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ABSTRACT 

 

DIFFERENCES IN RUNNING MECHANICS BETWEEN OVERWEIGHT/OBESE 

AND HEALTHY WEIGHT CHILDREN 

 

KRISTEN ROLES 

2016 

 

Background/Purpose: Physical activity is commonly prescribed to reduce childhood obesity. 

However, due to differences in mechanics during low-impact activities, such as walking, obese 

children may be more prone to negative physical complications during high-impact activities, 

such as running. Therefore, this study analyzed the mechanical differences in running mechanics 

between healthy weight (HW) and overweight/obese (OV/OB) children. We hypothesized that 

when compared to HW children, OV/OB children would display higher vertical loading, greater 

joint moments and greater joint angular impulses during running. We also expect decreased 

sagittal plane range of motion and increased frontal plane range of motion of the hip, knee, and 

ankle joints in the OV/OB group during running. Methods: Ground reaction force (GRF) and 

joint kinematic data were collected for 42 children (25 HW, 17 OV/OB) while they ran across an 

implanted GRF platform at a given speed of 3.5 ± 5% m/s. Spatial-temporal and joint kinetic data 

(ankle, knee, & hip) were also determined. A one-way ANOVA was used to compare group 

differences for all variables of interest (p<0.05). Box plot analyses were used to identify and 

remove outliers. Results: Compared to HW children, OV/OB children displayed significantly 

greater: stance time, shorter step lengths, absolute GRF’s, and relative GRF’s, specifically, the 

peak vertical force, the vertical impulse, braking impulse, and propulsive impulse. In addition, 

OV/OB children experienced significantly greater knee adduction and hip abduction moments. 

Conclusion: Exercise progression for OV/OB children from low impact to high impact activities 
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should be considered when prescribing exercise. This progression could allow the body to adapt 

to the increased physical demand over time and decrease the child’s risk of pain or injury. 

KEY WORDS: 

Joint Kinematics, Joint Kinetics, Ground Reaction Forces, Physical Activity, Injury 
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LITERATURE REVIEW 
 

 This literature review looks to capture the findings on the topics of childhood obesity and 

biomechanics as it relates to the proposed study. Throughout this review, the reader will obtain a 

better understanding of the worldwide growth of obesity, weight management, the progression of 

obesity from childhood to adulthood, the consequences of obesity, and how obesity is assessed. In 

addition, an overview of the biomechanical considerations are presented. Biomechanical topics 

include mechanical development and its effect on the body in static and dynamic situations, joint 

angles and moments, ground reaction and joint reaction forces, associated risks, and methods to 

collect data for obese participants. This literature review intends to critically analyze the 

published information with regards to the proposed topic. 

 

Childhood Obesity 

 From 1980 to 2010, obesity rates for children 6-11 years of age within the United States 

have increased by 11%.
1
  Similar trends were reported for children 12-19 years of age recording a 

13% increase throughout the same time frame.
1,2

  Spain, the United Kingdom, France, and Greece 

have all reported increased childhood obesity rates over the last three decades.
3,4

 According to the 

Organization for Economic Co-operation and Development (OECD), one in five children across 

the countries of Brazil, Mexico, and Canada are overweight or obese.
5
  Similar to the United 

States, Greece and Italy’s childhood obesity rates are nearly one in three children.
5
  While the 

findings from Tambalis et al. suggest that childhood obesity levels have plateaued in recent years, 

the number of children with excess body weight from adipose tissue remains high.
1,6 

Not only has 

obesity increased the number of individuals suffering from long term health consequences such as 

cardiovascular and metabolic diseases, obesity is also associated with an increased risk of 

physical consequences including skeletal mal-alignments and joint degenerative diseases.
7
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Understanding obesity and its main causes may help clinicians and health professionals to reduce 

childhood obesity rates worldwide. 

Research suggests that increasing physical activity, decreasing sedentary time, and 

improving diet are among the leading methods in decreasing childhood obesity rates.
8-11

  Children 

who participate in regular physical activity and receive proper nutrition are better suited to reach 

full growth and development.
11

 However, a lack of physical activity and poor eating patterns 

makes children more susceptible to increases in body weight.
12

 Sustaining excess body weight 

throughout childhood is associated with risks that can be detrimental to the child’s future. Excess 

body weight may limit physical growth and increase their risk of injury and development of 

negative health outcomes such as metabolic syndrome.
13,14

  Understanding the relationship 

between these primary factors will help researchers combat childhood obesity by developing 

preventative measures and treatments for our youth.
15,16

 By limiting the negative effects of 

obesity, health professionals can help children to reach their full development and reduce the risk 

of both injury and negative health consequences. 

To fully comprehend the impact of childhood obesity, researchers must evaluate weight 

gain and weight loss, the risks of becoming an obese adult, and obesity associated health 

consequences. Weight management, particularly weight loss is increasingly important as children 

accumulate excess body weight. As children sustain excess body weight, their likelihood of 

maintaining that weight into adulthood increases resulting in a greater risk of both physical and 

health complications.
17

 By understanding these consequences, we can help to educate OV/OB 

individuals and promote healthier lifestyles. Without proper education children may continue to 

add on body weight throughout their lifetime which may reduce their overall quality of life.
18

 

Weight Management 

An increase in body mass adiposity can be explained by an increase in caloric 

consumption and/or a decrease in caloric expenditure.
19-21

 Increases in caloric consumption have 

been related to increased portion sizes, increased snacking, and reduced consumption of food 
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made from within the home.
19,22

  Ford et al. found adjusted mean energy intake increases  of 

1,955 kcal/day from 1971-1975 to 2,195 kcal/day from 2009-2010.
21

  As food consumption 

outside the home increases, individuals are consuming more calories per day with poorer food 

quality when compared to food consumption made from within the home. Reducing caloric intake 

may be one method to help OV/OB children decrease excess adipose tissue over time. 

In addition to increased energy intake, decreased energy expenditure has been reported 

due to decreased physical activity participation.
19

 According to the Center for Disease Control 

and Prevention (CDCP), children and adolescents should engage in 60 minutes or more of 

physical activity every day.
23

  Recommended physical activities should include aerobic, muscle-

strengthening, and bone-strengthening exercises with at least three days per week including 

vigorous intensity exercise.  Aerobic exercise varies by intensity with a brisk walk being a 

moderate intensity and running a vigorous intensity.
23

  Common muscle and bone strengthening 

activities such as push-ups, jumping jacks, and body-weight movements assist in muscle and 

bone growth that is essential throughout life.
23

 Promotion of physical activity each day is essential 

for the development of strong bones. Regular participation in weight-bearing activities assists in 

building and maintaining bone and muscle which is highly important throughout the growing 

stages of childhood.
23

 Approximately 90% of bone mass development occurs during 

adolescents.
24-26

  Bailey et al, found a 9% and 17% increase in total body bone mineral density in 

active boys and girls, respectively, compared to their inactive peers.
24

 Physically inactive children 

decrease their odds of developing their bone to optimal growth levels which may make them 

more susceptible to injuries during falls, collisions, and/or crashes.
27

   

Unfortunately, many children do not meet physical activity guidelines.
28

  Research 

collected using a self-report survey has shown that fewer than 50% of children reach the 

recommended amount of physical activity of at least five days per week for at least 60 minutes.
29

  

Other reports from the CDCP show the percentage not meeting guidelines closer to less than 30% 

across the United States. This shows that throughout a child’s day, children are engaging in less 
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physical activity than ever before.
30

  This decrease in physical activity has been suggested to be a 

result of less physical education and recess time, decreased participation in after school activities, 

and decreased physical activity at home.
30

 

In addition to physical inactivity, the amount of sedentary time a child accrues daily may 

impact their overall energy expenditure. Developed countries such as the United States have 

reported increased levels of sedentary time.
31

 Sedentary time refers to any activity characterized 

by an energy expenditure ≤ 1.5 metabolic equivalents, typically in a sitting or reclined position; 

excluding sleep.
32

 Berkey et al. found a significant relationship between increases in Body Mass 

Index (BMI) and sedentary time, with sedentary time described as time spent watching television, 

playing video games, or time on the computer.
 15,33

 
34

 Today, children in the United States have 

higher levels of sedentary time than previous generations making sedentary time a major 

concern.
10,31

  Due to these increases, the American Academy of Pediatrics recommends that youth 

over two years of age spend no more than two hours each day with screens. Wethington et al, 

conducted a study using the 2007 National Survey of Children’s Health data and found overall, 

20.8% of 6-11 year olds and 26.1% of 12-17 year olds had excessive screen time (>2 hours per 

day).
10

  In addition, for both age groups, children with a bedroom TV reported significantly 

higher screen time at 27.6% compared to children without a bedroom TV at 14.7%.
10

