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ABSTRACT 

A COMPILATION OF RESEARCH ON SELF-CONSOLIDATING CONCRETE FOR 

PRESTRESSED BRIDGE GIRDERS 

EDUARDO S. TORRES 

2016 

Self-Consolidating Concrete (SCC) is a relative new concrete technology 

developed in the 1980s in Japan. Since, SCC has been used for several applications 

around the world. Initially, SCC was used for on-site applications where it was difficult 

to place concrete. SCC workability benefits facilitated construction procedures by freely 

flowing, filling space and passing through dense reinforcement without vibration 

mechanism. Meanwhile, SCC has also been used in other applications such as the precast 

industry, where the benefits of the workability SCC delivers can be utilized to improve 

fabrication of prestressed girders. SCC has been used in the precast industry with a 

satisfactory performance. This was achieved by reducing fabrication time, decreasing 

health hazards due to excessive noise, and a much better finishing on the surface of the 

girder. However, difficulties maintaining uniformity, and resistance to segregation of the 

SCC mixtures have been reported by several producers. Ever since, several agencies and 

state Department of Transportation (DOT) have conducted research to study SCC 

characteristics with materials available in their region. Significate findings indicate that 

examination of fresh and hardened properties are necessary before application of 

prestressed girders. From particular findings, DOTs have developed guidelines for 

mixture constitution, and fresh and hardened properties required in their state for SCC 

production. However, due to different material proportions present on SCC mixtures 
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compared to Conventional Concrete (CC) or High-Performance Concrete (HPC) mixture 

different long-term behavior has been observed. Therefore, creep and shrinkage have 

been monitored for long-term behavior to accurately predict prestress losses, which are 

needed in the structural design of the bridges.  

This thesis is composed of three research papers, for each paper a separate chapter is 

used, which investigates various aspects for the production of SCC utilizing materials 

available in the state of Wisconsin. Chapter one provides a summary of the current state-

of-the-art and practice of technical documentation and specifications related to material 

properties and test methods for prestressed SCC bridge girders. Chapter two provides an 

experimental program designed to investigate the effect of material constituents on 

performance of SCC mixtures. From this experimental program specific mixture 

parameters were recommended for the application of SCC in Wisconsin DOT projects. 

Finally, chapter three consisted in monitoring samples of five SCC mixtures batched at 

three different precast plants from Wisconsin. Creep and shrinkage readings were taken 

for a period of 112 days to investigate the effect of specific mixture parameters of 

selected mixtures with performance desired by the Wisconsin DOT and precast plants.  
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Abstract 

 

Self-Consolidating Concrete (SCC) is a highly flowable, non-segregating concrete. 

Relevant technology and applications have steadily grown in various construction fields 

in the United States. Several State Departments of Transportation (DOTs) have 

performed significant research on SCC for prestressed bridge girders, resulting in their 

own guidelines. The objective of this study is to summarize the current state-of-the art 

and practice of technical documentation and specifications related to material properties 

for prestressed SCC bridge girders. To seek more practical information, a cursory survey 

among SCC experts at each DOT was performed and summarized herein. Key findings 

indicate that testing for the examination of fresh and hardened SCC properties are 

necessary for prestressed bridge girder applications. It is important to determine 

constituent proportions of the mixture and need of admixtures, as well as to require 

higher early compressive strengths required for prestressed SCC bridge girders. Based on 

the literature review and survey, a material property testing protocol to efficiently 

investigate SCC mix performance for prestressed bridge girders is recommended.  

Keywords: Self-Consolidating Concrete, Prestressed bridge girders, Fresh and hardened 

properties, Literature review, Survey, Testing protocol 
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1. Introduction  

Self-Consolidating Concrete (SCC) enables to smoothly take formwork shapes and easily 

pass through congested reinforcing bars with no vibration efforts, and SCC has been 

regarded as a more practical construction material when compared to normal concrete, 

making it a “smart concrete” (Shamsad et al. 2014). SCC is also able to enhance 

workability and economic efficiency under arbitrary environmental conditions. These 

features are manifested by reducing labor, shortening of the construction time, 

eliminating vibration and noise hazards, and simplifying the placing process (Skarendahl 

2003). With the unique features, SCC has been used worldwide to date in various 

concrete structures. SCC that was first developed in the 1980s in Japan has broadly 

expanded through a few decades across Europe and North America (Okamura and Ouchi 

1999).   

Extensive research on SCC mixture designs for prestressed bridge girders or other 

applications have been performed in several Departments of Transportation (DOTs) in 

the United States. For example, the South Carolina DOT was to study the use of SCC in 

drilled shafts (Ouchi et al. 2003) and in replacement of four structurally deficient bridges 

(Mallela et al. 2010). These studies have helped SCDOT use SCC in the drilled shafts 

and bridges. Additionally, the Kansas State DOT performed a study of the fresh and 

hardened properties of SCC for use in Kansas prestressed concrete bridge girders. KDOT 

built a three-span bridge using SCC in only one span while the remaining two spans were 

built using conventional concrete (Ouchi et al. 2003). The bridge was instrumented and 

monitored for five years to evaluate its long-term performance. In addition to the field 

studies, experimental studies for SCC concrete bridge girders have been carried out by 
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the South Dakota DOT (SDDOT) in cooperation with South Dakota State University 

(Wehbe et al. 2009). 

As a result of the DOT research projects, a SCC guideline for each DOT has been 

established based on the materials available in a specific region. Although these 

guidelines have been used for appropriately designing and implementing prestressed 

bridge girders at several particular state DOTs, some producers have had difficulty in 

maintaining uniformity of the SCC mixture during a field trial. Some issues related to 

excessive segregation of wet batches during placement have been observed in specific 

states. Hence, a testing protocol to appropriately investigate materials performance 

characteristics related to structural behavior of prestressed SCC bridge girders is required 

to be established throughout a detailed review of relevant technical documentation in 

conjunction with survey data from SCC experts in DOTs who can provide practical 

information. 

This paper aims at not only providing the current state-of-the art review of published 

literature related to material fresh and hardened properties of SCC, but also establishing a 

testing protocol to determine an SCC mixture that meets desired prestressed bridge girder 

performance. To explore more practical data or limits associated with the prestressed 

bridge girder SCC mixture, state-level DOT specifications were reviewed and a brief 

survey to ask SCC experts in each DOT was carried out. This paper is structured into 

seven sections. Section 2 is devoted to a summary of the general information on desired 

SCC performance. Section 3 provides an overview of key SCC constituents and relevant 

research findings to achieve adequate material characteristics necessary for appropriately 

designing prestressed SCC bridge girders. Section 4 details conventional SCC material 
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testing required for the investigation of fresh and hardened properties, modulus, 

shrinkage and creep related to the structural performance of prestressed bridge girders. 

Section 5 is dedicated to a summary of different state DOT survey responses and 

specifications specific to the SCC mixture. Section 6 presents a testing protocol for a 

proper SCC mixture based upon assembling the literature review and survey inputs. 

Lastly, Section 7 gives a summary and conclusions. 

2. Desired SCC Performance  

Achieving the desired SCC performance via testing-based SCC fresh properties are 

necessary for more efficient SCC construction management and planning. Specifically, 

adequate flowability, good passing and filling abilities, proper segregation resistance, and 

stability are required to satisfy the fresh property requirements. The required properties 

are achieved by proportioning the constituent materials and admixtures in a systematic 

way (Erkmen et al. 2008). Flowability can be divided into filling and passing ability. The 

filling ability is the ability to expand through the framework under its own weight, while 

the passing ability is the capability to flow through tight openings, such as narrow 

spacing between reinforcing bars (Wehbe et al. 2009). If the concrete does not possess 

adequate passing ability, it results in a non-uniform structure caused by blockage of 

coarse aggregate between reinforcing bars.   

In addition to the flowability, SCC is more prone to segregation than high strength and 

conventional concrete (Bonen and Shah 2004). Segregation resistance is defined as the 

distribution of aggregate particles in the concrete that is relatively equivalent at all 

locations (Turkel and Kandemir 2010). Bonen and Shah (2004) suggested that the lack of 

segregation resistance might be caused by internal and external bleeding of water 
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associated with differential accumulation of light ingredients and air voids, which results 

in settling of the aggregates on the bottom of the paste. The segregation resistance varies 

depending on three main factors: 1) the viscosity of the cement paste, 2) the difference in 

the specific densities of cement and aggregate, and 3) the particle size of the aggregates 

(Bonen and Shah 2004). Desired segregation resistance is achieved by using high powder 

(cement and fillers) content, viscosity modifying admixtures (VMA), or a combination of 

the two admixtures (Bonen and Shah 2004; Berke et al. 2003).  

Increasing the powder content of the mixture helps to increase the cohesion between 

particles (Turkel and Kandemir 2010). Addition of viscosity modifying admixtures 

increases viscosity of the mixture by improving the absorption of water by the 

cement/filler particles (Long et al. 2014).  SCC is susceptible to segregation at higher w/c 

ratios due to the decrease of viscosity on the mixture.   

Stability is of high importance in SCC, for which fresh and hardened methods are used 

for quality control of the mixture. According to the recommendation by Long et al. 

(2014), there are two types of stability characteristics: dynamic and static stability. 

Dynamic stability describes the resistance of the concrete to the separation of the 

constituents during transport, placement, and spread into the formwork, while static 

stability refers to the resistance of the concrete to bleeding, segregation, and surface 

settlement after casting until the beginning of setting (Long et al. 2014). The stability of 

SCC can be enhanced by incorporating fine materials such as limestone powder, ground 

granulated blast-furnace slag (GGBS), fly ash and microsilica fume. The use of such 

powders can enhance the grain-size distribution and particle packing ensuring greater 

cohesiveness (Sonebi et al. 2007). 
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3. Overview of Key SCC Constituents 

SCC constituents are proportioned to a specific type of SCC. Three types of SCC can be 

produced as follows: powder-type, viscosity modifying admixture (VMA)-type, and 

combination-type (Wehbe et al. 2009). The powder-type is characterized by the large 

amounts of powder which is in the range of 550 to 650 kg/m
3
. In the VMA-type, the 

powder content is lower 350 to 450 kg/m
3
. In the combination-type, the powder content is 

ranged between 450 and 550 kg/m
3
 (Burgueno and Bendert 2007). Similar to 

conventional concrete constituents, the key constituents of SCC are coarse aggregate, fine 

aggregate, cement, and water along with admixtures. The following subsection details the 

characteristics on each constituent and relevant research findings focusing on prestressed 

SCC bridge girders.  

3.1 Cement 

Cement types that are in use for SCC vary for each state and precaster. According to the 

American Society of Testing Materials (ASTM 2011a) C150-05 guideline, this classifies 

Portland cement into five main types: Type I, Type II, Type III, Type IV, and Type V. 

Type I, Type III, and Type II are employed to produce SCC for the casting of prestressed 

girders in the United States. Type I is typically used when special properties of other 

cements are not necessary. Type II is utilized when moderate sulfate resistance or 

adequate heat of hydration are desired. Type III is exploited when high early strength is 

desired. Type IV is used when low heat of hydration is desired; while Type V is utilized 

when high sulfate resistance is needed following the ASTM C150 guideline.  
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3.2 Fillers  

Fillers can be added to enhance a certain concrete property or reduce the amount of 

cement required; thus, fillers have been used as supplementary components or to be 

replaced with some of the cement in a concrete mixture. Most common fillers used for 

SCC mixtures include fly ash, ground granulated blast-furnace slag, silica fume, and 

limestone powder. Technical benefits of using fillers are as follows: 1) increase in early 

strength and bleeding control; 2) improvement of the concrete workability; 3) 

deformability, and 4) viscosity and reduction of porosity (Shamsad et al. 2014). The 

workability improves as a result of the reduction of internal friction between the particles 

(Sonebi et al. 2007). The reduction in friction can be achieved by increasing the distance 

between the particles and amount of paste (Khayat et al. 2009). The reduction in friction 

is also advantageous because it enables the reduction in water contents, while 

maintaining the required levels of flowability (Sonebi et al. 2007). Khayat and Mitchell 

(2009) studied the effect of different fillers on the performance of SCC. It was found that 

the fillers that were less reactive than cement slowed down the concrete hardening.  By 

slowing down the hydration process the mixture remains fluid longer time; however, an 

excess on the replacement percentage of cement by fillers can transform its positive 

effects into negative by not allowing the cement to achieve complete hydration 

(Burgueno et al. 2007).   As such, it was recommended to maintain the replacement 

percentage ranges listed in Table 1.  
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Table 1. Suggested Cement Replacement Values (Khayat and Mitchell 2009) 

Filler % Replacement 

Fly Ash* 20-40% 

Limestone 20-30% 

Blast-Furnace Slag 30-60% 

Fly Ash/Blast-Furnace Slag Max 50% 

Note: the presence of * indicates classes of fly ashes, including C, D, and F. Replacement 

percentage ranges are identical for Fly Ash no matter the class. 

 

3.3 Coarse Aggregate 

Coarse aggregate has a marked effect on passing ability, filling capacity, and static 

stability of SCC. Maximum Size Aggregate (MSA) should be selected with consideration 

of the minimum clear spacing between the reinforcing bars and prestressing strands, the 

cover space over the reinforcement, and the geometry of elements to be cast (Khayat and 

Mitchell, 2009). The MSA must be chosen to avoid blockage, which can be caused by the 

collision of aggregates behind reinforcing bars so that the MSA should be smaller than 

the minimum spacing between the reinforcing bars (Sonebi et al. 2007). Long and Khayat 

(2014) developed a test matrix for SCC to study the effect of MSA in terms of 

workability and strength development. The MSA used in the test matrix were 19.0mm, 

12.7mm, and 9.5mm. It was indicated that MSA of 19.0 mm showed better performance 

in comparison to that of 12.7mm and 9.5mm.  It was recommended that the coarse 

aggregate size for SCC be between 19mm and 12.7mm, but not to be lower than 9.5mm. 

In addition to the MSA in flakiness index can have an effect on workability. Flakiness 

index is defined as the percent by weight of particles whose least dimension is less than a 

fifth of its mean dimension. Santhanam et al (2004) reported that flakiness does not have 
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an impact on flowing ability; however, for mixtures having flakiness index above 23% 

the passing ability of the mixture was affected by causing excessive blockage. 

3.4 Admixtures 

Admixtures are ingredients in a concrete mixture other than cement, water, and 

aggregates that are added to the mixture to modify properties (Pellerin et al. 2005). 

Admixtures can be classified as a function of the following: 1) air-entraining admixtures; 

2) water-reducing admixtures; 3) plasticizers; 4) viscosity modifying admixtures; 5) 

accelerating admixtures; 6) retarding admixtures; 7) hydration-control admixtures; 8) 

corrosion inhibitors; 9) shrinkage reducers; 10) alkali-silica reactivity inhibitors; and 11) 

coloring admixtures. Of these admixtures, air entraining, water-reducing, and viscosity 

modifying admixtures are used in the production of SCC, while the other admixtures are 

rarely utilized for SCC products. For example, air entraining admixtures are added to 

freshly mixed SCC to raise the air content. The main goal of increasing the air content in 

a SCC mixture is to improve durability (Wehbe et al. 2009). However, the effect of air 

entraining admixtures will increase the air content for a short term period, which will 

decrease in the long term period. The addition of air entraining admixtures can improve 

workability, cohesiveness, segregation, and bleeding resistance, yet decrease strength by 

10-20% (Mindess et al. 2003). 

Another example of helping to enhance flowability related to workability in SCC 

prestressed bridge girders is the use of water-reducing. In particular, High Range Water 

Reducing (HRWR) admixtures, also called superplasticizers, are used to achieve high 

flowability. HRWR admixtures are added in small amounts to freshly mixed SCC to 

improve the workability for a short period of time. HRWR admixtures typically have a 
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workability window of 30-60 minutes. These admixtures are added to decrease the water 

demand of concrete and create fluidity in the mixture (Kosmatka et al. 2002). Fluidity in 

the mixture is achieved by neutralizing the surface charge of the cement particles. Once 

the particles have the same charge, the particles are able to repel each other throughout 

the water. As particles are more evenly dispersed, water is more readily available to 

hydrate the cement. As a result of the particle dispersion, HRWR admixtures can help 

make SCC mixtures with lower w/c ratio to have acceptable flowability and higher 

strength in accordance with the European Federation of National Associations 

Representing for Concrete (EFNARC 2006). Some relevant studies conducted by Erkmen 

et al. (2008) and Wehbe et al. (2009) have also shown that the HRWR was capable of 

increasing the compressive strength of concrete by 10-25%. 

Viscosity Modifying Admixtures (VMAs) are high molecular weight polymers that 

enable an increase in the viscosity of a SCC mixture to the extent where there is no need 

to reduce the water content. Consequently, the VMAs are able to reduce segregation and 

bleeding in SCC applications. However, VMAs are not a remedy for poor quality 

constituents or mixture design. According to the EFNARC (2006), potential benefits of 

using VMA are the following: 1)Less sensitivity to variations in the moisture content of 

the aggregate; 2) Lower powder content; 3) Better quality control; 4) Allows more fluid 

mixes to be used without the risk of segregation; 5) Improving placing rate; and 6) Better 

surface appearance.  

4. Conventional Test Methods 

With an increase in demand of SCC in various structures, conventional SCC test methods 

have been used to determine workability of freshly mixed SCC and its hardened 
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properties. The fresh test methods that were established by the ASTM include for slump 

flow, Visual Stability Index  

(VSI), J-Ring, and Column Segregation tests (Mata 2004). Precast/Prestressed Concrete 

Institute (PCI) has also developed guidelines for SCC test methods and mixing 

procedures such as L-Box and Caisson test (PCI 2003). Nevertheless, EFNARC also has 

their own detailed information on each method with pertinent findings gained from 

literature review is presented in the following subsections.   

4.1 Fresh Properties 

As mentioned previously, there are three key characteristics of SCC in the fresh state as 

follows: 1) filling ability defined as the concrete capability to fill the form with its own 

weight; 2) passing ability which is known as the ability of fresh concrete to flow through 

congested spaces between reinforcements without segregation; and 3) resistance to 

segregation or stability which is the ability to maintain a homogeneous composition 

without excessive bleeding  in the fresh state (Trejo et al. 2008). Table 2 lists what the 

aforementioned SCC fresh tests are used for each property according to which 

specifications are followed. Again, all the tests have standard guidelines from the ASTM 

with the exception of L-Box and Caisson test which are included in the Interim 

Guidelines written by PCI (PCI 2003) and V-funnel test included in the guidelines for the 

use of SCC created by EFNARC (EFNARC 2006). 
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Table 2. Test Methods for SCC Fresh Properties 

Test Methods Fresh Properties Specifications 

Slump Flow Filling Ability ASTM C 1611 

VSI Segregation Resistance ASTM C 1611 

J-Ring Passing Ability ASTM C 1621 

L-Box Passing Ability  PCI 

Column Segregation Segregation Resistance ASTM C 1610 

Caisson Test Filling Capacity PCI 

V-Funnel Flowing Ability EFNARC 

 

The slump flow test (see Fig. 1) is the most widespread method for determining the free 

flowability of the mixtures (ASTM 2011e). The slump flow is best correlated with the 

yield stress of the concrete and is a useful tool for evaluation of the consistency of 

successive batches (Bonen and Shah 2004).  The ASTM C1611 specifies a required 

diameter between 508mm-762mm. Also, EN-206 standard listed three ranges for slump 

flow values: 1) 550mm-650mm. 2)650mm-750mm and 3)750mm-850mm based on the 

mixture design.  The diameter is measured when the SCC mixture is discharged from a 

standard cone under free flow conditions as seen in Fig. 1. The spread is measured as the 

average of two orthogonal diameters.    
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Fig. 1. Slump flow test (image by Eduardo Torres) 

 

 

VSI has been used to evaluate the dynamic stability of the batch. The VSI is immediately 

performed after the slump flow. VSI levels are ranged from 0 to 3, indicating the degree 

of stable to unstable segregation. These levels are determined through visual inspection 

of the fresh batch after testing the slump flow. According to the American Concrete 

Institute (ACI 2007), VSI is a subjective test that can be used via precasters and cast in 

place by means of quality controlling of a SCC mixture. VSI also provides a visual 

image of the distribution of aggregates and the presence of excessive bleeding 

throughout the mixture (PCI 2003).VSI is divided in different levels as follows: 1) VSI 

of 0, meaning mass is homogeneous and no bleeding; 2) VSI of 1, indicating small 

bleeding observed in the surface; 3) VSI of 2, showing evidence of a mortar halo and 

water sheen; and 4)  VSI of 3, concentration of coarse aggregate at center of concrete 

mass and presence of a mortar halo.   

The passing ability of freshly mixed SCC can be evaluated using J-Ring or L-Box test. 

