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proud of what has come of the project and I knew I had so much more to learn from him. 

 All those mentioned in this dedication will be dearly missed, yet I feel that I am 

carrying all of their legacies forward by completing the work presented within.   
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ABSTRACT 

 

ECOLOGY OF LARGEMOUTH BASS IN AN AGING RESERVOIR:  

 

IMPLICATIONS FOR CREATING A TROPHY LARGEMOUTH BASS FISHERY 

 

JASON BREEGGEMANN 

 

2016 

 

There are an estimated 3-9 million small reservoirs and nearly 1,000 large 

reservoirs in the United States. Most of these reservoirs were built several decades ago 

and are experiencing symptoms of reservoir aging, including loss of habitat, 

sedimentation, and decreased fishery production. Furthermore, over the last several 

decades, there has been an increasing interest among anglers for high quality, trophy 

fisheries. However, little is known about exactly how the reservoir aging process affects 

the ecology and especially growth potential of Largemouth Bass, particularly under 

potential climate change scenarios. Grand Lake in TX is a 45ha ageing reservoir that was 

built in the 1950s and provides a great laboratory to examine how aging reservoirs affect 

the ecology and growth potential of Largemouth Bass. We conducted seasonal sampling 

using boat electrofishing to quantify population genetics, growth, condition, and survival 

over 3 years.  We also assessed movement patterns, habitat use, and seasonal diets.  This 

information was used to model growth potential of Grand Lake Largemouth Bass under 

predicted future temperatures as a result of climate change as well as different diets.  We 

found that genetics are optimal for Largemouth Bass growth in Grand Lake. The 

population is composed of primarily Florida parental type Largemouth Bass (28%) and Fx 

hyrbids (41%), and no differences in growth were detected among the genetic parental 

types.  Survival was also high enough to have trophy sized Largemouth Bass with 
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individuals observed to live to ages 9-10, and survival estimates from PIT tagged 

Largemouth Bass were approximately 70%. Population growth was slow for all adults 

ages 5 and older, with observed mean lengths at age at or below the 50th percentile for 

ecoregion 8 of the United States. Largemouth Bass consumed an even mix of crayfish 

and fish during spring (May-June) and then switched over to feeding primarily on fish for 

the rest of the growing season. Under future predicted climate change models, 

Largemouth Bass will have to increase consumption by 5-20% just to meet baseline 

energetic demands, and if consumption remains the same as observed in 2013 and 2014, 

growth will decrease dramatically. Largemouth Bass were able to grow much faster on a 

diet of 100% shad compared to observed diets or a diet of 100% crayfish. Seasonal use 

areas were considered large at nearly 5ha during each of the three month summers. Use 

areas decreased during winter and spring. Largemouth Bass also tended to stay offshore 

(averaging 30-50m offshore) and use deeper water throughout most of the year, except 

during spring spawning. Daily movement rates and use areas were also high with mean 

daily use areas being 2-5ha during the summer months and total daily movement rates 

averaging 600-1,000m per day. Having more prey fish available in the spring could 

enhance Largemouth Bass growth if they switch over to feeding on these prey fish rather 

than crayfish. Bioenergetics simulations also revealed that consumption is going to have 

to increase substantially to counter the effect of global climate change, although water 

temperatures will be higher than the thermal optima for Largemouth Bass, limiting their 

growth and consumption. Systems such as aeration should be considered to reduce water 

temperatures closer to the thermal optima of Largemouth Bass. The lack of habitat due to 

reservoir aging has resulted in large daily and seasonal use areas as well as large daily 
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movement rates for Largemouth Bass in Grand Lake. Increased habitat should allow 

Largemouth Bass, a habitat associate species, to forage more efficiently and thus grow 

faster. 
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CHAPTER 1: INTRODUCTION 

 

 Historically, fishing had been viewed in an almost exclusively subsistence manner 

in which anglers could provide food for their families. As such, fisheries managers who 

managed both public and private waters managed fisheries in a way that maximized 

fisheries production. However, in recent decades, there has been a paradigm shift in the 

way fisheries are viewed from a pure subsistence standpoint to a more recreational 

standpoint. In response to this paradigm shift, some public and private fisheries managers 

have tried to create trophy fisheries to appease anglers who want to capitalize on the 

recreational opportunities fishing provides. One example of a response to this paradigm 

shift was the creation of the “Toyota Share A Lunker Program” by the Texas Parks and 

Wildlife Department in 1986 (Texas Parks and Wildlife 2014c). The purpose for creating 

the “Toyota Share A Lunker Program” was to promote catch-and-release of large 

Largemouth Bass, Micropterus salmoides, in the state of Texas as well as selectively 

breed trophy Largemouth Bass and stock their offspring in hopes to create other trophy 

Largemouth Bass fishing opportunities (Texas Parks and Wildlife 2014c). Evidence of 

the success of the “Toyota Share A Lunker Program” include the fact that residents from 

22 states other than Texas have entered a Largemouth Bass weighing more than 13 

pounds into the Program (Texas Parks and Wildlife 2014a) as well the fact that the Texas 

state record Largemouth Bass has increased from 6.2 to 8.3 kg since 1980 (Texas Parks 

and Wildlife 2014b).  

 Fisheries managers who are trying to create trophy fisheries have four primary 

factors which they can manipulate in order to maximize the growth potential of their 

species of interest, primarily genetics, diet, habitat, and mortality. Genetics can be used to 
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enhance the growth potential of a species of interest when different genotypes of the 

same species have different growth rates or when different subspecies of the same species 

have different growth rates. For example, Younk and Strand (1992) found that the 

Mississippi genetic parental type of the Muskellunge, Esox masquinongy, grew 

significantly faster and had significantly higher growth potential than the Minocqua, 

Shoepack, or Court Oreilles genetic parental types when grown together in two 

Minnesota lakes. Therefore, introduction of the Mississippi genetic parental type of 

Muskellunge into water bodies where the other three genetic parental types persist could 

enhance muskellunge growth in the introduced systems.  

