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ABSTRACT 

NANOSCALE STUDY OF PEROVSKITE SOLAR CELLS FOR EFFICIENT 

CHARGE TRANSPORT 

NIRMAL ADHIKARI 

2016 

  The effect of temperature, humidity and water on the grain boundary potential and 

charge transport within the grains of pervoskite films prepared by sequential deposition 

technique. Grain boundary potential of perovskite films exhibited variation in electrical 

properties with humidity level, temperature and water concentration in methyl 

ammonium iodide solution. X-ray diffraction (XRD) indicates the formation of PbI2 

phase in perovskite film with increasing temperature, humidity and adding larger quantity 

of water in methyl ammonium iodide solution. It is found that optimum amount of lead 

iodide helps for the passivation of perovskite film. Spatial mapping of surface potential in 

the perovskite film exhibits higher positive potential at grain boundaries compared to the 

surface of the grains. Back recombination barrier between TiO2- perovskite increases to 

378 meV for perovskite film annealed at 100 ºC for 15 min. Grain boundary potential 

barrier were found to increase from ~35 meV to 80 meV for perovskite film exposed to 

75% RH level compared to perovskite film kept inside glove box.  Optimum amount of 

water which increases the solar cell performance by increasing the crystallinity of 

perovskite film was found to be 5% by volume of IPA. Results show strong correlation 

between temperature, humidity level, electronic grain boundary properties and device 

performance of perovskite solar cells. 
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Chapter 1 Introduction 

 

1.1 Background 

 

           Humanity has already faced consequences of wide use of non-renewable natural 

resources such as coal, oil, etc. Global warming and ozone depletion, caused by the 

emission of greenhouse gases during burning of fossil fuels, as well as air pollution and 

soil erosions, are only several examples of irreversible changes in the environment. This 

clearly highlights the need of a pollution free, renewable source of energy to minimize 

the adverse impacts to the earth, likely in the near future. Some renewable energy sources 

such as wind, hydro, biomass, geothermal, and solar are replacing the conventional fossil 

fuel technology. However, these resources have certain limitations such as low wind 

strength, increase in methane gas, which is harmful to the ozone layer. So the search for 

more environmentally friendly, sustainable and inexpensive renewable energy has led 

researchers and the industry interest towards photovoltaic solar energy.  

The total solar energy reaching to the surface of the earth per year is estimated to 

be about 6700 times the annual world primary energy consumption. Therefore, harvesting 

the energy supplied by sun in easy means is a key approach to produce sustainable 

energy. Photovoltaic (PV) technology that converts solar energy to electricity will be an 

effective way for clean energy production. The advantages of photovoltaics over 

conventional fossil fuels are non-polluting, low maintenance cost. Solar panels can be 

placed with loads reducing the transmission loss. It can also be placed to those areas 

where national grid are unavailable such as hilly regions in developing countries.     

Generally solar cell can be classified as (i) first generation solar cells (mono 

crystalline and poly crystalline silicon), (ii) second generation solar cells [amorphous 
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silicon (a-Si), microcrystalline silicon, copper indium gallium selenide (CIGS), and 

cadmium telluride (CdTe)] and (iii) third generation solar cells (polymer solar cells, 

oligomers, dye synthesized solar cells (DSCs), and organic/inorganic hybrid perovskite 

solar cells). The silicon solar cell has huge market which is over 95% of all the solar cells 

produced worldwide. The disadvantage of a-Si, and CIGS or CdTe solar cells are light 

induced degradation. They are also not earth abundant materials. These limitations have 

prevented these technologies to compete with c-Si solar cells. However, c-Si cell 

technology requires high temperature and high vacuum processes which are costly. Also, 

c-Si requires a few hundred microns thick film to absorb sufficient light due to its 

relatively poor light absorbance.  

Unlike silicon solar cells, perovskite solar cells are solution processable with 

material diversity, abundance and large scale manufacturing.  In addition, they have 

advantages including mechanical flexibility, light weight, low material consumption, 

semi-transparency, color tuning and less toxicity. However, poor stability of perovskite 

solar cells to temperature and moisture has made its major limitations. To overcome these 

limitations, different groups have studied the role of moisture and temperature on the 

performance of perovskite solar cells.    

Perovskites are any material with the same type of crystal structure as calcium 

titanium oxide (CaTiO3), known as the perovskite structure, or XIIA2+VIB4+X2 with the 

oxygen in the face centers. Later, organo-metallic halides with a formula of ABX3, where 

A is an organic cation, B is a metal cation and X is a halide atom is being widely studied 

for photovoltaic applications. Single halide methylammonium lead triiodide (MAPbI3, 

CH3NH3PbI3) is the most widely studied perovskite composition. However, doping of 
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other non-iodine halides (Cl, Br) in MAPbI3 perovskite has been reported to obtain mixed 

halide perovskite with much improved properties. In addition to widely used 

methylammonium (MA), other organic cations such as formamidinium (FA) and 

phenylammonium (PhA) have also been explored in perovskite. Methylammonium lead 

iodide perovskite is attracting immense interest in the field of photovoltaics as a 

promising material for achieving optimum standard for PV technology. It is simple to 

process with outstanding optoelectronic properties. Perovskite materials have advantages 

including broad spectrum light absorption and low-cost solution processing [5-8]. 

Perovskite absorber layer is a direct band gap semiconductor with large absorption 

coefficient (5.7 × 104 cm−1 at 600 nm), high carrier mobility, long range ambipolar 

charge carrier diffusion length, low exciton binding energy and high dielectric constant. 

These properties make perovskite a prospective candidate for the fabrication of highly 

efficient solar cells [9]. Figure 1.1 shows the efficiency evolution of state-of-the-art 

perovskite solar cells from 2006 to 2016. The current record PCE of 22.1% was obtained 

for single junction perovskite solar cells[1] . The carrier pathways in perovskite solar 

cells can be manipulated by controlling perovskite thin films, electron transport layer 

(ETL), hole transport layer (HTL) and their interfaces. Perovskite solar cells can be made 

in both planar and bulk hetero interface structures with high performance. More study has 

been done to find the best device structure in terms of robustness and stability. Therefore, 

deeper understanding of the electrostatic potential within the device can guide device 

optimization [2, 3]. 
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Figure 1.1 Efficiency evolution of perovskite solar cells from 2006 to 2016. 

 

Moreover, electrons need to transfer from perovskite to ETL, while holes transfer 

to HTL without any significant energy loss for achieving high performance solar cells 

[2]. Kelvin probe force microscopy (KPFM) is a method to determine interface 

energetics, which can be used for fundamental understanding to select ETL and HTL for 

high performance devices. Grain boundaries and grains play a critical role for Perovskite 

solar cell performance. Grain boundary in copper indium gallium selenide (CIGS), 

copper-zinc-tin-sulfur/selenium (CZTS/Se) and cadmium telluride (CdTe) solar cells has 

been found an important factor for high efficiency. Electric field developed near grain 

boundaries separates the charges and enhances the collection of minority carriers i.e. 

electrons in p-type absorbing materials. Furthermore holes are repelled and thus the 

recombination at grain boundary is suppressed. Photogenerated electrons are attracted 

towards grain boundaries, transferred to the ETL, and finally collected to the end 

electrode enhancing short circuit current density of the device [3]. The density of states 
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(DOS) analysis shows that GBs do not generate any deep level trap states in the bandgap 

of perovskite solar cells making grain boundary properties benign [4].  

Previous study shows that contact potential difference (CPD) of GBs in 

perovskite films is higher than within the grains and decreases after illumination. In 

addition, GB potential can be controlled through passivation [5, 6].  Recent study has 

shown that GBs play a beneficial role and has higher surface potential along GBs [7]. It 

has also been demonstrated from the current sensing – atomic force microscopy (CS-

AFM) measurement that higher short circuit current is collected near GBs compared to 

interior grains. However, the effect on photogenerated charges at the perovskite-ETL 

interface and at GBs with annealing conditions remains unclear, which is one of the 

critical parameters to minimize carrier recombination.  

There are different perovskite film preparation and crystallization methods [8-12].  

These include vapor-assisted solution processing (VASP), physical vapor deposition 

(PVD), single step method and sequential deposition method [8, 13-16]. It had shown 

power conversion efficiency (PCE) exceeding 20% recently [17] and outperform other 

solar cells based on DSCs [16, 18-21], small molecules [22-24] and polymer solar cells 

[23, 25-30]. Among solution processed methods, single-step deposition of the perovskite 

film uses a mixture of PbX2 and CH3NH3X (X = Cl, Br or I) from a common solvent such 

as γ-butyrolactone, dimethylformamide (DMF) or dimethylsulphoxide (DMSO). This 

method results in poor surface coverage and uncontrolled morphological variations which 

led to low photovoltaic performance. Therefore, sequential deposition method was 

developed to gain a better control of crystal formation and growth mechanism of 

perovskite phase [31]. In this method, lead iodide (PbI2) is first deposited by spin coating 
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from dimethylformamide onto a mesoporous TiO2 film and then dipped in a solution of 

methyl ammonium iodide (MAI) (CH3NH3I) in isopropanol which led to the formation of 

the perovskite film penetrating the mesoporous TiO2 film. However, the morphology of 

the perovskite film depends upon the reaction kinetics between PbI2 and CH3NH3I while 

crystallization of pervoskite happens simultaneously [10, 29]. Local concentration of 

MAI, crystallization temperature and pre-wetting have a great impact on the perovksite 

crystal size, which can be used to control the grain size and roughness of the perovskite 

film prepared from sequential method.    

The morphology of the perovskite film is one of the critical factors for device 

performance [32, 33]. The perovskite morphology can be changed using additives or post 

treatment by exposing perovskite film in moisture and controlling the reaction kinetics 

between lead iodide and methyl ammonium iodide.  It was reported that water molecules 

with controlled humidity during the fabrication of the perovskite films assist the growth 

of a larger grain with less defect density for higher device performance [34-40]. 

However, there are also reports which show that water molecules are detrimental to 

perovskite films. Water dissociates perovskite (CH3NH3PbI3) into lead iodide and methyl 

ammonium iodide which decreases the  photovoltaic performance [2, 41]. Therefore, 

water is an important factor in perovskite film formation with dual roles. Depending on 

the amount of water molecules, they can assist growth, but also can cause degradation in 

the perovskite phase. It is necessary to study the role of water molecules and find the 

optimal condition of water in perovskite film formation in order to further improve 

perovskite solar cell efficiency.  
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The commercial use of the organo lead halide perovskite based solar cell is 

challenging because of its poor stability with moisture despite its promising 

efficiency[42, 43]. Recently, a protective hole transport material (HTM) has been used to 

shield moisture from atmosphere to perovskite film to enhance stability [19, 44]. 

However, such a protective HTM depends upon its inherent properties such as 

permeability, hydrophobicity and molecular density. In addition, the use of protective 

layer has drawbacks such as interfacial defects and changes in interfacial atomic and 

electronic structures [45-47]. Therefore, the mechanism of degradation is critical to 

provide materials design principles and engineering strategies to achieve long-term 

stability.  

The degradation mechanism is an issue to debate in the field of perovskite solar 

cells. To understand the effect of humidity, there are reports with post treatment of 

perovskite film by exposing in controlled humidity conditions [36, 40, 45, 48-50]. It was 

reported that moisture during the fabrication of the perovskite films assists the growth of 

a larger grain with less defect density for higher device performance. However, it is also 

reported that moisture dissociates CH3NH3PbI3 into lead iodide and methyl ammonium 

iodide which reduces photovoltaic performance [51, 52]. The presence of water further 

breaks down the  methyl ammonium iodide into methylamine (CH3NH2) and hydrogen 

iodide (HI), leading to the formation of I2(solid) and H2(gas) after exposure to ambient 

atmosphere (i.e. oxygen and sunlight)[53].   

It was also suggested that water could penetrate into the perovskite along grain 

boundaries and that irreversible decomposition occurs when a grain boundary has 

completely converted in to the dihydrate [20]. The proposed hydration of grain 
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boundaries due to water induced from moisture is not fully understood and will benefit 

from nanoscale potential distribution (NPD) measurements when exposed to humidity. 

The SPM technique measures the change in surface potential due to the presence of 

hydrated phases and defects in perovskite films with high spatial resolution. A potential 

change indicates the presence of charged defects within the perovskite films [8, 9].  

Generally, grain boundary is a defect in a semiconductor which separates two 

adjacent crystallites of the same crystal structure and chemical composition, but of 

different orientation and acts as a trap center for charge carrier recombination. Crystal 

defects and impurities in grain boundaries create localized energy states within the band 

gap. These mid band gap states act as a recombination centers and capture electrons and 

holes from bulk material and decrease illumination current density. There are reports that 

show grain boundary in Perovskite materials act as conduction paths for photo-generated 

electrons suppressing the recombination. However, others [50] have shown detrimental 

role of grain boundary reducing the PCE of the perovskite devices.  

The factors that lead to high efficiency of perovskite solar cells include ultra-

smooth film, large grain size, high crystallinity, perovskite layer thickness, precursor 

ratio, annealing temperature, and crystal growth. Optimization of all these parameters 

leads to change in perovskite electronic properties (e.g., charge carrier lifetime, trap 

states, charge transport time, etc.), which largely affects the performance of solar cells. 

These desirable properties have been obtained by optimizing processing conditions for 

perovskite deposition. A fundamental understanding of the physical behaviors in single 

and mixed hallide perovskite is required and will provide a promising pathway to tune the 

material property in order to achieve highly efficient device performance.  
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1.2 Previous work 

 

Photovoltaic effect was first reported by Alexandre Edmund Becquerel in 1839 

where solar energy was directly converted to electricity by inserting an electrolyte 

between two metal electrodes [54]. The first crystalline silicon (c-Si) solar cell has 

efficiency of 6%. It was invented by Chapin et al. in 1954 at Bell Laboratories, [55] 

which was a critical achievement in solar photovoltaic technology. This efficiency was 

further improved to 12.4 % by increasing the purity of crystalline silicon in 1972 by 

Gereth et al. [56].   

In 1976, amorphous-Si solar cell with a thickness of ~1 micron was developed 

with a PCE of 2.4% [24]. This type of solar cell has limitation of light induced 

degradation and decrease in dark conductivity and photoconductivity [9, 25]. Efficiencies 

of c-Si cells, multi-crystalline Si cells, and a-Si cells were improved to 25% by Sun 

power in 2014, 20.4% by Fraunhoffer Institute of Solar Energies in 2004 and ~13.4% by 

LG electronics in 2013, respectively [11].   

In 1986, the concept of donor-acceptor heterojunction bi-layer organic solar cell 

was reported by Tang with a PCE of 1% [57, 58]. The efficiency of bilayer polymer solar 

cell was low. Therefore, the concept of bulk heterojunction solar cell was first introduced 

by Yu et al. in 1995 [59]. Shaheen et al. in 2001 achieved PCE of 2.5% in bulk 

heterojunction solar cells [60]. By then, the efficiencies quickly reached to 9.2% and 

10.6% for single junction by He et al. in 2012 and tandem structure by You et al. in 2013, 

respectively [61, 62].  

In 1987, the concept of dye-sensitization was introduced by Moser with an 

experimental demonstration showing that photocurrent was slightly enhanced by dye-
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sensitizing halogenated silver (Ag) plates. In 1991, Brian O’Regan and Michael Grätzel 

developed dye sensitized solar cells (DSCs) with an efficiency of 7.9% in simulated solar 

light and 12% PCE in diffused sunlight [63].  The breakthrough was seen in efficiency 

after the combination of the mesoporous titanium dioxide (TiO2) as photoanode material 

and the electrolyte containing iodide/triiodide redox shuttle.  

In 2009, Miyasaka et al. reported the first perovskite solar cell with an efficiency 

of 3.8% [64-66]. In this structure, they replaced the dyes with perovskite absorber that 

has broader absorption, ambipolar charge transport and long carrier diffusion length [67]. 

Methylammonium lead iodide (CH3NH3PbI3) was used as perovskite absorber layer and 

iodide/triiodide as redox couple. This solar cell structure has stability issue due to 

dissolution of perovskite with liquid electrolyte.  

In 2012, Kim et al. used spiro-MeOTAD and mesoporous (mp)-TiO2 as the hole 

transport (HTM) and electron transport (ETM) materials and obtained a PCE of 9.7% for 

the first reported perovskite based solid-state mesoscopic heterojunction solar cell. This 

was an evolutionary jump which used perovskite as primary photo-absorber layer to 

prepare solid state meso-superstructured perovskite solar cells [68]. Before this solid state 

device, the CH3NH3PbI3 perovskite nanoparticles in liquid cells were unstable due to 

rapid dissolution in iodide-contained liquid electrolyte. They showed the long term 

stability of the device till 500 hours when exposed to ambient air without encapsulation.  

In 2013, Lee et al. replaced mesoporous TiO2 with mesoporous Aluminum Oxide 

(Al2O3) and achieved an efficiency of 10.9% [66]. Al2O3 is an insulator with a wide band 

gap (7 - 9 eV) and acts as a “scaffold” where a thin layer of perovskite absorber material 

is coated. They found that the charge transport time for electrons much faster in Al2O3 
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than in n-type TiO2. The open circuit voltage was found to increase with insulating Al2O3 

scaffold by a few hundred millivolts under simulated AM1.5 solar irradiation. The 

limiting factor in efficiency of these devices was found to arise from misbalance between 

series and shunt resistances. The perovskite absorber has conductivity of 10−3 S cm−3 and 

causes short circuit between the silver electrode and the perovskite absorber through 

voids with a thin capping layer of p-type spiro-OMeTAD. However increasing the 

thickness of spiro-OMeTAD (conductivity~10−5 S cm−1), resulted in high series 

resistance. Thus, a balance was needed between the adjacent layer thicknesses which 

lowered the efficiency.  

In 2013,  Smith et al. fabricated planar structured perovskite solar cells with 

vapor-deposited perovskite layer and obtained PCE over 15% with an open circuit 

voltage of 1.07 V without using any mesoporous layers  [65]. The vapor-deposited films 

are extremely uniform, appear to be crystalline features on the length scale of hundreds of 

nanometers. In contrast, the solution-processed films appear to coat the substrate only 

partially, with crystalline ‘platelets’ on the length scale of tens of micrometers. The voids 

between the crystals in the solution-processed films appear to extend directly to the 

compact TiO2-coated FTO coated glass. However, this technique requires high vacuum 

that consumes high energy and hinders mass production.  

At the end of 2013, the optimized device structures of meso-superstructured solar 

cell (MSSC) resulted PCE of 15.9% with short circuit current density (Jsc) of 21.5 

mA/Cm2, open circuit voltage (Voc) of 1.02 V and fill factor of 0.71. This was the 

highest reported efficiency in 2013. This fabrication was done using low temperature 

processing (<150 ºC) of anatase TiO2 with diameter < 5 nm to use as compact layer. The 
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conductivity of this TiO2 was 100 times higher conductivity than that of conventional 

TiO2 fabricated from high temperature route. The ensuing all-low-temperature processed 

MSSC outperform the previous state-of-the-art devices, delivering a maximum full sun 

PCE of 15.9 %. 

In 2014, Yang et al. achieved an efficiency of 19.3% by fabricating perovskite 

solar cell under controlled humidity conditions (30 ± 5% relative humidity) with solution 

processing [69]. They fabricated perovskite film in controlled humidity and found a 

decrease in carrier recombination. They also modified the work function of the ITO and 

enhanced the carrier concentration by doping the TiO2 electron transport layer. These 

changes produced a PCE of 19.3%.  