Both tests can determine the potential blockage or segregation. J-Ring test is more 



15 

 

 

 

commonly used in the field site, while L-Box is used more in laboratory (Bonen and 

Shah 2004). The J-Ring test is similar to the slump flow, but the J-Ring is placed around 

the slump cone and the SCC is forced to pass through the legs of the J-Ring (Gutzmer 

2008). Fig. 2 shows a picture for J-Ring testing with a SCC mixture. The average of two 

orthogonal diameters is recorded to be compared to the slump flow values. According to 

the ASTM C 1621 (ASTM 2011d), a difference of diameter less than 1 inch indicates 

good passing ability, and a difference above 2 inches indicates poor passing ability. The 

difference in heights between the concrete inside the ring and the concrete outside the 

ring can be compared to evaluate the passing ability. However, comparing these heights 

is neither commonly used nor accepted values specified by the ASTM C 1621. The 

aggregate size has the most influence on the results of this test as it can cause blockage 

between the reinforcing bars of the metal ring.  

 

  
 

Fig. 2. J-Ring test (images by Junwon Seo) 

 

 

The L-Box test is not the ASTM standard test, but a PCI manual-based testing method. 

Fig. 4 illustrates the setup of L-Box test. The test can be performed in accordance with 

the PCI interim guidelines (PCI 2003) and European standard EN 206 (2013).  The 
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measured L-Box values are expressed in terms of the ratio H2/H1. Both heights indicate 

the heights at the horizontal ends as seen in Fig. 3. Acceptable values of H2/H1 are 

between 0.80 and 1.00 in the recommended construction manual provided by the Japan 

Society of Civil Engineers (JSCE) (JSCE 1998) and the PCI interim guidelines (PCI 

2003).   

 
Fig. 3. L-Box test  

 

 

ASTM C1610 test method also covers the determination of static segregation of a SCC 

mixture by measuring the coarse aggregate content in the top and bottom portions of a 

cylindrical specimen. According to the ASTM C1610 (ASTM 2010g), a SCC mixture is 

poured in the cylinder as seen in Fig. 4. The SCC mixture must remain in the mold 

without any disturbance for 15 minutes. The SCC at the top section of the column is 

removed and placed into a container and the middle sectional SCC is removed. The SCC 

is then disposed. The SCC in the bottom section is also placed in a container. The SCC 

from the top and bottom sections has to be washed separately over a No. 4 sieve so that 

only coarse aggregate remains on the sieve. The coarse aggregate is over dried to a 

constant mass. Column segregation values are expressed as the percentage ratio of the 
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difference of aggregate mass between the bottom and top segments of the column to the 

total aggregate mass in the two segments (Mamaghani et al. 2010). The following 

equation can be used to determine the static segregation, depending on magnitudes for 

mass of coarse aggregate in the bottom and top sections: 

S = 2 [
CAB−CAT

CAB+CAT
] ∗ 100;   if CAB >  CAT     (1) 

 

 S = 0;   if CAB ≤  CAT        (2) 

 

where CAB and CAT indicate mass of coarse aggregate in the bottom section and mass of 

coarse aggregate in the top section, respectively. 

  
Fig. 4. Column segregation test (images by Junwon Seo) 

 

Caisson test detailed by PCI manual (PCI 2003) is a promising test to determine filling 

capacity. However, the caisson test is for laboratory use only and is not commonly used. 

Instead of using caisson test a combination of the slump flow and either the L-box or J-

Ring test can be efficiently used to assess filling ability of a SCC mixture (Long et al. 

2014). 

V-Funnel test described in the EFNARC guidelines is used to assess the viscosity and 

filling ability of self-compacting concrete. V-funnel test addresses the time it takes to the 

concrete to flow through the funnel. For this test the MSA of the aggregate should not 
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exceed 20mm. Also, the EFNARC guidelines provide detail information of the GTM 

screen stability test which is similar to the column segregation test. GTM screen stability 

test consists of collecting 10 liters of concrete, and then pour half of it on to a 5mm sieve 

of 350mm diameter. Allow the concrete to sit on the sieve for 2 minutes, before 

weighting the concrete that passed through the sieve. Then, the weight value recorded is 

expressed as the percentage of the weight of the original sample. The percent ratio 

considered satisfactory for this test ranges from 5-15%. 

 

4.2 Hardened Properties 

Determining hardened properties of SCC, encompassing compressive strength, modulus 

of elasticity, creep, and shrinkage, is important to estimate the structural performance of 

SCC in prestressed bridge girders. Specifically, measuring creep and shrinkage of SCC is 

necessary because these characteristics have a significant effect on overall losses of SCC 

prestressed girders. The following subsections will detail technical findings obtained 

through literature review for each hardened property.  

 

4.2.1. Compressive Strength  

SCC has demonstrated positive results in regard to compressive strength (Mamaghani et 

al. 2010) in some cases better than normal concrete. Prestressed bridge girders require a 

higher strength in comparison to other applications, such as columns and box culverts. 

Typically, a compressive strength can be experimentally measured according to the 

ASTM C36 (ASTM 2011). Readings are recorded at 18hr, 3, 7, 14, 28 and 56 days of 

curing. Curing conditions have shown to have an impact on the early strength of concrete. 
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Heat curing conditions significantly improve strengths gaining at an early age relative to 

moist curing (Hamilton et al. 2005).   

A number of studies have been conducted to investigate the effects of different SCC 

constituents on the compressive strength. For example, Schindler et al. (2007) and 

Vilanova et al. (2012) studied the SCC compressive strength under variation of different 

constituents such as w/c ratio, Sand to total Aggregate (S/Agg) ratio, different 

cementitious materials and fillers, cement content and type, and aggregate type. From the 

two studies, it was concluded that cement content, w/c ratio, and coarse aggregate have a 

significant influence on the compressive strength. Attiogbe et al. (2006), Collepardi et al. 

(2005) and Wehbe et al. (2007) concluded that the compressive strength of SCC was 

comparable or higher than that of normal concrete of the same w/c ratio. Burgueno et al. 

(2007) also performed compressive strength testing for three different types of SCC: 

powder Type, VMA Type and combination Type I/II. It was indicated that the powder 

and VMA types showed higher strength than that of normal concrete at the early age. 

However, combination Type I/II developed slower strength gains compared to the rest of 

SCC types.   

Another parameter that has been studied is the replacement of cement for respective 

fillers. Turkel et al. (2010) studied how different fillers affected properties of the SCC 

mixture. The results showed that SCC mixtures using limestone yielded substantially 

higher strength than those mixed with other mineral admixtures or fillers.   The higher 

strength of SCC mixtures using limestone powder can occur due to the higher surface 

porosity of limestone. This creates higher reactivity of calcite as a result of the interaction 

between cement and limestone, enhancing the compressive strength (Turkel et al. 2010).   
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4.2.2. Modulus of Elasticity  

According to the ASTM C469 (ASTM C469, 2011f), modulus of elasticity is known as 

the resistance to deform elastically when a force is applied. SCC may exhibit lower 

modulus of elasticity than that of normal concrete during a long period due to its 

relatively greater prestress losses in prestressed SCC components (Shamsad et al. 2004). 

However, it was found that the SCC has similar modulus of elasticity at 28 days 

compared to normal concrete. The modulus of elasticity in the SCC mixtures is affected 

by the use of mineral admixtures, paste volume and size of coarse aggregate.   The 

following mineral admixtures increase modulus of elasticity in the following order: fly 

ash, limestone filler, and ground-granulated blast-furnace slag (Vilanova et al. 2012).   

 

4.2.3. Durability 

Prestressed bridge girders exhibit satisfactory structural performance and durability. 

However, cracking, damage and corrosion of the strands can be observed (Kim et al. 

2011). Durability can be divided into the following parameters: 1) permeability, 2) 

diffusion coefficient and freeze-thaw resistance (Kim et al. 2011). Many studies have 

been performed to compare the durability of SCC with conventional concrete (CC). For 

instance, EFNARC in their guidelines for SCC states that SCC with the appropriate 

properties will exhibit low and more uniform permeability compared to CC. Assie et al. 

(2005) concluded that SCC mixtures containing limestone powder exhibited lower 

permeability compared to other SCC mixtures and CC mixtures of similar strength. Other 

fillers studied included fly ash and silica fume, which has shown to greatly enhance 

permeability at age of 56 and 91 days (Suksawang et al. 2006).  
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4.2.4. Shrinkage  

Shrinkage is a phenomenon that is the result of moisture loss in concrete (Zhang et al. 

2011). Volume change occurs as concrete loses water. Concrete can lose water on its 

surroundings through evaporation instead of being consumed in the hydration process. 

When the internal water evaporates, negative capillary pressures are formed that cause 

the paste to contract (Wehbe et al.  

2009). Shrinkage can be experimentally measured according to the ASTM C157 (ASTM 

2011c). The ASTM testing procedure is able to determine the changes in length that are 

produced by causes other than externally applied forces and temperature changes in 

hardened concrete specimens. These specimens are exposed to controlled conditions of 

temperature (22.7 ± 1 ̊C)   and relative humidity (50%±4%) recommended by ASTM 

C157. Fig. 5 shows a length comparator to record volume reduction in the concrete 

prisms.  

       
Fig. 5. Length comparator for SCC shrinkage test (image by Eduardo Torres) 
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A Volume-to-Surface area (V/S) ratio is used in shrinkage prediction equations. Higher 

V/S ratios typically lead to less shrinkage. For a SCC mixture, there are three cases of 

shrinkage that need special consideration as follows (Kosmatka 2002): 1) plastic 

shrinkage occurs as the surface of fresh concrete rapidly loses moisture; 2) autogeneous 

shrinkage occurs when concrete begins to dry internally, and a volume reduction of paste 

occurs due to the hydration process; 3) drying shrinkage is the strain that is caused by 

water loss from hardened concrete when it is exposed to the environment. Lower 

autogeneous and higher drying shrinkage have been reported to have the higher effects on 

SCC structural performance (ACI 2007). The aggregate content is one of the main factors 

affecting drying and autogeneous shrinkage strains of SCC. The main function of the 

aggregate is to restrain the shrinkage deformations. The SCC mixture with a low 

aggregate content is associated with a higher shrinkage strain (Gomez et al. 2007). The 

SCC mixture made with higher binder content can exhibit greater drying shrinkage 

varying between 500 and 1000 micro strains after 300 days; however, substituting 

Portland cement by fillers substantially decreases drying shrinkage (Khayat et al. 2010).  

Many studies (Mata 2004, Wehbe et al. 2009, Khayat et al. 2010) have focused on the 

effect of the shrinkage on the prestressed SCC bridge girder performance. For example, 

Wehbe et al. (2009) and Khayat et al. (2010) compared the experimental shrinkage values 

of SCC samples to those estimated from the American Association of Highway and 

Transportation Officials (AASHTO) 2007, American Concrete Institute (ACI) 209R and 

other shrinkage prediction models. Wehbe et al. (2009) concluded that the ACI model 

underestimated the shrinkage values of SCC specimens with w/c ratio higher than 0.35 
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for the first 24 hours, but prediction results were in agreement with readings at later days 

up to 115 days. Khayat et al (2010) found that the prediction models underestimated the 

shrinkage values of SCC specimens with more than 600 micro strains. On the other hand, 

Mata (2004) demonstrated that the experimental shrinkage values for SCC samples had 

higher volume reduction than samples made with the normal concrete mixture.     

4.2.5. Creep  

Creep is a volumetric change due to external loads. A test method used to determine 

creep is the ASTM C512 (ASTM 2011b). This method measures the load-induced time-

dependent compressive strain at selected ages for concrete under an arbitrary set of 

controlled environmental conditions. According to the ASTM C512, the load applied to 

the specimens must be less than 40% of the compressive strength. Fig. 6 shows a 

representative creep testing setup for several SCC specimens on the creep frames.  

 
Fig. 6. Creep testing setup 

 



24 

 

 

 

Concrete experiences long term creep deformation due to an applied load. The creep 

shortening of concrete under consistent loading conditions is ranged from 0.5 to 4 times 

the initial elastic shortening according to the findings found by Trejo et al., (2008). The 

magnitude relies on the extent of concrete maturity at the time of loading (AASHTO 

2006). Previous research on creep comparing High Performance Concrete (HPC) to SCC 

mixtures shows that SCC mixture may experience 10-20% more strain than HPC (Khayat 

and Mitchell 2009). Several mixture factors influence creep performance on SCC. For 

instance, SCC mixtures with high paste volumes may result in increased creep and 

prestress losses and deflections along with reduced capacities of prestressed concrete 

components (Kim et al. 2011). Also, aggregates used in a SCC mixture have a significant 

influence on the creep as well. For example, river gravel exhibits lower creep when 

compared to limestone due to its higher stiffness (Kim et al, 2011). Khayat and Long 

(2010) also found that w/c ratio had a slight effect on creep, while other parameters such 

as binder content, binder type, and S/Agg had a significant influence on it.  

 

5. DOTs Survey Outcomes 

A brief survey to get a better understanding of state-level SCC specifications and 

establishment of a testing protocol to determine desired performance of SCC prestressed 

bridge girders was conducted in each DOT. Note that the online-based survey for 

determining practical limits for fresh properties of SCC, and the survey form and relevant 

results are available from the authors. The survey form was distributed to each DOT, 

requesting information about individual current practices with the use of SCC. It is 

worthwhile to note that responses to the survey were not obtained by every DOT, and in 
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some cases they solely provided their state specifications, instead of answering the 

particular questions. Table 3 shows the DOTs who responded and how they provided 

information to the project.  

Table 3. Information Provided by State DOTs  

State 

DOTs 

Survey 

Form  

SCC 

Specifications 

Research 

Report 

Alabama O O 
 

Florida 
 

O O 

Georgia 
 

O O 

Illinois 
 

O O 

Iowa O 
  

Kentucky 
 

O 
 

Louisiana 
 

O 
 

Michigan 
 

O O 

Minnesota O O O 

Nebraska O O O 

New York 
 

O 
 

North Carolina O O O 

Ohio O 
  

Pennsylvania O O 
 

Rhode Island O O 
 

South Carolina O O O 

South Dakota O O O 

Texas O O O 

Utah O O 
 

Washington O O 
 

Note: the presence of “o” indicates that the DOT officials have provided the information such as 
the survey form that they filled out, SCC specifications or relevant research reports.  

 

The survey was designed to cover three aspects of SCC. The first aspect was addressed to 

the practices and future planning for the use of SCC. The second aspect was to 

investigate the materials used in a state as well as specific parameters for its mixture. This 

aspect was of high importance because of the lack of specific guidelines for SCC in 

prestressed bridge girders. The third aspect was to gather data on each of the state-level 

requirements and test methods to approve a SCC mixture. The first two aspects related to 
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the acceptance and applications of SCC to prestressed bridge girders in use in individual 

DOTs were covered by performing the survey. 

 

5.1 Mixture Parameters 

Several parameters in the survey form were considered to be of high important for the 

SCC mixture design for prestressed bridge girders. The most primary parameter that 

should be considered for the SCC mixture design is the cement content. The minimum 

amount of total cement content required is the initial step to determine the appropriate 

proportions of the SCC mixture. To obtain minimum compressive strengths for a specific 

DOT, each DOT has established a minimum amount of cement content. For example, 

some DOTs (i.e., Utah, South Dakota, Nebraska and Alabama) require the minimum 

cement content to be over 355 kg/m
3
. Some other states may require higher cement 

content; this is the case of Florida DOT who requires a minimum of 446 kg/m
3
. On the 

other hand, a few DOTs, such as Illinois DOT, have established an upper limit of 418 

kg/m
3
.  Once the cement content is determined, w/c ratio has to be determined. Fig. 7 

shows a range of maximum w/c ratios used by DOTs. It appears that the most common 

range of maximum w/c ratios is within 0.41 to 0.45. 



27 

 

 

 

 
Fig. 7. Percent of DOTs who approve the range of maximum w/c ratio 

 

Another important parameter to be considered for designing a SCC mixture is the 

replacement of cement by fillers. Fig. 8 illustrates the percent of DOTs who approve the 

use of fillers to be replaced with cement. It appears that around 30% of the DOTs 

approve the use of fillers. As described before, the most common fillers that have been 

widely in use across the DOTs are fly ash, ground granulated blast furnace, silica fume, 

limestone, metakaolin, and microsilica. For example, Florida DOT has used fly ash and 

ground granulated blast furnace slag (GGBFS), especially for the use of GGBFS that has 

been allowed to be replaceable up to 70% of the total cement content. Other DOTs, such 

as Georgia DOT, have used the same fillers as in the Florida DOT with the inclusion of 

metakaolin and microsilica. However, the Georgia DOT approves the combination of 

filler to replace up to 40% of the total cement content. Once total cementitious materials 

within the designated w/c ratio are determined, determining appropriate aggregate size is 

vital for properly designing SCC mixtures.  
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Fig. 8. Percent of DOTs who approve the use of fillers for a SCC mixture used in 

prestressed bridge girders 

 

The DOTs suggest either minimum amount of coarse or fine aggregates. This parameter 

is denominated as S/Agg. Values specified by the majority of DOTs for S/Agg range 

between 0.4 and 0.5. Specifically, Illinois DOT stipulates that fine aggregates should not 

exceed 50% of total aggregates. Meanwhile, South Dakota DOT specifies a minimum of 

40% coarse aggregate.  

MSA is another important parameter often specified by the DOTs. Most DOTs state that 

12.7mm and 19.0mm should be used as MSA. However, some DOTs such as North 

Carolina and Florida DOTs provide a wide range of MSA of 25.4mm, 19mm, 12.7mm 

and 9.52 mm corresponding to stone #57, #67, #78 and #89, respectively. Virginia DOT 

was the only state DOT to specify the minimum MSA which should not be less than 1/5 

of the narrowest dimension between the sides of the forms, and not less than 19mm of 

minimum clear spacing between bars and tendons. 
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5.2 Fresh Properties Requirements 

The survey collected information on all the test methods required to determine the fresh 

and hardened properties of SCC mixtures used and what each of the DOTs consider a 

requirement for SCC fresh performance. Table 4 summarizes the requirements of each 

DOT for all the test methods. For instance, Illinois DOT has parameters for all fresh 

properties methods explained in this paper. For the slump flow, Illinois DOT has a lower 

and upper limit of 508.0mm and 711.2mm, respectively. However, the slump flow value 

should be within ± 50.8mm from the contractor target. VSI shall be a maximum of 1. The 

J-Ring value should be a maximum of 102.6mm, meaning that the value is the height of 

the concrete in the inner diameter of the ring. L-Box must be a minimum of 60%. 

Column segregation index shall be a maximum of 15%. Additionally, Illinois DOT 

allows contractors to stablish more strict guidelines based on their own SCC mixture 

design. 
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Table 4. SCC Fresh Property Requirements for Surveyed State DOTs 

State 
Slump Flow 

(mm) 

J-Ring 

(mm) 
VSI L-Box 

Column 

Segregation 

Alabama 635 - 736.6 ±76.2 0-1 N/A N/A 

Florida 685.8 ± 63.5 ±50.8 0-1 N/A Max 15% 

Georgia* Min 508 N/A N/A Min 0.8 N/A 

Illinois* 508-711.2 Max 101.6 0-1 Min 0.6 Max 15% 

Iowa Max 685.8 N/A N/A N/A N/A 

Kentucky* Provide Spread Limits, Production Records and Quality Control Procedures. 

Louisiana 508 -711.2 Provide Aggregate Gradations 

Michigan 685.8 ± 25.4 ±15.24 0-1 Min 0.8 N/A 

Minnesota Max 711.2 ±50.8 0-1 N/A N/A 

Nebraska ASTM C1611 N/A 
ASTM 
C1611 

N/A N/A 

Nevada* No specific guidelines. 

New York* ±50.8 Target ±50.8 0-1 N/A Max 15% 

North Carolina 609.6 - 762 ±50.8 N/A Min 0.8 N/A 

Ohio 685.8 ± 50.8 N/A N/A N/A N/A 

Pennsylvania* 508 - 762 ±50.8 0-1 N/A N/A 

Rhode Island 508 -660.4 ±50.8 N/A N/ N/A 

South Carolina Precasters in the state are hesitant in using SCC. 

South Dakota 508 – 711.2 ±50.8 0-1 N/A N/A 

Texas* 558.8 – 685.8 ±50.8 0-1 N/A Max 10% 

Utah 457.2 – 812.8 ±25.4 0-1 N/A Max 10% 

Virginia 660.4 ± 76.2 ±50.8 0-1 N/A Max 15% 

Washington ± 50.8 Target ±38.1 0-1 N/A Max 10% 

Note: the existence of * indicates that required values were obtained from each of the following state-DOT 

specifications: 1) Georgia: Special Provisions Section 500 Concrete Structures (Georgia DOT 2006); 2) 

Illinois: Specifications for Precast Products Section II.3.1 SCC (Illinois DOT 2012); 3) Kentucky:  II.4.1 

Method for Approval of Using SCC (Kentucky TC 2006); 4) Nevada: Section 501 Portland Cement 
Concrete (RTCSNV 2014); 5) Nebraska: Section 1002 in the Standard Specification (Nebraska DOR 

2008); 6) New York: Self Consolidating Concrete Mix Design Qualification Procedure For Precast Work 

Performed Under the QC/QA Program (New York DOT 2014); 7) Pennsylvania: Section 714—precast 

concrete products (Pennsylvania DOT 2014); and 8) Texas: Standard Specifications for Construction and 

Maintenance of Highways, Streets, and Bridges Section 4.2.8.(Texas DOT 2015). 