Additionally, two subspecies of Largemouth Bass exist: the Florida subspecies, 

M. s. floridanus, and the northern subspecies, M. s. salmoides. The Florida subspecies is 

native only to the state of Florida and small portions of Georgia and Alabama. In the 

warm waters of the south, pure Florida parental type Largemouth Bass and their 

intraspecific hybrids have been shown to grow faster and attain larger sizes than pure 

northern parental type Bass (e.g., Inman et al. 1977; Maceina et al. 1988). In an attempt 

to enhance growth rates and create additional trophy Largemouth Bass fisheries through 

genetic manipulation, the Florida subspecies has been stocked throughout lakes and 

reservoirs in the southern United States where the northern subspecies is native (e.g., 

Kulzer et al. 1985; Gilliland and Whitaker 1989; Dunham et al. 1992; Forshage and Fries 

1995; Buckmeier et al. 2003). Evidence suggests that introducing genetic parental types 

with faster growth rates or larger growth potential can aid in creating trophy fisheries. As 

mentioned earlier, the Texas state record Largemouth Bass has increased from 6.2 to 8.3 

kg since the introduction of the Florida Largemouth Bass genetics to the state of Texas 



3 
 

(Forshage and Fries 1995; Texas Parks and Wildlife 2014b). The Texas state record 

Largemouth Bass of 13.5 pounds prior to stocking Florida Largemouth Bass genetics 

stood for 43 years, highlighting the effects of better genetics on growth (Forshage and 

Fries 1995; Texas Parks and Wildlife 2014b). 

 High energy prey is also necessary in order to maximize growth potential and 

create trophy fisheries. For example, adult Walleye, Sander vitreus, are piscivorous and 

grow faster and achieve larger sizes when consuming fish for prey compared to 

invertebrates (e.g., Graeb et al. 2008). Throughout their range, Walleye are highly 

dependent upon fish as a primary food source (Starostka et al. 1996; Blackwell et al. 

1999), and when age-0 Yellow Perch are in low abundance, walleye growth and 

condition may decline (Meerbeek et al. 2002). Additionally, Walleye growth in Upper 

and Lower Red Lake, Minnesota was positively correlated with strong year classes of 

Yellow Perch (Ostazeski and Spangler 2001). Walleye in Lake Erie select for Emerald 

Shiners Notropis atherinoides and Spottail Shiners, N. hudsonius during spring when 

these species were most abundant but switched to age-0 Gizzard Shad, Dorosoma 

cepedianum, and Alewives, Alosa pseudoharengus, during summer and fall (Knight et al. 

1984). However, Walleye growth in Lake Erie was greater when diets consisted of 

mostly Gizzard Shad, a species particularly high in energy, compared to diets of Emerald 

Shiner and Spottail Shiner or White Perch, Morone americana, species which have lower 

energy densities (Hartman and Margraf 1992). Furthermore, research has shown that 

adult Walleye may actually lose weight during the growing season on a diet dominated 

by invertebrates (Ward et al. 2007). 
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 Largemouth Bass, another piscivorous fish, has also been shown to grow faster on 

diets composed primarily of fish compared to other diets such as one comprised mostly of 

invertebrates. Many different studies have shown that age-0 Largemouth Bass growth is 

dependent upon types, sizes, and numbers of prey and that age-0 Largemouth Bass that 

consume a diet of primarily fish grow faster than Bass that consume diets consisting of 

prey other than fish (e.g., Shelton et al. 1979; Timmons et al. 1980; Adams and 

DeAngelis 1987). Similarly, Gutreuter and Anderson (1985) found differential growth 

rates of some age-0 Largemouth Bass based on availability of proper size and type of 

food with age-0 Bass that consumed Gizzard Shad growing faster than age-0 Bass that in 

ponds without availability of Gizzard Shad. In a study in a northern WI lake, Sass et al. 

(2006) found that Largemouth Bass consumption and growth was higher in lakes with 

abundant woody debris because lakes with coarse woody habitat supported high Yellow 

Perch populations. When coarse woody habitat was removed, Largemouth Bass were 

forced to consume primarily terrestrial invertebrates and growth slowed compared to 

areas with abundant coarse woody habitat (Sass et al. 2006).  

 In a discussion on the evolution of forage fish management, Ney (1981) proposed 

six characteristics which the most optimal forage fish species would have. These 

characteristics include prolific spawning (i.e., high fecundity), stable recruitment (i.e., no 

boom or bust cycles), trophically efficient (i.e., feed low on the food chain to minimize 

the energy required to produce the prey fish), vulnerability to predation throughout the 

life cycle of the species, no emigration, and they must be innocuous.  Many prey fish 

species which have many of the characteristics described by Ney (1981) have been 

stocked in public and private waters throughout the country to maximize growth of 
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predatory fish species. Stocked species include but are not limited to Gizzard Shad, 

Bluegill, Lepomis macrochirus, Threadfin Shad, Dorosoma petenense, Black Crappie, 

Pomoxis nigromaculatus, Fathead Minnow, Pimephales promelas, Yellow Perch, Redear 

Sunfish, Lepomis microlophus, Golden Shiner, Notemigonus crysoleucas, and Black 

Bullhead, Ameiurus melas (Modde 1980; Dauwalter and Jackson 2005). 