In 2015, Yang et al. achieved an efficiency of 20.2 % using formamidinium lead 

iodide (FAPbI3) which has broad absorption compared to conventional methyl 

ammonium lead iodide [70].  In 2016, Saliba et al. showed a stabilized efficiency of 

21.1% and 18% after 250 hours under standard operational conditions. They used mixture 

of Cs/MAPbI3/FAPbI3 cation. It was shown that adding Cs to MAPbI3/FAPbI3 

suppressed the yellow phase impurities and induced uniform perovskite grains extending 

from the electron to the hole collecting layer consistent with seed-assisted crystal growth. 

These triple cation perovskites are also found to be more robust to subtle variations 

during the fabrication process. These devices were highly reproducible and PCEs more 

than 20% were obtained on a regular basis. Later the efficiency rose to 22.1% as shown 

in NREL char[1]. 

In 2012, Yin et al. showed from the first principle calculation that the grain 

boundaries in perovskite solar cells are benign in nature and help for charge transport [4]. 
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However, others [50] have shown detrimental role of grain boundary reducing the PCE of 

the perovskite devices. Edri et al. reported higher work function at the GBs than within 

the grains with a small potential barrier reducing the charge transport within the grains 

[71]. Chen et al. reported that the grain boundary potential can be lowered from 50 mV to 

30 mV by annealing the perovskite film [18]. Yun et al. reported the effect of illumination 

in contact potential difference (CPD) at the GBs and found that the CPD at GBs becomes 

higher than within grains at illumination and vice versa [19]. Kim et al. showed that the 

grain boundary potential is higher for CH3NH3Pb(I0.88,Br0.12)3 than CH3NH3PbI3 film by 

100 mV [2].   

In 2015, Yun et al. showed the beneficial role of organic-inorganic halide planar 

perovskite solar cells.  They found that the photo-generated charge carriers are more 

efficiently separated and transported along grain boundaries. Similar results were also 

shown using cs-AFM where high current collection was found near grain boundary. On 

the basis of these results, they proposed that downward band bending was obtained at 

gain-grain boundary in perovskite film and subsequently transported photogenerated 

electrons along the grain boundary core [7]. 

In 2015, Li et al. performed the microscopic investigation of grain boundary in 

both typical and inverted organolead halide perovskite solar cells. They also found the 

downward band bending at the GBs and formed a lower barrier which attracted electron 

under illumination. They found major current flow through the grains and negligible 

current through grain boundary at 0V bias. However, when the bias overcame the barrier 

of the GBs, the photocurrents at the GBs became much higher than those of the grains. 

They demonstrated that the enhanced photoinduced electron collections at GBs. 



14 
 

 
 

Therefore, grain boundary acted as effective charge dissociation interfaces and 

photocurrent transduction pathways [72].  

At the same time in 2015, Jiang et al. studied the ambipolar property (n-type or p-

type) and the potential distribution across the device stack by monitoring the potentials in 

the cross-section of lead-based perovskite using nanoscale Kelvin Probe Force 

Microscopy (KPFM). The potential profiling obtained from KPFM images show that 

device physics of perovskite solar cells resembles that of the traditional inorganic 

polycrystalline PV devices, where a p-n junction is located at the TiO2/perovskite 

interface with free-carrier concentration of 1016-1017 cm−3 on both planar and porous 

devices [10].  

In 2015, Wu et al. obtained 18% PCE by increasing the quality of the perovskite 

film. They found that the addition of small (2% by volume in PbI2/DMF solution) amount 

of water in PbI2 affects the surface coverage of the PbI2 and perovskite films prepared by 

sequential deposition method on PEDOT:PSS. The device performance of perovskite 

solar cells was found to increase from 0.0063 % to 18%. The PbI2 film prepared from 

PbI2/DMF with 2 wt% water has smoothest film with largest grains. This high quality 

PbI2 films gave compact and smoothest perovskite film when dipped in methyl 

ammonium iodide solution. This is due to the homogeneous precursor solution of 

PbI2/DFM by adding small amount of water. Since water is compatible with DMF, its 

polarity, dielectric constant and solubility parameter changes with addition of small 

amount of water. PbI2 was totally dissolved in the mixed solvent as the solubility 

parameter of the DMF/H2O mixture is close to that of PbI2. This helped to obtain smooth 
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perovskite film without voids and gaps. They showed that the perovskite film prepared 

from 2% water in PbI2/DMF has compact and largest grain size [33]. 

In 2015, Gong et al. controlled the crystallization of mixed halide perovskite film 

(CH3NH3PbI3-xClx) using water as solvent additive for perovskite solution precursor. The 

crystallization of perovskite thin films with good coverage and film morphology was 

obtained by adding small amount (2%) of deionized water in DMF solution. The 

efficiency was increased from 12.13% to 16.06% by adding water as additives in DMF 

solution. They also found that the water doped devices were more stable in ambient 

conditions due to the formation of stable perovskite hydrates by incorporating the water 

additive during the solution process. They found the hydrated phase of CH3NH3PbI3-

xClx.nH2O which resists the corrosion of perovskite film by water molecules to some 

limit. These hydrated phases were found to be generated during annealing process. The 

DMF-only based perovskite films shows many small pin holes and voids resulting in 

poor charge transport and weak light absorption in perovskite films. The increase in grain 

size and disappearance of voids were found using small amount of water as additive in 

DMF solution. The continuous perovskite film with less grain boundary area was found 

using 2% H2O in DMF solution during perovskite film formation [34].  

In 2015, Eperon et al. used controlled humidity to fabricate perovskite solar cells 

and showed increase in device performance. They used humidity-controlled chamber, 

with spincoater and hotplate inside. They used separate accurate humidity and 

temperature sensors and averaged them to measure humidity and temperature for 

particular fabrication. The high humidity condition was achieved by heating water 

bubbler to increase evaporation. The pressure was controlled by using arm-holes in the 



16 
 

 
 

chamber. Eperon et al. has shown the critical role of moisture exposure during metal 

halide perovskite thin film fabrication. Moisture exposure results in increase in 

performance of the perovskite solar cells due to increase in open-circuit voltage, 

photoluminescence and longer photoluminescence lifetimes.  This is due to reduction in 

trap state density which may be due to the partial dissolution of the methylammonium 

component with water induced from moisture exposure [8]. 

In 2015, Christians et al. also observed the formation of a hydrated product after 

exposing CH3NH3PbI3 to moisture [47]. However, the XRD was not able to identify this 

phase. So, they synthesized (CH3NH3)4PbI6 .2H2O compound and captured the video 

showing the formation of these hydrated phase in water. It was observed that the XRD 

pattern of this compound was similar to CH3NH3PbI3 film exposed to 90% RH for 7 

days. The perovskite film exposed to 90% RH showed strong peaks at 2θ values of 8.42° 

and 10.46°. This gave a direct evident of formation of this intermediate hydrated 

compound when CH3NH3PbI3 was exposed to water. They also show that the charge 

carrier dynamics was not affected for short period due to formation of this hydrated phase 

however, significant decrease in absorption was found. The authors proposed that the 

formation of the hydrated compound depends on the relative strength of the hydrogen 

bonding interaction between cation (CH3NH3+) or H2O with PbI6. Therefore, 

strengthening the bond between the cation and metal halide can improve the degradation 

of perovskite film due to  moisture [47].  

In 2016, Yang et al. studied the effect of moisture with custom built humidity 

control setup to measure the decomposition rate of perovskite films. They used relative 

humidity (RH) controller instrument with precise flow controller. The saturated water 
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vapor was mixed with diluent carrier gas and its flow was controlled to achieve desired 

relative humidity. The actual humidity in the perovskite solar cell was monitored using 

RH sensor placed on custom built sample holder. In addition, this arrangement also 

provided a way to measure in situ UV-Vis absorbance during the decomposition of 

perovskite phases. They found that the hole transport layer played significant role to 

protect the underneath layer of perovskite from decomposition and enhanced device 

lifetimes and resistance to humidity. They found formation of a hydrated intermediate 

compound containing isolated PbI64 - octahedral as the first step in the decomposition 

process using in situ Grazing Incidence X-ray Diffraction (GIXRD). The degradation of 

perovskite film occurs extremely quickly for the 98% RH and the absorption was found 

to reduce to half of its original value just in 4 hours. However, when the film was 

exposed to lower RH (20%) value, the degradation of the perovskite film was estimated 

to be 10,000 hours by extrapolating the observed data. These results helped to understand 

the fundamental decomposition pathways in organolead halide perovskite films [73].  

In summary, the charge transport in perovskite solar cells strongly depend on 

humidity and annealing conditions. Kelvin probe force microscopy (KPFM) is a method 

to study the nanoscale potential distribution along grain and grain boundaries. Cs-AFM in 

conjugation with kelvin probe force microscopy can be used to study the local charge 

transport properties in perovskite solar cells. Hence, KPFM determines interface 

energetics, which can be used for fundamental understanding to select electron transport 

layer (ETL) and hole transport layer (HTL) to suppress back recombination for high 

performance devices. Previous reports showed that contact potential difference (CPD) of 

GBs in perovskite films is higher than within the grains and decreases after illumination. 
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In addition, GB potential can be controlled through passivation. Recent study has shown 

that GBs played a beneficial role and had higher surface potential along GBs. It has also 

been demonstrated from the CS-AFM measurement that higher short circuit current is 

collected near GBs compared within interior grains. However, the effect on 

photogenerated charges at the perovskite-ETL interface and at GBs with annealing 

conditions remains unclear, which is one of the critical parameters to minimize carrier 

recombination.   

Humidity also plays important role in perovskite solar cell fabrication. Therefore, 

water induced from moisture is considered as the main factor for the instability of 

perovskite film. Water molecules with controlled humidity during the fabrication of the 

perovskite film have been shown to assist in the growth of a larger grain with lower 

defect density, resulting in higher device performance. Water molecules can penetrate 

across the perovskite structure to form partly reactive phases [CH3NH3PbI3.H2O and 

(CH3NH3)4PbI6 .2H2O]. These reactive phases are metastable that then spontaneously 

dehydrates in air forming perovskite phases. Water can improve the growth of Perovskite 

films from the interaction between H2O and MAPbI3, such as hydrogen bonding 

interaction. However, there are also reports which show that water is detrimental to 

perovskite film which dissociates CH3NH3PbI3 into lead iodide (PbI2) and (MAI) methyl 

ammonium iodide (CH3NH3I), diminishing photovoltaic performance. It is shown that 

water plays a dual role and helps to increase film crystallinity and quality (smooth and 

void free) when an optimum amount of water is added, and dissociates the perovskite if a 

higher content of water is used.   
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The commercial use of the organo lead halide perovskite based solar cell is 

challenging because of its poor stability with moisture despite its promising efficiency. 

The mechanism of degradation is critical to provide materials design principles and 

engineering strategies to achieve long-term stability. The degradation mechanism is an 

open debate in the field of perovskite solar cells. It is also suggested that water could 

penetrate into the perovskite along grain boundaries and irreversible decomposition 

occurs when a grain boundary has completely converted to the dihydrate perovskite 

phase. The proposed hydration of grain boundaries due to water induced from moisture is 

not fully understood and will benefit from nanoscale potential distribution (NPD) 

measurements when exposed to humidity. The SPM technique measures the change in 

surface potential due to the presence of hydrated phases and defects in perovskite films 

with high spatial resolution.  

 

1.3 Motivation 

 

There is a need to understand the role of annealing temperature, water and humidity on 

charge transport and device performance of perovskite solar cells 

 

1.4 Objective  

 

The objective of this work is to understand the effect of annealing temperature, water and 

humidity on charge transport and device performance of pervoskite solar cells 

The following tasks are performed to achieve the objective: (1) Study role of 

annealing conditions in perovskite solar cells to suppress charge carrier recombination (2) 

Improve crystallinity of perovskite film for high performance solar cells with addition of 

water in perovskite precursors and (3) Obtain grain boundary potential < 25 meV for 
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efficient charge transport by exposing the perovskite film in varying humidity during 

fabrication.  
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     Chapter 2 Theory 

 

2.0 Theory of Solar Cells 

  

2.1 Silicon Solar Cells 

  

 Semiconductor can be classified in to intrinsic (pure) or extrinsic (doped) types. 

Silicon is intrinsic by nature and is doped for solar cell applications. The number of 

excited electrons and holes are equal in intrinsic silicon (i-type). Crystallographic defects 

and excited electrons are the main factors for the electrical conduction in intrinsic 

semiconductor. The intrinsic semiconductor can be doped with either p-type or n-type 

material. The type of conductivity depends upon the dopant. In p-type conductivity the 

dopant produces extra vacancy and in n-type of conductivity the dopant produces extra 

electrons. Therefore in n-type silicon, electrons are the majority charge carriers while in 

p-type silicon holes are the majority carriers. Group V elements are used for n-type 

doping and group III elements are used for p-type doping [52, 53].  

 

Figure 2.1 Light illumination for photoexcitation in silicon[74] 
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Figure 2.2 Photoexcited charge carriers in valence and conduction bands of silicon[74] 

 

Crystalline silicon has a band gap of 1.1 eV corresponding to 1127 nm and 

absorbs all the wavelengths shorter than 1127 nm. When light is illuminated in silicon, 

the photons with energy larger than its band gap are absorbed by the material as shown in 

Figure 2.1 and 2.2. Silicon is a cheap and abundant material with less processing issue, 

therefore it is the most common materials for photovoltaic applications.    

Figure 2.3 shows the energy band diagram of P-N junction exhibiting the 

formation of space charge region. When the n-type semiconductor material is in contact 

with p-type semiconductor. The concentration gradient is formed which diffuses 

electrons from n-type semiconductor to p-type semiconductor. Electrons diffuse from n-

side to p-side and holes diffuse from p-side to n-side. The diffused electrons from the n-

side recombine with holes from the p-side near the junction and holes from the p-side 

recombine with electrons from the n-side, thus forming a space charge region depleted of 

free carriers and consists of positive (n-side) and negative bound charges (p-side) on 

either side. This region is called depletion region or space charge region. These positive 
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and negative bound charges act as opposite charge in parallel plate capacitor and set up 

an electric field right at the junction between the n-type and p-type material. The 

direction of electric field is from n-side to p-side and accelerates the electron from p-type 

to n-type. Thus, the built in electric field causes some of the electrons and holes to flow 

in the opposite direction to the flow of carriers caused by diffusion. In the depletion 

region, bending of the conduction band and valence band occurs such that fermi energy 

levels of the n-side and p-side are aligned. 

When photons are incident at the p- or n- type side, electrons from the valence 

side are excited to conduction band. These separated electrons and holes are swept 

towards cathode and anode by built in electric filed and contribute to the electrical power.  

The depletion width of the p-n junction is given by  

𝑾 =  √
𝟐𝜺𝑽𝒃𝒊 

𝒒
(

𝟏

𝑵𝑨
+ 

𝟏

𝑵𝑫
) 

                       2.1 

where ε is the dielectric permittivity of the semiconductor, q is the elementary 

charge having value of 1.602 ×10-19 C and Vbi is the built in potential between the quasi 

Fermi levels of p and n layers. 

The free carriers will transport in the semiconductor before recombination. The 

average distance that the minority carriers travel through majority carriers before 

recombination is called diffusion length. The diffusion length for electrons in p-type and 

holes in n-type is given by 

 Lp = √D𝑝τ𝑝 2.3 

 Ln== √D𝑛τ𝑛 2.2 
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where Dn and Dp are diffusion coefficient for electron and hole, respectively; τ𝑛 

and  τ𝑝 are recombination lifetimes of electron and hole in p side and n side, respectively. 

 

 

 
Figure 2.3 Band diagram of a p-n junction (modified from reference [75])  

 

 

 

 

 

 

Electron drift 

Depletion region 
Electron 

Hole 
Negative acceptor ion 

Positive donor ion 

Hole drift 

p-type n-type 

NA N
D
 

Hole diffusion Electron diffusion 

EC 

E
V
 

E
I
 

qɸi (built in 

potential) 

n-type 

p-type 

E 

E
F
 

Diffusion 

Diffusion 

Drift 

Drift 



25 
 

 
 

2.2 Electrical Model of Solar Cells 

 

 Figure 2.4 shows the equivalent diagram of solar cells with parasitic resistance. A 

solar cell can be modelled with a p-n junction diode having resistors in series (Rs) and 

parallel (Rsh). 

  
Figure 2.4 Equivalent circuit of solar cells with parasitic resistance 

 

 When an external load is connected to the solar cell, a potential difference (V) 

develops across the load which drives the diode in forward bias and the current flows in 

the opposite direction of illuminated photocurrent (Jph). This reverse current gives rise to 

dark current, Jdark. In the dark, an ideal solar cell can be modeled by a diode and the dark 

(diode) current as [74], 

𝐽𝑑𝑎𝑟𝑘 = 𝐽0 (𝑒
𝑞𝑉

𝐾𝐵𝑇 − 1),                                                   2.4 

where, Jo is reverse saturation current density, KB is the Boltzmann’s constant, 

and T is the absolute temperature. 

  The net current 𝐽(𝑉) through the solar cell is  

𝐽(𝑉) = 𝐽𝑑𝑎𝑟𝑘(𝑉) − 𝐽𝑝ℎ,                                                2.5 

Solving equation 2.4 and 2.5, 

𝐽(𝑉) = 𝐽0(𝑒𝑞𝑉/𝐾𝐵𝑇 − 1)−𝐽𝑝ℎ,                                         2.6 
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The current through the solar cell is called short circuit current density (Jsc) when 

load resistance is zero (𝑉 = 0),  

𝐴𝑡 𝑉 = 0, 𝐽 =  𝐽𝑠𝑐                                                                             2.7 

‘V’ across the load is maximum under open-circuit condition (𝐽 = 0) and this 

voltage is called the open circuit voltage (VOC) of the solar cell, which is obtained after 

solving equation 2.6 as, 

𝑉𝑂𝐶 =
𝐾𝑇

𝑞
ln (

𝐽𝑝ℎ

𝐽0
+ 1),                                               2.8 

2.3 Solar Cell Parameters 
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Figure 2.5 Illuminated J-V and power curve of typical solar cells 

 

Figure 2.5 shows the JV curve and power curve of typical solar cells. The fill 

factor of the solar cell is defined as the ratio of maximum power to product of short 

circuit current density and open circuit voltage and is given by  

𝐹𝐹 =
𝑃𝑚𝑎𝑥

𝐽𝑆𝐶𝑉𝑂𝐶
,                                               2.9 

Where maximum power is given by  

                                                𝑃𝑚𝑎𝑥 = 𝐽𝑀𝑉𝑀,                                                        2.10 
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Therefore, fill factor can also be expressed as  

𝐹𝐹 =
𝐽𝑀𝑉𝑀

𝐽𝑆𝐶𝑉𝑂𝐶
,                                                               2.11 

The efficiency of the solar cell is defined as the ratio of electrical output to optical 

input and is given by  

𝜂 =
𝑃𝑚𝑎𝑥

𝑃𝑖𝑛
,                                                      2.12 

2.4 External Quantum Efficiency  

 External quantum efficiency of solar cell is defined as the ratio of number of 

charge carriers collected to the number of incident photon of a given energy in solar cells. 

The internal quantum efficiency (IQE, with respect to absorbed photons) of perovskite 

solar cells are affected by internal resistance, series resistance, recombination, back 

contact quality and surface states. But, the external quantum efficiency are mainly 

affected by reflection and external loss of photons [76]. 