 

5.3 Testing Protocol for Desired SCC Mixture Performance 

The design of an appropriate SCC mixture that will be used for prestressed bridge girders 

is challenging to achieve fully desired structural performance of them without a 

systematic protocol for testing SCC property under ambiguous, non-uniform guidelines. 



31 

 

 

 

Based upon the literature review and survey input, laboratory-based data that can be 

obtained from a series of the fresh and hardened property tests under a suite of technical 

documentation are required to successfully and reasonably establish the SCC mixture. 

Therefore, a recommended protocol for designing the SCC mixture that meets all the 

criteria of implementing prestressed bridge girders is constructed herein. The protocol 

consisting of three steps from mixture proportioning to required testing is illustrated in 

Fig. 9.  

 
Fig. 9. Testing protocol for establishing an appropriate SCC mixture that can be used for 

prestressed bridge girders  

 

Step 1 starts with developing a test SCC matrix. The matrix can be designed to properly 

evaluate the desired performance of SCC mixtures. Common variables for the matrix are 

type of fillers, type of aggregate, w/c ratio, S/Agg ratio and MSA. Intervals of each 

variable can be established according to relevant literature on SCC material testing setup. 

Table 5 shows an example of variables with intervals and limits. Once the matrix is 

determined, SCC mixtures can be designed based upon its matrix. 
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Table 5. Proposed Test Matrix for Desired SCC performance 

Variables Limits Intervals Property 

w/c ratio ± 0.01 0.34 0.35 0.36 0.37 0.38 0.39 0.40 Workability 

S/Agg ratio ±0.05 
 

0.40 0.45 0.50 0.55 0.60 
 

Segregation 

Note: values shown are applicable for a specific mix design; thus, these values should be adjusted 

depending on an individual mix design. 

 

Step 2 is to select appropriate testing methods to determine fresh properties of SCC 

mixtures in Step 1. The testing methods include slump flow, VSI, J-Ring, L-Box, and 

Column Segregation tests in accordance with the ASTM C512 and PCI manual (PCI 

2003). Target values for each test method aimed to match desired fresh properties 

specific to the SCC mixture should be established. Table 6 shows an example of accepted 

ranges that can be found in the ASTM and several DOTs specification requirements and 

target values that can be determined and varied by a researcher or contractor for specific 

performance of prestressed SCC bridge girders.  

 

Table 6. Acceptable Range and Target Values for Specific Test Methods 

Fresh Properties Tests 
Acceptable  

Range  

Target 

Value 

Slump Flow (ASTM C1611): 508mm – 711.2mm 635 mm 

J-Ring (ASTM C1621): max 25.4 mm max 25.4 mm 

VSI (ASTM C1611): ≤ 1 ≤ 1 

L-Box (PCI 2003): Min of 60% Close to 80% 

Column Segregation (ASTM 

C1610): 
≤ 15 % Close to 10 % 
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To achieve optimum workability, constituents are modified as shown in Tables 7 to 9. In 

detail, Table 7 shows suggestions to achieve desired slump flow results. Table 8 lists 

modifications to achieve optimal passing ability. Table 9 includes what factors have an 

influence on segregation.  

Step 3 is to evaluate the SCC mixture so as to meet the requirements for prestressed SCC 

girders. Evaluating hardened properties are of importance to predict the long-term 

structural performance of prestressed SCC girders. Prestressed bridge girders typically 

require developing early high compressive strength specific to an individual DOT; thus, 

high strength of the mixture can be obtained by adjusting w/c ratio, determining 

appropriate minimum cement/cementitious material content, and identify what 

admixtures are needed. Further, creep and shrinkage must be monitored for a period of at 

least 90 days. Prediction models have shown to underestimate creep and shrinkage 

values. Therefore, it is necessary to obtain experimental data on the strain changes due to 

volume reduction caused by creep and shrinkage. Readings should be collected for a long 

period of time which is recommended to be approximately a year. 

Table 7. Suggested Variables to Modify Flowability 

Variables Slump Mix Effects  

Add HRWR Increase Increase fluidity 

Low fine aggregates Increase Decrease viscosity 

Modify w/c ratio Increase/Decrease Cause bleeding/low cohesion 

Add VMA Decreases Increases viscosity 

Increase fine aggregates Decreases Affect drying shrinkage 
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Table 8. Suggested Variables to Modify Passing Ability 

Variables Passing Ability Mix Effects  

Add HRWR Increase Increase flowability 

Decrease coarse aggregate size Increase Decrease cracking strength 

Add VMA Decrease Increases viscosity 

 

Table 9. Suggested Variables to Modify Segregation 

Variables Segregation /Stability Effects on Mix  

Add HRWR or VMA Increases Increases viscosity 

Decrease aggregate Size Increases Decreases aggregate settling 

Increase fines Increases Decreases sedimentation 

 

6. Summary and Conclusions 

1) There have been numerous studies and state-level specifications on fresh and 

hardened properties for Self-Consolidating Concrete (SCC) to date in various 

concrete structures. These studies and specifications that have been summarized 

in this paper have demonstrated that the SCC has several benefits for the 

production of prestressed bridge girders. However, developing a SCC mixture to 

be uniformly used for prestressed bridge girders across a region in the United 

States requires a high level of understanding its constituent parameters affecting 

both fresh and hardened properties to maintain the quality of SCC. Hence, a 

protocol to design a mixture for SCC prestressed girders was developed based on 

the literature review and survey results. The key conclusions from this study can 

be drawn as follows:  

2) The literature review showed that SCC has higher or similar compressive 

strengths compared to normal concrete with similar characteristics; cement in a 
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SCC mixture can be replaced by fillers to obtain certain properties; lower w/c 

ratio can be used to attain higher strengths; a replacement of cement with fillers 

can result in reduction of concrete strengths; SCC is more sensitive to segregation 

and shrinkage in comparison to normal concrete; and prestress losses of SCC can 

be higher than normal concrete.  

3) The survey indicated that SCC mixtures can be created with materials available in 

each state with the desired performance of prestressed bridge girders; MSA 

cannot exceed 19.1mm to obtain reasonably good passing abilities and avoid 

settling; maximum w/c ratio of SCC mixtures can be 0.45; only cement is 

preferred to be used for enhancing performance of SCC mixtures instead of 

combining cement with a filler;   Maximum Size Aggregate (MSA) most used by 

state Departments of Transportation (DOTs) are 19.0mm or 12.7mm; and w/c 

ratio varies for each state according to strength needed, but the most frequent 

values were within the range of 0.41 to 0.45.  

4) Fresh and hardened properties of SCC with the adjustment of its constituent 

proportions must be precisely tested to achieve desired structural performance. 

The protocol that was established based upon the literature review and survey 

input is anticipated to provide future SCC users to improve the quality of SCC 

mixture that has potential to be used in prestressed bridge girders. When using the 

protocol, the following attentions are required that a test matrix be designed 

reflecting the influence of each constituent on the SCC fresh and hardened 

properties and that creep and shrinkage that serve as the basis to obtain an 

adequate long-term structural performance be monitored for approximately a year. 
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To qualify SCC for the use of prestressed concrete bridge girders, further work 

regarding reinforcement details and casting techniques in SCC should be 

conducted. 
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Abstract 

Self-Consolidating Concrete (SCC) exhibits superior workability compared to 

conventional concrete (CC) having potential to increase precast production and growth, 

especially for production of prestressed concrete bridge (PSC) girders. To obtain desired 

fresh and hardened properties for the production of SCC PSC girders, considering many 

factors related to material characteristics and mixture proportioning is vital. An 

experimental comparison of fresh and hardened properties among SCC mixtures made 

with different material constituents is conducted in this study. The ultimate objective of 

this paper is not only to provide an experimental program enabling the investigation of 

the effect of material constituents on performance of SCC mixtures, but to gain more 

knowledge for better production of SCC PSC girders. The experimental program is 

established based upon technical findings from the literature review and additional input 

from survey to several State Departments of Transportation (DOTs). The mixture 

constituents consisting of type of cement, i.e., Type III and Type I/II, and size and type of 

coarse aggregate, i.e., limestone and river gravel are used for the SCC performance 

investigation. Testing methods include slump flow, Visual Stability Index (VSI), J-ring, 

column segregation and compressive strength.  The testing results showed that the type, 

shape and size of coarse aggregate have a dominant effect in terms of fresh properties and 

compressive strength; specifically, mixtures having river gravel showed larger spreads 

that mixtures with crushed limestone; and mixtures using cement Type III developed 

higher early strength as expected in comparison to cement Type I/II. 
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1. Introduction 

Self-Consolidating Concrete (SCC) has been called a “smart concrete” (Shamsad et al. 

2014) because it can effortlessly flow through congested reinforcing bars with no 

vibration mechanism. SCC has expanded through Europe and the United States where it 

has been used in several cast in-place and precast applications. Several State Departments 

of Transportation (DOTs) have developed guidelines for the use of SCC through 

extensive research vis-à-vis materials, mixture design and fresh and hardened properties. 

SCC has been also utilized for PSC girders because of its unique benefits, such as 

reduction of labor and construction time, elimination of vibration mechanisms and noise 

hazards, and simplification of the placing process (Skarendahl 2003, Naik et al. 2012, 

Hemalatha et al. 2015, and Royce et al. 2015). SCC mixture consists of higher paste and 

lower coarse aggregate volumes compared to conventional concrete (CC) (Ghezal and 

Khayat 2002). Differences in the mixture proportions between SCC and CC can result in 

different fresh and hardened properties and associated structural performance of PSC 

bridge girders. 

To develop guidelines for the use of SCC through extensive research vis-à-vis materials, 

mixture design and fresh and hardened properties and the application of SCC on PSC 

bridge girders, research has been conducted by the following agencies: the National 

Cooperative Highway Research Program (NCHRP), Precast/Prestressed Concrete 

Institute (PCI), and State Departments of Transportation (DOTs). The NCHRP presented 
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findings regarding SCC mixture parameters, fresh and hardened properties for the use of 

SCC in prestressed structural components (Khayat and Mitchell 2009). The PCI also 

reported recommendations on SCC mixture constituents and guidelines for production, 

quality control, placing and finishing of SCC PSC girders (PCI 2003). Several DOTs 

have performed state-level research projects on SCC to establish their own state 

guidelines for the implementation of SCC using local aggregates available in their region. 

For example, Texas DOT reported that SCC has more adequate workability, excellent 

stability, higher compressive strength, and similar creep values relative to CC (Trejo et al. 

2004). Besides, Florida DOT provided valuable findings regarding the structural 

performance of SCC PSC bridge girders (Labonte and Hamilton 2005). It was found that 

there were no notable differences between SCC and CC prestressed bridge girders in 

terms of prestress transfer length, mean camber growth, flexural capacity, shear capacity, 

and web cracking.  

In addition to the aforementioned SCC-related research activities nationwide, some 

relevant studies by European countries have been performed (EFNARC 2006). The 

European Federation of National Associations Representing Producers and Applicators of 

Specialist Building Products for Concrete (EFNARC) provides specifications of the 

constituent materials, mixture design, test methods, and placing of SCC for precasters 

and bridge engineers in Europe. It was reported from the EFNARC that SCC has better 

durability, bond strength, lower modulus of elasticity and slightly higher compressive 

strength than CC.   

Although many national transportation agencies have developed guidelines related to 

SCC mixture development for PSC bridge girders, SCC producers still struggle at 
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maintaining uniformity in terms of fresh and hardened properties with minimal 

segregation in the SCC mixture when transporting and placing of SCC. In detail, SCC 

with lack of segregation resistance can result in poor workability and performance of 

SCC by internal and external bleeding of water, differential accumulation of light 

ingredients, and settling of aggregate at the bottom (Bonen and Shah 2004). To that end, 

this study is intended to experimentally and statistically evaluate fresh and hardened 

properties of 28 different SCC mixtures within an appropriate mixture design setting for 

different precast Plants. This paper is divided into four sections: the next section deals 

with the background for SCC characteristics. The subsequent section provides an 

overview of the proposed experimental program to evaluate fresh and hardened 

properties for the SCC mixtures. Then, experimental and statistical results along with 

related discussion are presented. The final section gives a summary and conclusions 

along with highlights for future work. 

2. Background 

SCC typically consists of cement, water, aggregates, and chemical admixtures. SCC has 

higher amount of cement and less aggregate volume compared to CC. Due to the higher 

amount of cement, SCC tends to be more expensive than CC; thus, many precasters often 

replace cement content with mineral admixtures to reduce costs and maintain satisfactory 

workability and strength. Information on effects of individual constituents on SCC 

workability and strength that were found from the literature review is included in the 

following subsections. 
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2.1 Cement 

Cement type is a key part of the SCC mixture constituents to achieve desired workability 

and strength for PSC bridge girder fabrication. Cement Type III and a combination of 

cement Type I/II have been commonly used for SCC bridge applications (Khayat and 

Mitchell 2009). Cement Type III is used when higher early strength is needed, although 

cement Type III tends to have higher water and High Range Water Reducer (HRWR) 

demands. On the other hand, cement Type I/II has shown to have longer durability and 

more consistency (Khayat and Mitchell 2009). Several studies (Burgueno et al. 2007, 

Trejo et al. 2008, Khayat and Mitchell 2009) have been performed to investigate SCC 

compressive strength and compare its strength against that of CC. For example, Burgueno 

et al. (2007) found that the compressive strength of SCC made with cement Type III 

showed higher strength than that made with CC, indicating cement content, w/c and 

coarse aggregate have the higher influence on the compressive strength. 

2.2 Aggregates 

Coarse aggregate has a significant influence on the workability and strength of SCC. The 

maximum size of the aggregate (MSA) should be selected depending on the minimum 

space between reinforcing bars (Sonebi et al. 2007). For example, SCC Specifications 

provided by the Virginia DOT state that the coarse aggregate size should not exceed 

19mm, not be less than 1/5 of the narrowest dimension between the sides of the forms, 

and not less than 19mm of minimum clear spacing between bars (Torres and Seo, 2016). 

Long et al. (2014) in the research project performed by the NCHRP suggests that the 

coarse aggregate should be between 19mm and 9.5mm, while the EFNARC suggests that 

the MSA should be between 12mm and 20mm. Meanwhile, the type and size of 
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aggregate have an impact on the strength of SCC. Trejo et al. (2008) and Khaleel et al. 

(2011) found that mixtures using crushed limestone developed higher strength than those 

containing crushed or uncrushed gravel and that the mixtures with coarse aggregate with 

a MSA of 10mm had higher compressive strength compared to those with a MSA of 

larger than 10mm. 

2.3 Chemical Admixtures 

Admixtures are used to obtain acceptable SCC performance based upon physical and 

chemical properties of the cement type (EFNARC 2005). Admixtures are able to reduce 

water content, improve deformability and stability, increase air content, accelerate 

strength development and retard setting time (Khayat and Mitchell 2009).  The most 

common admixtures used for SCC are High Range Water Reducer (HRWR) and 

viscosity modifying admixtures (VMA). The addition of these admixtures depends upon 

SCC mixture parameters, such as w/c and binder type. For example, HRWR can be added 

in small amounts to freshly mixed SCC to improve its workability for a short period of 

approximately 30min. HRWR can be also added to mixtures with low w/c to obtain 

higher fluidity and higher strength. VMA can be used to increase the viscosity of the 

mixture to control segregation (Turkel et al 2010). According to the NCHRP report 

(Khayat and Mitchell 2009), VMA should be used for mixtures with less than 425kg/m3, 

or mixtures with w/c values greater than 0.40. 
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2.4 Fillers 

Fillers also known as mineral admixtures can be added to improve workability, while 

reducing the amount of cementitious materials required for the mixture design. Benefits 

from the use of fillers in SCC applications include the following: 1) increase in early 

compressive strength, bleeding control, and viscosity 2) improve workability; and 3) 

reduce porosity (Shamsad et al. 2014). Fillers commonly used for SCC production 

include fly ash, ground granulated blast-furnace slag, silica fume, and limestone powder 

(Torres and Seo 2016). Suggested percentages of replacement of cement are listed in 

Table 1. 

Table 1. Suggested Cement Replacement Values (Khayat and Mitchell 2009). 

Filler % Replacement 

Fly Ash* 20-40% 

Limestone 20-30% 

Blast-Furnace Slag 30-60% 

Fly Ash/Blast-Furnace Slag Max 50% 

Note: the presence of * indicates classes of fly ashes, including C, D, and F. Replacement 

percentage ranges are identical for Fly Ash regardless of the class. 

 

3. Experimental Program 

Investigating how to obtain the desired workability and strength for implementing SCC in 

PSC girders is critical, and there is limited information (Mata et al. 2004 and Wehbe et al. 

2009) on the impact of aggregate and binder types on them; thus, an experimental 

program accounting for various SCC mixture parameters is established herein. The 

following subsections describe material testing methods, testing matrix, fresh property 

criteria, and mixing and curing procedures in part of the experimental program. 
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3.1 Material Testing Methods 

Material testing methods that have been commonly used for the evaluation of fresh and 

hardened properties of SCC are used for this study. The American Society of the 

International Association for Testing and Materials (ASTM) has developed guidelines to 

evaluate workability and performance of SCC mixtures. As mentioned earlier, the 

NCHRP, EFNARC and PCI provide technical descriptions for material testing methods. 

Table 2 summarizes such testing methods and corresponding guidelines. Note that the 

workability of SCC is evaluated in terms of flowing ability, passing ability, and 

segregation, while the performance of SCC is evaluated through compressive strength.  

Table 2. SCC test methods with corresponding guidelines 

Test Methods  Properties Guidelines 

Slump Flow Filling Ability ASTM C 1611/PCI/EFNARC 

J-Ring Passing Ability ASTM C 1621/ PCI/EFNARC 

Column Segregation Segregation Resistance ASTM C 1610/ PCI/EFNARC 

Compressive Strength  ASTM C39 

 

The slump flow test is one of the most well-known methods for determining the free flow 

ability of SCC mixtures. This test is frequently used in field work for the evaluation of 

the consistency of flow ability for target mixtures. The ASTM C1611 provides step-by-

step guidance to perform the test. Fig. 1 (a) and (b) show photographs for slump flow 

setup and testing that were done for this study. A regular cone is placed in an upright 

position on a plate in the center of the board. The cone is filled with the SCC mixture, 

and then it is pulled up in approximately 3 seconds in Fig. 1(a) allowing the mixture to 

flow. Once the concrete stops flowing, the diameter is measured at two different 

orthogonal directions Fig. 1(b). The ASTM C1611 documentation recommends the SCC 
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diameter to range between 533 mm and 737 mm. Meanwhile, Khayat et al. (2009) 

suggests that the slump spread diameter of SCC for prestressed elements be ranged from 

597mm to 737 mm. The spread diameter is not only the parameter to be measured, but 

also the T50 and visual stability index (VSI) can be obtained from the slump test. T50 is 

defined as the time it takes the concrete to flow and reach the 508 mm mark. T50 values 

provide information on the flow properties where longer values correspond to high 

viscosity. VSI is a visual inspection of the concrete to qualitatively assess the stability of 

the concrete. VSI is ranked from 0-3 according to the presence of bleeding or segregation 

(ASTM 2011a).  

The passing ability of freshly mixed SCC can be evaluated using J-Ring test. Passing 

ability is most influenced by the MSA as it can cause blockage between the reinforcing 

bars of the ring. The J-Ring test procedure is similar to that of the slump flow explained 

previously. The J-Ring is placed around the cone, and the SCC passes through the legs of 

the open circular steel ring as seen in Fig. 1(c) and (d). The average of two orthogonal 

diameters is recorded and compared to those from the slump flow testing. If the 

difference is less than 25.4 mm according to the ASTM C 1621, it means a good passing 

ability. If the difference is above 50.8 mm, it indicates poor passing ability. The height 

difference between the concrete inside the ring and concrete outside the ring can also be 

used to evaluate the passing ability, but it is not specified by the ASTM C 1621 (ASTM 

2011b). 

Column segregation test is used to determine the segregation of SCC mixtures. 

According to the ASTM C 1610, the SCC mixture is poured into the cylinder within 2 

minutes Fig. 1(e). The SCC mixture was let to rest for 15 minutes without any 
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disturbance. Then, the SCC at the top and bottom segments of the cylinder were collected 

and placed in different containers as shown in Fig. 1(f). The SCC mixtures from the top 

and bottom segments were washed to discard any particles passing the No. 4 sieve. The 

weight of the aggregate retained on the No. 4 sieve was recorded for both top and bottom 

segment, respectively.  The column segregation is expressed as the percentage ratio 

difference of aggregate mass between the bottom and top segments to the total aggregate 

mass in the two segments (ASTM 2011c). 

 
(a) 

 
(b) 

 
(c) 

  
(d)  

  
(e) 

 
(f) 

Fig. 1. Workability test methods: (a) Slump flow setup, (b) Slump spread diameter 

measurement, (c) J-Ring setup, (d) J-Ring spread diameter measurement, (e) Column 

segregation set up, (f) Collecting top section of cylinder 

 

3.2 Strength Testing 

Compressive strength of SCC mixtures was tested according to the ASTM C39 using 

SCC cylinders of 304.8 mm x 152.5 mm as shown in Fig. 2. Fig. 2(a) shows a picture 

where a cylinder of the SCC mixtures is caped with a sulfur cap to ensure that 

compressive loads are uniformly distributed on the surface. Fig. 2(b) displays a cylinder 
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that was fractured after 14 hours of curing necessary for PSC application. It is worthwhile 

to note that the compressive load rate was 0.23 MPa/sec following the ASTM C39 

(ASTM 2011d) until the cylinder failure occurred. 