  Maher et 

al, found that high screen time was associated more strongly with obesity than the individual’s 

amount of moderate-to-vigorous physical activity.
31

  The combination of increased BMI and 

sedentary time may result in less bone mineral density for obese children resulting in a greater 

risk of injury or joint degenerative diseases.
35

 In addition to physical concerns, increased 

sedentary time has shown to produce negative long term health effects such as cardiovascular and 

metabolic risk factors.
33,36

  Recent research indicates that sedentary time is considered as its own 

independent risk factor for cardiovascular disease, all-cause mortality, and physiological and 

psychological complications.
9,36
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While the primary reasoning for the increase in body mass in the United States remains 

undetermined, a combination of increased energy intake and decreased energy expenditure are 

key contributors.
12

  Exercise prescription targeting OV/OB children is important since these 

children are already carrying excess adiposity. While in general, obese children have comparative 

upper extremity strength when compared with non-obese peers, Riddiford-Harland et al. found 

that during weight bearing activities, obese children’s lower limb function was significantly 

hindered.
37

 The impact regular physical activity participation has on children’s vertical load rates 

and other gait mechanics remains unclear. While a child’s body undergoes many physical 

changes throughout adolescence, participation in regular physical activity has been shown to 

increase bone density, which may influence the child’s ability to adapt to increased loading 

during common physical activities when compared to a physically inactive child.
11,38

 If OV/OB 

children experience increased load rates during high impact activities, such as running, they may 

be increasing their risk of injury and joint degenerative diseases. While the benefits of increased 

physical activity outweigh the risks of injury associated with physical activity participation, 

exercise prescriptions for OV/OB children must consider the mechanical implications of high 

impact exercise while promoting regular physical activity participation.
9
 Physical activity for 

OV/OB children may need to be modified in order to reduce the potential for injuries associated 

with increased obesity. 
27,39

.  Additionally, understanding the implications infrequent participation 

in high-impact exercises may have for inactive children regardless of weight status is important. 

To reduce obesity rates, focus must be placed on improving dietary habits and increasing 

participation in physical activity. Providing OV/OB individuals with the knowledge to make 

healthy dietary and exercises choices is essential to the reduction of obesity around the world for 

individuals of all ages.
29,40

 

Childhood Obesity into Adulthood 

The positive association between childhood and adult obesity is not surprising given BMI 

increases are positively associated with increasing age.
4,7,17,40,41

 Freedman et al. analyzed data 
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from a cross-sectional (n=10,099) and longitudinal (n=2,392) study of children ranging from ages 

5 to 17 years (mean age of 11.4 years). Of children with a BMI between the 95
th
 and 98

th
 

percentile, classified as obese, 84% became obese adults.
7
 All children with a BMI ≥ 99

th
 

percentile, classified as morbidly obese, became obese adults.
7
 After age six, the probability of an 

obese child becoming an obese adult surpasses 50%, while non-obese children’s risk is 

approximately 10%.
17

 To prevent obese children from becoming obese adults, additional 

measures must be taken to promote healthy living at a young age.  

Being an obese adult leads to negative health consequences including risk of 

cardiovascular and metabolic diseases.
14

 At any age, obese and non-obese children are more 

likely to become obese adults if even one of their parents is obese.
17

 Children born to obese 

parents are more likely to be obese themselves.
17

 While an obese child has an increased risk of 

becoming an obese adult, health strategies including exercise and diet can reduce these risks, thus 

decreasing the prevalence of obesity among children.
17

 By decreasing the number of obese 

children from becoming obese adults, health professionals can limit the chronic negative health 

consequences experienced by the individual, therefore improving the overall quality of life of 

children.
40

  

In addition to negative health consequences, excess body weight sustained from 

childhood into adulthood may increase a child’s risk of suffering from lower extremity injuries 

and joint degenerative diseases.
35,42,43

 Lerner et al., found that during walking, obese children 

have increased vertical ground reaction forces on their lower extremities when compared to non-

obese children.
44

 Increased vertical ground reaction forces are associated with an increased risk of 

injury and joint degeneration.
45

 Depending on the child’s rate of development, their body may not 

be able to accommodate the excess mass and therefore may not be able to adapt to the increased 

forces.
35

 Previous research displayed that as body mass increases, the surface area of adjoining 

bones does not increase proportionately.
35

 Without proper adaption of the lower extremity 

skeletal structure, a child’s risk of injury and joint degeneration may be increased.
46

 Preventive 



P a g e  | 7 

 

measures need to be taken to reduce the increased ground reaction forces experienced by OV/OB 

children while decreasing the risk of becoming an obese adult.   

Consequences of Childhood Obesity 

In addition to injury and the potential risk of developing joint degenerative diseases, 

childhood obesity has been reported to lead to a number of acute and chronic negative health 

consequences.  Evidence suggests that due to obesity, for the first time in over a century, life 

expectancies in the United States are anticipated to decrease.
11,47

  Obese children are more prone 

to acute cardiovascular risks such as hypertension and hypercholesterolemia than non-obese 

children.
7,15,48,49

  Data collected from children with a BMI ≥ 95
th
 percentile showed that 70% of 

obese children have a minimum of one risk factor for cardiovascular disease.
7,50

 As expected, the 

percentage of obese children suffering from at least one cardiovascular disease risk factor 

increased as BMI increased toward the 99
th
 percentile.

7
  National data indicates that children 

classified as OV/OB are approximately 10 times more likely to have at least two risk factors for 

metabolic syndrome than those classified as non-obese.
51

 Developing strategies to reduce 

childhood obesity may lessen these risk factors while increasing life expectancy.   

However, as the duration of time spent being obese increases, the risk of susceptibility to 

long term health issues increases.
27

  Chronic effects of childhood obesity have been reported in 

association with heart disease, stroke, osteoarthritis, and certain cancers.
49,52

  Specifically, 

vascular fatty streaks, raised lesions in the coronary arteries and aorta, increased left ventricular 

mass, and premature mortality are prevalent with obese individuals.
7,53

  However, OV/OB 

children who meet dietary and physical activity guidelines decrease their risk of suffering from 

these negative health related issues.
54

 

In addition to a child’s physical health, obesity impacts children in many other aspects of 

life.  Childhood obesity has been associated with symptoms of depression and reduced self-

esteem.
9,55

  Research indicates that severity of obesity is positively and negatively correlated to 

the child’s level of depression and quality of life respectively.
55

 Regardless of a child’s mental 
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and weight status, children who meet physical activity guidelines set by the CDCP display 

improved academic performance.
54,56

  Increased physical activity levels have also been shown to 

improve children’s overall behavior in and out of the classroom.
56

 A strong positive association 

was found between physical activity and improvements on measures of anxiety and depression 

symptoms, dependent on mode of exercise.
38,57

 Reducing obesity during childhood may help 

children to be more confident and successful throughout their lifetime.  

As childhood obesity rates remain at an all-time high, strategies must be taken to treat, 

inform, and prevent further occurrence of this epidemic. Arguably the most important strategy for 

decreasing obesity rates is promoting physical activity. Although physical activity is an important 

method used to reduce obesity, considerations must be given to the potential negative 

consequences weight bearing activities, such as walking, running, and jumping may be having on 

obese children.
2,44

 If obese children are experiencing increased joint loading during weight 

bearing activities, health professionals may need to reevaluate how exercise is prescribed. Proper 

reevaluation would include keeping children active through a combination of weight bearing and 

non-weight bearing physical activities.  Promotion of proper exercise prescription for obese 

children is an important step to decreasing obesity rates while maintaining joint health. 

Assessment of Obesity 

A variety of options are available to determine a child’s body fat composition.  

Commonly used methods include the dual-energy x-ray absorptiometry (DEXA), hydrostatic 

weighing, bioelectrical impedance, BMI calculations, and skinfolds.
58

  While DEXA is 

considered the gold standard for determining body fat percentage, a commonly used measure 

developed by the CDCP incorporates the child’s date of birth, gender, height, and weight to 

determine BMI for children specific to their demographics.
59

  This BMI is analyzed on a growth 

chart (Figure 1 – Chart for boys) to determine whether the child is classified as underweight (< 5
th
 

percentile), healthy  (≥ 5
th
 and < 85

th
 percentile), overweight (≥ 85

th
 and < 95

th
 percentile), or 

obese (≥ 95
th
 percentile).

7,27,39,60
  BMI percentile has been established as an accepted method for 
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determining body composition 

for ages 2 through 19 years with 

validation across many national 

and international studies.
7,59,61-65

 

Using BMI percentile is very 

important for the 2-19 age group. 

Throughout this time frame, a 

child’s body can vary greatly,                                            

depending on their maturation 

level, thus accounting for age, 

height, weight and sex can 

provide a more accurate depiction 

than using an absolute BMI 

would. The BMI percentile 

calculator also serves as an 

efficient, reliable, and cost-effective                Figure 1: BMI Percentile growth chart for boys
1 

measurement tool for evaluating body composition in children and provides researchers with the 

necessary information to correctly categorize children’s BMI. CDCP’s BMI-for-children 

calculations are a nationally accepted method that are easily operated and provides researchers 

the necessary information to properly group the participants by weight status.  