𝐸𝑄𝐸 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑝ℎ𝑜𝑡𝑜𝑛𝑠
 ,                                     2.13 

 

The JSC is related to the incident light spectrum through EQE as,  

𝐽𝑆𝐶 = 𝑞 ∫ 𝑏(𝐸). 𝐸𝑄𝐸(𝐸). 𝑑𝐸,                           2.14      

where, q is the electronic charge, and b(E) is the incident photon flux density 

which is the number of photons of energy between E and E+dE per unit area per second 

incident on the solar cell.  
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2.5 Perovskite Solar Cells 

 

Perovskites are a family of materials with the crystal structure ABX3 of calcium 

titanate and named after Russian mineralogist L.A. Perovski (1792-1856) [46]. There are 

wide applications of this structure based on thermoelectric, insulating, semiconducting, 

piezoelectric, conducting, antiferromagnetic, and superconducting properties. ABX3 is 

the crystal structure of perovskite types of materials, where A and B are cations and X is 

an anion of different dimensions with A being larger than X [77]. The Crystal structure of 

perovskites is shown in Figure 2.6. In methylammonium based perovskite materials, A is 

organic cation methylammonium (CH3NH3
+), Anion X is a halogen and B is a cation (Pb, 

Sn). Therefore, the standard compound methylammonium lead triiodide (CH3NH3PbI3), 

with mixed halides CH3NH3PbI3−xClx and CH3NH3PbI3−xBrx are being studied for solar 

cell applications. The perovskite solar cells is prepared by using single halide 

(CH3NH3PbI3) or mixed halide (CH3NH3PbI3−xClx and CH3NH3PbI3−xBrx) in different 

structures i.e. n-i-p and p-i-n structures.   
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Figure 2.6 Crystal structure of perovskite structure ABX3  
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2.6 Device Structures and Working Principle of Perovskite Solar Cells 

 

 The functions of perovskite was considered to be similar to the dye in dye 

sensitized solar cell (DSSC) and was first employed as ‘sensitizers’ on mesoporous TiO2 

structures. Perovskite crystals absorbs the light and excites electrons in conduction band 

of TiO2. This electron is transported to the external circuit by electrode by solar cells. The 

holes remaining on the perovskite crystals are then transferred to a solid-state hole-

conductor or a redox active electrolyte and subsequently transported out of the solar cell. 

Later on, it is reported that perovskite can work as ambipolar property and can transport 

both electron and holes and few hundred nanometer thick solid perovskite film can 

sustain charge generation and transport [78]. Figure 2.7a and 2.7b shows n-i-p and p-i-n 

structures where perovskite is sandwiched between p and n type materials. This simple 

architecture is applicable to a broad range of manufacturing approaches for 

commercializing this technology [79]. 

 

     
 

Figure 2.7 (a) n-i-p (b) p-i-n Perovskite solar cell structures 

 

Several device architectures have been designed and fabricated for mesoporous 

and planar structured perovskite thin films. The interfacial layers of perovskite consist of 

Perovskite 

Perovskite 
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electron transport layer (ETL) and hole transport layer (HTL). The ETLs include titanium 

dioxide (TiO2), Tin dioxide (SnO2), copper thiocyanate (CuSCN), zinc oxide (ZnO) 

nanorod, and PCBM. The HTLs include polymer, spiro-MeOTAD, and PEDOT:PSS. In 

n-i-p structures (fig 2.7a), perovskite layer is deposited on top of mesoporous TiO2 

followed by Spiro-Ometad as HTL. While in p-i-n structures (fig 2.7b), perovskite is 

deposited on top of PEDOT:PSS followed by PCBM as ETL. Finally silver is used as top 

electrode in both the cases. In both the structures, electrons are collected from ETL and 

holes from HTL. Figure 2.8 shows the energy band diagram of n-i-p perovskite solar cell 

where the separated electrons reach to FTO electrode by moving from conduction band 

of TiO2 and holes are transported to silver electrode by moving from valence band of 

Spiro-MeOTAD. 
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Figure 2.8 Energy band diagram of n-i-p Perovskite solar cell structure 
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2.7 Operating Principles of Characterization Techniques 

2.7.1 Atomic Force Microscopy 

 

 The atomic force microscope (AFM) is a type of scanning probe microscope 

(SPM). SPMs can measure local, electrical and magnetic properties, such as height, 

friction, surface potential, magnetism, with suitable probe [80]. The SPM raster-scans the 

probe over a small area of the sample measuring the local property simultaneously to 

generate an image. AFMs measures the force between a probe and the sample. The 

dimensions of the probe is a 3-6 µm tall pyramid with 15-40 nm end radius depending 

upon the applications. The lateral and vertical resolution of AFM are 30 nm and 0.1 nm 

due to some convolution.  

AFMs measure the vertical and lateral deflections of the cantilever by using the 

optical lever to generate the required image resolution. Figure 2.9 shows the general 

schematic of atomic force microscopy. The optical lever reflects the laser beam that falls 

on the tip of cantilever. The reflected laser beam strikes a position-sensitive photo-

detector consisting of four-segment photo-detector. The differences between the 

segments of photo-detector of signals indicate the position of the laser spot on the 

detector and thus the angular deflections of the cantilever (frictional measurement). 

Output of photo-detector is fed to the controller and tip to sample distance is maintained 

by controller thus maintaining constant force between tip and sample. Hence, a 

topographic image of the sample is obtained from the deflection of the cantilever.  
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There are three modes of AFM imaging, i) contact mode, ii) tapping mode, and 

iii) non-contact mode. Figure 2.10 shows Force Vs distance curve between tip and 

sample given by Lennard Jones like potential. This model characterizes the interaction of 

repulsive and attractive forces and explains the force regimes for various imaging 

techniques. When the tip is very far away from the sample, there is no interaction. After 

bringing the tip close to sample, weak attractive forces exists between tip and sample and 

imaging in this regime is termed as non-contact mode. After bringing the tip-sample more 

closely, the repulsive van der Waals force predominates and imaging is in intermittent 

contact regime. When the distance between tip and sample is just a few angstroms, the 

forces balance, and the net force drops to zero. But, when the total force becomes positive 

i.e. repulsive, the atoms are in the “contact” regime. In tapping mode and non-contact 

mode, cantilever is externally oscillated at or close to its resonance frequency. Tip-

sample interaction lead to change in oscillation amplitude and resonance frequency. 

Figure 2.9 Schematic of an atomic force microscopy 
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These change in amplitude and frequency with respect to the reference amplitude and 

frequency are used as feedback signal to controller for imaging.  

 

Figure 2.10 Force vs distance curve between tip and sample [81] 
 

2.7.2 Kelvin Probe Force Microscopy 

 

 Kelvin probe force microscopy (KPFM) is a scanning probe microscopy 

technique to map the local surface potential of a sample with high spatial resolution. The 

imaging is done in non-contact regime and minimizes the electrostatic interaction 

between tip and sample. KPFM can be done by either amplitude modulation or frequency 

modulation technique. In these techniques, the electrostatic force or the electrostatic force 

gradient are minimized by applied external bias voltage. 

 The KPFM combines the non-contact AFM with the Kelvin probe technique. The 

Kelvin probe microscopy technique was developed by Lord Kelvin in 1898 for the 

measurement of surface potentials [82]. The measurement is based on the parallel plate 
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capacitor where sample works as one of the plate and probe i.e., tip with known work 

function works as another plate of the capacitor. If one of the plate is vibrated at 

frequency w, the capacitance changes due to change in distance and results in alternating 

current in the circuit connecting the plates. This current is reduced to zero by applying a 

dc-voltage to one of the plates. This voltage corresponds to the contact potential 

difference (CPD) of the two materials. 

 The KPFM works on the same principle where a dc-voltage is applied to 

compensate the CPD between the tip and the sample. However, the electrostatic force is 

used instead of the current as the controlling parameter. This technique is highly 

sensitivity for the CPD measurement. The cantilever of an AFM is a very sensitive force 

probe. Therefore, very smaller size of the capacitor formed by the tip and the sample can 

be detected.  

Mathematically, contact potential difference, VCPD, between AFM tip and sample 

is defined as [83]: 

 
𝑉𝐶𝑃𝐷 =

𝜙𝑡 − 𝜙𝑠

−𝑒
 2.15 

where 𝜙𝑡 and 𝜙𝑠 are work functions of AFM tip and sample respectively.   

Figure 2.11a shows energy levels of the tip and sample surface with different 

fermi level separated by finite distance without any electrical contacts. In this conditions, 

both the sample and tip has same vacuum level. When sample and tip are in electrical 

contact (fig. 2.11b), equilibrium requires Fermi levels to align at steady state. Electrons 

flow from lower work function to higher work function to reach equilibrium state. A 

contact potential difference (CPD) will be developed between sample and AFM tip due to 

charging of sample surface. This contact potential difference can be measured by 
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applying an external bias such that the external bias had opposite direction than that of 

contact potential difference and varying the external bias until the contact potential 

difference gets nullified. The amount of applied external bias (fig. 2.11c) that nullifies the 

electrical force due to contact potential difference (VCPD) is equal to the work function 

difference between tip and sample. This is the fundamental principle for measurement of 

contact potential difference by Kelvin Probe Force Microscopy. 

 
Figure 2.11   Electronic energy levels of the sample and AFM tip (a) tip and sample with 

separation d (b) tip and sample with electrical contact (c) tip and sample with external dc 

bias. 

An AC-voltage Vacsin(wt)  added to the dc-voltage (Vdc) is applied between tip 

and sample.  

Voltage applied to the tip, Vtip, is given by, 

 Vtip = VDC+ VAC sin (ωt) 

 

2.16 

The resulting oscillating electrostatic force induces an oscillation of the cantilever 

at the frequency w. VDC nullifies the oscillating electrical forces originated from contact 
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potential difference between tip and sample surface. Electrostatic force between tip and 

the sample, F(z), is given by [43]: 

F(z) = - 
1

2
 ∆V2 𝑑𝐶(𝑧)

𝑑𝑧
                                   2.17 

where z is the direction normal to the sample surface, ∆V is the difference 

between VCPD and the voltage applied to the tip and 
𝑑𝐶(𝑧)

𝑑𝑧
 is the gradient of the 

capacitance between AFM tip and sample surface. ∆V is given by, 

∆V= Vtip ± VCPD = (VDC ± VCPD) + VAC sin (ωt)     2.18 

where ± sign depends whether the bias is applied to sample (+) or the tip(-). 

Equations 2.17 and 2.18 can be combined to yield, 

F(z)=- 
1

2
 [(VDC  ±  VCPD)  + VAC sin(ωt) ]2 𝑑𝐶(𝑧)

𝑑𝑧
   2.19 

 

Further simplification of Equation 2.19 yields three different force components: 

              FDC = - 
1

2
 
𝑑𝐶(𝑧)

𝑑𝑧
(VDC  ± VCPD)2 2.20 

    𝐹ω= -  
𝑑𝐶(𝑧)

𝑑𝑧
(VDC  ±  VCPD) VAC sin(ωt) 2.21 

 𝐹2ω= 
1

4
 
𝑑𝐶(𝑧)

𝑑𝑧
 VAC

2 (cos(2ωt) − 1) 2.22 

To measure contact potential difference, force component of eq. 2.19 with 

frequency ω is used. Figure 2.12 shows a schematic of KPFM measurements. AC signal 

of VAC sin (ωt) with DC signal, VDC, is applied to tip. Here we can get topography along 

with surface potential signal. KPFM can be done in two modes either in amplitude 

modulation or in frequency modulation. Amplitude modulation gives rise to error due to 

crosstalk between topography and KPFM signal and also the amplitude modulation 

account for the capacitance formed between sample and not only with tip but  also with 
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cantilever. This problem can be addressed in two ways: either selecting two different off 

resonance frequency in amplify modulation or performing KPFM in frequency 

modulation which takes the force gradients and avoids the error in measurement.  

The cross talk between KPFM signal and topography signal was minimized by 

using   two different frequency. In figure 2.12, signals with frequency ω1 and ω2 are used 

for topography and KPFM imaging respectively. To extract the electrical force 

component with specific frequency, a lock-in amplifier is employed. The output signal of 

the lock-in amplifier for KPFM imaging is directly proportional to the difference between 

VCPD and VDC. VCPD is measured by applying VDC such that output signal of the lock-in 

amplifier is nullified and  𝐹ω equals zero. Hence, value of VCPD is acquired for each point 

on the sample surface, composing a map of the contact potential difference or surface 

potential of the whole sample surface area [84]. 

 

Figure 2.12 Schematic of KPFM measurements[85] 
 

2.7.3 X-ray Diffraction 

 

 X-ray diffraction (XRD) measurement is used to examine perovskite crystalline 

structure.  It can give quantitative information about lattice spacing, crystalline fraction 
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and crystallographic orientation of materials. When x-rays are incident on 

crystallographic planes of the materials, it gets diffracted according to the arrangement of 

atoms. The diffracted x-rays undergo constructive interference to produce increased 

intensity along a particular direction based on the periodic spacing between atomic 

layers. XRD consists of four major components: X-ray source, goniometer, sample 

holder, and detector. The sample and detector are rotated to adjust proper angle 

meanwhile the detector counts the number of X-ray photons diffracted by the sample.  

 

  

 

 

Bragg's law is used to explain the interference pattern of X-rays scattered by 

crystals. Bragg's Law was derived by the English physicists Sir W.H. Bragg and his son 

Sir W.L. Bragg in 1913 to explain why the cleavage faces of crystals appear to reflect X-

ray beams at certain angles of incidence (θ, λ). Figure 2.13 schematic of x-ray diffraction. 

It is given by  

       2dsinθ = nλ 2.23 

where 2dsinθ is the path difference between the ray of light incident and scattered 

from the crystal planes, d is the spacing between the crystal layer, λ is the wavelength of 

Figure 2.13  Schematic of X ray diffraction from sample 
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the X-ray,  θ is the incident angle,  which is the angle between incident ray and the scatter 

plane and n is an integer. 

2.7.4 Transient Photoconductivity Spectroscopy 

 Transient photoconductivity is a technique to study the kinetics of sweep-out and 

recombination in low mobility materials. Recombination causes a reduction in device 

efficiency due to decrease in Jsc and FF.  Therefore, to increase the performance of 

device, carrier collection by sweep-out to the electrodes (characteristic time, τd) with 

internal electric field must occur prior to carrier recombination within the cell 

(characteristic time, τl). The resolution of the transient measurements depends upon the 

resistor capacitor (RC) time constant of the device. However, if the thickness is very low 

transient measurement need to be performed in nanosecond resolution to measure the 

charge collection and recombination. The transient photoconductivity study also gives the 

quantitative measurement of charge carrier density, charge carrier mobility, 

recombination order and bimolecular recombination coefficient. Therefore, the 

characterization of the photoconductivity provides insight into the physical mechanisms 

of the solar cells and may help to interpret the different transient experiments.   

2.7.5 Transient Photovoltage Spectroscopy 

 

 Transient photovoltage (TPV) is a photoconductivity technique in which the 

device is held at open circuit (using high impedance of oscilloscope 1MΩ) with a small 

short-lived perturbation under steady state conditions. A certain level of illumination is 

applied in the device whose intensity can be varied. The lifetime of the charge carrier in 

the device can be calculated using TPV. Figure 2. 14 (a) & (b) shows the schematic of 

TPV measurement and its decay curve obtained through 1MΩ resistance.  
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Figure 2.14 (a) Schematic of transient photovoltage (TPV) measurement and (b) TPV 

decay 

 

The voltage decay in TPV is given by 

∆V = ∆Vo exp(-t/τ)                                           2.24 

This equation was fitted with mono-exponentially decaying function to calculate the loss 

time τ of the device. 

2.7.6 Transient Photocurrent Spectroscopy 

 Transient photocurrent (TPC) is a method where the device is held at short circuit 

condition with short pulse applied to generate excess carrier across the device. TPC gives 

the collection time of the carriers that are generated with short pulse. The number of total 

charge carrier density can be calculated by using TPC in conjugation with TPV. The 

transient current is obtained by calculating the current that flows through the small 

resistance using ohm's law. Figure. 2.15 shows the TPC setup and transient photocurrent 

decay produced across the 50 Ω resistor.  
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Figure 2.15 (a) Schematic of transient photocurrent and (b) transient photocurrent decay 

 

The transient current decay in TPV is given by  

∆I = ∆Io exp(-t/τ)                                           2.25 

The value of ∆Io is found by using ∆Io = 
∆𝑉𝑜

𝑅
 . The total charges that are generated 

can be calculated by integrating the current that is produced during TPC technique. 

∆Q = ∫ I dt                                     2.26 

The total charge carrier density is calculated by using the differential capacitance 

which is defined as  

𝑑𝑐 =  
∆𝑄

∆𝑉°
                                        2.27 

where ∆Q is obtained from TPC analysis while ∆𝑉° is the amplitude of  TPV 

transient under different illumination condition. 

 The total number of charge carrier density under certain illumination condition is 

given by  

 

(a) 
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n = 
1

𝐴𝑒𝑑
∫ 𝑐 𝑑𝑉

𝑉𝑜𝑐

0
                                2.28 

where e = elementary charge, A and d are the area and thickness of the device. 

The diffusion length of the carrier can also be calculated from TPV and TPC analysis as 

L = √𝐷𝑛𝜏𝑒                                       2.29 

where Dn = diffusion coefficient and 𝜏𝑒 is the recombination time obtained from 

TPV analysis.  The generation time, recombination time, diffusion length and total 

number of charge carrier density of the respective device will help to identify the 

performance of the solar cell.  
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Chapter 3 Experimental Procedures 

 

3.1 Materials  

   

 Methylammonium iodide (CH3NH3I), mesoporous TiO2 and compact TiO2 were 

purchased from Dyesol. Lead iodide (PbI2) was ordered from Acros organics. Spiro-

ometad was purchased from Lumtec.  FTO coated glass substrates were purchased from 

Hartford Glass Company.  

Table 3.1 Materials used as different layers in perovskite solar cells. 
 

Layer Material 

Cathode Fluorine tin oxide (FTO) 

Electron transport layer (ETL) Compact TiO2, mp-TiO2 

Active layer Perovsktie (CH3NH3PbI3) 

Hole transport layer (HTL) Spiro-ometad 

Anode Silver (Ag) 

 
 

3.2 Fabrication of Perovskite Solar Cells 

 

Devices were fabricated on fluorine doped tin oxide (FTO) coated glass.  FTO 

layer was etched using zinc powder and diluted hydrochloric acid (HCl). Substrates were 

subsequently rinsed with DI water. All etched substrates were then cleaned by detergent 

water, DI water, acetone and isopropanol by sonication for 20 min each. Substrates were 

then dried, followed by plasma cleaning for 20 min in presence of oxygen.  

All cleaned substrates were coated by a compact layer of TiO2 from its precursor 

(titanium diisopropoxide bis(acetylacetonate), 75 wt.% solution in 2-propanol) solution 
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of 0.15 M and 0.3 M, by spin coating each layer at 4500 rpm for 30 sec. Compact layer of 

TiO2 coated substrates were then annealed at 450 ˚C for 30 min. The substrates were 

cooled down to room temperature. 1 g of TiO2 (Dyesol 18NRT with particle size 20 nm) 

was diluted with 4.436 ml of ethanol and the mixed solution was spin coated at 3000 rpm 

on top of the compact layer of TiO2.The thickness of the mesoporous TiO2 is 

approximately 600 nm. The thick substrates were annealed at 450 ˚C for 30 min, and then 

cooled down to room temperature. Substrates were then treated by dipping them in TiCl4 

(25 mM) solution for 30 min at 70 ˚C, followed by rinsing with DI water, ethanol and 

then annealed at 450 ˚C for 30 min. Finally, substrates were then transferred inside glove 

box for depositing perovskite layer using one step spin coating process and two-step 

sequential deposition method, respectively.  

