2005), or enforces cooperation 

through punishment or sanction mechanisms (Leigh, 2010). In these cases, the potential 

for enforcement has only been found in one direction, with the controlling partner 

housing the other partner in compartments, which can be preferentially rewarded or 

punished, such as in legume root nodules (Kiers et al., 2003), fig fruits (Jandér & Herre, 

2010), and the flowers of yucca (Pellmyr & Huth, 1994) and Glochidion plants (Goto et 

al., 2010). In contrast, the mycorrhizal mutualism involves both sides interacting with 

multiple partners so that neither partner can be ‘enslaved’. Cooperation is only stable 

because both partners are able to preferentially reward the other. This provides a clear, 

non-human, example of how cooperation can be stabilized in a form analogous to a 

market economy, where there are competitive partners on both sides of the interaction, 

and higher quality services are remunerated in both directions (Noë & Hammerstein, 

1995; Schwartz & Hoeksema, 1998; Bshary & Noë, 2003). 
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2.5 SUPPORTING ON-LINE MATERIAL: RECIPROCAL 
REWARDS STABILIZE COOPERATION IN THE 

MYCORRHIZAL SYMBIOSIS 
 
E. Toby Kiers*, Marie Duhamel, Yugandgar Beesetty, Jerry A. Mensah, Oscar Franken, 
Erik Verbruggen, Carl R. Fellbaum, George A. Kowalchuk, Miranda M. Hart, Alberto 
Bago, Todd M. Palmer, Stuart A. West, Philippe Vandenkoornhuyse, Jan Jansa, Heike 
Bücking 
 
 
 
2.5.1 MATERIALS AND METHODS 
 
SELECTION OF FUNGAL STRAINS 
 
 
      We chose the three AM fungal species based on the following criteria: (1) all AM 

fungi belong to the same genus. By choosing closely related fungi, we were able to avoid 

problems associated with contrasting life history traits not necessarily associated with 

mutualistic benefit (Hart & Reader, 2005; Maherali & Klironomos, 2007; Powell et al., 

2009). (2) The fungi differentially affected growth of their host plant and this difference 

was evident within 10 weeks of growth (Fig. S3). Although fungal benefits could 

potentially change (increase or decrease) over the host’s ontogeny (Fitter, 1991; Husband 

et al., 2002; Smith et al., 2009), we were interested in documenting early-stage fungal 

and host allocation patterns, in which there were fewer constraints on fungal and plant 

growth. At this stage, clear allocation patterns are predicted because resources acquisition 

demand is at its highest (Hoeksema & Kummel, 2003). (3) The benefits conferred to 

hosts were consistent across different plant species (Fig. S3). This allowed us to reject the 

hypothesis that the observed differences in mutualistic benefit were attributed to local co-

evolutionary dynamics between host and fungal symbiont (Antunes et al., 2011). (4) The 
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selected AM fungi differed in growth benefit but were not ‘parasites’ (see (Smith et al., 

2003; Ryan et al., 2005; Smith et al., 2009; Smith & Smith, 2011) for useful discussion). 

In our case the biomass of the plants inoculated with the less-cooperative AM fungal 

species was either equal, or greater than the growth of the non-mycorrhizal control plants 

(Fig. S3). This allowed us to examine whether hosts could detect and respond to variation 

in fungal cooperation (Jansa et al., 2005; Hodge et al., 2010), rather than testing for host 

response to a negative growth impact (e.g. a non-cooperative species (Ryan et al., 2005)). 

(5) We utilized species with different structural patterns. At 10 weeks, G. custos allocated 

significantly more to spore production, and G. aggregatum allocated significantly more 

to vesicles compared to the other two AM fungal species (Fig. S4). The use of these two 

less-cooperative species allowed us to test for host response when the choice was binary 

(G. intraradices versus G. aggregatum), and also test for host response in AM 

communities with three species, which included two less-cooperative species, G. 

aggregatum and G. custos differing in their carbon storage strategies. In these less 

cooperative fungi, high spore and vesicle formation are potential indicators of fungal 

resource hoarding. Ratios of these fungal storage units to arbuscules (nutrient transfer 

structures) are often used as an estimate of symbiotic effectiveness (Johnson et al., 1992; 

Johnson, 1993; Johnson et al., 2003). (6) Importantly, we do not categorize our less-

cooperative species as unequivocal ‘cheats’ (Smith et al., 2003; Douglas, 2010; Smith & 

Smith, 2011). AM fungi can confer diverse benefits to the host plant (protection against 

pathogens, drought, or heavy metal uptake) not measured here (Sikes et al., 2010). It is 

well known that biotic and abiotic changes can alter the relative benefits of AM fungi 

(Hoeksema et al., 2010). No experimental design can explore all the diverse conditions 
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under which the relationship with particular fungi is potentially beneficial (Helgason & 

Fitter, 2009). (7) To increase the ecological context of our experimental design, all fungal 

species were isolated from temperate ecosystems between 37- 43° degrees, and from 

areas in which Medicago sp. hosts are found. While these species are globally 

cosmopolitan, it is well known that fungal isolates –within a species - can differ greatly in 

the benefits they confer to their hosts (Koch et al., 2006). While it would be interesting to 

conduct future experiments that utilize plant and fungal material collected from a single 

ecosystem, we note that there are difficulties in isolating fungal strains from one location 

that meet all our criteria for selection (see criteria 1-6 above). 

 

 
FUNGAL CULTURES 
 
 
     For all experiments, we produced inoculum of Glomus intraradices (Schenck & 

Smith; isolate 09 collected from Southwest Spain by Mycovitro S.L. Biotechnología 

ecológica, Granada, Spain), G. custos (Cano & Dalpé; isolate 010 collected from 

Southwest Spain by Mycovitro S.L.) and G. aggregatum (Schenck & Smith; isolate 0165 

collected from the Long Term Mycorrhizal Research Site, University of Guelph, Canada) 

by growing the fungus in association with Ri T-DNA transformed carrot (Daucus carota 

clone DCI) roots in Petri dishes filled with mineral medium (St-Arnaud et al., 1996) and 

with sucrose as the only carbon source. We cultured roots for approximately 8 weeks 

(until the plates were fully colonized) and fungal spores were isolated from the growth 

medium by solubilising the medium with 10 mM citrate buffer (pH 6.0). 
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DESIGN OF SPECIES-SPECIFIC QUANTITATIVE REAL-TIME PCR 
(QPCR) MARKERS (PRIMERS AND HYDROLYSIS PROBES) 
 
       To quantify the abundance of each AM fungal species in the stable isotope probing 

(SIP) experiments, we designed markers targeting species-specific motifs in the 

mitochondrial large ribosomal subunit RNA genes of G. intraradices, G. aggregatum and 

G. custos. 

DNA PREPARATION AND AMPLIFICATION 
 
     We extracted fungal DNA from both spores and colonized roots produced 

monoxenically, as described below. We used DNeasy Plant Mini kit (Qiagen, 

Hombrechtikon, Switzerland) and followed the recommendations of the manufacturer 

with slight modifications. For spores only, the final volume of the DNA preparations was 

20 µl (instead of recommended 100 µl) to maximize DNA concentration before PCR. 

DNA was subjected to PCR amplification of the mitochondrial large ribosomal subunit 

(mtLSU) RNA gene with following primer pair combinations, RNL11-RNL17, RNL1-

RNL14, or RNL1-RNL15 (according to (Börstler et al., 2008)). The PCR was carried out 

using Taq PCR Core kit with CoralLoad reaction buffer (Qiagen), using a 25 µl PCR 

reaction volume, 1 µM of each primer, and 38 cycles (denaturation at 95°C for 10 s, 

annealing at 50°C for 90 s and amplification at 72°C for 90 s). Amplified DNA fragments 

were cloned into a blue-script vector (pGEM-T Easy vector system; Promega, 

Dübendorf, Switzerland) and sequenced by Microsynth AG (Balgach, Switzerland). The 

sequences were individually edited and the clones re-sequenced if the quality of the reads 

proved to be insufficient. The identity of the sequences was revealed by BLAST search 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) to exclude potential contaminant sequences (e.g., 
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bacteria, unspecific amplifications of other genome regions). 

 

PROBE DESIGN 

 
     The sequences of our three AM fungal species were aligned with other available 

mtLSU sequences from e.g. G. intraradices, G. proliferum and G. clarum in order to 

construct our hydrolysis probes. For each fungal species at least two species-

discriminating primers with associated hydrolysis probes were designed using the 

AlleleID software (version 6, Premier Biosoft International, Palo Alto, California, USA). 

Care was taken to target mtLSU regions coding for the ribosomal RNA to avoid putative 

introns described recently (Thiéry et al., 2010). We confirmed the specificity of the 

primers and fluorescent probes with a BLAST search and the oligonucleotides (primers 

and dually labeled hydrolysis probes, labeled with fluorescein at the 5`-end and BHQ-1 

quencher at the 3`-end) were then synthesized by Microsynth AG (Balgach, Switzerland). 

Primers and probes were purified by preparative HPLC or preparative polyacrylamide gel 

electrophoresis, respectively, before lyophilization. Both primers and probes were diluted 

with PCR-grade water to achieve 25 µM concentrations, aliquoted (20 µl each) and 

frozen at -20°C. 

 

PRIMER SELECTION, OPTIMIZATION OF CYCLING CONDITIONS, 
CROSS-REACTIVITY TESTING (DNA AND cDNA) 
 
     To ensure species-level specificity, we performed several optimization steps. First, we 

tested the markers for specificity under low stringency cycling conditions (denaturation at 

95°C for 10 s, annealing at 52°C for 30 s, and amplification at 72°C for 5 s). In this assay, 
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we used DNA extracts from M. truncatula roots colonized by the different AM fungi (3 

replicates for each species) as templates. From this initial test, primer pairs and probes 

showing greatest specificity towards their target species (either no cross-amplification 

with other species or the greatest difference in Cq value between target and non-target 

species) were selected for further optimization (see Table S1). Stringency of cycling 

conditions was then increased stepwise for each of the markers to avoid amplification of 

non-target samples (see Table S1 for details of the optimized cycling conditions and 

Table S2 for the results of the cross4 amplification assay). Finally, to confirm that the 

markers only amplified the target fungal species, and that they avoided plant genes and 

were suitable at the RNA level, we performed another cross-amplification assay using 

cDNA generated from RNA extracts of non-mycorrhizal or mycorrhizal roots of M. 

truncatula colonized by the different fungal species (Table S2). Again, all three markers 

were confirmed to be species-specific at both, DNA and RNA level. 

 

qPCR CALIBRATION AND DETECTION LIMITS 
 
 
     We generated plasmids carrying fragments of the mtLSU of the respective fungal 

species with 100% sequence match to the region amplified in order to: (1) to calibrate the 

qPCR detection cycle (Cq) with the gene copy concentrations and (2) to assess the 

detection limits of the qPCR markers. Cq is typically negatively and linearly correlated to 

the log-transformed template concentration (linear response region), until the detection 

limit of the assay is reached and the Cq becomes independent of the further dilution 

(background region) (Fig. S9), or there is no response at all. We used the linear response 

region of each calibration assay to derive equations that allowed the conversion of Cq 
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values to mtLSU gene copies per unit volume of the template (Fig. S10). The detection 

limits were calculated from the background region of the qPCR response curve as 

follows: 

                                   DL = AVcq(back) – 3 x SD (AVcq(back))  

where DL represents the detection limit of the assay (Cq value), AVcq(back)  the mean of 

the Cq values in the background region and SD (AVcq(back)) the standard deviation of this 

mean. The detection limits of the three assays and the corresponding threshold 

concentrations of mtLSU are given below (Table S3). These assays were then used to 

determine the mtLSU gene copy concentration in DNA and cDNA samples, fractionated 

or not by ultracentrifugation, and taking into account any dilutions of the template during 

sample processing. 

 

PLASMID PREPARATION 
 
     Between two and four individual plasmid preparations per fungal species were used 

for the calibration of the qPCR markers. The plasmids were isolated from overnight 

cultures of transformed E. coli JM109 cells (Promega, Madison, WI, USA), grown on LB 

medium supplemented with 100 µg ml-1 Ampicillin, using the Miniprep procedure 

(Sambrook et al., 1989). The plasmids were linearised using the EcoRI+ digestion 

(Fermentas, Le Mont-sur-Lausanne, Switzerland) at 37°C for 2 h and then at 65°C for 20 

min. The concentration of the DNA was then measured by the PicoGreen fluorescence 

assay (P7589, Invitrogen, San Diego, CA, USA), using Roche LightCycler 2.0 at 45°C 

and measuring the emission at 530 nm. The concentration of plasmid copies per unit of 

sample volume was calculated according to (Jansa et al., 2008) under consideration of the 
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DNA concentration in each sample, the length of the insert (176 bp for G. intraradices, 

661 bp for G. aggregatum, and 438 bp for G. custos) and vector (3015 bp), and an 

estimated molecular weight per nucleotide double-stranded DNA of 660 Da. Plasmid 

preparations were serially diluted (5-fold and 10-fold) to achieve a range of plasmid 

concentrations from a few billions to (theoretically) less than 1 per microliter. 

 

STABLE ISOTOPE PROBING 

PLANT CULTURE 
 
       Seeds of Medicago truncatula (variety Jemalong A17, courtesy of Bettina Hause, 

Leibniz Institute of Plant Biochemistry, Halle, Germany) were pre-treated with 

concentrated H2SO4 and exposed to a cold treatment (4°C in the fridge) for 3 days. The 

seedlings were transferred to a sterilized peat-based growth medium for 5 days and then 

planted in 1 L pots filled with sterilized nutrient-poor dune sand with the following 

characteristics: pH 7.2; 0.2% organic matter; 0.3 mg kg-1 P(CaCl2-extracted) and 190 mg 

kg-1 total N. 

        For the two-species experiment, the seedlings were inoculated at planting with 1500 

spores per plant and 1.0 g of in vitro root material of either G. intraradices or G. 

aggregatum (singles) or both species together (mixed 50:50) with inoculum 

concentrations reduced by half. For the three-species experiment, G. custos was included 

in the mixed treatment and the inoculum concentrations of the three AM species were 

reduced to one-third each. We assumed that in this mixed treatment, the nutrient-

acquiring strategies of our AM species were fixed, meaning that strategies did not 

undergo fundamental change (switch from less-cooperative to cooperative or vice versa) 
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simply because other symbionts were present (Kiers & Denison, 2008).  

       Non-mycorrhizal control plants were inoculated with autoclaved inoculum. Plants 

were grown in a greenhouse with a 13 h light cycle. When the outside daylight was below 

120 J cm-2 h-1, supplemental lights of 15,000 lux, were turned on. The temperature was 

kept between 22 and 25°C. Soil humidity was maintained at 70% water holding capacity 

and nutrients (8 ml per pot of Hoagland solution (Arnon & Hoagland, 1940) containing 

only 50% of original P concentration) were added every two weeks. The plants were 

grown for a total of 10 weeks before 13CO2 labeling. 

 

13CO2 LABELING AND HARVEST 

 
        Plants were labeled with 13CO2 at the Experimental Soil Plant Atmosphere System 

(ESPAS, Isolife, Netherlands) (Gorissen et al., 1996), with a day/night rhythm of 16/8 h 

and at 21°C and 17°C, respectively, an irradiation of 700 µmol m-2 s-1 at plant height, and 

80% relative humidity. The plants were acclimated to the chamber for 48 h before 

labeling. The mean CO2 level in the chamber was maintained at 401±19 µl l-1 by 

injection of 12CO2 from a pressurized cylinder. During the night period prior to labeling, 

12CO2 was removed by a CO2-scrubber in accordance with the 12CO2-respiration of M. 

truncatula. One hour before the start of the day period, 13CO2 was injected from a 

pressurized cylinder (99 atom % 13C, 1 atom % 12C; Isotec, Inc. Miamisburg, OH, USA). 

For 6 h, a total CO2-level (12CO2 + 13CO2) of 396±20 µl l-1 CO2 was maintained. The 13C-

enrichment of the atmosphere was 92% at the start of the 6-h labeling period. This value 

gradually decreased due to the 12CO2 respiration by the plant and resulted in a mean 13C-

enrichment of 86.5±3.0 % over the time course of labeling.  
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          In both the two-species and three-species experiment, the labeling chamber was 

opened and flushed with fresh air after 6 h to remove the labeled 13CO2. After the 

flushing period, the labeling chamber was closed and the 12CO2 level was maintained at 

405±29 µl l-1. To follow the incorporation of 13C label over time in the two-species 

experiment, replicate plants were harvested at the 6 h-flushing period and again 6 h later 

at the 12 h time point. In the three species experiment an extra harvest time was added, so 

plants were harvested at 6 h, 12 h and 24 h. In both experiments, all replicates of the 

single inoculated control treatments were harvested at the 6 h time point. At each harvest, 

the aboveground plant parts were removed, oven dried at 70°C for 72 h, and weighed. 

The root systems were gently washed, weighed, homogenized and five root aliquots were 

placed in Eppendorf tubes and frozen with liquid N2. A small subsample of roots was 

removed, processed in 10% KOH, and stained with trypan blue to quantify the 

mycorrhizal colonization and fungal structures in the root (McGonigle et al., 1990). Sand 

was collected and spores were counted using conventional decanting and wet sieving 

methods (Gerdemann & Nicolson, 1963). 

 

RNA EXTRACTION, ULTRACENTRIFUGATION, AND CDNA 
SYNTHESIS BY REVERSE TRANSCRIPTION 
 
           RNA was extracted from roots using the RNeasy Plant Mini Kit (Qiagen, 

Hombrechtikon, Switzerland), tested for quality and RNA concentration using a 

Nanodrop1000™ and stored at -80°C. For centrifugation, 500 ng of RNA was transferred 

in 2 ml ultracentrifuge tubes (Sysmex, Kobe, Japan) pre-filled with 1.99 ml of 1.8 g ml-1 

CsTFA solution. The samples were then placed into a Sorvall discovery m120 SE micro 

ultracentrifuge (Thermo Fisher Scientific, Waltham, MA, USA) with a S120VT fixed 
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angle titanium vertical rotor for 48 h at 20°C at a speed of 64000 rpm, resulting in a 

gravity of 142,417 g at the maximum radius and 91,1128 g at the minimum radius. 

Between 17 to 20 fractions of 100 µl each were collected from every 2 ml vial. To 

remove these fractions, the tubes were punctured at the bottom and top using a needle. 

The upper needle was connected to a syringe pump (Harvard Apparatus, Kent, UK) that 

allowed a continuous flow rate (220 µL min-1) of RNAse free water. This initiated a 

continuous flow of fractions from the lower needle. An extra vial was included in each 

ultracentrifugation batch for gravimetric estimation of density of each gradient fraction in 

each ultracentrifugation run (60). The RNA in each fraction was precipitated, dried and 

resuspended in 15 µl of ultrapure water. Five µl were then used for reverse transcription 

(RT), using a final volume of 25 µl and the following reaction components: 5 µl 5xRT 

buffer, 1.5 µl of 10 mM dNTPs, 0.5 µl random hexamers, 1 µl of 200 u/µl, MMLV 

reverse transcriptase (Promega Corp., WI, USA) and 12 µl water. 

 

REAL TIME QUANTITATIVE PCR (QPCR) ANALYSIS 
 
       All qPCR assays were carried out in 9 µl reactions, using the LightCycler 2.0 

instrument, LightCycler TaqMan chemistry (LightCycler TaqMan Master) and 20 µl-

Lightcycler glass capillaries. The final concentrations of the primers and the hydrolysis 

probe were 0.5 µM and 0.11 µM, respectively (for sequences see Table S1). Each 

reaction included 2.25 µl of the DNA template (i.e. sample). 
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QUANTIFICATION OF RNA ABUNDANCE OF THE DIFFERENT 
FUNGAL SPECIES 
 
          To quantify the enrichment of fungal RNA with host derived 13C in the different 

fractions, we used qPCR targeting species-specific sequence motifs in the mtLSU, as 

described above. All reactions were carried out separately, not multiplexed, under 

stringent cycling reaction (Table S1). Briefly, 2.25 µl of the RT reaction (see above) was 

used as a template for qPCR, and the total qPCR reaction volume was 9 µl. Gene copy 

concentrations were calculated per µl template using the quantification cycle (Cq) from 

each assay and the respective calibration curves (Fig. S10). The results of mtLSU 

quantification of each AM fungal species in the different fractions were subjected to 

nonlinear regression, using the Gaussian, 3-parameter function option in SigmaPlot for 

Windows version 11.0. This function is described by the following formula: 

                        

                                       

 

 

where a and b are constants, x0 is the x value of function peak, and e is the base of natural 

logarithm (approximately 2.718). Only the samples with R2 of all relevant regressions 

higher than 0.64 (i.e., R ≥ 0.8) were used for subsequent statistical analyses. This data 

selection was necessary in order to exclude samples that suffered high RNA degradation 

during ultracentrifugation and subsequent steps, and/or poorly fractionated samples, 

where the gradients were obviously disturbed during fraction collection. This quality 

check resulted in the removal of 1 out of 12 samples in the two-species experiment, and 6 
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out of 17 samples in the experiment with three AM fungal species. 

 

ANALYSIS OF PEAK FRONT 
 
        Variation in host C allocation patterns were calculated based on differences in ‘peak 

front’ among AM species. Peak front is the position (i.e. density in mg ml-1) of the 

heaviest RNA fraction of each of the AM fungal species. Each fungal species shows a 

unique peak front position that can be compared against the others. Peak front is defined 

mathematically as the foremost fraction of the Gaussian regression curves cutting through 

the detection limit of the qPCR assay. Peak fronts further to the left (see Fig. S2 for 

example) mean higher 13C enrichment, indicative of preferential C allocation to that 

fungal species. To determine peak front differences among the AM fungal species within 

each individual plant sample, we first measured abundance of each AM fungal species 

(copies of mtLSU) in each RNA density fraction by using qPCR with species-specific 

markers (Table S1). Then, Gaussian regressions across the different fractions were 

constructed for each AM fungal species. Peak fronts for the different AM fungal species 

were compared only when meeting requirements listed above, thus removing technically 

imperfect samples from statistical comparison. 

         To determine if there were significant differences in 13C enrichment of our AM 

fungal species, we ran pair-wise comparisons of peak front position for all pairs of AM 

fungal species. We calculated differences in peak front positions based on a non-

parametric sign test, using Statgraphics Plus software (version 3.1 for Windows). P-

values (Fig. 1) refer to differences of the sample median from zero, with values above 

zero indicating preferential allocation to that particular fungal species. 
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          To further confirm our preferential allocation findings, we ran additional analyses 

using a parametric generalized linear model (GLM) approach. For each replicate and 

each fungal species combination, differences in peak front positions between AM fungal 

species were calculated, as described above. A GLM was produced independently for 

both the two-species and three-species experiments to test the variables of differential 

13C enrichment and harvest time. The Akaike criteria (AIC) was used to select the 

optimal GLM, which in our case was in the gamma family. A ‘saturated model’ 

reproduced the observed data. The relative importance of a given interaction term or a co-

variable was estimated after removal of this term from the saturated model. Deviance 

analyses using Fisher tests were performed. Using this approach, we confirmed our 

finding that the RNA of the cooperative species (G. intraradices) was significantly more 

enriched than that of the two less-cooperative species (G. aggregatum and G. custos). We 

found significantly higher 13C enrichment in both the two-species experiment (G. 

intraradices vs. G. aggregatum, P = 0.019) and in the three species experiment (G. 

intraradices vs. G. aggregatum, P= 0.030) and (G. intraradices vs. G. custos, P = 0.016). 

There was no significant difference in RNA enrichment of the two less-cooperative 

species (G. aggregatum vs. G. custos, P > 0.05). The GLM deviance analyses showed no 

significant effect of time on allocation patterns for both the two-species (P= 

0.4267) and three-species (P= 0.5571) experiments. All GLM analyses were carried out 

using the program R (http://www.r-project.org/). 
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ANALYSES OF NON-FRACTIONATED RNA SAMPLES 
 
        The non-fractionated RNA samples were reverse transcribed and the cDNA was 

used as template for qPCR quantification of mtLSU copies as described above. The 

results were converted to mtLSU RNA copies per 500 ng RNA. These results were used 

to compare the abundance of the different fungal species in the roots after inoculation 

with single or mixed AM fungal species (Fig. S5). 

 

MANIPULATION EXPERIMENTS WITH IN-VITRO ROOT ORGAN 
CULTURES 
 
        For all resource manipulation studies, we used Ri-T-DNA-transformed carrot roots 

(D. carota L., clone DCI), that were colonized with the cooperative AM fungus G. 

intraradices or the less-cooperative AM fungus G. aggregatum. These two fungal species 

were used for the resource manipulation experiments because they differed greatly in cost 

to benefit ratios for P to C exchange (~2.5 higher C costs in G. aggregatum, Fig. 3A), and 

represented the maximum and minimum of the host benefit continuum (Frank, 1996; 

Egger & Hibbett, 2004; Jones & Smith, 2004).  

  While root organ cultures (ROCs) have been criticized for their artificial nature (Fortin 

et al., 2002), it has been repeatedly demonstrated that ROCs possess similar nutrient and 

resource transfer and metabolic characteristics as whole plant systems (Pfeffer et al., 

2004). ROCs have been pivotal in producing a large body of literature that has shaped our 

understanding of nutrient transport and C exchange in the AM symbiosis (Olsson et al., 

2002; Bago et al., 2003; Bücking & Shachar�Hill, 2005; Govindarajulu et al., 2005; Jin 

et al., 2005; Olsson et al., 2005; Olsson & Johnson, 2005; Tian et al., 2010; Hammer et 
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al., 2011). ROC model systems offer a number of important advantages for our study, 

including (1) the separation into fungal and root compartments (which prevented the 

diffusion and exchange of substrates between the compartments) and thereby precise 

control over quantities of resources supplied to fungus and host, (2) high visibility of the 

system, allowing us to select comparable plates for each experiment regarding e.g. the 

colonization of the fungal compartment, and (3) precision with which the ERM could be 

collected. In addition, ROCs provide the ideal model system for comparing particular 

traits (e.g. N or P transfer) across AM species, while standardizing for confounding 

environmental factors. This allowed us to compare baseline functioning and then 

manipulate resources to test for host and fungal responses to nutrient availability. Such 

small-scale manipulations are not yet possible in a soil based system. In the future, in-

vitro whole-plant systems could be a useful test system for biological market experiments 

with AM fungi (Gyuricza et al., 2010). However, the challenge of working with in-vitro 

whole plants is the loss of precision in controlling the carbohydrate allocation from the 

host to the fungus. Although manually shading plants can be utilized as a potential 

treatment to reduce host C, the effects are difficult to control and to quantify, and 

secondary effects of the reduced photosynthetic rate on plant physiology cannot be 

excluded. 

IN VITRO ROOT ORGAN CULTURES 
 
       We grew mycorrhizal systems in Petri dishes with two or three compartments 

(depending on the experimental design) at 25°C. The mycorrhizal roots were confined to 

one or two root compartments (St-Arnaud et al., 1996) filled with solidified mineral 

medium (Chabot et al., 1992) containing 10 g l-1 sucrose. AM fungi are obligate 
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biotrophs that cannot use this C source directly but rely on carbon that is supplied by the 

host. After approximately eight weeks of growth, the colonized root compartments were 

transferred into new Petri dishes and the extraradical mycelium (ERM) of the fungus was 

allowed to cross over the divider into one or two fungal compartments (depending on the 

experimental design, see below). These fungal compartments were filled with solidified 

mineral medium without sucrose and phosphate addition (KH2PO4 was replaced with an 

equimolar concentration of KCl). After approximately 3 weeks, the fungal compartments 

were sufficiently colonized by ERM and the plates could be used for the experiments. 

 

EXPERIMENTAL DESIGN OF THE ROC EXPERIMENTS 
 
PREFERENTIAL CARBON TRANSPORT FROM COLONIZED ROOTS TO 
FUNGAL ERM COMPARTMENTS DIFFERING IN P SUPPLY. 
 
       Here, we asked the question: Will hosts transfer significantly more C to the fungal 

hyphae with access to more P (Fig. 2A,B)? We tested this question when hosts were 

colonized either by the cooperative species G. intraradices or the less-cooperative 

species, G. aggregatum. We used a three compartment Petri dish design with one 

mycorrhizal root compartment and two fungal compartments differing in P supply. 

Labeled sucrose (22.2 mM sucrose containing [U-14C]sucrose, 1:500000, v/v) with a 

specific activity of 498 mCi mM-1 (Sigma-Aldrich, St. Louis, USA) was supplied to the 

root compartment. Simultaneously, water (0 µM P) was added to one fungal compartment 

and 35 µM P or 700 µM P (as KH2PO4) to the other fungal compartment. After 4 days, 6 

replicates per treatment were harvested and processed for liquid scintillation counting 

(see below). 
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PREFERENTIAL P TRANSPORT FROM THE ERM TO ROOT 

COMPARTMENTS DIFFERING IN C SUPPLY. 

 
       Here, we asked the question: will significantly more P be transferred to the root 

compartment with access to more C (Fig. 2C,D)? Again, we tested this with the 

cooperative species G. intraradices and the less-cooperative species, G. aggregatum. We 

used a reciprocal design of the three-compartment Petri dish system described above, 

now with two root compartments and one fungal compartment. This allowed us to track 

the transport of P from the fungal ERM to colonized roots that differed in their carbon 

supply. Fungal hyphae from both root compartments were allowed to cross over into one 

root-free compartment. When approximately the same number of hyphae had crossed 

over from each root compartment into the fungal compartment, 6.4 µCi 

[33P]orthophosphate (Perkin Elmer, Waltham, USA) and 35 µM non-labelled KH2PO4 

were added to the fungal compartment. The carbon supply in the root compartments was 

varied at the same time by adding 0.5 ml of water to one root compartment (0 mM 

control) and 0.5 ml of a sucrose solution to reach 5 mM or 25 mM in the other root 

compartment. After 4 days, 6 to 10 replicates per treatment were harvested and prepared 

for further analysis (see below). 
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SIMULTANEOUS MEASUREMENTS OF SYMBIOTIC EFFECTIVENESS 

AND CONDITIONAL RESPONSE. 