 Proper habitat is necessary for all life stages of a particular species in order to 

maximize growth potential throughout the lifespan of that species. Optimal habitat is 

often correlated with a species optimizing its food consumption, a factor discussed 

earlier. For example, Sass et al. (2006) compared changes in fish community 

composition, food web dynamics, and reproductive success in an isolated segment of 

Little Rock Lake, Wisconsin in which 75% of the coarse woody debris (CWD) was 

removed to a segment of the lake which was unaltered. Response metrics in both 

segments were quantified before and after removal of coarse woody debris. Prior to 

removal of CWD, the food webs in both basins were dominated by aquatic prey with 

90% of Largemouth Bass diets consisting of yellow perch and the majority of yellow 

perch diets consisting of aquatic invertebrates (Sass et al. 2006). The food web in the 

control basin remained unaltered throughout the experiment (Sass et al. 2006). However, 

in the treatment basin, the percent composition of Yellow perch in Largemouth Bass diets 

decreased to 14% and Largemouth Bass showed a significant decrease in consumption 

and growth in the treatment basin compared to the unaltered control basin (Sass et al. 

2006). Yellow Perch recruitment also dropped dramatically as recruitment in the 

treatment basin was 2 YOY/ha compared to 32 YOY/ha in the unaltered reference basin 

(Sass et al. 2006).    
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Habitat density can also influence foraging success of a particular species and 

therefore growth potential. For example, Crowder and Cooper (1982) found that Bluegill 

had higher consumption and growth rates at intermediate densities of macrophytes 

compared to low or high densities of macrophytes. In a similar study, Bettoli et al. (1992) 

found that when submersed aquatic vegetation covered 39 to 44% of Lake Conroe, 

Largemouth Bass less than 100mm total length fed primarily on invertebrates and 

consumed few fish. However, following removal of all submersed aquatic vegetation by 

Grass Carp, Ctenopharygodon idella, Largemouth Bass 60mm and larger consumed 

primarily fish prey and showed significantly faster-first year growth compared to years 

when submersed aquatic vegetation was present (Bettoli et al. 1992). The authors of this 

study concluded that habitat complexity was the primary factor regulating the size at 

which Largemouth Bass can switch to piscivory (Bettoli et al. 1992). 

Given the fact that fish are ectotherms, water temperatures can also affect growth 

rates. Within the next 100 years, air temperatures are expected to rise as much as 3 °C as 

a result of global climate change (Eaton and Scheller 1996). As our climate warms, 

increased water temperatures will increase a fish’s metabolic demands (Brown et al. 

2004; Breeggemann et al. 2015) leading to increased consumption necessary to meet 

basal metabolic needs and potentially a reduction in growth (Christie & Regier 1988). 

Furthermore, it is likely that the effects of climate change will be most severe at the 

southern edge of a fish’s range where temperatures are already near the upper thermal 

limit of tolerance (e.g., Magnuson 2001; Casselman 2002; Breeggemann et al. 2015). For 

example, Breeggemamn et al. (2015) showed that increased water temperatures had little 

effect on growth of Largemouth Bass in a lake in Nebraska (i.e., the center of the 
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Largemouth Bass’ range), but increased water temperatures greatly reduced growth of 

Northern Pike, Esox lucius, in that same Nebraska lake. Northern Pike is a cool water 

species and Nebraska is at the southern end of its range, highlighting the impact climate 

change can have on species who are already living in environments near the edge of their 

tolerance. Although climate change did not significantly affect growth of Largemouth 

Bass in Nebraska, increased temperatures may have a stronger impact in places like 

Texas and the rest of the south that are already hotter.  

 The final factor which fisheries managers can manipulate to maximize growth is 

mortality. Many of the common fish species for which trophy fisheries are created can 

live to be a decade or older and these species need to maximize their life span to reach 

true trophy size. For example, bluegill can live to be 10-12 years old, Largemouth Bass 

can live to be 15 years old or older, and walleye can live to be 20 years old or older. 

Using samples collected from taxidermists, Horton and Gilliland (1993) found that 

Largemouth Bass in Oklahoma reservoirs must reach age-5 to reach trophy size (i.e. 

≥3.6kg) and many trophy Bass were older than 10. This study highlights the need for fish 

to live long enough to reach trophy size. Studies have shown that angler exploitation can 

reduce age structure and thus size structure in Walleye populations (Baccante and Colby 

1996; Staggs et al. 1990) as well as populations of other important fish species (Hilborn 

et al. 1995; Coble 1998; Miranda and Dorr 2000; Hilborn et al. 2001). According to 

Baccante and Colby (1996) very few Walleye populations can sustain exploitation rates 

beyond 30% without losing fishing quality. However, the level of exploitation an 

individual lake can sustain is highly dependent of lake type and productivity. In some 

highly productive Walleye fisheries in northern Wisconsin, exploitation rates as high as 
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35% are considered sustainable (Staggs et al. 1990). On the other hand, exploitation rates 

in unproductive boreal lakes in northern Ontario cannot exceed 15% without losing 

fishing quality (Baccante and Colby 1996).    

Most often, fisheries managers influence mortality by reducing angling mortality 

(i.e., exploitation) through the use of regulations. For example, the state of Minnesota has 

a statewide minimum length limit of 1,016mm for Muskellunge and an even more 

restrictive minimum size limit of 1,016mm on some water bodies (Minnesota Department 

of Natural Resources 2014). Additionally, many states have placed special regulations on 

specific water bodies to create unique trophy fisheries in a single lake (Minnesota 

Department of Natural Resources 2014). For example, the Wisconsin Department of 

Natural Resources has placed a minimum length limit of 711mm and daily bag limit of 

one for Walleyes in Escanaba Lake, Wisconsin (Wisconsin Department of Natural 

Resources 2014). These regulations and other like them are put in place to create a trophy 

unique trophy fishing opportunities. Although many regulations are put in place to create 

trophy fisheries, Allen et al. (2002) used modeling to show that different regulations 

could be used in Florida to improve total catch of Largemouth Bass. Therefore, 

regulations can be used to increase catch rates as well as create trophy fisheries.  