3.2.1 One Step Deposition Method 

 

CH3NH3I (0.1975 g) and PbI2 (0.5785 g) were mixed in 1ml γ-butyrolactone and 

stirred for 12 hours. TiO2 coated substrates were then spin coated with above mixed 

solution at 2000 rpm for 60 sec, and 3000 rpm for another 60 sec, resulting in a black 

color film. Black color perovskite (CH3NH3PbI3) films were then annealed at 100 ˚C for 

15, 30 and 60 min, respectively. Spiro-OMeTAD was used as hole transport layer, which 

was prepared by mixing 72.3 mg of (2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-

9,9-spirobifluorene) (spiro-MeOTAD), 28.8 μL of 4-tert-butylpyridine, 17.5 μL of a stock 

solution of [520 mg/mL lithium bis-(trifluoromethylsulfonyl)imide in acetonitrile] in 1 

mL of chlorobenzene. Spiro-OMeTAD was spin coated on top of perovskite layer at 2000 

rpm for 40 sec. Silver (Ag) was then finally deposited through mask as top electrode in a 

high vacuum chamber using thermal evaporation. 
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3.2.2 Sequential Deposition Method 

 

PbI2 solution (462 mg/ml in DMF) was prepared by overnight stirring at 70 ˚C. 

The solution was then spin coated on top of the mesoporous TiO2 layer at 4000 rpm for 

90 sec followed by annealing at 70 ˚C for 30 min. To form perovskite films, the PbI2 

films were pre-wetted in isopropanol and then dipped in CH3NH3I solution (10 mg/ml in 

Isopropanol) for 50 sec, followed by immediate spin coating at 6000 rpm for 10 sec. The 

films were then annealed at 100 ˚C for different times. Spiro-OMeTAD was used as 

another hole transport layer, which was prepared by mixing 72.3 mg of (2,2′,7,7′-

tetrakis(N,N-di-p-methoxyphenylamine)-9,9-spirobifluorene) (spiro-OMeTAD), 28.8 μL 

of 4-tert-butylpyridine, 17.5 μL of a stock solution of [520 mg/mL lithium bis-

(trifluoromethylsulfonyl)imide in acetonitrile] in 1 mL of chlorobenzene. Spiro-

OMeTAD was spin coated on top of perovskite layer at 2000 rpm for 40 sec. Silver (Ag) 

was then finally deposited as top electrode in a high vacuum chamber using thermal 

evaporation. 

To study the effect of doping water in perovskite film, the above PbI2 films were 

dipped in CH3NH3I solution (10 mg/ml in IPA) with 0%, 1%, 3%, 5%, and 7% water 

without prewetting, followed by immediately spin coating at 5000 rpm for 10 sec outside 

the glove box. The films were then annealed at 100 ˚C for 15 min. Similarly, the 

perovskite film to study the role of humidity in charge transport property, the prepared 

perovskite film from sequential deposition method has been exposed to different 

humidity conditions (25% RH, 45%RH, 55% RH, 65% RH and 75%RH) for 5 hrs. The 

humidity was controlled using Espec SH 240 humidity controller.  
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3.2.3 TiO2-Perovskite Interface   

 

To investigate the TiO2 - perovskite interface with different annealing conditions, 

a thin layer of compact layer (c-TiO2) was spin coated at 4500 rpm for 40 sec and 

annealed at 450˚C for 30 min. Methylammonium lead iodide (CH3NH3PbI3) solution was 

spin coated on one corner of the TiO2 film at 2000 rpm for 60 sec and 3000 rpm for 60 

sec; and annealed at 100 ˚C for different time with the same condition as used for 

Perovskite solar cell device fabrication. To form the TiO2-perovskite interface for 

sequential deposition technique, the PbI2 films were deposited at 4000 rpm for 90 sec and 

annealed at 70 ˚C for 30 min. These films were pre-wetted in isopropanol and then 

dipped in CH3NH3I solution (10 mg/ml in Isopropanol) for 50 sec, followed by spin 

coating at 6000 rpm for 10 sec on top of c-TiO2 immediately. 

3.3 Materials Characterizations 

3.3.1 UV-Vis Absorption Spectra 

 

 Agilent 8453 spectrophotometer was used to determine UV-Vis absorption 

spectrometer with chem station software. This instrument has tungsten lamp for visible 

and near infrared (NIR) region and mercury lamp for ultraviolet (UV) region. The 

schematic of the UV-Visible absorption spectra is shown in figure fig 3.1. 
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Figure 3.1 Schematic of UV-VIS spectroscopy 
 

Initially, a glass/FTO/TiO2 substrate was loaded at sample holder for 

measurements. In this case Blank mode must be chosen. The halogen and filament lamps 

were turned ON to cover the whole spectra from NIR to UV illuminating on glass 

substrate. Later a glass/FTO/TiO2 /perovskite sample treated in different processing 

conditions were loaded and characterized in automatic mode. The software automatically 

subtracted the absorption of the glass substrate (what was measured in blank mode) from 

the total absorption of new loaded samples to gain the absorption spectra of perovskite 

film.  

3.3.2 XRD Spectrum  

 

 X-ray diffraction (XRD) spectra were recorded from a Rigaku Smartlab system 

(fig 3.2). The samples were scanned from 5 deg to 60 deg with X-ray of wavelength 1.54 

Ao from copper source. The generation of X-ray is turn on when the applied tube voltage 

and current reaches to 40 KV and 44 mA current. The measurement of perovskite film 

was done in PB/PSA medium resolution with proper optical and sample alignment with 

step size of 0.01 degree. The perovskite sample is placed on flat surface where the x-ray 

falls from source and detector is rotated by goniometer along z-axis. The peak intensity is 
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recorded as a function of 2θ. Since perovskite samples degrade quickly when exposed to 

ambient conditions, XRD spectrum of perovskite film were gathered as fast as possible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.3 Atomic Force Microscopy 

 

Topography images were taken using Agilent 5500 SPM (fig 3.3) in tapping 

mode. Silicon tip (Budget Sensors, Multi75 Eg) of spring constant ~1-4 N/m and tip 

normal radius of ~1Ao coated with Cr/Pt having a resonance frequency ~75 KHz was 

used.  An off-resonance of 100-200 Hz was applied to the resonance peak of cantilever 

to achieve the required resolution. The operating regime of the tip-sample interaction 

can be changed from attractive to repulsive either by applying small positive or negative 

off-resonance. Perovskite sample with different annealing time, exposed to different 

humidity conditions and prepared by adding different water concentration from 1% to 

7% in methyl ammonium iodide solution were used. The obtained images were 

processed with Gwyddion software.  

Figure 3.2 Picture showing X-ray diffractometer located in DEH 056 lab 
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Figure 3.3 Picture of atomic force microscope located in DEH 053 lab 

 

3.3.3 Kelvin Probe Force Microscopy  

 

 Kelvin probe force microscopy (KPFM) is a non-contact atomic force 

microscopy method which uses a conducting tip as a Kelvin probe to measure surface 

potential. It uses a feedback loop that adjusts DC potential which nullifies the force 

component experienced in the tip, giving rise to surface potential [3, 86, 87]. KPFM is an 

important tool to obtain back recombination barrier between electron transport layer and 

the perovskite layer, and within the grains of the perovskite layer. The device 

performance in terms of energetics of the transport layers i.e. energy positions of 

electronic bands and their alignment with energy levels of the perovskite layer at 

different annealing conditions has been determined.  
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The CPD between the tip and sample was measured together with topography. 

The tip was excited with an electrical oscillation that induces an electrostatic force 

between the tip and sample. This electrostatic force was nullified by applying the direct-

voltage (dc) offset on the scanning tip at every pixel on the sample. This potential is 

actually the CPD between the tip and sample, which is their work function difference. 

Agilent SPM 5500 atomic force microscope equipped with a MAC III controller 

(comprising three lock-in amplifiers) was used to map surface potential at TiO2-

perovskite interface and within the perovskite layer. A Budget Sensors Multi 75-EG tip 

having a platinum/iridium conductive coating was used. The tip’s first resonance (f1) 

frequency of 67 kHz was fed into the first lock-in amplifier (LIA1). The vertical tip-

sample separation was controlled from LIA1 which provided the error in the amplitude 

signal at f1 to the servo. This first lock in amplifier was used for topographic and phase 

imaging, while the second frequency (f2) at 5 kHz using a second lock-in amplifier 

(LIA2) gave KPFM measurement. LIA2 provided an electrical oscillation to the tip at 5 

KHz with a certain dc offset to induce an electrostatic force between the tip and sample. 

This electrostatic amplitude was attained with a dc offset of -3 V and the drive percentage 

of LIA2 was approximately 15% to attain amplitude of 0.2 V. In KPFM, an external dc 

servo was used that nullified the electrostatic interaction by applying a certain dc bias to 

the tip. This dc bias recorded at each point gave the local CPD or surface potential and 

hence the images of KPFM were constructed using the pixel coordinates. The AFM and 

KPFM setup is inside the glovebox. All the KPFM measurements were carried out inside 

the glove box with O2 and H2O level < 0.1 ppm in order to ensure that the phase of 

perovskite is not affected by the moisture and oxidation that can complicate the analysis. 



51 
 

 
 

The KPFM was done in interface between TiO2 -MAPbI3 on planar samples. The samples 

were prepared by spin coating Methylammonium lead iodide (CH3NH3PbI3) solution on 

one corner of the TiO2 coated substrates. This will give a step interface between TiO2 and 

perovskite. To avoid the topography interference with surface potential measurement we 

performed SP vs. z spectroscopy. The constant SP at different Z values reveals the 

independence of SP on surface topography.  

3.3.4 Current Sensing Atomic Force Microscopy 

 The nanoscale current distribution of perovskite on the active area of the solar 

cells was studied using an Agilent 5500 scanning probe microscope installed inside a 

glove box and equipped with a MAC-III controller. CS-AFM was measured in contact 

mode using a Pt/Ir coated Si tip (BudgetSensors ContE-G; radius B 20 nm; force constant 

of 0.2 N/m; resonance frequency of 14 kHz). The CS-AFM cantilever with a small force 

constant allowed repeated imaging of the perovskite surface without modification. The 

conducting probe makes contact with the perovskite thin film and measures the current 

variation across the surface with fixed bias. The holes were injected from a conducting 

Pt/Ir coated AFM tip into perovskite film and collected at the grounded FTO electrode. 

The hole current was measured using an in-built preamplifier with 1 nA V-1 sensitivity. 

The images were taken at 0.3 V bias to avoid tip induced local oxidation/reduction and 

impurities on the surface of the film. 

3.4 Device Characterization  

3.4.1 Current Density vs Voltage (J-V) Measurements  

The current density (J) and voltage (V) were measured using Agilent 4155C under 

illumination of a solar simulator (Xenon lamp, Newport) with an intensity of ~100 
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mW/cm2 (AM 1.5). Agilent 4155C semiconductor parameter analyzer equipped with 

current and voltage source meters was used for voltage sweep with 10 mV as step voltage 

and corresponding value of current was simultaneously calculated at each step voltage. 

The intensity of illumination was calibrated using a National Renewable Energy 

Laboratory (NREL) photodector (S1133 14-01) to set distance between the solar cell and 

solar simulator. Figure 3. 4 shows the schematic of JV measurement set up.  All the solar 

cells with area of 0.16 cm2 were characterized in the same conditions with 0.5 V/sec scan 

rate in forward with 0 to 1 V and reverse scan sweeping from 1 to 0 1 V at a relative 

humidity of 40% in ambient conditions. The cells were characterized both in forward and 

reverse scan  due to the JV hysteresis and degradation of the devices while switching the 

voltage [88].   

 

Figure 3. 4 Schematic of JV measurement setup 

3.4.2 External Quantum Efficiency Measurements  

 

External quantum efficiency (EQE) was measured using Newport IPCE 

measurement kit (fig 3.5 & 3.6). A xenon lamp was used to simulate sunlight for this 

experiment. A xenon lamp was used in conjunction with a monochromator, focusing 

lenses, and an amplifier in order to find the EQE of the solar cell. The reference cell was 
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again used to determine the correct focusing distance before measuring the EQE of the 

given solar cell. The semiconductor parameter analyzer then recorded measurements of 

the given solar cell in order to determine the EQE response.   

The Xenon arc lamp (Newport 67005) was focused to S1133 photo detector 

through the monochromator (Oriel Monochromator 74001) and two focusing lenses. 

Monochromator was used to pass the light of a certain frequency at a time. 

Monochromator was programmed using a PC to produce the light of wavelength from 

350 nm to 800 nm at an interval of 5 nm. The light from Trans-impedance amplifier was 

used to amplify the current from the photo detector to voltage (Vref), which is recorded 

using semiconductor parameter analyzer (Agilent 4155C).The photo detector was 

replaced by the perovskite solar cell to be tested. Similarly, the output voltage of solar 

cell (Vsample) at each wavelength was recorded. The EQE of solar cell under test can be 

calculated as: 

EQEsample= (Vsample* EQEref)/(Vref)                                            3.1 

Since the perovskite film has longer diffusion length, if the light from 

monochromator is scattered by small amount, the carrier from neighboring regions can 

also be collected. This leads to more than 100% EQE. To overcome, this problem, we 

have used red laser at 650 nm whose spot size has been narrowed and the EQE of sample 

with red laser at 650 nm has been calculated. By using red laser, the correction factor for 

EQE at 650 nm has been determined accordingly:  

 

EQEsample at 650 nm = (Vsample at 650 nm* EQEref at 650 nm)/(Vref at 650 nm)           3.2 

R (correction factor) = EQEsample at 650 nm / EQEsample                                             3.3 
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Figure 3. 6 Picture of EQE measurement setup located in DEH 011 Lab 
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Figure 3. 5 Schematic of external quantum efficiency measurements 
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3.4.3 Transient Photocurrent/Photovoltage Spectroscopy 

 

Figure 3.7 shows the layout of the experimental set up to measure transient 

response of the solar cells. The dye laser coupled with the nitrogen laser was used to 

generate pulses at specific wavelength to create a short transient decay in the cell.  The 

splitter is used to pass the laser on the solar cell and photodiode simultaneously. The 

signal from the cell and photodiode are recorded in oscilloscope. The transient optical 

excitation was achieved by focusing a pump laser pulse on the device generated by 

Model 1011 dye laser (repetition rate ~ 4 Hz, pulse duration < 1 ns) which is excited by 

OBB’s Model OL-4300 Nitrogen Laser (delivers a crisp pulse at 337 nanometers).  

The wavelength of the pulse was selected as close to the absorption peak of the 

perovskite film to reach a uniform generation. The generated transients were recorded 

using Agilent MSO-X-4154A mixed oscilloscope (1.5 GHz, 5 Gsa/sec). The pulse width 

of the dye laser was measured on oscilloscope through the response of the photodiode 

(rise time less than 1 ns, spectral range 280- 1100 nm) as an excitation source to the 

device. The steady state condition was used by varying light intensity. The obtained data 

were fitted with mono-exponential decaying function to calculate the collection and loss 

time of the device.     

 The transient photocurrent decay was measured with small resistance of the 

oscilloscope which was 50 Ω in this case. A short laser pulse was incident in perovskite 

solar cell from FTO side and generated decay was captured by oscilloscope. Since, the 

TPC measurement is done in short circuit conditions, the obtained decay completely 

drops to its zero level. The TPC decay was fitted with mono-exponentially decaying 

function to find the charge transport time in the device.  
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   Figure 3.7 Schematic diagram of transient photoconductivity measurement system. 

 Transient photo-voltage measurements were done using the 1 MΩ input 

impedance of the oscilloscope to put the device in the open circuit conditions. During 

TPV measurements, an external light source with 1-2 sun conditions was illuminated in 

the device to obtain steady state conditions. The obtained decay was fitted with mono-

exponentially decaying function to find the charge carrier life time in the device.  

 Intensity dependent transient measurements were performed by constantly 

illuminating an external halogen lamp source via varying the background white intensity 

from 0 suns to 1.5 suns with interval of 1/12 suns. The open circuit voltage level depends 

upon the solar cell illumination current density following the equation  

0

ln 1L
OC

JnkT
V

q J

 
  

 
, where n is ideality factor, k is Boltzmann constant, T is 

temperature, q is elementary charge, JL is illumination current density, and J0 is reversed 

saturation current density. The solar cell illumination current density depends on 

background light intensity. Therefore, the open circuit voltage level depends upon 

background light intensity.   In this case when a short pulse (1 ns) of light is incident, the 

dependence of charge carrier lifetime on charge carrier concentration is obtained.  The 

Dye laser 
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charge carrier concentration was varied using different intensities (0 to 1.5 suns with 

interval if 1/12 suns) of the white light source. The charge carrier density concentration 

was correlated with the charge carrier lifetime.  
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Chapter 4: Results and Analysis 

 

The effect of temperature, water and humidity on the nanoscale charge transport in 

perovskite solar cells will be discusses in the following sections. 

4.1 Effect of Temperature on Performance of Perovskite Solar Cell prepared from Single 

Step and Sequential Deposition Method 

 

4.1.1 XRD Spectra of Perovskite films annealed at 100˚C for different time 

  

Figure 4.1 (a) and (b) show XRD spectra of perovskite film without annealing and 

with annealing at 100˚C for 15 min, 30 min 60 min, respectively by single step and 

sequential deposition method. Strong peaks at 14.09° (110), 28.37° (220) and 31.8° (312) 

indicate the formation of pure perovskite (CH3NH3PbI3) phase with high crystallinity. 

The peak at 12.65° corresponds to lead iodide (PbI2) phase.  

In single step method, small amount of PbI2 phase is formed upon annealing 

perovskite film. PbI2 phase is formed upon annealing due to decomposition of perovskite 

phase upon annealing at 100 °C, where methyl ammonium iodide (CH3NH3I) escaped 

from the perovskite film to form lead iodide (PbI2). In addition to this, the lead iodide 

phase in single step method may be due to residual phase from preparation which remains 

within the bulk of the material. However, a slight reduction in PbI2 phase is found after 

increasing the annealing time from 15 min to 30 min and 60 min. This may be due to the 

evaporation of loosely bonded CH3NH3I in perovskite film from heating for longer time.    

In sequential deposition method, XRD spectrum (Fig 4.1b) shows increase in PbI2 

phase as annealing time gets longer. In sequential method, the perovskite phase 

(CH3NH3PbI3) forms when dipping PbI2 layer in CH3NH3I solution, followed by 

annealing. In addition, the PbI2 layer may not be fully converted to perovskite due to 
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incomplete conversion which is also seen in XRD spectra of unannealed film. During the 

annealing, CH3NH3I can escape if annealed too long especially for some loosely bonded 

perovskite phases [11, 18].  PbI2 resulting from decomposition of perovskite due to 

annealing in combination with incomplete conversion of PbI2 phase increases with 

increasing the annealing time in sequential deposition method. However, the PbI2 phase 

does not change significantly in single step method after annealing for longer time.          
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Figure 4.1 XRD spectra of perovskite films annealed at 100˚C for different time prepared 

by (a) single step and (b) sequential deposition method, respectively 

The possible reason is that in single step method, two precursor solutions 

(CH3NH3I and PbI2) were mixed together in a single solvent so that both CH3NH3I and 

PbI2 have better contact with each other to form perovskite CH3NH3PbI3. Even after 

perovskite CH3NH3PbI3 decomposes when we apply heating/annealing, they will be 

readily re-form perovskite CH3NH3PbI3. 