      Here we asked two questions: (1) Does increasing host C supply lead to an increase in 

P transfer by both the cooperative and less-cooperative fungal symbionts (Fig. 3A) and 

(2) does the baseline cost to benefit ratios (here in terms of carbon costs for P supplied to 

the root) differ between the two fungal species (Fig. 3B)? To achieve both these aims, we 

used a two compartment Petri dish system with one root and one fungal compartment to 

which simultaneously 14C–sucrose and 32P-orthophosphate were added. Three weeks after 

the ERM started to cross over the divider, we added [U-14C] sucrose with a specific 

activity of 498 mCi mM-1 (Sigma-Aldrich, St. Louis, USA) to the root compartment and 

[32P] orthophosphate (Sigma-Aldrich, St. Louis, USA) to the fungal compartment. To test 

for differences in P transport in response to increasing C supply and determine the cost to 

benefit ratio of each fungal species, one set of plates was only supplied with 14C labeled 

sucrose and 14C labeled sucrose diluted with non-labeled sucrose for a final sucrose 

concentration of 25 mM sucrose (0.448 µM as 14C labeled sucrose) was added to the 

other set. After 4 days, 8 replicates per treatment were harvested and prepared for further 

analysis (see below). 

 

LIQUID SCINTILLATION COUNTING 
 
      For all experiments, we harvested the mycorrhizal roots and the fungal ERM after 4 

days of labeling. The ERM was isolated from the medium in the fungal compartment 

after several wash and centrifugation steps in Na citrate buffer (10 mM, pH 6.0). An 

aliquot of the medium was taken to determine the radioisotope residues in the medium 
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and to confirm that there were no cross-contaminations between compartments in the 

plates. The root and ERM samples were dried in an oven at 70°C, weighed and digested 

with a tissue solubilizer (TS-2, rpi corp., Mount Prospect, USA). The radioactivity was 

determined by liquid scintillation counting (Wallac, Perkin Elmer, Waltham, USA) using 

standard full channel programs in single isotope experiments or by channel settings that 

allowed the differentiation of 14C and 32P according to the emission energy in dual 

isotope experiments. The 14C measurements in the dual isotope experiments were 

additionally confirmed by measuring the samples for a second time 4 months later (i.e., 

after 8 half-lives of 32P passed), when 32P was sufficiently depleted. The accuracy of all 

measurements was corrected by use of an internal standard. 

 

EXTRACTION OF VARIOUS PHOSPHATE POOLS AND ANALYSIS 
OF PHOSPHATE POOL DISTRIBUTION 
 
       To examine the phosphate pool distribution in mycorrhizal roots which were 

supplied with varying concentrations of sucrose (Fig. 2C,D, Fig. S6, S7), we extracted 

phosphate pools according to the method described previously (Aitchison & Butt, 1973). 

The following phosphate pools were extracted and could be distinguished: (1) inorganic 

orthophosphate and acid soluble or short-chained polyphosphates (chain length of less 

than 20 Pi residues) after extraction with 10 % TCA (w/v) at 4°C (two times); (2) 

phospholipids after extraction with first 100 % ethanol and then ethanol:ether (3:1, v/v), 

(3) acid insoluble or long-chained polyphosphates (chain length of more than 20 Pi 

residues) after extraction with 1 M KOH at room temperature (two times), and (4) DNA-, 

RNA- and protein-phosphates (residue). Acid soluble polyP (short chain length) and acid 

insoluble polyP (long chain length) within the supernatants were precipitated two times 



54 

 

 

by a saturated BaCl2 solution over night at 4°C. We used polyP pools to measure P 

transport, because both polyphosphate pools are of fungal origin (plants are not able to 

produce polyP) and better represent P transport from the ERM to the IRM. The 33P 

content in all fractions was determined by liquid scintillation counting. 

 

2.5.2 STATISTICAL ANALYSIS 
 
    Data from the ROC experiments were analyzed using Unistat Software, P-STAT Inc. 

(Hopewell, NJ, USA). For all experiments, the data were subjected to a variance analysis 

(ANOVA), with ‘resource-level’ as the treatment factor. Disintegrations per minute 

(dpm) values after scintillation counting were log transformed before the analysis. 

Following significant ANOVA, treatment means were compared using the Student-

Newman-Keuls test (P ≤0 .05). 

 

2.5.3 TEXT 
 

      We conclude by raising three important points: (1) our work does not preclude the 

possibility that partners employ other mechanisms to control the growth/success of each 

other. Various mechanisms have been proposed to explain, for example, how 

mycorrhization may be mediated by host plants (Pearson et al., 1993; Johnson et al., 

1997; Blee & Anderson, 1998; Vierheilig, 2004; Schaarschmidt et al., 2007; Bonfante & 

Genre, 2010). One possible mechanism is the digestion of fungal arbuscules by plant 

hosts (Kobae & Hata, 2010). Although alternative explanations for premature arbuscular 

death cannot yet be ruled out (Smith & Smith, 2011), empirical work has demonstrated 
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that the lifespan of an arbuscule may be related to its ability to deliver P (Javot et al., 

2007) or to the P status of the host (Breuillin et al., 2010). Molecules such as 

lysophosphatidylcholine (LPc) have been suggested to be involved in P sensing and gene 

regulation in plants, potentially allowing hosts to evaluate the amount of P delivered via 

the mycorrhizal pathway (Bucher et al., 2009). As more genome information becomes 

available, the molecular mechanisms governing the resource-sensing and control 

processes of both partners will be elucidated (Bucher, 2007). (2) Here, we demonstrated 

the importance of P as a resource for determining trade dynamics (e.g. (Pearson & 

Jakobsen, 1993)), but allocation based on other fungal commodities such as N, may 

likewise be important (Tanaka & Yano, 2005; Atul-Nayyar et al., 2009; Hodge & Fitter, 

2010). Research is now needed to determine how resource stoichiometry (e.g. the relative 

availability of carbon, nitrogen and phosphorus) affects trade among partners. (3) 

Although our work demonstrated that trade is favored with partners offering the best rate 

of exchange, this finding does not imply equal control in the mutualism. It is well-known 

that at high P levels: (i) the mycorrhizal nutrient uptake pathway can be repressed (Nagy 

et al., 2009), (ii) root exudate activity to stimulate presymbiotic growth of AM fungi is 

reduced (Gadkar et al., 2003), and (iii) the host may degrade the arbuscules of the fungus 

(Breuillin et al., 2010) . In contrast, AM fungi are obligate biotrophs, meaning they will 

always rely on hosts for C. The implication is that, although fungi may choose to transfer 

P to the plant offering the highest C benefit, they will always need a host plant to 

complete their life cycle. 
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2.5.4 FIGURES 

 

Fig. S1: Schematic drawing of the arbuscular mycorrhizal (AM) mutualism and resource exchange 
processes. (A) Land plants interact with diverse AM fungal communities (different species/strains 
represented by different colors) and AM fungi interact with multiple host plants. The mutualism is 
characterized by an exchange of mineral nutrients (e.g. N and P) from the fungus for C from the host plant. 
The transfer of nutrients occurs primarily across specialized structures called arbuscules (a). Fungal carbon 
is allocated to hyphae (h), vesicles (v) and/or spores (s). (B) Nutrient exchange between plant and fungal 
partner. Host C is transferred across the plant-fungal interface, taken up by the fungus and translocated to 
the extraradical mycelium (ERM). P is taken up from the soil as inorganic P (Pi) and converted into 
polyphosphates (PolyP). PolyP plays a key role in transferring nutrients to the Intraradical mycelium. 
Nitrogen, as NH4 and NO3, is likewise absorbed from the soil by AM fungi, and assimilated mainly into 
arginine (Arg). PolyP are negatively charged polyanions that can also bind the basic amino acid Arg. In the 
intraradical mycelium, PolyPs are remobilized and release inorganic phosphate (Pi) and Arg. Arg is further 
broken down to inorganic N (specifically NH4 +), and then transferred across the plant-fungal interface. 
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Fig. S2: The detection of plant-derived C fluxes into microbial nucleic acids by stable 
isotope probing (SIP). (A) Plants were inoculated with three fungal species (red, blue, 
green). The plants were labeled with 13CO2 that was then incorporated into the RNA of 
the AM fungal community. (B) After extraction, the fungal RNA was ultracentrifuged in 
a cesium trifluoroacetate gradient. (C) The ultracentrifugation fractionated the RNA in 
layers based on the relative amount of 13C-labeled carbohydrates incorporated by each 
fungal species. (D) Each centrifuge tube was punctured at the bottom and fractions (~18 
per replicate) of 100 µL were taken using a long needle. The abundance of each AM 
fungal species was then quantified in every fraction using qPCR with species-specific 
markers targeting the mitochondrial large ribosomal subunit. (E) Results from the 
different fractions were then subjected to nonlinear regression analysis, and RNA 
buoyancy peaks for each fungal species within a replicate were plotted. Peak fronts, e.g. 
the position of the heaviest RNA fraction of each of the AM fungal species detectable by 
qPCR, were calculated. Peak fronts further to the left indicate a higher 13C enrichment in 
the fungal RNA (e.g. red peak front in the example shown). Peak front differences (delta 
values for RNA buoyancies in g ml-1 of each pair of AM fungal species within each 
replicate) were determined and provided a paired species comparison of the C allocation 
patterns. 
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Fig. S3: Growth benefits conferred by the three AM fungal species and non-mycorrhizal 
(NM) controls. There was a significant effect of inoculation treatment in both the dicot 
and monocot plant species, (A) Medicago truncatula (F3,65 = 52.808, P < 0.001) and (B) 
Allium porrum (F3,58 = 4.494, P = 0.007). In M. truncatula, inoculation with the 
cooperative species (G. intraradices) led to a significant growth benefit compared to both 
less-cooperative species (G. aggregatum and G. custos) (Tukey’s honestly significant 
difference (HSD), P ≤ 0.05). These results were confirmed with the monocot A. porrum. 
G. intraradices again led to significantly higher growth than G. aggregatum or G. custos 
(Tukey’s HSD, P ≤ 0.05). In both plant species, the less-cooperative strains were not 
‘parasites’, meaning colonization by these fungal species lead to either greater (M. 
truncatula) or equal (A. porrum) growth compared to the NM-controls. This allowed us 
to examine whether hosts could detect and respond to variation in fungal cooperation, 
rather than testing for host response to a negative growth impact. Letters indicate 
significant differences between treatments means according to Tukey’s HSD test (P ≤ 
0.05). Bars represent the means of 15 replicates ± 1 standard error. 
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Fig. S4: Mycorrhizal growth characteristics of the three AM fungal species. All three 
species colonized more than 80% of the host root length of M. truncatula when grown 
alone, however structural patterns differed significantly among species. (A) The less-
cooperative species G. aggregatum formed significantly less arbuscules per root length 
than the other two species (F2,44 = 6.917, P = 0.003). (B) G. aggregatum formed 
significantly more vesicles per root length than the other two species (F2,44 = 110.599, P 
<0.001). (B) The less-cooperative species G. custos invested significantly more in spores 
compared to the other two fungal species (F2,26 = 18.747, P <0.001). Data were log 
transformed before analysis to meet assumptions for variance homogeneity. Different 
letters indicate significant differences between treatments means according to Tukey’s 
HSD test (P ≤ 0.05). Figures (A) and (B) show the means of 15 replicates ± 1 standard 
error. Figure (C) shows the mean of 9 replicates ± 1 standard error. 
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Fig. S5: Changes in the abundance of different AM fungal species in association with M. 
truncatula, when alone or in mixtures (e.g. equal proportions of all three species). 
Abundance of AM species was assessed by species-specific qPCR on cDNA prepared 
from non-fractionated RNA samples. There was no significant difference in the 
abundance of G. intraradices when the plant was inoculated with G. intraradices alone or 
in mixture (F1,8 = 0.05, P = 0.84). In contrast, there was a significant decrease in the 
abundance of G. aggregatum (F1,8 = 6.39, P = 0.035), and G. custos (F1,8 = 63.6, P 
<0.001), when compared to their singly inoculated controls. Cochran`s C Test and 
Bartlett`s test indicated no major deviation from the null hypothesis of equal variance 
between treatments. Bars represent the means of n=3-7 ± 1 standard error. Asterisks 
indicate significant differences between treatment means. 
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Fig. S6: Long-chain PolyP pools of cooperative and less-cooperative AM fungi in a one-
fungal, two-root compartment experiment. The less-cooperative G. aggregatum 
transferred more P to the root system that was better supplied with C, but retained the P 
in the form of long-chained polyphosphates (PolyP) (Seufferheld & Curzi, 2010), a form 
unavailable for the host (Takanishi et al., 2009). This could represent a potential hoarding 
strategy (see also Fig. S7, S8). In contrast, the cooperative fungus G. intraradices 
converted a larger proportion of its long-chained PolyP to short-chained PolyP. Short-
chained PolyP are continuously broken down in the intraradical mycelium to 
orthophosphate, which is transferred across the mycorrhizal interface to the host plant, 
and represent the PolyP pool that is correlated to host plant benefit (Ohtomo & Saito, 
2005). Long-chained PolyP concentrations were higher in roots that were colonized with 
the less-cooperative AM fungus G. aggregatum compared to roots colonized with G. 
intraradices, both in (A) dpm mg-1 root dry weight (5 mM F1,13 = 4.42; P = 0.055 and 25 
mM F1,15 = 6.10; P = 0.026) and (B) in % of total polyP (5 mM F1,14 = 10.051; P = 
0.0068 and 25 mM F1,13 = 5.404; P = 0.0369). The bars represent the mean of n= 6 to 9 
replicates ± 1 standard error. Asterisks indicate significant differences between species 
within each sucrose treatment. 
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Fig. S7: The less-cooperative G. aggregatum retained significantly more P in form of 
long-chained polyphosphates (PolyP), than the cooperative AM fungus G. intraradices. 
As in the triple-plate experiment (Fig. S6), G. aggregatum retained the P in the form of 
long-chained PolyP. The differences were not significant when no sucrose was added to 
the root system (0 mM; F1,13= 0.907, P = 0.341), but significant when 25 mM sucrose 
was added to the root system and more carbon became available for the fungus (F1,8 = 
12.682; P = 0.0074). The bars represent the mean of n= 5 or 8 replicates ± 1 standard 
error. Asterisks indicate significant differences between species within each sucrose 
treatment. 
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Fig. S8: Model showing carbon and phosphate exchange in roots colonized with a cooperative (left) or 
less-cooperative AM fungus (right). The host root allocates carbon preferentially to the cooperative AM 
fungus (Fig. 1), which invests C resources into structures for increasing nutrient uptake and exchange, such 
as chitin for the extension of the hyphae (e.g. extraradical mycelium, ERM) in the soil. This allows the 
cooperative AM fungus to absorb more inorganic orthophosphate (Pi) from the soil and to transfer more P 
to the host (Bücking & Shachar�Hill, 2005; Lekberg et al., 2010). The phosphate is transferred in the form 
of long-chained polyphosphates (PPPi, dark grey) to the intraradical mycelium (IRM) (Javot et al., 2007). 
Here, the cooperative fungus breaks down long-chained polyP into short-chained polyP (PPi, light grey) 
(Figs. S6, S7) and then to inorganic orthophosphate (Pi). Short-chained polyP represents a relatively mobile 
polyP pool (Rasmussen et al., 2000), while long-chained polyP represents a long-term storage pool of 
phosphate (Ohtomo & Saito, 2005; Takanishi et al., 2009). This remobilization to short-chained polyP is 
likely facilitated by higher C conditions in the IRM (Bücking & Shachar�Hill, 2005). The increase in the 
Pi pool in the IRM facilitates the efflux into the interfacial apoplast and the uptake by the plant from the 
apoplast via mycorrhiza-specific P transporters (Harrison et al., 2002; Javot et al., 2007). In contrast, the 
less-cooperative AM fungus invests more carbon resources, such as triacylglycerides (TAG) (Bago et al., 
2002) into the development of spores and vesicles (Fig. S4), and less into the development of nutrient 
absorbing ERM. Phosphate that is transferred to the IRM of the less-cooperative fungus is stored mainly in 
the form of long-chained polyP, and conversion to short-chained polyP is low (Figs. S6B, S7). This reduces 
the inorganic phosphate pool in the fungal cytoplasm and reduces the efflux of P through the fungal plasma 
membrane into the mycorrhizal interface that is driven by the concentration gradient between the fungus 
and the host (Smith et al., 1994; Smith et al., 1994; Ferrol et al., 2002; Bücking & Shachar�Hill, 2005). 
Storage of P in a long-chained form can be advantageous because it allows the fungus to better control the 
transfer of P across its plasma membrane by reducing P efflux. Hoarding of P resources also potentially 
reduces P availability for competing fungi and any P that is directly available for host uptake, making the 
host plant more dependent on the mycorrhizal pathway for its nutrients (Smith et al., 2009; Smith & Smith, 
2011). However, fungal P hoarding also results in higher carbon costs for P for the host when the plant is P 
deficient, and has no choice in fungal partners (Fig. 3). The different strength of the arrows indicates higher 
or preferential fluxes (bold) and lower or reduced fluxes (thin). Abbreviations: ERM - extraradical 
mycelium, IRM - intraradical mycelium, Pi – inorganic phosphate, PPi - short-chained polyphosphates, 
PPPi - long-chained polyphosphates, TAG – triacylglycerides. 
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Fig. S9. Response of the qPCR signal (quantification cycle, Cq) to DNA template 
dilutions. Here, the intra mt5 marker for the DNA preparation of G. intraradices is shown. 
For the calibration of the qPCR assay only values of the linear response region were used. 
The background region was used to determine the detection limit of the qPCR assay. 
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Fig. S10: Calibration curves for the qPCR assays. Curves were designed to assess 
abundance of AM fungal species with markers targeting species-specific sequence motifs 
of the mitochondrial large ribosomal subunit (mtLSU) of (A) G. intraradices, (B) G. 
aggregatum and (C) G. custos. The calibration was carried out with serially diluted 
plasmid preparations carrying the respective DNA fragments. Equations for the 
conversion of the qPCR signal (i.e., quantification cycle, Cq) to the gene copy 
concentrations in the template are given for each assay. CP represents the number of 
target gene copies per µl template. 
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2.5.5 TABLES 
 
Table S1: qPCR markers for specific quantification of development of Glomus 
intraradices, G. aggregatum, and G. custos by measuring gene copies of the 
mitochondrial large ribosomal subunit of the respective AM fungal species. FAM – 
fluorescein, BHQ1 – fluorescence quencher. 
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Table S2: Results of cross-specificity assay under optimized (stringent) cycling conditions for 
each AM species-specific qPCR marker. For templates, we used DNA extracts from spores and 
roots, as well as cDNA preparations from root RNA extracts. Sample provenance gives the 
information where the sample was produced, not where the nucleic acids were extracted and/or 
processed. All the qPCR analyses were carried out in Eschikon, Switzerland, using the same 
Roche LightCycler 2.0 instrument and Roche TaqMan chemistry. ROC – root organ culture, nd – 
no signal detected, n.a. – not applicable, BLD – below detection limit of the particular marker 
system. 
	

	



68 

 

 

Continued Table S2. 

	

	

	

Table S3: Detection limits and minimal detectable target gene concentrations of the three 
qPCR asssays.	
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3.1 ABSTRACT 
       

The arbuscular mycorrhizal (AM) symbiosis, which forms between plant hosts 

and ubiquitous soil fungi of the phylum Glomeromycota, plays a key role for the nutrient 

uptake of the majority of land plants, including many economically important crop 

species. AM fungi take up nutrients from the soil and exchange them for 

photosynthetically fixed carbon from the host. While our understanding of the exact 

mechanisms controlling carbon and nutrient exchange is still limited, we recently 

demonstrated that (i) carbon acts as an important trigger for fungal N uptake and 

transport, (ii) the fungus changes its strategy in response to an exogenous supply of 

carbon, and that (iii) both plants and fungi reciprocally reward resources to those partners 

providing more benefit. Here, we summarize recent research findings and discuss the 

implications of these results for fungal and plant control of resource exchange in the AM 

symbiosis. 

 

3.2 INTRODUCTION 
 

The AM symbiosis between fungi from the phylum Glomeromycota and the roots 

of approximately 65% of land plant species(Wang & Qiu, 2006) is characterized by an 

exchange of nutrients such as phosphorus (P) and nitrogen (N) from the fungus against 

carbon (C) from the host. AM fungi are obligate biotrophs and depend almost exclusively 

on host derived C to complete their life-cycle, and it has been estimated that the host 

transfers up to 20% of its photosynthetically fixed C to the fungus.(Wright et al., 1998) 

This dependency of the fungus has led to the assumption that the host is in control of the 
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symbiosis, and that the nutrient transport in the mycorrhizal symbiosis is primarily driven 

by host plant demand.(Thomson et al., 1990; Cairney & Smith, 1992; Cairney, 2011) In 

contrast, recent results indicate that, despite its high host dependency, the fungus can gain 

control in the symbiosis by adjusting its nutrient transfer in response to the C supply from 

the host(Bücking & Shachar-Hill, 2005; Hammer et al., 2011; Fellbaum et al., 2012). 

Both plants and fungi are able to detect variation in the resources supplied by their 

partners, allowing them to adjust their own resource allocation accordingly. These 

reciprocal reward mechanism ensures ‘fair trade’ between the symbiosis partners.(Kiers 

et al., 2011) Here, we discuss these recent research findings in relation to strategies that 

both partners may use to regulate and maximize their nutritional benefit from the AM 

symbiosis.  

 

3.3 CONTROL OF NUTRIENT UPTAKE PATHWAYS IN 
MYCORRHIZAL ROOTS 
 

Mycorrhizal plants can acquire nutrients via two uptake pathways.(Smith & 

Smith, 2011) The direct pathway (DP) involves the uptake of nutrients from the soil-root 

interface by high affinity P and N transporters located in the root epidermis and its root 

hairs. The mycorrhizal pathway (MP) involves the uptake of nutrients from the fungal-

soil interface by the extraradical mycelium (ERM), translocation to the intraradical 

mycelium (IRM) and uptake by the host from the fungal-plant interface (Fig.1) via 

mycorrhiza-inducible P and N transporters in the periarbuscular membrane.(Harrison et 

al., 2002; Guether et al., 2009) 
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Fig. 1. Nutrient uptake via the direct pathway (DP) or mycorrhizal pathway (MP) in 
mycorrhizal roots. High affinity nutrient uptake transporters of the DP are downregulated 
in mycorrhizal roots (dotted line), and instead mycorrhiza-inducible transporters of the 
MP are expressed at the mycorrhizal interface. The ERM takes up inorganic N from the 
soil/fungal interface and N is assimilated and converted into arginine via glutamine 
synthetase (GS),carbamoyl-phosphate synthase glutamine chain (CPS), argininosuccinate 
synthase (ASS), and argininosuccinate lyase (AL). The basic amino acid arginine (Arg) 
acts as charge balance and is co-transported to the IRM with negatively charged 
polyphosphates (polyP) that are synthesized in the ERM from P taken up from the soil. 
PolyP are remobilized in the IRM and release inorganic P (PI) and Arg, which is re-
converted into NH4

+ via the catabolic arm of the urea cycle and the activity of a fungal 
arginase (ARG) and urease (URE ). Plants transfer sucrose into the interfacial apoplast, 
which is hydrolyzed by the activity of a plant invertase (INV) into hexoses. The carbon 
supply of the host stimulates N and P uptake and transport via the MP in the AM 
symbiosis (hatched line). The supply of a carbon source (acetate) independent from the C 
supply of the host reduces N transport in the AM symbiosis. 
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Plant uptake transporters of the DP are down-regulated in mycorrhizal roots,(Chiou et al., 

2001; Grunwald et al., 2009) and the MP can represent the main uptake pathway even in 

plants in which no positive growth benefit is observed(Smith & Smith, 2011). Whether 

the suppression of the DP in mycorrhizal roots is a host driven or a fungal mediated 

response is not known. The expression of plant uptake transporters of the DP is normally 

regulated by host plant demand, and the lower transcript levels in mycorrhizal roots could 

only be the result of an improved P supply13. On the other hand, some transporters that 

are down-regulated in mycorrhizal roots are not controlled by P supply.(Liu et al., 2008) 

It has been suggested that the suppression of the DP by AM fungi can even lead to 

growth depressions in mycorrhizal plants when the MP does not compensate for the 

reduced uptake of the DP. (Smith et al., 2011) AM fungi differ in their efficiency with 

which they suppress the DP,(Grunwald et al., 2009) and a strong suppression of the DP 

will shift the ratio between the two uptake pathways towards the MP and will result in a 

higher mycorrhizal dependency of the host. It is interesting to speculate that the AM 

fungus could use the down-regulation of the DP to increase its C availability. A higher 

dependence on the MP for nutrient uptake has been shown to stimulate the C allocation to 

the root system.(Nielsen et al.; Postma & Lynch, 2011)  

 

3.4 CARBON AS TRIGGER FOR NUTRIENT UPTAKE AND 
TRANSPORT IN THE AM SYMBIOSIS 
 

The host provides the fungus with C in the form of sucrose (Fig. 1), which is broken 

down by plant derived acid invertase(Schaarschmidt et al., 2006; Schaarschmidt et al., 

2007) or sucrose synthase(Hohnjec et al., 2003) into hexoses which the fungus takes up 
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via a high affinity monosaccharide transporter(Helber et al., 2011). AM fungi are unable 

to use sucrose as a C source(Parrent et al., 2009) and induce the expression of the plant 

acid invertase in the mycorrhizal interface(Schaarschmidt et al., 2006). It has previously 

been shown that an increase in the C availability for the AM fungus stimulate the P 

transport in the AM symbiosis.(Bücking & Shachar-Hill, 2005; Hammer et al., 2011) Our 

more recent work demonstrated that C also acts as trigger for fungal N uptake and 

transport, and that the stimulation in N transport is driven by changes in fungal gene 

expression (Fig. 1).(Fellbaum et al., 2012)  

     Woolhouse in 1975 was the first to speculate that C and P transport in the AM 

symbiosis are directly linked,(Woolhouse, 1975) and this hypothesis was recently 

supported by the demonstration that the mycorrhiza-inducible plant P transporter Pt4 and 

the fungal monosaccharide transporter MST2 are co-localized in the AM interface and 

that their expression level is tightly linked.(Helber et al., 2011) Phosphate transfer and 

the expression of Pt4 is essential for the AM symbiosis; the absence of this transporter in 

the periarbuscular membrane leads to a premature degradation of arbuscules and the 

symbiosis fails.(Javot et al., 2011) Arbuscules in the AM symbiosis undergo a cycle of 

growth, degradation, senescence and recurrent growth, and it has been suggested that a 

consistent host-driven turnover of arbuscules provides the plant with an instrument to 

remove and ‘to penalize’ inefficient AM fungal symbionts. This mechanism would also 

allow hosts to regulate its intracellular colonization according to changes in the 

exogenous nutrient supply conditions.(Breullin et al., 2010) Interestingly, the arbuscular 

phenotype of mtpt4 mutants is rescued by N deprivation, indicating that the AM fungus 

can escape arbuscular degradation by N transport across the mycorrhizal interface. Does 
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this mean that the host plant considers the sum of N and P benefits when regulating its 

intracellular colonization and the carbon supply to its fungal symbionts? More data are 

needed to answer this critical question. 

 

3.5 NUTRIENT ALLOCATION IN COMMON MYCELIAL NETWORKS 
 

        AM fungi interact simultaneously within a common mycelial network (CMN) with 

multiple hosts from different plant species, and therefore do not rely on a single host for 

their C supply. Currently, it is not known how AM fungi allocate resources within a 

CMN and how host plants are able to compete with other plants for limited nutrient 

resources. It has been shown that carbon to nutrient exchange ratios in CMN are fungal 

and plant species-dependent and that plant species differ in their contribution to the C 

availability of the CMN. Recently, we demonstrated that AM fungi, despite the 

coenocytic nature of their hyphae, are able to distinguish between a C source that is 

supplied to the ERM or host C delivered via the mycorrhizal interface(Fellbaum et al., 

2012). When an exogenous supply of C became available for the AM fungus and the 

fungus became less dependent on its host for its C supply, a fungal arginase gene in the 

ERM was up-regulated, and the N transport to the mycorrhizal host was reduced. 

Consistently, a down-regulation of two fungal ammonium transporters was observed 

when an exogenous C source became available for the fungus(Pérez-Tienda et al., 2011). 

This suggests that (i) there is a change in fungal strategy when the fungus has access to a 

C source independent from a single host and (ii) that the C supply of the host may also 

play an important role for the allocation of nutrients within a CMN. Recent work from 
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our lab in whole plant systems suggests that AM fungi allocate N and P resources in 

CMN according to the C benefit that different hosts are able to provide (Fellbaum et al., 

unpublished).  

    While significant progress has been made in understanding transport and allocation 

processes in the AM symbiosis, much more work is needed to understand the mechanistic 

strategies of both partners, and how these strategies are mediated by external resources. 

This will allow us to make predictions about mycorrhizal functioning under global 

change, and even allow us to maximize the benefits of the mutualism to increase the 

nutrient efficiency of crops in environmentally sustainable agriculture. 
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4.1 SUMMARY 
 
 
• Common mycorrhizal networks (CMN) of arbuscular mycorrhizal (AM) fungi in the 

soil simultaneously provide multiple host plants with nutrients, but the mechanisms 

by which the nutrient transport to individual host plants within one CMN are 

controlled, are unknown.  