 

Biomechanical Considerations 

While biomechanical analysis of human motion has allowed researchers to increase their 

overall knowledge of human movement, research is still lacking regarding the impact obesity has 

on the biomechanics of human movement. In 2012, more than one third of Americans were 

classified as OV/OB.
66

 This trend has led to many concerns regarding the impact of obesity on the 
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body during activities of daily living and common physical activities. Some of these concerns 

include increased frequency of lower extremity pain, injury, and joint degenerative diseases 

experienced by obese individuals.
27,67

  

Developmentally, early childhood (4 to 6 years) to early adolescence (12 years) may be 

considered one of the most important developmental stages in life.
68

 Throughout early childhood 

and adolescence, a child’s ability to develop fundamental motor skills is at an optimal level.
69

 An 

important aspect in the progression of these motor skills includes physical activity. Participation 

in physical activity helps teach children how to control their movements and how to interact with 

their surroundings.
70

 In addition, participation in physical activities during childhood aids in 

increasing bone density, potentially decreasing their risk of bone injury.
71

 Bonjour et al, found 

that a major determinant of risk for fractures was reduced bone accrual during childhood and 

adolescents.
72

 If an obese child is unable to adequately increase bone density, the lower extremity 

bone structure may experience increased forces due to excess adiposity.
46

 The bones and joint 

articulations of obese children have been reported to not grow proportionate to the amount of 

weight gained.
2,73

 The increased weight without a proportionate increase in joint surface area will 

increase the joint reaction forces occurring during physical activity. Failure to compensate for 

these increased forces may result in an increased risk of pain, injury, and joint complications.
74

 

The mechanical implications obesity has on the skeletal framework of a child’s body is 

cause for major concern. Commonly experienced complications include increased risk of lower 

extremity mal-alignments, slipped capital femoral epiphysis, and increased joint loading during 

walking and landing tasks.
2,35,75,76

 Each of these complications may impact a child’s injury risk, 

perception of physical activity, and overall willingness and capability to be physically active.  

Associated Risks 

Obesity causes many negative physiological and mechanical implications on the body. 

Some of these negative effects include increased risk of cardiovascular and metabolic diseases 

and development or progression of joint degenerative diseases. Not only is obesity an issue, but 
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the severity of the obesity also becomes a factor. As a child’s BMI increases the risk of 

experiencing lower extremity pain or injury increases.
27

  In addition, as severity of obesity 

increased, the risk of experiencing musculoskeletal pain increases.
77

  Of 135 children, 61% 

reported musculoskeletal pain with the highest reported areas being the back (39%), the feet 

(26%), and the knees (24%).
77

   Children who are moderately obese are 25% more likely, and 

severely obese are 35% more likely, to experience a lower extremity injury than non-obese 

children.
27

  Similarly, Kessler and colleagues found that overweight, moderately obese, and 

extremely obese children were all at an increased risk of fractures to the foot, ankle, and knee 

compared to non-obese children at all ages.
78

 Of these children, all had an increased odds ratio of 

foot fractures of 1.14, 1.23, and 1.42, respectively. In addition, at the ankle, knee, and leg their 

odds ratio was 1.27, 1.28 and 1.51 respectively. These findings suggest a relationship between 

excess adiposity during childhood and risk of musculoskeletal injury. 

Osteoarthritis, a degenerative disease of the movable joints, is a major risk factor 

associated with obesity; particularly common in the knee and hip joints.
74

  Felson et al, found the 

prevalence of osteoarthritis is dramatically increased in the obese population compared to the 

non-obese population for both genders.
74

  Similarly, Cooper et al, found an increase in BMI is 

related to an increased likelihood of suffering from osteoarthritis.
79

  Women were at a greater risk 

than men at each given BMI for developing osteoarthritis.
74

  Individuals with a BMI > 28 (kg/m
2
) 

were 1.7 times more likely to suffer from hip osteoarthritis compared to those with a BMI < 24.5 

(kg/m
2
).

79
  While the odds of an obese individual developing osteoarthritis is significantly higher 

than those who are non-obese, their additional risk of injury may put them at an even greater odds 

since prior injury also increases the risk.
79

 

The best proven method for reducing the odds of suffering from these risks is decreasing 

excess body weight.
80

  Participation in physical activity is the best method of losing this excess 

weight, however exercise prescriptions must consider the loads placed on the body during 

different types of exercise. It may be necessary to develop a progression from low- to high-impact 



P a g e  | 12 

 

exercises to reduce the potential effects of increased vertical loading displayed during some 

activities.   

Static and Dynamic Situations 

 Static Situations 

 Obesity throughout adolescence has been shown to have adverse effects on bone 

maturation and alignment.
35,81

 Overweight children report more orthopedic complaints including 

musculoskeletal discomfort and lower-limb mal-alignment when compared to HW.
35,42

 Mal-

alignments experienced by OV/OB children appear to increase joint instability which may result 

in further complications to an already vulnerable area.
82

  

Commonly diagnosed mal-alignments include genu varum (bowing of the legs) and genu 

valgum (knocked-knees). 

A study conducted by 

Taylor et al, used DEXA 

scans to examine lower 

extremity alignments in 

children.
35

 This study 

found that metaphyseal-

diaphyseal and anatomic 

tibofemoral angle 

measurements, both of 

which are used to                Figure 2: (a) normal alignment, (b) genu varum, (c) genu valgum 

represent degrees of varus alignment, showed greater mal-alignment for overweight children 

compared with HW children.
35

 Both genu varum and genu valgum result in uneven loading of the 

joints which may increase the risk of joint degeneration.
35,83

 As can be seen in Figure 2, excessive 

genu valgum or genu varum increases loads on the medial and lateral femoral articulations 

respectively. Both genu valgum and genu varum mal-alignments have been reported to increase 
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the risk of developing knee osteoarthritis.
83,84

 Depending on the severity of the child’s obesity        

and of their mal-alignment, immediate steps may need to be taken to correct the mal-alignment. 

Pirpiris et al. found a clear association between increased BMI and children requiring surgery for 

the treatment of Blount’s disease, a disease causing the lower leg to angle iHWard.
85

 Failure to 

correct a mal-alignment may result in further damage to the lower extremity joints including a 

commonly associated effect, osteoarthritis.
42,82,86-88

  

The relationship between adult obesity, mal-alignments and the progression of 

osteoarthritis has been well established.
43

 Schouten et al. found a five-fold increase in the 

progression of osteoarthritis for adult patients who suffered from genu varum or genu valgum 

throughout childhood.
89

 Similarly, Messier et al. showed a fourfold increase in knee joint 

compressive forces for every pound increase in body weight.
84,90

 Not only does obesity increase 

the likelihood of total joint replacement surgery among younger adults, but it has a clear impact 

on the structural development, primarily at the knee, which may hinder the functionality of the 

hip.
91

 A common hip injury experienced by obese children is slipped capital femoral epiphyses 

(SCFE) as seen in Figure 3. SCFE occurs when the proximal femoral epiphysis separates from the 

metaphysis, in a non-traumatic occurrence.
92

 The inability for the skeletal system to sufficiently       

Figure 3: Normal (Left) versus Slipped Capital Femoral Epiphysis (Right)                       



P a g e  | 14 

 

adapt to excessive body weight is reported to being the leading causes of SCFE.
75,87,93

 Manoff et 

al., found that of 160 children who had suffered from SCFE, 81.1% of these individuals had a 

BMI above the 95
th
 percentile.

94
 Furthermore, there appears to be an association between BMI   

and the development of bilateral versus unilateral SCFE, with the mean BMI of patients suffering 

from bilateral SCFE being significantly greater than that of patients with unilateral SCFE.
93

 

While the main cause of SCFE is unknown, many researchers believe that mal-alignments 

commonly found in OV/OB children combined with increased loading during walking and other 

movements predispose OV/OB children to the development of SCFE.
92

  

For OV/OB children suffering from a mal-alignment, increased forces on the knee joint 

may result in force increases at the hip joint. Force increases at both the knee and hip joint may 

result in a higher sensitivity to injury, especially during high-impact activities.
94

 While reducing a 

child’s weight can help lower an OV/OB child’s risk of mal-alignment, if SCFE occurs, surgery 

is needed to correct it.
94

 Undergoing surgery can result in extended periods of non-weight bearing 

activity, further hindering bone growth and development.
95

 The negative effect of poor bone 

mineral density during childhood is likely to have lasting effects that may have negative 

consequences leading up to and throughout adulthood.
24

 

To reduce the negative implications of obesity related mal-alignments, health 

professionals need to consider methods to lessen or eliminate a child’s risk of suffering from a 

mal-alignment. First, regular participation in physical activity should be considered to reduce the 

child’s weight. 

Weight reduction by an OV/OB child may alleviate stress experienced at the lower extremity 

joints. While participation in physical activity is important for weight reduction, researchers must 

prescribe activities that will protect OV/OB children from further harm. Exercise prescription 

should consider a combination of weight bearing activities and non-weight bearing activities, 

such as swimming, to reduce the child’s weight. Weight reduction is associated with a decreased 

risk of mal-alignments and the negative consequences associated with mal-alignments.
43

 In 
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addition, preventative measures including brace treatments or surgery could be considered to 

limit long term effects. If left untreated a mal-alignment may worsen and could result in increased 

pain levels, further disruption to normal gait patterns, and/or deterioration of bone and tissue of 

the lower extremities which may limit the child’s ability to participate in activities of daily 

living.
25

  

Dynamic Situations 

The negative implications of mal-alignments displayed by OV/OB children in static 

situations may be exacerbated during dynamic situations. Throughout adolescence, children 

participate in walking, running, and many other weight bearing physical activities in various, 

infrequent amounts every day.
96

 Weight-bearing activities such as walking, running, and jumping 

help in the development of muscle and bone. These activities assist in the development of bone 

mineral density  which promotes the ability to perform proper movement techniques.
97

 However, 

when compared to non-obese children, the physical demands of performing weight-bearing 

activities by obese children is greater due to their increased mass.
98

 When an obese child 

suffering from a mal-alignment participates in physical activities, there may be substantial 

loading unevenly distributed at the knee.
99

 Uneven loading in addition to increased force due to 

the excess mass may significantly increase the child’s risk of pain, injury, and joint degeneration 

even in an everyday activity, such as walking.
43

 

For most individuals, walking is an essential part of human movement. Walking can 

improve health related risks by increasing physical activity and decreasing sedentary time. 