Sequential deposition method was done by first coating the PbI2 layer and then 

dipping it in MAI (CH3NH3I) solution to form perovskite film. This leaves some 

unconverted PbI2 within the bulk of the perovskite film which gives higher content of 

PbI2 in sequential deposition method compared to one step method where the two 



60 
 

 
 

precursors i.e. PbI2 and MAI are mixed together to form homogeneous solution. This 

solution is spin coated to form perovskite film which leaves lower amount of PbI2 in 

perovskite film due to complete miscibility between PbI2 and MAI. 

4.1.2 SEM images of Perovskite film prepared from Single Step and Sequential 

Deposition Method 

 Figure 4.2 shows SEM images of perovskite films prepared from single step and 

sequential deposition method. It is found that the morphology of the single step and 

sequential deposition method has huge difference. The surface coverage of perovskite 

layer in single step method is very poor. However, smooth and complete coverage of 

perovskite films were found in sequential deposition method. There is no visible change 

in morphology of SEM images for single step method after annealing for 15 min at 

100˚C. However, the morphology of the film becomes more compact without gaps after 

annealing the films at 100˚C for 15 min in sequential deposition method. Therefore, 

device efficiency of pervoskite film prepared from sequential deposition method is higher 

than single step methods. 
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Figure 4. 2 SEM images of perovskite films from single step method (a) un-annealing, (b) 

15 min and from sequential deposition method (c) un-annealing, and (d) 15 min annealing 

at 100˚C. 

4.1.3 Topography and KPFM images of TiO2-Perovskite interface Single Step Method  

 

 Figure 4.3 shows topography and KPFM images of the TiO2 - perovskite interface 

prepared by depositing perovskite films on TiO2 layer with un-annealing and annealing at 

100˚C for 15 min, 30 min 60 min, respectively.  The grain size of perovskite films 

decreases from 200 nm for un-annealing (Fig 4.3a) to 85-100 nm in the 30 min (Fig 4.3c) 

and 60 min (Fig 4.3d) annealing films. However, grain size does not change significantly 

for 15 min annealed sample (Fig 4.3b) at the interface between TiO2 - perovskite. Figs. 

4.3 (e-h) show the change of surface potential at the TiO2 - perovskite interface upon the 

annealing time. The dark brown region in Figs. 4.3 (e-h) is perovskite and the light brown 

is TiO2. It was seen higher potential at the TiO2 and lower potential in perovskite side.  

(a) Single step: un-annealing (b) Single step: 15 min 

annealing (100˚C) 

(c) Sequential deposition 

unannealing 

(d) Sequential deposition 15 

min annealing (100˚C) 
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Figure 4.3 (a-d) 2D topography and (e-h) 2D surface potential of the 

perovskite-TiO2 interface by depositing perovskite films on TiO2 layer from 

single step method with un-annealing and annealing for 15 min, 30 min, and 

60 min at 100˚C. 
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Figure 4.4 Surface potential line profiles across the perovskite-TiO2 interface 

from single step method for (a) un-annealing, (b) 15 min, (c) 30 min, and (d) 60 

min annealing at 100˚C. 

The difference in surface potential between TiO2 – perovskite increases with 

annealing time. This is in agreement with the previously reported KPFM measurements 

of perovskite film which revealed the role of annealing to suppress the recombination.  

Figures 4.4 (a-d) shows the line scanning profile of surface potential at the perovskite-

TiO2 interface. The difference in surface potential between perovskite and TiO2 is the 

energy barrier that an electron from TiO2 and a hole from perovskite need to overcome 

for recombination. As the annealing time increases from un-annealing to 15 min, 30 min 

and 60 min at 100˚C, the back recombination barrier increases.   
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Perovskite film Energetic barriers for back 

recombination 

Un-annealed  0.122 ±0.008 eV 

15 min annealing  0.378± 0.002 eV 

30 min annealing 0.285 ± 0.005 eV 

60 min annealing 0.212 ± 0.005 eV 

 

Table 4.1 summarizes the values of back recombination barrier at the TiO2 - 

perovskite interface for different annealing time. For un-annealed samples, KPFM 

measurements reveal an energy barrier of 0.122 eV (Fig. 4.4a) between TiO2 and 

perovskite. When annealed at 100˚C for 15 min, 30 min and 60 min using the single step 

method, KPFM measurements exhibit that the back recombination barrier between TiO2 

and perovskite increases to 0.378 eV (Fig. 4.4b), 0.285eV (Fig. 4.4c) and 0.212 eV (Fig. 

4.4d), respectively. This is much higher than 0.122 eV for unannealed samples. Such 

increased barriers upon annealing become more significant to prevent the back 

recombination between electrons from TiO2 and holes from perovskite. This is also 

supported by the JV curves as open circuit voltage (Voc) increase significantly after 

annealing (Fig. 4.9 and table 4.5). The XRD spectra in Fig. 4.1a suggest that the 

annealing processing helps to form a thin layer of lead iodide (PbI2). This PbI2 layer 

increases back recombination barrier, which was reported previously[18].  This is further 

confirmed by measuring TiO2 – perovskite interface from sequential deposition method 

and will be discussed later. 

Table 4.1 Energetic barriers for back recombination between holes in perovskite layer 

and electrons in ETL layer measured by KPFM. The films were prepared from single step 

method annealed at 100˚C for different time. 
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4.1.4 Surface Potential distribution of Perovskite film from Single Step Method 

Figure 4.5 shows the surface potential distribution of perovskite film unannealed 

and annealed at 100˚C for 15 min, 30 min and 60 min using the single step method. The 

surface potential distributions were acquired from KPFM images shown in Fig. 4.6. The 

surface potential of perovskite films annealed at 100˚C for 15 min, 30 min and 60 min 

were higher compared to unannealed sample.  
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Figure 4. 5 Surface potential distribution of perovskite films prepared by single step 

method at different conditions of unannealing and annealing at 100˚C for 15 min, 30 min, 

and 60 min.  

 

The surface potential of perovskite film annealed at 100˚C for 15 min shows 

highest surface potential which is mainly due to reduced surface defects caused by the 

dangling bonds. These dangling bond acts as a trap center for electrons. It is reported that 

the origin of dangling bonds is due to the exposed iodine atoms in perovskite film [13]. It 

is found that annealing the film at 100˚C for 15 min helps for reconstruction of the 
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perovskite surface reducing the structural defects in the surface. 

  

 

Figure 4.6 (a-d) 2D topography and (e-h) 2D surface potential images of 

perovskite films prepared by single step method at different conditions of 

unannealing and annealing at 100˚C for 15 min, 30 min, and 60 min. 
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In addition, the reduced surface defects which act as electron traps also reduce 

hysteresis of the prepared device as surface trap states are considered as one of the 

sources for origin of the hysteresis. The decrease in potential for perovskite film annealed 

for longer time than 15 min can be attributed to the formation of surface defects from 

vacancies and intrinsic defects due to long term thermal annealing [14].  

4.1.5 Topography and KPFM images of perovskite film from sequential deposition 

method 

Figures 4.7 (a-d) show 2D surface topography of perovskite films with un-

annealing and annealing at 100˚C for 15 min, 30 min 60 min, respectively from 

sequential deposition. The un-annealed films show larger grains with 500-800 nm in size 

as shown in Fig. 4.7a. Annealing of perovskite films led to fast evaporation of solvent 

molecules in the film and fast crystallization of perovskite films. This results in small 

particle size. However,  the perovskite film without annealing forms the perovskite 

crystal with slower inter diffusion of PbI2 and MAI whereas the annealed films forms the 

perovskite crystal instantaneously due to thermal annealing leaving solvent to evaporate 

immediately. This led to slow crystallization of perovskite phase because the residual 

solvent molecules assisted the interdiffusion of PbI2 and MAI components to each other, 

leading to formation of large particles. The grain size decreases to ~75-250 nm upon 

annealing the perovskite film at 100˚C for 15 min. However, the grain size remains 

similar after annealing at 100˚C for 30 min. Slight increase in grain size (250 nm – 400 

nm) was found after longer annealing time (100˚C for 60 min). It is found that the film 

annealed at 100 ˚C for 15 min have compact and closely packed surface topography. 

Figure 4.7 (e-h) show 2D surface potential maps of perovskite films with un-annealing 
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and annealing at 100˚C for 15 min, 30 min 60 min, respectively.  KPFM of perovskite 

films demonstrates higher surface potential at the grain boundaries (GBs) than within 

grains. This corresponds to a downward band bending in the energy band diagram 

leading to the minority carriers electrons in p-type absorber layer to be attracted towards 

GBs.[3, 89, 90] It has been shown that the grain boundary in this type of materials 

enhance minority carrier collection and provides current path for minority carriers to 

reach to the n-type layers and enhances the overall performance of the device leading to 

better charge transport suppressing recombination.  

Table 4.2 summarizes the average grain boundary potential for perovskite film 

with un-annealing and annealing at 100˚C for 15 min, 30 min 60 min, respectively. The 

grain boundary potential decreases from 479 meV to 337 meV from unannealing to 

annealing at 100˚C for 15 min. However, the grain boundary potential increases to 395 

meV and 386 meV when annealed at 100˚C for 30 min and 60 min respectively. The 

decrease in grain boundary potential helps to charge transport within the grains of the 

perovskite film by reducing the barrier between GBs. This decrease in grain boundary 

potential may be due to the formation of PbI2  upon annealing at 100 ˚C for 15 min as 

shown in XRD spectrum of fig 4.1 (b).   
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Sequential deposition method will leave some PbI2 together with MAPbI3. A 

small amount of PbI2 is helpful for decreasing the recombination providing the beneficial 

role. This is one of the reasons for lowest grain boundary potential for perovskite film 

annealed at 100 ˚C for 15 min. However, further increasing the annealing time led to the 

Figure 4.7 (a-d) 2D topography and (e-h) 2D surface potential images of 

perovskite films prepared by sequential deposition method at different 

conditions of unannealing and annealing at 100˚C for 15 min, 30 min, and 60 

min. 
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formation of MAPbI3 grains with more PbI2 shells which increase the inter-grain 

boundary potential reducing the charge transport. Grain boundary has vacancies and 

interstitials and the polarity of grain boundary may be different from grain interiors. In 

addition, grain boundary in perovskite oxides is found to be depleted and forms space 

charge regions due to formation of oxygen vacancies at grain boundary.[19] Grain 

boundary potential decreases by 142 mV upon annealing for perovskite film annealed at 

100 ˚C for 15 mins with respect to unannealed samples.  

 

 

4.1.6 Recombination mechanism between Perovskite-TiO2 interface  

 

Figure 4.8 shows the schematic of the role of lead iodide to reduce the 

recombination between electrons from TiO2 and holes from perovskite. Optimum amount 

of PbI2 will reduce recombination of electrons from TiO2 and holes from perovskite layer 

by the introduction of lead iodide (PbI2) between TiO2 and perovskite. TiO2 contains 

dominating surface defects (Ti3+ sites) at approximately 5.0 eV which act as deep 

electron-donating sites. Thus, the probability of recombining electrons from TiO2 and 

holes from perovskite with energy level 5.43 eV is higher due to energy matching. 

Therefore, the wide band gap PbI2 helps to reduce the recombination at the interface. 

Table 4.2 Average grain boundary potential of perovskite films prepared from 

sequential deposition method annealed at 100˚C for different time. 

 

 
Perovskite film Average grain boundary potential 

(meV) 

unannealed  479 

15 min annealing (100 ˚C) 337 

30 min annealing (100 ˚C) 395 

60 min annealing (100 ˚C) 386 
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Thus, the highest back recombination barrier obtained for perovskite film annealed at 

100oC for 15 min can be attributed to form during annealing. This is in agreement with 

the charge transport time and charge carrier life time obtained from transient 

measurement. The perovskite film annealed at 100oC for 15 min has fastest charge 

transport and longer carrier life time than unannealed sample (figure 4.12). It has been 

found that the back recombination decreases with optimum content of PbI2 in perovskite 

film which corresponds to annealing at 100˚C for 15 min for both the single step and 

sequential deposition method. The inter grain boundary potential was found to be 

minimum for perovskite film annealed at 100˚C for 15 min. So, It is conclude that a small 

amount of lead iodide helps to reduce recombination and increase open circuit voltage 

and charge transport. Therefore, the optimum amount of PbI2 at perovskite-TiO2 is 

critical because excess amount of PbI2 may partially block the electron transport because 

of wideband gap. 

 

Figure 4. 8 Formation of PbI2 prevents back recombination between electrons 

from TiO2 and holes from perovskite. 

 

4.1.7 Topography and KPFM images of TiO2 - Perovskite interface Sequential 

Deposition Method 

 

Figures 4.9 (a-d) show 2D SP images and (e-h) represent the line scanning profile 

of surface potential at the perovskite-TiO2 interface from sequential deposition method. 
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The largest difference in surface potential between perovskite-TiO2 for film annealed at 

100˚C for 15 min (Fig. 4.9b) may be caused by the passivation of the perovskite defect 

states due to formation of PbI2 as shown in XRD pattern (Fig. 4.1b). The back 

recombination barrier is the difference in surface potential between perovskite and TiO2. 

As the annealing time increases, the back recombination barrier for 15 min, 30 min and 

60 min at 100˚C, increases with respect to unannealed sample. This helps to increase 

open circuit voltage (Voc) after annealing (fig. 4.10 and table 4.5). However, it is 

interesting to note that the difference in surface potential between perovskite-TiO2 

becomes minimum after annealing for longer time.  

This may be due to the formation of more than 50% PbI2 phase as shown in XRD 

pattern. Therefore, an optimum amount of lead iodide helps to reduce the back 

recombination of holes from perovskite to electrons from TiO2. Excess amount of PbI2 

can cause additional blockade for electrons from perovskite to move to TiO2 due to its 

wide band gap. Table 4.3 summarizes the values of back recombination barrier at the 

TiO2 - perovskite interface for different annealing time. For un-annealed samples, KPFM 

measurements reveal an energy barrier of 0.060 eV (Fig. 4.9a) between TiO2 and 

perovskite.  
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Figure 4.9 (a-d) 2D surface potential mapping and (e-h) surface potential line 

profile of the perovskite-TiO2 interface by depositing Perovskite films on 

TiO2 layer from sequential deposition method with un-annealing and 

annealing for 15 min, 30 min, and 60 min at 100˚C. 
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When annealed at 100˚C for 15 min, 30 min and 60 min using the sequential 

deposition method, KPFM measurements exhibit that the back recombination barrier 

between TiO2 and perovskite increases to 0.100 eV (Fig. 4.9b), 0.090eV (Fig. 4.9c) and 

then decreases to 0.040 eV (Fig. 4.9d), respectively. Therefore, the optimum annealing 

time of 15 min at 100˚C has significant barriers to prevent the back recombination 

between electrons from TiO2 and holes from perovskite. This will help to increase open 

circuit voltage (Voc) of the device after annealing.   

Table 4.3 Energetic barriers for back recombination between holes in perovskite layer 

and electrons in ETL layer measured by KPFM. The films were prepared from sequential 

method annealed at 100˚C for different time. 

Perovskite film Energetic barriers for back 

recombination 

Un-annealed  0.060±0.0005 eV 

15 min annealing  0.100±0.0003  eV 

30 min annealing 0.090±0.00025  eV 

60 min annealing 0.040±0.0006  eV 

 

4.1.8 Current Voltage curve of Sequential Deposition and Single Step Method 

 

The JV curves of sequential deposition method (Fig. 4.10) and single step method 

(Fig. 4.11) give highest device performance for perovskite films annealed at 100 oC for 

15 mins with device area of 0.16 cm2. Tables 4.5 and 4.6 show that the increase in 

efficiency is mainly due to improvement in JSC and VOC. Increase in Voc is due to 

decrease in recombination as back recombination barrier increases from 0.122 eV to 

0.378 eV for single step method and from 0.06 eV to 0.10 eV for sequential deposition 

method.  



75 
 

 
 

The deviation of Jsc, Voc and FF in forward and reverse scan was calculated 

comparing with the corresponding average value of forward and reverse scan. One of the 

reasons for increased Jsc upon annealing may be the improved charge transport caused by 

decrease in grain boundary potential between the grains from 0.479 eV for un-annealed 

films to 0.337 eV in 15 min annealed films. 

 

 

 

 

 

 

 

Figure 4.10 J-V characteristics of perovskite solar cells with and without annealing of 

absorber layer from sequential deposition method in forward scan. 

 

This increase in barrier reduces the recombination of electrons from TiO2 and 

holes from perovskite layer by the introduction of lead iodide (PbI2) between TiO2 and 

perovskite. But, when further increasing annealing time to 30 min and 60 min, the grain 

boundary potential increases to 0.395 eV and 0.386 eV, respectively. This caused the 

decrease of solar cell performance when increasing annealing time to 30 min and 60 min.  
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Table 4.4 Photovoltaic parameters of the perovskite solar cells annealed at 100˚C for 

different time of 15 min, 30 min and 60 min respectively from sequential deposition 

method  

Device JSc Voc FF η% 

Fwd Rev Fwd Rev Fwd Rev Fwd Rev 

0 min  14.51 

±0.15 

14.21 

±0.15 

0.63 

±0.02 

0.58 

±0.02 

0.37 0.44 3.45 

±0.10 

3.65 

±0.10 

15 min   21.00 

±0.44 

21.88 

±0.44 

0.89 

±0.01 

0.91 

±0.01 

0.55 0.57 10.35 

±0.52 

11.39 

±0.52 

30 min  19.44 

±0.35 

20.14 

±0.35 

0.84 

±0.01 

0.87 

±0.01 

0.53 0.52 8.71 

±0.26 

9.23 

±0.26 

60 min  18.23 

±0.15 

18.54 

±0.15 

0.85 

±0.03 

0.79 

±0.03 

0.42 0.42 6.6 

±0.21 

6.17 

±0.21 

(Fwd=forward scan and Rev= Reverse scan). 

It is important to note that the perovskite composition may be different as the 

conversion time of PbI2 to MAPbI3 is different for bulk PbI2 on top of compact TiO2 

compared to PbI2 dispersed on mesoporous TiO2.  Figure 4.10 and 4.11 shows J-V 

characteristics of perovskite solar cell with and without annealing of absorber layer from 

sequential deposition and single step method. The solar cell efficiency of perovskite film 

annealed at 100 °C for 15 min is highest among all devices (Table 4.4 and 4.5). Increase 

in performance is due to the reduced recombination of electrons from TiO2 and holes 

from perovskite layer by the introduction of lead iodide (PbI2) between TiO2 and 

perovskite. Perovskite (CH3NH3PbI3) films have defects in surface and within grain 

boundaries. Annealing for 15 min at 100oC will decompose the surface of perovskite 

(CH3NH3PbI3) films to form small amount of PbI2 which reduces the recombination 

yielding high device efficiency. 
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  Figure 4.11 and Table 4.5 show the J-V characteristics of perovskite solar cells 

with and without annealing of absorber layer from single step method, in which similar 

trends were observed that device efficiency increases to 15 min annealed sample and then 

decreases for 30 min and 60 min annealing. It has been found that the unannealed sample 

with lower performance has larger hysteresis compared to the device annealed at 100˚C 

for 15 min for both deposition techniques.  The average low efficiency of pervoskite film 

prepared from single step method is due to incomplete coverage of the film as shown in 

Fig. 4.2. 