 

  
a) Sulfur cap top/bottom of cylinder  b) Diagonal crack of cylinder 

Fig. 2. Compressive strength test 

 

 

3.3 Fresh and Hardened Property Requirements 

The survey collected the requirements for SCC workability and strength per the test 

method from contacted state DOTs, e.g., Alabama DOT, Florida DOT, etc. The values 

required by the contacted DOTs for slump flow have a minimum of 457.2 mm and a 

maximum of 762mm. Note that for J-ring test the most common value within the DOTs is 

no greater than 50.8mm difference between the spread diameter of the J-Ring test and 

slump flow test. For the VSI test, the requirements from the DOTs are consistent 

throughout the states with a maximum index of 1. For the column segregation test, the 

maximum percent of segregation allowed is 15%. A summary of the requirements of each 

DOT for each test method can be seen in Table 3. More details regarding the survey can 

be found in Torres and Seo (2016). 
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Table 3. DOT requirements for fresh properties test methods (Torres and Seo 2016) 

State 
Slump Flow 

(mm) 

J-Ring 

(mm) 
VSI 

Column Segregation 

(%) 

Alabama 635 - 736.6 ±76.2 0-1 N/A 

Florida 685.8 ± 63.5 ±50.8 0-1 Max 15% 

Georgia* Min 508 N/A N/A N/A 

Illinois* 508-711.2 Max 101.6 0-1 Max 15% 

Iowa Max 685.8 N/A N/A N/A 

Kentucky* 
Provide Spread Limits, Production Records and Quality Control 

Procedures. 

Louisiana 508 -711.2 Provide Aggregate Gradations 

Michigan 685.8 ± 25.4 ±15.24 0-1 N/A 

Minnesota Max 711.2 ±50.8 0-1 N/A 

Nebraska ASTM C1611 N/A 
ASTM 

C1611 
N/A 

Nevada* No specific guidelines. 

New York* ±50.8 Target ±50.8 
0-1 

 
Max 15% 

North Carolina 609.6 - 762 ±50.8 
N/A 

 
N/A 

Ohio 685.8 ± 50.8 N/A 
N/A 

 
N/A 

Pennsylvania* 508 - 762 ±50.8 
0-1 

 
N/A 

Rhode Island 508 -660.4 ±50.8 
N/A 

 
N/A 

South Carolina Precasters in the state are hesitant in using SCC. 

South Dakota 508 – 711.2 ±50.8 0-1 N/A 

Texas* 558.8 – 685.8 ±50.8 0-1 Max 10% 

Utah 457.2 – 812.8 ±25.4 0-1 Max 10% 

Virginia 660.4 ± 76.2 ±50.8 0-1 Max 15% 

Washington ± 50.8 Target ±38.1 0-1 Max 10% 

The presence of * indicates that required values were obtained from state-DOT specification as detailed 
below: 1) Georgia: Special Provisions Section 500 Concrete Structures 2) Illinois: Specifications for 

Precast Products Section II.3.1 SCC; 3) Kentucky:  II.4.1 Method for Approval of Using SCC; 4) Nevada: 

Section 501 Portland Cement Concrete; 5) Nebraska: Section 1002 in the Standard Specification; 6) New 

York: Self Consolidating Concrete Mix Design Qualification Procedure For Precast Work Performed 

Under the QC/QA Program; 7) Pennsylvania: Section 714—precast concrete products; 8) Texas: Standard 

Specifications for Construction and Maintenance of Highways, Streets, and Bridges Section 4.2.8. 

 

 

 3.4 Target Values 

Workability of SCC mixtures can be evaluated through acceptable ranges obtained from 

the ASTM/PCI test method guidelines. The DOT survey results can be also used to 
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determine specific target values for each test method. If SCC mixtures do not meet the 

workability criteria shown in Table 4, it is necessary to adjust parameters of the SCC 

mixture design. For instance, by adjusting the dosage of admixtures, viscosity and flow 

ability of the mixture can be improved without modification of other mixture parameters. 

By decreasing the size of the coarse aggregate, the passing ability can be improved and 

segregation of the mixture will decrease. For compressive strength, the target values for 

14hr and 28 days are also shown in Table 4. The target compressive strength values are 

the highest used by the Wisconsin DOT PSC girders to avoid concrete crushing due to 

the prestress force induced to the girder.  

Table 4.  Target values for specific test methods 

Evaluation Table for Fresh Properties 

Fresh Properties Tests Acceptable Range Target Value 

Slump Flow 558.8 mm – 711.2 mm 635 mm 

J-Ring  max 50.8mm max 50.8mm 

Column Segregation ≤ 15 % Close to 10 % 

T50 3-10 sec <6 sec 

VSI ≤ 1 ≤ 1 

Compressive Tests Target strength 

Strength 
46.88 MPa (14 hours) 

55.15 Pa (28 days) 

 

3.5 Testing Matrix 

A testing matrix for SCC mixtures to be evaluated in terms of workability and strength 

according to the predetermined target values was created considering cement type, 

aggregate type and size, and blending configuration. Two types of cement, including 

cement Type III and a combination of cement Type I/II, were used. Two types of coarse 

aggregate were selected, including crushed limestone and rounded river gravel, as they 

are widely used in the Wisconsin precast concrete industry. Note that three different 
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providers of coarse aggregate were selected from different regions in Wisconsin.  The 

aggregate size used was 19mm and 9.5mm as recommended by the NCHRP report 

(Khayat et al. 2009). To improve workability of the mixtures, however, several blending 

configurations combining both the sizes were included in the test matrix to study their 

impact on the workability performance, while maintaining satisfactory strength. The 

blending configuration was established using intervals of 20% from 100% to 0% of 

19mm combined with 9.5mm. 

Table 5 presents 28 mixtures that can be divided into three groups in terms of precast 

Plants to systematically evaluate the influence of binder type, type and size of coarse 

aggregate, w/c and S/Agg. Each group of mixtures is named as Plant A, Plant B, and 

Plant C: Plant A having cement Type III with crushed limestone; Plant B having cement 

Type I/II with crushed limestone, and Plant C having cement Type III with river gravel. 

In detail, Plant A cement had a specific gravity of 3.15. The specific gravity of the coarse 

aggregate was 2.66 and a percent absorption of 1.52%. Fine aggregates had a specific 

gravity of 2.65 and percent absorption of 0.59%. Plant B cement type had a specific 

gravity of 3.14. Plant B used crushed limestone from a different pit than Plant A. The 

coarse aggregate had a specific gravity of 2.59 and percent absorption of 2.64. The fine 

aggregate had a specific gravity of 2.65 and percent absorption of 0.69%. Plant C cement 

had a specific gravity of 3.15. The coarse aggregates had a specific gravity of 2.77 and 

the fine aggregates had a specific gravity of 2.76. The cement content was fixed at 362 

kg/m3, to ensure a higher compressive strength needed for prestress bridge girders. It 

should be noted that the mixtures had only cement as cementitious materials as the use of 

filler was not part of the testing. Referring to Table 6, details for the mixture designs are 
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presented. To facilitate the interpretation of the data in both Tables 5 and 6, there is a 

letter next to the mixture number which is the letter A, B and C that was included to 

denote which Plant each mixture belongs.   

Table 5. Parametric testing matrix 

A
g
g
. 
T

y
p

e 

M
ix

tu
re

 N
o
 

Aggregate Size (9.5mm) 
Cement 

Type 
w/c S/Agg 

100% 80% 60% 40% 20% 0% 
Type 

III 

Type 

I/II 
0.35 0.33 0.50 0.45 

C
ru

sh
ed

 L
im

es
to

n
e 

1A X      X  X  X  

2A X      X  X   X 

3A  X     X  X  X  

4A   X    X  X  X  

5A   X    X  X   X 

6A    X   X  X  X  

7A    X   X  X   X 

8A     X  X  X  X  

9A     X  X  X   X 

10A      X X  X  X  

11A      X X  X   X 

12B X       X X  X  

13B  X      X X  X  

14B   X     X X  X  

15B    X    X X  X  

16B    X    X  X X  

17B    X    X  X  X 

18B     X   X X  X  

19B     X   X  X  X 

20B     X   X  X X  

21B      X  X X  X  

R
o
u
n
d
 G

ra
v
el

 22C    X   X  X  X  

23C    X   X  X   X 

24C    X   X  X   X 

25C     X  X  X  X  

26C      X X  X   X 

27C      X X  X   X 

28C      X X   X X  

Note: X indicates inclusion of the specific mixture parameter per a SCC mixture.  
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Table 6. Composition for selected SCC mixtures  

Mixture No 
Water 

Kg/m3 
Cement 

Kg/m3 

Coarse Aggregate 
Kg/m3 Fine 

Aggregate 

Kg/m3 

HRWR 

L/m3 
VMA 

L/m3 

9.5mm 19mm 

1A 127 474 839 0 832 1.18 0.24 

2A 127 474 992 0 807 1.18 0.47 

3A 127 474 671 168 832 1.42 0.47 

4A 127 474 503 335 832 1.18 0.00 

5A 127 474 607 397 807 1.18 0.24 

6A 127 474 335 503 832 1.30 0.71 

7A 119 474 397 612 826 1.42 0.54 

8A 127 474 168 671 832 1.42 0.24 

9A 127 474 198 793 807 1.66 0.35 
10A 127 474 0 839 832 1.42 0.24 

11A 127 474 0 992 807 1.18 0 

12B 127 474 861 0 832 1.18 0 

13B 127 474 689 172 832 1.42 0 

14B 127 474 516 343 832 1.18 0.24 

15B 127 474 343 516 832 1.18 0.24 

16B 127 474 343 516 832 1.42 0.35 

17B 127 474 343 516 807 1.18 0.35 

18B 127 474 172 689 832 1.18 0.24 

19B 127 474 172 689 807 1.42 0.47 

20B 127 474 172 689 832 1.18 0.35 

21B 127 474 0 861 832 1.18 0.47 
22C 127 474 374 562 935 1.42 0.47 

23C 127 474 412 523 841 0.95 0.47 

24C 119 444 421 532 861 1.42 0 

25C 127 474 187 749 935 1.42 0 

26C 119 444 0 1050 861 1.66 0.47 

27C 127 474 0 1032 841 1.66 0.47 

28C 127 474 0 936 935 2.13 0.24 

 

3.6 Mixing and Curing Procedures  

All the SCC mixtures were made in batches of five cubic feet using a drum mixer. 

Mixing procedure was consistent for every mixture according to the procedure provided 

by Portland Cement Association (PCA 2005). Sand, coarse aggregate and cement were 

placed in the drum and let to be mixed for 30 seconds, and then the water was slowly 

added to the mix ensuring equal distribution. After 1 minute of mixing the admixtures 

were added to the mix. It was specified by the admixture provider to not combine 

admixtures with the water. Once the admixtures were added, the concrete was remixed 
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for 8 minutes. Fresh properties were measured immediately after mixing was complete. 

Slump flow, J-Ring and column segregation tests were completed in the respective order 

in a lapse of 30 min at the complete stage of each mixing. A certain testing time window 

is required to ensure that the admixtures consistently affect each mixture. For each 

mixture, compressive strength was tested at 16 hours to simulate time of curing used at 

prestressed Plants before strands release. To simulate steam curing, a water bath was used 

as seen in Fig. 3. Cylinders were placed in the water bath for 16 hours at a temperature of 

43.3°C applicable to the curing regimen of the Plants. 

 

 
Fig. 3. Water bath to simulate steam curing. 

 

4. Results and Discussion 

4.1 Fresh Properties 

The overall fresh properties of the SCC mixtures were evaluated by comparing the test 

results against the target values that were determined based upon inputs from the survey 

and literature review. The resulting fresh properties for each mixture, including slump 

flow, J-Ring, passing ability, filling capacity, T50, column segregation, are summarized 

in Table 7. Note that the results of the compressive strength are also included in the table 
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and some tests such as column segregation were not performed for all the mixtures due to 

limited availability of materials. The current tabulated dataset was able to reasonably 

examine the effect of SCC mixture constituents on the fresh properties of SCC. 

Table 7. SCC fresh Property and compressive strength results 
Mixture 

No 

Slump 

Flow, 

mm 

J-

Ring,  

mm 

 

Passing 

Ability, 

mm 

Filling 

Capacity  

% 
VSI 

T50, 

s 

Column 

Segregation 

% 

Compressive 

Strength, MPa 

14 hr 28 

days 

1A 610 622 12 84,8 0 9.4 2.7 44.42 82.73 
2A 610 - - - 0 7.4 - 41.00 - 
3A 603 610 0 83,1 0 5.3 6.3 48.45 81.87 
4A 622 610 12 83,7 0.5 12.0 6.4 46.58 76.23 
5A 622 - - - 0.5 8.5 - 44.71 - 
6A 629 622 7 85,7 1 3.9 2.8 47.98 70.08 
7A 629 610 19 84,0 1 5.2 4.7 49.20 68.10 
8A 578 635 57 85,0 0 10.6 9.1 58.14 - 
9A 641 622 19 86,3 1 4.8 4.2 48.60 65.00 
10A 635 610 25 84,3 1 4.6 6.3 48.22 63.72 
11A 584 622 0 85,4 0 7.3 10.1 49.94 68.32 
12B 622 571 51 78,2 0 6.3 1.6 36.00 55.59 
13B 660 622 38 87,3 1 7.1 3.3 38.06 60.13 
14B 622 597 25 81,9 0 9.3 5.1 42.66 62.39 
15B 643 622 21 86,4 1 13.6 8.0 48.25 - 
16B 629 597 32 82,2 0.5 3.4 2.0 49.05 60.33 
17B 625 603 22 82,9 0 3.6 10.1 47.98 71.66 
18B 622 597 25 81,9 0 8.2 9.5 40.81 - 
19B 635 597 38 82,5 0.5 5.9 - 46.11 - 
20B 622 610 12 83,7 0 4.8 9.9 49.29 68.91 
21B 660 616 44 86,4 1 5.7 11.8 40.47 67.08 
22C 667 635 19 83,5 1 6.1 5.1 46.45 57.28 
23C 641 603 38 83,7 1 5.8 3.4 47.73 61.58 
24C 622 565 57 77,4 0 5.3 2.2 46.26 58.72 
25C 667 622 45 87,6 1 3.1 9.9 47.31 62.58 
26C 610 571 39 77,6 0 2.5 4.7 34.77 46.38 
27C 610 597 13 82,1 0 3.4 3.1 37.59 46.98 
28C 610 603 7 84,8 0 4.0 12.2 41.22 49.17 

Note: the presence of - in a field indicates that it is placed when the test method was not 

performed for the mixture.  

 

The slump flow spread diameter ranged from 578 to 635mm for Plant A, 622 to 660mm 

for Plant B, and 610 to 667mm for Plant C. Though the slump flow values are consistent 

for all the mixtures, it can be observed that the mixtures from Plant C (i.e., 22C to 28C) 
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using round gravels have higher spread diameter than those from Plants A and B. This 

behavior can be attributed to the smoother surface of the gravel aggregate facilitating 

movement. Minor difference was observed when comparing the effect of cement Type III 

(Plant A) with cement Type I/II (Plant B) in terms of slump flow values. Recall that the 

target value for slump flow was 635mm as stated on Table 4. To study the effect of 

blending configurations on slump flow, S/Agg was fixed at 0.5 and w/c at 0.35. The 

dosage of admixtures was slightly modified to have a stable mixture. Fig. 4 shows that 

the size of the coarse aggregate had an impact on the slump flow results. Mixtures 

containing 40% of 9.5mm (5A, 15B and 22C) showed consistently larger spread 

diameters than the target value of 635mm. This can be attributed to the fact that as the 

percentage of 9.5mm increased the mixture had higher viscosity, while as the percentage 

of 19mm increased less movement of particles was observed due to larger particle size. 

 
Fig. 4. Slump flow spread diameter results with w/c 0.35 
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J-Ring spread diameters with varying blending configuration are shown in Fig. 5. Similar 

to slump flow results, the values of S/Agg and w/c were fixed at 0.50 and 0.35, 

respectively. While the results for Plants A and B do not show the effects of change in 

blending, for Plant C the spread diameters increase as the blending percent of 9.5mm 

increases. The J-Ring values were used to determine the passing ability and filling 

capacity of the SCC mixtures. The ASTM C1621 describes (ASTM 2011b) the definition 

of passing ability as the difference between the spread diameter of J-Ring and slump 

flow. As stated before, the survey from the state DOTs that were contacted and the 

ASTM have established the target value of passing ability of ± 51mm. Mixtures 8A, 12B 

and 24C exceeded the target value as shown in Table 6. As shown in Fig. 6a for the 

passing ability trend of each plant against the respective blending configuration, it was 

observed that the mixtures representing Plant B made of cement Type I/II exhibited the 

best results compared to Plants A and C with cement Type III. This observation was 

expected as cement Type I/II tends to develop better workability than cement Type III 

due to lower water consumption. 
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Fig. 5. J-Ring spread diameters 

The filling capacity of all the mixtures was assessed using the value recommended in the 

previous publication (Long et al. 2014; Khayat and Mitchell 2009) for SCC mixtures, 

indicating that the filling capacity values are considered acceptable if they are equal to or 

larger than 80%. As seen on Fig. 6 (b) and Table 7, most mixtures meet the filling 

capacity requirements, with the exception of Mixtures 12B, 24C and 26C. Overall, higher 

values of filling capacity were observed by the mixtures in Plants A and B made of 

crushed limestone compared to the rounded gravel mixtures in Plant C. However, it 

should be noted that Mixtures 12B, 24C, and 26C had large difference in spread 

diameters between slump flow and J-Ring, causing their lower filling capacities. This is 

because these mixtures had higher percentage of 19mm coarse aggregate, resulting higher 

blockage. 
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(a) 

 
(b) 

 

 

Fig. 6. Workability assessment a) passing ability and b) filling capacity 

 

T50 values for all the mixtures (see Table 7), excluding Mixtures 4A, 8A, and 15B were 

within the acceptable ranges listed in Table 4. Generally, there were little noticeable 

Target 

Percent 

Value  

 

Value 
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trends in terms of T50 due to variation of certain mixture parameters studied. Meanwhile, 

segregation resistance was investigated using the column segregation test. The cement 

and aggregate type did not have a significant influence on the segregation resistance of 

the mixtures. However, it should be mentioned that from the perspective of the coarse 

aggregate size, it was clear that as the percent of 9.5mm decreases, segregation (%) 

increases, leading to lesser segregation resistance as shown in Fig. 7(a). This is attributed 

to the fact that the weight of the aggregate increases and a higher settlement rate occurs. 

All the mixtures (see Table 7) were less than the segregation limit of 15% pre-

established. A pair of specific mixtures per Plant was selected to study the effects of 

S/Agg in terms of percent segregation of the mixtures. Mixtures included are 6A, 7A, 

16B, 17B, 22C, 23C  having blending configuration fixed at 40% of 9.5mm aggregate 

and a w/c of 0.35 for Plant A and C and 0.33 for Plant B. As shown in Fig. 7(b), to 

compare the percent segregation as the S/Agg changes from 0.45 to 0.50. It was observed 

that the segregation increases as S/Agg reduces from 0.50 to 0.45. This behavior was 

expected as the higher amount of fine aggregates is directly related to the viscosity of the 

mixture. 
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(a) 

   
(b) 

 

Fig. 7. Percent segregation analysis: a) Column Segregation Results based on blending 

configurations, b) Representative Percent Segregation for S/Agg 0.45-0.50 of mixtures 

having 40% 9.5mm aggregate.  

 

4.2 Compressive Strength 

Compressive strength of all the mixtures at 16 hours for Plant A are higher than those 

from Plant B and C. Note that the mixtures of Plant C made of rounded river gravel and 
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cement Type III developed lower compressive strength than those from Plant A using 

cement Type III and limestone. This can be attributed to the smooth surface of the 

rounded gravel, resulting in weak interfacial transition zone. Fig. 8(a) shows the 

compressive strength results for 16 hours of Plants A, B, and C with w/c of 0.35 and 

S/Agg of 0.50. It appears that as the percent of 9.5mm coarse aggregate ranged from 

100% to 40% decreases, the compressive strength of Plants A and B mixtures tend to 

increase. Compressive strengths of Plant A mixtures range from 41.0 MPa to 58.1 MPa, 

the values are larger than those from Plant B (36.0 – 49.3MPa) and Plant C (37.6 – 47.7 

MPa). Fig. 8(b) illustrates the compressive strength for Plant B mixtures 15B, 16B, 18B 

and 20B with w/c of either 0.33 or 0.35 that were selected to explore the effect of w/c on 

the strength. It appears that as the w/c ratio increases the compressive strength decreases. 