However, the gait of an obese individual appears to differ from that of a non-obese individual. 

McGraw et al. found that compared to non-obese prepubertal boys, obese prepubertal boys had 

significantly greater dual stance and mediolateral sway areas during gait.
100

 Increased time in dual 

stance may suggest decreased stability by obese individuals, while increased sway areas may be 

due to excess adiposity located on the upper leg.
100

 Obese children also appear to walk more 

rigidly, with less knee joint movement, and have a flatter food during ground contact.
76,101,102
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Decreased range of motion and increased rigidity during walking is associated with the force-time 

relationship.
103

 Since the child has limited range of motion, there is limited time for the force to 

be applied resulting in increased vertical forces.
103

 When obese children walk with a reduced 

performance, they may be more susceptible to increased pain, injury, and joint degeneration 

throughout life.
104

 Furthermore, the gait of obese adults during walking also appears to be 

hindered.
105

 When compared to non-obese adults, obese adults land with a stiffer leg during self-

selected and given walking speeds.
105

 Walking with a stiff gait increases the amount of force 

placed onto the lower extremities, which can compromise the surrounding bone and tissue.
106

 If 

the bone and tissue surrounding the lower extremity joints is compromised, the person’s risk of 

pain, injury, or joint degeneration may be further heightened. 

Not only do obese adults display altered walking mechanics, but they are doing so less 

efficiently. LaRouche et al. found that obese adults display a 62% greater absolute and 20% 

greater relative cost of walking when compared to non-obese adults completing the same task.
107

 

The extraneous work performed may cause obese individuals to fatigue faster than normal which 

may worsen their mechanics creating a greater risk of injury.
98

 The negative implications of 

obesity during walking are concerning given that when compared to other physical activities, 

such as running and jumping, walking is a relatively low-impact activity. 

Regardless of a child’s mass, as physical activity progresses from low-impact, such as 

walking, to high-impact, such as jumping, the body will experience greater forces to the body 

during impact.
2,44

 Furthermore, when body mass is accounted for, the total overall impact is even 

greater. While jumping has been shown to have many positive effects such as significantly 

improving bone density at the hip and lumbar spine in prepubescent children, obese children 

appear to land differently than non-obese children.
108

  During landing, McMillian et al. found that 

obese boys exhibited significant sagittal and frontal plane differences compared to non-obese 

boys.
2
 These differences included peak hip adduction moment, timing of peak dorsiflexion and 

knee flexion angles, and timing of peak knee extension and abduction moments which may 
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increase their risk for lower extremity injuries when participating in landing activities.
2
 McKay et 

al. found that when comparing a drop jump, counter movement jump, and jumping jack, the drop 

jump and counter movement jump performed by healthy children, resulted in  1.5 times more 

body weights of force compared to a jumping jack performed by these same children.
109

 When 

compared to obese children, HW children experience less force during low- and high-impact 

activities.
2
  Therefore, it is presumed that if McKay et al.’s study were replicated comparing 

obese children, we could anticipate even greater force differences between the different 

movements.
2
 Thus McKay et al.’s findings suggests that if prescribing jumping exercises to obese 

children, the best type of jump to incorporate is the jumping jack as it allows the child to obtain 

the benefits of muscle and bone growth while reducing the force, thus reducing risk of developing 

pain or sustaining an injury.
96

  

While the mechanical differences between obese and non-obese children during walking 

and jumping have been reported, there is limited information regarding the impacts of childhood 

obesity on running mechanics. Running is a common, vigorous intensity physical activity 

participated in by several individuals across the world. While running may be great 

physiologically to reduce obesity, there are many mechanical concerns regarding the participation 

of running by obese individuals. Increased forces experienced by obese individuals during 

walking will likely be further increased during running tasks.
44,76

 In fact, in healthy individual’s 

vertical loading rates experienced during walking increased from approximately 1.2 body weights 

of force to 2.5 body weights when running.
110

 Furthermore,  excessive vertical loading during 

running is highly associated with several different running injuries including, stress fracture, 

iliotibial band syndrome, plantar fasciitis, patella femoral pain syndrome and several others.
111

 In 

order to determine if obese children are at an elevated risk for increased joint loading during 

running a thorough investigation of the running mechanics of obese individuals is needed. 

Joint Angles and Moments 
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To understand why OV/OB and HW individuals perform dynamic activities differently, 

consideration must be given to the lower extremity joint angles and moments. Joint angles 

provide researchers with an insight into joint motions occurring during dynamic activities. During 

gait, researchers are often interested in the lower extremity joint angles and moments in the 

sagittal and frontal plane across stance. An examination of the joint mechanics during the stance 

phase of gait helps researchers understand if the movement is occurring correctly or incorrectly, 

allowing researchers to pinpoint problem areas. While running mechanics for obese children have 

yet to be analyzed, differences between OV/OB and HW children displayed during walking have 

provided health professionals insight into some functional limitations and provide a theoretical 

framework that can be used to make hypotheses about running mechanics.  

Analysis of OV/OB individuals during walking indicates that OV/OB children display 

different sagittal movement patterns than HW children. Researchers primarily observe decreased 

hip and knee flexion during the stance phase of gait.
112

 Decreased hip and knee flexion during 

gait is typically reported to be due to muscle weakness and/or injury of the hip.
113

 When 

observing the hip during gait, obese adolescents display less hip flexion and significantly lower 

hip extension moments than the HW adolescents.
114

 The reasons for these differences are likely 

due to t the excess mass of OV/OB children without the accompanying musculature needed to 

compensate.
115

 If the musculature is unable to compensate OV/OB children may not be able to 

reach the optimal amount of flexion during gait, or their muscles may fatigue more quickly 

resulting in decreased joint flexion.
116

 Furthermore, increased hip and knee flexion during stance 

is associated with eccentric loading of the knee and hip extensors which would require greater 

muscle force and a higher energy expenditure not preferred by OV/OB children.
116

 Another 

reason obese children may land with decreased knee flexion may be due to the excess amount of 

adipose tissue surrounding the lower extremity joints.
44

 Excess adiposity may be limiting the 

child’s range of motion thus hindering their ability to achieve a greater degree of hip and/or knee 

flexion during the stance phase of gait.
44

 It is possible that the muscle weakness and/or limited 
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range of motion causing decreased lower extremity flexion during stance, likely results in 

increased vertical loading, thus leading to pain, injury, or joint degeneration.
77

 It stands to reason 

that these characteristics will be exacerbated as OV/OB go from walking to a running movement. 

Frontal plane hip kinematics have been inconsistent. Some researchers have reported 

greater hip abduction angles during walking, which may be a result of increased leg 

circumduction or increased pelvic tilt due to hip abductor weakness. However, others report no 

differences between obese and non-obese individuals.
101

 If hip abduction angles are increased 

during walking, the obese individual may be trying to compensate for increased adiposity 

surrounding the lower extremities. To compensate, obese individuals may adjust their gait to 

reduce knee joint loads. This gait adjustment may result in excess forces being unevenly 

distributed to the bone and tissues surrounding the lower extremity joints. Excessive force 

unevenly distributed could increase the risk of pain, injury, or joint degeneration of the hip for 

obese children and adults.
25,117

  

Obesity’s effect on joint kinematics appears to be greatest at the knee. In the sagittal 

plane, obese children have lower peak knee flexion angles during initial foot strike and during the 

late stance phase of walking compared to non-obese children.
101

 These findings are consistent 

with findings from Ko et al., who reported decreased flexion throughout stance by obese adults 

when comparing HW adults.
118

 In addition to decreased knee flexion, obese children experience 

lower knee flexion moments at the knee during foot strike and late stance which may be a method 

of compensation for potential weakness of the knee extensors or limited joint range of 

motion.
101,119

 Muscle weakness and range of motion limitations may cause a disruption to normal 

gait. This disruption may result in an increased risk of knee instability which could result in a 

greater risk of pain or injury. If obese children are unable to produce enough knee flexion during 

stance they may increase the amount of loading placed onto the knee joint which is associated 

with many overuse running injuries such as, patellofemoral pain syndrome, tibial stress fractures, 

and plantar fasciitis.
76,120
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Obese children also display significant differences in frontal plane kinematics at the knee. 

Obese children report greater knee abduction during walking. These findings are  not surprising 

due to their higher susceptibility of mal-alignments.
101

 In addition, obese children display higher 

knee adduction and abduction moments during walking compared to HW children.
101

 Atypical 

gait patterns at the knee may be putting unevenly distributed, excess stress on the joint structures. 