• Using radioactive and stable isotopes, we followed the transport of phosphate (P) and 

nitrogen (N) in the CMNs of two fungal species to plants that differed in their carbon 

source strength, and correlated the transport to the expression of mycorrhiza-

inducible plant P (MtPt4) and ammonium (1723.m00046) transporters in mycorrhizal 

roots. 

• AM fungi discriminated between host plants that shared a CMN and preferentially 

allocated nutrients to high quality (non-shaded) hosts. However, the fungus also 

supplied low quality (shaded) hosts with nutrients and maintained a high colonization 

rate in these plants. Fungal P transport was correlated to the expression of MtPt4. The 

expression of the putative ammonium transporter 1723.m00046 was dependent on the 

fungal nutrient supply and was induced when the CMN had access to N.  

• Biological Market Theory has emerged as a tool to study the strategic investment of 

competing partners in trading networks. Our work demonstrates how fungal partners 

are able to retain bargaining power, despite being obligately dependent on their hosts.  

 
 
 
 
 
 



89 

 

 

4.2 INTRODUCTION 
 
 

The 450-million year old arbuscular mycorrhizal (AM) symbiosis is among the 

world´s most widespread mutualisms and is formed by approximately 65% of all known 

land plant species (Wang & Qiu, 2006). The extraradical mycelium (ERM) of the fungus 

forms an extensive network in the soil and provides the host plant with access to nutrient 

resources beyond the root depletion zone. The ERM of the AM fungus takes up 

phosphate (P), nitrogen (N), sulfur and various trace elements from the soil, and transfers 

these nutrients to the intraradical mycelium (IRM), where the nutrients are exchanged for 

carbon from the host (Marschner & Dell, 1994; Smith et al., 2009). The plant transfers up 

to 20 % of its photosynthetically fixed carbon to the AM fungus and the fungus uses 

these carbon resources to maintain and to extend its hyphal network in the soil (Wright et 

al., 1998).  

The maintenance of cooperation in the mycorrhizal partnership has long posed a paradox 

for evolutionary theory. Cooperation between different species is hard to explain because 

selfish individuals can exploit mutualisms, reaping benefits while paying no costs (Leigh, 

2010). Sanctions - or other feedback mechanisms that allow a host to control the fitness 

of its partners - play a key role in stabilizing cooperation in many mutualisms (West et 

al., 2007). However, in the mycorrhizal symbiosis, neither plant nor fungal partner is 

really ‘in control’. Both partners in the mycorrhizal symbiosis, interact with multiple 

partners simultaneously: a single plant host is colonized by multiple fungal species, and 

fungal ‘individuals’ interact with multiple plant hosts and species, interconnected by a 

common mycorrhizal network (CMN). This complex system of many-to-many 
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interactions means that neither partner can be ‘enslaved’, because both plant and fungus, 

can choose among multiple trading partners (Kiers et al., 2011; Walder et al., 2012). 

Biological Market Theory is a useful framework to study how cooperation can be 

stabilized in many-to-many interactions. The theory argues that resource trade can be 

analyzed from an economic vantage point: partners on both sides of the interaction 

compete and those offering the best ‘rate of exchange’ will be favored (Noë & 

Hammerstein, 1995; Werner et al., 2014). However for market dynamics to emerge, 

individuals must be able to discriminate among competing partners. Recently, a series of 

manipulative experiments demonstrated that mycorrhizal plants are able to detect, 

discriminate, and reward the best fungal partners with more carbohydrates (Kiers et al., 

2011). There is evidence that also fungal partners are able to discriminate and 

preferentially allocate P and N to roots grown under high carbohydrate conditions 

(Bücking & Shachar-Hill, 2005; Hammer et al., 2011; Kiers et al., 2011; Fellbaum et al., 

2012). However, these experiments have so far only been conducted in in-vitro root 

organ cultures, and it has been questioned whether these artificial systems function with 

enough ecological realism to capture the dynamics of the complex underground fungal 

networks that form among different plants in natural ecosystems (Smith & Smith, 2011). 

CMNs can be formed by one individual fungus or when several conspecific fungal 

individuals connect by hyphal anastomoses (Mikkelsen et al., 2008). In both cases, 

CMNs can transfer nutrients to several host plants simultaneously (van der Heijden & 

Horton, 2009; Lekberg et al., 2010; Merrlid et al., 2013). However, the mechanisms that 

determine how an AM fungus allocates nutrients among competing plants connected by 

one CMN are currently unknown. Recently, Walder et al. (2012) demonstrated that plant 
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species differ in their carbon investment into the CMN. They suggested that this 

contribution was unrelated to the amount of nutrients they receive. They found that the 

C3 plant flax, despite its smaller measured contribution to the carbon pool, still received 

the majority of nutrients from the CMN compared to the competing C4 plant sorghum. 

While this could be interpreted as evidence that AM fungi cannot discriminate among 

hosts of differing quality, this trade asymmetry can also be explained by differences in 

host-plant compatibility, carbon to nutrient exchange ratios, or other physiological 

differences (e.g. C3 vs. C4 photosynthesis). For example, sorghum showed lower levels 

of fungal colonization in roots and soil when grown in mixed cultures with flax, 

prohibiting standardized measurements of nutrient allocation to competing plants 

(Walder et al., 2012).  

To test for fungal discrimination processes, we varied photosynthetically active radiation 

by shading one of two Medicago truncatula plants and tracked fungal P and N allocation 

patterns of the CMNs of two fungal strains. We hypothesized that AM fungi could 

discriminate between high and low quality partners in a CMN and would preferentially 

transfer more N and P to high quality (non-shaded) partners. Considering the key role 

that AM fungi play for the nutrient uptake of land plants, plant community composition 

and carbon sequestration in ecosystems, it is crucial to better understand how carbon and 

nutrient resources are allocated in the CMNs of the most important and ancient symbiosis 

of land plants.   
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4.3 MATERIAL AND METHODS 
 

Plant and fungal material  

We scarified and germinated seeds of Medicago truncatula variety cv. Jemalong, A17 

according to Salzer et al. (1999). After five days, we transferred two plants each into 

custom-made multi compartment systems filled with a sterilized (2 h at 121°C) growth 

substrate of 20% organic soil, 40% perlite, and 40% sand that contained 3.9 mg kg-1 NO3, 

40.3 mg kg-1 NH4
+, and 1 mg kg-1 P (Olsen extraction) (v:v:v) (Fig. 1). 
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Fig. 1. Custom made growth system. A double membrane with an air gap (two sheets of 
50 µm nylon mesh divided by a 30 cm long wire spiral) prevented the diffusion of 
nutrients from the fungal compartment (FC) to the root compartment (RC), but allowed 
fungal hyphae to cross from the RCs into the FCs. Three different shade treatments were 
applied to the plants: (1) both non-shaded (NS/NS), (2) one non-shaded, one shaded 
(NS/S), and (3) both shaded. To the FCs 4 mM 15NH4Cl or 450 kBq 33P-orthophosphate 
was added. 
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These systems were constructed of a 3.81 cm (ID) PVC pipe and matching fittings. The 

root compartment was divided into two halves by a 50 µm nylon mesh (BioDesign Inc. of 

New York, USA) to prevent intermingling of roots, but allowed fungal crossover into 

both root compartments (RC). Fungal compartments (FC) were made out of a cap fitting 

joined by a 6 cm long PVC pipe, and separated from the RC by a double layer of a 50 µm 

nylon mesh, which was divided by a 30 cm long piece of wire (0.9 mm) wrapped into a 

spiral to prevent ion diffusion from the FC into the RC.  

Twenty-four days after sowing, both plants were inoculated with 350 to 450 spores of 

either Rhizophagus irregularis (Blaszk., Wubet, Renker & Buscot; Walker & Schüßler, 

2010; isolate 09 collected from Southwest Spain by Mycovitro S.L. Biotechnología 

ecológica, Granada, Spain) or Glomus aggregatum (N.C. Schenck & G.S. Sm.; isolate 

0165 collected from the Long Term Mycorrhizal Research Site, University of Guelph, 

Canada). We selected these two fungal isolates because both fungi previously exhibited 

different levels of symbiont quality. Based on plant growth responses, and costs of 

carbon per unit P transferred, R. irregularis tends to be a more cooperative strain than G. 

aggregatum for M. truncatula (Kiers et al., 2011). The inoculum was produced in axenic 

Ri T-DNA transformed carrot (Daucus carota clone DCI) root organ cultures in Petri 

dishes filled with mineral medium (St-Arnaud et al., 1996). After eight weeks of growth, 

we isolated the spores by blending the medium in 10 mM citrate buffer (pH 6.0).  

The plants were grown in a growth chamber (Conviron model TC30 Winnipeg, Canada) 

under the following conditions: 14 h photoperiod, 25°C/20°C day/night cycle, 

photosynthetically active radiation of 225 µmol m-2 s-1, and 30% humidity. We watered 

the RC with 40 ml distilled water every four days, and the FC when needed. The plants 
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were fertilized once halfway through the growing period by adding a modified Ingestad 

solution with 250 µM NH4NO3 and 100 µM KH2PO4 to the RC of each growth chamber 

(Ingestad, 1960). The P and N concentration of the fertilizer was reduced to maintain a 

low nutrient status and a high mycorrhizal colonization rate of the plants. The plants 

exhibited signs of nutrient stress such as stunted growth and yellowish leaves at the time 

of P and N labeling. 

 
Experimental Design 
 
     We conducted two experiments (N or P addition) to test the effect of carbon 

availability on resource allocation, and reduced the photosynthetically active radiation by 

applying a shade treatment to neither (non-shaded/non-shaded; NS/NS), one (non-shaded, 

shaded; NS/S) or both plants (shaded/shaded; S/S) in each growth system by covering the 

entire plant with a sheath made out of 12 cm x 14 cm 50% black shade cloth (Growers 

Solution Tennessee, USA). The shading reduced the photosynthetically active radiation 

by 60% from 222.75 µmol m-2 s-1 to 89.1 µmol m-2 s-1 as measured with a Li-Cor LI-

185b light meter (Li-Cor, Lincoln, NE). One day after the plants were shaded, we 

injected 17.1 mg (leading to a concentration of 4 mM) 99% enriched 15NH4Cl 

(Cambridge Isotope Laboratories, Tewksbury, MA) dissolved in 6 ml, or 450 kBq (0.078 

ng) 33P-orthophosphate (Perkin Elmer, Waltham, MA) dissolved in 3 ml purified H2O 

through a port to the FCs. Previous tests indicated that these labeling volumes 

homogenously wet the substrate in the FC without saturation. There were five biological 

replicates per shade treatment and nutrient supply and each treatment was inoculated with 

either R. irregularis or G. aggregatum. In total, 30 systems each were supplied with N or 

with P. Additionally, three systems each with non-inoculated controls were labeled to 
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confirm that there was no significant leakage of 15NH4
+ or of 33P from the FC into the 

RC.  

Since the detectability of the radioactive label is higher but time sensitive (33P half-life is 

25.3 d), we harvested the plants 5 days after P addition. Since the 15N analysis is not as 

sensitive, and in preliminary experiments the 15N labeling of the plants was too low after 

14 d, the plants were harvested 23 days after N was supplied to the FC. At harvest, the 

roots were cleaned and the total fresh weight was taken. The roots were then divided into 

three aliquots, the first aliquot was weighed, dried at 70°C for 2 days and the dry to fresh 

weight ratio was used to determine the total root dry weight. This aliquot was later used 

for 33P and 15N analysis. The second aliquot was cryofixed in liquid nitrogen and stored at 

-80°C for RNA extraction, and the third aliquot was stored in 50% ethanol until the 

mycorrhizal colonization assays were performed. The shoots were stored at -80°C until 

they were ground in a mortar cooled with liquid nitrogen, lyophilized, weighed and 

prepared for elemental analysis.  

 

Analysis of mycorrhizal colonization and ERM development 
 
     We extracted ERM from the FC as described previously (Miller et al., 1995) with 

slight modifications. The ERM was collected with a 50 µm nylon mesh (BioDesign Inc. 

of New York, USA) and stained for 30 min. The nylon mesh with the ERM was rinsed 

with 2 ml Milli Q and collected on a 0.45 µm gridded membrane (Millipore, USA), air 

dried and mounted with 30% glycerol. The length of the ERM was quantified according 

to Brundrett et al. (1994). We also determined the percentage of the total root length 
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colonized in a minimum of 50 root segments by the grid intersection technique 

(McGonigle et al., 1990). 

 

 

 

Analysis of 33P labeling and extraction of various P pools 

    We analysed the soil of the RC to make sure that there was no diffusion of nutrients 

from the FC into the RC. Aliquots of the soil were dried at 70°C, and the P content was 

extracted with 0.5 M NaHCO3  at pH 8.5 according to Olsen et al. (1954). The samples 

were vortexed, allowed to sit for 30 min and then centrifuged. An aliquot of the 

supernatant was taken and the 33P content was measured by liquid scintillation counting.  

After homogenization of the root and shoot samples, an aliquot was taken, dried at 70°C, 

weighed and digested by adding 500 µl tissue solubilizer to the sample (TS-2, Research 

Product international, Mount Prospect, IL). After digestion, 150 µl glacial acetic acid and 

2 ml scintillation cocktail (Biosafe II; Research Product international) was added. We 

also analyzed in mycorrhizal root samples the allocation of P into different P pools 

according to Aitchison and Butt (1973). The samples were dried at 70°C, homogenized 

and the following P pools were analysed: ortho-phosphate (Pi) and acid soluble or short-

chained polyphosphates (polyP) with a chain length of ≤ 20 phosphate residues after 

extraction with ice-cold 10 % TCA; phospholipids after extraction with 100 % ethanol 

and ethanol/ether (3:1, v:v); acid-insoluble polyP with a chain length of > 20 phosphate 

residues after extraction with 1 M KOH; and DNA-, RNA-, and protein-phosphates as 

residue after extraction of all other pools. All samples were measured with a Wallac 
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scintillation counter (Perkin Elmer, Waltham, MA) and the data were corrected for 

differences in the counting efficiency by use of an internal standard. 

 

 

 

Analysis of 15N labeling 

   We digested 10-15 mg aliquots of homogenized and freeze-dried root and shoot 

material in 750 µl concentrated H2SO4 and heated the samples for 2 h at 225°C followed 

by an addition of 36 drops of 30% H2O2 (three drops at a time every 30 sec) as described 

earlier (Fellbaum et al., 2012). The solution was then heated for an additional 3 h at 

225°C to remove any traces of water and allowed to cool. Forty microliter of the resulting 

clear solution of (NH4)2SO4 in H2SO4 with dissolved into 600 µl of 99.9 % d6 DMSO 

containing 0.05% (v:v) TMS reference. The 1H spectrum was obtained in a 5 mm z-axis 

PFG dual broad-band probe on a 9.2 Tesla Varian Inova spectrometer operating at 400 

MHz. The spectra were acquired using ~1400 transients with a 90° (10.8 µsec) pulse 

width, spectral width of 5042 Hz, pulse delay of 1.0 sec, acquisition time of 1.6 sec at 

25°C. The T1 relaxation time of the NH4 protons were measured to be 0.4 sec. The triplet 

resonance of the 1H-14N and doublet resonance of the 1H-15N were observed centered at 

7.2 ppm relative to the TMS resonance 0.0 ppm with observed 1H-15N couplings of 53 Hz 

and 74 Hz, respectively. The percentage of total N labeled with 15N in the tissue was 

determined by dividing the integrated area of the 1H-15N doublet resonances by the sum 

of the integrated doublet and triplet resonance areas (Fig. S1). 
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Quantitative real-time PCR of genes involved in nitrogen and phosphate transport 

   Using quantitative real-time PCR (qPCR), we studied the transcript levels of genes 

encoding the mycorrhiza-inducible plant P transporter MtPt4 (Chiou et al., 2001; 

Harrison et al., 2002; Javot et al., 2007), and of 1723.m00046, a mycorrhiza-inducible 

plant ammonium transporter that is induced in cortical cells harboring arbuscules  

(Gomez et al., 2009). All steps were performed according to the manufacturer’s 

instructions unless otherwise stated. We homogenized the root samples with a mortar and 

pestle cooled with liquid nitrogen, and extracted total RNA using TRIzol Reagent 

(Invitrogen, Grand Island, NY). The supernatant was treated with an RNeasy MinElute 

Cleanup Kit (Qiagen, Valencia, CA) and the RNA was eluted into 1 µl of an RNase 

inhibitor (Murine, New England Biolabs, Ipswich, MA). The extracted RNA was treated 

using RQ1 RNase-Free DNase (Promega, Madison, WI) and quantified by a NanoDrop 

ND-1000 spectrophotometer (Thermo Scientific, Waltham, MA). cDNA was synthesized 

using 0.15 µg µl-1 DNase treated RNA, MMLV Reverse-Transcriptase (Promega), 

Random Primer 6 (New England Biolabs), and dNTPs (Qiagen). qPCR was performed 

using the QuantiTect SYBR Green PCR Kit (Qiagen), 2 µl of 1:5 diluted cDNA, 0.625 

µM forward and reverse primers (NCBI: MtPt4: Pr010288303; 1723.m00046: 

Pr010288319; EF1α: Pr010288292; Gomez et al., 2009) in a 20 µl reaction using an ABI 

7900HT thermal cycler (Applied Biosystems, Grand Island, NY). The PCR conditions 

were as follows: 56°C for 2 min; 95°C for 15 min; 40 cycles at 95°C for 10 s, 60°C for 

15 s, and 72°C for 10 s; dissociation at 95°C for 15 s; 60°C for 15 s; and 95°C for 15 s. 

Changes in gene expression (MtPt4: NCBI AY116211; 1723.m00046) were compared to 

non-mycorrhizal control plants and by using EF1α (TC106485) as a reference gene 
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(Gomez et al., 2009) and the ΔΔCT method (Winer et al., 1999). The results are based on 

3-12 biological replicates and 2 technical replicates. 

 

Statistical treatment 
 
   If not mentioned otherwise, we only discuss treatment effects when they were 

statistically significant according to two-way ANOVA with inoculation (G. aggregatum 

or R. intraradices), or shade treatment (various shade treatments) or three-way ANOVA 

with inoculation (G. aggregatum or R. intraradices), shade treatment (various shade 

treatments), and nutrient supply to FC (15N or 33P) as factors. Paired t-tests were used to 

compare shaded and non-shaded plants in NS/S systems and treatment effects were tested 

by Fisher´s Least Significant Difference (LSD) test (p ≤ 0.05). If the within treatment 

variability was too high, we log transformed the data prior to analysis. If a normal 

distribution of the data could not be guaranteed, we used the non-parametric Mann-

Whitney´s u-test (given in the text). Correlations and computed p values were analyzed 

by Pearson´s correlation coefficient. All tests were conducted with JMP 10 (Cary, NC) or 

Unistat 6.0 (London, U.K.).   

 

 

4.4 RESULTS 
 

Host plant growth and mycorrhizal colonization by fungal partners 

First, we analyzed host plant biomass to determine the effect of shading and 

fungal inoculation (Fig. S2). There was a high variability in the root and shoot biomass of 

all treatments and even though some statistical differences were observed (Fig. S2a, d), 
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there were no consistent effects related to shading or fungal inoculation. The analysis of 

the hyphal length in each FC demonstrated that in growth systems with one shaded and 

one non-shaded plant (NS/S) the ERM development did not differ among the two FCs, 

and that both fungal species successfully established a CMN in the growth systems 

(Table S1). While the hyphal lengths of G. aggregatum were slightly higher (78.4 ± 17.8 

m g-1 dry) than of R. irregularis (53.8 ± 4.4 m g-1 dry soil), there was no statistically 

significant difference between both fungal species (Table S1). However, consistent with 

the slightly higher ERM development, we found a higher labeling with 33P or 15N in roots 

colonized with G. aggregatum (see below, Table S2, S3). Shading had a significant effect 

on the mycorrhizal colonization. While the colonization levels of both fungi were high 

for NS/NS and NS/S systems (> 93.8 %), these levels decreased in S/S systems to 73.7 % 

for G. aggregatum and 77.5 % for R. irregularis (Fig. S3).  

 

Phosphate and nitrogen allocation in common mycorrhizal networks 

When the fungus had access to a shaded and a non-shaded host plant, both fungi 

preferentially transferred more of the P and N taken up to non-shaded hosts (Fig. 2, Table 

S2, S3). This suggests that both fungal strains were able to discriminate between host 

plants, and preferentially allocated resources to non-shaded plants.  
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Fig. 2. Allocation of the total 33P or 15N taken up by the CMN of G. aggregatum (a, b) 
and R. irregularis (c, d) and transferred to the roots (a, c) or shoots (b, d) of non-shaded 
(white bars) and shaded (grey bars) plants in NS/S systems (calculated as percent based 
on the N or P content in shaded and non-shaded plants). Shown is the average of n=5 ± 
SE. 
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Fig. 3. Phosphate transport (in dpm mg-1 d.wt.) of the CMN of G. aggregatum (a, b) and 
R. irregularis (c, d) from the fungal compartment to root (a, c) or shoot (b, d) of the host 
plants dependent on the photosynthetic capability (non-shaded, white bars, and shaded, 
gray bars). Systems with two non-shaded (NS/NS), two shaded (S/S) or one non-shaded 
and one shaded plant (NS/S). Shown is the average of n=5-12± SE. Different letters on 
the bars indicate statistically significant differences within each graph according to LSD 
test (p ≤ 0.05). The results of the two-way ANOVA are shown in Table S2.  
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This preferential allocation by G. aggregatum led to significantly higher P levels in the 

shoots (but not roots) of non-shaded hosts of NS/S systems (Fig. 3a, b). In growth 

systems with a shaded and a non-shaded plant (NS/S), G. aggregatum transferred more P 

to the shoots of non-shaded plants, but less P to the shoots of shaded plants, compared to 

systems in which the fungus had only access to shaded or to non-shaded plants (S/S or 

NS/NS; significant according to u-test, p = 0.0152) (Fig. 3b). In R. irregularis inoculated 

plants, the preferential allocation resulted in higher P levels in both the roots and shoots 

of non-shaded plants, independent of whether systems in which both plants were shaded 

or non-shaded (S/S vs. NS/NS) were compared, or systems in which the fungus had 

access to both a shaded and a non-shaded plant (NS/S; Fig. 3c,d).  

Between 5.5 to 17.3 % of the total P transferred to the mycorrhizal roots was stored in 

form of long-chained or short-chained polyphosphates (poly-P). Fungal strain and 

shading did not have a significant effect on the total poly-P content, and in roots 

colonized with G. aggregatum, the proportion of long-chained to short-chained poly-P 

was unaffected by the shading treatment. However, we observed a shift in the ratio 

between long-chained to short-chained poly-P in roots that were colonized with R. 

irregularis: a significantly higher proportion of the poly-P in the roots of shaded plants 

was stored in the form of long-chained poly-P (Fig. S4).  
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Fig. 4. Nitrogen transport (in percent 15N labeling of total N) of the CMN of G. 
aggregatum (a, b) or R. irregularis (c, d) from the fungal compartment to root (a,c) or 
shoot (b,d) of the host plants dependent on the photosynthetic capability (non-shaded, 
white bars, and shaded, gray bars). Systems with two non-shaded (NS/NS), two shaded 
(S/S) or one non-shaded and one shaded plant (NS/S). Shown is the average of n=5-8 ± 
SM. Different letters on the bars indicate statistically significant differences within each 
graph according to LSD test (p ≤ 0.05). The results of the two-way ANOVA are shown in 
Table S3. 
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Both fungi transferred N from the fungal compartment to their host and up to 24.4 % of 

the N in the root and up to 38.0 % of the N in the shoot became labeled with 15N (Fig. 4a, 

b; Fig. S1). The shading had a significant effect on the N labeling in roots and shoots of 

G. aggregatum but not in R. irregularis (Fig. 4). The CMN of G. aggregatum transferred 

significantly more N to roots and shoots of non-shaded host plants (Fig. 4a, b). When 

shaded plants in NS/S or S/S systems were compared, G. aggregatum transferred more N 

to the shoots of shaded plants when only shaded plants were available as hosts (S/S); the 

difference in the 15N labeling on a dry weight basis was not significant on the 5 % level 

(p = 0.0743) (Fig. 4b). There was a high variability in the 15N labeling in the plants that 

were colonized with R. irregularis, and shading did not lead to a significant reduction in 

the 15N labeling of the plants (Fig. 4c, d).  

 

 

Expression of plant P and N transporters in mycorrhizal roots 

   MtPt4 expression was induced in mycorrhizal roots colonized by both fungi. However, 

the fold induction depended on the fungal species colonizing the root; while G. 

aggregatum induced the expression of MtPt4 up to 90-fold compared to the non-

mycorrhizal controls (particularly under non-shaded conditions), we only found 

inductions up to 25-fold in roots colonized with R. irregularis (Fig. 5). 
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Fig. 5. Expression of MtPt4 (a, b) and 1723.m00046m (c, d) in roots that were colonized 
by G. aggregatum (a, c) or R. irregularis (b, d). Systems with two non-shaded plants 
(NS/NS), two shaded plants (S/S), or one non-shaded and one shaded plant (NS/S); non-
shaded plants (white bars) and shaded plants (grey bars), or systems to which 33P 
(phosphate) or 15N (nitrogen) was added to the fungal compartments. Shown is the 
average of n=3-12± SE. Different letters on the bars indicate statistically significant 
differences according to LSD test (p ≤ 0.05). Results of a three-way ANOVA are shown 
in Table S4.  
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   Consistent to the reduction in the P transport to the shaded hosts, we found that shading 

reduced the MtPt4 expression in mycorrhizal roots (Fig. 5a, b) independently on whether 

the fungus had access to both non-shaded and shaded plants or only to shaded or non-

shaded plants. The decrease in the MtPt4 transcript levels in shaded plants was 

particularly pronounced in systems colonized by R. irregularis; the transcript levels of 

the non-shaded plants was four to five times higher than of the shaded plants in NS/S 

systems. The expression of MtPt4 was proportional to the P transport to the colonized 

roots and was correlated to the P tissue concentration in dpm mg-1 d.wt. and to the total P 

content in the mycorrhizal roots (Fig. 6a, b). 
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Fig. 6. Correlation between the MtPt4 expression in mycorrhizal roots and the phosphate 
(P) transport to the roots in dpm per mg-1 d.wt. (a) and total dpm contents (b) of the roots. 
The MtPt4 expression is shown in fold induction according to the ΔΔCt method (Winer et 
al., 1999). MtPt4 expression levels in roots colonized with G. aggregatum (triangles), or 
R. irregularis (circles) of non-shaded plants (open triangles or circles) or shaded plants 
(closed triangles or circles). Computed p-values of the correlation analysis for (a) p = 
0.0002, R2 = 0.84535; (b) p = 0.0140, R2 = 0.58762.   
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1723.m00046, a putative ammonium transporter with a 99% sequence similarity to 

Medicago truncatula ammonium transporter 3 member MTR_8g074750 (NCBI 

XM_003629175.1) was induced in roots colonized with G. aggregatum, and the 

expression level was dependent on whether N or P was supplied to the CMN (Fig. 5c). 

When the CMN of G. aggregatum was supplied with N, 1723.m00046 was up-regulated 

up to 50-fold (compared to non-mycorrhizal roots), whereas when supplied with P, only a 

2- to 3-fold induction was observed. We found no effect of the shading treatment on the 

transcript levels of 1723.m00046. By contrast, the transcript levels of 1723.m00046 were 

comparatively low in roots that were colonized with R. irregularis and in shaded and 

non-shaded plants of NS/S systems lower than in non-mycorrhizal control plants (fold 

induction < 1) (Fig. 5d). We only found a 5- to 6-fold induction of 1723.m00046 in 

systems, in which two shaded (S/S) or non-shaded plants (NS/NS) shared one CMN that 

was supplied with N.  
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4.5 DISCUSSION 
 

   Underground, plants compete with other plants for nutrients provided by fungal CMNs, 

but the mechanisms that control the allocation patterns among plants are only poorly 

understood. We examined how nutrients supplied to the CMN were allocated between 

two host plants that differed in their ability to provide carbon resources. Specifically we 

asked if fungal partners were able to discriminate among hosts interconnected by a CMN. 

We found that when fungi were given a choice, they consistently allocated a higher 

percentage of both P and N to non-shaded hosts (Fig. 2), and that host plants that were 

restricted in their photosynthetic capability (here by shading) became relatively weak 

competitors for nutrient resources that were available from the CMN.  

We varied the carbon source strength of the host plants by reducing the 

photosynthetically active radiation of half of the plants via shading. In systems in which 

the fungus had only access to shaded host plants (S/S), the mycorrhizal colonization was 

significantly reduced (N supply experiment; Fig. S3). This suggests that the shading 

treatment reduced the carbon supply for the CMN and that the AM fungus was unable to 

maintain its high colonization rate. Medicago has been shown to respond very sensitively 

to shading, and even a short-term shading can reduce the carbon allocation to the root 

system, and lead to a higher carbon allocation particularly to the shoot meristems to 

compensate for the decrease in the photosynthetic activity (Schmitt et al., 2013). Shading 

for one to two weeks has been shown to reduce the mycorrhizal colonization of plants, 

but not to lower the carbon costs per nutrient benefit for the host plant (Heinemeyer et al., 

2004; Olsson et al., 2010).  
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Interestingly, we found that shading did not reduce the mycorrhizal colonization rate of 

shaded plants when these plants shared a CMN with non-shaded host plants (NS/S). This 

suggests that the fungus used parts of the carbon derived from non-shaded host plants (or 

from its own reservoir in storage lipids) to maintain a high colonization rate in low 

quality hosts. This strategy potentially allows the obligate biotrophic fungus to maintain 

access to additional carbon sources, ensuring that the loss of a high quality host (e.g. by 

pathogen or herbivore damage) would be less detrimental. In the P supply experiment, 

the shading treatment was much shorter (six days in total), but still the resource allocation 

patterns indicated that both fungi were discriminating among the hosts. These data 

suggest that even before a significant reduction in the mycorrhizal colonization is 

expected (the whole arbuscular life cycle lasts around 8 d, the functionality for 2-3 d; 

Kobae & Hata, 2010), the fungus is able to change its nutrient allocation strategy in 

response to the shading treatment.  