However, the decrease in strength is more abrupt for the mixtures (18B and 20B) using 

20% of 9.5mm (see Fig. 8b). From the results, it can be inferred that for SCC mixtures 

using cement Type I/II the w/c ratio may be less than 0.35 to meet the required strength 

showed in Table 4 for SCC PSC girder fabrication.  It should be noted that the testing 

matrix for cement Type III mixtures do not have variability in w/c ratios.   
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(a) 

 
(b) 

 

Fig. 8. Compressive Strength at Transfer: a) Compressive strength for blending 

configurations, b) Compressive strength for Plant B using 0.33 and 0.35 w/c. 

 

The compressive strength for all the mixtures at 28 days was above 49 MPa (required 

strength) as shown in Fig. 9. Similar to the results for 16hr strength, Plant A had the 

higher strength than those for Plants B and C. It appears that 28 day compressive strength 

for Plant A is almost proportional to the percent of 9.5mm. Note that the behavior of 

strength development is the opposite to what occurred for strength at 16 hours when 

Required 

Strength 

Value  

 

Value 

Required 

Strength 

Value  

 

Value 
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compared to the percent of 9.5 mm. For Plant B, this figure shows that the compressive 

strength decreases as the percent of 9.5mm aggregate increases. The trend of Plant B 

appears to be similar to that of the 16 hour strength. At 0% and 20% of 9.5 mm, the 

compressive strength of both Plant A and B were similar, whereas for 40% to 100% of 

9.5mm, the difference in strength between Plants A and B increased. Plant C has the 

lower 28 day compressive strength relative to the other Plants and the difference in 

strength can be attributed to the aggregate type. 

 
Fig. 9. Compressive strength at 28 days 

5. Statistical Results 

A multi-variable regression model was created and simulated to statistically determine 

the significant mixture constituents on the tested mixture fresh and hardened properties 

(e.g., slump flow). Five mixture constituent variables were considered in the statistical 

model including: percent of 9.5 mm coarse aggregate, percent of 19 mm coarse 

aggregate, content of fine aggregate and dosages of HRWR and VMA. The standard level 

of significance was set at α = 0.05 and intercept to be zero for this analysis.  
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Strength 

Value  
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Table 8 shows the resulting P-value of each mixture constituent variable with respect to 

the fresh and hardened properties. Based on the investigation of the p-values, it was 

found that fine aggregate was the most significant variable affecting all the fresh and 

hardened properties for all the mixtures and that the content of 9.5mm aggregate has a 

significant effect on segregation. The reason why the content of fine aggregate 

considered statistically significant is that it has a direct impact on the viscosity of the 

mixture, resulting in the substantial change of slump flow, J-Ring, and segregation. 

Table 8. P-values obtained from the regression statistical analysis to evaluate fresh and hardened 
properties of SCC. 

Parameter Slump Flow J-Ring 
Column 

Segregation 

Compressive 
Strength   (16 

hours) 

Compressive 
Strength       

(28 Days) 

Coarse Aggregate     
(9.5 mm) 

0.227 0.352 0.008 0.830 0.653 

Coarse Aggregate (19 
mm) 

0.280 0.378 0.062 0.965 0.937 

Fine Aggregate 3.8x10
-9 

3.1x10
-6
 0.001 0.001 0.026 

HRWR 0.052 0.171 0.282 0.193 0.118 

VMA 0.278 0.273 0.307 0.528 0.394 

 

6. Summary and Conclusions 

The paper was to investigate the effect of material constituents on fresh and hardened 

properties of SCC mixtures, in order for better fabrication of SCC PSC girders. To that 

end, an experimental program considering different material constituents and methods 

along with target values obtained from the survey and literature review was developed.  

The material constituents consist of type of cement and size and type of coarse aggregate, 

and testing methods include slump flow, VSI, J-ring, column segregation and 
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compressive strength. Experimental and statistical comparisons of the fresh and hardened 

properties among SCC mixtures made with different material constituents per plant 

located in a different area was performed. The following conclusions are drawn based on 

the experimental and statistical results: 

1) Slump flow spread diameter results showed that the Plant C mixtures obtained 

larger spread diameters due to the rounded shape of the river gravel, resulting in 

less blockage compared to the flaky and angular shape of the crushed limestone 

used in Plant A and B.  Plants B and C exhibited slump flow values similar or 

above the target value of 635mm, while Plant A had values below the target value 

resulting in unsatisfactory flow ability.   

2) Passing ability and filling capacity were evaluated using the results from slump 

flow and J-Ring. The best passing ability results according to the target value of 

±50.8mm were seen by the mixtures of Plant A containing larger percentages of 

9.5mm. The filling capacity results exhibited similar performance with most 

values above 80%; therefore no effect was observed of the material constituents 

studied.  

3) Segregation results developed similar behavior for all Plants which are 

satisfactory according to the maximum value of approximate 15%, whereas the 

percent of 9.5mm decreased more segregation was seen. This behavior was 

expected as large size particles will settle at a faster rate.  Extra segregation was 

observed for the mixtures using 0.45 S/Agg compared to 0.50 S/Agg due to lower 

viscosity.  
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4) Higher compressive strength was found in the mixtures of Plant A made of 

cement Type III. It can also be inferred from the results that the mixtures using 

crushed limestone developed higher compressive strength compared to mixtures 

using river gravel. For the mixtures using cement Type I/II, it was observed that a 

change of w/c ratios (0.35 to 0.33) would considerably increase the strength.  

5) P-values obtained from the statistical analysis indicated that fine aggregate is the 

parameter with more significant effect in terms of fresh and hardened properties. 

This was found to be true as the variation of fine aggregate has direct impact on 

the viscosity of the mixture.  
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Abstract 

Self-Consolidating Concrete (SCC) has different constituent proportions compared to 

conventional concrete (CC), resulting in dissimilar time-dependent material 

characteristics, including creep and shrinkage. Hence, it is required to prudently evaluate 

these characteristics before the application of SCC, especially to prestressed bridge girder 

construction. To that end, this paper establishes an experimental platform to examine 

time-dependent materials characteristics focusing on creep and shrinkage utilizing vastly 

different SCC mixtures made at three different precast plants and at a laboratory. The 

considered SCC mixtures vary depending on cement type, aggregate type and size, and 

Sand to Aggregate Ratio (S/Agg). Experimental strains were measured for a period of 

112 days where both creep and shrinkage samples were stored in controlled 

environmental conditions. In addition to the experimental investigation, creep and 

shrinkage prediction models stipulated by American Association of State Highway and 

Transportation Officials (AASHTO), and American Concrete Institute (ACI) 

Specifications were used to compare them against experimental results at a certain age. 

Significant findings showed that the AASHTO and ACI prediction models overestimate 

the creep and shrinkage change in length at specific maturity; specifically, the ACI 

prediction values were more conservative than those from the AASHTO model.   

Keywords: 

Self-Consolidating Concrete, Experimental Investigation, Time-Dependent Material 

Characteristics, Creep, Shrinkage, Prediction Model. 
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1. Introduction 

SCC that has been considered a highly flowable concrete is able to spread through the 

formwork and fill space with no additional mechanical vibration. SCC has been widely 

applied to the precast industry to improve the production and durability in prestressed 

girders. To achieve desired workability performance on such girders, SCC mixtures have 

typically consisted of higher paste volumes, smaller maximum size of aggregate (MSA), 

lower coarse aggregate volume, and higher S/Agg ratio compared to conventional 

concrete (CC) (Kim et al. 2011). Due to mixture designs with distinct material constituent 

proportioning, SCC can develop different values of creep and shrinkage compared to CC, 

which can sustainably affect structural performance of prestressed bridge girders over 

time.  Hence, it is important to have an accurate estimation of creep and shrinkage 

behavior to avoid overestimating or underestimating prestress losses. Note that 

overestimating losses will result in higher induced prestress force which will cause higher 

camber (Bymaster et al. 2015), while underestimating prestress losses will lead to higher 

deflection causing excessive cracks in the bottom fibers of the girder (Long et al. 2011).  

This study aims to evaluate creep and shrinkage on different SCC mixtures at a 

laboratory and different local precast plants. Five SCC mixtures with different material 

constituents and mixture design parameters are investigated to determine their effects on 

strain changes over time caused by creep and shrinkage. This paper is divided into six 

sections. Section 2 provides a background of previous studies in terms of creep and 

shrinkage on SCC for prestressed girder applications. Section 3 describes the SCC 

mixtures used for this study. In the aforementioned section material, fresh and hardened 

properties, and curing methods are described. Section 4 relates to the specific test 
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methods used to determine creep and shrinkage over a long term period. Both creep and 

shrinkage tests were performed following existing standard guidelines. Section 5 states 

both AASHTO 2013 and ACI 209R prediction models for creep and shrinkage. Section 6 

entails the discussion of experimental results and comparison of experimental results with 

both prediction models. Finally, section 7 provides a summary and conclusions of the 

study. 

2. Background 

Creep and shrinkage behavior of SCC have been a focus of study for the fabrication of 

prestressed concrete (PSC) girders. Creep behavior is mostly affected by compressive 

strength, binder content and coarse aggregate properties. On the other hand, shrinkage of 

SCC mixtures is highly attributed to binder content and coarse aggregate volume. A 

summary of findings for both creep and shrinkage is introduced in the following 

subsections. 

2.1 Creep 

Several studies [Mata (2004), Persson (2005) Reindhart et al. (2008), Kavanaugh (2009), Khayat 

and Long (2011) and Alghazali and Myers (2014)] have shown inconsistency in the results of 

SCC creep values over time compared to High-Performance Concrete (HPC) or CC. For example, 

Long and Khayat (2011) compared SCC mixtures with HPC mixtures of the same w/c ratio. It 

was found that SCC exhibited 10-20% higher creep at 300 days compared to HPC. This was 

attributed to the lower amount of coarse aggregate used for SCC. In comparison to CC, Mata 

(2004) concluded that SCC developed up to 1.5 times more creep than CC due to low coarse 

aggregate content. Reindhart et al. (2008) compared also compressive strengths between SCC and 

CC mixtures, indicating that SCC mixtures exhibited higher creep values over time. The other 

studies done by Persson (2005) and Kavanaugh (2009) compared SCC and CC mixtures with 
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similar mixture design proportions, revealing both SCC and CC developed similar creep values 

over time.  

Other studies (Khayat and Mitchell 2009, Kavanaugh 2009 and Kim et al. 2011) have focused on 

the comparison of creep behavior of SCC mixtures with different mixture parameters such as 

binder content, cement type, and S/Agg, For instance, Kim et al. (2011) studied 16 different SCC 

mixtures with a target compressive strength of 34.47MPa and 48.26MPa using either limestone or 

river gravel as coarse aggregate. It was found that the SCC mixtures with the target compressive 

strength of 48.26MPa developed lower creep values; similarly, SCC mixtures with river gravel 

developed lower creep. The difference in creep behavior between river gravel and limestone was 

attributed to the fact that river gravel has higher stiffness than limestone. Alghazaly and Myers 

(2014) compared SCC mixtures based on strength and cement content. It was concluded that 

High Strength SCC (HS-SCC) mixtures developed about 13% higher creep than Normal Strength 

SCC (NS-SCC). The results reported by the National Cooperative Highway Research Program 

(NCHRP) (Khayat and Mitchell 2009) reported that SCC mixtures using cement Type I/II showed 

lower creep values than those made of cement Type III. It was also reported that creep values 

increase as the paste volume increases.  For SCC mixtures, cement content is commonly replaced 

by mineral fillers such as fly ash or Ground Granulated Blast Furnace (GGBS) to reduce costs of 

the mixtures. Kavanaugh (2009) monitored different SCC mixtures during a period of 365 days 

having fly ash or GGBS, it was observed that mixtures with fly ash tend to have higher creep than 

mixtures with GGBS.  

2.2 Shrinkage 

 Shrinkage that can be divided into autogeneous and drying shrinkages are of concern for 

SCC is known as the change in volume due to internal and external loss of water. 

Specifically, autogeneous shrinkage occurs when the hydration process of cement causes 



80 

 

 

 

a volume reduction internally, while drying shrinkage is caused by water loss when 

exposed to long-term environmental conditions (Kosmatka 2002). Note that both 

autogeneous and drying shrinkages mostly occur during the first 28 days where they 

reach 80% of their final shrinkage deformation (Khayat and Long et al. 2010).  

According to ACI 237R-07 (ACI 2007), it was reported that SCC has lower autogeneous 

shrinkage and higher drying shrinkage compared to CC mixtures.  

Some studies (Mata et al. 2004, Mamaghani et al. 2010, and Khayat and Long 2010) have 

attempted to compare total shrinkage covering both autogeneous and drying shrinkage 

among different mixtures, including SCC, CC, and HPC. Mamaghani et al. (2010) 

compared SCC and CC mixtures of similar mixture design, indicating both mixtures 

developed similar shrinkage over a period of 112 days. Mata et al. (2004) demonstrated 

that SCC mixture samples had higher shrinkage than CC mixtures. Khayat and Long 

(2010) compared SCC with HPC mixtures. It was found that the binder type did not have 

any effect on SCC or HPC mixtures where both developed similar autogeneous 

shrinkage. However, for mixtures with the same w/c, SCC mixtures developed 5-30% 

higher drying shrinkage than HPC. It was found that as w/c decreased, shrinkage values 

in SCC increased 100-350 microstrain. 

A number of studies (Tia et al. 2005, Khayat and Mitchell 2009 and Alghazali and Myers 

2014) have evaluated SCC mixture properties to determine what mixture parameters 

significantly affect shrinkage. In general, shrinkage on SCC mixtures has been attributed 

to higher binder content and lower coarse aggregate volume (Khayat and Mitchell 2009). 

Some studies have been focused on finding alternatives to reduce shrinkage on SCC by 

replacing cement with fillers. For instance, Tia et al. (2005) studied several SCC mixtures 
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using fly ash and slag as mineral fillers. It was revealed that both mineral fillers reduced 

shrinkage over time; however, the mixtures using slag had a higher impact on lowering 

the shrinkage results. Curing methods used at precast plants can also have an effect on 

shrinkage by modifying the environmental conditions such as temperature and humidity. 

Alghazali and Myers (2014) monitored three different mixtures under the same curing 

condition with different steam curing time, reporting that steam curing exposure time is 

directly proportional to shrinkage behavior. 

2.3 Summary 

The findings from the literature review have shown that SCC mixtures may exhibit 

higher creep and shrinkage deformations due to mixture composition. The main factor 

affecting creep was found to be the binder content, especially for SCC used in PSC 

girders where higher amounts of binder content is required to meet the desired 

compressive strength. On the other hand, shrinkage deformation is mostly attributed to 

the lower volume of coarse aggregate present in SCC. Though the findings regarding the 

effects of mixture constituents on creep and shrinkage were discussed in the existing 

publication, the majority of the mixtures that were batched in a laboratory setting were 

tested for their creep and shrinkage evaluation. 

3. Experimental Program 

To evaluate creep and shrinkage of various SCC mixtures in a systematic manner, an 

experimental program was created with three different precast plants using different 

mixture parameters and constituents. Fig.1 shows the step-by-step procedure of the 

experimental program. The first step was to determine mixture parameters that could 

affect creep and shrinkage behavior. The parameters under investigation include: type of 
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cement, S/Agg, coarse aggregate blending and type of aggregate. Step two consisted of 

batching each mixture at the respective plant as indicated in Table 1, where Plant A and 

B had two SCC mixtures and Plant C had one mixture. Note that at each plant the size of 

the batch was of at least 4 cubic yards to simulate the batch size that the plants will apply 

in the future for the production of SCC. Step three was to steam cure the samples next to 

the girder bed for 18 hours. The intention was to approximate the curing time and 

temperature girders undergo at each plant. Steps four was to measure initial readings of 

creep and shrinkage, and immediately apply the load to the creep frame. More details on 

the testing procedure will be discussed in further sections. Then samples were transported 

to The J. Lohr Structures Laboratory at South Dakota State University. For the fifth step, 

shrinkage samples were also batched at the laboratory to compare against the plant 

samples to account for any negative effects caused by the environmental conditions 

during transportation of the samples from the plant to the laboratory. Finally, the sixth 

step was to monitor creep and shrinkage samples for a period of 112 days.   
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Fig.1. Flowchart of Experimental Program  

Table 1. Test Matrix for Creep and Shrinkage Tests 

Test Matrix 

 Plant A Plant B Plant C 

Mixture 1 2 3 4 5 

No. of Creep Cylinders  3 3 3 3 3 

No. of Shrinkage Plant Prisms
 

3 3 3 3 2
* 

No. of Shrinkage Lab Prisms 3 3 3 3 3 
*Plant C only has 2 prisms from the plant due to damage of one prism. 

3.1 Materials 

Five SCC mixtures with different material constituents were investigated. Table 2 

summarizes the batch design of each mixture.  The investigated parameters of the five 

mixtures include: binder type, coarse aggregate type, blending percentage, and S/Agg. At 

Plant A, Mixtures 1 and 2 were made of cement Type I/II with crushed limestone; Plant 

B had Mixtures 4 and 5, composed of cement Type III with crushed limestone; and Plant 

C only had Mixture 5 which consisted of cement Type III and river gravel. All mixtures 
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had the same cement content and w/c values which were 475kg/m
3 and 0.33 respectively. 

Admixtures dosages were established by each plant to meet their desired workability for 

girder fabrication. High Range Water Reducing Admixture (HRWR) was relatively 

similar for all mixtures, with dosages from 2.93 L/m
3 

to 3.10 L/m
3
. Viscosity Modifying 

Admixture (VMA) was added in small quantities as needed. Note that for mixture 5 no VMA was 

added.   

Fresh and hardened properties results of the SCC mixtures are summarized in Table 3. 

Standard tests such as Slump Flow, J-Ring, Visual Stability Index (VSI), Column 

Segregation and Compressive Strength were performed for each mixture as shown in Fig. 

2. While workability of the mixtures was outside the scope of this paper, it is important to 

discuss some results as certain properties can be related to creep and shrinkage. For 

instance, it was observed that Mixture 1 had larger spread diameter values than the rest of 

the mixtures, which can be attributed to the cement type or S/Agg. Also, notice that 

Mixture 5 had the lowest spread values, and was considered a dry mixture during fresh 

property testing since it showed a lack of workability. Compressive strength values are 

often related to creep coefficients; it is important to observe that the 18 hour compressive 

strengths were low for Mixtures 1-4 and considerably higher for Mixture 5. However, at 

28 days compressive strength values were similar for all mixtures varying from 80.11 

MPa to 89.97MPa.  

Table 2. Mixture Design for SCC mixtures 

Mixture 1 2 3 4 5 

Plant A A B B C 

Cement Type I/II I/II III III III 

Aggregate Type Limestone Limestone Limestone Limestone Gravel 
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Blending (XX-YY)
3
 60-40 60-40 60-40 80-20 60-40 

W/C 0.33 0.33 0.33 0.33 0.33 

S/Agg 0.50 0.45 0.50 0.50 0.45 

Cement Content (kg/m
3
) 475 475 475 475 468 

Coarse  Aggregate 19mm (kg/m
3
) 506 560 535 710 629 

Coarse Aggregate 9.5mm” (kg/m
3
) 337 374 364 190 419 

Sand (kg/m
3
) 848 790 888 892 861 

Water (kg/m
3
) 156 142 156 149 161 

HRWR (L/m
3
) 3.09 3.09 3.07 3.10 2.93 

VMA (L/m
3
) 1.54 1.54 0.98 1.15 0 

3
Percent of Blending was assigned as XX-YY, where XX is the percent of 19mm and YY is the 

percent of 9.5mm 

Table 3. Properties of SCC mixtures 

Mixture 1 2 3 4 5 

Slump Flow (mm) 724 660 648 667 584 

J-Ring (mm) 724 629 629 663 508 

VSI 1 0.5 1 1.5 0 

Column Segregation (%) 4.15 0.85 10.8 7.7 5.6 

16hr. Compressive Strength (MPa) 29.59 40.78 42.02 32.68 63.08 

28d.  Compressive Strength (Mpa) 80.11 89.97 85.80 87.54 80.80 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. Fresh Properties Testing where: (a) Slump Flow Test; (b) J-Ring Test; (c) Column 

Segregation; and (d) Cylinders for Compressive Strength Test. 

 

3.2 Curing 

All samples made at the plants were cured using steam to obtain high early compressive 

strengths. The samples were placed adjacent to the girder bed of each plant and covered 

with a plastic layer as shown in Fig. 3, and were cured for 18 hours following the steam 

curing regimen of each plant. According to AASHTO (2007), the maximum temperature 

of the concrete should not exceed 71̊C. Also, the rise in temperature is limited to an 

increase of 22 ̊C per hour; similar to what is recommended for the cooling rate. PCI 

(2012) recommends a rate of heating of 22 ̊C per hour and a maximum temperature of 

60 ̊C. Fig. 4 shows a graphical representation of the steam curing regimen provided by 

different agencies and each plant. Fig. 4(a) shows the recommendation from both 
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AASHTO and PCI for steam curing plotted against the recorded temperatures at Plant A 

and B. As shown in Fig.4(a), the regimen used by Plant A and B was similar to PCI 

recommendation, where the only difference was the maximum temperature where a value 

of 67 ̊C was recorded for Plant A and B. Also, Fig. 4(b) shows the steam curing regimen 

for Plant C against both AASHTT and PCI recommendations. Again, Plant C is very 

similar to the PCI recommendation and the maximum temperatures are identical.  Plant A 

and Plant B utilize the same regimen; which may be the reason why both plants had 

lower 18 hour compressive strength than plant C. Also, testing was performed during 

winter months where the outside temperature was approximately -17.7 ̊C, and could have 

lowered the steam temperature in the girder bed as it was exposed to outside 

temperatures.  Laboratory samples made for shrinkage test were moist cured for 18 hours 

at a temperature of 23 ±2  ̊C. After, the samples were removed from the metal molds and 

placed in a temperature controlled room to be air cured with the other samples.  