As seen with the mal-alignments genu varum and genu valgum, uneven loads are distributed to 

one side of the femoral articulations. Repeated stress to these unilateral surface areas is linked to 

further knee damage.
121

  

A full understanding of what is occurring at the knee would be incomplete without 

having knowledge of what is occurring at the ankle. Research examining the ankle joint angles 

and moments of obese participants appear to be inconsistent. Gunther et al. report decreased 

plantarflexion angles,  greater dorsiflexion angles, greater plantarflexion motion, and higher ankle 

moments by obese individuals when compared to non-obese.
122

 Browning et al. reported no 

differences in ankle angles, but did find that obese individuals walked with lower muscle 

moments at the ankle.
123

 Muscle weakness around the ankle joint may be attributed to the gait 

variations between obese and non-obese individuals. Browning et al. explains that lower 

plantarflexion moments exhibited by obese individuals during the stance phase of walking may 

be due to a decreased push-off.
123

 The variation in findings may be due to differences in age of 

participants or speed of the tasks since Browning’s participants were children performing tasks at 

a walking speed while Gunther’s participants were adults, performing tasks at a running speed.   

Obese children appear to adjust their gait to accommodate for their increases in weight 

and/or lack of strength to eccentrically load, thus researchers must still consider the repercussions 

of these accommodations. During stance, if an obese child lands with decreased hip, knee, and 

ankle-dorsiflexion, they are landing with increased leg stiffness. Landing with increased stiffness 

does not allow time for the lower extremity joints to absorb the shock being placed onto those 

joint. Consequentially, the lack of shock absorption by the lower extremity joints results in a 
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greater amount of force. Increased force onto the lower extremity joints could lead to pain, injury, 

and joint degeneration. 

A connection can be made between the lower extremity joint kinematics and an obese 

child’s risk of mal-alignment. If a child is adjusting their gait due to excess adiposity, there can be 

repeated stressors placed onto the lower extremity joints, leading to a mal-alignment.
121

 However, 

more importantly is the method of weight reduction. If health professionals want to reduce an 

OV/OB child’s weight, they must also consider which activities can be performed without having 

unintended negative consequences such as excessive joint loading. Correction of gait kinematics 

may help OV/OB individuals to properly perform everyday tasks, such as walking while limiting 

harm to their body.
76

 Since walking is considered a relatively low-impact exercise, we can 

assume that a high-impact activity, such as running, would cause the findings here to be far more 

pronounced.  

Ground and Joint Reaction Forces 

Mechanical loading during childhood plays a critical role in normal skeletal growth and 

development. However, decreased physical activity time and increased sedentary time may 

impact a child’s ability to reach full development while increasing their risk of developing 

obesity. While Wolff’s Law states that bone will adapt to the loads under which they are placed, 

it does not appear that the body of an obese child is able to adjust accordingly. This lack of 

adjustment causes an increased amount of force to be placed onto a relatively smaller surface area 

resulting in a greater risk of pain or injury. One method to reduce the amount of force placed onto 

the surface area is by decreasing leg stiffness. Leg stiffness is described as the mechanical 

characteristics of the spring-mass system, so when stiffness is increased the result is a greater 

force being placed onto the lower extremities.
124

 In addition, leg stiffness is associated with the 

quantity of muscle activity about each joint.
124

 By reducing leg stiffness, an OV/OB child may 

reduce the loads placed onto their lower extremities which can reduce their risk of injury or joint 

degeneration. 
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Another kinetic factor to consider effecting everyday activities is the influence of ground 

reaction forces, primarily the vertical force. As an individual increases in mass, it is expected that 

their vertical force will increase. During walking, obese children have been found to display 

increased vertical loading including vertical impact peak and vertical load rates when compared 

to non-obese children.
2,73

 Both obese children and obese adults display similar increases to 

vertical loading when walking at a preferred and maximum walking speeds.
118

 Increased vertical 

load rates have been associated with concomitant increases to joint loading at both the knee and 

hip joints.
122

 In addition, increased vertical load rates have been linked to several overuse running 

injuries such as, plantar fasciitis and tibial stress syndrome, and to an increased risk for joint 

degenerative diseases including the risk and progression osteoarthritis.
101,125

  

In addition to ground reaction forces, joint reaction forces are found using the net inertial 

moments and net muscle moments for the two proximal segments surrounding a joint. According 

to Newton’s third law, for every action there is always an opposite and equal reaction. Schulz et 

al, found that overweight children displayed greater peak joint moments at the hip, knee, and 

ankle.
101

 Specifically, the overweight children had significantly greater hip (flexor, extensor, 

abductor, and external rotator), knee (flexor, extensor, abductor, adductor, internal rotator) and 

ankle (plantarflexor, inverter, external and internal rotators) moments compared to HW children 

during walking.
101,121

 These findings have been consistent in both self-selected and given walking 

speeds.
73,101

 However, when normalized to body weight, many significant differences for peak 

joint moments are eliminated which emphasizes the impact of excess mass on absolute joint force 

during walking.
101

 Devita and Hortobagyi,’03 found that when scaled for body weight, knee joint 

torque was significantly lower (46%), but ankle torque was significantly higher (89%) in the 

obese group compared with the non-obese group during walking at a given speed. This may be 

explained by an compensatory response by lower extremity joints when one joint has increased 

localized force on it.
126

  Changes seen by obese children give researchers reason to believe that 

BMI increases raise the risk of suffering from pain in the lower extremities
77

.  This increased 
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force and/or loading on obese children’s joints may leave them at a higher risk of lower extremity 

injuries and joint degeneration
27

.  

Both ground reaction force and joint reaction force data have been fairly consistent when 

comparing obese and non-obese participants, however joint power data has been conflicting. 

DeVita et al, found no differences in joint power between obese and non-obese adults at a given 

walking speed.
127

 Interestingly, at self-selected walking speeds obese adults displayed less knee 

joint power.
127

 MeaHWhile, Shultz et al, found significant differences between obese and non-

obese children during walking for all power phases in the sagittal plane, hip and knee power 

weight acceptance and hip power at propulsion in the frontal plane, and knee power during mid-

stance in the transverse plane.
101

 Larger joint powers in obese children would increase difficulty 

in performing activities of daily living and may decrease willingness to exercise.
101

 If an OV/OB 

child is producing greater force during running, they are at risk of experiencing a mal-alignment 

and atypical gait which could increase the child’s risk of pain, injury, and/or joint degeneration. 

Further research must be collected to determine the true impacts of obesity on lower extremity 

joint power.  

Collecting movement data of obese participants 

 Among the most important decisions in developing the methodology is determining 

which marker set to use to best capture the motion of obese individuals. Due to the large amount 

of subcutaneous adipose tissue on obese individuals, some marker set options could provide 

inaccurate results due to increased movement artifact. Lerner et al, compared the Helen Hayes 

marker set to an obesity-specific marker set as seen in Figure 4, which incorporated additional 

lower extremity markers including: medial femoral epicondyle, medial malleoli, and metatarsal 1 

and 5 markers, as well as, sacral, thigh, and shank cluster markers. In addition, a spring-loaded 

digitized pointer was used to digitally mark the anterior superior iliac spines and iliac crests. 

Analysis of the obesity-specific marker set demonstrated the ability to replicate results from the 

modified Helen Hayes when no statistical differences were found for non-obese participants 



P a g e  | 24 

 

between the two marker sets.
128

 However, when analyzing obese participants, the obesity-specific 

marker set resulted in significantly different peak hip flexion during stance and pelvic tilt angles 

when compared to the Helen Hayes marker set.
128

 These significant differences may be attributed         

to the use of the sacral cluster in unison with virtual markers to digitally model the movement of 

the pelvis. The obesity-specific model can be compared versus the use of standard markers that 

are subjected to increased artifact due to the high adiposity surrounding the pelvic region. While 

standard markers have been accepted as a valid method of tracking movement for non-obese 

individuals, researchers must consider the impact excess adiposity causes when assessing the 

movement of OV/OB individuals. 

  

...............................Figure 4: Modified Helen Hayes versus Obesity-Specific Marker Set
128
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Summary 

 Childhood obesity has rapidly progressed worldwide in the last three decades. 
8,129,1,3,4,66

  

Physical activity is a key target for preventing and treating childhood obesity.  Guidelines 

provided by the CDCP recommend children engage in 60 minutes or more of physical activity 

every day including aerobic, muscle-strengthening, and bone-strengthening with at least three 

days per week of vigorous intensity aerobic exercise.
23

  However, commonly prescribed aerobic 

activities such as running and jumping are considered high-impact activities. Pilot data has shown 

that during running, obese children display increased leg stiffness, increased vertical loading, and 

decreased lower extremity joint flexion. Activities of high-impact may cause harm to obese 

children by increasing the forces placed onto the lower extremities resulting in a greater risk of 

injuries and joint degeneration.
60

 In addition, obese adults have been shown to display less flexion 

of the lower extremities and greater vertical forces during both walking and running tasks. While 

it is likely that differences in running mechanics between OV/OB children and non OV/OB 

children will result in similar findings to those found for the walking movement, research 

conducted analyzing the obese children’s running mechanics is scarce.  To our knowledge no 

research has been completed analyzing the kinetic and kinematic variables of running between 

obese and non-obese children.  