Grand Lake is a 45ha private impoundment located just east of Athens, TX. 

Grand Lake was built in the 1950s and is intensively managed as a trophy Largemouth 

Bass fishery. Grand Lake is considered a eutrophic (secchi disc readings ≤ 0.75 m year 

round) impoundment with a mean depth of 3.2 meters and a maximum depth of 7.9 

meters. Northern parental type Largemouth Bass are the native parental type that was 

originally found in Grand Lake following construction. However, all northern parental 



9 
 

type Largemouth Bass were removed by the Texas Parks and Wildlife Department 

(TPWD) using thiodan in 1972 as part of their program to evaluate the potential growth 

and survival of pure Florida parental type Largemouth Bass in Texas (Richard Ott, Texas 

Parks and Wildlife Department, personal communication). Immediately following 

removal of northern parental type Largemouth Bass, Grand Lake was stocked with pure 

Florida parental type Largemouth Bass at rate of 247 fingerlings/ha, Fathead Minnows 

(Pimephales promelas) at a rate of 27.9 kg/ha, and Threadfin Shad at rate of 50.9 kg/ha 

(Richard Ott, Texas Parks and Wildlife Department, personal communication). The exact 

stocking history of Grand Lake following 1976 (the year monitoring was ceased by 

TPWD) is not known because ownership has changed several times and no genetic 

evaluation has been conducted to assess the current genetic makeup of the Largemouth 

Bass population.  

 In order to try to create a trophy Largemouth Bass fishery, the food web of Grand 

Lake is intensively managed. Available prey fish include Bluegill, Redear Sunfish, 

Lepomis microlophus, Redbreast Sunfish, Lepomis auritus, Gizzard Shad, Threadfin 

Shad, Dorosma petenense, Mozambique Tilapia, Oreochromis mossambicus, Black 

Crappie, Pomoxis nigromaculatus, White Crappie, Pomoxis annularis, Channel Catfish, 

Ictalurus punctatus, and Black Bullhead, Ameiurus melas. Currently, it is not known 

what the primary makeup of Largemouth Bass diets are in Grand Lake. Furthermore, 

knowledge of available Largemouth Bass habitat in Grand Lake is lacking along with 

how Largemouth Bass are using the available habitat. No exploitation is taking place in 

Grand Lake because it is a strictly catch and release fishery and Largemouth Bass are 

only removed when densities are determined to be too high.  Through the work outlined 
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in this dissertation, I was able to research how each of the four factors described above 

affect the growth potential and creation of a trophy Largemouth Bass fishery in Grand 

Lake, Texas.  
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CHAPTER 2: GENETIC COMPOSITION AND DIFFERENTIAL GROWTH OF 

GENETIC GROUPS OF LARGEMOUTH BASS IN A PRIVATE TEXAS 

IMPOUNDMENT 

 

Abstract 

 Within the last several decades, fisheries managers have stocked Florida parental 

type Largemouth Bass into water bodies where the northern parental type Largemouth 

Bass are native with the goal of creating trophy Largemouth Bass fisheries. However, 

little is known about the persistence of Florida parental type Largemouth Bass in a 

renovated impoundment stocked only with pure Florida parental type fish when faced 

with the potential of reinvasion by pure northern parental type Bass. We evaluated the 

genetic composition of a private impoundment 40 years following renovation and 

stocking with only pure Florida parental type Largemouth Bass and quantified 

differences in growth rates of different genetic groups of Largemouth Bass found within 

the population. Florida Largemouth Bass genetics dominated the population as all 

Largemouth Bass sampled were pure Florida parental type or hybrids. Growth rates did 

not differ among the genetic groups for either sex. However, growth rate within this 

population was not fast as mean back-calculated lengths at age for the adult population 

were near the 50th percentile for ecoregion eight of the United States. Factors other than 

genetics are likely limiting the growth potential of Largemouth Bass in Grand Lake. If 

possible, managers may want to remove at least some pure northern parental type 

Largemouth Bass before stocking Florida parental type Bass to increase chances of 

successful incorporation of Florida Bass alleles into the population.   
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Introduction 

 For decades, humans have been altering the genetics of both wild and domestic 

plant and animal populations to enhance or change the genetic composition of a particular 

population of interest (e.g., Dunham et al. 1992; Rai et al. 1999; Kameswara Rao et al. 

2003). One reason for altering genetics is to restore genetic diversity of small isolated 

populations that have lost significant amounts of genetic diversity through genetic drift or 

have lowered fitness from inbreeding depression (e.g., Hedrick and Miller 1992). For 

example, female cougars from the Texas cougar subspecies (Felis concolor stanleyana) 

were introduced into the Florida panther (Felis concolor coryi) population after the 

Florida population was reduced to an estimated 30 individuals, became isolated and 

began suffering from inbreeding depression (e.g., physical deformities and decreased 

sperm viability; Roelke et al. 1993; Hedrick 1995; Hedrick and Fredrickson 2010).  

A second reason for altering genetics is to enhance the genetic makeup of an 

existing genetically healthy population through the introduction of new genes to produce 

a desired characteristic not present in the current population. For example, the Florida 

subspecies of the Largemouth Bass (Micropterus salmoides floridanus), has been 

introduced into many waterbodies where the northern Largemouth Bass subspecies 

(Micropterus salmoides salmoides) is native (e.g., Pelzman 1980; Gilliland and Whitaker 

1989; Dunham et al. 1992; Forshage and Fries 1995). The reason for stocking Florida 

parental type Largemouth Bass into northern parental type Largemouth Bass populations 

is that pure Florida parental type Largemouth Bass and their intraspecific hybrids have 
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been shown to grow faster and attain larger sizes than pure northern parental type 

Largemouth Bass in some water bodies where the environment is similar to that of 

Florida (i.e., the native range of the Florida subspecies; Rieger and Summerfelt 1976; 

Inman et al. 1977; Bottroff and Lembeck 1978; Pelzman 1980; Maceina et al. 1988). 