Previous studies using root organ cultures have shown that the carbon supply of the host 

acts an important trigger for P and N transport in the AM symbiosis (Bücking & Shachar-

Hill, 2005; Hammer et al., 2011; Kiers et al., 2011; Fellbaum et al., 2012). However, 

these systems have often been criticized for their artificial nature, most notably because 

the lack of a shoot in these systems prevents shoot-associated effects on nutrient uptake 

and sink strength (Smith & Smith, 2011). Another important difference is that in nature, 

CMNs can connect host plants of different ages and of multiple species (van der Heijden 

& Horton, 2009; Walder et al., 2012). When large plants were grown with small 

seedlings, several studies have shown that the inter-connectedness to a large plant by a 

CMN can have a positive, negative or neutral effect on the growth of a smaller seedling 
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(van der Heijden & Horton, 2009). However, consistent to our results, Pietikäinen and 

Kytöviita (2007) reported that the mycorrhizal benefit for the seedling was low when the 

seedling shared a CMN with a non-defoliated adult plant (i.e. high quality host), but the 

benefit to the seedling began to increase when the carbon source strength of the adult 

plant was reduced by defoliation.  

One could argue that the observed reduction in nutrient transport to shaded plants was the 

result of a lower plant nutrient demand. Low photosynthetic rates and the subsequent 

reduction in plant growth is expected to decrease the nutrient demand of the host (Cui & 

Caldwell, 1997). This is, however, unlikely in our experiment because the plants were 

grown under both P and N limitation before the shading treatment was started, and we 

found a preferential allocation of P to non-shaded host plants already after 6 days, when 

substantial differences in the growth between shaded and non-shaded plants were not 

expected. Even after shading for 24 days (N supply experiment), we found no significant 

difference in the plant biomass (Fig. S2), suggesting that differences in nutrient demand 

of the host did not play a large role in the observed nutrient allocation pattern.  

We also analysed the expression of the AM-inducible P transporter MtPt4 in the roots, 

and found that both fungi induced MtPt4, but that the induction by G. aggregatum was 

stronger than by R. irregularis. MtPt4 is localized in the periarbuscular membrane 

(Pumplin et al., 2012), and is involved in the P uptake from the mycorrhizal interface. 

MtPt4 has been shown to be essential for the AM symbiosis, and in mutants in which this 

transporter was not expressed, arbuscules were prematurely degraded (Javot et al., 2007). 

Mycorrhiza-inducible P transporters have been identified in several plant species, and 

high P availabilities for the host have been shown to reduce the transcript levels (Xu et 
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al., 2007; Breullin et al., 2010). We found that the transcript levels of MtPt4 were 

positively correlated to the P contents in mycorrhizal roots, and also indicated a higher P 

transport activity across the mycorrhizal interface. While a correlation also between 

MtPt4 expression and arbuscular colonization cannot be completely excluded, the 

consistent colonization but differential transcript levels of MtPt4 in shaded and non-

shaded plants in NS/S systems, suggests that there is a direct correlation between MtPt4 

expression and transport activity. That a higher P transport to the root can also be coupled 

to an up-regulation of MtPt4 was also shown by Fiorilli et al. (2013); the authors 

suggested that the P flux to the mycorrhizal host requires high expression levels.  

The fact that shading reduced the expression of MtPt4 is consistent with the predicted 

lower C allocation to the roots, and a reduction in the P transport across the mycorrhizal 

interface to low quality hosts. This supports the hypothesis that P and C transport across 

the mycorrhizal interface are tightly linked (Bücking & Shachar-Hill, 2005; Kiers et al., 

2011) and is consistent with the finding of Helber et al. (2011) that the expression of the 

fungal monosaccharide transporter GintMST2, suggested to be involved in the carbon 

uptake from the mycorrhizal interface, was positively correlated to the expression of 

MtPt4. 

In contrast to the expression of MtPt4, shading did not result in a reduced expression of 

1723.m00046m. This is consistent with the relatively high transport of N to shaded plants 

we observed. However, our results demonstrate that both fungi can transfer substantial 

amounts of N to the host and that 23 days after 15NH4Cl was supplied to the CMN, a 

significant proportion of the N in the plants shoots was labeled. Due to the high mobility 

of N in the soil, the significance of the AM symbiosis for the N nutrition of the plant is 
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still under debate (for review see Smith & Smith, 2011). The work here, and of others 

(Toussaint et al., 2004; Tanaka & Yano, 2005) demonstrates that AM fungi can 

contribute substantially to the N nutrition of plants. It is thought that the fungus transfers 

N in form of ammonium across the mycorrhizal interface to the host (Tian et al., 2010; 

Fellbaum et al., 2012). We found here that fungal N transport was coupled to an 

induction of 1723.m00046, a putative ammonium transporter of M. truncatula. 

1723.m00046 was first described by Gomez et al. (2009) and has been shown to be 

induced in the cortical cells of roots that were colonized with R. irregularis. We found 

that the transcript levels of 1723.m00046 in roots that were colonized with R. irregularis 

were lower than in roots that were colonized with G. aggregatum, but the 4- to 6-fold 

induction level in some of the R. irregularis treatments was consistent with the up-

regulation observed by Gomez et al. (2009).  

Our finding that this transporter was particularly up-regulated in roots that were 

associated with a CMN supplied with NH4
+, supports the view that this transporter is 

potentially involved in the N uptake from the mycorrhizal interface. AM-inducible 

ammonium transporters that are localized in the periarbuscular membrane have been 

identified in several plant species (Kobae et al., 2010; Koegel et al., 2013). The AM-

inducible ammonium transporter of Lotus japonicus LjAMT2;2, has been shown to 

transport NH3 instead of NH4
+, and it has been suggested that the protons from the NH4

+ 

deprotonation remain in the interfacial apoplast and contribute to the H+ gradient that 

facilitates proton-dependent transport processes across the mycorrhizal interface (Guether 

et al., 2009).  
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Fungi can only preferentially allocate resources when there is a choice of high- vs. low 

quality plant hosts. We found that in G. aggregatum colonized systems, shaded plants 

connected with other shaded plants (S/S) received more resources from the CMN than 

shaded plants that had to compete with non-shaded host plants (NS/S). Following 

biological market dynamics (Kiers et al., 2011), this finding suggests that in the absence 

of choice, G. aggregatum transfers more resources per unit carbon to low quality hosts, 

and that the higher carbon demand of the fungus shifts the cost to benefit ratio in favor of 

the host (under the assumption that carbon transport of shaded plants to the CMN did not 

differ between S/S or NS/S systems). Since the mycorrhizal colonization was reduced in 

systems with two shaded plants (S/S), this indicates that the P and N transport rate per 

unit interface increased under these conditions. This supports the findings of Treseder 

(2013), who reported that mycorrhizal growth responses not only depend on the 

mycorrhizal colonization, but also on the mycorrhizal benefits provided per unit root 

length colonized.  

Our findings support the hypothesis that the fungus is more in control than previously 

thought, despite its obligate dependence on the host. Often, the plant host is considered to 

be more in control of mycorrhizal outcomes. This is because, in contrast to the AM 

fungus, many plant species are not obligately dependent on the symbiosis (Smith & 

Smith, 2012), and reduce their mycorrhizal colonization rate actively by a premature 

degeneration of arbuscules. This has particularly been demonstrated in cases when the P 

availability was high, or when the plant was unable to benefit from the P transport across 

the mycorrhizal interface (Javot et al., 2007; Breullin et al., 2010). It has been suggested, 

on the other hand, that the fungus can actively control the transport of P and N into the 
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mycorrhizal interface by the regulation of poly-P formation and/or remobilization in the 

IRM (Bücking & Shachar-Hill, 2005; Ohtomo & Saito, 2005; Takanishi et al., 2009). 

This is consistent with our finding that in the roots of shaded plant hosts colonized by R. 

irregularis (but not G. aggregatum), a significantly higher proportion of the total poly-P 

was stored in the form of long-chained poly-P (Fig. S4). Long-chained poly-P better 

represent the long-term storage capacity of P in AM fungal hyphae, whereas short-

chained poly-P, are seen as a good indicator for P transport to the host (Takanishi et al., 

2009; Kiers et al., 2011). The fungus could also potentially control its nutrient transport 

to the host via a differential expression of transporters in the arbuscular membrane. The 

expression of fungal phosphate and ammonium transporters in the arbuscular membrane 

suggests that both partners, plant and fungus, compete for P and N that becomes available 

in the interfacial apoplast (Balestrini et al., 2007; Pérez-Tienda et al., 2011). 

While we found strong evidence that both fungal partners successfully discriminated 

among hosts of different quality, both fungi still transferred substantial amounts (~20 - 40 

%) of P and N to low quality hosts. Detailed studies on the arbuscular lifespan in roots 

are limited, but fungal arbuscules undergo in host cells a cycle of growth, maturity, 

senescence and recurrent growth; it has been suggested that the turnover of arbuscules 

potentially provides the host plant with an instrument ‘to penalize’ inefficient fungal 

symbionts (Javot et al., 2007; Parniske, 2008). A low but continuous flux of nutrients to 

low quality hosts would allow the fungus to escape arbuscular degradation. This, in turn, 

decreases the dependency of the fungus on a specific host. Multiple host plants that 

contribute to the C supply and compete for limited resources available for the CMN will 
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likely shift the cost to benefit ratio in favor of the fungus, as increasing the number of 

hosts would give the fungus more bargaining power. 

 

 

4.6 CONCLUSION 
 

AM associations are a perfect illustration of mutualisms involving many-to-many 

interactions: plants are typically colonized by AM fungal communities of multiple 

species, and fungal “individuals” form a CMN and simultaneously colonize multiple host 

plants and species. Understanding the trading and distribution of resources is a key 

question for the AM symbiosis, and mutualisms in general. We examined here how 

plants compete for limited resources that become available for the CMN, and how fungal 

symbionts regulate the nutrient allocation to multiple host plants. Our current 

understanding of resource exchange and cost to benefit relationships in the AM symbiosis 

is mainly based on experiments with in vitro root organ cultures or studies that were 

performed with single plants lacking mycelial inter-connections to other plants. These 

only poorly represent nutrient and resource allocation under natural conditions when 

multiple plants compete for resources from the CMN (van der Heijden & Horton, 2009). 

We demonstrate here in a whole plant system that both fungi preferentially allocated 

nutrient resources to host plants that were able to provide more benefit. This is consistent 

with previous reports from in vitro root organ cultures, in which the carbon supply of the 

host was shown to act as an important trigger that stimulates fungal P and N transport 

(Bücking & Shachar-Hill, 2005; Hammer et al., 2011; Kiers et al., 2011; Fellbaum et al., 

2012; Fellbaum et al., 2012).  
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The plant has often been considered to be more in control of the mycorrhizal outcomes 

than the fungal symbiont. Our results suggest that the fungal partner, although an obligate 

biotroph, still retains power via its ability to change nutrient allocation patterns. 

However, we also found that in the absence of choice, fungi (e.g. G. aggregatum) transfer 

more resources per unit carbon to low quality hosts, shifting the cost to benefit ratio in 

favor of the host. Our studies also support the hypothesis that carbon to nutrient exchange 

ratios at the mycorrhizal interface follow biological market dynamics, that depend on the 

compatibility between the plant and fungal species involved (Smith et al., 2004), and 

resource supply and demand conditions (Kiers et al., 2011; Fellbaum et al., 2012). 

Because we demonstrated the importance of both N and P allocation patterns, future 

studies should track both resources simultaneously to understand the market dynamics of 

multiple nutrient commodities and how costs and benefits of the symbiosis (Johnson et 

al., 1997; Johnson & Graham, 2013) manifest within complex CMNs. 
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4.9 SUPPLEMENTARY INFORMATION 

4.9.1 FIGURES 

Fig.S1. 400MHz 1H NMR spectra of Kjeldahl degraded tissue of non-mycorrhizal roots 
(a),  mycorrhizal roots of shaded plants (b), or mycorrhizal roots of non-shaded plants (c). 

(a) 

(b) 

(c) 
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Fig. S2. Effect of mycorrhizal colonization and shading treatment on shoot (a, b) and root 
(c, d) biomass of shaded (grey bars). Non-shaded (white bars) mycorrhizal and non-
mycorrhizal (NM) plants of the 33P labeling experiment (a,c) and 15N labeling experiment 
(b,d). It should be noted that NM control plants were not clearly comparable to the 
mycorrhizal treatments, because control plants did not have access to the nutrients that 
were supplied to the FC. Different letters on the bars indicates statistically significant 
differences according to the one-way ANOVA and LSD test (P ≤ 0.05). The results of the 
one-way ANOVA are showed in Table S5. 
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Fig. S3. Mycorrhizal colonization with G. aggregatum (a) or R. irregularis (b) of non-
shaded (white bars) or shaded (grey bars) plants that were grown in systems with two 
non-shaded plants (NS/NS), two shaded plants (S/S) or one non-shaded and one shaded 
plant (NS/S). Shown is the average of n = 5-10 ± SE. Different letters on the bars 
indicates statistically significant differences according to the one-way ANOVA and LSD 
test (P ≤ 0.05). The results of the one-way ANOVA are showed in Table S6. 
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Fig. S4. Percentage of long-chained poly-P of the total poly-P in mycorrhizal roots 
colonized with G. aggregatum (a) or R. irregularis (b) in non-shaded (white bars) or 
shaded (grey bars) plants that were grown in systems with two non-shaded plants 
(NS/NS), two shaded (S/S) or one non-shaded and one shaded plant (NS/S). Shown is the 
average of n = 5-10 ± SE. Different letters on the bars indicates statistically significant 
differences according to the one-way ANOVA and LSD test (P ≤ 0.05). The results of the 
one-way ANOVA are showed in Table S7. 
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4.9.2 TABLES 
 

Table S1. Results of two-way ANOVA: Effect of shade treatment or fungal species on 
ERM development in the fungal compartment of the growth systems.  

  
F P 

Fungal species F1,11= 2.8578 0.119 
Shade treatment F1,11= 0.0364 0.8521 
Fungal species x Shade treatment F1,11= 0.0001 0.9921 
 
 
 
Table S2.  Results of two-way ANOVA: Effect of shade treatment or fungal species on 
33P contents in dpm mg-1 d.wt. in roots and shoots of plants interconnected by a CMN 
(see also Fig. 3). 
Root:    
Factor 

 
F P 

Fungal species F1,50= 10.3113 0.0023 
Shade treatment F3,50= 2.6421 0.0594 
Fungal species x Shade treatment F3,50= 0.6032 0.616 

 
Shoot:    
Factor 

 
F P 

Fungal species F1,50= 0.0149 0.9033 
Shade treatment F3,50= 5.8961 0.0016 
Fungal species x Shade treatment F3,50= 1.8986 0.1418 

 
 
 
Table S3. Results of two-way ANOVA: Effect of shade treatment or fungal species on 
15N contents in % of total N in roots and shoots of plants interconnected by a CMN (see 
also Fig. 4). 
Root:    
Factor 

 
F P 

Fungal species F1,32= 4.235 0.0478 
Shade treatment F3,32= 5.7783 0.0028 
Fungal species x Shade treatment F3,32= 3.8623 0.0183 
 
Shoot: 

   Factor 
 

F P 
Fungal species F1,32= 2.4332 0.1286 
Shade treatment F3,32= 3.1936 0.0366 
Fungal species x Shade treatment F3,32= 1.8809 0.1527 
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Table S4. Results of three-way ANOVA: Effect of shade treatment, fungal species, or 
nutrient addition to the FC on the expression of MtPt4 or 1723.m00046 in the roots of 
Medicago truncatula (see also Fig. 5). 

    MtPt4 
 

F   P 
Fungal species F1,76= 29.0298 <.0001 
Shade treatment F3,76= 10.7434 <.0001 
Fungal species x Shade treatment F3,76= 4.5835 0.0053 
Nutrient supply F1,76= 15.6099 0.0002 
Fungal species x Nutrient supply F1,76= 7.528 0.0076 
Shade treatment x Nutrient supply F3,76= 2.3015 0.0839 
Fungal species x Shade treatment 
x Nutrient supply F3,76= 2.1213 0.1045 

 

1723.m00046    
                
F  P 

Fungal species   F1,77= 23.57 <.0001 
Shade treatment F3,77= 2.5175 0.0643 
Fungal species x Shade treatment F3,77= 5.5765 0.0016 
Nutrient supply F1,77= 28.7949 <.0001 
Fungal species x Nutrient supply F1,77= 18.2394 <.0001 
Shade treatment x Nutrient 
supply F3,77= 2.9223 0.0392 
Fungal species x Shade treatment 
x Nutrient supply F3,77= 3.9984 0.0106 

 
 
 
 
Table S5. Results of one-way ANOVA: Biomass of root and shoots of non-mycorrhizal 
and mycorrhizal plants of the 15N or 33P labeling experiment (see also Fig. S2). 

      F P 
Roots, 15N 

 
  

Treatment  F8,55= 3.9099 0.001 
Roots, 33P    
Treatment F8,50= 1.4427 0.2024 
Shoot, 15N    
Treatment F8,59= 0.629 0.7501 
Shoots, 33P    
Treatment F8,54= 2.9104 0.009 
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Table S6. Results of two-way ANOVA: Effect of shade treatment and fungal species on 
mycorrhizal root colonization of Medicago truncatula (see also Fig. S3). 
 
 

  
F P 

Fungal species F1,36= 5.4253 0.0256 
Shade treatment F3,36= 27.3573 <.0001 
Fungal species x Shade 
treatment F3,36= 1.4638 0.2407 
 
 
 
 
 
 
Table S7. Results of two-way ANOVA: Effect of shade treatment and fungal species on 
the percentage of long-chained polyP of the total root polyp in the Medicago truncatula 
(see also Fig. S4). 
 
 

  
F P 

Fungal species F1,45= 23.1404 <.0001 
Shade treatment F3,45= 27.3573 0.0012 
Fungal species x Shade 
treatment F3,45= 2.424 0.0781 
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5.1 ABSTRACT 
 
 
       Plant growth responses following colonization with different isolates of a single 

species of an arbuscular mycorrhizal (AM) fungus can range from highly beneficial to 

detrimental, but the reasons for this high within-species diversity are currently unknown. 

To examine whether differences in growth and nutritional benefits are related to the 

phosphate (P) metabolism of the fungal symbiont, the effect of 31 different isolates from 

10 AM fungal morphospecies on the P and N nutrition of Medicago sativa and the P 

allocation among different P pools was examined. Based on differences in the 

mycorrhizal growth response, high, medium and low performance isolates were 

distinguished. Plant growth benefit was positively correlated to the mycorrhizal effect on 

P and N nutrition. High performance isolates increased plant biomass by more than 

170 %, and contributed substantially to both P and N nutrition, whereas the effect of 

medium performance isolates particularly on the N nutrition of the host was significantly 

lower. Roots colonized by high performance isolates were characterized by relatively low 

tissue concentrations of inorganic P and short-chain polyphosphates, and a high ratio 

between long- to short-chain polyphosphates. The high performance isolates belonged to 

different morphospecies and genera, indicating that the ability to contribute to P and N 

nutrition is widespread within the Glomeromycota, and that differences in symbiotic 

performance and P metabolism are not specific for individual fungal morphospecies. 
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5.2 INTRODUCTION 
 

Arbuscular mycorrhizal (AM) fungi form mutualistic interactions with 

approximately 65% of all known land plant species (Wang & Qiu 2006), and are among 

the most ecologically important soil microbes in natural and agricultural ecosystems. The 

extraradical mycelium (ERM) of the fungus acts as an extension of the root system and 

takes up phosphate (P), nitrogen (N), sulfur and trace elements from the soil, and delivers 

these nutrients via the intraradical mycelium (IRM) to the plant (Smith & Smith 2011; 

Allen & Shachar-Hill 2009; Hawkins et al., 2000; Jakobsen et al., 1992). In exchange, 

the plant allocates up to 20 % of its photosynthetically fixed carbon to the fungus (Wright 

et al., 1998). This carbon supply acts as an important trigger for P and N transport in the 

AM symbiosis (Fellbaum et al., 2012b; Bücking & Shachar-Hill 2005; Hammer et al., 

2011; Fellbaum et al., 2014), and it has been demonstrated that both host and fungus can 

discriminate among their partners, reciprocally rewarding those partners that provide 

more mutualistic benefit (Kiers et al., 2011).   

While the symbiosis is generally positive for the host, mycorrhizal growth 

responses (MGR) can range from highly beneficial to detrimental (Johnson & Graham 

2013; Johnson et al., 1997; Smith & Smith 2013) depending on abiotic factors such as 

nutrient level (Smith & Smith 2013; Peng et al., 1993; Nouri et al., 2014), and biotic 

factors such as the identity of the fungal symbiont colonizing the host (Smith et al., 

2004). There is a high functional diversity in nutritional benefit, not only among different 

fungal morphospecies, but also among isolates within one morphospecies, and it has been 

shown that even the genetic diversity in one initial spore can be sufficient for the 
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development of phenotypically different variants of one fungus (Ehinger et al., 2012). 

While fungal isolates differ greatly in the efficiency with which they provide nutritional 

benefits to plant hosts (Avio et al., 2009; Avio et al., 2006; Hart & Reader 2002b), there 

still lacks a clear understanding why particular AM fungal isolates are much more 

beneficial than others. 

When inorganic phosphate (Pi) is taken up by the ERM, it can first replenish the 

metabolically active Pi pool in the hyphae that will for example be used for the synthesis 

of phospholipids, DNA-, RNA- or protein-phosphates, or it can be converted into long-

chained or short-chain polyphosphates (poly-P). Poly-P are linear polymers in which up 

to several hundred Pi residues are linked by energy-rich phospho-anhydride bonds. Poly-

P are rapidly synthesized in the hyphae of the ERM (Ezawa et al., 2003) presumably by 

the poly-P polymerase/vacuolar transporter chaperone complex (VTC; Tisserant et al., 

2012), and this poly-P accumulation is followed by a near-equivalent cation uptake by the 

fungal hyphae (Kikuchi et al., 2014). Poly-P play an important role in the storage of P in 

the fungal hyphae, but also in the translocation of P from the ERM to the IRM (Hijikata 

et al., 2010). In the IRM long-chain poly-P are broken down first into shorter chain 

lengths by a vacuolar endopolyphosphatase, followed by an exopolyphosphatase that 

hydrolyzes the terminal residues from the short-chain poly-P and releases Pi that can be 

transferred across the mycorrhizal interface to the host (Tisserant et al., 2012; Ezawa et 

al., 2001).  

Inorganic N sources taken up by the fungus from the soil are assimilated in the 

hyphae of the ERM and converted mainly into the basic amino acid arginine (Cruz et al., 

2007; Jin et al., 2005). It has been suggested that arginine could bind to the negatively 
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charged poly-P and could be transferred with poly-P from the ERM to the IRM (Cruz et 

al., 2007; Fellbaum et al., 2012a). In the IRM, poly-P are remobilized and Pi and arginine 

are released, and the catabolic arm of the urea cycle re-converts arginine back into NH4
+ 

(Govindarajulu et al., 2005; Fellbaum et al., 2012a; Tian et al., 2010). Pi and NH4
+ are 

then transferred into the mycorrhizal interface and are taken up from the interface by 

mycorrhiza-inducible plant P and ammonium transporters that are localized in the 

periarbuscular membrane (Gomez et al., 2009; Guether et al., 2009; Javot et al., 2007; 

Pumplin et al., 2012).  

Considering the important role that poly-P play in P and N transport in the AM 

symbiosis, more knowledge about the poly-P metabolism and remobilization may 

contribute to a better understanding of the differences in the growth and nutritional 

benefits conferred by diverse fungal isolates. AM fungi differ in their poly-P metabolism 

(Boddington & Dodd 1999) and the regulation of poly-P formation and/or remobilization 

in the IRM provides the fungus with an instrument to regulate the P and N transport into 

the mycorrhizal interface (Bücking & Shachar-Hill 2005; Ohtomo & Saito 2005; 

Takanishi et al., 2009). To test this idea, we have studied the P and N nutrition and the P 

pool distribution in Medicago sativa after colonization with 31 different AM fungal 

isolates, and determined whether nutritional benefits to the host were correlated to the P 

metabolism of the fungus. Use of this diverse fungal collection allowed comparison of 

intra- and interspecific functional variability in the P metabolism of AM fungi across the 

phylum Glomeromycota, and insight into whether differences in fungal P metabolism are 

related to the fungal phylogeny and whether these differences affect the nutritional 

benefits for the host.  
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5.3 MATERIAL AND METHODS 
 

Fungal and Plant culture 
 

Medicago sativa L. (alfalfa) was selected as a host plant because this species is highly 

dependent on mycorrhizal interactions, and it shows high functional compatibility with 

AM fungal symbionts (Monzon & Azcon 1996; Chen et al., 2007). The plants were 

inoculated with 31 different AM fungal isolates from 6 different families, 7 genera, and 

10 AM fungal morphospecies. The majority of the fungal isolates were obtained from the 

International Culture Collection of Arbuscular Mycorrhizal Fungi (INVAM; 

http://invam.wvu.edu), except Rhizophagus irregulare (previously Glomus intraradices) 

that was isolated from root organ cultures (Koch et al., 2004). Some AM fungal taxa 

were recently phylogenetically re-classified and re-named based on SSU rRNA 

sequencing (Schüßler & Walker 2010). Since the AM fungal classification is still under 

debate, and the exact species affiliation of the Rhizophagus intraradices isolates is 

uncertain, R. intraradices and R. irregulare (R. irregulare corresponds to Glomus 

intraradices DAOM197198, Stockinger et al., 2009) was considered as one species. 

Table 1 includes the fungal morphospecies and isolates with their old and new species 

affiliation.  

The alfalfa seeds were surface sterilized for 1 min in 7 % bleach, and rinsed three 

times with sterile water, before sowing. Plants were grown in pots filled at the bottom 

with 50 ml autoclaved (twice at 121°C for 20 min) and pressed Sunshine mix #2 (Sun 

Gro Horticulture, Vancouver, BC, Canada), which was overlayed with 100 ml of an 

autoclaved (see above) mixture (1:3:1; v:v:v) of field soil, Turface (Turface Athletics 
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MVP, Profile Products LLC, Buffalo Grove, IL, USA) and washed horticultural sand 

(Hillview, Nu-Gro IP Inc., Brantford, ON, Canada), 20 ml of non-mycorrhizal or 

mycorrhizal inoculum (see below), and on top with another 50 ml of the substrate 

mixture. The field soil was collected at the Long-Term Mycorrhizal Research Site located 

at the University of Guelph (Canada) (Kliromonos 2000), passed through a 5 mm sieve 

and air-dried at room temperature. The chemical properties of the field soil (analyzed by 

the University of Guelph Laboratory Services, ON, Canada) were: 140 mM kg-1 total N 

(measured by LECO FP 428 N analyzer), 0.065 mM kg-1 available P (Olsen method), pH 

7.7 (saturated paste method). 

The mycorrhizal inoculum for the experiment was produced by growing each 

fungal isolate with Sorghum vulgare (Pers.) var. sudanense as host species in pot cultures 

in a greenhouse at the University of Guelph (Canada). The substrates of these cultures 

were collected after 5 months, air-dried, and controlled for the presence of viable AM 

fungal spores of the correct morphotype. To each of the mycorrhizal treatments, 20 ml of 

inoculum containing AM fungal spores, hyphae and mycorrhizal roots were added. To 

the non-mycorrhizal controls, 20 ml of substrate and roots of non-mycorrhizal S. vulgare 

cultures or 20 ml of autoclaved fungal inoculum was added. No signs of AM fungal 

colonization (no root colonization, no fungal spores) were found in either control 

treatment, and since both control treatments did not differ statistically in any of the traits 

studied, they were subsequently pooled into one non-mycorrhizal control group. To 

minimize differences in the non-AM microbial communities, 1 ml of a microbial wash 

solution was added to each container. This microbial wash solution was obtained by 

suspending 20 ml subsamples of each of the AM fungal inocula from the Sorghum 
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vulgare cultures (see above) in 2 l of sterile water, and by filtering the solution through a 

20 µm sieve. All containers were covered with a thin layer of sterile washed sand and 

arranged in a completely randomized block design in the greenhouse.  