 
Fig. 3. Creep samples placed next to girder bed prior steam curing.  
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         (a) 

 
         (b) 

Fig. 4. Steam curing regime for: (a)Plant A and B with standard regime; (b) Plant C with 

standard regime.  

  

4. Test Methodology 

4.1 Creep 

Creep tests were executed following the ASTM 512 “Standard Test Method for Creep of 

Concrete in Compression” (ASTM, 2011). For this study three creep frames were 

constructed to induce a constant compressive load for a period of 112 days as shown on 

Fig. 5(a). Prestress chucks were added at the ends of the tension strands to sustain the 

applied load, while the dual plates at one end of the frame are used to maintain the load. 

The ASTM 512 specifies that the induced load should not exceed 40% of the 

compressive strength of the samples at age of loading. In order to simulate the placing of 

the concrete deck on the girder, the load induced into the creep frames was 2000 psi, 

which was below the 40% of compressive strength requirement. To ensure uniform 

distribution and transmission of the load between cylinders neoprene pads were placed 

between cylinders. Five cylinders of 152x304 mm were placed at each frame as shown in 

Fig. 5(a). Each cylinder had two metal tabs with 25.4cm in between each other. To 

improve readings accuracy two more tabs were placed on the opposite side of the 
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cylinder to take strain readings and average both sides of the cylinder. The metal tabs 

were embedded in the concrete using the modified cylinders shown in Fig. 5(b). A multi-

length strain change extensometer was used to measure strain changes between the metal 

tabs. Each reading with the extensometer had a precision of 0.0025mm. Three readings 

were taken on each side of the cylinder and then the average from both sides of the 

cylinder was used to obtain the final strain change at a specific age. The first reading was 

taken once the cylinders were removed from steam curing. The next reading was taken 

immediately after placing the cylinders in the creep frame with the compressive load. The 

difference between these two readings was considered the instantaneous elastic strain of 

each cylinder used to calculate creep coefficients later on. Also, another reading was 

taken 6 hours after the compressive load was induced in the frame. Also, control readings 

were taken when transporting the frames from the precast plants to the laboratory to 

ensure that the frame did not suffer any damage. After the load was induced, daily 

readings were taken for the first week. Then, weekly readings were taken for the first 

month. Lastly readings were taken until 112 days.  Also, control readings were taken 

when transporting the frames from the precast plants to the laboratory to ensure that the 

frame did not suffer any damage.  
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(a) 

 
(b) 

 

Fig. 5. Creep test set up: (a) Loaded creep frame; (b) Modified cylinder with brass inserts 

on both sides.  

 

4.2 Shrinkage  

To investigate shrinkage behavior of SCC two sets of mixtures were batched as 

mentioned earlier. The first set consisted of mixtures made at each plant which were 

transported to the laboratory. The second set consisted of laboratory mixtures with the 

same mixture design as the first set. The second set of samples was used to compare and 

determine the effect of the storing conditions during transport in terms of early shrinkage.  

Shrinkage tests were conducted following ASTM 157 “Standard Test Method for Length 

Change of Hardened Hydraulic-Cement Mortar and Concrete”(ASTM, 2011). ASTM 157 

recommends shrinkage test specimens of a 100mm x 100mm square prim with a length of 

255mm. Fig. 6(a) shows the prism molds containing the fresh SCC mixture prior placing 

them adjacent to the girder bed for steam curing. After the 18 hours of steam curing the 

samples were stored at a temperature of 23 ± 2°C and 50% ± 4% relative humidity. Some 

deviations from the storage conditions recommended in ASTM 157 were made to 

simulate the real life conditions that a full size girder would encounter. For example, the 

prism samples were not stored in lime water for 28 days. Instead, the samples were 
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placed in a temperature controlled room.  However, the specified room did not provide 

moving air specified by the ASTM 157.  Both creep and shrinkage samples were stored 

under the same conditions after steam curing. Therefore, similar to creep test; the first 

reading was taken after the cylinders were removed from steam curing. After, daily 

readings were taken for the first week. Then, weekly readings were taken for the first 

month. Lastly readings were taken until 112 days. .  Readings were taken using an HM-

250D Length Comparator with a digital indicator as shown in Fig. 6(b), this apparatus 

takes readings with a precision of 0.0025mm. The difference in length between the 

calibration bar and the prisms was taken three times for each prim and then the average 

was used for the respective curing age.  

 
(a)  

 
(b) 

Fig. 6. Shrinkage samples: (a) Preparation of shrinkage prism; and (b) Shrinkage 

measurements using digital length comparator.  
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5. Prediction Models 

Measured creep and shrinkage readings were compared to the following prediction 

models: AASHTO 2013 (AASHTO, 2013) and ACI 209R (ACI 2008). The AASHTO 

2013 creep model uses factors to account for volume to surface ratio (V/S), humidity, 

compressive strength and time development. The ACI 209R creep model considers more 

factors influencing creep such as: curing condition, humidity, air content, S/Agg, slump 

flow and thickness of the member. Both creep prediction models are further described in 

Table 5.  

Shrinkage prediction models are similar to the creep models but with a more focus on 

environmental conditions as shown in Table 6. The AASHTO 2013 model uses factors to 

account for V/S, humidity, compressive strength and maturity of concrete.  The ACI 

209R shrinkage prediction model is similar to the AASHTO 2013 model, incorporating 

factors for humidity, specimen size, V/S and maturity of concrete. Note that other 

prediction models such as PCI were not used in this study because the 28 days 

compressive strengths of the samples exceeds the limit of established by those models. 
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Table 5. Creep prediction models 

Creep Prediction Models 

Name Equations Nomenclature 
A

A
S

H
T

O
 2

0
1
3

 

𝝍 (𝒕, 𝒕𝒊) = 𝟏. 𝟗𝒌𝒗𝒔𝒌𝒉𝒄𝒌𝒇𝒌𝒕𝒅𝒕𝒊
−𝟎.𝟎𝟏𝟏𝟖 

𝑘𝑣𝑠 = 1.45 − 0.0051 (
𝑉

𝑆
) ≥ 0.0 

𝑘ℎ𝑐 = 1.56 − 0.008𝑅𝐻; 

𝑘𝑓 =  
35

7 + 𝑓′𝑐𝑖

 

𝑘𝑡𝑑 = (
𝑡

61 − 0.58𝑓′
𝑐𝑖 

+  𝑡
) 

𝜓 = Creep coefficient; 𝑘𝑣𝑠=Volume to surface ratio factor; 𝑘ℎ𝑐= Humidity factor; 𝑘𝑓= Concrete strength 

factor; 𝑘𝑡𝑑= Time development factor; t= Maturity of concrete; 𝑡𝑖= Age of concrete at loading; 

(
𝑉

𝑆
)= Volume to surface ratio; RH= Relative humidity; 𝑓′𝑐𝑖= compressive strength 

A
C

I 
2
0
9
R

 

𝝋𝟐𝟖 (𝒕, 𝒕𝟎) = 𝝋∞ (𝒕𝟎) 𝒙 (
(𝒕 − 𝒕𝟎)𝟎.𝟔

𝟏𝟎 +  ((𝒕 − 𝒕𝟎)𝟎.𝟔)
) 

𝜑∞ (𝑡0) = 2.35 𝛾𝑐 

𝛾𝑐 =  𝛾𝑙𝑎𝛾𝑅𝐻𝛾𝑎𝛾𝑠𝛾𝑝𝛾𝑎𝑡  

𝛾𝑙𝑎 = 1.13 (𝑡0)−0.094 

𝛾𝑅𝐻 = 1.27 − 0.0067𝑅𝐻 

𝛾𝑎 = 0.46 + 0.09𝑎0 

𝛾𝑠 = 0.82 + 0.00264 𝑥 𝑆𝑙 

𝛾𝑝= 0.88 + 0.0024 x Pa 

𝛾𝑎𝑡 = 1.14 − 0.00092 𝑥 ℎ𝑎  

𝜑28 (𝑡, 𝑡0) = Creep coefficient at time; 𝜑∞ (𝑡0) =Ultimate creep coefficient;   𝑡0= Time of loading; 

𝛾𝑐= Creep correction factors; 𝛾𝑙𝑎= Loading age factor (steam); 𝛾𝑅𝐻= Relative humidity factor; 

𝛾𝑎= air content correction factor; 𝑎0= air content; 𝛾𝑠= slump correction factor 𝑆𝑙= slump flow;                

𝛾𝑝= Aggregate ratio factor; Pa= Sand to aggregate ratio; 𝛾𝑎𝑡= Correction factor for thickness; 

ℎ𝑎= thickness of member; 
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Table 6. Shrinkage prediction models 

Shrinkage 

Name Equations Nomenclature 
A

A
S

H
T

O
 2

0
1
3

 

𝜺𝒔𝒉  = −𝒌𝒗𝒔𝒌𝒉𝒔𝒌𝒇𝒌𝒕𝒅 𝒙 𝟎. 𝟒𝟖𝒙𝟏𝟎−𝟑 

𝑘𝑣𝑠 = 1.45 − 0.13 (
𝑉

𝑆
) ≥ 1.0 

𝑘ℎ𝑠 = 2.0 − 0.14𝑅𝐻; 

𝑘𝑓 =  
35

7 + 𝑓′𝑐𝑖

 

𝑘𝑡𝑑 = (
𝑡

61 − 0.58𝑓′
𝑐𝑖 

+  𝑡
) 

𝜀𝑠ℎ = Drying shrinkage strain; 𝑘𝑣𝑠=Volume to surface ratio factor; 𝑘ℎ𝑠= Humidity factor; 𝑘𝑓= Concrete 

strength factor; 𝑘𝑡𝑑= Time development factor; t= Maturity of concrete; 𝑡𝑖= Age of concrete at loading; 

(
𝑉

𝑆
)= Volume-to-surface ratio; RH= Relative humidity; 𝑓′𝑐𝑖= compressive strength. 

A
C

I 
2
0
9
R

 

𝜺𝒔𝒉 =  
𝒕

𝟓𝟓 + 𝒕
(𝜺𝒔𝒉)𝒖 

(𝜀𝑠ℎ)𝑢 = 780 𝑥 10−6  𝑥   𝛾𝑠ℎ 

𝛾𝑠ℎ =  𝛾𝛾  𝑥 𝛾𝑣𝑠 

𝛾𝜆 = 1.40 − 0.0102 𝜆 

𝛾𝑣𝑠 = 1.2 𝑒
(−0.12 𝑥 

𝑉
𝑆

)
 

 

𝜀𝑠ℎ = Drying shrinkage strain; (𝜀𝑠ℎ)𝑢= Ultimate shrinkage strain; 𝛾𝑠ℎ= Shrinkage correction factor;        

𝛾𝛾= Relative humidity factor; 𝛾𝑣𝑠= Specimen size factor; (
𝑉

𝑆
)= Volume-to-surface ratio; 

𝜆=Relative humidity; t= Maturity of concrete; 

 

6. Results and Discussion 

6.1 Creep 

The creep values of the 15 cylinders tested until 112 days ranged from 865 to 1381 microstrain. 

The creep results are shown in Fig. 7.  Note that the creep results shown in Figs. 7 include the 

strain changes caused by shrinkage. The readings for each cylinder were averaged using both 

sides of the cylinder for each mixture. After, the average of three cylinders was plotted on each 

graph as illustrated on Fig. 7. (a)-(e). In general, creep values for the three cylinders of each 

mixture were similar; however, Mixture 5 had a large difference between cylinder 3 with cylinder 

1 and 2 with a gap of 311 microstrain a shown in Fig.7 (e). 
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Note that creep deformation mostly occurs during the first 28 days of curing. Table 7 shows the 

average creep growth for all five mixtures at ages of 28, 56, 84 and 112 days. Mixture 5 

(composed of cement Type III, river gravel and S/Agg of 0.50) was the mixture that exhibit the 

higher change in strain with a value of 1180 microstrain. Mixture 2 (made of cement Type I/II 

and S/Agg of 0.45) exhibited the lowest creep which was 925 microstrain. This result was 

expected as higher amount of coarse aggregate helps to restrict creep deformation in concrete; 

therefore, less creep can be expected with more coarse aggregate content. The cement type had a 

significant impact on creep values. It was found that the mixtures using cement Type III exhibit 

higher creep values compared to Type I/II. This behavior was also found in past studies, and it 

was attributed to the greater surface area and chemical composition of cement Type III which 

promotes early setting (Long and Khayat 2011).  
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             (a) 

 
                (b) 

 
             (c) 

 
              (d) 

 
          (e) 

Fig. 7. Measured creep for 112 days: (a) Mixture 1, (b) Mixture 2, (c) Mixture 3, (d) Mixture 4, 

and (e) Mixture 5. 
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Table 7. Average creep strain change overtime 

Time 
Creep strain on SCC mixtures (µε) 

Mixture 1 Mixture 2 Mixture 3 Mixture 4 Mixture 55 

28 699 670 861 832 875 

56 836 789 973 947 1012 

84 920 876 1064 1066 1107 

112 1001 925 1117 1144 1180 

 

Measured creep strain was converted to creep coefficients using the instantaneous elastic strain 

recorded after loading of the cylinders. Creep coefficients were compared to those computed from 

the AASHTO and ACI models as shown in Table 8 and Fig 8 using Relative Humidity (RH) of 

both 0.40 and 0.45. The ACI 209 model overestimates creep coefficients for all five mixtures. 

The percent difference of the prediction coefficient to the measured coefficient varies from 5.9% 

to 27.8% for 28 days and 8.1% to 29.8% for 112 days. The ACI model should provide a more 

accurate prediction as it takes into account mixture parameters and loading conditions. It was also 

found that the variation in RH had a small impact on the predicted creep coefficients.  

Meanwhile, the AASHTO 2013 prediction model underestimated the creep coefficients at both 28 

days and 112 days. The percent difference between the AASHTO 2013 prediction model and 

measured coefficient had a range from -32.57% to 8.8% for 28 days and -34.19% to -8.47%. It 

was observed on Fig. 8(b) and Fig. 8(d) that AASHTO provided the best prediction for Mixtures 

2 and 4. Note that for Mixture 5, the AASHTO prediction model underestimate the creep 

coefficient at 29 days and 112 days by 32.57 % and 34.19% respectively. This was attributed to 

the higher compressive strength this mixture had at loading time as previously shown in Table 3. 

The AASHTO model only considers environmental, exposure and compressive strength 

conditions to predict creep coefficients. For this reason, an increase on the compressive strength 

affects the predictions result significantly.. Initially, higher compressive strength were expected 

for Mixture 1-4, as it was tested in previous trial batches. A higher compressive strength after 

steam curing could cause the AASHTO prediction model to underestimate the creep coefficients.  
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Table 8. Measured and predicted creep coefficients at 28 and 112 days 

 
Creep Coefficient (28 Days) 

Mixture 1 Mixture 2 Mixture 3 Mixture 4 Mixture 5 

Measured 1.28 0.93 0.88 1.06 1.16 

ACI (RH: 40%) 1.50 1.60 1.56 1.47 1.67 

% Difference 7.91 26.48 27.87 16.21 18.02 

ACI (RH: 45%) 1.44 1.53 1.49 1.41 1.60 

% Difference 5.88 24.39 25.74 14.17 15.94 

AASHTO (RH: 40%) 1.34 1.08 1.05 1.25 0.80 

% Difference 2.29 7.46 8.81 8.23 -18.37 

AASHTO (RH: 45%) 0.83 0.70 0.69 0.78 0.59 

% Difference -21.33 -14.11 -12.10 -15.22 -32.57 

 Creep Coefficient (112 Days) 

 Mixture 1 Mixture 2 Mixture 3 Mixture 4 Mixture 5 

Measured 1.83 1.28 1.65 1.46 1.57 

ACI (RH: 40%) 2.23 2.37 2.30 2.17 2.47 

% Difference 9.85 29.86 16.46 19.56 22.28 

ACI (RH: 45%) 2.15 2.29 2.23 2.10 2.39 

% Difference 8.04 28.29 14.95 17.98 20.71 

AASHTO (RH: 40%) 1.34 1.08 1.05 1.25 0.80 

% Difference -15.46 -8.47 -22.22 -7.75 -32.49 

AASHTO (RH: 45%) 1.30 1.05 1.01 1.21 0.77 

% Difference -16.93 -9.87 -24.06 -9.36 -34.19 
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             (a) 

 
               (b) 

 
            (c) 

 
               (d) 

 
          (e) 

Fig. 8. Comparison between measured and predicted creep coefficients: (a) Mixture 1, (b) 

Mixture 2, (c) Mixture 3, (d) Mixture 4, and (e) Mixture 5. 
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6.2 Shrinkage 

The shrinkage results for the samples made at the precast plants are shown in Fig. 8. The 

shrinkage values for Mixtures 1-5 ranged from 425 to 704 microstrain at 112 days. Note that in 

Fig.8.(a)-(e) the growth of shrinkage on each prism is shown with the respective average. In 

general, Mixture 1 and 3 exhibit higher shrinkage values, this was attributed to the S/Agg of 0.5. 

In particular, Mixture 4 had the lowest shrinkage values compared to the rest of the mixtures. 

This result can be attributed to the fact that this mixture was composed of only 20% 9.5mm 

coarse aggregate, while the other mixtures had 40%. The effect of binder type was investigated 

with some contrasts in the results. For instance, Mixture 4 and 5 using cement Type III had low 

shrinkage values as expected. However, Mixture 3 also having cement Type III developed similar 

shrinkage to Mixture 1 and 2 having cement Type I/II.  

 
             (a) 

 
               (b) 

 
            (c) 

 
               (d) 
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          (e) 

Fig. 8. Measured shrinkage results for plant prims: (a) Mixture 1, (b) Mixture 2, (c) Mixture 3, (d) 

Mixture 4, and (e) Mixture 5. 

Laboratory samples as shown in Fig. 9 exhibited a different behavior in terms of shrinkage 

growth compared to Plant samples. The shrinkage values for Mixture 1-5 ranged from 410 to 580 

microstrain at 84 days.   Note that the shrinkage slope is steeper for the samples made at the plant, 

while for the samples made at the lab the slope is less steep. Table 9 shows the percent difference 

values of plant samples against lab samples. It was observed that there was a large difference in 

developed microstrain at 28 days. However, at 112 days of age the microstrain of samples made 

at both locations had similar values.  This behavior is mostly attributed to the curing procedures. 

At the plant the samples were exposed to steam curing, accelerating the maturity of the concrete, 

while for the laboratory samples the curing procedure was moist-air. When comparing plant and 

lab samples, the results showed that at 112 days the samples made at the precast plants have 

higher shrinkage results. The difference between plant and lab samples changes depending on the 

mixture; for example, for Mixture 1 the difference is 157 microstrain between plant and lab 

samples. On the other hand, for Mixture 5 the difference is only 20 microstrain.  

Independently, it was observed that laboratory samples had a smaller range varying from 520-660 

microstrain. Similar to plant samples, Mixture 3 had the higher shrinkage microstrain. However, 

all mixtures had similar results. Therefore, it was difficult to attribute more shrinkage to a specific 

mixture parameter.  
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             (a) 

 
                 (b) 

 
             (c) 

 
              (d) 

 
          (e) 

Fig. 9. Measured shrinkage for laboratory prims: (a) Mixture 1, (b) Mixture 2, (c) Mixture 3, (d) 

Mixture 4, and (e) Mixture 5. 
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Table 9. Comparison between Plant and Laboratory samples at 28 days and 122 days of age.  