 In order to decrease childhood obesity rates we must get children involved in regular 

physical activity. However, further research must be completed to fully understand the 

implications high-impact exercises such as running and jumping may have on obese children’s 

bodies. Understanding these variations may allow health professionals to individualize exercise 

prescription for obese children which may decrease risk of injury, joint degeneration, and other 

lower extremities complications. Improving the knowledge on obese children’s mechanics may 

provide parents, educators, and researchers the proper insight to improve obese children’s quality 

of life now and into the future. 
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INTRODUCTION 

 Within the United States, approximately one in three children is currently classified as 

overweight or obese (OV/OB).
19,129

 To combat against obesity, the Center for Disease Control 

and Prevention (CDCP) has suggested that children participate in a minimum of 60 minutes of 

aerobic exercise per day.
23

 Regular participation in physical activity throughout a childhood is not 

only important to reduce obesity, but also enables bone and muscle growth.
130

 While the 

physiological benefits of increasing physical activity have shown positive results, evidence is 

lacking regarding the mechanical loads placed on the body of an OV/OB child during many 

physical activities recommended by the CDCP.
131

   

During physical development children undergo a variety of changes including rapid 

skeletal growth and muscle maturation.
132

 During this phase of rapid change, obese children 

display different movement mechanics than non-obese children. During walking, these 

differences include slower self-selected walking speeds and greater time spent in double 

support.
76,121

 In addition, obese children walk with a more rigid posture, displaying less flexion at 

the hip and knee.
76

 Decreases in range of motion at the hip and knee joints during gait are often 

associated with increased vertical loading and leg stiffness. Stevens et al., reported increased 

vertical load rates for obese children during walking when compared to non-obese children.
83

 In 

addition, Hills and colleagues reported similar findings showing that obese children are exposed 

to considerably high loads with joint reaction forces of approximately three to five times their 

body weight during walking.
103,119

 Increased vertical loading displayed by obese children may 

explain the significant association between childhood obesity and lower extremity injuries, 

including the common injury, slipped capital femoral epiphysis.
92

 

Although mechanical loading is necessary for proper bone growth and muscle 

development in children, excessive loading may lead to joint injuries or joint degenerative 

diseases. Research indicates that as body mass excessively increases, joint surface area does not 

increase proportionally.
35

 Subsequently, the increased weight is distributed over a relatively 
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smaller surface area resulting in greater joint reaction forces to the lower extremity joints.
101

 The 

additional joint stress has been suggested to lead to musculoskeletal mal-alignments in obese 

children including slipped capital femoral epiphysis and Blount’s disease or tibia vara.
35,92

  These 

mal-alignments combined with increased loading during dynamic activities may lead to joint 

degenerative diseases, such as osteoarthritis, later in life. Both unilateral and bilateral knee 

osteoarthritis has already been linked to excessive joint loading and mal-alignments in obese 

adults.
84,106

   

While obesity has been linked to increased vertical loading during low impact activities, 

higher impact activities, such as running, may result in even greater loads acting on the lower 

extremity joints. Although running mechanics have yet to be observed in obese children, greater 

loading displayed by obese adults has been linked to the development of joint degenerative 

diseases, such as  osteoarthritis.
67

 Additionally, increased vertical loading experienced by healthy 

runners (26 ± 2 years of age) has been linked to tibial stress syndrome, plantar fasciitis and has 

also been suggested to lead to osteoarthritis.
133

 Considering the similarities in mechanics between 

obese adults and obese children during walking, and the higher impacts associated with running 

compared to walking, it is likely that obese children will also display increased vertical loading 

during running. However, there is currently no known research that examines the running 

mechanics of OV/OB children.  

Due to the increased injury risk displayed by adult runners experiencing increased 

vertical loading and the greater prevalence of knee osteoarthritis in obese adults, it is likely that 

obese children will experience increased loading during running. While CDCP guidelines 

recommend that children participate in a minimum of 60 minutes of aerobic exercise every day, 

these guidelines also suggest participation in vigorous-intensity aerobic exercises, such as 

running, a minimum of three days per week. It is undetermined if OV/OB children can safely 

participate in high impact activities without increasing their risk of injury or joint degeneration.
23

 

Therefore, the purpose of this study was to determine the mechanical differences between OV/OB 



P a g e  | 28 

 

and HW children during running. Based on obese children and adult’s commonalities in walking 

mechanics, we hypothesized that OV/OB children will display higher vertical loading during 

running compared to HW children. Furthermore, we expected joint moments and joint angular 

impulses to be higher for the OV/OB children compared to HW children. Lastly, we expected 

decreased sagittal plane range of motion and increased frontal plane range of motion of the hip, 

knee, and ankle joints in the OV/OB group during running.  

Increasing physical activity among children is an essential component of reducing 

childhood obesity rates.
1
 Equally important, is understanding the potential harmful risks of 

increased vertical loading during high impact activities. By examining the running mechanics of 

OV/OB children, greater insight can be provided on the potential risks that running may have for 

these children. Furthermore, teachers, parents and other clinicians would be better equipped in 

prescribing appropriate physical activities for OV/OB children that would still meet the CDCP 

guidelines for physical activity for children. 
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METHODS 

Participants 

 A Physical Activity Readiness Questionnaire, Injury History Questionnaire, and informed 

assent and consent waivers as approved by the Institutional Human Subjects Review Board were 

completed by the participant and participant’s guardian prior to participation. All participants had 

to be deemed healthy and free of injury during the previous three months to be eligible. An a 

priori power analysis using pilot data was used to determine the sample size needed to achieve 

statistical significance. Based on the power analysis, 42 participants were needed to adequately 

power this study (effect size =0.80, α =0.05, β = 0.20). Forty-two children between 8-12 years of 

age were recruited to participate in this study. Participants included 17 OV/OB participants (BMI 

≥85
th
 percentile) and 25 HW participants (BMI < 85

th
 percentile). Participant demographics are 

displayed in Table 1.  

Instrumentation 

 Twenty-seven reflective markers and two cluster markers were used to identify 

anatomical landmarks of the lower extremities using a modified Helen Hayes marker set. 

Inclusion of iliac crest and greater trochanter markers, as well as, thigh and shank clusters were 

used to limit artifact for the OV/OB children. Three-dimensional marker coordinates were 

collected using an eight camera (Oqus-3) Qualisys motion capture system (Qualisys, Gothenburg, 

Sweden) with a sampling frequency of 200 Hz to determine kinematic data. Ground reaction 

forces (1000Hz) were collected using an AMTI force platform (AMTI, Newton, MA) embedded 

in a 15 m ruHWay. Kinematic and kinetic data were synchronized using Qualisys Track Manager 

(Qualisys, Gothenburg, Sweden). 

Procedures 

Participants underwent a single two hour testing session at a university biomechanics 

laboratory. Following assent and consent, the participant’s name, date of birth, and sex was 

recorded. Height (m) and weight (lbs) were measured using a stadiometer and AMTI force plate 
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(AMTI, Newton, MA) respectively. Both height and weight were used in calculating Body Mass 

Index (BMI) percentile via the CDCP’s BMI percentile calculator which utilizes height, weight, 

age, and gender in its calculations.
59,134

 All participants wore standardized footwear (Nike 

Pegasus) to control for the effect of footwear on running mechanics. Participant’s leg length was 

measured bilaterally from the anterior superior iliac spine to the medial malleolus. Markers were 

placed on the anterior, posterior, and lateral portions of the shoe, lateral and medial malleolus, 

midway point of the tibia and fibula located between the knee and ankle, lateral and medial 

condyles of the knee, midway point of the femur location between the hip and knee, greater 

trochanter, anterior superior iliac spine, superior border of the iliac crest, and lumbosacral section 

of the spine (Figure 5). A five minute warm up that included light jogging and stretching was 

performed following placement of reflective markers.  A static calibration trial was then collected 

while the participant stood on a single force platform in the center of the capture volume. 

Following static calibration, anatomical markers were removed from the participant leaving only 

the tracking markers on the participant during the movement trials. Next, participants ran across a 

15 m ruHWay, embedded with a ground reaction force platform, at a given speed of 3.5 ± 5% 

m/s. Participants repeated the run 8-10 times with a minimum of one-two minutes of rest between 

trials. Trials were excluded and repeated if the participant: a) did not strike the force plate entirely 

with their dominant foot, b) ran outside of the accepted speed range during the set speed trials, c) 

adjusted their running mechanics based on force plate location, and/or d) sped up or slowed down 

while crossing the forceplate. Running speed was monitored using a photocell timing system. 

Data Reduction 

The CDCP’s BMI percentile calculator was used to determine participant placement into 

the OV/OB or HW groups.
59

 Participants classified ≥ 85
th
 percentile were placed into the OV/OB 

group, while participants ≥ 5
th
 and < 85

th
 percentile were placed into the HW group. 

Reflective markers were labeled then digitized using Qualisys Track Manager Software 

(Qualisys, Gothenburg, Sweden). The digitized markers were used to calculate joint motion using 
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Visual 3-D (C-Motion, Inc., Germantown, MD). Kinematic data was filtered with a recursive 4
th
 

order Butterworth filter at 5 Hz.
135

 Kinematic variables of interest included sagittal and frontal 

plane joint excursions of the hip, knee and ankle joints. Excursions for early stance were 

calculated from foot strike to the peak values for each movement. Total joint excursion was 

calculated as the difference between the maximum and minimum joint angles during stance. 