One week after seed germination, the seedlings were manually reduced to three 

and then to one single plant per pot after 3 weeks. The plants were watered every 2 to 3 

days with de-ionized water, and fertilized with 10 mg of a low P fertilizer (17-5-19; 

Antunes et al., 2011) after 8, 12 and 16 weeks (in total 5.1 mg total N, 1.5 mg P2O5, and 

2.7 mg K2O). The temperature in the greenhouse ranged between 16 to 18°C at night and 

23 to 26°C during the day and artificial light was added when necessary. The plants were 

harvested after 20 weeks, before they became root-bound, to ensure that all fungal 

isolates, independent of their inoculation strength, had sufficient time to colonize the root 

system. At harvest, fungal and plant growth characteristics were determined, and the 

samples were prepared for N and P analysis.   
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Table 1. List of the AM fungal species and isolates used for the experiment (classification according to Schüßler and 
Walker 2010). Several of the fungal species have recently been re-classified and re-named and the former species name 
is given in brackets.  
Order Family Genus Species Abbreviation and 

name of the 

isolate 

Glomerales Glomeraceae Rhizophagus 

(Glomus) 

irregulare 

 

Rhi irr QB000 

Rhizophagus 

(Glomus) 

intraradices Rhi int ON.pr.Te3 

Rhi int KE103 

Rhi int TU101 

Funneliformis 

(Glomus) 

mosseae Fun mos HO102 

Fun mos CU114 

Fun mos NB114 

Claroideoglomeraceae Claroideoglomus 

(Glomus) 

claroideum Cla cla UT159A 

Cla cla DN987 

Cla cla BR106 

etunicatum Cla etu MX116A 

Cla etu MG106 

Cla etu SP108C 

Diversisporales Gigasporaceae Gigaspora margarita Gig mar JA201A 

Gig mar MR104 

Gig mar 

WV205A 

Acaulosporaceae 

 

Acaulospora scrobiculata Aca scr CU130 

Aca scr BR602 

Aca scr VA104 

morrowiae Aca mor CR207 

Aca mor EY106 

Aca mor FL219B 

Acaulospora 

(Entrophospora) 

colombiana Aca col CL356 

Aca col GA101 

Aca col NB104C 

Paraglomerales Paraglomeraceae Paraglomus 

(Glomus) 

occultum Par occ CR102 

Par occ HA771 

Par occ OR924 

Archaeosporales Ambisporaceae Ambispora 

(Glomus) 

leptoticha Amb lep FL130A 

Amb lep JA401A 

Amb lep CR312 
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Analysis of fungal and plant growth characteristics 

At harvest, root and shoot biomass of the plants was assessed, roots were examined for 

root nodules, and the dry weight of the nodulated root parts was determined. Fungal 

growth characteristics such as the percentage root length colonized by arbuscules, 

vesicles and hyphae (%AC, %VC and %HC, respectively), the number of AM fungal 

spores and the hyphal length per g substrate were examined using standard protocols 

(Klironomos et al., 1993; McGonigle et al., 1990; Miller et al., 1995). The percentage 

mycorrhizal growth responses (MGR) in terms of total plant biomass were determined 

based on the dry weights (d.wt.) of individual mycorrhizal plants and the mean d.wt. of 

the non-mycorrhizal controls, using the following formula:  

MGR in % = 100 x (d.wt. AM plant – d.wt. mean of controls) / d.wt. mean of controls. 

 

Phosphate and Nitrogen analysis 

Root and shoot samples were individually homogenized in a tissue grinder (Precellys 24, 

Cayman Chemical Compony, Ann Arbor, USA), and an aliquot of each sample was dried 

and analysed for P or N content. For the P analysis, the sample was extracted with 2 N 

HCl at 95°C for 1 h (Ohtomo et al., 2004). Additionally, the allocation of P into different 

P pools in non-mycorrhizal and mycorrhizal root samples was measured following the 

protocol described by Aitchison and Butt (1973). The samples were dried at 70°C, 

weighed and analysed for the following P pools: Pi and acid soluble or short-chain poly-P 

(chain length ≤ 20 Pi residues) after extraction with ice-cold 10 % TCA, phospholipids 

after extraction with 100 % ethanol and ethanol/ether (3:1, v:v), acid-insoluble poly-P 

(chain length > 20 Pi residues) after extraction with 1 M KOH, and DNA-, RNA- and 
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protein-phosphates as residue after extraction of all other pools. The pH of the 

supernatants of the TCA or KOH extractions containing the acid soluble or acid insoluble 

poly-P were first neutralized by adding 3 M KOH or 3 M HCl, respectively, and then 

adjusted to a pH of 4.5 by adding 3 M acetate buffer. The poly-P were then precipitated 

twice by adding a saturated BaCl2 solution at 4°C overnight. An aliquot of the poly-P or 

DNA-, RNA-, protein-phosphate precipitates was diluted in 2 N HCl and heated up to 

95°C for 1 h before analysis. The P content was measured spectrophotometrically at 436 

nm after adding ammonium-molybdate-vanadate solution (Ricca Chemical, Arlington, 

TX, USA) to an aliquot of the sample. The total N content in 3 mg aliquots of the shoots 

was analysed by using an isotope mass spectrometer (Sercon, Europa-Scientific, Crewe, 

UK). 

 

Statistical Analysis 

The data are based on four biological replicates per AM fungal isolate and eight non-

mycorrhizal control plants. Since the results demonstrated high intraspecific variability 

and the species affiliation for several of the fungal species is uncertain at this point, all 

fungal isolates were treated as independent variables in all statistical tests. Unless 

mentioned otherwise, treatment effects are only discussed when they were statistically 

significant according to one-way ANOVA with isolate as a fixed factor followed by 

Fisher´s Least Significant Difference (LSD) test (p ≤ 0.05) (biomass data). An ANCOVA 

was used to confirm the results of the ANOVA analysis and to account for the effects of 

the continuous co-variate (biomass) on the statistical evaluation of the nutritional 
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benefits. The results of these tests are given in the Tables S1 to S7 (see supplementary 

information).  

The fungal isolates were grouped according to their effect on the plant MGR as 

high, medium, and low performance isolates (see results). The fungal isolates were 

grouped according to their performance and an additional one-way ANOVA and LSD 

test was conducted only when ANOVA and LSD test of the individual fungal isolates 

demonstrated significant differences between fungal isolates that were related to their 

symbiotic performance. Correlations among traits were examined by calculating the 

Pearson correlation coefficient or a linear regression analysis (p ≤ 0.05). These results are 

shown in the Tables S8 to S11. The analytical software UNISTAT 6 (Unistat Ltd., 

London, U.K.) was used for all analyses.  

 

5.4 RESULTS 
 

Effect of different AM fungi on plant biomass 

Total biomass of mycorrhizal M. sativa plants was higher than that of non-mycorrhizal 

control plants, but there was a high variability in the mycorrhizal growth response (MGR) 

across AM fungal isolates (Fig. 1, Table S1). The % increase in total plant biomass 

ranged from 7.3 ± 10.8 (mean ± S.E.M.) in plants colonized with Rhizophagus irregulare 

QB000 (not significantly higher than the controls) to 207.4 ± 36.4 in plants colonized 

with Acaulospora colombiana NB104C. The intraspecific variability in the MGR 

between the different isolates of one AM fungal morphospecies was similarly high. For 

example, two other strains of A. colombiana (CL 356 and GA101) did not lead to a 

significant growth response relative to the non-mycorrhizal controls. Of the fungal 
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isolates tested, the three A. morrowiae isolates led on average to the highest increase 

(113.8 ± 32.4 %) and the four Rhizophagus isolates to the lowest increase in total plant 

biomass (20.2 ± 15.9 %) (Table S1).  

Among the different fungal isolates that were tested, six stood out because they 

showed several unique characteristics (in e.g. their effect on P and N nutrition), and 

resulted in the highest increase in total plant biomass relative to all other isolates (i.e., a 

MGR of more than 170 % relative to the control, and more than 65 % higher than the 

next highest performing isolate with an increase in host biomass of 104 %) (Fig. 1, Table 

S1, Table S81-7). This group, later referred to as “high performance isolates”, included 

isolates from six different fungal morphospecies, A. colombiana NB104C, Funneliformis 

mosseae NB114, A. morrowiae FL219B, Paraglomus occultum OR924, A. scrobiculata 

VA104, and Claroideoglomus etunicatum MG106. Six isolates led only to small 

increases in total plant biomass (≤ 18 %) and did not differ significantly in many 

characteristics from the non-mycorrhizal controls but differed from the high performance 

isolates. These “low performance isolates” included Rhizophagus irregulare QB000, P. 

occultum CR102, C. claroideum UT159A, A. scrobiculata CU 130, R. intraradices 

ON.pr.Te3, and A. colombiana CL356 (Table S1). In between the low and high 

performance isolates, a group of isolates could be identified that significantly increased 

plant biomass compared to the controls, but led to a significantly lower biomass response 

than the high performance isolates (Fig. 1, Table S1). These “medium performance” 

isolates led to MGR between 71.7 % and 104.0 % and included Ambispora leptoticha 

CR312, P. occultum HA771, Gigaspora margarita WV205A, C. etunicatum SP108C, A. 

morrowiae EY106, C. claroideum BR106, and A. morrowiae CR207. A high within 
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treatment variability in plant growth responses was observed for the remaining isolates. 

Plants colonized by these isolates did not differ significantly from the non-mycorrhizal 

controls, but had a consistently lower biomass response than the high performance 

isolates.  

 

 

 

 



146 

 

 

Q
B

00
0 

 
TU

10
1 

 
O

N
.p

r.T
e3

 
K

E1
03

  

C
on

tr
ol

 

O
R

92
4 

 
H

A
77

1 
 

C
R

10
2 

 

W
V

20
5A

   
M

R
10

4 
JA

20
1A

 

N
B

11
4 

  
H

O
10

2 
C

U
11

4 

SP
10

8C
   

M
X

11
6A

 
M

G
10

6 
 

U
T1

59
A

  
D

N
98

7 
B

R
10

6 
  

JA
40

1A
 

FL
13

0A
 

C
R

31
2 

  

VA
10

4 
  

C
U

13
0 

B
R

60
2 

FL
21

9B
  

EY
10

6 
C

R
20

7 

N
B

10
4C

  
G

A
10

1 
C

L3
56

   

-1.5 

-1 

-0.5 

0 

0.5 

1 

1.5 

L L L L L L H H H H H H M M M M M M M 

R
oo

t b
io

m
as

s i
n 

g 
Sh

oo
t b

io
m

as
s i

n 
g 

Rhi irr Par occ Gig mar Fun mos Cla etu Amp lep Aca scr Aca mor Aca col Cla cla  

 

Fig. 1.  Plant biomass characteristics of non-mycorrhizal and mycorrhizal Medicago 
sativa plants. The bars show the means (n=4) of the dry biomass in g of roots (bottom, 
dark grey) and shoots (top, light grey) and their respective confidence intervals (p ≤ 
0.05). The letters in the bars indicate whether the isolate belonged to the low (L), medium 
(M), or high (H) performance isolates.  
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Correlation between host biomass and P benefits of the AM symbiosis 

Mycorrhizal growth benefit could mainly be attributed to an increase in the P and N 

uptake of the M. sativa plants (Fig. 2 and 3). The biomass of both root and shoot was 

positively correlated with the total P content in these tissues (Fig. 2a, c) (Table S88-9), but 

not to the P tissue content per unit dry weight (later referred to as tissue concentration) 

(Fig. 2b, d). Plants that were colonized with high performance isolates had significantly 

higher root P contents than non-mycorrhizal controls or plants that were inoculated with 

the low performance isolates, but did not differ significantly from the medium 

performance isolates (Fig. 2a, Fig. S1, Table S3, Table S810-13). In contrast, the P 

concentration in roots was negatively correlated to the biomass (Fig. 2b, Table S814), but 

there were no significant differences in the P concentrations of the roots between the 

various isolate performance levels (Fig. S2, Table S3).  

The correlation between shoot biomass and P content was not as strong as for 

roots (Fig. 2c, Table S89). However, colonization with the high performance isolates 

(except C. etunicatum MG106) and several of the medium performance isolates led to an 

increase in the shoot P content relative to the non-mycorrhizal control plants (Table 

S815-18).  However, there were also several low performance isolates (C. claroideum 

UT159A, R. irregulare QB000, P. occultum CR102) that increased shoot P content 

compared to the controls (Fig. 2c, Fig. S1, Table S3). The shoot P tissue concentration 

was not correlated to the MGR, and plants inoculated with several of the low 

performance isolates had higher shoot P tissue concentrations than the non-mycorrhizal 

controls, or plants that were colonized with medium or high performance isolates (Fig. 

2d, Fig. S2, Table S3, Table S820-23).  
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Fig. 2. Correlation between root (a, b) or shoot biomass (c, d) and P content  (a, c) or 
concentration (b, d). Data of the non-mycorrhizal controls are shown as open circles, of 
plants inoculated with high performance isolates as open triangles, medium performance 
isolates as open squares, and low performance isolates as grey circles. All other fungal 
isolates that were not classified according to their symbiotic performance due to their 
high within-treatment variability are represented as black circles. Results of the 
regression analysis are as follows: (a) r2 = 0.6182, p = 0.0002; (b) r2 = 0.157, p = 0.0247; 
(c) r2 = 0.127, p = 0.045; r2 = 0.119, p = 0.0531. 
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Correlation between host biomass and N benefits of the AM symbiosis 

There was a strong positive relationship between MGR and the effect of each fungal 

isolate on the N nutrition of the host. The growth of M. sativa was strongly positively 

correlated with both the total N content and tissue concentration of roots and shoots (Fig. 

3, Fig. S3, S4, Table S91-4). Plants that were colonized with the high performance isolates 

had significantly higher N contents and tissue concentrations in roots and shoots than 

those that were colonized with the low or medium performance isolates, or the non-

mycorrhizal controls (Table S4, Table S9). The N tissue concentration of shoots of M. 

sativa colonized by high performance isolates was on average 211 % higher than in the 

non-mycorrhizal controls. Medium performance isolates only differed significantly in 

their effects on plant N contents or tissue concentrations from low performance isolates 

and non-mycorrhizal controls when they were combined in one performance group, but 

not when individual fungal isolates were compared (Table S4, Table S910-32).  

The effect of the fungal isolates on P and N nutrition and host biomass was not the 

result of differences in mycorrhizal colonization traits. Mycorrhizal performance was 

neither correlated to root colonization (Table S1), nor to the number of arbuscules per 

root length, nor to the length of the fungal ERM in the soil (Table S2), nor to spore 

number (p > 0.05). Only the estimated total arbuscular volume was positively correlated 

to the total plant biomass (Table S101). Some of the plants had root nodules at harvest, 

but there was a high within treatment variability in root nodulation (0 to 4 biological 

replicates were nodulated), and the percentage of the root system that was nodulated was 

generally low (Table S2). Plant biomass and the N contents or concentrations in roots or 

shoots were not correlated to the extent of root nodulation (Table S102-8).  
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Fig. 3.   Correlation between biomass of root (a, b) or shoot (c, d) and N content in mg 
(a, c) or N tissue concentration in µg mg-1 d.wt. (b, d). Data for the non-mycorrhizal 
controls are shown as open circles, of plants inoculated with high performance isolates as 
open triangles, medium performance isolates as open squares, and low performance 
isolates as grey circles. All other fungal isolates that were not classified according to their 
symbiotic performance due to their high within-treatment variability are represented as 
black circles. Results of the regression analysis are as follows: (a) r2 = 0.9494, p < 
0.0001; (b) r2 = 0.7917, p < 0.0001; (c) r2 = 0.9511, p < 0.0001; (d) r2 = 0.7833, p < 
0.0001. 
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Allocation of P in different P pools of the root 

To determine whether the nutritional benefits conferred to M. sativa by the various fungal 

isolates were related to the P metabolism of the AM fungus, the % allocation of P in roots 

among different P pools was examined. DNA-P and lipid-P represented by far the largest 

P pools in the roots with on average 55.91 ± 1.3 % and 22.6 ± 0.76 %, respectively (Fig. 

S5b, e, Table S5). The P contents in these pools, which are largely related to host growth 

and biomass, were positively correlated to root biomass (Fig. S6b, e, Table S111, 2). 

However, the tissue concentration or the percentage of P that was allocated to these pools 

did not differ significantly between roots colonized with high, medium or low 

performance isolates (Fig. S5b,e, Fig. S7b,e, Table S5, Table S6).   

The metabolically active Pi pool (in %) in the roots was generally lower when 

plants were colonized with the high performance isolates (except A. morrowiae FL219B 

and A. scrobiculata VA104) than in plants that were colonized with the low performance 

isolates (Fig. S5a, Table S113-6). The effects of the low performance isolates also differed 

significantly from that of medium performance isolates, when the isolates were grouped 

according to their performance, but not when individual isolates were compared (Table 

S115). Root biomass was negatively correlated with the Pi tissue concentration in the root 

(Fig. 4a, Table S117), and the Pi tissue concentrations in roots that were colonized with 

the high performance isolates, and several of the medium performance isolates, were 

generally lower than in roots that were colonized with the low performance isolates (Fig. 

S7a, Table S6, Table S119-10). The Pi content in the roots that were colonized with the 

high performance isolates, however, did not differ significantly from the non-mycorrhizal 

controls, or those colonized with the low or medium performance isolates (Fig. S6a).  
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Fig. 4.  Correlation between root biomass and tissue concentrations of Pi (a), long-chain 
poly-P (b), short-chain poly-P (c), and the ratio between long-chain and short-chain poly-
P (d). Data of the non-mycorrhizal controls are shown as open circles, of plants 
inoculated with high performance isolates as open triangles, medium performance 
isolates as open squares, and low performance isolates as grey circles. All other fungal 
isolates that were not classified according to their symbiotic performance due to their 
high within-treatment variability are represented as black circles. Results of the 
regression analysis are as follows: (a) r2 = 0.1937, p < 0.0117; (b) r2 = 0.029, p = 0.3494; 
(c) r2 = 0.2953, p = 0.0013; (d) r2 = 0.483, p < 0.0001. 
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A large percentage of P in mycorrhizal roots was found in the poly-P pool. On 

average 11.04 ± 0.5 % (ranging from 4.0 to 20.3 %) of P in the roots was stored as long-

chain or short-chain poly-P. This poly-P level was independent of the fungal identity (i.e. 

genus or morphospecies). Root biomass was not correlated with the total poly-P or long-

chain poly-P pool, and the tissue concentration of long-chain poly-P in roots that were 

colonized with the high or the low performance isolates did not differ significantly (Fig. 

4b, Fig. S5c, Fig. S7c). However, the content of long-chain poly-P in roots colonized 

with the high performance isolates was higher than in roots colonized with the low or 

medium performance isolates (Fig. S6c, Table S1115-18).  

In contrast, the tissue concentration of short-chain poly-P was negatively 

correlated with the MGR (Fig. 4c, Fig. S7d, Table S1119). Similarly, when the fungal 

isolates were grouped according to their performance level, the tissue concentration of 

short-chain poly-P in roots colonized with the low performance isolates was significantly 

higher than in roots colonized with the medium or high performance isolates (Fig. S7d, 

Table S1120-23). However, when the isolates were compared individually, only R. 

irregulare QB000, A. scrobiculata CU130 and A. columbiana CL356 differed from five 

of the six high performance isolates (Table S6). The reduction in the concentration of 

short-chain poly-P tissue in the roots colonized with the high performance isolates 

changed the ratio between long- and short-chain poly-P in the roots; there was a clear 

positive correlation between MGR and an increase in the long-chain to short-chain poly-P 

ratio (Fig. 4d, Table S1124).  
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5.5 DISCUSSION 
 

Approximately 200 different AM fungal morphospecies have been described so far, but 

the genetic and functional diversity among AM fungal strains is much larger than the 

small species number suggests (Koch et al., 2006; Ehinger et al., 2012). While it is 

appreciated that colonization by different isolates can lead to different host growth 

responses (Koch et al., 2006; Ehinger et al., 2012; Munkvold et al., 2004), it is unknown 

what causes this high within species functional diversity. Here, the growth response of M. 

sativa was examined after colonization with 31 different fungal isolates from 10 

morphospecies in to evaluate whether the poly-P metabolism in AM fungi is 

phylogenetically controlled, and whether differences in the efficiency with which AM 

fungi contribute to nutrient uptake and biomass development can be related to differences 

in P metabolism.  

Based on the high variability in effects on the MGR among AM fungal isolates, 

the isolates were grouped into three performance levels. High performance isolates led in 

M. sativa to MGR of more than 170 %, medium performance isolates to MGR between 

71 and 104 %, and low performance isolates did not lead to significant increases in plant 

biomass compared to the non-mycorrhizal controls (MGR ≤ 18 %). Fungal isolates 

within one performance level generally shared several important characteristics (e.g. their 

effect on P or N nutrition) under the present experimental conditions, and the 

performance levels were used to better describe these characteristics. However, MGR (or 

the performance level of an AM fungus) depends on the compatibility between the AM 

fungal symbiont and its host (Smith et al., 2004), and is strongly context-dependent (Peng 
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et al., 1993). For example, the high performance isolates that were tested here led in 

Achillea millefolium L., and Bromus inermis Leyss to relatively low MGR, and in these 

plant species the intraspecific variability among the different fungal isolates was much 

less pronounced than in M. sativa (Koch et al., unpublished).  

Similar to the results of other authors (Avio et al., 2009; Börstler et al., 2008; 

Börstler et al., 2010; Munkvold et al., 2004), there was a high level of performance 

variability within a single AM fungal morphospecies, and many morphospecies included 

both high and low performance isolates. This high intraspecific variation is thought to 

contribute to the high phenotypic and functional diversity within AM fungal populations 

(Koch et al., 2006). The high variability in MGR of M. sativa among isolates can be 

attributed to differences in the efficiency with which the various fungal isolates were able 

to contribute to the P and N nutrition of the host plant. Under the present experimental 

conditions, where it can be assumed that the availabilities of both P and N were growth-

limiting, root and shoot biomass of M. sativa was positively correlated to the P and N 

content of these tissues, and to the tissue concentration of N in root and shoot.  

However, MGR and high P and N levels of M. sativa were not related to any of 

the fungal growth and colonization patterns (Table S2, Koch et al., unpublished). Fungal 

growth traits have been shown to be evolutionary conserved (Powell et al., 2009), but the 

present results demonstrate that the effects of AM fungal isolates on host plant growth 

and P and N uptake are not conserved. This confirms the results of Munkvold et al., 

(2004), who found that the length-specific hyphal P uptake is rather constant within one 

fungal species but that the within species variability in hyphal length, as well as effects 

on shoot growth response and shoot P content, are greater than the between species 
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variability, and that these functional characteristics are not aligned with the fungal 

phylogeny. This asymmetry indicates that the greater effect of some AM fungal isolates 

on plant P and N nutrition was more likely the result of more efficient P and N uptake 

systems and/or higher nutrient transport rates to the host. This is consistent with other 

studies in which no correlation between the dimensions of the ERM and P uptake and/or 

MGR was found (Hart & Reader 2002a; Smith et al., 2000). A meta-analysis recently 

revealed that the mycorrhizal colonization is only in part responsible for the high 

diversity in MGR that can be observed, but that AM fungal taxa also differ in their 

mycorrhizal benefit per unit root length colonized (Treseder 2013). In contrast, in other 

reports, the functional diversity of AM fungal isolates was related to the dimensions or 

the interconnectedness of the ERM or to the absolute root length colonized (Avio et al., 

2006; Munkvold et al., 2004). Similar to the results of Hart and Reader (2002a), who 

reported greater host benefits conferred by AM fungal families with larger internal 

mycelia, there was only a positive correlation between the total biomass of M. sativa and 

an estimate of the total arbuscular volume in the roots. 

Several of the AM fungal isolates did not lead to significant biomass or nutritional 

gains in M. sativa compared to the non-mycorrhizal controls (neutral MGR). Neutral 

MGR have been observed under both non-limiting and growth-limiting levels of P in the 

soil (Smith & Smith 2013; Peng et al., 1993). However, recent work suggests that AM 

fungi can also contribute to the P uptake of their host in the absence of positive MGR (Li 

et al., 2006; Smith et al., 2003). It has been suggested that negative or neutral MGR can 

be the result of a mycorrhiza-induced suppression of the plant P uptake pathway (via root 

hairs and epidermis) that is not compensated for by increases in the P uptake via the 
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mycorrhizal uptake pathway (via the ERM and the mycorrhizal interface) (Smith et al., 

2011; Smith & Smith 2011). There is evidence that AM fungi differ in their ability to 

inhibit the plant P uptake pathway. R. intraradices, for example, has been shown to 

nearly completely suppress the plant uptake pathway for P in several plant species, 

including M. truncatula (Smith et al., 2004; Grunwald et al., 2009). Of all the AM fungal 

species tested here, the four Rhizophagus isolates led to the lowest MGR (average of 20.2 

± 9.3 %) and the plants did not differ in their biomass from the non-mycorrhizal controls. 

However, the fact that the P tissue concentration in the shoot and the Pi level in the roots 

of plants that were colonized with Rhizophagus, and some of the other low performance 

isolates, were significantly higher than in the controls or plants that were colonized with 

several of the high performance isolates, could indicate that these fungi contributed to the 

P nutrition of the plants, despite their overall neutral MGR.  

The high performance isolates significantly increased the P nutrition of M. sativa 

compared to the non-mycorrhizal controls and the low performance isolates. However, 

what really set these isolates apart from the non-mycorrhizal controls, and the low and 

medium performance isolates, was their positive impact on N nutrition. The N tissue 

concentration in the shoots of the plants that were colonized with the high performance 

isolates were on average 2.4 times higher, and the N content 3.8 times higher than in the 

non-mycorrhizal controls. While the positive effect of the AM symbiosis on P nutrition 

has been long known (Smith et al., 2011; Smith & Read 2008), the role that AM fungi 

play in the N nutrition of their host is still under debate (for review see Smith & Smith 

2011). It has been suggested that an improved N status of mycorrhizal plants may simply 

be a consequence of an improved P nutrition (Reynolds et al., 2005). The present results, 
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however, suggest that the increase in the N nutrition of M. sativa by the high performance 

isolates was not only the result of an improved P nutrition, because both medium and 

high performance isolates increased the biomass of the plants and increased the P root 

contents compared to the controls. However, only the high performance isolates 

increased the N content of the plants and induced a greater biomass response than the 

medium performance isolates. These results confirm several other studies reporting a 

substantial contribution of AM fungi to the N nutrition of their host (Toussaint et al., 

2004; Tanaka & Yano 2005; Ngwene et al., 2013; Nouri et al., 2014).  

The present work demonstrates that there is correlation between the nutritional 

benefits and the P metabolism of AM fungal isolates. The Pi and short-chain poly-P tissue 

concentrations in the root were negatively correlated, but the ratio between long-chain to 

short-chain poly-P was positively correlated to the root biomass. The Pi pool represents 

the metabolically active P pool. In plants and fungi, this pool is normally maintained at a 

constant level throughout a wide range of external supply conditions, and only severe P 

deficiency leads to a reduction in the Pi pool (Lee & Ratcliffe 1993; Robins & Ratcliffe 

1984). The Pi levels in the roots that were colonized with the high performance isolates 

were not lower than those in the non-mycorrhizal controls, but reduced in comparison to 

the low performance isolates. It can be assumed that the reduced Pi levels in the roots 

colonized with the high performance isolates were caused by a dilution effect as a result 

of the high increase in plant biomass, rather than a symptom of P deficiency. This is also 

supported by the fact that the decrease in the Pi levels between these groups is consistent 

with the increase in plant biomass. This finding likewise supports our hypothesis that the 

high performance isolates differ from the medium performance isolates by their positive 
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effect on N nutrition, but that both groups of fungi contributed more or less equally to the 

P nutrition of their host.  

The MGR of M. sativa was not correlated to the tissue concentration of long-chain 

poly-P in the roots. This suggests that the ability of medium and high performance 

isolates to provide P to the host was not the result of a reduced capacity of these fungi to 

store P as long-chain poly-P, and/or to a faster rate of remobilization of long-chain poly-P 

into short-chain poly-P. The constant tissue concentrations of long-chain poly-P in the 

roots, independent of fungal performance and plant biomass, seems to be more a 

reflection of the high P acquisition efficiency with which medium and high performance 

isolates are able to take up P from the soil.  

The fact that low and high performance isolates did not differ in their effect on the 

long-chain poly-P concentration in roots, however, also indicates that low performance 

isolates still store a significant proportion of their available P as long-chain poly-P, 

despite the high P demand of their host and the presumably lower efficiency with which 

these fungi absorb P from the soil. The low efficiency with which the low performance 

isolates transferred P to their host could be the result of a low compatibility between the 

host and these fungal symbionts, but could also indicate that the low performance isolates 

still stored P in form of long-chain poly-P because the carbon supply from the host was 

low. The carbon supply from the host acts as an important trigger for P and N transport in 

the AM symbiosis (Fellbaum et al., 2012b; Bücking & Shachar-Hill 2005; Hammer et 

al., 2011; Fellbaum et al., 2014), and it has been shown that both partners reciprocally 

reward partners that provide more mutualistic benefit (Kiers et al., 2011). It can be 

assumed that the N and P supply levels in the present experiments were growth-limiting; 
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N deprivation will reduce the photosynthetic rates and will also limit the capability of the 

plant to provide carbon to its fungal symbionts (Konstantopoulou et al., 2012). Medium 

and high performance isolates, on the other hand, may have been able to stimulate plant 

carbon supply by their positive impact on P and N nutrition, and consequently the 

photosynthetic efficiency of their host.   

Poly-P play an important role for the P but also N transfer from the ERM to the 

IRM (Cruz et al., 2007; Bücking & Shachar-Hill 2005; Ryan et al., 2007; Viereck et al., 

2004).  Consistently, the fungal isolates that contributed to both P and N nutrition of M. 

sativa showed the same characteristics in their P metabolism. It is generally hypothesized 

that long-chain poly-P are first broken down to short-chain poly-P, and subsequently 

remobilized by an exopolyphosphatase into Pi that can be transferred across the 

mycorrhizal interface (Ohtomo & Saito 2005). It has been suggested that long-chain 

poly-P better represent the long-term storage capacity of P in AM fungal hyphae, whereas 

short-chain poly-P are a good indicator of P transport to the host (Kiers et al., 2011; 

Takanishi et al., 2009). The present results seem to be contradictory to this view, because 

M. sativa roots colonized with high performance isolates had reduced levels of short-

chain poly-P, and a high long-chain to short-chain poly-P ratio. This could indicate that 

medium and high performance isolates differ from low performance isolates in their 

capability to remobilize short-chain poly-P into Pi, but not in their capability to store P in 

form of long-chain poly-P. The particularly high long-chain to short-chain poly-P ratio in 

high performance isolates, however, also supports the view that medium and high 

performance isolates did not differ in their effect on P but in their effect on N nutrition. 

The high biomass of plants that were colonized with the high performance isolates would 
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first cause a dilution effect of the poly-P pool that is more readily available for the host, 

which supports the hypothesis that the short-chain poly-P pool is a good indicator for the 

P transport efficiency to the host (Takanishi et al., 2009).  