Mixture 

28 Days 

Measurement 
% Difference 

Plant Lab Plant Vs. Lab 

1 527 267 32.7 

2 473 323 18.8 

3 519 310 25.2 

4 327 347 -3.0 

5 400 350 6.7 

Mixture 

112 Days 

Measurement 
% Difference 

Plant Lab Plant Vs. Lab 

1 655 484 15.0 

2 603 540 5.5 

3 656 545 9.2 

4 467 518 -5.2 

5 489 468 2.2 

 

 
Prediction models were compared to both plant and laboratory samples as shown in Fig. 11 and 

Table 10. The average of each the three prisms of each mixture was used for comparison to the 

prediction models. As shown for all mixtures in Fig. 11 the ACI model is very conservative for 

all the mixtures at the end of 112 days. This model in particular remains constant for all mixtures 

as it mainly focuses on environmental conditions the samples are subjected to. ACI model 

provides a good estimate up to 28 days when using 40% of RH. While, when RH increases to 

45% the prediction model underestimates shrinkage values. Although, as the time advances, the 

percent difference between measured results and predicted results at 112 days range from 20.1% 

to 48.2%.  The AASHTO model provides a more accurate prediction at 112 days than the ACI 

model; however, AASHTO model also largely overestimates shrinkage behavior.  Unexpectedly, 

the shrinkage values for the plant samples before 28 days are underestimated by both prediction 

models. Comparison of the RH value used did not change the prediction outcome in a great 

manner. For the ACI model 45% RH provided the best estimate, while for the AASHTO model 

RH of 40% was the best prediction.  
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           (a) 

 
                 (b) 

 
             (c) 

 
              (d) 

 
          (e) 

Fig. 11. Comparison between measured and predicted shrinkage strain: (a) Mixture 1, (b) Mixture 

2, (c) Mixture 3, (d) Mixture 4, and (e) Mixture 5. 
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Table 10. Percent difference between measured and predicted shrinkage values.  

28 days 

Mixture 
Plant 

(με) 

% Difference 
Lab 

(με) 

% Difference 

AASHTO 
(RH: 40%) 

ACI 
(RH: 40%) 

AASHTO 
(RH: 40%) 

ACI 
(RH: 40%) 

1 527 10.6 0.3 267 22.9 33.0 

2 473 11.4 5.6 323 7.58 24.1 

3 519 15.4 1.0 310 10.2 26.1 

4 327 11.4 51.1 347 8.49 20.8 

5 400 13.0 13.9 350 6.40 20.3 

112 Days 

Mixture 
Plant 

(με) 

% Difference  
Lab 

(με) 

% Difference 

AASHTO 
(RH: 40%) 

ACI 
(RH: 40%) 

AASHTO 
(RH: 40%) 

ACI 
(RH: 40%) 

1 617 19.5 27.9 460 25.9 34.0 

2 570 41.4 26.5 513 14.6 29.1 

3 619 13.4 28.6 520 13.3 28.5 

4 430 39.6 48.2 497 20.6 30.6 

5 489 16.5 40.0 468 8.8 33.2 

28 days 

Mixture 
Plant 

(με) 

% Difference 
Lab 

(με) 

% Difference 

AASHTO 
(RH: 45%) 

ACI 
(RH: 45%) 

AASHTO 
(RH: 45%) 

ACI 
(RH: 45%) 

1 527 -8.5 -3.6 267 25.0 29.6 

2 473 -2.6 1.8 323 16.3 20.5 

3 519 -7.8 -2.8 310 17.8 22.5 

4 327 20.1 20.0 347 17.2 17.2 

5 400 17.6 -2.9 350 20.0 -0.4 

112 Days 

Mixture 
Plant 

(με) 

% Difference  
Lab 

(με) 

% Difference 

AASHTO 
(RH: 45%) 

ACI 
(RH: 45%) 

AASHTO 
(RH: 45%) 

ACI 
(RH: 45%) 

1 617 16.0 20.1 460 30.3 34.1 

2 570 20.7 24.1 513 25.9 29.2 

3 619 16.0 20.1 520 24.8 28.8 

4 430 36.6 35.7 497 32.0 31.1 

5 489 17.6 30.9 468 20.0 33.2 
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7. Conclusions 

This paper evaluates time-dependent material characteristics of SCC mixtures used for 

prestressed concrete girder bridge construction. To that end, five SCC mixtures 

composed of different constituents were batched at three different precast plants and then 

the samples were transported to the laboratory. For shrinkage test extra prisms were cast 

at the laboratory to compare effects due to curing methods and transportation. The 

samples were monitored for 112 days in the case of the mixtures prepared at the precast 

plants and 84 days for the laboratory samples. Final readings were compared to both ACI 

209 and AASHTO 2013 predictions models. From this study the following conclusions 

can be drawn: 

1) The cement type was observed to have the most significant influence on creep. 

Mixtures 3, 4 and 5 made of cement type III exhibit 116 to 179 higher microstrain 

than mixtures made of cement type I/II. 

2) For Mixtures 1 and 2 having cement type I/II, it was observed that as S/Agg 

decreased from 0.50 to 0.45 lesser creep was observed. This was attributed to the 

fact that coarse aggregate restraints creep deformation.  

3) Creep deformation values for all the five mixtures studied vary between 925 to 

1180 microstrain at 112 days of constant loading. 

4) Both ACI 209 and AASHTO 2013 prediction models overestimate creep values at 

112 days. However, it was concluded that ACI 209 can provide a more 

conservative prediction as it considers mixture parameters such as air content and 

S/Agg compared to the AASHTO model which only considers exposure and 

environmental conditions.  
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5) Shrinkage values for all the five mixtures prepared at the plants ranged from 425 

to 704 microstrain at 112 days. It was observed that the mixture having 20% of 

9.5mm and 80% of 19mm coarse aggregate had the lowest shrinkage values. 

Mixtures 3, 4 and 5 having cement Type III exhibit lower shrinkage values than 

mixtures with cement Type I/II. This can be attributed to the fact that cement 

Type III requires more water for the hydration of the cement reducing the amount 

of water for long term evaporation.   

6) Shrinkage values for all the five mixtures tested at lab ranged from 410 to 580 

microstrain. It was observed that mixtures made at the plant exhibit higher 

shrinkage values for the first 14 days. This behavior was mainly attributed to the 

difference in temperature between steam curing at the plants and the moist curing 

used at the lab.  

Both prediction models provided by the AASHTO and ACI overestimate shrinkage at 

112 days. However, during the first 56 days both models tend to underestimate the values 

for the mixtures made at the plants. Note that accuracy of the models is affected due to 

size effects as the samples are relative small compared to full scale members. Also, this 

prediction models are based on data from conventional concrete.   This suggests that the 

factors used for steam curing in the prediction model are not accurate for these SCC 

mixtures. 
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Appendix  

Appendix A 

This appendix shows the mixture constituents of all the mixtures tested for chapter 2 in 

English units.  

Mixture 1A 

Parameter 

W/C 0.35 

S/Agg 0.5 

  

Material Unit 

Cement 800 lbs/yrd
3
 

Water 280 lbs/yrd
3
 

Coarse Aggregate 3/4"  1460 lbs/yrd
3
 

Coarse Aggregate 3/8"  0 lbs/yrd
3
 

Fine Aggregate  1455 lbs/yrd
3
 

HRWR 5 oz/cwt 

VMA 1 oz/cwt 

 

Mixture 2A 

Parameter 

W/C 0.35 

S/Agg 0.45 

      

Material Unit 

Cement 800 lbs/yrd
3
 

Water 280 lbs/yrd
3
 

Coarse Aggregate 3/4"  1606 lbs/yrd
3
 

Coarse Aggregate 3/8"  0 lbs/yrd
3
 

Fine Aggregate  1310 lbs/yrd
3
 

HRWR 5 oz/cwt 

VMA 2 oz/cwt 
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Mixture 3A 

Parameter 

W/C 0.35 

S/Agg 0.5 

      

Material Unit 

Cement 800 lbs/yrd
3
 

Water 280 lbs/yrd
3
 

Coarse Aggregate 3/4"  292 lbs/yrd
3
 

Coarse Aggregate 3/8"  1168 lbs/yrd
3
 

Fine Aggregate  1455 lbs/yrd
3
 

HRWR 6.5 oz/cwt 

VMA 2 oz/cwt 

 

Mixture 4A 

Parameter 

W/C 0.35 

S/Agg 0.5 

      

Material Unit 

Cement 800 lbs/yrd
3
 

Water 280 lbs/yrd
3
 

Coarse Aggregate 3/4"  584 lbs/yrd
3
 

Coarse Aggregate 3/8"  876 lbs/yrd
3
 

Fine Aggregate  1455 lbs/yrd
3
 

HRWR 5 oz/cwt 

VMA 0 oz/cwt 
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Mixture 5A 

Parameter 

W/C 0.35 

S/Agg 0.45 

      

Material Unit 

Cement 800 lbs/yrd
3
 

Water 280 lbs/yrd
3
 

Coarse Aggregate 3/4"  642.4 lbs/yrd
3
 

Coarse Aggregate 3/8"  963.6 lbs/yrd
3
 

Fine Aggregate  1310 lbs/yrd
3
 

HRWR 5 oz/cwt 

VMA 1 oz/cwt 

 

Mixture 6A 

Parameter 

W/C 0.35 

S/Agg 0.5 

      

Material Unit 

Cement 800 lbs/yrd
3
 

Water 280 lbs/yrd
3
 

Coarse Aggregate 3/4"  876 lbs/yrd
3
 

Coarse Aggregate 3/8"  584 lbs/yrd
3
 

Fine Aggregate  1455 lbs/yrd
3
 

HRWR 5.5 oz/cwt 

VMA 2 oz/cwt 
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Mixture 7A 

Parameter 

W/C 0.35 

S/Agg 0.45 

      

Material Unit 

Cement 800 lbs/yrd
3
 

Water 280 lbs/yrd
3
 

Coarse Aggregate 3/4"  963.6 lbs/yrd
3
 

Coarse Aggregate 3/8"  642.4 lbs/yrd
3
 

Fine Aggregate  1310 lbs/yrd
3
 

HRWR 6.5 oz/cwt 

VMA 2 oz/cwt 

 

Mixture 8A 

Parameter 

W/C 0.35 

S/Agg 0.5 

      

Material Unit 

Cement 800 lbs/yrd
3
 

Water 280 lbs/yrd
3
 

Coarse Aggregate 3/4"  1168 lbs/yrd
3
 

Coarse Aggregate 3/8"  292 lbs/yrd
3
 

Fine Aggregate  1455 lbs/yrd
3
 

HRWR 6.5 oz/cwt 

VMA 1 oz/cwt 
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Mixture 9A 

Parameter 

W/C 0.35 

S/Agg 0.45 

      

Material Unit 

Cement 800 lbs/yrd
3
 

Water 280 lbs/yrd
3
 

Coarse Aggregate 3/4"  1284.8 lbs/yrd
3
 

Coarse Aggregate 3/8"  321.2 lbs/yrd
3
 

Fine Aggregate  1310 lbs/yrd
3
 

HRWR 7.5 oz/cwt 

VMA 2 oz/cwt 

 

Mixture 10A 

Parameter 

W/C 0.35 

S/Agg 0.5 

      

Material Unit 

Cement 800 lbs/yrd
3
 

Water 280 lbs/yrd
3
 

Coarse Aggregate 3/4"  1460 lbs/yrd
3
 

Coarse Aggregate 3/8"  0 lbs/yrd
3
 

Fine Aggregate  1455 lbs/yrd
3
 

HRWR 6.5 oz/cwt 

VMA 1 oz/cwt 
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Mixture 11A 

Parameter 

W/C 0.35 

S/Agg 0.45 

      

Material Unit 

Cement 800 lbs/yrd
3
 

Water 280 lbs/yrd
3
 

Coarse Aggregate 3/4"  1606 lbs/yrd
3
 

Coarse Aggregate 3/8"  0 lbs/yrd
3
 

Fine Aggregate  1310 lbs/yrd
3
 

HRWR 5 oz/cwt 

VMA 0 oz/cwt 

 

Mixture 12B 

Parameter 

W/C 0.35 

S/Agg 0.5 

  

Material Unit 

Cement 800 lbs/yrd
3
 

Water 280 lbs/yrd
3
 

Coarse Aggregate 3/4"  0 lbs/yrd
3
 

Coarse Aggregate 3/8"  1490 lbs/yrd
3
 

Fine Aggregate  1524 lbs/yrd
3
 

HRWR 5 oz/cwt 

VMA 0 oz/cwt 
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Mixture 13B 

Parameter 

W/C 0.35 

S/Agg 0.5 

      

Material Unit 

Cement 800 lbs/yrd
3
 

Water 280 lbs/yrd
3
 

Coarse Aggregate 3/4"  298 lbs/yrd
3
 

Coarse Aggregate 3/8"  1192 lbs/yrd
3
 

Fine Aggregate  1524 lbs/yrd
3
 

HRWR 6 oz/cwt 

VMA 0 oz/cwt 

 

Mixture 14B 

Parameter 

W/C 0.35 

S/Agg 0.5 

      

Material Unit 

Cement 800 lbs/yrd
3
 

Water 280 lbs/yrd
3
 

Coarse Aggregate 3/4"  596 lbs/yrd
3
 

Coarse Aggregate 3/8"  894 lbs/yrd
3
 

Fine Aggregate  1524 lbs/yrd
3
 

HRWR 5 oz/cwt 

VMA 1 oz/cwt 
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Mixture 15B 

Parameter 

W/C 0.35 

S/Agg 0.5 

      

Material Unit 

Cement 800 lbs/yrd
3
 

Water 280 lbs/yrd
3
 

Coarse Aggregate 3/4"  894 lbs/yrd
3
 

Coarse Aggregate 3/8"  596 lbs/yrd
3
 

Fine Aggregate  1524 lbs/yrd
3
 

HRWR 5 oz/cwt 

VMA 1 oz/cwt 

 

Mixture 16B 

Parameter 

W/C 0.33 

S/Agg 0.5 

      

Material Unit 

Cement 800 lbs/yrd
3
 

Water 264 lbs/yrd
3
 

Coarse Aggregate 3/4"  905 lbs/yrd
3
 

Coarse Aggregate 3/8"  604 lbs/yrd
3
 

Fine Aggregate  1544 lbs/yrd
3
 

HRWR 6 oz/cwt 

VMA 1.5 oz/cwt 
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Mixture 17B 

Parameter 

W/C 0.33 

S/Agg 0.45 

      

Material Unit 

Cement 800 lbs/yrd
3
 

Water 264 lbs/yrd
3
 

Coarse Aggregate 3/4"  996 lbs/yrd
3
 

Coarse Aggregate 3/8"  664 lbs/yrd
3
 

Fine Aggregate  1358 lbs/yrd
3
 

HRWR 5 oz/cwt 

VMA 1.5 oz/cwt 

 

Mixture 18B 

Parameter 

W/C 0.35 

S/Agg 0.5 

      

Material Unit 

Cement 800 lbs/yrd
3
 

Water 280 lbs/yrd
3
 

Coarse Aggregate 3/4"  1192 lbs/yrd
3
 

Coarse Aggregate 3/8"  298 lbs/yrd
3
 

Fine Aggregate  1524 lbs/yrd
3
 

HRWR 5 oz/cwt 

VMA 1 oz/cwt 
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Mixture 19B 

Parameter 

W/C 0.33 

S/Agg 0.45 

      

Material Unit 

Cement 800 lbs/yrd
3
 

Water 264 lbs/yrd
3
 

Coarse Aggregate 3/4"  1328 lbs/yrd
3
 

Coarse Aggregate 3/8"  332 lbs/yrd
3
 

Fine Aggregate  1358 lbs/yrd
3
 

HRWR 6 oz/cwt 

VMA 2 oz/cwt 

 

Mixture 20B 

Parameter 

W/C 0.33 

S/Agg 0.5 

      

Material Unit 

Cement 800 lbs/yrd
3
 

Water 264 lbs/yrd
3
 

Coarse Aggregate 3/4"  1207 lbs/yrd
3
 

Coarse Aggregate 3/8"  302 lbs/yrd
3
 

Fine Aggregate  1544 lbs/yrd
3
 

HRWR 5 oz/cwt 

VMA 1.5 oz/cwt 
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Mixture 21B 

Parameter 

W/C 0.35 

S/Agg 0.5 

      

Material Unit 

Cement 800 lbs/yrd
3
 

Water 280 lbs/yrd
3
 

Coarse Aggregate 3/4"  1490 lbs/yrd
3
 

Coarse Aggregate 3/8"  0 lbs/yrd
3
 

Fine Aggregate  1455 lbs/yrd
3
 

HRWR 5 oz/cwt 

VMA 1.5 oz/cwt 

 

Mixture 22C 

Parameter 

W/C 0.35 

S/Agg 0.5 

  

Material Unit 

Cement 800 lbs/yrd
3
 

Water 280 lbs/yrd
3
 

Coarse Aggregate 3/4"  950 lbs/yrd
3
 

Coarse Aggregate 3/8"  633 lbs/yrd
3
 

Fine Aggregate  1581 lbs/yrd
3
 

HRWR 6 oz/cwt 

VMA 1 oz/cwt 
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Mixture 23C 

Parameter 

W/C 0.35 

S/Agg 0.5 

      

Material Unit 

Cement 800 lbs/yrd
3
 

Water 280 lbs/yrd
3
 

Coarse Aggregate 3/4"  884 lbs/yrd
3
 

Coarse Aggregate 3/8"  697 lbs/yrd
3
 

Fine Aggregate  1423 lbs/yrd
3
 

HRWR 5 oz/cwt 

VMA 1 oz/cwt 

 

Mixture 24C 

Parameter 

W/C 0.35 

S/Agg 0.5 

      

Material Unit 

Cement 800 lbs/yrd
3
 

Water 280 lbs/yrd
3
 

Coarse Aggregate 3/4"  900 lbs/yrd
3
 

Coarse Aggregate 3/8"  712 lbs/yrd
3
 

Fine Aggregate  1456 lbs/yrd
3
 

HRWR 6 oz/cwt 

VMA 0 oz/cwt 
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Mixture 25C 

Parameter 

W/C 0.35 

S/Agg 0.5 

      

Material Unit 

Cement 800 lbs/yrd
3
 

Water 280 lbs/yrd
3
 

Coarse Aggregate 3/4"  1267 lbs/yrd
3
 

Coarse Aggregate 3/8"  316 lbs/yrd
3
 

Fine Aggregate  1581 lbs/yrd
3
 

HRWR 6 oz/cwt 

VMA 0 oz/cwt 

 

Mixture 26C 

Parameter 

W/C 0.33 

S/Agg 0.5 

      

Material Unit 

Cement 800 lbs/yrd
3
 

Water 264 lbs/yrd
3
 

Coarse Aggregate 3/4"  1777 lbs/yrd
3
 

Coarse Aggregate 3/8"  0 lbs/yrd
3
 

Fine Aggregate  1456 lbs/yrd
3
 

HRWR 7 oz/cwt 

VMA 2 oz/cwt 
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Mixture 27C 

Parameter 

W/C 0.33 

S/Agg 0.45 

      

Material Unit 

Cement 800 lbs/yrd
3
 

Water 264 lbs/yrd
3
 

Coarse Aggregate 3/4"  1746 lbs/yrd
3
 

Coarse Aggregate 3/8"  0 lbs/yrd
3
 

Fine Aggregate  1423 lbs/yrd
3
 

HRWR 7 oz/cwt 

VMA 2 oz/cwt 

 

Mixture 28C 

Parameter 

W/C 0.35 

S/Agg 0.5 

      

Material Unit 

Cement 800 lbs/yrd
3
 

Water 280 lbs/yrd
3
 

Coarse Aggregate 3/4"  1584 lbs/yrd
3
 

Coarse Aggregate 3/8"  0 lbs/yrd
3
 

Fine Aggregate  1581 lbs/yrd
3
 

HRWR 9 oz/cwt 

VMA 1 oz/cwt 
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Appendix B 

Mixture 1A 

Fresh Properties Test Value Unit 

Slump Flow 24 inches 

J-Ring 24.5 inches 

VSI 0 index 

T50 9.4 seconds 

Column Segregation 2.7 % 

Compressive Strength 
  

18 hours 6442 psi 

28 days 11998 psi 

 

Mixture 2A 

Fresh Properties Test Value Unit 

Slump Flow 24 inches 

J-Ring - inches 

VSI 0 index 

T50 7.4 seconds 

Column Segregation 2.7 % 

Compressive Strength 
  

18 hours 5946 psi 

28 days - psi 

 

Mixture 3A 

Fresh Properties Test Value Unit 

Slump Flow 23.75 inches 

J-Ring 24 inches 

VSI 0 index 

T50 5.3 seconds 

Column Segregation 6.3 % 

Compressive Strength 
  

18 hours 7027 psi 

28 days 11874 psi 
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Mixture 4A 

Fresh Properties Test Value Unit 

Slump Flow 24.5 inches 

J-Ring 24 inches 

VSI 0.5 index 

T50 12 seconds 

Column Segregation 6.4 % 

Compressive Strength 
  

18 hours 6755 psi 

28 days 11056 psi 

 

Mixture 5A 

Fresh Properties Test Value Unit 

Slump Flow 24.5 inches 

J-Ring - inches 

VSI 0.5 index 

T50 8.5 seconds 

Column Segregation - % 

Compressive Strength 
  

18 hours 6484 psi 

28 days - psi 

 

Mixture 6A 

Fresh Properties Test Value Unit 

Slump Flow 24.75 inches 

J-Ring 24.5 inches 

VSI 1 index 

T50 3.9 seconds 

Column Segregation 2.8 % 

Compressive Strength 
  

18 hours 6958 psi 

28 days 10164 psi 
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Mixture 7A 

Fresh Properties Test Value Unit 

Slump Flow 24.75 inches 

J-Ring 24 inches 

VSI 1 index 

T50 5.2 seconds 

Column Segregation 4.7 % 

Compressive Strength 
  

18 hours 7135 psi 

28 days 9877 psi 

 