 

 

 

Figure 4.11 J-V characteristics of Perovskite solar cell with and without annealing 

of absorber layer from single step method (a) forward scan (b) forward and reverse 

scan for pervoskite solar cells prepared from annealing at 100˚C for 15 min 
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Device JSc Voc FF η% 

Fwd Rev Fwd Rev Fwd Rev Fwd Rev 

0 min 11.42 

±0.10 

11.62 

±0.10 

0.69 

±0.04 

0.60 

±0.04 

0.43 0.38 3.41 

±0.38 

2.65 

±0.38 

15 min 18.25 

±0.18 

17.89 

±0.18 

0.89 

±0.01 

0.89 

±0.01 

0.51 0.54 8.44 

±0.12 

8.69 

±0.12 

30 min 16.33 

±0.12 

16.08 

±0.12 

0.83 

±.005 

0.84 

±.005 

0.56 0.58 7.60 

±0.19 

7.98 

±0.19 

60 min 14.81 

±0.04 

14.72 

±0.04 

0.75 

±0.03 

0.69 

±0.03 

0.48 0.43 5.36 

±0.50 

4.36 

±0.50 

 

4.1.9 Charge carrier life time, charge transport time and total charge carrier density of 

Perovskite solar cell from Sequential Deposition Method 

 Figure 4.12a shows transient photovoltage (TPV) measurements of perovskite 

solar cells with un-annealing and annealing at 100˚C for 15 min, 30 min and 60 min, 

respectively from sequential deposition method. The cells were kept under open circuit 

conditions using high input impedance (1 MΩ). The cells were also constantly 

illuminated by the background light with intensity of 1.5 suns from an external halogen 

lamp source. As the background light intensity is at steady state at 1.5 suns, the TPV 

decay does not fall to zero level as shown in Fig. 4.12a. The reason that TPV does not 

decay to the same value in the normalized curves is that the different solar cells have 

different open circuit voltage at steady state conditions. Charge carrier life times of 32.2 

µsec, 40 µsec, 1.4 µsec and 9.3 µsec were found for perovskite solar cells with un-

annealing and annealing at 100˚C for 15 min, 30 min and 60 min, respectively. Charge 

carrier life time is the longest at 40 µsec for 15 min annealing at 100˚C, then decreases 

with longer annealing time. This is consistent with the highest Jsc for 15 min annealing at 

Table 4.5 Photovoltaic parameters of the perovskite solar cells annealed at 100˚C for 

different time from single step method 
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100˚C. The voltage decay in transient photovoltage (TPV) acquired by using 1 MΩ input 

impedance of oscilloscope and is given by  

                       ∆V = Voc + ∆Vo exp(-t/τ) .......................(I) 

 Where τ is the charge carrier life time and Voc is the open circuit voltage. 

Figure 4.12b shows transient photocurrent (TPC) measurements of perovskite 

solar cells with un-annealing and annealing at 100˚C for 15 min, 30 min 60 min, 

respectively from sequential deposition method. In transient photocurrent technique, the 

charge collection time is measured by the short lived photogenerated charge carrier decay 

while keeping the cell under short circuit conditions.  
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Figure 4.12 (a) Transient photovoltage decay and (b) transient photocurrent decay of 

Perovskite solar cells from sequential deposition method. The values in the parenthesis 

show charge carrier lifetime and charge carrier transport time obtained by fitting the 

decay function with mono-exponential equation with fitting error less than 10-7 sec in (a) 

open circuit condition and (b) short circuit condition.  

The short lived photocurrent is generated by a nanosecond pulse of a dye laser 

incident on solar cells under short circuit conditions (by shunting across a very low 
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resistor at 20 Ω). No background light was applied while measuring TPC. This is the 

reason when pulse laser was off, the TPC decays reach to zero for all samples. It was 

found that the value of charge transport time of 7.18 µsec, 7.87 µsec, 6.92 µsec and 9.28 

µsec for perovskite solar cells with un-annealing and annealing at 100˚C for 15 min, 30 

min 60 min, respectively. All the devices show shorter charge transport time than charge 

carrier life time (recombination time) making efficient charge extraction in the prepared 

perovskite solar cells.   

Figure 4.13 shows (a) intensity dependence and (b) charge carrier density 

dependence with charge carrier life time in perovskite solar cells for different annealing 

time (e.g., 15, 30 and 60 min) from sequential deposition method. Intensity dependent 

transient measurements were performed by constantly illuminating an external halogen 

lamp source via varying the background white intensity from 0 suns to 1.5 suns with 

interval of 1/12 suns. In this case, when a short pulse (1 ns) of light is incident, the 

dependence of charge carrier lifetime on charge carrier concentration is obtained.  The 

charge carrier concentration was varied using different intensities (0 to 1.5 suns with 

interval of 1/12 suns) of the white light source. The charge carrier density concentration 

was correlated with the charge carrier lifetime. At higher light intensity, more electrons 

and holes are generated, which increases the probability of recombination and decreasing 

carrier lifetime. The carrier lifetime is longer for 15 min annealing samples than 30 min 

and 60 min annealing films at different light intensity and charge carrier density. This is 

consistent with transient photovoltage measurements and JV curves, supporting that the 

highest performing cells were annealed at 100°C for 15 min. 
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Figure 4.13 (a) Intensity dependence and (b) charge carrier density dependence life time 

in perovskite solar cells for different annealing time (15, 30 and 60 min) from sequential 

deposition method. 

 

4.2 Effect of adding water in CH3NH3I solution for the preparation of Perovskite Solar 

Cell from Sequential Deposition Method 

 

4.2.1 UV-Vis spectra of annealed Perovskite films  

 

       Figure 4.14 shows UV-Vis spectra of perovskite film prepared from 0%, 1%, 3%, 

5%, and 7% water in a MAI solution. The films of lead iodide (PbI2) were coated onto a 

ca. 600 nm thick mesoporous TiO2 layer from 462 mg/ml solution of PbI2 in DMF. The 

PbI2 coated films were dried at 70 ºC for 30 min on a hot plate. After this, the films were 

dipped in a MAI solution with 0%, 1%, 3%, 5%, and 7% water for 50 sec. The as-casted 

films were annealed at 100 ºC for 15 min. All the films were prepared in exactly the same 

condition as followed during the device fabrication. The CH3NH3PbI3 film shows a broad 

absorption across the visible region with two prominent peaks at 470 nm and 790 nm in 

absorption spectra. The absorbance of perovskite film increases with increasing water 
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concentration in MAI solution from 0% to 1%, 3%, 5% and highest for 5% water in MAI 

solution. This could be attributed to the fact that 5% of water is just enough to solvate the 

methylammonium and provides great diffusion mobility to form perovskite phase. The 

absorbance of the pervoskite film is the highest for films prepared from 5% water in MAI 

solution. Previous report showed that a crystallization of perovskite happens when 

exposed to moisture as the water solvates the methylammonium and provides high 

diffusion mobility to form the perovskite phase [43, 91]. To further understand the role of 

water in the MAI solution, the concentration of water was further increased from 5% to 

7% and the absorbance decreased significantly. The reason is that the excess amount (> 

5%) of water in MAI solution can dissociate CH3NH3PbI3 into PbI2 and CH3NH3I. This is 

further confirmed by the measurements of XRD and AFM that will be discussed later.  
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Figure 4. 14 UV-Vis spectra of annealed perovskite films prepared from 0%, 1%, 3%, 

5%, and 7% water in MAI solution, respectively. 
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4.2.2 SEM images of Perovskite film  

 

 Figure 4.15 shows SEM images of perovskite films prepared from 0%, 1%, 3%, 5% 

and 7% water in MAI solution from sequential deposition method. The SEM images 

clearly shows that the perovskite film prepared from 5% volume of water by IPA has the 

largest grain size. The increase in grain size reduces the overall grain boundary area 

suppressing the recombination within the bulk of the materials. These SEM results are in 

agreement with AFM, XRD and UV-VIS spectrum.  

 

  

  

  

 

 

 

(a) 0% H2O (b) 1% H2O 

(c) 3% H2O (d) 5% H2O 

(e) 7% 

H2O 

Figure 4. 15 SEM images of Perovskite film prepared from 0%, 1%, 3%, 5% and 7% 

water in MAI solution from sequential deposition method 
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4.2.3 XRD spectra of annealed Perovskite films 

The perovskite crystal structure can be described by the general formula ABX3 

where A and B are cations and X is an anion. The perovskite crystal structure discussed 

here is CH3NH3PbI3 where A = CH3NH3, B = Pb and X = I. These crystals are held 

together by ionic interactions between organic and inorganic part and by hydrogen bond 

[2, 92]. XRD patterns were recorded to understand the effect of water in the MAI 

solution. Dip coating was done outside the glove box with a relative humidity of 40%. 

Figures 4.16 and 4.17 show XRD patterns of annealed and unannealed perovskite films 

prepared from 0%, 1%, 3%, 5%, and 7% water in the MAI solution. The XRD samples 

were prepared in the same conditions as for UV-Vis absorption measurements. The 

strong Bragg peaks at 14.08°, 28.41°, 31.85°, and 43.19° are assigned to (110), (220), 

(310), and (330) of CH3NH3PbI3. These structures correspond to tetragonal I4cm crystal 

structure of halide perovskite with high crystallinity [7, 87]. The peak at 12.12° is 

assigned to (001) of PbI2 and corresponds to incomplete conversion of PbI2 to perovskite. 

This PbI2 phase was previously reported from the sequential deposition method [7, 10, 

45].  

Remarkably, the diffractograms (figure 4.16) do not show significant increase in 

PbI2 phase for perovskite films when prepared with water content increasing from 0%, 

1%, 3%, to 5% in the MAI solution. However, a strong PbI2 peak was observed with 

pervoskite film prepared from the 7% water in the MAI solution. Methylammonium lead 

iodide perovskite film is formed with the intercalation of methylammonium ions into the 

lattice space of PbI2.  If the film is exposed to excess water, dissolution of the polar 

organic CH3NH3
+ in the perovskite structure occurs that results in dissociation of 
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pervoskite into PbI2 and CH3NH3I [93]. The XRD peaks of annealed perovskite films 

prepared from 1%, 3% and 5% water are higher than those in the 0% water in MAI 

solution. Crystallinity of perovskite increases after increasing the water concentration up 

to 5% in the MAI solution. The (110) peak of perovskite phase prepared from 5% water 

increases to 2.82 (table 4.6) from 2.02 corresponds to 0% water in MAI solution. This 

shows that an optimum amount of water facilitates crystallization of perovskite films in 

the (110) plane. It is shown that the interaction between MAPbI3 and water is critical as 

moisture has been shown to affect the crystallization dynamics and growth of perovskite 

films [47, 94-96].  It was found that crystallinity of perovskite increased when the 

perovskite films were exposed to water molecules under high humidity conditions. Water 

molecules can penetrate across the perovskite structure to form a partly reactive phases 

[CH3NH3PbI3.H2O and (CH3NH3)4PbI6 .2H2O]. These reactive phases are metastable 

form that spontaneously dehydrates in air forming perovskite phases. These hydrated 

phases are formed due to water incorporation into the perovskite lattice by the formation 

of hydrogen bonds between water molecules and lattice iodides, as well as from hydrogen 

bonding interaction between MA cations and water molecules. Thus, adding water as 

additives expanded the volume of Perovskite films[43]. Water can improve the growth of 

Perovskite films from the interaction between H2O and MAPbI3, such as hydrogen 

bonding interaction. This is also supported from AFM topography images discussed later 

which show increase in roughness of films prepared by adding water in MAI solution 

suggesting volume expansion leading to formation of large grains of perovskite.   

In addition, lower boiling point and higher vapor pressure of water speeds up the 

crystallization of perovskite with larger crystals[97].  The XRD pattern show that the 



86 
 

 
 

perovskite film formation is facilitated by adding 5% water in MAI solution. However, 

with higher percentage (> 5 %) of water in MAI solution retards the perovskite 

formation. It is also found that when the water concentration is increased beyond 10%, 

the film is completely covered with PbI2. Therefore, the water helps to speed up the 

formation of perovskite crystallization with the largest grains while adding 5% water in 

MAI solution. However, it slows the formation of perovskite with adding water beyond 

5% in MAI solution for sequential deposition method.  
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Figure 4. 16 XRD spectra of annealed perovskite films prepared from 0%, 1%, 3%, 5%, 

and 7% water in the MAI solution 

 

When there is sufficient amount of water molecules in the solution, the perovskite 

readily forms bonding with single molecule of water which crystallizes upon exposure to 

air. The FTO peak intensity was taken as reference. Therefore, the absolute peak intensity 

of (110) plane corresponds to perovskite with reference to FTO can be compared. By 

comparing the FWHM of (110) peak of perovskite phase in table 4.6, it can be seen that 
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the perovskite film prepared with 5% water in MAI solution has the narrowest FWHM 

value (0.379) indicating the highest crystallinity of perovskite phase in the (110) plane. 

However, the FWHM of (220) phase of perovskite does not change significantly because 

of the higher surface and interfacial energy in the (220) plane [98]. 

 

Sample 

FWHM Peak Intensity Peak 

Intensity 

(Reference) 

 

Ratio of 

Perovskite 

peaks with 

FTO 

(110) 

peak 

(220) 

peak 

(110) 

peak 

(220) 

peak 

FTO at 

2θ=26.43̊ 

0% 

H2O 

0.412 0.463 3187 1260 1576.98 2.02 

1% 

H2O 

0.428 0.483 3498 1332 1523.78 2.29 

3% 

H2O 

0.409 0.447 3411 1364 1379.35 2.47 

5% 

H2O 

0.379 0.455 5175 1980 1833.25 2.82 

7% 

H2O 

0.415 0.440 3809 1487 1451.10 2.62 

 

4.2.4 XRD pattern of unannealed Perovskite films 

 

To further understand the role of adding water in the MAI solution on perovskite 

crystallization, XRD pattern were measured on unannealed perovskite films made by 

dipping PbI2 films in 0%, 1%, 3%, 5%, and 7% water in the MAI solution. The XRD 

measurements of unannealed samples were performed to exclude the annealing effects on 

crystallization and investigate only the effects of adding water into the MAI solution on 

the perovskite crystallization. Figure 4.17 shows that there is no observable change in 

XRD spectra by increasing the water concentration from 0% to 3% in the MAI solution. 

Table 4.6 Full width half maximum (FWHM) and peak intensity of annealed perovskite 

films prepared from 0%, 1%, 3%, 5%, and 7% water in the MAI solution obtained from 

XRD spectra. 
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However, the perovskite phase (110) increases with increasing water content from 3% to 

5% and 7% in MAI solution. This is in agreement with the full width at half maximum 

(FWHM) of (110) peak as shown in Table 4.7. The FWHM of pervoskite phase is the 

lowest for pervoskite film prepared from 5% (FWHM=0.394) and 7% (FWHM=0.391) 

water content in the MAI solution.  
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Figure 4.17 XRD pattern of unannealed perovskite films prepared from 0%, 1%, 3%, 5%, 

and 7% water in MAI solution 

The perovskite phase (110) / PbI2 crystallinity (001) ratio for 5% water content is 

higher than that of 7% water content. Therefore, the pervoskite film prepared from 5% 

water content in the MAI solution has the highest (0.93) perovskite/PbI2 crystallinity 

ratio, indicating that the most amount of PbI2 is converted into perovskite phase with 5% 

water content. This is similar to the increase in crystallinity of annealed perovskite film 

prepared from 5% water in the MAI solution. The addition of 5% water can facilitate 

reaction between PbI2 phase and methyl ammonium iodide and form metastable 
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monohydrate phase that instantaneously converts to perovskite when exposed to air [10, 

29]. When the water content was further increased from 5% to 7% in the MAI solution, 

the PbI2 (001) peak also increases significantly. This is due to the dissolution of the 

perovskite with excess water present in the MAI solution.  Therefore, XRD spectra of 

unannealed and annealed perovskite films demonstrate that 5% is an optimal amount of 

water that can help to crystallize perovskite phase in the (110) plane. The ratio between 

the peaks of (110) and (220) in perovskite increases with higher content of water in the 

MAI solution. The higher value in (110) plane suggests more grain growth in the (110) 

plane. This may be due to lower surface and interfacial energy in the (110) plane [99] . 

Table 4.7 Full width half maximum (FWHM) and peak intensity of unannealed 

perovskite films prepared from 0%, 1%, 3%, 5%and 7% water in the MAI solution 

obtained from XRD. 

 

4.2.5 AFM topographic images of annealed Perovskite films 

 

To further study the effects of dipping PbI2 film in the MAI solution with 0%, 

1%, 3%, 5% and 7% water concentrations and understand distinct changes in absorption 

spectra and XRD patterns, morphology of such films were measured using atomic force 

microscopy (AFM). All AFM samples were prepared in the same processing conditions 

as the UV-Vis and XRD measurements. Figures 4.18(a-e) show AFM images of annealed 

Sample FWHM Peak Intensity Ratio of 

Perovskite : 

PbI2 peak 
(110) 

peak 

(220) 

peak 

(001)  

peak 

(110) 

peak 

(220) 

peak 

0% H2O 0.401 0.453 14791 6909 2694 0.46 

1% H2O 0.404 0.459 15241 5497 2227 0.36 

3% H2O 0.406 0.504 14722 5522 2265 0.37 

5% H2O 0.394 0.486 9355 8733 3443 0.93 

7% H2O 0.391 0.476 16834 8792 3294 0.19 



90 
 

 
 

perovskite films prepared from 0%, 1%, 3%, 5%, and 7% water in the MAI solution. The 

AFM images show that the grain size of perovskite films increases from 171 nm for 0% 

water (Fig. 4.18a) to 630 nm for 5% water (Fig. 4.18d) in the MAI solution.  

 

Figure 4.18 AFM images of annealed Perovskite films prepared from (a) 0%, (b) 1%, 

(c) 3%, (d) 5%, and (e) 7% water in the MAI solution; and (f) average particle size vs 

water concentration. 

 

This is further confirmed by the topography line profile (Fig. 4.19). However, 

further increase of water concentration to 7% (Fig. 4.18e) provides excess water that 
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causes dissolution of large crystals, leading to an average grain size of 330 nm. There is a 

slight increase of grain size in perovskite films made from 0% water (171 nm, Fig. 4.18a) 

to 1% water (200 nm, Fig. 4b). After increasing the water concentration to 3% (fig. 

4.18c), the grain size increases to 358 nm, which can be seen in fig. 4.18f with average 

particle size calculated using Pico View software and plotted against water concentration. 

Increase in grain size with higher water concentration may be due to combined effects of 

crystallization of perovskite film by water molecule and annealing [91, 94].  

During crystallization of perovskite films, the average size of remaining grains (fig. 

4.18d)  increases by the motion of grain boundaries resulting in shrinkage and elimination 

of small grains, which reduces the total grain boundary area[42, 100]. This is most clearly 

seen for perovskite films prepared by dipping PbI2 layer in the 5% water MAI solution. 

The pervoskite phase undergoes a crystallization process with large grain size and volume 

expansion after increasing the water concentration to 5% in the MAI solution, which is 

similar to the crystallization of CH3NH3PbI3 under 90% RH reported by Jeffrey et al. [2]  
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Figure 4.19 Topography line profile of annealed perovskite film prepared from 0% and 

5% water in MAI solution from sequential deposition method 

This will decrease in total number of trap sites and defect density along the grain 

boundary and reduce the recombination of photogenerated charge carriers, which will be 
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demonstrated using transient photovoltage measurement later. Figure 4.19 shows the 

topography line profile of annealed perovskite film prepared from 0% and 5% water in 

MAI solution. The line profile shows that the grain size of perovskite film prepared from 

5% water in MAI solution is higher than the grain size of perovskite film prepared from 

0% water in MAI solution. 