The majority of the AM fungal isolates used in this study were obtained from the 

International Culture Collection of Arbuscular Mycorrhizal Fungi (INVAM; 

http://invam.wvu.edu), and the isolates were renamed following the major taxonomic 

reclassification in the Glomeromycota (Schüßler & Walker 2010). However, since AM 

fungi belong to an ancient fungal lineage that has evolved for more than 500 million 

years without sexual reproduction, there is no good existing species concept (Corradi & 

Bonfante 2012). Traditionally, AM fungal species have been identified based on their 

spore morphology, but progress in molecular phylogeny has shown that spores with very 

similar morphologies can be produced by phylogenetically distant AM fungal species and 

several misclassified fungal morphospecies have recently been reclassified (Krüger et al., 

2012; Stockinger et al., 2009). Due to the polymorphism within the rDNA, it has recently 

been estimated that the number of fungal species within the Glomeromycota is probably 

ten times larger than the small number of fungal morphospecies suggests (Buscot 2015). 

The high within species variability confirms that AM fungal morphospecies can differ 

greatly at the functional level.  

It has recently been shown that even the genetic diversity in one spore can lead to 

genetically different variants, variable phenotypes and differences in MGR (Angelard et 

al., 2010; Ehinger et al., 2012). AM fungal growth traits have been shown to be 

phylogenetically conserved across the phylum Glomeromycota (Powell et al., 2009) but 

based on the current classification of the morphospecies that were used in this study, 
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fungal effects on P or N nutrition were not phylogenetically conserved. In contrast, the 

present results demonstrate that the capability to contribute substantially to host plant 

benefit is wide spread across the phylum Glomeromycota. The asymmetry in 

conservatism between AM fungal traits and host plant performance suggests that the 

fungal adaptability to the host plant also plays an important role in the symbiotic 

performance of both partners (Smith et al., 2004). This is also supported by the 

observation that the high performance strains did not consistently show the same 

symbiotic performance in other host plant species as in M. sativa (Koch et al., 

unpublished).  

In conclusion, mycorrhizal benefits are often discussed only in terms of an 

improved P nutrition and their respective carbon costs, but results here show that the 

plant growth response promoted by high performance isolates was related to their 

positive impact not only on P but also on N nutrition, and that the MGR was the result of 

the sum of these nutritional benefits (P and N) for the plant (Nouri et al., 2014). It has 

been shown that P in combination with N limitation induces changes in the plant 

transcriptome that stimulate the AM colonization of plants under P and N stress despite 

an overall higher P status in mycorrhizal plants (Bonneau et al., 2013). However, in 

addition to a high efficiency with which P and N are taken up, mycorrhizal growth 

benefits also depend on the rate with which fungal poly-P are remobilized and nutrients 

are released into the mycorrhizal interface. The high performance isolates examined here 

were particularly characterized by a high efficiency with which they took up P and N 

from the soil, but also by their capability with which they remobilized poly-P and 

released P and N in the IRM, and transferred these nutrients to their host. Considering the 
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key role that the P metabolism of the fungus plays for P and N transport in the symbiosis, 

it is crucial to better understand the physiological and regulatory mechanisms that 

contribute to the high functional diversity in P and N nutrition between the different AM 

fungal isolates. The results shown here only represent a snapshot of the P allocation into 

different P pools after 20 weeks of growth. Further experiments with P isotopes in time 

course experiments in multi-compartment systems are now necessary to track the P 

uptake by high and low performing isolates, and to follow the transport to the plant 

through the different P pools.   
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Fig. S1 Effect of different AM fungal isolates on the P contents in mg in root and shoot. 
The bars show means (n=4) of the P contents in mg of roots (bottom, dark grey) and 
shoots (top, light grey) and their respective confidence intervals (p ≤ 0.05). The letters in 
the bars indicate whether the isolate belonged to the low (L), medium (M), or high (H) 
performance isolates.  
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Fig. S2 Effect of different AM fungal isolates on the P tissue concentration in µg mg-1 
d.wt. The bars show means (n=4) of the P tissue concentrations of roots (bottom, dark 
grey) and shoots (top, light grey) and their respective confidence intervals (p ≤ 0.05). The 
letters in the bars indicate whether the isolate belonged to the low (L), medium (M), or 
high (H) performance isolates.  
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Fig. S3 Effect of different AM fungal isolates on the N contents in mg in root and shoot. 
The bars show means (n=4) of the N contents in mg of roots (bottom, dark grey) and 
shoots (top, light grey) and their respective confidence intervals (p ≤ 0.05). The letters in 
the bars indicate whether the isolate belonged to the low (L), medium (M), or high (H) 
performance isolates.  
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Fig. S4 Effect of different AM fungal isolates on the N tissue concentration in µg mg-1 
d.wt. The bars show means (n=4) of the N tissue concentrations of roots (bottom, dark 
grey) and shoots (top, light grey) and their respective confidence intervals (p ≤ 0.05). The 
letters in the bars indicate whether the isolate belonged to the low (L), medium (M), or 
high (H) performance isolates.  
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Fig. S5 Distribution of P in % between the metabolically active Pi pool (a), the lipid 
phosphate pool (b), the long-chained poly-P pool (c), the short-chained poly-P pool (d), 
and the DNA-, RNA-, and protein-phosphate pool (e). The controls and the different 
fungal isolates are given according to their MGR from left (lowest) to right (highest). The 
bars show means of n=4 and SEMs. Color code of the bars: high-performance isolates 
(white), medium performance isolates (middle grey), low performance isolates (light 
grey), all others and non-mycorrhizal controls (darkgrey).   
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Fig. S6 P content in mg in the metabolically active Pi pool (a), the lipid phosphate pool (b), the long-
chained poly-P pool (c), the short-chained poly-P pool (d), and the DNA-, RNA-, and protein-
phosphate pool (e) of the roots. The controls and the different fungal isolates are given according to 
their MGR from left (lowest) to right (highest). The bars show means of n=4 and SEMs. Color code of 
the bars: high-performance isolates (white), medium performance isolates (middle grey), low 
performance isolates (light grey),all others and non-mycorrhizal controls (dark grey).   
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Fig. S7 P tissue concentration in µg mg-1 d.wt. in the metabolically active Pi pool (a), the 
lipid phosphate pool (b), the long-chained poly-P pool (c), the short-chained poly-P pool 
(d), and the DNA-, RNA-, and protein-phosphate pool (e) of the roots. The controls and 
the different fungal isolates are given according to their MGR from left (lowest) to right 
(highest). The bars show means of n=4 and SEMs. Color code of the bars: high-
performance isolates (white), medium performance isolates (middle grey), low 
performance isolates (light grey), all others and non-mycorrhizal controls (dark grey).   
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5.9 SUPPLEMENTARY MATERIAL – TABLES 
Table S1. Effect of the different AM fungal isolates on root, shoot, and total plant biomass, and mycorrhizal growth response (MGR). Isolates 
that were distinguished based on their performance level (PL) as low performance (LP), medium performance (MP) or high performance (HP) 
isolates are indicated. Data show the mean of n = 4 ± S.E.M. Different letters indicate statistically significant differences according to one-way 
ANOVA and LSD test (p ≤  0.05).  
 
Fungal isolate 
 

PL       Root biomass  
in mg 

Shoot biomass in mg 
 

     Total plant biomass 
in mg 

Colonization in % Mycorrhizal growth 
response in % 

 Controls  324.19 ± 30.5
9 

h 186.
67 

± 12.2
6 

g 510.86 ± 28.06 g 1.4 ± 0.6 g 0.00 ± 5.49 g 
Aca col CL356 LP 378.35 ± 31.0

3 
gh 213.

63 
± 23.6

9 
fgh 591.97 ± 52.29 defg 34.1 ± 2.8 abc 15.88 ± 10.2

4 
defg 

Aca col GA101  383.29 ± 36.9
1 

fgh 240.
33 

± 21.2
6 

efgh 623.61 ± 50.85 defg 34.6 ± 3.7 abc 22.07 ± 9.95 defg 
Aca col NB104C HP 1134.16 ± 150.

38 
a 436.

43 
± 51.3

2 
bcd 1570.5

9 
± 185.9

6 
a 27.8 ± 3.7 cd 207.44 ± 36.4

0 
a 

Acau mor CR207 MP 574.06 ± 154.
71 

efg 303.
23 

± 63.8
6 

defgh 877.29 ± 218.5
0 

cdef 37.0 ± 3.0 abc 71.73 ± 42.7
7 

cdef 
Acau mor EY106 MP 548.15 ± 128.

04 
efgh 352.

00 
± 75.7

7 
cdef 900.15 ± 202.8

3 
cdef 33.3 ± 2.2 abc 76.20 ± 39.7

0 
cdef 

Acau mor 
FL219B 

HP 853.29 ± 136.
79 

bcd 645.
50 

± 172.
79 

a 1498.7
9 

± 299.2
6 

a 28.8 ± 1.3 c 193.39 ± 58.5
8 

a 
Acau scr BR 602  413.99 ± 77.5

2 
fgh 242.

10 
± 33.8

9 
efgh 656.09 ± 109.5

9 
cdefg 36.5 ± 2.5 abc 28.43 ± 21.4

5 
cdefg 

Acau scr CU130 LP 395.59 ± 62.6
4 

fgh 183.
63 

± 20.3
1 

g 579.21 ± 68.31 efg 36.8 ± 2.4 abc 13.38 ± 13.3
7 

efg 
Acau scr VA104 HP 959.57 ± 113.

03 
abc 488.

25 
± 42.2

3 
bc 1447.8

2 
± 128.8

2 
a 29.4 ± 3.7 c 183.41 ± 25.2

2 
a 

Amb lep CR312 MP 731.57 ± 204.
64 

cde 310.
68 

± 58.9
8 

defgh 1042.2
4 

± 263.0
1 

bc 31.6 ± 2.3 abc 104.02 ± 51.4
8 

bc 
Amb lep FL130A  396.35 ± 28.6

5 
fgh 271.

78 
± 19.5

8 
efgh 668.13 ± 44.51 cdefg 34.3 ± 3.6 abc 30.79 ± 8.71 cdefg 

Amb lep JA401A  487.19 ± 35.8
8 

efgh 218.
68 

± 16.0
2 

fgh 705.87 ± 34.95 cdefg 32.6 ± 2.1 abc 38.17 ± 6.84 cdefg 
Cla cla BR106 MP 597.89 ± 128.

98 
defg 301.

73 
± 61.0

2 
defgh 899.62 ± 189.1

9 
cdef 42.0 ± 5.7 a 76.10 ± 37.0

3 
cdef 

Cla cla DN987  405.58 ± 61.9
8 

fgh 237.
68 

± 22.8
5 

efgh 643.25 ± 60.60 defg 35.9 ± 3.1 abc 25.92 ± 11.8
6 

defg 
Cla cla UT159A LP 375.06 ± 70.5

6 
gh 195.

08 
± 10.1

2 
gh 570.14 ± 63.04 efg 32.6 ± 3.2 abc 11.60 ± 12.3

4 
efg 

Cla etu MG106 HP 933.33 ± 96.0
3 

abc 470.
18 

± 51.5
7 

bc  1403.5
1 

± 107.6
1 

ab 30.6 ± 2 5 bc 174.74 ± 21.0
6 

ab 
Cla etu MX116A  411.99 ± 37.2

5 
fgh 279.

75 
± 24.6

5 
efgh 691.74 ± 59.86 cdefg 35.1 ± 3.2 abc 35.41 ± 11.7

2 
cdefg 

Cla etu SP108C MP 652.34 ± 137.
50 

def 300.
90 

± 72.4
2 

defgh 953.24 ± 208.8
2 

cde 36.5 ± 5.2 abc 86.60 ± 40.8
8 

cde 
Fun mos CU114  517.79 ± 90.1

8 
efgh 244.

45 
± 38.9

8 
efgh 762.24 ± 128.4

7 
cdefg 32.6 ± 1.6 abc 49.21 ± 25.1

5 
cdefg 

Fun mos HO102  381.67 ± 12.9
4 

fgh 246.
55 

± 40.4
2 

efgh 628.22 ± 36.29 defg 27.8 ± 1.2 cd 22.97 ± 7.10 defg 
Fun mos NB114 HP 993.98 ± 69.0

5 
abc 526.

75 
± 23.9

5 
ab 1520.7

3 
± 88.06 a 30.7 ± 4.7 bc 197.68 ± 17.2

4 
a 
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Gig mar JA201A  444.18 ± 43.8
1 

fgh 257.
93 

± 36.8
8 

efgh 702.10 ± 23.57 cdefg 16.9 ± 5.1 ef 37.44 ± 4.61 cdefg 
Gig mar MR104  482.83 ± 70.3

2 
efgh 299.

33 
± 66.1

8 
defgh 782.15 ± 134.0

3 
cdefg 17.9 ± 3.6 def 53.11 ± 26.2

4 
cdefg 

Gig mar WV205A MP 629.71 ± 172.
49 

defg 345.
33 

± 56.0
6 

cdefg 975.03 ± 227.5
1 

cd 9.5 ± 3.2 fg 90.86 ± 44.5
3 

cd 
Fungal isolate 
 

PL       Root biomass  
in mg 

Shoot biomass in mg 
 

     Total plant biomass 
in mg 

Colonization in % Mycorrhizal growth 
response in % 

 Par occ CR102 LP 388.49 ± 26.6
5 

fgh 177.
65 

± 18.5
1 

g 566.14 ± 40.29 efg 35.7 ± 4.2 abc 10.82 ± 7.89 efg 
Par occ HA771 MP 596.55 ± 111.

38 
defg 380.

88 
± 121.

78 
bcde 977.43 ± 229.4

4 
cd 31.6 ± 1.9 abc 91.33 ± 44.9

1 
cd 

Par occ OR924 HP 1017.34 ± 146.
91 

ab 469.
73 

± 13.4
1 

bc 1487.0
7 

± 136.1
9 

a 34.9 ± 3.6 abc 191.09 ± 26.6
6 

a 
Rhi int KE103  455.37 ± 106.

40 
fgh 275.

05 
± 63.0

9 
efgh 730.42 ± 166.0

8 
cdefg 40.9 ± 1.8 ab 42.98 ± 32.5

1 
cdefg 

Rhi int ON.pr.Te3 LP 367.76 ± 34.0
0 

gh 216.
05 

± 37.1
7 

fgh 583.81 ± 49.10 efg 27.8 ± 1.2 abc 14.28 ± 9.61 efg 
Rhi int TU101  621.34 ± 283.

68 
gh 351.

73 
± 108.

20 
efgh 973.06 ± 389.9

9 
defg 36.4 ± 3.3 abc 90.48 ± 76.3

4 
defg 

Rhi irr QB000 LP 361.94 ± 36.0
5 

gh 186.
08 

± 24.3
4 

g 548.01 ± 55.05 fg 36.6 ± 3.3 cde 7.27 ± 10.7
8 

fg 
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Table S2. Colonization characteristics of the Medicago sativa roots. Shown is the d.wt. of the root nodules, the colonization of the roots with arbuscules, and 
vesicles, the hyphal length in the soil and an estimate of the arbuscular volume in the colonized roots. The performance level (PL) is based on the MGR and 
the isolates were distinguished into low performance (LP), medium performance (MP), and high performance (HP) fungi. Data are shown as mean of n = 4 ± 
S.E.M. Different letters indicate statistically significant differences according to one way ANOVA and LSD test (p ≤  0.05).  
Fungal isolate 
 

PL       Nodule d.wt.  
             (mg) 

  Colonization with  
      arbuscules (%) 

     Colonization with 
          vesicles (%) 

     Hyphal length   
        (m g-1 soil) 

Arbuscular volume 
(mm3) 

Controls  6.23 ± 6.23 cd 0.00 ± 0.00 e 0.00 ± 0.00 efghi 1.84 ± 0.46 f  0.00 ± 0.00  f 
Aca col CL356 LP 0.00 ± 0.00 d 17.5

0 
± 3.77 cde 24.75 ± 5.91 abcd 4.13 ± 1.15 bcd  6.20 ± 1.65  def 

Aca col GA101  39.77 ± 27.98 ab 29.7
5 

± 5.98 abcd 23.50 ± 6.29 abcd 3.25 ± 0.80 bcdef 11.66 ± 3.45  bcde 
Aca col NB104C HP 13.91 ± 2.65 bcd 29.0

0 
± 11.01 abcd 15.25 ± 1.49 d 4.03 ± 0.54 bcde 17.25 ± 6.80 abcde 

Acau mor CR207 MP 5.00 ± 2.12 cd 33.0
0 

± 10.26 abc 28.75 ± 2.50 abc 4.08 ± 0.24 bcde 16.33 ± 5.98 abcde   
Acau mor EY106 MP 28.18 ± 25.81 abcd 28.0

0 
± 6.36 abcd 32.50 ± 4.66 ab 3.88 ± 0.60 bcde 12.59 ± 4.10 bcde 

Acau mor FL219B HP 14.32 ± 7.03 bcd 30.2
5 

± 4.13 abcd 27.25 ± 4.73 abc 2.65 ± 0.42 cdef 15.97 ± 3.21 abcde 
Acau scr BR 602  8.18 ± 8.18 bcd 34.7

5 
± 5.75 abc 33.00 ± 3.94 ab 2.45 ± 0.29 def 13.99 ± 3.75 abcde 

Acau scr CU130 LP 6.59 ± 6.59 bcd 32.0
0 

± 7.15 abcd 29.75 ± 3.99 abc 3.88 ± 0.74 bcde 11.97 ± 2.97  bcde 
 Acau scr VA104 HP 12.5 ± 4.80 bcd 27.7

5 
± 6.57 abcd 25.00 ± 4.20 abcd 4.15 ± 1.06 bc 14.86 ± 3.52 abcde 

Amb lep CR312 MP 1.36 ± 1.08 cd 32.5
0 

± 9.35 abc 24.00 ± 3.87 abcd 3.93 ± 0.77 bcde 17.85 ± 6.31  abcd 
Amb lep FL130A  7.5 ± 7.5 bcd 32.5 ± 9.13 abc 28.50 ± 2.60 abc 3.23 ± 0.90 bcdef 13.49 ± 4.41 abcde 
Amb lep JA401A  27.23 ± 15.79 abcd 27.0

0 
± 8.29 bcd 20.75 ± 2.78 cd 4.08 ± 0.57 bcde 11.85 ± 4.13  bcde 

Cla cla BR106 MP 11.82 ± 11.52 bcd 48.0
0 

± 5.55 a 33.50 ± 4.21 a 2.40 ± 0.17 ef 25.12 ± 4.80  a 
Cla cla DN987  2.27 ± 1.31 cd 34.7

5 
± 5.12 abc 21.50 ± 1.50 cd 4.28 ± 0.56 bc 14.16 ± 3.45 abcde 

Cla cla UT159A LP 14.32 ± 14.02 bcd 21.5
0 

± 3.80 cd 26.50 ± 5.39 abc 3.80 ± 0.48 bcde   7.54 ± 1.84  def 
Cla etu MG106 HP 10.23 ± 1.83 bcd 26.7

5 
± 5.81 bcd 24.50 ± 6.02 abcd 3.98 ± 0.61 bcde 14.15 ± 3.11 abcde 

Cla etu MX116A  58.86 ± 25.40 a 24.7
5 

± 6.21 bcd 34.00 ± 3.11 a 3.2 ± 0.32 bcdef   9.46 ± 2.87  cdef 
Cla etu SP108C MP 6.59 ± 4.02 bcd 34.5 ± 7.73 abc 31.00 ± 5.02 abc 3.80 ± 0.84 bcde 17.29 ± 5.14 abcde 
Fun mos CU114  8.41 ± 5.13 bcd 26.5

0 
± 8.76 bcd 31.25 ± 2.50 abc 4.38 ± 0.66 b 11.88 ± 4.74  bcde 

Fun mos HO102  5.22 ± 3.07 cd 26.7
5 

± 5.66 bcd 22.25 ± 2.87 bcd 2.78 ± 0.39 bcdef   9.87 ± 2.34 bcdef 
Fun mos NB114 HP 7.95 ± 3.22 bcd 29.2

5 
± 9.67 abcd 28.50 ± 3.52 abc 4.43 ± 0.46 b 17.19 ± 6.31 abcde 

Gig mar JA201A  0.23 ± 0.23 d 23.0
0 

± 8.35 cd 0.00 ± 0.00 e 6.63 ± 0.43 a   9.55 ± 3.48  cdef 
Gig mar MR104  18.64 ± 11.95 bcd 23.7

5 
± 10.80 bcd 0.00 ± 0.00 e 3.73 ± 0.41 bcde 10.83 ± 5.23 bcdef 

Gig mar WV205A MP 11.59 ± 5.84 bcd 11.2
5 

± 4.96 de 0.00 ± 0.00 e 3.40 ± 0.66 bcde   5.20 ± 2.86  ef 
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Fungal isolate 
 

PL       Nodule d.wt.   Colonization with  
      arbuscules (%) 

     Colonization with 
          vesicles (%) 

     Hyphal length   
        (m g-1 soil) 

Arbuscular volume 
(mm3) 

Par occ CR102 LP 16.59 ± 16.59 bcd 37.7
5 

± 11.36 abc 25.00 ± 6.20 abcd 3.60 ± 0.49 bcde 16.13 ± 5.48 abcde 
Par occ HA771 MP 29.09 ± 10.79 abcd 29.5 ± 5.52 abcd 22.5 ± 5.30 bcd 4.20 ± 0.27 bc 13.85 ± 4.11 abcde 
Par occ OR924 HP 18.86 ± 3.66 bcd 34.5

0 
± 10.28 abc 32.50 ± 3.80 ab 3.70 ± 0.38 bcde 21.32 ± 7.66  abc 

Rhi int KE103  25.00 ± 19.17 bcd 35.5
0 

± 7.73 abc 33.00 ± 3.19 ab 3.13 ± 0.38 bcdef 15.66 ± 5.00 abcde 
Rhi int ON.pr.Te3 LP 5.22 ± 5.22 cd 32.0

0 
± 8.50 abcd 25.25 ± 4.27 abcd 2.68 ± 0.73 cdef 12.37 ± 4.17  bcde   

Rhi int TU101  21.36 ± 8.95 bcd 44.2
5 

± 5.95 ab 20.75 ± 5.39 cd 3.80 ± 0.71 bcde 22.21 ± 7.31  ab 
Rhi irr QB000 LP 34.32 ± 21.71 abc 32.2

5 
± 8.00 abc 21.00 ± 1.68 cd 2.95 ± 0.59 bcdef 11.87 ± 3.06  bcde 
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Table S3. Effect of different fungal isolates on P root and shoot contents and tissue concentrations. Isolates that were distinguished based on 
their performance level (PL) as low performance (LP), medium performance (MP) or high performance (HP) isolates are indicated. Data show 
the mean of n = 4 ± S.E.M. Different letters indicate statistically significant differences according to one-way ANOVA and LSD test (p ≤  0.05).  
Fungal isolate 
 

PL 
 

Root P concentration 
    in µg mg-1 d.wt. 

      Root P content in mg 
      

       Shoot P concentration 
            in µg mg-1 d.wt. 

      Shoot P content in mg 
 

Controls  4.07 ± 1.01 abc 1.28 ± 0.28 cde 1.88 ± 0.46 def 0.34 ± 0.08 f 
Aca col CL356 LP 3.63 ± 1.53 abc 1.24 ± 0.42 cde 2.31 ± 0.26 def 0.50 ± 0.09 def 
Aca col GA101  4.07 ± 1.36 abc 1.42 ± 0.33 cde 5.31 ± 3.10 bc 1.10 ± 0.54 bcd 
Aca col NB104C HP 2.00 ± 0.36 c 2.25 ± 0.49 abcde 1.76 ± 0.09 ef 0.77 ± 0.11 cdef 
Acau mor CR207 MP 5.73 ± 1.23 a 2.74 ± 0.16 abcd 1.79 ± 0.21 ef 0.51 ± 0.07 def 
Acau mor EY106 MP 5.67 ± 2.22 a 2.80 ± 0.94 abc 1.79 ± 0.21 ef 0.66 ± 0.21 def 
Acau mor FL219B HP 4.41 ± 1.42 abc 3.28 ± 0.70 a 2.65 ± 0.22 cdef 1.64 ± 0.41 ab 
Acau scr BR 602  3.91 ± 0.57 abc 1.70 ± 0.48 abcde 2.32 ± 0.46 def 0.53 ± 0.07 def 
Acau scr CU130 LP 4.98 ± 1.47 ab 2.23 ± 0.87 abcde 3.16 ± 0.91 bcdef 0.55 ± 0.13 def 
Acau scr VA104 HP 2.26 ± 0.94 bc 1.88 ± 0.53 abcde 1.78 ± 0.12 ef 0.86 ± 0.06 cdef 
Amb lep CR312 MP 1.82 ± 0.14 c 1.42 ± 0.49 cde 2.07 ± 0.30 def 0.64 ± 0.14 defg 
Amb lep FL130A  3.68 ± 0.50 abc 1.45 ± 0.21 cde 2.62 ± 0.52 cdef 0.71 ± 0.16 def 
Amb lep JA401A  3.10 ± 0.31 abc 1.51 ± 0.17 bcde 1.64 ± 0.42 ef 0.35 ± 0.07 ef 
Cla cla BR106 MP 3.54 ± 0.68 abc 1.92 ± 0.21 abcde 2.33 ± 0.48 def 0.66 ± 0.13 def 
Cla cla DN987  4.89 ± 1.55 ab 2.16 ± 0.79 abcde 3.95 ± 1.00 bcde 0.91 ± 0.22 cdef 
Cla cla UT159A LP 3.33 ± 0.94 abc 1.14 ± 0.31 de 8.94 ± 2.20 a 1.80 ± 0.48 a 
Cla etu MG106 HP 2.01 ± 0.12 c 1.86 ± 0.19 abcde 1.06 ± 0.14 f 0.52 ± 0.12 def 
Cla etu MX116A  1.83 ± 0.16 c 0.74 ± 0.02 e 1.56 ± 0.08 ef 1.56 ± 0.03 ef 
Cla etu SP108C MP 1.98 ± 0.15 c 1.24 ± 0.19 cde 1.80 ± 0.47 ef 0.48 ± 0.11 def 
Fun mos CU114  2.02 ± 0.35 c 1.05 ± 0.24 e 1.26 ± 0.14 ef 0.31 ± 0.06 f 
Fun mos HO102  2.34 ± 0.07 bc 0.89 ± 0.06 e 1.36 ± 0.26 ef 0.32 ± 0.06 f 
Fun mos NB114 HP 2.91 ± 1.29 bc 3.07 ± 1.53 ab 2.55 ± 0.53 cdef 1.36 ± 0.32 abc 
Gig mar JA201A  3.90 ± 0.44 abc 1.78 ± 0.36 abcde 2.65 ± 0.56 cdef 0.73 ± 0.19 cdef 
Gig mar MR104  2.93 ± 0.54 bc 1.35 ± 0.19 cde 1.88 ± 0.40 def 0.52 ± 0.09 def 
Gig mar WV205A MP 2.71 ± 0.80 bc 1.60 ± 0.45 bcde 2.67 ± 0.91 bcdef 0.90 ± 0.27 cdef 
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Fungal isolate 
 

PL 
 

Root P concentration 
    in µg mg-1 d.wt. 

      Root P content in mg 
      

       Shoot P concentration 
            in µg mg-1 d.wt. 

      Shoot P content in mg 
 

Par occ CR102 LP 3.59 ± 0.83 abc 1.38 ± 0.34 cde 5.17 ± 1.59 bc 0.87 ± 0.21 cdef 
Par occ HA771 MP 3.07 ± 0.46 abc 1.69 ± 0.20 abcde 3.07 ± 1.81 bcdef 0.78 ± 0.31 cdef 
Par occ OR924 HP 2.77 ± 1.01 bc 3.11 ± 1.51 ab 2.06 ± 0.22 def 0.97 ± 0.13 cde 
Rhi int KE103  4.03 ± 0.80 abc 2.00 ± 0.80 abcde 4.74 ± 2.06 bcd 1.11 ± 0.42 bcd 
Rhi int 
ON.pr.Te3 

LP 3.37 ± 0.78 abc 1.23 ± 0.26 cde 2.23 ± 0.49 def 0.48 ± 0.11 def 
Rhi int TU101  3.34 ± 0.38 abc 1.15 ± 0.24 cde 1.87 ± 0.34 def 0.43 ± 0.02 def 
Rhi irr QB000 LP 3.79 ± 0.98 abc 1.32 ± 0.32 cde 5.48 ± 1.55 b 1.12 ± 0.48 bcd 
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Table S4. Effect of different fungal isolates on N root and shoot contents and tissue concentrations. Isolates that were distinguished based on 
their performance level (PL) as low performance (LP), medium performance (MP) or high performance (HP) isolates are indicated. Data show 
the mean of n = 4 ± S.E.M. Different letters indicate statistically significant differences according to one-way ANOVA and LSD test (p ≤  0.05). 
 
Fungal isolate 
 

PL Root N concentration 
    in µg mg-1 d.wt. 

     Root N content in mg 
      

       Shoot N concentration 
            in µg mg-1 d.wt. 