Thus the introduction of Florida Largemouth Bass genetics into northern populations can 

result in faster growing, larger fish which will ultimately create higher quality angling 

experiences, and more satisfied anglers (Weithman and Anderson 1978; Maceina et al. 

1988; Forshage and Fries 1995). Additionally, Florida parental type Largemouth Bass are 

less vulnerable to angling than their northern parental type counterparts, thus favoring 

longevity and the potential to grow to trophy sizes (Zolcynski and Davies 1976; Inman et 

al 1977; Kleinsasser et al. 1990).  

 For introductions meant to enhance the genetic composition of the native genetic 

parental type to be deemed successful, two criteria must be met. First, the introduced 

genetic material must be incorporated into the existing population and persist through 

time and second, the desired trait (e.g., increased growth rate) of the introduced genetic 

parental type must be expressed in the population. Both of these criteria have been met to 

varying degrees when evaluating the success of stocking Florida parental type 

Largemouth Bass into northern parental type Largemouth Bass populations. Many states 

have evaluated the introgression of stocked Florida parental type alleles into native 

northern parental type populations (e.g., Gilliland and Whitaker 1989; Dunham et al. 

1992; Forshage and Fries 1995) and they have documented variable success. For 

example, Forshage and Fries (1995) found that out of 126 public reservoirs in Texas 

where Florida Largemouth Bass were stocked, six had 0% occurrence of Florida 
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Largemouth Bass alleles, 91 had a 20% or greater occurrence of Florida Largemouth 

Bass alleles in the population, and seven had almost complete replacement of the 

northern parental type with >80% Florida Largemouth Bass alleles in the population. 

Additionally, Maceina et al. (1988) found that pure Florida parental type Largemouth 

Bass reached a larger mean length at age-3 than native pure northern parental type 

Largemouth Bass in Aquilla Lake, Texas. Similarly, Forshage and Fries (1995) noted that 

the Texas state record Largemouth Bass increased from 6.12 kg to 8.25 kg after the 

introduction of Florida Largemouth Bass genetics to the state and that all state record 

Largemouth Bass caught after 1980 were either pure Florida parental type or F1 hybrids. 

This suggests that growth of some individuals and young age-classes increased in some 

populations. However, very little research has been conducted on population level effects 

(e.g., growth of different genetic parental types) representing all age-classes present in 

the population following stocking of Florida parental type Largemouth Bass into wild 

northern Largemouth Bass populations (Phillip et al. 2002).   

 Most often, Florida parental type Largemouth Bass are stocked into existing 

northern parental type Largemouth Bass populations (e.g., Kulzer et al. 1987; Gilliland 

and Whitaker 1989; Dunham et al. 1992; Forshage and Fries 1995). However, the 

possibility exists in which one could renovate a water body and stock only pure Florida 

parental type Largemouth Bass in that impoundment. In certain instances when northern 

parental type Largemouth Bass are found in other water bodies within the watershed, 

northern parental type Largemouth Bass could get back into the system where only pure 

Florida parental type Bass were stocked and threaten the persistence of the Florida alleles 

in the population. Furthermore, reintroduction of northern parental type genetics into a 
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pure Florida parental type population could lower the growth rates of the population as a 

whole. To the best of our knowledge, no research has been conducted on the persistence 

of the Florida Largemouth Bass genome when the possibility of northern parental type 

Largemouth Bass reinvading a system from other waterbodies within the watershed.  

Additionally, research is lacking on differences in population level growth rates of 

the different genetic groups when Florida parental type Largemouth Bass are stocked into 

water bodies where northern parental type Largemouth Bass are native (Phillip et al. 

2002). Similarly, Wright and Kraft (2012) recommended that future research should be 

directed towards assessing the genetic outcome (i.e., genetic makeup of populations and 

population level effects of the different genetic parental types on growth and fitness) of 

multiple generations of ponds stocked with both species and their crosses. This study 

could begin to provide information to fill these knowledge gaps. The objectives of our 

study were to 1) quantify the percent of pure northern parental type, pure Florida parental 

type, F1 hybrids, and Fx hybrids in a private impoundment that was stocked only with 

pure Florida parental type Largemouth Bass following reclamation; and 2) assess 

population level differences in growth among the genetic groups from one population 

(i.e., Grand Lake, TX).  

Methods 

Study site 

Grand Lake is a 45ha private impoundment located in eastern Texas which had all 

northern parental type Largemouth Bass removed by the Texas Parks and Wildlife 

Department (TPWD) using thiodan in 1972 as part of their program to evaluate the 

potential growth and survival of pure Florida parental type Largemouth Bass in Texas 
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(Richard Ott, Texas Parks and Wildlife Department, personal communication). 

Immediately following removal of northern parental type Largemouth Bass, Grand Lake 

was stocked with pure Florida parental type Largemouth Bass at rate of 247 

fingerlings/ha, Fathead Minnows (Pimephales promelas) at a rate of 27.9 kg/ha, and 

Threadfin Shad at rate of 50.9 kg/ha (Richard Ott, Texas Parks and Wildlife Department, 

personal communication). The exact stocking history of Grand Lake following 1976 (the 

year monitoring was ceased by TPWD) is not known because ownership has changed 

several times; however, northern parental type Largemouth Bass do occur in the 

watershed above Grand Lake allowing for natural reintroduction of northern parental type 

genetics into the Florida parental type population in Grand Lake. Grand Lake is 

intensively managed for trophy Largemouth Bass, primarily through maintenance of the 

food web. Available prey fish include Bluegill, Redear Sunfish, Redbreast Sunfish 

(Lepomis auritus), Gizzard Shad (Dorosoma cepedianum), Threadfin Shad, Mozambique 

Tilapia (Oreochromis mossambicus), Black Crappie (Pomoxis nigromaculatus), White 

Crappie (Pomoxis annularis), Channel Catfish (Ictalurus punctatus), and Black Bullhead 

(Ameiurus melas). No exploitation of Largemouth Bass occurs on any of these 

impoundments except to reduce densities when density-dependent competition is evident.   