Customized software (LabVIEW 8.0; National Instruments, Austin, TX) was used to extract the 

variables of interest from the motion files. The average of five trials was used for statistical 

comparisons for both self-selected and given speeds. 

Ground reaction force data was filtered with a recursive 4
th
 order Butterworth filter with a 

cutoff frequency of 50 Hz.  Kinetic Variables of interest from the ground reaction force data 

during running included vertical impact peak, average vertical load rate, instantaneous vertical 

load rate, peak vertical force, and impulse. Ground reaction force variables are reported in both 

absolute values as well as values scaled to body weight.  

Three-dimensional joint and segment angles were calculated with Visual 3-D software 

(C-Motion, Inc., Germantown, MD) using an X, Y, Z Euler angle rotation sequence.
120,136

 Segment 

inertial properties were used to calculate internal joint moments and angular impulse.
126,137

  Peak 

joint moments represents the max load at the joint, whereas angular impulse represents the total 

load experienced during stance and was calculated by multiplying the load with the length of 

time.
138

 Joint moments and angular impulses were averaged over 5 trials and scaled to body 

weight. All variables of interest were calculated using a customized LabView
™

 (National 

Instruments Corporation, Austin, TX, USA) program. 

Statistical Analysis 

A one-way ANOVA was used to compare group differences for all variables of interest 

(with the exception of gender which a Chi-square test was used) using SPSS software (Version 

22.0, IBM® SPSS® Statistics, Chicago, IL, USA). The 5 trials were averaged from each 

condition and calculated for each variable. Effect sizes were calculated utilizing Cohen’s d with 
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0.2, 0.5 and 0.8 considered small, medium and large respectively.
139

 Box plot analyses were used 

to identify and remove outliers. The level of significance was set at p < 0.05. Data were presented 

as means and standard deviation. 
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RESULTS 

Demographics 

 Participant’s gender, age, height, mass, and BMI percentile can be found in Table 1. The 

OV/OB group displayed significantly greater mass (OV/OB=51.86±10.6kg, HW=36.40±7.4kg; 

p<0.001) and BMI percentile (OV/OB=23.78±3.1, HW=17.25±1.7; p<0.001) when compared to 

the HW group.   

Spatial-Temporal Variables 

All participants ran between the given speeds of 3.3 and 3.68 m/s (3.5±5%) 

(OV/OB=3.47±0.04m/s, HW=3.49±0.04m/s; p=0.21). However, the time spent in stance was 

24% longer for the OV/OB group compared to the HW group (OV/OB=0.37±0.13s, 

HW=0.29±0.10s; p=0.03). In addition, the OV/OB group displayed significantly shorter step 

lengths during running than the HW control group (OV/OB=0.74±0.07m, HW=0.79±0.07m; 

p=0.026). Both of these differences were associated with a moderate effect (d=0.73 and 0.72 

respectively). 

Ground Reaction Forces 

Results of the ground reaction force variables scaled to body weight can be found in Table 2. 

Children classified as OV/OB displayed significantly greater peak vertical force when compared 

to HW children (p=0.001; d=0.86). However, vertical impulse, braking impulse, and propulsive 

impulse during the stance phase of running were significantly greater in the OV/OB group 

compared to the HW group (p<0.05; d≥0.67). The OV/OB group displayed significantly greater 

vertical and horizontal loading when the absolute values of each of the ground reaction force 

variables are compared across the two groups.  Absolute values of the ground reaction force 

variables can be found in Table 3. No other significant group differences were detected for 

ground reaction forces (p>0.05).  

Joint Kinematics 
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Results of the sagittal and frontal plane joint excursion at the ankle, knee, and hip can be 

found in Figure 6. In the sagittal plane the HW group displayed greater knee and hip flexion 

excursions when compared to the OV/OB group (p<0.05; d>0.74). In the frontal plane, the HW 

group also displayed greater knee adduction excursions compared to the OV/OB group (p=0.029; 

d=0.86). However, the OV/OB group displayed significantly greater knee abduction excursions 

during early stance and greater ankle eversion excursions than the HW group (p=0.035; d=0.71). 

Furthermore, total ankle joint excursion in the frontal plane throughout stance was also 

significantly greater in the OV/OB group compared to the HW group (p=0.038; d=0.70). No other 

significant group differences were detected for the remaining joint kinematic variables of interest. 

Joint Kinetics 

Results of the peak joint moments and angular impulses can be found in Table 4. Results 

of the sagittal and frontal plane moments at the ankle, knee, and hip can be found in Figure 7.The 

results indicate that children who are classified as OV/OB display significantly greater max knee 

adduction and hip abduction moments than HW children (p≤0.019; d>0.90). Hip abduction 

impulse was also significantly greater in the OV/OB children compared to the HW children 

(p<0.001; d=1.40). No other differences in peak moments or angular impulses were detected. 
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DISCUSSION 

The purpose of this study was to compare running mechanics between children classified 

as OV/OB and children classified as having HW. Based on our results, it is evident that several 

kinematic and kinetic differences in running mechanics exist between these two groups of 

children.  

Spatio-temporal Differences. 

Even with both groups running the trials at the same speed, the OV/OB children 

displayed shorter step lengths and spent more time in the stance phase compared to the HW group 

of children. These findings are consistent with the findings of previous researchers who reported 

that obese children take shorter steps and spend more time in double support during walking.
119

 

da Silva-Hamu and colleagues explain that obese participants who walk with shorter step lengths 

do so in order to compensate for a reduction in joint range of motion.
140

 A limited joint range of 

motion at the lower extremity joints during running would likely result in shorter step lengths. 

Another possible reason for the shorter step lengths would be a reduction in energy expenditure 

of the task. If less energy is expended per step when shorter steps are taken, then less muscle 

torque is needed to complete each step. Regardless of the amount of energy expended, in order 

for the runner to continue moving forward, they must create sufficient impulse on the ground to 

propel the body forward. This idea may help to explain the longer stance time. By increasing the 

time spent in stance, an OV/OB child would be able to create a larger impulse to the ground 

without increasing maximum force. It is possible that the OV/OB children in this study completed 

the running trials using shorter steps and spending more time in the stance phase in order to 

reduce energy expenditure and to compensate for a reduction in joint range of motion. More 

research is needed to definitively determine if this was the case for the OV/OB children in this 

study. 

Ground Reaction Force Differences 
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The most notable of difference in running mechanics between the OV/OB and HW 

children are the absolute values for the ground reaction forces. Since OV/OB children have more 

mass than HW children, it would be expected that OV/OB children would display significantly 

greater absolute loading than HW children. However, by scaling ground reaction forces to body 

weight one makes the assumption that as body mass increases there is a proportionate increase in 

bone density, joint surface area and/or muscle mass to accommodate the increased load. 

However, researchers have reported that these changes do not occur proportionately.
35

 In 

particular, lower extremity joint surface area has been reported to not increase proportionately to 

a child’s body mass suggesting that obese children have smaller joint surface areas relative to 

their body weight. Greater absolute force distributed over a similar, or slightly larger joint surface 

area, would likely result in greater overall stress at that joint.  It is therefore necessary to examine 

the absolute values of the ground reaction force variables when comparing OV/OB and MW 

children. As expected, the absolute values for the ground reaction force variables were all 

significantly greater for the OV/OB children compared to the HW children (Table 3). These data 

suggest that the OV/OB children in this study may have disproportionately greater loading at their 

joints.  

Contrary to what we hypothesized no differences were detected for several of the ground 

reaction force variables when scaled to body weight.  However, vertical, braking and propulsive 

impulses scaled to body weight were significantly greater for the OV/OB children. This was true 

even with the peak vertical force being significantly greater for the HW group. While comparing 

peak force gives researchers a good idea of how high the force is at a particular portion of stance, 

investigating the children’s impulse throughout stance may provide researchers a better idea of 

the impacts OV/OB children may be experiencing throughout the entirety of the stance phase of 

the run.  Subsequently, these data suggest that the OV/OB group require a greater impulse to 

move their more massive body. The longer time spent in stance appears to be a major contributor 
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to the larger impulses displayed by the OV/OB children. Furthermore, the greater impulses also 

suggest that although peak force is the same or higher in the HW children, the force is being 

applied for a longer period of time in the OV/OB children potentially resulting in greater overall 

force during the stance phase of running. The higher absolute vertical loading and the larger 

impulses (both absolute and scaled to body weight) is further evidence of the greater vertical 

loading displayed by the OV/OB children. Increased vertical loading during running has been 

associated with several running related injuries including tibial stress fractures, iliotibial band 

syndrome and patellofemaoral pain syndrome.
111,120

 Furthermore, increased vertical loading has 

been associated with the development of joint degenerative diseases such as osteoarthritis. 

Alternative exercises that have lower vertical loading may need to be recommended for children 

classified as OV/OB. 