      Shoot N content in mg 
 

Controls  9.90 ± 0.60 jk 3.24 ± 0.47 f 9.95 ± 1.11 efghi 1.85 ± 0.22 ef 
Aca col CL356 LP 11.26 ± 1.31 ghijk 4.18 ± 0.42 def 12.27 ± 2.66 efghi 2.41 ± 0.20 ef 
Aca col GA101  11.85 ± 1.46 ghijk 4.39 ± 0.34 def 10.15 ± 0.11 ghi 2.43 ± 0.17 ef 
Aca col NB104C HP 20.49 ± 0.63 bcde 23.26 ± 2.89 a 33.32 ± 3.22 ab 14.14 ± 0.96 abc 
Acau mor CR207 MP 17.00 ± 1.57 defg 10.49 ± 3.55 cdef 16.73 ± 4.68 defghi 6.03 ± 2.87 ef 
Acau mor EY106 MP 19.21 ± 3.58 bcdef 12.08 ± 4.78 cde 15.71 ± 6.39 efghi 6.96 ± 4.02 def 
Acau mor 
FL219B 

HP 23.28 ± 2.81 abcd 21.16 ± 4.54 ab 27.63 ± 5.35 abcd 20.07 ± 5.70 a 
Acau scr BR 602  7.30 ± 0.32 k 2.99 ± 0.46 f 9.90 ± 0.36 hi 2.39 ± 0.29 ef 
Acau scr CU130 LP 10.91 ± 1.45 ghijk 4.58 ± 1.13 def 9.45 ± 1.02 hi 1.69 ± 0.11 f 
Acau scr VA104 HP 24.00 ± 0.45 abc 23.07 ± 2.40 a 29.63 ± 1.02 abc 14.61 ± 1.63 abc 
Amb lep CR312 MP 16.80 ± 3.53 defgh 13.98 ± 4.95 bc 20.56 ± 5.64 cdefgh 7.24 ± 2.59 def 
Amb lep FL130A  9.92 ± 0.40 ijk 3.92 ± 0.24 ef 9.99 ± 0.76 hi 2.76 ± 0.38 ef 
Amb lep JA401A  10.73 ± 1.13 ghijk 5.33 ± 0.89 cdef 9.34 ± 0.50 hi 2.04 ± 0.17 ef 
Cla cla BR106 MP 13.65 ± 4.06 efghijk 9.85 ± 4.84 cdef 15.66 ± 4.55 efghi 5.65 ± 2.72 ef 
Cla cla DN987  11.38 ± 1.04 ghijk 4.64 ± 0.85 def 9.94 ± 0.28 hi 2.35 ± 0.18 ef 
Cla cla UT159A LP 11.84 ± 1.42 ghijk 4.13 ± 0.39 def 11.52 ± 1.65 efghi 2.25 ± 0.35 ef 
Cla etu MG106 HP 27.91 ± 1.56 a 26.05 ± 2.55 a 28.98 ± 2.16 abc 13.31 ± 0.72 bcd 
Cla etu MX116A  11.25 ± 1.90 ghijk 4.55 ± 0.74 def 14.24 ± 4.90 efghi 4.03 ± 1.47 ef 
Cla etu SP108C MP 17.43 ± 3.44 cdefg 12.93 ± 4.43 bcd 21.80 ± 6.01 bcdefg 8.04 ± 3.37 cdef 
Fun mos CU114  11.94 ± 2.64 ghijk 6.95 ± 2.63 cdef 11.42 ± 0.68 efghi 2.78 ± 0.42 ef 
Fun mos HO102  10.00 ± 0.48 hijk 3.83 ± 0.28 ef 7.31 ± 1.92 i 1.83 ± 0.49 ef 
Fun mos NB114 HP 25.85 ± 4.07 ab 26.52 ± 5.63 a 34.15 ± 2.12 a 18.00 ± 1.39 ab 
Gig mar JA201A  13.93 ± 2.02 efghijk 6.36 ± 1.14 cdef 15.50 ± 4.35 efghi 4.29 ± 1.57 ef 
Gig mar MR104  11.96 ± 2.67 ghijk 6.41 ± 2.35 cdef 19.75 ± 5.02 cdefgh 7.05 ± 3.16 def 
Gig mar 
WV205A 

MP 16.45 ± 3.23 defghi 11.04 ± 3.79 cdef 22.90 ± 7.15 abcde 8.28 ± 2.90 cde 
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Fungal isolate 
 

PL  Root N concentration 
    in µg mg-1 d.wt. 

     Root N content in mg 
      

      Shoot N concentration 
            in µg mg-1 d.wt. 

      Shoot N content in mg 
 

Par occ CR102 LP 12.86 ± 0.84 fghijk 4.92 ± 0.12 def 11.46 ± 0.79 efghi 2.06 ± 0.30 ef 
Par occ HA771 MP 15.18 ± 2.69 efghij 10.05 ± 3.00 cdef 17.88 ± 3.60 cdefghi 8.21 ± 3.38 cdef 
Par occ OR924 HP 23.27 ± 1.49 abcd 23.50 ± 3.13 a 33.09 ± 1.50 ab 15.54 ± 0.76 ab 
Rhi int KE103  15.28 ± 2.50 efghij 7.71 ± 2.77 cdef 15.67 ± 4.22 efghi 5.23 ± 2.55 ef 
Rhi int ON.pr.Te3 LP 14.20 ± 1.16 efghij 5.31 ± 0.77 cdef 10.37 ± 2.00 fghi 2.47 ± 0.87 ef 
Rhi int TU101  18.06 ± 5.88 ghijk 5.00 ± 2.25 def 11.34 ± 1.13 bcdef 3.92 ± 0.69 ef 
Rhi irr QB000 LP 11.06 ± 0.98 ghijk 3.96 ± 0.41 def 11.01 ± 0.57 fghi 2.05 ± 0.25 ef 
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Table S5. P allocation in different P pools in roots in % . Effect of different fungal isolates on N root and shoot contents and tissue 
concentrations. Isolates that were distinguished based on their performance level (PL) as low performance (LP), medium performance (MP) or 
high performance (HP) isolates are indicated. Data show the mean of n = 4 ± S.E.M. Different letters indicate statistically significant differences 
according to one way ANOVA and LSD test (p ≤  0.05). 
Fungal isolate 
 

PL        Inorganic phosphate     
in % 

  Lipid-phosphate in % 
      

Long-chained poly-P   in 
% 

   Short-chained poly-P  
in % 

 

DNA-,  RNA-, and 
protein-phosphate in % 

Controls  9.06 ± 1.85 defgh 21.52 ± 1.30 bcde 5.66 ± 1.39 bcd 2.30 ± 0.51 ef 61.45 ± 2.60 abcde 
Aca col CL356 LP 12.88 ± 4.60 cdef 18.47 ± 2.17 cde 6.51 ± 1.86 bcd     

9.30 
± 4.87 ab 52.83 ± 8.05 bcdefg 

Aca col GA101  8.70 ± 2.34 defgh 21.27 ± 2.44 bcde 5.08 ± 1.53 bcd 6.56 ± 1.87 bcd
e 

58.39 ± 4.61 abcdef 
Aca col NB104C HP 4.57 ± 1.11 h 17.56 ± 0.72 de 6.02 ± 1.74 bcd 1.64 ± 0.51 ef 70.21 ± 2.87 a 
Acau mor CR207 MP 9.59 ± 1.43 defgh 27.49 ± 6.61 abcde 4.82 ± 1.16 bcd 3.46 ± 0.91 cdef 54.64 ± 8.71 abcdef

g Acau mor EY106 MP 9.39 ± 2.10 defgh 25.15 ± 3.06 abcde 8.09 ± 1.81 abcd 3.13 ± 0.71 def 54.23 ± 6.71 abcdef
g Acau mor 

FL219B 
HP 16.07 ± 2.21 cdef 23.24 ± 4.72 bcde 7.73 ± 0.59 a 4.60 ± 1.98 cdef 48.36 ± 7.17 cdefg 

Acau scr BR 602  13.89 ± 4.72 cdef 28.94 ± 9.04 abc 6.02 ± 0.65 bcd 6.61 ± 3.83 bcd
e 

44.53 ± 10.5
777 

fg 
Acau scr CU130 LP 9.22 ± 3.67 defgh 18.38 ± 2.40 cde 7.37 ± 1.34 abcd 8.37 ± 3.83 abc

d 
56.66 ± 4.87 abcdef

g Acau scr VA104 HP 6.47 ± 0.84 efgh 28.36 ± 4.15 abcd 5.93 ± 1.00 bcd 1.49 ± 0.39 ef 57.75 ± 5.60 abcdef
g Amb lep CR312 MP 4.12 ± 0.92 h 20.76 ± 3.64 bcde 9.75 ± 4.15 ab 2.57 ± 1.04 ef 62.80 ± 7.63 abcd 

Amb lep FL130A  12.77 ± 2.98 cdefg 21.47 ± 2.91 bcde 7.12 ± 2.82 abcd 6.40 ± 2.77 bcd
ef 

52.23 ± 5.78 bcdefg 
Amb lep JA401A  13.82 ± 3.60 cdef 22.06 ± 2.34 bcde 3.48 ± 0.54 cd 3.84 ± 0.52 cdef 56.80 ± 6.40 abcdef

g Cla cla BR106 MP 10.22 ± 3.17 defgh 19.74 ± 2.77 bcde 4.16 ± 1.30 cd 5.62 ± 1.99 bcd
ef 

60.26 ± 7.29 abcdef 
Cla cla DN987  15.15 ± 1.76 bcd 23.24 ± 4.66 bcde 5.12 ± 1.49 bcd 8.81 ± 2.15 abc 47.69 ± 5.06 cdefg 
Cla cla UT159A LP 22.17 ± 4.50 ab 22.18 ± 4.16 bcde 6.45 ± 1.72 bcd 4.38 ± 2.15 bcd

ef 
44.82 ± 7.43 efg 

Cla etu MG106 HP 3.82 ± 0.80 h 25.37 ± 4.22 abcde 8.52 ± 1.88 abc 2.08 ± 0.71 ef 60.23 ± 4.91 abcdef 
Cla etu MX116A  8.64 ± 2.28 defgh 34.59 ± 5.92 a 7.78 ± 1.83 abcd 5.90 ± 1.26 bcd

ef 
43.09 ± 5.24 fg 

Cla etu SP108C MP 4.93 ± 1.04 gh 22.65 ± 2.26 bcde 7.17 ± 0.94 abcd 2.92 ± 0.67 ef 62.34 ± 4 abcd 
Fun mos CU114  10.10 ± 1.62 defgh 23.81 ± 4.08 abcde 7.40 ± 1.30 abcd 3.87 ± 0.88 cdef 54.82 ± 5.83 abcdef

g Fun mos HO102  10.27 ± 0.80 defgh 27.80 ± 3.84 abcde 6.39 ± 1.37 bcd 4.15 ± 0.74 bcd
ef 

51.39 ± 5.44 bcdefg 
Fun mos NB114 HP 4.77 ± 0.78 h 29.89 ± 3.58 ab 7.63 ± 2.17 abcd 1.65 ± 0.53 ef    

56.06 
± 3.95 abcdef

g Gig mar JA201A  6.22 ± 1.63 fgh 18.30 ± 3.12 cde 6.56 ± 2.08 bcd 5.70 ± 2.57 bcd
ef 

63.23 ± 5.61 abcd 
Gig mar MR104  7.55 ± 3.72 defgh 22.37 ± 3.41 bcde 7.47 ± 2.41 abcd 4.16 ± 1.15 bcd

ef 
58.45 ± 7.50 abcdef 

Gig mar 
WV205A 

MP 9.35 ± 2.45 defgh 17.26 ± 3.49 e 6.76 ± 2.53 bcd 2.65 ± 0.38 ef 63.98 ± 4.30 abc 
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Fungal isolate 
 

PL      Inorganic phosphate     
in % 

  Lipid-phosphate in % 
      

Long-chained poly-P   in 
% 

   Short-chained poly-P  
in % 

 

DNA-,  RNA-, and 
protein-phosphate in % 

Par occ CR102 LP 10.90 ± 5.86 defgh 17.53 ± 2.76 de 4.32 ± 0.24 bcd 3.56 ± 0.33 cdef    
63.69 

± 8.20 abc 
Par occ HA771 MP 8.51 ± 2.88 defgh 19.20 ± 2.09 bcde 7.87 ± 1.97 abcd 2.38 ± 1.03 ef 62.04 ± 7.05 abcde 
Par occ OR924 HP 4.31 ± 1.00 h 16.60 ± 0.84 e 7.07 ± 2.08 abcd 3.74 ± 0.95 cdef 68.28 ± 2.60 ab 
Rhi int KE103  10.92 ± 3.19 defgh 25.84 ± 6.96 abcde 5.02 ± 1.66 bcd 2.48 ± 0.58 ef 55.74 ± 9.37 abcdef

g Rhi int 
ON.pr.Te3 

LP 14.23 ± 0.84 cde 25.06 ± 2.51 abcde 2.94 ± 0.97 d 1.08 ± 0.21 f 56.70 ± 2.97 abcdef
g Rhi int TU101  24.00 ± 3.57 a 16.38 ± 0.64 e 6.83 ± 0.96 abcd 13.46 ± 3.88 a 39.33 ± 2.12 g 

Rhi irr QB000 LP 19.97 ± 3.45 abc 21.60 ± 5.85 bcde 5.74 ± 1.23 bcd 6.58 ± 3.42 bcd
e 

46.11 ± 6.93 defg 
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Table S6. P allocation in different P pools in µg per mg-1 d.wt. (tissue concentrations). Isolates that were distinguished based on their 
performance level (PL) as low performance (LP), medium performance (MP) or high performance (HP) isolates are indicated. Data show the 
mean of n = 4 ± S.E.M. Different letters indicate statistically significant differences according to one-way ANOVA and LSD test (p ≤  0.05). 
Fungal isolate 
 

PL Inorganic phosphate      
in µg mg-1 d.wt. 

Lipid-phosphate  
in µg mg-1 d.wt. 

 

Long-chained poly-P 
in µg mg-1 d.wt. 

Short-chained poly-P in 
µg mg-1 d.wt. 

 

DNA,  RNA, Prot.-P 
in µg mg-1 d.wt. 

Controls  1.69 ± 0.36 efghi 4.00 ± 0.39 abcd 1.04 ± 0.23 abc 0.41 ± 0.08 fgh 11.26 ± 0.44 ab 
Aca col CL356 LP 2.41 ± 0.70 defg 3.70 ± 0.40 abcd 1.28 ± 0.33 abc 1.80 ± 0.85 ab 11.04 ± 2.45 ab 
Aca col GA101  1.50 ± 0.29 efghi 4.49 ± 1.21 abc 0.85 ± 0.25 bc 1.12 ± 0.26 abcdef

gh 
12.29 ± 3.56 ab 

Aca col NB104C HP 0.63 ± 0.12 hi 2.78 ± 0.83 cd 0.76 ± 0.15 bc 0.24 ± 0.08 gh 11.33 ± 3.80 ab 
Acau mor CR207 MP 1.77 ± 0.36 defghi 4.57 ± 1.18 abc 0.88 ± 0.19 bc 0.64 ± 0.18 defgh 11.04 ± 3.98 ab 
Acau mor EY106 MP 1.52 ± 0.39 efghi 4.11 ± 0.79 abcd 1.37 ± 0.40 abc 0.57 ± 0.18 efgh 9.20 ± 2.55 ab 
Acau mor FL219B HP 2.19 ± 0.44 defgh 3.81 ± 0.23 abcd 1.93 ± 0.67 a 0.67 ± 0.40 defgh 8.60 ± 1.67 ab 
Acau scr BR 602  2.94 ± 1.34 cde 5.62 ± 2.08 a 1.15 ± 0.23 abc 1.29 ± 0.71 abcdef 8.93 ± 2.84 ab 
Acau scr CU130 LP 1.86 ± 0.64 defghi 4.19 ± 0.83 abcd 1.68 ± 0.44 ab 1.67 ± 0.71 abc 12.87 ± 2.05 ab 
Acau scr VA104 HP 0.95 ± 0.12 ghi 4.19 ± 0.60 abcd 0.83 ± 0.11 bc 0.20 ± 0.04 h 8.81 ± 1.75 ab 
Amb lep CR312 MP 0.62 ± 0.09 hi 3.20 ± 0.45 bcd 1.24 ± 0.41 abc 0.52 ± 0.28 efgh 11.18 ± 2.99 ab 
Amb lep FL130A  2.79 ± 0.96 def 4.26 ± 0.40 abcd 1.24 ± 0.26 abc 1.19 ± 0.47 abcdef

g 
11.48 ± 2.90 ab 

Amb lep JA401A  2.00 ± 0.47 defghi 3.42 ± 0.62 abcd 0.55 ± 0.12 c 0.57 ± 0.05 efgh 8.97 ± 1.85 ab 
Cla cla BR106 MP 2.21 ± 0.87 defgh 3.89 ± 0.68 abcd 0.83 ± 0.24 bc 1.03 ± 0.27 abcdef

gh 
12.84 ± 3.76 ab 

Cla cla DN987  3.36 ± 0.31 bcd 5.31 ± 1.15 ab 1.16 ± 0.39 abc 1.91 ± 0.41 a 11.08 ± 1.91 ab 
Cla cla UT159A LP 4.83 ± 0.77 ab 4.81 ± 0.52 abc 1.51 ± 0.53 ab 0.84 ± 0.34 bcdefg

h 
10.71 ± 2.76 ab 

Cla etu MG106 HP 0.60 ± 0.17 hi 3.68 ± 0.24 abcd 1.23 ± 0.26 abc 0.30 ± 0.09 gh 9.31 ± 1.48 ab 
Cla etu MX116A  1.44 ± 0.43 efghi 5.71 ± 1.20 a 1.25 ± 0.30 abc 0.98 ± 0.23 abcdef

gh 
6.83 ± 0.47 b 

Cla etu SP108C MP 1.03 ± 0.25 ghi 4.69 ± 0.73 abc 1.49 ± 0.29 ab 0.62 ± 0.19 defgh 12.49 ± 0.63 ab 
Fun mos CU114  1.89 ± 0.22 defghi 4.46 ± 0.58 abc 1.40 ± 0.19 abc 0.72 ± 0.13 cdefgh 10.84 ± 2.17 ab 
Fun mos HO102  2.13 ± 0.28 defghi 5.72 ± 0.76 a 1.31 ± 0.32 abc 0.81 ± 0.08 cdefgh 11.77 ± 3.61 ab 
Fun mos NB114 HP 0.58 ± 0.14 hi 3.98 ± 1.43 abcd 0.78 ± 0.21 bc 0.18 ± 0.07 h 8.18 ± 3.11 b 
Gig mar JA201A  1.26 ± 0.29 fghi 3.72 ± 0.57 abcd 1.33 ± 0.46 abc 1.18 ± 0.48 abcdef

g 
13.53 ± 2.30 ab 

Gig mar MR104  1.23 ± 0.52 fghi 3.90 ± 0.51 abcd 1.29 ± 0.37 abc 0.72 ± 0.17 cdefgh 10.56 ± 1.85 ab 
Gig mar WV205A MP 1.92 ± 0.67 defghi 3.08 ± 0.66 bcd 1.18 ± 0.45 abc 0.46 ± 0.05 fgh 11.93

3 
± 2.31 ab 
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Fungal isolate 
 

PL Inorganic phosphate      
in µg mg-1 d.wt. 

Lipid-phosphate  
in µg mg-1 d.wt. 

 

Long-chained poly-P 
in µg mg-1 d.wt. 

Short-chained poly-P in 
µg mg-1 d.wt. 

 

DNA,  RNA, Prot.-P 
in µg mg-1 d.wt. 

             Short-chained 
poly-P in µg mg-1 d.wt. 

 
Par occ CR102 LP 2.19 ± 1.01 defgh 4.18 ± 1.00 abcd 1.03 ± 0.22 abc 0.80 ± 0.11 cdefgh 15.28 ± 3.90 a 
Par occ HA771 MP 1.51 ± 0.54 efghi 3.44 ± 0.34 abcd 1.39 ± 0.33 abc 0.42 ± 0.20 fgh 11.68 ± 2.29 ab 
Par occ OR924 HP 0.49 ± 0.09 i 2.00 ± 0.27 d 0.81 ± 0.21 bc 0.47 ± 0.13 fgh 8.16 ± 0.91 b 
Rhi int KE103  1.64 ± 0.27 efghi 3.96 ± 0.73 abcd 0.77 ± 0.25 bc 0.41 ± 0.09 fgh 10.06 ± 3.06 ab 
Rhi int ON.pr.Te3 LP 2.19 ± 0.24 defgh 3.78 ± 0.22 abcd 0.52 ± 0.18 c 0.21 ± 0.02 h 8.76 ± 0.93 ab 
Rhi int TU101  5.19 ± 2.03 a 4.85 ± 0.77 abcd 1.71 ± 0.48 ab 1.62 ± 1.12 abcd 10.26 ± 8.64 ab 
Rhi irr QB000 LP 4.49 ± 0.56 bc 4.94 ± 1.05 abc 1.41 ± 0.39 abc 1.46 ± 0.65 abcde 11.48 ± 2.91 ab 
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Table S7. P allocation in different P pools in mg per root (contents). Isolates that were distinguished based on their performance level (PL) as 
low performance (LP), medium performance (MP) or high performance (HP) isolates are indicated. Data show the mean of n = 4 ± S.E.M. 
Different letters indicate statistically significant differences according to one-way ANOVA and LSD test (p ≤  0.05). 
Fungal isolate 
 

PL Inorganic phosphate     
in mg 

Lipid-phosphate in mg 
 

Long-chained poly-P 
in mg 

  Short-chained poly-P 
              in mg 

 

DNA-,  RNA-, protein-
phosphate in mg 

Controls  0.54 ± 0.13 fg 1.26 ± 0.10 g 0.35 ± 0.09 d 0.14 ± 0.04 fg 3.60 ± 0.26 fgh 
Aca col CL356 LP 0.87 ± 0.20 defg 1.37 ± 0.13 fg 0.45 ± 0.11 d 0.75 ± 0.39 abcd 4.23 ± 1.03 defgh 
Aca col GA101  0.60 ± 0.16 fg 1.83 ± 0.57 defg 0.32 ± 0.10 d 0.44 ± 0.13 bcdefg 4.93 ± 1.64 bcdefg 
Aca col NB104C HP 0.69 ± 0.13 efg 2.77 ± 0.34 abcde 0.88 ± 0.23 cd 0.25 ± 0.07 efg 11.16 ± 1.63 a 
Acau mor CR207 MP 0.85 ± 0.05 efg 2.35 ± 0.54 bcdefg 0.42 ± 0.61 d 0.29 ± 0.03 efg 5.75 ± 2.03 bcdefg 
Acau mor EY106 MP 0.75 ± 0.16 efg 2.03 ± 0.34 defg 0.67 ± 0.19 cd 0.26 ± 0.08 efg 4.30 ± 0.48 defgh 
Acau mor FL219B HP 1.80 ± 0.45 abc 3.33 ± 0.65 abc 1.94 ± 0.95 b 0.42 ± 0.17 bcdefg 6.83 ± 1.28 bcdef 
Acau scr BR 602  1.05 ± 0.34 cdefg 2.09 ± 0.58 cdefg 0.46 ± 0.07 cd 0.56 ± 0.36 bcde 3.41 ± 0.83 fgh 
Acau scr CU130 LP 0.85 ± 0.36 efg 1.55 ± 0.23 efg 0.60 ± 0.05 cd 0.79 ± 0.38 abc 4.72 ± 0.33 bcdefg 
Acau scr VA104 HP 0.89 ± 0.08 defg 3.91 ± 0.50 a 0.84 ± 0.19 cd 0.20 ± 0.06 efg 8.67 ± 2.18 ab 
Amb lep CR312 MP 0.40 ± 0.05 g 2.13 ± 0.39 cdefg 0.89 ± 0.35 cd 0.34 ± 0.16 cdefgg 8.26 ± 3.47 abcd 
Amb lep FL130A  1.17 ± 0.49 cdef 1.71 ± 0.25 defg 0.48 ± 0.12 cd 0.44 ± 0.15 bcdefg 4.57 ± 1.21 cdefgh 
Amb lep JA401A  1.00 ± 0.27 defg 1.67 ± 0.32 efg 0.27 ± 0.06 d 0.28 ± 0.05 efg 4.27 ± 0.72 defgh 
Cla cla BR106 MP 1.25 ± 0.50 bcdef 2.23 ± 0.45 bcdefg 0.56 ± 0.22 cd 0.52 ± 0.11 bcdef 7.85 ± 2.68 abcde 
Cla cla DN987  1.40 ± 0.27 abcd

e 
1.97 ± 0.32 defg 0.51 ± 0.17 cd 0.84 ± 0.23 ab 4.28 ± 0.76 defgh 

Cla cla UT159A LP 1.96 ± 0.65 ab 1.70 ± 0.20 defg 0.60 ± 0.24 cd 0.27 ± 0.07 efg 4.15 ± 1.19 efgh 
Cla etu MG106 HP 0.54 ± 0.13 fg 3.45 ± 0.45 ab 1.24 ± 0.38 bc 0.29 ± 0.10 efg 8.36 ± 0.88 abc 
Cla etu MX116A  0.59 ± 0.20 fg 2.41 ± 0.62 bcdef 0.51 ± 0.11 cd 0.39 ± 0.08 cdefg 2.77 ± 0.19 gh 
Cla etu SP108C MP 0.62 ± 0.17 efg 2.94 ± 0.73 abcd 0.93 ± 0.23 cd 0.35 ± 0.06 cdefg 7.91 ± 1.34 abcde 
Fun mos CU114  0.99 ± 0.20 defg 2.34 ± 0.58 bcdefg 0.78 ± 0.26 cd 0.38 ± 0.11 cdefg 5.40 ± 0.96 bcdefg 
Fun mos HO102  0.81 ± 0.09 efg 2.15 ± 0.23 cdefg 0.49 ± 0.12 cd 0.31 ± 0.03 defg 4.42 ± 1.26 cdefgh 
Fun mos NB114 HP 0.58 ± 0.15 fg 3.88 ± 1.33 a 0.82 ± 0.27 cd 0.18 ± 0.07 efg 8.07 ± 2.99 abcde 
Gig mar JA201A  0.59 ± 0.19 fg 1.65 ± 0.30 efg 0.60 ± 0.23 cd 0.59 ± 0.28 bcde 5.98 ± 1.07 bcdefg 
Gig mar MR104  0.55 ± 0.20 fg 1.79 ± 0.12 defg 0.68 ± 0.30 cd 0.31 ± 0.05 defg 5.11 ± 1.08 bcdefg 
Gig mar WV205A MP 0.96 ± 0.29 defg 1.69 ± 0.21 defg 0.70 ± 0.22 cd 0.28 ± 0.06 efg 6.89 ± 1.35 bcdef 
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Fungal isolate 
 

PL Inorganic phosphate     
in mg 

Lipid-phosphate in mg 
 

Long-chained poly-P 
in mg 

  Short-chained poly-P 
              in mg 

 

DNA-,  RNA-, protein-
phosphate in mg 

Par occ CR102 LP 0.91 ± 0.46 defg 1.69 ± 0.45 defg 0.41 ± 0.10 d 0.31 ± 0.05 defg 6.00 ± 1.65 bcdefg 
Par occ HA771 MP 0.76 ± 0.14 efg 1.94 ± 0.21 defg 0.77 ± 0.20 cd 0.21 ± 0.06 efg 6.88 ± 1.77 bcdef 
Par occ OR924 HP 0.52 ± 0.14 fg 1.93 ± 0.19 defg 0.84 ± 0.29 cd 0.44 ± 0.13 bcdefg 7.99 ± 0.83 abcde 
Rhi int KE103  0.68 ± 0.10 efg 1.58 ± 0.14 efg 0.37 ± 0.18 d 0.19 ± 0.08 efg 4.26 ± 1.29 defgh 
Rhi int ON.pr.Te3 LP 0.80 ± 0.11 efg 1.39 ± 0.18 fg 0.16 ± 0.06 d 0.06 ± 0.02 g 3.25 ± 0.49 fgh 
Rhi int TU101  2.10 ± 0.55 a 1.40 ± 0.15 fg 0.45 ± 0.13 cd 0.86 ± 0.30 a 3.39 ± 0.43 fgh 
Rhi irr QB000 LP 1.64 ± 0.26 abcd 1.78 ± 0.46 defg 0.47 ± 0.10 a 0.53 ± 0.27 bcdefg 3.84 ± 0.65 h 
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Table S8. Results of the statistical tests (effect on biomass and P contents and tissue 
concentrations) and the linear regression analysis (LRA). The LSD tests in the table 
describe tests in which the isolates were grouped and compared according to their 
performance levels. Isolates were only grouped when the tests with the individual isolates 
suggested that there were significant differences between the different performance levels 
but not within one performance level. All tests were conducted with the statistical 
program UNISTAT 6. Shown are here only the statistically significant results (all other 
results p > 0.05).  
No. Comparison Test Output p 
1 Total plant biomass: All treatments ANOVA F31,99 = 4.785 p < 0.0001 
2 Total plant biomass: Isolates of A. 

morrowiae and R. intraradices/irregulare 
ANOVA F1,26 = 4.512 p < 0.0433 

3 Total plant biomass: Performance groups ANOVA F2,73 = 41.303 p < 0.0001 
4 Total plant biomass: High performance and 

controls 
LSD  p < 0.0001 

5 Total plant biomass: High performance and 
low performance 

LSD  p < 0.0001 

6 Total plant biomass: High performance and 
medium performance 

LSD  p < 0.0001 

7 Total plant biomass: Medium performance 
and low performance 

LSD  p = 0.0001 

8 Root biomass and root P content (LRA)  F1,30 = 18.554 r2 = 0.382 p = 0.0002 
9 Shoot biomass and shoot P content (LRA) F1,30 = 4.384 r2 = 0.127 p = 0.045 
10 Root P content: All isolates ANCOVA F32,97 = 1.926 p < 0.0077 
11 Root P content: All isolates with 

performance levels 
ANCOVA F4,78 = 4.136 p = 0.0043 

12 Root P content: High performance and 
controls 

LSD  p = 0.019 

13 Root P content: High performance and low 
performance 

LSD  p = 0.0021 

14 
 

Root biomass and root P tissue concentration 
(LRA)  

F1,30 = 5.596 r2 = 0.157 p = 0.0247 

15 
 

Shoot biomass and shoot P tissue 
concentration (LRA) 