Field sampling 

To obtain tissue for genetic analysis, 80 Largemouth Bass were collected from 

Grand Lake in December 2011, using pulsed DC electrofishing. Upon collection, total 

length (mm) and weight (g) were measured and a pelvic fin clip was collected and stored 

in 95% ethanol for subsequent genetic analysis. The Largemouth Bass collected were 

representative of the entire size structure found in each lake. All size classes of 
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Largemouth Bass were collected to help ensure the genetic diversity was representative 

of the population as a whole, rather than an individual year class. Largemouth Bass 

collected from Grand Lake, TX ranged in size from 84 to 611 mm total length (TL; 

Figure 2.1). Additionally, sex was determined from all Largemouth Bass collected from 

Grand Lake by examination of the gonads, and sagittal otoliths were removed Grand 

Lake Bass for subsequent age and growth estimation.  

Genetics 

Total genomic DNA was extracted from fin tissue using a Promega Wizard 

Genomic DNA purification kit (Promega Corp., Madison, Wisconsin). DNA was then 

quantified using a Nanodrop ND-1000 spectrophotometer (Nanodrop Technologies, 

Wilmington, Delaware) and normalized to a concentration of 20 ng-µL-1. Seven 

microsatellite loci previously published for Largemouth Bass (Table 2.1) were PCR 

amplified using multiplex reactions based on protocol suggested by Henegariu et al. 

(1997). An ABI Prism 377XL DNA sequencer (Applied Biosystems Inc., Foster City, 

California) was used to genotype individual fish. An internal size standard (GeneFlo 625; 

Chimerx Inc., Milwaukee, Wisconsin) was used to determine allele sizes, which was 

subsequently estimated using GeneScan software (Applied Biosystems Inc., Foster City, 

California). Allele calls were also verified manually to ensure proper scoring of multi-

locus genotype data.  

GENEPOP 4.2 (Rousset 2008) was used to test if Largemouth Bass samples 

departed from Hardy-Weinberg equilibrium (HWE). Fisher’s exact test (α = 0.05) was 

implemented in GENEPOP 4.2 with a Markov chain method using 1,000 batches of 

1,000 iterations each to compute significance values (P; Guo and Thompson 1992; 
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Rousset 2008). A sequential Bonferroni method was used to adjust values of P for 

multiple comparisons (Rice 1989). Loci were tested at both the individual and population 

level. Any locus that did not conform to HWE expectations, was tested for heterozygote 

excess or deficiency using a U test in GENEPOP 4.2 (Rousset 2008). Cumulative effects 

of the rare, but non-zero genotypes can result in significant deviations from HWE using 

exact tests due to the small expected frequencies for rare genotypes associated with 

microsatellite data (Pamilo and Varvio-Aho 1984). To correct this, all exact tests with 

significant deviations from HWE expectations were retested using the modification of 

Hedrick (2000) where all genotypes with an expected frequency less than 1% were 

pooled and the locus retested using a chi-squared goodness-of-fit test in Minitab v.14.20 

(Minitab Inc., State College, Pennsylvania). Estimates of genetic diversity for each 

individual fish at each microsatellite loci and across all loci were quantified using 

observed and expected heterozygosity, allelic richness (i.e., the number of alleles), and 

the number of rare alleles (i.e., the alleles found in <5% of the population).  

To determine the most likely genetic origin (i.e., northern parental type n or 

Florida parental type) of Largemouth Bass from Grand Lake, we initially performed a 

Bayesian based assignment using the program STRUCTURE (Pritchard et al. 2000). To 

aid in assignment we obtained 34 known pure northern parental type Largemouth Bass 

collected from Big Sissabagama Lake, Sawyer County, Wisconsin and 16 pure Florida 

parental type Largemouth Bass from the US Fish and Wildlife Service, Warm Springs 

Fish Technology Center, Warm Springs, Georgia. STRUCTURE assigned 100% of the 

pure northern parental type Largemouth Bass to one population and 100% of the pure 

Florida parental type Largemouth Bass to another population with a ≥95% threshold 
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(Figure 2.2), verifying that we could differentiate these genetic parental types. 

Subsequently, we used STRUCUTRE to assign individual Largemouth Bass from each of 

the three impoundments to one of these two genetic parental types. If the results from our 

STRUCTURE analysis indicated that there were hybrids in Grand Lake, we used 

Bayesian model-based clustering and Markov Chain Monte Carlo as implemented in 

NewHybrids (Anderson and Thompson 2002) to calculate the posterior probability that 

each individual Largemouth Bass from was pure northern parental type, pure Florida 

parental type, an F1 hybrid, or an Fx hybrid (post F1 hybrid). Each individual fish was 

then assigned to one of these four groups based on an individual fish having at least a 

70% probability of being one of the four genetic groups. If an individual fish did not have 

at least a 70% probability of being one of the four genetic groups, it was classified as 

uncertain.  