Mixture 8A 

Fresh Properties Test Value Unit 

Slump Flow 22.75 inches 

J-Ring 25 inches 

VSI 0 index 

T50 10.6 seconds 

Column Segregation 9.1 % 

Compressive Strength 
  

18 hours 8432 psi 

28 days - psi 

 

 

Mixture 9A 

Fresh Properties Test Value Unit 

Slump Flow 25.25 inches 

J-Ring 24.5 inches 

VSI 1 index 

T50 4.8 seconds 

Column Segregation 4.2 % 

Compressive Strength 
  

18 hours 7048 psi 

28 days 9427 psi 
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Mixture 10A 

Fresh Properties Test Value Unit 

Slump Flow 25 inches 

J-Ring 24 inches 

VSI 1 index 

T50 4.6 seconds 

Column Segregation 6.3 % 

Compressive Strength 
  

18 hours 6993 psi 

28 days 9241 psi 

 

Mixture 11A 

Fresh Properties Test Value Unit 

Slump Flow 23 inches 

J-Ring 24.5 inches 

VSI 0 index 

T50 7.3 seconds 

Column Segregation 10.1 % 

Compressive Strength 
  

18 hours 7243 psi 

28 days 9908 psi 

 

Mixture 12B 

Fresh Properties Test Value Unit 

Slump Flow 24.5 inches 

J-Ring 22.48 inches 

VSI 0 index 

T50 6.3 seconds 

Column Segregation 1.6 % 

Compressive Strength 
  

18 hours 5221 psi 

28 days 8062 psi 
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Mixture 13B 

Fresh Properties Test Value Unit 

Slump Flow 26 inches 

J-Ring 24.5 inches 

VSI 1 index 

T50 7.1 seconds 

Column Segregation 3.3 % 

Compressive Strength 
  

18 hours 5520 psi 

28 days 8721 psi 

 

Mixture 14B 

Fresh Properties Test Value Unit 

Slump Flow 24.5 inches 

J-Ring 23.5 inches 

VSI 0 index 

T50 9.3 seconds 

Column Segregation 5.1 % 

Compressive Strength 
  

18 hours 6187 psi 

28 days 9048 psi 

 

Mixture 15B 

Fresh Properties Test Value Unit 

Slump Flow 25.3 inches 

J-Ring 24.5 inches 

VSI 1 index 

T50 13.6 seconds 

Column Segregation 8.9 % 

Compressive Strength 
  

18 hours 6998 psi 

28 days - psi 

 

 

 

 



131 

 

 

 

Mixture 16B 

Fresh Properties Test Value Unit 

Slump Flow 24.75 inches 

J-Ring 23.5 inches 

VSI 0.5 index 

T50 3.4 seconds 

Column Segregation 2 % 

Compressive Strength 
  

18 hours 7114 psi 

28 days 8750 psi 

 

Mixture 17B 

Fresh Properties Test Value Unit 

Slump Flow 24.6 inches 

J-Ring 23.75 inches 

VSI 0 index 

T50 3.6 seconds 

Column Segregation 10.1 % 

Compressive Strength 
  

18 hours 6958 psi 

28 days 10393 psi 

 

Mixture 18B 

Fresh Properties Test Value Unit 

Slump Flow 24.5 inches 

J-Ring 23.5 inches 

VSI 0 index 

T50 8.2 seconds 

Column Segregation 9.5 % 

Compressive Strength 
  

18 hours 5918 psi 

28 days - psi 
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Mixture 19B 

Fresh Properties Test Value Unit 

Slump Flow 25 inches 

J-Ring 23.5 inches 

VSI 0.5 index 

T50 5.9 seconds 

Column Segregation - % 

Compressive Strength 
  

18 hours 6687 psi 

28 days - psi 

 

Mixture 20B 

Fresh Properties Test Value Unit 

Slump Flow 24.5 inches 

J-Ring 24 inches 

VSI 0 index 

T50 4.8 seconds 

Column Segregation 9.9 % 

Compressive Strength 
  

18 hours 7148 psi 

28 days 9994 psi 

 

Mixture 21B 

Fresh Properties Test Value Unit 

Slump Flow 26 inches 

J-Ring 24.25 inches 

VSI 1 index 

T50 5.7 seconds 

Column Segregation 11.8 % 

Compressive Strength 
  

18 hours 5869 psi 

28 days 9729 psi 
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Mixture 22C 

Fresh Properties Test Value Unit 

Slump Flow 26.25 inches 

J-Ring 25 inches 

VSI 1 index 

T50 6.1 seconds 

Column Segregation 5.1 % 

Compressive Strength 
  

18 hours 6737 psi 

28 days 8307 psi 

 

Mixture 23C 

Fresh Properties Test Value Unit 

Slump Flow 25.25 inches 

J-Ring 23.75 inches 

VSI 1 index 

T50 5.8 seconds 

Column Segregation 3.4 % 

Compressive Strength 
  

18 hours 6850 psi 

28 days 89.31 psi 

 

Mixture 24C 

Fresh Properties Test Value Unit 

Slump Flow 24.5 inches 

J-Ring 22.25 inches 

VSI 0 index 

T50 5.3 seconds 

Column Segregation 2.2 % 

Compressive Strength 
  

18 hours 6709 psi 

28 days 8516 psi 
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Mixture 25C 

Fresh Properties Test Value Unit 

Slump Flow 26.25 inches 

J-Ring 24.5 inches 

VSI 1 index 

T50 3.1 seconds 

Column Segregation 9.9 % 

Compressive Strength 
  

18 hours 6861 psi 

28 days 9076 psi 

 

Mixture 26C 

Fresh Properties Test Value Unit 

Slump Flow 24 inches 

J-Ring 22.5 inches 

VSI 0 index 

T50 2.5 seconds 

Column Segregation 4.7 % 

Compressive Strength 
  

18 hours 5042 psi 

28 days 6728 psi 

 

Mixture 27C 

Fresh Properties Test Value Unit 

Slump Flow 24 inches 

J-Ring 23.5 inches 

VSI 0 index 

T50 3.4 seconds 

Column Segregation 3.1 % 

Compressive Strength 
  

18 hours 5451 psi 

28 days 6813 psi 
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Mixture 28C 

Fresh Properties Test Value Unit 

Slump Flow 24 inches 

J-Ring 23.75 inches 

VSI 0 index 

T50 4 seconds 

Column Segregation 12.2 % 

Compressive Strength 
  

18 hours 5978 psi 

28 days 7131 psi 
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Appendix C 

Fresh and hardened properties results for each mixture of Chapter 3 are presented in 

English units. Also, creep and shrinkage strain readings are presented for the respective 

mixture.  

Mixture 1:  

Fresh and Hardened properties: 

 

Date: February 12-13, 2016 Time: 14:00 pm 

Company: County Materials Roberts Temp: 10 ˚ F 

Mixture: 1 

Fresh Properties 

 
1 Units Notes 

Slump Flow: 28.5 Inches 

 

VSI: 1 Visual Index 

T20: 2.2 Seconds 

J-Ring: 28.5 Inches 

Column 

Segregation: 
4.15 % 

Air Content: 0.9 % 

Unit Weight: 151 lbs/ft
3 

Concrete Temp: 80 ˚ F 

Hardened Properties 

 
1 2 3 

  
Compressive 

Strength: 

4380 4280 4220 psi (16 hr) 

11257 11021 12217 psi (28 days) 
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Shrinkage Plant Sample Measurements: 

Mixture 1  

Time 

(Days) 

Prism 1 

(in) 

Prism 2 

(in) 

Prism 3 

(in) 

0 -0.0059 -0.0476 -0.0486 

1 -0.0064 -0.0481 -0.0491 

2 -0.0069 -0.0485 -0.0497 

3 -0.0075 -0.0489 -0.0504 

4 -0.008 -0.0494 -0.051 

5 -0.0086 -0.0499 -0.0515 

6 -0.0091 -0.0503 -0.052 

7 -0.0097 -0.0508 -0.0526 

14 -0.0104 -0.0513 -0.0532 

21 -0.011 -0.0517 -0.0538 

28 -0.0115 -0.052 -0.0544 

56 -0.012 -0.0524 -0.0547 

84 -0.0126 -0.0531 -0.0551 

112 -0.0129 -0.0536 -0.0554 

 

Shrinkage Laboratory Samples Measurements: 

Mixture 1  

Time 

(Days) 

Prism 1 

(in) 

Prism 2 

(in) 

Prism 3 

(in) 

0 -0.0328 -0.0082 0.1116 

1 -0.0326 -0.0081 0.1118 

2 -0.0324 -0.0078 0.1119 

3 -0.0323 -0.0076 0.112 

4 -0.032 -0.0075 0.1123 

5 -0.0319 -0.0072 0.1124 

6 -0.0316 -0.007 0.1126 

7 -0.0314 -0.0069 0.1128 

14 -0.031 -0.0064 0.1132 

21 -0.0305 -0.0063 0.1138 

28 -0.03 -0.0058 0.1144 

56 -0.0291 -0.0049 0.1156 

84 -0.0283 -0.0041 0.1168 
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Creep Plant Measurements: 

Mixture 1 

Time 

(Days) 

Cylinder 1 

(µε) 

Cylinder 2 

(µε) 

Cylinder 3 

(µε) 

0 0 0 0 

1 304 298 309 

2 329 323 332 

3 357 347 356 

4 383 370 385 

5 420 393 413 

6 444 416 437 

7 480 448 463 

14 600 509 503 

21 729 593 561 

28 817 666 616 

56 915 863 733 

84 1020 933 844 

112 1080 1005 920 
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Mixture 2: 

Fresh and Hardened properties: 

Date: February 12-13, 2016 Time: 15:00 pm 

Company: County Materials Roberts Temp: 10 ˚ F 

Mixture: 2 

Fresh Properties 

  
1 Units Notes 

Slump Flow: 25.5 Inches 

 

VSI: 0.5 Visual Index 

T20: 2.8 Seconds 

J-Ring: 24.75 Inches 

Column 

Segregation: 
0.85 % 

Air Content: 1.7 % 

Unit Weight: 151.4 lbs/ft
3 

Concrete Temp: 78 ˚ F 

Hardened Properties 

 
1 2 3 

  
Compressive 

Strength: 

4380 4280 4220 psi (16 hr) 

12859 13241 13171 psi (28 days) 

 

Shrinkage Plant Sample Measurements: 

Mixture 2 

Time 

(Days) 

Prism 1 

(in) 

Prism 2 

(in) 

Prism 3 

(in) 

0 -0.0339 0.0221 -0.0478 

1 -0.0344 0.0216 -0.0464 

2 -0.0346 0.021 -0.047 

3 -0.0349 0.0205 -0.0477 

4 -0.0354 0.0201 -0.0481 

5 -0.0358 0.0196 -0.0486 

6 -0.0364 0.0191 -0.0493 

7 -0.0367 0.0184 -0.0503 

14 -0.0372 0.0181 -0.0511 

21 -0.0379 0.0176 -0.0518 

28 -0.0385 0.0171 -0.0524 

56 -0.039 0.0167 -0.0530 



140 

 

 

 

84 -0.0396 0.0165 -0.0536 

112 -0.04 0.0163 -0.0540 

Shrinkage Laboratory Samples Measurements: 

Mixture 2  

Time 

(Days) 

Prism 1 

(in) 

Prism 2 

(in) 

Prism 3 

(in) 

0 -0.0061 -0.0579 0.1279 

1 -0.0059 -0.0577 0.1282 

2 -0.0058 -0.0574 0.1284 

3 -0.0056 -0.0571 0.1285 

4 -0.0053 -0.0568 0.1287 

5 -0.0051 -0.0566 0.1290 

6 -0.005 -0.0563 0.1291 

7 -0.0048 -0.0561 0.1293 

14 -0.0042 -0.0555 0.1297 

21 -0.0036 -0.055 0.1303 

28 -0.003 -0.0544 0.1310 

56 -0.0021 -0.0533 0.1319 

84 -0.0012 -0.0525 0.1303 

 

Creep Plant Measurements: 

Mixture 2 

Time 

(Days) 

Cylinder 1 

(µε) 

Cylinder 2 

(µε) 

Cylinder 3 

(µε) 

0 0 0 0 

1 305 314 127 

2 339 333 188 

3 364 361 254 

4 396 383 321 

5 420 410 384 

6 449 429 427 

7 470 448 469 

14 548 505 536 

21 662 566 598 

28 756 612 642 

56 891 725 750 

84 986 796 846 

112 1027 865 883 
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Mixture 3: 

Fresh and Hardened properties: 

Date: February 9-10, 2016 Time: 4:10 PM 

Company: County Materials Janesville Temp: 2˚ F 

Mixture: 4 

Fresh Properties 

 
Value Units Notes 

Slump Flow: 25 Inches 

 

VSI: 1 Visual Index 

T20: 2.4 Seconds 

J-Ring: 24.75 Inches 

Column 

Segregation: 
10.85 % 

Air Content: 1.6 % 

Unit Weight: 147 lbs/ft
3 

Concrete Temp: 69 ˚ F 

Hardened Properties 

 
1 2 3 

  
Compressive 

Strength: 

6070 5905 6120 psi (16 hr) 

12248 12643 12445 psi (28 days) 

 

Shrinkage Plant Sample Measurements: 

Mixture 3 

Time 

(Days) 

Prism 1 

(in) 

Prism 2 

(in) 

Prism 3 

(in) 

0 -0.0290 -0.0297 -0.0276 

1 -0.0295 -0.0303 -0.0281 

2 -0.0298 -0.0307 -0.0286 

3 -0.0301 -0.0322 -0.0291 

4 -0.0302 -0.0327 -0.0297 

5 -0.0305 -0.0333 -0.0302 

6 -0.0315 -0.0343 -0.0305 

7 -0.0324 -0.0344 -0.0309 

14 -0.033 -0.0347 -0.0312 

21 -0.0338 -0.0352 -0.0316 

28 -0.0343 -0.0355 -0.0321 

56 -0.0345 -0.0356 -0.0327 
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84 -0.0355 -0.0361 -0.0333 

112 -0.0358 -0.0366 -0.0336 

Shrinkage Laboratory Samples Measurements: 

Mixture 3 

Time 

(Days) 

Prism 1 

(in) 

Prism 2 

(in) 

Prism 3 

(in) 

0 0.0542 -0.0121 0.0503 

1 0.0544 -0.0122 0.0505 

2 0.0548 -0.0124 0.0506 

3 0.0551 -0.0126 0.0509 

4 0.0552 -0.0127 0.0511 

5 0.0554 -0.0129 0.0514 

6 0.0556 -0.0132 0.0516 

7 0.0559 -0.0135 0.0519 

14 0.0564 -0.014 0.0524 

21 0.0568 -0.0144 0.0529 

28 0.0573 -0.0149 0.0537 

56 0.0592 -0.0156 0.0544 

84 0.0598 -0.0168 0.0556 

 

Creep Plant Measurements: 

Mixture 3 

Time 

(Days) 

Cylinder 1 

(µε) 

Cylinder 2 

(µε) 

Cylinder 3 

(µε) 

0 0 0 0 

1 160 693 252 

2 241 5 303 

3 308 623 393 

4 368 662 458 

5 423 724 526 

6 469 801 595 

7 540 890 658 

14 628 937 768 

21 749 976 873 

28 831 1002 939 

56 925 1072 1041 

84 1007 1116 1145 

112 1073 1082 1185 
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Mixture 4: 

Fresh and Hardened properties: 

Date: February 9-10, 2016 Time: 3:10 PM 

Company: County Materials Janesville Temp: 2˚ F 

Mixture: 6 

Fresh Properties 

  
1 Units Notes 

Slump Flow: 26.25 Inches 

 

VSI: 1 Visual Index 

T20: 2 Seconds 

J-Ring: 26.12 Inches 

Column 

Segregation: 
9.74 % 

Air Content: 1.1 % 

Unit Weight: 151.4 lbs/ft
3 

Concrete Temp: 70 ˚ F 

Hardened Properties 

 
1 2 3 

  
Compressive 

Strength: 

4995 4920 4485 psi (16 hr) 

   
psi (28 days) 

 

Shrinkage Plant Sample Measurements: 

Mixture 4 

Time 

(Days) 

Prism 1 

(in) 

Prism 2 

(in) 

Prism 3 

(in) 

0 -0.0031 -0.0382 -0.0327 

1 -0.0034 -0.0386 -0.0331 

2 -0.0035 -0.0389 -0.0333 

3 -0.0037 -0.0392 -0.0335 

4 -0.0039 -0.0394 -0.0338 

5 -0.0044 -0.0397 -0.0342 

6 -0.0048 -0.0398 -0.0347 

7 -0.0051 -0.04 -0.035 

14 -0.0054 -0.0407 -0.0353 

21 -0.0056 -0.0416 -0.0356 

28 -0.0059 -0.0422 -0.0357 

56 -0.0064 -0.0426 -0.0365 
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84 -0.0069 -0.0432 -0.0368 

112 -0.0072 -0.0436 -0.0372 

  

Shrinkage Laboratory Samples Measurements: 

Mixture 4 

Time 

(Days) 

Prism 1 

(in) 

Prism 2 

(in) 

Prism 3 

(in) 

0 0.001 -0.0382 -0.0327 

1 0.0012 -0.0386 -0.0331 

2 0.0015 -0.0389 -0.0333 

3 0.0017 -0.0392 -0.0335 

4 0.0019 -0.0394 -0.0338 

5 0.002 -0.0397 -0.0342 

6 0.0022 -0.0398 -0.0347 

7 0.0024 -0.04 -0.035 

14 0.0031 -0.0407 -0.0353 

21 0.0038 -0.0416 -0.0356 

28 0.0044 -0.0422 -0.0357 

56 0.0058 -0.0426 -0.0365 

84 0.0068 -0.0432 -0.0368 

 

Creep Plant Measurements: 

Mixture 4 

Time 

(Days) 

Cylinder 1 

(µε) 

Cylinder 2 

(µε) 

Cylinder 3 

(µε) 

0 0 0 0 

1 296 321 354 

2 342 364 489 

3 384 412 542 

4 512 446 593 

5 533 488 618 

6 561 511 651 

7 589 531 683 

14 662 628 781 

21 719 699 862 

28 793 765 939 

56 900 842 1100 

84 983 978 1237 

112 1057 1078 1298 
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Mixture 5 

Fresh and Hardened properties: 

Date: February 11-12, 2016 Time: 2:00pm 

Company: Spancrete Temp: -1 ˚ F 

Mixture: 9 

Fresh Properties 

 
1 Units Notes 

Slump Flow: 23 Inches 

 

VSI: 0 Visual Index 

T20: 4.96 Seconds 

J-Ring: 20 Inches 

Column 

Segregation: 
5.6 % 

Air Content: 2.6 % 

Mass 

(Pock.+Conc) 
39.05 lbs/ft

3 

Unit Weight: 123.6 lbs/ft
3 

Concrete Temp: 65 ˚ F 

Hardened Properties 

 
1 2 3 

  
Compressive 

Strength: 

9262 8966 9219 psi (16 hr) 

11751 11416 11690 psi (28 days) 
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Shrinkage Plant Sample Measurements: 

Mixture 5 

Time 

(Days) 

Prism 1 

(in) 

Prism 2 

(in) 

Prism 3 

(in) 

0 -0.0484 0.0112 - 

1 -0.0489 0.0109 - 

2 -0.0493 0.0105 - 

3 -0.0499 0.01 - 

4 -0.0506 0.0097 - 

5 -0.0509 0.0094 - 

6 -0.0513 0.0092 - 

7 -0.0516 0.0089 - 

14 -0.0521 0.0084 - 

21 -0.0524 0.008 - 

28 -0.0527 0.0075 - 

56 -0.0531 0.007 - 

84 -0.0534 0.0065 - 

112 -0.0537 0.0061 - 

  

Shrinkage Laboratory Samples Measurements: 

Mixture 5 

Time 

(Days) 

Prism 1 

(in) 

Prism 2 

(in) 

Prism 3 

(in) 

0 0.0853 -0.0195 0.0069 

1 0.0855 -0.0193 0.0073 

2 0.0857 -0.019 0.0075 

3 0.0858 -0.0188 0.0076 

4 0.086 -0.0185 0.0078 

5 0.0863 -0.0183 0.008 

6 0.0865 -0.0181 0.0083 

7 0.0867 -0.0179 0.0093 

14 0.0872 -0.017 0.0101 

21 0.0876 -0.0165 0.0106 

28 0.0883 -0.0161 0.011 

56 0.089 -0.0154 0.0116 

84 0.0896 -0.0149 0.0122 
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Creep Plant Measurements: 

Mixture 5 

Time 

(Days) 

Cylinder 1 

(µε) 

Cylinder 2 

(µε) 

Cylinder 3 

(µε) 

0 0 0 0 

1 351 295 395 

2 394 316 442 

3 442 361 470 

4 477 396 491 

5 512 421 726 

6 538 457 752 

7 568 488 788 

14 651 650 893 

21 734 711 985 

28 797 762 1067 

56 920 923 1194 

84 1023 996 1303.333 

112 1087 1073 1381 
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