F1,30 = 4.053 r2 = 0.119 p = 0.0531 

16 Shoot P content: All treatments  ANCOVA F32,97 = 3.001 p < 0.0001 
17 Shoot P content: High performance and 

controls 
LSD  p = 0.0045 

18 Shoot P content: High performance and 
medium performance 

LSD  p = 0.0186 

19 Shoot P content: Low performance and 
controls 

LSD  p = 0.0214 

20 Shoot P tissue concentration: All treatments  ANCOVA F32,97 = 2.725 p < 0.0001 
21 Shoot P tissue concentration: Low 

performance and controls 
LSD  p = 0.0039 

22 Shoot P tissue concentration: Low 
performance and medium performance 

LSD  p = 0.0001 

23 Shoot P tissue concentration: Low 
performance and high performance 

LSD  p < 0.0001 
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Table S9. Results of the statistical tests (N contents and N tissue concentrations) and the linear 
regression analysis (LRA). The LSD tests in the table describe tests in which the isolates were grouped and 
compared according to their performance levels. Isolates were only grouped when the tests with the 
individual isolates suggested that there were significant differences between the different performance 
levels but not within one performance level. All tests were conducted with the statistical program 
UNISTAT 6. Shown are here only the statistically significant results (all other results p > 0.05).  
No. Comparison Test Output p 
1 Root biomass and root N content (LRA) F1,30 = 563.3 r2 = 0.9494 p < 0.0001 
2 Root biomass and root N tissue concentration 

(LRA)  
F1,30 = 114.0 r2 = 0.7917 p < 0.0001 

3 Shoot biomass and shoot N content (LRA) F1,30 = 584.7 r2 = 0.9511 p < 0.0001 
4 Shoot biomass and N tissue concentration 

(LRA) 
F1,30 = 108.5 r2 = 0.7833 p < 0.0001 

5 Root N content: All treatments ANCOVA F32,97 = 35.936 p < 0.0001 
6 Root N content: All isolates with performance 

levels 
ANCOVA F4,78 = 161.688 p < 0.0001 

7 Root N content: High performance and 
controls 

LSD  p < 0.0001 

8 Root N content: High performance and 
medium performance 

LSD  p < 0.0001 

9 Root N content: High performance and low 
performance 

LSD  p < 0.0001 

10 Root N content: Medium performance and 
controls 

LSD  p = 0.0045 

11 Root N content: Medium performance and low 
performance 

LSD  p = 0.0003 

12 Root N tissue concentration: All treatments ANCOVA F32,97 = 7.957 p < 0.0001 
13 Root N concentration: All isolates with 

performance levels 
ANCOVA F4,78 = 32.846 p < 0.0001 

14 Root N concentration: High performance and 
controls 

LSD  p < 0.0001 

15 Root N concentration: High performance and 
medium performance 

LSD  p < 0.0001 

16 Root N concentration: High performance and 
low performance 

LSD  p < 0.0001 

17 Root N concentration: Medium performance 
and controls 

LSD  p = 0.0027 

18 Root N concentration: Medium performance 
and low performance 

LSD  p = 0.002 

19 Shoot N content: All treatments ANCOVA F32,97 = 27.792 p < 0.0001 
20 Shoot N content: All isolates with performance 

levels 
ANCOVA F32,97 = 174.317 p < 0.0001 

21 Shoot N content: High performance and 
controls 

LSD  p < 0.0001 

22 Shoot N content: High performance and 
medium performance 

LSD  p < 0.0001 

23 Shoot N content: High performance and low 
performance 

LSD  p < 0.0001 

24 Shoot N content: Medium performance and 
controls 

LSD  p = 0.012 
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25 Shoot N content: Medium performance and 
low performance 

LSD  p = 0.0004 

 
26 Shoot N tissue concentration: All treatments ANCOVA F32,97 = 6.825 p < 0.0001 
27 Shoot N concentration: All isolates with 

performance levels 
ANCOVA F4,78 = 33.227 p < 0.0001 

28 Shoot N concentration: High performance and 
controls 

LSD  p < 0.0001 

29 Shoot N concentration: High performance and 
medium performance 

LSD  p < 0.0001 

30 Shoot N concentration: High performance and low 
performance 

LSD  p < 0.0001 

31 Shoot N concentration: Medium performance and 
controls 

LSD  p = 0.010 

32 Shoot N concentration: Medium performance and 
low performance 

LSD  p = 0.0007 

 



197 

 

 

 
Table S10. Results of the linear regression analysis (LRA) between colonization of the 
plants with mycorrhizal fungi or with root nodules and plant growth or nutrient 
parameters. All tests were conducted with the statistical program UNISTAT 6.  
 
No. Comparison Test Output p 
1 Total arbuscular volume and total plant 

biomass (LRA) 
F1,29 = 5.32 r2 = 0.1551 p = 0.0283 

2 Root nodulation (d. wt.) and shoot N content 
(LRA) 

F1,30 = 0.025 r2 = -0.0324 p = 0.8754 

3 Root nodulation (d. wt.) and shoot N 
concentration (LRA) 

F1,30 = 0.198 r2 = -0.0266 p = 0.6599 

4 Root nodulation (d. wt.) and root N 
concentration (LRA) 

F1,30 = 0.065 r2 = -0.0311 p = 0.7999 

5 Root nodulation (d. wt.) and root N content 
(LRA) 

F1,30 = 0.314 r2 = -0.0226 p = 0.5792 

6 Root nodulation (d. wt.) and root biomass  
(LRA) 

F1,30 = 0.285 r2 = -0.0236 p = 0.5977 

7 Root nodulation and shoot biomass (LRA) F1,30 = 0.001 r2 = -0.0332 p = 0.9731 
8 Root nodulation and total biomass (LRA) F1,30 = 0.726 r2 = -0.0291 p = 0.7264 
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Table S11. Results of the statistical tests (P pool distribution). The LSD tests in the table 
describe tests in which the isolates were grouped and compared according to their performance 
levels. Isolates were only grouped when the tests with the individual isolates suggested that there 
were significant differences between the different performance levels but not within one 
performance level. All tests were conducted with the statistical program UNISTAT 6. Shown are 
here only the statistically significant results (all other results p > 0.05). 
No. Comparison Test Output p 
1 Correlation between root biomass and LP Pearson r(30) = 0.7303 p < 0.0001 
2 Correlation between root biomass and DNA-

P 
Pearson r(30) = 0.8570 p < 0.0001 

3 Percentage Pi allocation: All isolates ANCOVA F32,97 = 2.830 p < 0.0001 
4 Percentage Pi: Low performance and high 

performance 
LSD  p < 0.0001 

5 Percentage Pi: Low performance and 
medium performance 

LSD  p = 0.0001 

6 Percentage Pi: Low performance and 
controls 

LSD  p = 0.026 

7 Correlation root biomass and Pi tissue 
concentration 

Pearson r(32) = - 0.4401 p = 0.0117 

8 Pi tissue concentration: All treatments ANCOVA F32,97 = 4.304 p < 0.0001 
9 Pi tissue concentration: Low performance 

and high performance 
LSD  p < 0.0001 

10 Pi tissue concentration: Low performance 
and medium performance 

LSD  p < 0.0001 

11 Pi tissue concentration: Low performance 
and controls 

LSD  p = 0.014 

12 Pi content: All treatments ANCOVA F32,97 = 2.544 p = 0.0002 
13 Pi  content: Low performance and medium 

performance 
LSD  p = 0.036 

14 Pi  content: Low performance and controls LSD  p = 0.023 
15 Long-chained poly-P content: All treatments ANCOVA F32,97 = 6.777 p < 0.0001 
16 Long-chained poly-P content: High 

performance and controls 
LSD  p = 0.0037 

17 Long-chained poly-P content: High 
performance and low performance 

LSD  p = 0.0002 

18 Long-chained poly-P content: High 
performance and medium performance 

LSD  p = 0.019 

19 Correlation root biomass and short-chained 
poly-P tissue concentration 

Pearson r(32) = - 0.543 p = 0.0013 

20 Short-chained tissue concentration: All 
treatments 

ANCOVA F32,97 = 2.866 p < 0.0001 

21 Short-chained poly-P tissue concentration: 
Low performance and controls 

LSD  p = 0.018 

22 Short-chained poly-P tissue concentration: 
Low performance and medium performance 

LSD  p = 0.008 

23 Short-chained poly-P tissue concentration: 
Low performance and high performance 

LSD  p = 0.0001 

24 Correlation root biomass and long-chained to 
short-chained poly–P ratio 

Pearson r(30) = 0.6950 p < 0.0001 
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6.1 ABSTRACT 
 

        Arbuscular mycorrhizal (AM) fungi form mutualistic interactions with the majority 

of land plants, including some of the most important crop species. The fungus takes up 

nutrients from the soil, and transfers these nutrients to the mycorrhizal interface in the 

root, where these nutrients are exchanged against carbon from the host. AM fungi form 

extensive hyphal networks in the soil and connect with their network multiple host plants. 

These common mycorrhizal networks (CMNs) play a critical role in the long-distance 

transport of nutrients through soil ecosystems and allow the exchange of signals between 

the interconnected plants. CMNs affect the survival, fitness, and competitiveness of the 

fungal and plant species that interact via these networks, but how the resource transport 

within these CMNs is controlled is largely unknown. We discuss the significance of 

CMNs for changes in plant communities and for the bargaining power of the fungal 

partner in the AM symbiosis. 

 

6.2 INTRODUCTION 
 

       The arbuscular mycorrhizal symbiosis between plants and fungi is formed by 

approximately 65% of all known land plant species and many plants depend on this 

symbiosis for their nutrient supply.(Wang & Qiu, 2006) Many fungi also provide non-

nutritional benefits to their host that are critical for plant survival or fitness, including 

protection against pathogens, or improved resistance against drought and salinity.(Smith 

& Read, 2008) AM interactions are therefore essential components of large-scale 
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ecosystem processes and act as ‘ecosystem engineers’ of plant communities.(Cameron, 

2010) 

All AM fungi belong to the phylum Glomeromycota, and are unable to complete their 

life cycle without the carbon supply from their host.(Redecker & Raab, 2006) The 

obligate biotrophy of AM fungi and the observation that plants often suppress the AM 

colonization of their root system when nutrients are readily available, has led to the 

overall assumption that the host plant is in control of the symbiosis.(Smith & Smith, 

2012) However, this phyto-centric view disregards the long co-evolution of both partners 

in the AM symbiosis (~ 450 Million years) that allowed the fungus to develop strategies 

to improve its bargaining power despite its obligate biotrophic life cycle.(Kiers et al., 

2011; Fellbaum et al., 2012; Fellbaum et al., 2014)   

 

 

6.2 RESULTS 
 

As illustrated in Figure 1, AM fungi and their plant partners form a complex network 

of many-to-many interactions, in which a single plant host is colonized by multiple 

fungal species, and fungal ‘individuals’ interact with multiple plant hosts and species 

simultaneously and interconnect plants by a common mycorrhizal network (CMN). Both 

partners in the symbiosis can choose among multiple trading partners and do not depend 

on a single partner for their carbon or nutrient resources. CMNs can connect plants of the 

same or of different plant species and of different developmental stages, and are involved 

in the long distance transport of nutrients (carbon, phosphate, nitrogen, or 

micronutrients), water, stress chemicals, and allelochemicals in soil ecosystems.(Voets et 
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al., 2008; Barto et al., 2011; Babikova et al., 2013; Babikova et al., 2013; Weremijewicz 

& Janos, 2013; Gorzelak et al., 2015; Teste et al., 2015) Multiple fungal and plant 

species interact and ‘communicate’ via these CMNs and there is growing evidence that 

CMNs affect the survival and fitness, behavior and competitiveness of the plants and 

fungi that are linked via these networks.  
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Figure 1. Function of common mycorrhizal networks (CMNs) in soil ecosystems. The 
roots of plants are connected by CMNs of single or multiple arbuscular mycorrhizal 
(AM) fungal morphospecies. Plants compete with their carbon resources for nutrients that 
become available for their CMNs. Plants can differ in their carbon transport to the CMNs 
and can represent low or high benefit hosts for the AM fungus. Low benefit host plants 
within a CMN could be for example seedlings that compete with adult plants, or adult 
plants that transfer less carbon to the CMN due to shading or herbivore damage. AM 
fungi can discriminate between low and high quality host plants and preferentially 
transfer resources to high quality hosts what can contribute to the inequalities among 
plants that have been observed in studies with CMNs. In addition, CMNs can serve as a 
conduit for the transfer of warning signals or of allelochemicals between plants within 
one CMN. Warning signals that are formed by donor plants for example in response to 
herbivore stress can lead in receiver plants to an induction of defense reactions and the 
release of volatile organic compounds from the leaves (VOCs). Directed transport of 
allelochemicals to specific plants via CMNs can facilitate the interplant competition and 
suppress the growth of plant competitors. Fungal CMNs compete for soil nutrients and 
compete with these nutrients for carbon resources from the different host plants within 
their CMN.   



204 

 

 

 
  The development of CMNs allows the fungus to gain access to multiple trading 

partners, and ensures a continuous carbon supply for the fungus even when one host plant 

loses its ability to transfer resources to the fungal partner by e.g. pathogen or herbivore 

damage or by early senescence. When AM fungi are able to discriminate between host 

plants within their CMN, the fungus gains bargaining power because the plants within its 

network are forced to compete. In theory, natural selection should favor those fungi that 

are able to establish a CMN with many host plants, because inter-plant competition will 

force the competing plants to transfer more carbon to their fungal partner in order to 

receive a greater share of nutrients from the CMN (Wyatt et al., 2014). 

  In order to better understand how nutrient transport among plants in CMNs is 

controlled, we examined the fungal phosphate and nitrogen allocation to plants that 

differed in their ability to provide carbon to their fungal symbiont (low and high quality 

hosts). The studies demonstrated that fungi were indeed able to discriminate among 

plants that shared a CMN and preferentially allocated nutrient resources to host plants 

that were able to provide more carbon benefit.(Fellbaum et al., 2014) Nutrient allocation 

within the CMN, however, was not controlled on an all-or-none basis, and the fungus 

also transferred phosphate and nitrogen to low quality hosts, and maintained a high 

colonization rate in these plants. Host plant quality does not seem to be an important 

factor for root colonization,7 and AM fungi also invest resources to actively colonize the 

roots of low quality hosts.(Knegt et al., 2014) The strategy to colonize both, low and high 

quality host plants ensures that the loss of a high quality host is less detrimental for the 

fungus, and forces also high quality hosts to compete for nutrients from the CMN. 
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  Both partners in the AM symbiosis are able to discriminate between different 

symbiotic partners, and it has been suggested that the ‘fair trade’ between both partners 

contributed to the evolutionary stability of the AM mutualism.(Kiers et al., 2011) Carbon 

to nutrient exchange ratios at the mycorrhizal interface are controlled by resource supply 

and demand and follow biological market dynamics.(Kiers et al., 2011; Fellbaum et al., 

2012; Fellbaum et al., 2014) Consistently, we found that in the absence of choice, the 

fungus transfers more nutrient resources per unit carbon to low quality hosts.(Fellbaum et 

al., 2014) When the fungus has only access to low quality hosts, the dependency of the 

fungus for host plant´s carbon shifts the cost to benefit ratio at the mycorrhizal interface 

in favor of the host.  

  When plants invest carbon resources into a fungal network that also benefits their 

competitors, the preferential nutrient allocation to specific host plants within a CMN will 

provide the favored host plants with a net benefit to the detriment of the unfavored plants 

within the CMN.(Selosse et al., 2006) Plant species or individuals of one species can 

differ in their carbon investment into the CMN,(Walder et al., 2012) and CMNs have 

been shown to amplify inequalities in plant communities,(Booth & Hoeksema, 2010; 

Weremijewicz & Janos, 2013) and between seedlings and established adult plants that are 

connected by a CMN. While some studies have shown that seedlings can benefit from 

established CMNs with adult plants,(van der Heijden & Horton, 2009) other studies 

demonstrated negative impacts of CMNs on seedling establishment and fitness, and P 

nutrition.(Kytöviita et al., 2003; Pietikäinen & Kytöviita, 2007; Merrild et al., 2013) 

When AM fungi are able to discriminate among plants within their CMN, the fungal 
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partner should provide more resources to adult plants due to their higher carbon transport 

to the CMN.  

  The suppression of plants within CMNs, however, can also be a plant-mediated 

effect. Allelochemicals, root-secreted secondary metabolites that plants use to regulate 

the rhizosphere to the detriment of competing neighboring plants have also been shown 

to be transferred from donor to target plants by CMNs.(Barto et al., 2011; Barto et al., 

2012) It is currently unknown, whether AM fungi are able to control the transfer of 

allelochemicals within their CMNs, but it is interesting to speculate that AM fungi by a 

directed transport of allelochemicals could suppress specific plants within their CMN, or 

susceptible fungal competitors. Some plants release allelochemicals with antifungal 

activities, and it has been shown that some invasive plants use these antifungal 

allelochemicals to suppress the mycorrhizal colonization of their native plant 

competitors.(Stinson et al., 2006)  

  CMNs play also an important role in the plant-to-plant ‘communication’ and transfer 

infochemicals and warning signals between plants. Plants that are attacked by herbivores 

produce volatile organic compounds that act as a repellent for aphids but attract the 

natural enemies of aphids to the infested leaves. These volatiles are only produced by 

non-infested plants when they share a CMN with infested plants.(Babikova et al., 2013) 

These warning signals between plants within one CMN are transmitted very rapidly, and 

non-infested plants up-regulated genes of the jasmonate defense pathway shortly after 

plants within their CMN were attacked by herbivores.(Song et al., 2014) Herbivore 

damage can reduce the capability of plants to provide the CMN with carbon, and AM 

fungi that efficiently share these defense-related signals with other plants within their 
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CMN will be able to reduce the negative impact of herbivore damage on their carbon 

supply. It is currently not known whether the fungus controls the flow of these defense-

related signals within its CMN. The fungus could transfer these warning signals 

preferentially to host plants that provide more carbon benefit, or to host plants that 

demonstrate the strongest defense response in order to keep the damage to these plants as 

small as possible(Babikova et al., 2013). Or the fungus could share these warning signals 

equally among the plants within its CMN, because the fungus is unable to predict how 

severely the carbon flow of individual plants will be affected by herbivore damage. Some 

plants respond to a herbivore attack above-ground with an increased carbon allocation 

below ground into roots and root exudates. This could increase the carbon transport of 

these plants into the CMN, and could improve the attractiveness of these plants for fungal 

colonization and signal transduction.(Holland et al., 1996)   

 

 

6.3 CONCLUSIONS 
 

   AM fungi and their CMNs play a significant role in plant ecosystems and control the 

fitness and competitiveness of the plant individuals within their CMNs. Our current 

understanding about resource exchange in the AM symbiosis is primarily based on 

experiments with root organ cultures or with single plants that are colonized by one AM 

fungus.(Kiers et al., 2011; Fellbaum et al., 2012) The transferability of these experiments 

to CMNs, however, is very limited, because in natural ecosystems both partners in the 

AM symbiosis can choose among multiple trading partners and do not depend on a single 

partner for their nutrient or carbon supply. Plants play a critical role for the carbon supply 
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of their CMNs and also the composition of the plant community within one CMN has 

been shown to affect the abundance or extension of CMNs in soils.(Derelle et al., 2012; 

Engelmoer & Kiers, 2015) Very little is known about how AM fungi allocate nutrient 

resources or infochemicals within their CMN, or how host plants compete with other 

plants for nutrients that are available for their CMNs. More research is needed to better 

understand how the costs and benefits of the AM symbiosis are controlled in CMNs, and 

how fungal networks affect the inter-fungal or inter-plant competitiveness of both 

partners in natural ecosystems.  
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CHAPTER 7 
 
 
 

7.1.    DISCUSSION 
 
          The application of AM fungi in a sustainable agriculture is still hindered by the 

lack of knowledge about their metabolic pathways and their regulation. Research has 

clearly demonstrated that the AM symbiosis plays an important key role in the nutrient 

exchange between a fungal symbiont and its plant host (Bago et al., 2003; Read & 

Perez- Moreno, 2003; Smith & Smith, 2011), soil communities and their ecological 

environments (Smith & Smith, 2011; Hodge & Storer, 2015). Over evolutionary time, 

one would expect the selection of plants and AM fungi that cheat to increase their 

reproductive success at the expense of other partners and this would destabilize the AM 

symbiosis, but this mutualistic association still persists for more than 450 million years. 

However, several significant questions were still unanswered as to what triggers nutrient 

exchange and the physiological mechanisms employed by partners to control the 

interactions in AM symbiosis. To answer these, we therefore hypothesized the following: 

1. Host plants C has an effect on AM fungal P uptake and the transport to the host plant, 

2. Host plants and AM fungi can discriminate between beneficial and less beneficial 

partners and in return, reward these partners accordingly and 3. Plant growth benefit is 

affected by fungal P and N metabolism. 

         To better understand the discrimination between partners in the AM symbiosis, we 

used in vitro root organ cultures and whole plant systems and selected AM fungal species 

that  differed in their behavior and their cooperative growth benefits (Kiers et al., 2011). 
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We treated these systems with 33P and 14C to track the exchange of resources between 

partners (Kiers et al., 2011). We found that the AM fungi exhibited high and low levels 

of cooperation based on the costs of carbon per unit phosphate (P) and nitrogen (N) 

transferred and their resource hoarding strategies. The results demonstrated that AM 

fungi are able to distinguish roots that differ in the benefit that they provide and allocate 

P accordingly to roots that are able to provide more carbon (C). We were able to also 

demonstrate that an increasing amount of C transferred by the host stimulated P transport 

to the root by the cooperative fungus but did not affect the transport of the less-

cooperative fungus. Our results provided strong evidence that AM fungi play an 

important role in regulating nutrient exchange and the different host plant competition 

between multiple hosts available can shift nutrients to carbon exchange in the AM 

symbiosis to the advantage of the fungus contribution (Kiers et al., 2011; Fellbaum et al., 

2012; Fellbaum et al., 2014; Mensah et al., 2015).   

            Overall, our work strongly suggests that AM fungi are able to discriminate 

between host plant partners. This confirms the results of Bever et al. (2009), who found 

that host plants are able to discriminate between more beneficial and less beneficial 

fungal species in a segregated split root system. Our results validated evidence that 

indeed reciprocal of C for P and N exchange mechanisms do exist in the AM symbiosis 

(Bücking & Shachar- Hill, 2005; Hammer et al., 2011; Fellbaum et al., 2012) and high 

intraspecific variation within the morphospecies contributes to the high phenotypic and 

functional diversity (Koch et al., 2006). 

To address how cooperative behavior between symbionts is enforced, we conducted a 

study in a whole plant system (M.truncatula) and manipulated cooperative behavior by 
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supplying different nutrient conditions and tracked the exchange of resources between 

partners. The carbon (C) flux through the plant to the fungal partners was studied by 

stable isotope probing (SIP) and we found that more carbon was integrated into the RNA 

of the more cooperative fungus (Rhizophagus intraradices) compared to the less 

cooperative fungi (G. custos & G.aggregatum)(Kiers et al., 2011). However, the ability 

of the AM fungi to provide resource benefit is dependent on what benefits are available 

to that particular fungus than to other fungi (Werner et al., 2014). This reciprocal reward 

system is analogous to a market economy where trade is favored with partners offering 

the best rate of exchange. 

        AM interactions are however, one of the most complex associations to understand 

because plant and their fungal symbionts interact in complex networks with multiple 

partners, which should select against cooperation and reduce the effectiveness of 

mechanisms that could enforce cooperation behavior. To test this hypothesis, we used 

two Medicago truncatula plants inoculated with two AM fungal species (G.aggregatum 

or R. irregularis) in whole plant systems. 15N and 33P were applied and tracked fungal 

nutrient transport in a common mycorrhizal network (Fellbaum et al., 2014).The plants 

were shaded to control the photosynthetic activities either by covering one or both plants. 

Our results strongly indicate that both AM fungi preferentially allocate resources to the 

unshaded host plant (Fellbaum et al., 2014). Also, AM fungi transferred more P and N to 

shaded host plants when the AM fungus had no choice between high and low quality host 

plants (Fellbaum et al., 2014). Interestingly, AM fungi were able to maintain high levels 

of colonization in systems with one unshaded and the other shaded host plants. This 

suggests that the fungus used its C resource from the unshaded plant to maintain the level 
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of colonization in the shaded plant, suggesting that one fungal strategy is to always have 

access to a C source even if the host plant is a low quality host (Fellbaum et al., 2014).  

          Plant growth responses following colonization with different isolates of a single 

species of AM fungus can range from highly beneficial to detrimental, but the reasons for 

this high within-species diversity are currently unknown. We found in our previous study 

that colonization by less-cooperative fungus resulted in a higher C cost per unit P 

transferred to the host plant compared to the more-cooperative fungus (Kiers et al., 

2011). It is predicted that evolutionary theory of sanctions on plants would decrease the 

less cooperative fungus’s reproductive success and would eventually reduce fungal 

diversity. So to examine whether differences in growth and nutritional benefits are related 

to the P and N metabolism of the fungal symbiont, we studied the effect of 31 different 

isolates from 10 AM fungal morphospecies on the P and N nutrition of Medicago sativa 

and the P allocation among different P pools. Our results demonstrate that there is a high 

within fungal species diversity in the efficiency with which AM fungi contribute to the N 

nutrition of the host plant (Mensah et al., 2015) but the reasons for this high within-

species diversity are currently unknown. There are indications that differences in the 

fungal polyP metabolism could play a role in this diversity (Mensah et al., 2015), but it 

has also been suggested that the nutrient transport efficiency could mainly be the result of 

the compatibility between a fungal symbiont and its plant host. The results in our 

previous studies validate that the less-cooperative fungus withheld P as inaccessible long- 

chain polyp showing the difference in fungal cooperation and their hoarding strategies 

(Kiers et al., 2011).  These results provide strong evidence that the long-chain poly-P 
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pool stores P in the AM fungal hyphae whereas short-chain poly-P are good indicators of 

P transport to the host plant (Takanishi et al., 2009; Kiers et al., 2011).  

Overall, our studies support the hypotheses that the fungal P and N transport are affected 

by the C supply of the host plant and the biological market theory provided evidence that 

AM fungi and host plant discriminate between partners through their many to many 

nutrient exchange interactions in the AM symbiosis (Werner et al., 2014). 

 

 

7.2.  FUTURE EXPERIMENTS 
 

The results from our previous studies have demonstrated that resource exchange between  

host plants and AM symbionts are driven by biological market dynamics where both 

partners are able to identity better partners that are able to provide more benefit, and 

reciprocally reward resources (in terms of N and P for C) to the partners offering the best 

exchange rate (Kiers et al., 2011; Fellbaum et al., 2012; Fellbaum et al., 2014). However, 

there are still questions that need to be answered since these studies only focused on a 

fraction of the total benefits in AM symbiosis. Our results showed also that there is high 

within fungal species diversity in the nutrient benefits to the host plants (Mensah et al., 

2015). However, further studies should focus on the role of the fungal polyP metabolism 

and nitrogen in nutrient uptake and transport efficiency of the fungal partners. It is 

therefore important for the plant to maintain high multiple AM inter-fungal competitions 

where environmental conditions can affect the changes to nutrient exchange in AM 

community. The AM fungus beneficial status may be dependent on what benefits or 

resources that particular fungus has in possession to compare with other AM fungi 
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(Werner et al., 2014).  The host plant and AM fungi form multiple interactions in the AM 

symbiosis. However, the AM fungi can differ in the nutritional benefits they provide to 

the host plant through CMN (Fellbaum et al., 2014; Mensah et al., 2015). The benefit in 

the AM symbiosis for the host plant is the sum of the benefits that are provided by all the 

AM fungi interacting with an individual host plant. However, little is known about how 

the composition of these communities is controlled. Our study focus on how nutrients 

depend on the host plant and how the availability of nutrients for AM fungi plays an 

important driving force that shape the AM fungal community composition. We used 

Medicago truncatula as our model plant – (non-mycorrhizal target and mycorrhizal donor 

plants) where the plants were inoculated with either Glomus aggregatum (GA) or 

Rhizophagus irregularis (RI). The plants were grown under low nutrient supply 

conditions in their respective T-shaped PVC pipe compartments, before the 

compartments were connected with 6-cm-long PVC pipes and 50-µm nylon mesh 

forming three connected compartments (GA-Target-RI). This allowed the fungi to 

crossover the membrane from the donor to the target plant compartment. After two weeks 

of varying the amount of P and N supply for the donor and target plants, the plants were 

harvested, analyzed for biomass,15N, P contents and their mycorrhizal colonization by 

microscopy and qPCR. Our initial data (Mensah et al. in prep.) indicate that the 

community composition depended on both the nutrient demand of the target plant and the 

access of nutrients for individual fungal species. This supports the view that plants have 

unique AM fungal communities that they are associated with (Hausmann & Hawkes, 

2009). Our preliminary results also clearly indicated that the host plant plays an important 

role in the AM fungal community composition (Pendergast et al., 2013; Zobel & Öpik, 
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2014). The results also showed that the less – cooperative fungi (GA) were able to 

outcompete the more-cooperative fungi (RI) when they have access to the specific 

nutrient the host plant is in demand. However, the more – cooperative fungi (RI) was 

dominant under both low and high nutrient supply conditions unlike the less-cooperative 

fungi (GA) which was only dominant when it had access to the specific nutrients the host 

plant was in demand of (Mensah et al. in prep.). This study supports the hypothesis that 

the reciprocal reward of specific nutrients act as an important driving force that control 

the shape of AM communities in the AM symbiosis that is controlled by biological 

market dynamic.  

Even though these studies would not answer all the questions that pertain in the AM 

symbiosis, we hope that these studies go in the right direction to further advance our 

understanding of cooperation in the AM symbiosis and their importance in sustainable 

agriculture. 
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