Differences in growth among genetic groups 

One sagittal otolith from each Largemouth Bass was embedded in an epoxy resin 

consisting of a mixture of five parts Buehler© Epoxicure® Epoxy Resin to one part 

Buehler© Epoxicure® Epoxy Hardener. A transverse cross section, approximately ½ mm 

thick, was cut through the focus of each otolith using a Buehler© IsoMet™ Low Speed 

Saw. Each thin section was then glued to a microscope slide using a cyanoacrylate 

adhesive and polished using 1000 grit wetted sandpaper. Ages for each Largemouth Bass 

were estimated from thin sectioned otoloiths by viewing the otolith through an 

Olympus© SZH10® dissecting microscope using transmitted light. A thin layer of 

immersion oil was placed on each otolith section to enhance clarity. Ages were estimated 

double-blind by a two experienced readers. Initially, each reader estimated ages from 
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each sectioned otolith individually, and if each reader did not agree on their initial age 

estimate, both readers looked at the sectioned otolith simultaneously to reach a consensus 

age estimate for each fish. Because the Largemouth Bass were sampled in mid-

December, the edge of each otolith was counted as an annuli.  

Total sectioned otolith radius and the distance from the center of the focus to the 

edge of each annulus were measured on each otolith using an Olympus© DP72® camera 

mounted to the dissecting scope described above in combination with the Olympus© 

cellSens® Standard digital imaging software. All measurements were made along a 

transect parallel to the sulcus and measurements were made to the nearest thousandth of a 

millimeter. We plotted fish total length against structure radius to quantify if a linear 

relationship existed between structure radius and fish total length to assess if a linear 

back-calculation model could be used. We used the Fraser-Lee back-calculation model to 

back-calculate lengths at age for each Largemouth Bass following the methods described 

by Devries and Frie (1996). To assess differences in growth among the different genetic 

groups, mean back-calculated lengths at age were compared following the procedures 

presented by Isley and Grabowski (2007), but translated for Program R using, FishR 

(Ogle 2015). Largemouth Bass for which the genetic group was uncertain (i.e., did not 

have at least 70% probability of being a genetic group) were not included in this analysis. 

Only ages from which a mean back-calculated length at age could be computed (i.e., 

sample size of 2 or more back-calculated lengths at an age) were used for analyses. An 

alpha of 0.05 was chosen to denote significance when comparing models fit to mean 

back-calculated lengths at age. Additionally, a von Bertalanffy growth curve was fit to 
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mean back-calculated lengths at age for each of the genetic groups of interest using the 

Solver tool in Microsoft® Excel.  

Prior to comparing mean back-calculated lengths at age among genetic groups, 

mean back-calculated lengths at age were first compared between males and females, 

regardless of genetic parental type, to assess if growth differed among the sexes. All 

Largemouth Bass were included in this analysis. If the results of this analysis indicated 

growth differed by sex, mean back-calculated lengths at age for the different genetic 

groups were compared for each sex separately. To assess how growth rates in Grand 

Lake compare to other populations, mean back-calculated lengths at age for the Grand 

Lake population as a whole (i.e., all Largemouth Bass in the sample regardless of genetic 

group and including fish whose genetic group was unknown) were compared to the 50th 

and 95th percentiles of mean back-calculated lengths at age for Largemouth Bass in 

ecoregion 8, taken from Brouder et al. (2009).  

Results 

Genetics 

All individual loci conformed to the Hardy-Weinberg expectations for the Grand 

Lake Largemouth Bass population. The number of alleles per locus varied from 2 – 21 

for Largemouth Bass sampled from Grand Lake, Texas (Table 2.1). Observed 

heterozygosity for each locus ranged from 0.438 (Msa-31) to 0.925 (Msa-32) and 

expected heterozygosity for each locus ranged from 0.407 (Msa-31) to 0.888 (MSA-32). 

For the Largemouth Bass populations as a whole, expected heterozygosity was 0.708, 

observed heterozygosity was 0.736, and the mean number of alleles per locus was 11.29 
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(Table 2.2). Forty eight alleles were considered rare in the Grand Lake Largemouth Bass 

population. 

Results of STRUCTURE analysis indicated that at least some Largemouth Bass 

from Grand Lake had genetic material from both the pure northern parental type 

population and pure Florida parental type population, and thus there were hybrids in the 

population (Figure 2.3). Therefore, NewHybrids was used to assign each Largemouth 

Bass to one of the four genetic groups described above (i.e., pure Florida parental type, 

pure northern parental type, an F1 hybrid, or an Fx hybrid).  

The Largemouth Bass population in Grand Lake was composed primarily of Fx 

hybrids (n = 33 or 41.25% of Largemouth Bass sampled) and pure Florida parental type 

(i.e., containing 100% Florida Largemouth Bass genetics) Largemouth Bass (n = 22 or 

27.5% of Largemouth Bass sampled), with a few F1 hybrids (6 or 7.5% of Largemouth 

Bass sampled). Nineteen or 23.75% of the Largemouth Bass sampled from Grand Lake 

were classified as uncertain (i.e., did not have at least a 70% probability of being one of 

the four genetic groups), and no pure northern parental type Largemouth Bass were 

sampled from this populations (Figure 2.4). Of the 19 Largemouth Bass whose genetic 

group was classified as uncertain, the genetic group with the highest percent probability 

of occurrence was pure Florida parental type or one of the hybrid groups (Figure 2.4). 

Additionally, the highest percent probability of any of these Largemouth Bass being pure 

northern parental type was 4.5% (Figure 2.4); therefore, every Largemouth Bass sampled 

had some pure Florida parental type Largemouth Bass alleles.  

Differences in growth among genetic groups 
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Sagittal otoliths were sectioned from 75 of the 80 Largemouth Bass from Grand 

Lake for which genetic samples were collected. However, after removing the Largemouth 

Bass which had an unknown genetic group, a total of 58 Largemouth Bass were left to 

compare growth among genetic groups. Thirty seven of these 58 Largemouth Bass were 

females. Of the 37 females, six were F1 hybrids. Mean back-calculated lengths at age 

were estimated up to age-5 for F1 hybrid females as this was the oldest age for which 

multiple back-calculated lengths were estimated. Eleven of the 37 females were pure 

Florida parental type. Mean back-calculated lengths at age were estimated only up to age-

4 as only one of the 11 pure Florida parental type females were older than age-4. Twenty 

20 of the 37 females were Fx hybrids. Mean back-calculated lengths at age were 

estimated up to age-9 for Fx hybrid females. No pure northern parental type Largemouth 

Bass were captured in Grand Lake.  