4.2.6 AFM topographic images of unannealed Perovskite film  

 

 AFM images of unannealed perovskite films were also measured to 

understand the role of water in the MAI solution on the formation of perovskite. Figure 

4.20 shows AFM topography images of unannealed perovskite films prepared from 0%, 

1%, 3%, 5%, and 7% water in the MAI solution. The reason for measuring the 

morphology of unannealed perovskite films is to exclude the effect of annealing on the 

grain size but only study the effect of adding water in the MAI solution. The grain size of 

perovskite film increases from 108 nm for 0% (Fig. 4.20a) to 148 nm for 1% (Fig. 4.20b) 

and to 220 nm for 3% (Fig. 4.20c) water. This is further confirmed by the topography line 

profile shown in Fig 4.21. However, it increases significantly when the water 

concentration increases from 3% to 5% and 7%. The grain size of perovskite films 

increases from 220 nm for 3% (Fig. 4.20c) water to 391 nm for 5% (Fig. 4.20d) water, 

but decreased to 346 nm for 7% (Fig. 4.20e) water in the MAI solution. Figure 4.20f 

further confirms the increase of the average grain size with higher water content up to 5% 

but decreased when water content reached 7%.  
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Figure 4.20 (a) – (e) AFM images of unannealed perovskite films prepared from 0%, 

1%, 3%, 5% and 7% water in the MAI solution, (f) average particle size vs water 

concentration in the MAI solution. 

The increase in grain size compared to the 0% water perovskite film may be due 

to the volume expansion during the crystal growth from PbI2 to perovskite by the 

intercalation of CH3NH3
+ as well as rearrangement of aggregated structure of PbI2 driven 

by minimizing the grain boundary energy[42, 94]. Similar results have been obtained 

with SEM images shown in Fig. 4.15. The SEM images show that perovskite films have 

the largest grain size after adding 5% water in MAI solution. The morphology of 
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perovskite films with 0% H2O and 1% H2O in MAI looks similar except for more visible 

gaps in the perovskite film from 0% H2O in MAI solution.  

After increasing the water concentration to 3% H2O in MAI solution, the grain 

size of perovskite film was found to increase. Such an improvement in morphology has 

also been shown using different additives [36, 101, 102].  

0 1 2 3 4

-1.0

-0.5

0.0

0.5

1.0  0% H2O

 5% H2O

T
o
p
o
g
ra

p
h
y
 l
in

e
 p

ro
fi
le

Profile (micrometer)
 

Figure 4. 21 Topography line profile of unannealed perovskite film prepared from 0% 

and 5% water in MAI solution from sequential deposition method 

The grain size reached the largest at 5% water, and then decreased with 7% water 

in MAI solution. Figure 4.21 shows the topography line profile of unannealed perovskite 

film prepared from 0% and 5% water in MAI solution. The line profile shows that the 

grain size of perovskite film prepared from 5% water in MAI solution is higher than the 

grain size of perovskite film prepared from 0% water in MAI solution.  

4.2.7 Surface potential distribution of annealed Perovskite film 

 

  Figure 4.22 shows the nanoscale surface potential distribution of perovskite films 

prepared from 0%, 1%, 3%, 5%, and 7% water content in the MAI solution. The surface 

potential distributions were acquired from KPFM images shown in Fig. 4.23. The surface 
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potential of perovskite films prepared from 1%, 3%, 5%, and 7% water content in the 

MAI solution were higher compared to 0% water in MAI solution. The average surface 

potential of perovskite films increases with increasing the amount of H2O in MAI 

solution till 5% and decreases with increasing beyond 5% H2O in MAI solution. This is 

due to the reduced surface defects which act as traps for electrons caused by dangling 

bonds. This may be due to doping of water during perovskite film formation which helps 

for reconstruction of the perovskite surface reducing structural defects in the surface.  
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Figure 4.22 Nanoscale surface potential distribution of Perovskite films prepared from 

0%, 1%, 3%, 5%, and 7% water in the MAI solution 
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Figure 4.23 Surface potential images of perovskite films prepared from 0%, 1%, 3%, 

5% and 7% water in MAI solution from sequential deposition method.  

 

  It was previously reported that the origin of dangling bonds is due to the exposed 

iodine atoms in perovskite film[13, 14]. Figure 4.23 shows Kelvin probe force 

microscopy (KPFM) images of Perovskite films prepared from 0%, 1%, 3%, 5% and 7% 

water in MAI solution from sequential deposition method. KPFM images of perovskite 

films demonstrates higher surface potential at the grain boundaries (GBs) than within 

grains giving downward band bending in the energy band diagram leading to the minority 

carrier electrons in p-type absorber layer to be attracted towards GBs. Average potential 

 
 

       

 
 

(a) 0% H2O (b) 1% H2O 

(C) 3% H2O (d) 5% H2O 

(e) 7% H2O 
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of the perovskite solar cells prepared from 5% water in MAI solution gives highest 

surface potential showing reduced surface defects in the prepared perovskite films. 

4.2.8 Current density-voltage (J-V) curves of Perovskite Solar Cells 

 

Figure 4.24 shows current density-voltage (J-V) curves of perovskite solar cells 

with device structure of FTO/c-TiO2mesoporous-TiO2/CH3NH3PbI3/Ag using 0%, 1%, 

3%, 5%, and 7% water content in the MAI solution. The perovskite films were deposited 

by two step method: first PbI2 film was spin coated and dried. Second, the films were 

dipped in 10 mg/ml MAI solution which contained different concentration (0 - 7 %) of 

water by IPA volume. Device performance of prepared cells were measured under 100 

mW/cm2 AM 1.5 simulated solar irradiation with a humidity of 40%. The scan rate was 

kept constant for all devices with 0.5 V/sec. The cells were characterized both in forward 

and reverse scan (fig. 4.25) due to the JV hysteresis and degradation of the devices while 

switching the voltage [88].   
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Figure 4.24 Current density-voltage (J-V) characteristics of annealed perovskite 

solar cells prepared from 0%, 1%, 3%, 5%, and 7% water in the MAI solution 
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Figure 4.25 JV curves of perovskite solar cells prepared from 0%, 1%, 3%, 5% 

and 7% water in MAI solution from sequential deposition method in forward and reverse 

scan. All solar cells with area 0.16 cm2 were characterized in the same conditions with 

0.5V/sec scan rate in both forward and reverse scan sweeping from 0 to 1V at a relative 

humidity of 40% in ambient conditions. It can be seen that the efficiency increased when 

the water concentration increased from 0% to 5% in the MAI solution and decreased 

when 7% of water was added to the MAI solution. A number of devices were prepared 

and similar efficiencies were found. Water can weakly bind to methylamonium molecules 

and form reversible hydrated phase within pervoskite, which quickly forms dehydrated 

perovksite upon exposure to air [2].  An optimal amount of water can solubilize the 

methylammonium and other components, providing them higher mobility and allowing 

excess methylammonium to be removed, healing the pervoskite structure and fulfilling 

the deficits and any trap states [91, 94]. Decrease in the trap states results in less non-

radiative trap-mediated recombination [2]. Hence, adding an optimal amount of water to 

the MAI solution leads to improved Voc, FF and hence overall device performance. The 

decrease in performance by excess water content is caused by the dissolution of 

perovskite phase to PbI2 and CH3NH3I.  

As shown in table 4.8, after adding 1%, 3% and 5% water in the MAI solution, 

the average photovoltaic efficiencies were improved and reached the highest at 12.42% 

and 11.74% from forward and reverse scan, respectively, at 5% water based devices. The 

value of short circuit current density matches closely with integrated Jsc value obtained 

from external quantum efficiency (EQE) measurement.  
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Figure 4.25 JV curves of perovskite solar cells prepared from 0%, 1%, 3%, 5% and 7% 

water in MAI solution in forward and reverse scan from sequential deposition method. 

This is higher than the average efficiencies at 9.04% and 9.25% for perovskite 

films prepared from 0% water in the MAI solution from forward and reverse scan, 

respectively. The improvements in short circuit current density (Jsc) in table 4.8 are due to 

the increase in absorbance (Fig. 4.14). Increase in fill factor (FF) is due to the formation 

of high quality film with large grain size.    

The increase in open circuit voltage (VOC) is caused by the increase in grain size 

and crystallinity of the perovskite film which reduces the recombination by decreasing 

trap states and defects within the grain boundary. This is consistent with the charge 

carrier lifetime obtained from transient photovoltage measurements in fig. 4.27.  Such an 
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increase in Voc was also observed by Eperon et al. by exposing the perovskite film to 

humidity for post moisture treatment [91]. Perovskite devices prepared from 1%, 3%, 5% 

and 7% water in the MAI solution shows increased photovoltaic performance compared 

to that prepared from 0% water in the MAI solution. 

 

device JSc Voc FF η% 

Fwd Rev Fwd Rev Fwd Rev Fwd Rev 

0% H2O 19.72 20.41 0.93 0.89 0.49 0.50 9.04 9.25 

1%  H2O 21.57 21.74 0.91 0.89 0.50 0.51 9.87 10.01 

3%  H2O 20.88 20.39 0.96 0.97 0.55 0.52 11.12 10.35 

5%  H2O 20.65 22.06 0.94 0.97 0.64 0.54 12.42 11.74 

7%  H2O 20.38 18.91 0.95 0.93 0.47 0.54 9.29 9.53 

 

4.2.9 Charge carrier lifetime and charge transport time 

 

 Figure 4.26 shows transient photocurrent (TPC) measurements of 

perovskite solar cells prepared from 0%, 1%, 3%, 5% and 7% water in the MAI solution 

from sequential deposition method. The short lived photocurrent is generated by a 

nanosecond pulse of a dye laser incident on solar cells under short circuit conditions (by a 

very low resistor at 20 Ω). No background light was applied when measuring TPC. This 

is the reason when the pulse laser was off, the TPC decays reach to zero for all samples. 

Charge transport time was obtained by fitting the decay function with mono-exponential 

equation ∆I0 exp(-t/τ) where τ  is the charge carrier life time. It was found that the values 

of charge transport time (table 4.9) of 1.39 µsec, 1.54 µsec, 1.64 µsec, 0.998 µsec and 

1.88 µsec for perovskite solar cells prepared from 0%, 1%, 3%, 5% and 7% water in the 

MAI solution, respectively.   

Table 4.8 Photovoltaic parameters for annealed perovskite solar cells made under 

different concentration of water in the MAI solution 
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Figure 4.26 Transient photocurrent of annealed perovskite solar cells prepared from 0%, 

1%, 3%, 5% and 7% water in the MAI solution. 

The charge transport time of perovskite film prepared from 5% water in MAI 

solution is faster than 0% water in MAI solution showing efficient charge extraction. This 

is in agreement with the increase in fill factor as shown in table 4.8. However, when the 

water concentration is increased to 7%, the charge transport time becomes longer which 

may be caused by the dissociation of CH3NH3PbI3 into PbI2 and CH3NH3I. All the 

devices show shorter charge transport time than charge carrier life time (recombination 

time) that will be discussed below, making efficient charge extraction in the prepared 

perovskite solar cells [103]. 
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Table 4.9 Charge transport time for annealed perovskite solar cells made under different 

concentration of water in the MAI solution. 

Device Charge transport time 

0% H2O 1.39 µsec 

1%  H2O 1.54 µsec 

3%  H2O 1.64 µsec 

5%  H2O 0.99 µsec 

7%  H2O 1.88 µsec 

 

Figure 4.27 shows transient photovoltage (TPV) measurements of perovskite solar 

cells prepared from 0%, 1%, 3%, 5% and 7% water in the MAI solution from sequential 

deposition method. The cells were kept under open circuit conditions using high input 

impedance (1 MΩ) to approximate open circuit. The cells were constantly illuminated by 

the background light with intensity of 1.5 suns from an external halogen lamp source. As 

the background light intensity is at steady state at 1.5 suns, the TPV decay does not fall to 

zero level as shown in Fig. 4.27. In addition, TPV curves do not decay to the same level 

in Fig 4.27 as different solar cells have different open circuit voltage at steady state 

conditions.  
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Figure 4. 27 Transient photovoltage of annealed perovskite solar cells prepared from 0%, 

1%, 3%, 5% and 7% water in the MAI solution. 
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Charge carrier life times (table 4.10) of 1.51 µsec, 4.36 µsec, 7.63 µsec, 11.60 

µsec and 1.83 µsec were found for perovskite solar cells prepared from 0%, 1%, 3%, 5% 

and 7% water in the MAI solution, respectively. Charge carrier lifetime was obtained by 

fitting the decay function with mono-exponential equation ∆Vo exp(-t/τ)  where τ  is the 

charge carrier life time[87, 92, 104-106].  

Table 4.10 Charge transport time for annealed perovskite solar cells made under  

different concentrations of water in the MAI solution. 

Device Charge carrier life time 

0% H2O 1.51 µsec 

1%  H2O 4.36 µsec 

3%  H2O 7.63 µsec 

5%  H2O 11.60 µsec 

7%  H2O 1.83 µsec 

 

The highest charge carrier life time of 11.6 µsec was found for 5% water in MAI 

solution. This is consistent with the increase in VOC for 5% water in MAI solution in 

comparison to without water in MAI solution as shown in JV curves. The longest carrier 

life time of pervoskite solar cell prepared from 5% water in MAI solution may be due to 

the formation of large grain size that reduces the trap charge density by reducing the total 

grain boundary area [2]. 

4.3 Effect of humidity on the performance of Perovskite Solar Cells 

 

4.3.1 UV-VIS spectrum of Perovskite film 

 

       Figure 4.28 shows UV-Vis spectra of perovskite film exposed to 25%, 45%, 55%, 

65%, 75% humidity and inside glove box (0% RH). The films of lead iodide (PbI2) were 

coated onto a ca. 600 nm thick mesoporous TiO2 layer from 462 mg/ml solution of PbI2 

in DMF. The PbI2 coated films were dried at 70 ºC for 30 min on a hot plate. After this, 
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the films were dipped in a MAI solution (10 mg/ml) for 50 sec. The as-casted films were 

annealed at 100 ºC for 15 min. All the films were prepared with exactly the same 

condition as followed during the device fabrication. These films were exposed to 25%, 

45%, 55%, 65%, 75% humidity for 5 hrs. The CH3NH3PbI3 film shows a broad 

absorption across the visible region with two prominent peaks at 470 nm and 790 nm in 

absorption spectra. The absorbance of perovskite film decreases with increasing humidity 

level to 45%, 55%, 65%, 75% humidity for 5 hrs with respect to sample inside the glove 

box and 25% RH. This could be attributed to the dissolution of perovskite phase due to 

water induced from increasing humidity. The reason is that the excess humidity induces 

more water in perovskite film which dissociates CH3NH3PbI3 into PbI2 and CH3NH3I. 

This CH3NH3I further breaks down into methylamine (CH3NH2) and hydrogen iodide 

(HI), with the formation of I2(solid) and H2(gas) after exposure to oxygen and light. This 

is further confirmed by the measurements of XRD, KPFM and Cs-AFM that will be 

discussed later.  
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Figure 4.28 UV-VIS spectrum of perovskite film inside the glove box (0% RH) and 

exposed to 25%, 45%, 55%, 65% and 75% RH for 5 hrs 
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4.3.2 XRD spectrum of Perovskite film 

 

 The perovskite crystal structure studied is given by ABI3 where A and B 

are cations and I is an anion. The perovskite crystal structure discussed here is 

CH3NH3PbI3 where A = CH3NH3, B = Pb. Ionic interactions between organic and 

inorganic part and hydrogen bond holds these crystal structures [42, 52]. XRD patterns 

were recorded to understand the effect of exposing perovskite film to different humidity 

level. Figure 4.29 shows XRD patterns of perovskite films exposed to 25%, 45%, 55%, 

65%, 75% RH and inside the glove box. The XRD samples were prepared in the same 

conditions as for UV-Vis absorption measurements. The strong Bragg peaks at 14.08°, 

28.41°, 31.85°, and 43.19° are assigned to (110), (220), (310), and (330) of CH3NH3PbI3. 

These structures correspond to tetragonal I4cm crystal structure of halide perovskite with 

high crystallinity [19, 87]. The peak (001) at 12.12° corresponds to PbI2 and results from 

incomplete conversion of PbI2 to perovskite [10, 19, 45].  

Remarkably, the diffractograms (Fig. 4.29) show increase in PbI2 phase for 

perovskite films by increasing humidity level to 45%, 55%, 65%, 75% humidity for 5 hrs 

with respect to sample inside the glove box and 25% RH exposed perovskite film. 

However, complete conversion to perovskite phase very small amount of PbI2 phase was 

found for perovskite film exposed to 25% RH for 5 hrs. The interaction between MAPbI3 

and H2O induced from moisture in controlled humidity is critical as H2O affects the 

crystallization dynamics, growth of perovskite and the defects in grain boundary of the 

perovskite films [14, 46, 47, 106]. Water molecules can penetrate across the perovskite 

structure to form a partly reactive monohydrate (CH3NH3PbI3.H2O) and dihydrate 

(CH3NH3)4PbI6 .2H2O phases [47]. These hydrated phases are formed due to water 
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incorporation into the perovskite lattice by the formation of hydrogen bonds between 

water molecules and lattice iodides, as well as from hydrogen bonding interaction 

between MA cations and water molecules. Moisture can improve the growth of 

perovskite films from the interaction between H2O and MAPbI3, such as hydrogen 

bonding interaction [43]. 
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Figure 4.29 XRD spectrum of perovskite film inside the glove box and exposed to 25%, 

45%, 55%, 65% and 75% RH for 5 hrs 

 

The degradation of perovskite to PbI2 and CH3NH3I was found after increasing 

RH beyond 25% RH. The degradation becomes prominent and converts 50% perovskite 

phases in to PbI2 when the perovskite film was exposed to 75% humidity for 5 hrs. If the 

film is exposed to excess humidity, dissolution of the polar organic CH3NH3+ in the 
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perovskite structure occurs that results in dissociation of pervoskite into PbI2 and 

CH3NH3I due to water induced from moisture [20]. The dissociation of the perovskite in 

to PbI2 and formation of hydrated phases affects the grain boundary potential and 

subsequently the charge transport in perovskite film which is discussed in following 

section with surface potential (SP) and Cs-AFM measurements.   

4.3.3 Topography and KPFM images of Perovskite film 

 

Fig. 4.30. shows AFM Topography (a - f) of perovskite film exposed to 25%, 

45%, 55%, 65% and 75% RH for 5 hrs and prepared inside the glove box. Topography 

image shows that the prepared perovskite film has grain size varying from 120 nm to 500 

nm. However, voids are seen in the film while increasing the humidity to 75%. The 

variation in height of perovskite film exposed to 25% RH (0 -184 nm) is minimum 

compared to all other conditions inside glove box, 45%, 55%, 65% and 75% RH. The 

perovskite film kept at 75% humidity level for 5 hrs shows larger grains (~500 nm) 

compared to perovskite film inside glove box  with some grains between 120 nm -300 

nm) and 25% RH. This may be due to the dissolution of the smaller grains leaving larger 

grains which can be assigned to lead iodide. The water induced from the high humidity 

dissociates perovskite to lead iodide [20]. Figure 4.30 (g-l) show 2D surface potential 

maps of perovskite films exposed to 25%, 45%, 55%, 65% and 75% RH for 5 hrs and 

inside the glove box.  KPFM of perovskite films demonstrates higher surface potential at 

the grain boundaries (GBs) than within grains. This corresponds to a downward band 

bending in the energy band diagram leading to the minority carrier electrons in p-type 

absorber layer to be attracted towards GBs which is consistent with the previous 

literatures [71].  
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Figure 4.30 AFM topography (a - f) and surface potential images (g - l) of perovskite 

films inside the glove box (a & g) and exposed to 25% (b &h), 45% (c &i), 55% (d &j), 

65% (e &f) and 75% (f&k) RH for 5 hrs, respectively. 