Differences joint kinematics 

The adjustments made by OV/OB children may be explained by the significantly 

decreased amount of flexion excursion occurring at the knee. In addition, the OV/OB children are 

running with significantly less flexion at the knee throughout stance (p=0.026) and at the hip 

during early stance (p=0.015) when compared to HW children. The lack of flexion may be due to 

a decreased range of motion at the lower extremity joints which may be related to the increased 

amount of adiposity. If the children are unable to reach a higher degree of flexion during high 

impact activities, such as running, their body may not absorb as much shock as the body of 

someone who goes into greater flexion. 

 Differences in the frontal plane could have even greater implications. OV/OB children’s 

significantly greater eversion at the ankle during early stance (p=0.035) and abduction at the knee 

(p=0.029) may put the child at risk for greater issues. Given the increased loading experienced by 

OV/OB children, if the loading is occurring unevenly at the joint, the child’s risk for lower 

extremity mal-alignments may be increased. Furthermore, if a mal-alignment forms due to the 
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increased joint stress the obese child may start experiencing issues at the surrounding joints, such 

as the hip, to counteract the uneven stress. This counteracting effect could be why obese children 

have a higher prevalence of musculoskeletal problems, including slipped capital femoral 

epiphysis.
87,92

 If a mal-alignment is left uncorrected, the obese child could have negative impacts 

throughout life which includes a higher risk of suffering from a joint degenerative disease, such 

as osteoarthritis, and/or needing surgery. 

Differences in joint kinetics 

One of the biggest indicators of the amount of joint loading is the net joint moment. 

Greater net moments at a given joint have been associated with increased compressive stress at 

that joint. Furthermore, higher than normal frontal plane joint moments at the hip and knee during 

running have been linked to overuse running injuries as well as knee osteoarthritis.
138,141,142

  Both 

peak knee adduction moments and peak hip abduction moments were significantly greater in the 

OV/OB children compared to HW children. In addition, the OV/OB children also displayed 

significantly greater hip abduction angular impulse suggesting that the overall joint loading at the 

hip is much greater throughout the entire stance phase. The greater knee adduction moments, hip 

abduction moments, and hip abduction angular impulse displayed by the OV/OB group in this 

study provides further evidence of increased loading at the hip and knee joints for the OV/OB 

children.  

Conclusion 

 Several differences in running mechanics are present between OV/OB and HW children. 

Among the most notable are the higher ground reaction forces and frontal plane joint moments 

which may result in greater joint loading, mal-alignments, and potential joint pathologies. 

Encouraging participation in physical activity is crucial in reducing childhood obesity rates. 

Equally as important is prescribing appropriate exercise that do not place a child at an increased 

risk for developing other types of injuries or pathologies associated with excessive loading or 
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mal-alignments. Progression from low- to high-impact activities may give the bone and muscle 

time to adjust to the loads as they increase, potentially reducing and ideally eliminating the 

OV/OB children’s increased risk of pain and injury. Creating a positive association with physical 

activity is important at a young age. By reducing a child’s risk of pain and/or injury during 

physical activity, we can increase the likelihood that they will enjoy and be willing to engage in 

physical activity throughout their life. 

LIMITATIONS 

 A study limitation was the lack of physical activity and sedentary time data from 

participants. Since a child’s daily activity or lack thereof, can greatly influence how their body 

adapts to daily loading, knowing the child’s activity level could give further insight into how 

running, regardless of weight, may impact the lower extremity joints. A second limitation of the 

study was the grouping of overweight and obese children into a single category. This grouping 

method may be too diverse depending on if the children in the overweight group had a higher or 

lower BMI within their given classification. A third limitation was the study did not determine 

joint loading of the participants. Without joint loading, researchers cannot definitely say how the 

differences in running mechanics between the HW and OV/OB group are influencing the lower 

extremity joints. Lastly, the given running speed required by the children may have given an 

advantage to the HW group, as these children were able to achieve the speed with more ease than 

the OV/OB group was able to do so.  
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FIGURES 

Figure 5: Example of reflective marker set placement  
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Figure 6: Sagittal (a, b, c) and frontal (d, e, f) plane joint excursion for ankle, knee, and hip joints 

throughout stance  
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Figure 7: Sagittal (a, b, c) and frontal (d, e, f) plane moments for ankle, knee, and hip joints 

throughout stance.   
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TABLES 

Table 1: Participant demographics 

 HW OV/OB Sig (2-tailed) 

Gender M=12, F=13 M=8, F=9 0.42 

Age   9.84±1.3  10.18±1.3 0.33 

BMI Percentile 17.25±1.7 23.78±3.1  <0.001* 

Height    1.44±0.1   1.47±0.1 0.26 

Mass  36.40±7.4   51.86±10.6 <0.001* 

*Indicates a significant difference between groups (p<0.05) 

 

 

 
 

 

 

 

Table 2: Mean±SD, p-values, and effect sizes (Cohen’s d) for ground reaction force variables 

scaled to body weight (BW) for the healthy weight (HW) and overweight/obese (OV/OB) groups. 

Variables HW OV/OB p-value d 

Peak Vertical Force (BWs)  2.57±0.23  2.40±0.18 0.011* 0.86 

Vertical Impulse (BWs)  0.35±0.05  0.52±0.17 0.001* 1.42 

VIP(BW)  1.74±0.41  1.88±0.41 0.29  

VILR (BW/s)  70.8±25.7  74.3±32.7 0.71  

VALR (BW/s)  59.1±22.1  60.5±29.1 0.95  

Braking Impulse (BWs) -0.02±0.01 -0.03±0.01 0.007* 0.97 

Propulsive Impulse (BWs)   0.03±0.01   0.04±0.01 0.04* 0.67 

Peak Braking Force (BWs) -0.33±0.06 -0.34±0.05 0.69  

Peak Propulsive Force 

(BWs) 

  0.32±0.03   0.31±0.03 0.45  

*Indicates a significant difference between groups (p<0.05) 
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Table 3: Mean±SD, p-values, and effect sizes (Cohen’s d) for absolute ground reaction force 

variables for the healthy weight (HW) and overweight/obese (OV/OB) groups. 

Variables HW OV/OB p-value d 

Peak Vertical Force (N)  927.8±45.1 1209.2±48.7 <0.001* 5.99 

Vertical Impulse (N)  118.4±6.40   266.3±25.9 <0.001* 7.83 

VIP(N)  620.2±40.4   952.7±68.6 <0.001* 5.91 

VILR (N/s)  24909.0±2220.5   37934.4±4786.5 0.02* 3.49 

VALR (N/s)  21034.1±1826.0   30992.3±4237.0 0.04* 3.05 

Braking Impulse (Ns)     -7.5±0.79    -15.1±1.57 <0.001* 6.14 

Propulsive Impulse (Ns)    10.1±1.07      17.9±1.80 0.04* 5.26 

Peak Braking Force (Ns) -119.0±5.89  -171.6±9.86 <0.001* 6.48 

Peak Propulsive Force (Ns)   115.5±5.82   156.6±7.09 0.001* 6.32 

*Indicates a significant difference between groups (p<0.05) 

 

 

Table 4: Mean±SD, p-values, and effect sizes (Cohen’s d) for peak joint moments and angular 

impulse variables for the HW and OV/OB groups. 

Variables HW OV/OB p-value d 

Dorsiflexion Moment 0.23±0.08 0.21±0.06 0.375  

Plantarflexion Moment -1.59±0.17 -1.55±0.15 0.550  

Dorsiflexion Angular Impulse 0.01±0.00 0.01±0.00 0.265  

Plantarflexion Angular Impulse -0.15±0.03 -0.16±0.01 0.154  

Inversion Moment 0.24±0.07 0.24±0.06 0.846  

Eversion Moment -0.01±0.01 -0.01±0.01 0.101  

Inversion Angular Impulse 0.02±0.01 0.03±0.01 0.783  

Eversion Angular Impulse -0.00±0.00 -0.00±0.00 0.155  

Knee Extension Moment 1.38±0.21 1.34±0.12 0.450  

Knee Flexion Moment -0.30±0.09 -0.31±0.07 0.610  

Knee Extension Angular Impulse 0.12±0.04 0.12±0.02 0.673  

Knee Flexion Angular Impulse -0.01±0.00 -0.01±0.01 0.213  

Knee Adduction Moment 0.10±0.06 0.17±0.10 0.019* 0.90 

Knee Abduction Moment -0.37±0.12 -0.39±0.22 0.752  

Knee Adduction Angular Impulse 0.01±0.00 0.01±0.00 0.766  

Knee Abduction Angular Impulse -0.03±0.02 -0.03±0.02 0.482  

Hip Extension Moment -1.91±0.32 -1.67±0.41 0.054  

Hip Flexion Moment 0.03±0.08 0.01±0.13 0.623  

Hip Extension Angular Impulse -0.13±0.03 -0.11±0.04 0.077  

Hip Flexion Angular Impulse 0.01±0.00 0.01±0.01 0.347  

Hip Adduction Moment 0.18±0.11 0.16±0.12 0.512  

Hip Abduction Moment -0.87±0.19 -1.05±0.16 0.003* 1.06 

Hip Adduction Angular Impulse 0.01±0.00 0.01±0.00 0.145  

HIp Abduction Angular Impulse -0.09±0.02 -0.11±0.02 0.000* 1.40 

*Indicates a significant difference between groups (p<0.05) 
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