It is worth noting that the grain boundary potential is not same for all the humidity 

level suggesting that the electrical properties of grain boundary strongly depends on the 

neighboring grains. It can be noted that the constant surface potential is found for 

perovskite film prepared at 25% RH throughout the film (Fig 4.30h). This may be the 

reason for higher performance device obtained in this case which will be discussed in 

detail in next section. The grain boundary width increases with increases humidity level 
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and is maximum for perovskite film exposed to 75% RH level (Fig 4.30l). This is due to 

the formation of defects and traps due to hydration of grain boundaries that may results 

dissociation of perovskite in to lead iodide and hydrated phase as shown in XRD 

spectrum (Fig 4.29). The grain boundary potential increases with increasing humidity 

level which is shown in surface potential line profile obtained in Fig 4.31. 

4.3.4 Surface potential line profile of Perovskite film  

 

Figure 4.31 shows surface potential line scanning of perovskite film inside the 

glove box and exposed to 25%, 45%, 55%, 65% and 75% RH for 5 hrs. The grain 

boundary potential increases from 35 meV (Fig 4a & 3a) to 82 meV (Fig 4.31f & 4.31l) 

for perovskite film kept inside glove box to perovskite film exposed to 75% RH. This 

may be due to formation of additional phase of PbI2 as seen from XRD spectrum (Fig. 

4.29) and other stable hydrated phase due to exposure to high humidity conditions. 

KPFM measures the contact potential difference between tip and sample which is the 

difference between the work function of tip and sample. Therefore, the change in 

electrical barrier due to PbI2 and other hydrated phase can be determined. 

Average surface potential of perovskite film increases due to formation of PbI2 

phase whose VB lies below the perovskite VB. The grain boundary potential is minimum 

for perovskite film exposed to 25% RH which contains very small amount of lead iodide 

(Fig 4.29).  However, the grain boundary potential does not changes significantly while 

changing humidity from 45% RH (Fig 4.31c & 4.31i) to 55% RH (Fig 4.31d & Fig 

4.31j). Similarly, there was no any significant change in grain boundary potential by 

increasing humidity from 65% RH (Fig 4.31e & 4.31k) to 75% RH (Fig 4.31f & 4.31l). 

Grain boundary potential of 50 meV and 80 meV are obtained for 45% RH and 65% RH. 
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The increase in grain boundary potential reduces charge transport within the grains of the 

perovskite film and decreases the device performance.  

 

 

 

 

 

 

 

 

 

 

Figure 4.31 Surface potential line scanning of Perovskite film (a) inside the glove box 

and exposed to (b) 25%, (c) 45%, (d) 55%, (e) 65% RH and (f) 75% RH for 5 hrs 

4.3.5 Current sensing AFM imaging of Perovskite film  

 

To further understand the role of humidity on carrier transportation in perovskite 

solar cells, Cs-AFM was used to measure the local current on grains and GBs and thus 

determine the surface conductivity of perovskite film. First, Cs-AFM of perovskite film 

exposed to different humidity conditions was measured. Fig. 4.32 shows CS-AFM 

imaging of perovskite film prepared inside the glove box and exposed to 25%, 45%, 

55%, 65% and 75% RH for 5 hrs. Cs-AFM of grain boundary and grain of perovskite 

film gives the fundamental conduction mechanism in the device. Grain boundaries 
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consists of defects and dislocations and acts as tap states for the photo generated charge 

carriers. 

 
 

 

Therefore, there is different electronic behavior of electron and holes within 

grains and on grain boundary and the understanding of the conduction process inside the 

device is needed. The perovskite film demonstrate higher surface potentials (Fig.4.30) at 

the GBs compared to the surface of the grains. A higher positive potential at the grain 

  

 
 

 
 

 

(a) Inside Glove 

Box 

(d) 55% RH (c) 45% RH 

(e) 65% RH (f) 75% RH 

(b) 25% RH 

Figure 4. 32 CS-AFM imaging of perovskite film (a) inside the glove box and 

exposed to (b) 25 %, (c) 45 %, (d) 55 %, (e) 65 % RH for 5 hrs; and (f) 75 % RH  
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boundaries would correspond to a downward band-bending in the energy band diagram. 

This leads to minority carriers, electrons in p-type perovskite absorbers, to be attracted 

into the grain boundary, and majority carriers, holes, to be repelled away from the grain 

boundary. The average grain boundary potential of perovskite film increases by 57 meV 

while increasing the humidity level from 0% RH to 75% RH respectively [3, 7, 50]. This 

downward band bending acts as barrier for holes and creates an additional built in barrier 

for charges to flow. This barrier needs to be overcome in order to transport the carriers 

effectively. The highest current of 103 pA (Fig 4.32b) was found for perovskite film 

exposed to 25% RH conditions and the current decreases with increasing humidity to 

75% which is 38.8 pA (Fig 4.32f). 

4.3.6 Current density-voltage (J-V) curves of Perovskite Solar Cells 

 

Figure 4.33 shows current density-voltage (J-V) curves of perovskite solar cells 

with device structure of FTO/c-TiO2 /mesoporous-TiO2/CH3NH3PbI3/Ag prepared inside 

the glove box and exposed to 25%, 45%, 55%, 65% and 75% RH. The perovskite films 

were prepared from sequential deposition method where PbI2 film was spin coated and 

dried first. Finally, the films were dipped in 10 mg/ml MAI solution. Device performance 

of prepared cells were measured under 100 mW/cm2 AM 1.5 simulated solar irradiation 

with a humidity of 40%. The scan rate was kept constant for all devices with 0.5 V/sec. 

The cells were characterized both in forward and reverse scan  due to the JV hysteresis 

and degradation of the devices while switching the voltage [88].  

As shown in table 4.11, after increasing the humidity level to 25%, the average 

efficiency was found to increase and then decreases with increasing humidity to 45%, 

55%, 65% and 75%.The photovoltaic efficiencies were found to increase from 9.27% and 
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11.47% in forward and reverse scan   to 13.04% and 14.09% in forward and reverse scan, 

respectively. This increase in efficiency is mainly due to increase in open circuit voltage 

and short circuit current density. This is due to increase in local current due to decrease in 

grain boundary potential within the grains. This helps to increase charge transport by 

decreasing the barrier. After, increasing the humidity level to 45%, 55%, 65% and 75% 

RH, the device efficiency was found to decrease. The forward and reverse bias efficiency 

corresponds to 75% RH was found to be 5.18% and 7.37%. Decrease in open circuit 

voltage (VOC) is caused by the recombination of the electrons and holes within the grain 

boundary due to increase in charge trap states and defects within the grain boundary as 

shown in table 4.12. The decrease in short circuit current density (Jsc) is due to the 

decrease in local current as shown in Fig. 4.32 by CS-AFM measurements and also due 

to decrease in absorbance (Fig.4.28).   
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Figure 4. 33 Current density-voltage (J-V) characteristics of perovskite solar cells 

prepared from perovskite film inside the glove box and exposed to 45%, 55%, 65% and 

75% RH for 5 hrs  
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It can be seen that the device efficiency increased when the humidity was 

increased from inside glove box to 25% and decreased when increased to 45%, 55%, 

65% and 75% RH. A number of devices were prepared and similar efficiencies were 

found. H2O induced from moisture with suitable controlled humidity can weakly bind to 

methylamonium molecules and form reversible hydrated phase within pervoskite, which 

quickly forms dehydrated perovksite upon exposure to air [2].   

Table 4.11 Photovoltaic parameters for perovskite solar cells exposed to different 

humidity 

 
Device 

 

JSc Voc FF η% 

Forward Reverse Forward Reverse Forward Reverse Forward Reverse 

0% RH 19.93 21.18 0.91 0.93 0.51 0.58 9.27 11.47 

25%  RH 22.99 22.90 0.95 0.98 0.60 0.63 13.04 14.09 

45%  RH 21.26 19.82 0.92 0.91 0.45 0.57 8.86 10.32 

55%  RH 21.13 21.02 0.9 0.92 0.50 0.54 9.32 10.50 

65%  RH 19.80 19.6 0.87 0.87 0.43 0.47 7.44 8.014 

75% RH 17.78 18.49 0.75 0.81 0.39 0.49 5.18 7.37 

 

Optimum exposure of perovskite film to control humidity results in optimal H2O 

which can dissolve the methylammonium and other components, providing them higher 

mobility and allowing excess methylammonium to be removed, healing the pervoskite 

structure and fulfilling the deficits and any trap states [91, 94]. Thus, decrease in the trap 

states results in less non-radiative trap-mediated recombination [2]. Hence, exposing 

perovskite film to 25% RH leads to improved Voc, FF and hence overall device 

performance. The decrease in performance of perovskite solar cell prepared   by exposing 

it to higher humidity conditions is due to excess H2O content which dissolute perovskite 

phase to PbI2 and CH3NH3I. 
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4.3.7 Grain boundary model of Perovskite Solar Cells 

 

Figure 4.34 shows the schematic of surface potential and band bending at grain 

boundary with width of grain boundary and grain boundary potential. The charge carrier 

concentration is calculated using a grain boundary model from surface potential images 

obtained using KPFM (Fig 4.30). In this model, a grain boundary corresponds to a 

surface with surface charge, therefore the net doping Pnet of perovskite can be calculated 

from the size of band bending [45]. The doping density in this case is given by Pnet = 

2𝜀𝑜 𝜖∆𝜑𝑔𝑏

𝑒2𝑤2   where ∆φ is the grain boundary potential and w is the width of the grain 

boundary which is obtained from surface potential line profile (Fig. 4.31).  

 

Figure 4.34 Schematic diagram of nanoscale potential distribution around grain boundary 

in Perovskite solar cell 

  The doping density shows that the perovskite is self-doped. It is reported that the 

perovskite has ambipolar properties and study shows that the perovskite behaves as p-

type conductivity due to self-doping with TiO2 as interfacial layer. KPFM measures the 

change in work function between tip and sample [48]. In this experimental 

measurements, It has been found that the GB potential and width, dopant density, and 

density of charged trap states, as shown in Table 4.13. It is found that the defect density 

increases from 4.12×1017 /cm3 to 7.75×1017 /cm3 on increasing the humidity level from 

inside globe box to 65% RH. 



116 
 

 
 

Table 4.12 Dopant density and density of charged trap states of Perovskite film inside the 

glove box and exposed to 45% and 65% for 5 hrs 

Conditions  GB Potential  Dopant density 

 (/cm3) 

Density of charged  

trap states 

Inside GB  35 meV  4.12×1017 1.12×1013 

45% RH  50meV 5.57×1017 1.56×1013 

65% RH   80 meV  7.75×1017 2.34×1013 

 

4.3.8 Transient photoconductivity measurement 

 

   Figure 4.35 shows Transient photocurrent decay (TPC) of perovskite solar cells 

prepared from perovskite film inside the glove box and exposed to 45%, 55%, 65% and 

75% RH for 5 hrs. The short lived photocurrent is generated by a nanosecond pulse of a 

dye laser incident on solar cells under short circuit conditions (by a very low resistor at 

20 Ω). No background light was applied when measuring TPC. This is the reason when 

the pulse laser was off, the TPC decays reach to zero for all samples. Charge transport 

time was obtained by fitting the decay function with mono-exponential equation ∆I0 exp(-

t/τ) where τ  is the charge carrier life time. The transient current has been normalized in 

order to clearly visualize the charge transport decay which is the central part of this 

experiment.  It was found that the values of charge transport time (table 2) of 3.36 µsec, 

0.58 µsec, 4.72 µsec, 4.29 µsec, 5.23 µsec and 5.98 µsec  for perovskite solar cells 

prepared from perovskite film kept inside glove box and exposed to 45%, 55%, 65% and 

75% RH for 5 hrs respectively. The charge transport time of perovskite film prepared by 

exposing to 25% RH for 5 hrs is fastest showing efficient charge extraction [103]. These 

results are in agreement with CS-AFM, KPFM and JV characteristics where enhanced 

local current, minimum grain boundary potential and highest device efficiency was 
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found. But, the charge transport time becomes longer (5.98 µsec) for sample exposed to 

75% which may be caused by the dissociation of CH3NH3PbI3 into PbI2 and CH3NH3I 

due to degradation from high humidity conditions.    
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Figure 4.35 Transient photocurrent decay of perovskite solar cells prepared from 

perovskite film inside the glove box and exposed to 45%, 55%, 65% and 75% RH for 5 

hrs. 
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Chapter 5 Summary and Conclusions 

 

5.1 Summary 

 

 Humanity has already faced consequences of wide use of non-renewable 

natural resources affecting the environment in an irreversible way for example air 

pollution, soil erosions and ozone layer depletion. This clearly highlights the need of a 

pollution free, renewable source of energy to minimize the adverse impacts to the 

environments. Sun provides 6700 times the annual world primary energy consumption 

per year. Therefore, harvesting the energy supplied by sun in easy means is a key 

approach to produce sustainable energy. The silicon solar cell has huge market which is 

over 95% of all the solar cells produced worldwide. However, c-Si cell technology 

requires high temperature and high vacuum processes which are costly. Also, c-Si 

requires a few hundred microns thick film to absorb sufficient light due to its relatively 

poor light absorbance. Due to the low cost advantages, pervoskite solar cells have 

generated wide interest as a potential replacement for silicon solar cells.  

First perovskite solar cell was fabricated with an efficiency of 3.8% by Miyasaka 

et al. in 2009. However, the liquid electrolyte dissolved the perovskite film and the film 

was not stable for longer time operation. Then in 2012, Park et al. reported a long term 

stable perovskite solar cell with efficiency up to 9.7%. In 2015, Yang et al. achieved an 

efficiency of 20.2 % using formamidinium lead iodide (FAPbI3) which has broad 

absorption compared to conventional methyl ammonium lead iodide.  In 2016 Saliba et 

al. showed stabilized efficiency of 21.1% and 18% after 250 hours under standard 

operational conditions.  
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The commercial use of the organo lead halide perovskite based solar cell is 

challenging because of its poor stability with moisture and temperature despite its 

promising efficiency. The degradation mechanism is open for debate in the field of 

perovskite solar cells. Therefore, understanding degradation mechanism is critical to 

provide materials design principles and engineering strategies to achieve long-term 

stability in perovskite solar cells. The charge transport in perovskite solar cell strongly 

depends on humidity and annealing conditions. Previous reports showed that contact 

potential difference (CPD) of GBs in perovskite films is higher than within the grains and 

decreases after illumination. In addition, the crystallization of perovskite film can be 

increased by directly adding water in methyl ammonium iodide solution. Previous reports 

shows that optimum amount of lead iodide helps to passivate the perovskite film.  

There is a strong need for stable, low cost and highly efficient organic-inorganic 

perovskite solar cells. The objective of this work is to develop high performance 

perovskite solar cell with efficiency greater than 20% and to study the nanoscale charge 

transport with annealing conditions and humidity. Another goal of the project is to study 

the crystallization of perovskite film by adding water directly in methyl ammonium 

iodide solution during perovskite film formation.    

Kelvin probe force microscopy (KPFM) is a method to study the nanoscale 

potential distribution along grain and grain boundary. Cs-AFM in conjugation with kelvin 

probe force microscopy can be used to study the local charge transport properties in 

perovskite solar cells. Hence, KPFM determines interface energetics, which can be used 

to study the role of interfacial layer on the recombination of high performance devices.  
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Perovskite solar cells were prepared from single step and sequential deposition 

method. The prepared pervoskite films were annealed at 100 ̊C for various durations to 

suppress the back recombination of electrons from TiO2 and holes from perovskite. The 

perovskite films were also prepared by adding varying amount of water (1%-7% by 

volume of IPA) in methyl ammonium iodide solution. In addition, some of the perovskite 

films were exposed to different humidity conditions (25% to 75%). The prepared films 

were then characterized using UV-vis spectroscopy, XRD and KPFM.  Current density 

voltage characteristics were measured using an Agilent 4155C semiconductor parameter 

analyzer integrated with a Newport xenon lamp (67005) as solar simulator (AM 1.5). 

Transient photoconductivity was measured using nitrogen coupled dye laser with pulse 

duration less than 1 nsec.  

Nanoscale kelvin probe force microscopy (KPFM) measurement shows that 

charge transport in perovskite solar cell critically depends upon annealing conditions, 

humidity and doping with water during perovskite film formation. The KPFM results of 

single step and sequential deposited films show that the increase in potential barrier 

suppresses the back recombination between electrons in TiO2 and holes in perovskite due 

to formation of optimal amount of lead iodide formed from annealing. An optimal 

amount of water (5%) added to the Methyl ammonium Iodide solution in isopropyl 

alcohol helps perovskite crystallization and leads to larger grain size. The grain boundary 

potential increases with increasing humidity level from sample kept inside glove box (0% 

RH) to 75% RH and affects the nanoscale charge transport. The degradation of pervoskite 

solar cell is mainly associated with hydration of the grain boundaries with the formation 

of hydrated phases and increase of PbI2 phase with increase in humidity level beyond 
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25% RH. Minimum grain boundary potential (<25 meV) was found for 25% humidity 

exposed perovskite film. Device performances of the solar cells were found to increase 

from 9.27% to 13.04% in forward scan and 11.47% to 14.09% in reverse scan on 

increasing humidity level from inside glove box to 25% RH.   

Future work includes fabrication and optimization of perovskite solar cells in 

controlled humidity with optimal amount of water in methyl ammonium iodide solution 

to obtain efficiency up to 20% and to understand the ambipolar properties of pervoskite 

solar cell using kelvin probe force microscopy.  

5.2 Conclusions 

 

The effect of annealing conditions, humidity and addition of water during 

perovskite film formation has been studied successfully. The quantitative measurement of 

grain-boundary (GB) potential and TiO2-perovskite interface surface potential in 

perovskite solar cells has been shown. KPFM measurement shows that charge transport 

in perovskite solar cell depends upon annealing conditions. The KPFM results of single 

step and sequential deposited films show that the barrier increases due to the formation of 

PbI2 that suppresses the back recombination between electrons in TiO2 and holes in 

perovskite. XRD results confirm the formation of perovskite and lead iodide phase upon 

annealing. Nanoscale CS-AFM images show that charge transport in perovskite solar 

cells strongly depends in humidity level. It was found that an increase in humidity level 

resulted in the dissolution of perovskite phase in to lead iodide. Grain boundary potential 

barriers were found to increase from ~35 meV for 0% humidity in glove box to 82 meV 

for perovskite film exposed to 75% RH level. The minimum grain boundary potential 

was found for films exposed to 25% RH. Water is an important factor in perovskite film 
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formation with dual roles: 1) assisting pervoskite crystallization with optimum amount 2) 

dissociates perovskite in to lead iodide and methyl ammonium iodide. 5% by volume was 

found as an optimal amount of water for crystallizing the perovskite film in the (110) 

plane that increased the grain size three times of that prepared without water in the MAI 

solution. The increase in grain size and crystallinity of perovskite film helps to reduce the 

recombination of charge carriers by decreasing the total grain boundary area. Average 

performance of solar cells were found to increases from 10.37% to 13.57% when 

humidity level is increased from 0% inside glove box to 25% RH.  
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