Twenty one of the 58 Largemouth Bass for which growth could be compared 

among genetic groups were males. None of the 21 male Largemouth Bass samples were 

F1 hybrids; therefore, mean back-calculated lengths at age were not calculated for F1 

hybrid males. Ten of the 21 males were pure Florida parental type. Mean back-calculated 

lengths at age were estimated up to age-9 for pure Florida parental type. Eleven of the 21 

males were Fx hybrids. Only one male of this genetic group was estimated to be older 

than age-8, resulting in mean back-calculated lengths at age up to age-8 for this genetic 

group.  

There was a significant linear relationship between fish total length and structure 

radius (R2 = 0.84, F1,74 = 374.5, P<0.0001). Additionally, growth was significantly 

different between the sexes as there was a significant interaction between sex and the 
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squared increment term (Incsq) and sex and the increment term (Inc) in the model (Figure 

2.5; Table 2.3). Therefore, differences in growth among the genetic groups were 

compared for each sex separately. No significant differences were detected in mean back-

calculated lengths at age among the different genetic groups for either sex as mean back-

calculated lengths at age were nearly identical among the genetic groups for each sex 

(Figure 2.6). Additionally, none of the interaction terms between the squared increment 

term (Incsq) and genetic group (Group) or in increment term (Inc) and genetic group 

(Group) were significant for either sex, indicating no significant differences in growth 

among the genetic groups for either sex (Table 2.4). Growth of Largemouth Bass in 

Grand Lake was initially very fast as mean back-calculated lengths at ages 1 and 2 were 

similar to mean back-calculated lengths at age for the 95th percentile of ecoregion eight 

(Figure 2.7). However, growth rates of Largemouth Bass in Grand Lake did not keep 

pace with the 95th percentile as mean back-calculated lengths at age for age-5 and older 

Bass dropped to near or below the 50th percentile (Figure 2.7).   

Discussion 

 The Largemouth Bass population in Grand Lake was dominated primarily by 

Florida alleles as all Largemouth Bass sampled were pure Florida parental type or a 

hybrid. This provides some evidence for the persistence of Florida Largemouth Bass 

alleles when faced with the potential reinvasion of northern parental type Largemouth 

Bass. However, as mentioned earlier, the exact stocking strategy after 1976 is unknown 

and therefore, more pure Florida parental type Largemouth Bass could have been stocked 

between 1976 and 2000 influencing the observed genetic makeup. Additionally, it is not 

known how many pure northern parental type Largemouth Bass eventually reinvaded 
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Grand Lake either through natural reinvasion from other waterbodies within the 

watershed where the northern parental type Largemouth Bass are native or through 

stockings of pure northern parental type Largemouth Bass for purposes such as 

supplementing the fishery.  

It should be noted that there are currently at least some pure northern parental 

type Largemouth Bass in the Grand Lake population because F1 hybrids were observed. 

Although we are not sure of the exact year after treatment with thiodan in which pure 

northern parental type Largemouth Bass were found in Grand Lake again, pure northern 

parental type Bass could have invaded in immediately after their removal because they 

are found in other water bodies within the same watershed as Grand Lake. Additionally, 

the effect of the removal was never fully evaluated so all pure northern parental type 

Largemouth Bass may not have been eradicated from the system prior to stocking pure 

Florida parental type Bass (Richard Ott, Texas Parks and Wildlife Department, personal 

communication). Pure northern parental type Largemouth Bass had to have reinvaded 

Grand Lake sometime prior to the year 2001 at the very latest because second generation 

or post-F1 hybrid Bass (i.e., Fx Bass) that were estimated at nine years old were sampled 

from Grand Lake. Therefore, this lends evidence to the persistence and potential 

dominance of Florida parental type Largemouth Bass in impoundments where northern 

parental type Largemouth Bass are native as long as Florida parental type Largemouth 

Bass have the opportunity to generate a self-sustaining population. 

The possibility exists that some of the factors that affect introgression of Florida 

alleles into native northern parental type Largemouth Bass populations may also affect 

the introgression of northern Largemouth Bass alleles into Florida Largemouth Bass 
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populations, even when the Florida Bass populations exist in the native range of the 

northern parental type Bass. For example, in a study of 126 public reservoirs in Texas, 

Forshage and Fries (1995) found a significant negative correlation between the age of the 

reservoir when first stocked and percent Florida Largemouth Bass alleles, percent Florida 

Largemouth Bass genotypes, and percent of Bass with Florida alleles. Grand Lake was 

built in the 1950s and was 20 years old when it was renovated. Twenty years following 

initial construction was near the age at time of stocking of 20.7 years (range 5-71 years) 

reported by Forshage and Fries (1995). Additionally, Boxrucker (1986) also found that 

newly impounded reservoirs have the highest success when stocking Florida Largemouth 

Bass into northern parental type populations. As reservoirs age, productivity decreases 

followed by declines in recruitment and production of some fish species (Kimmel and 

Groeger 1988), thus potentially reducing stocking success and introgression rates. 

Additionally, older reservoirs are likely at or near their carrying capacity, which can 

increase competition between stocked and native Largemouth Bass potentially resulting 

in higher mortality rates of stocked Florida parental type Largemouth Bass and reduce 

rates of introgression (Forshage and Fries 1995). Despite the fact that Grand Lake was 

renovated, it was 20 years old at the time of renovation and therefore productivity could 

be decreasing and the pure Florida parental type Largemouth Bass population that was 

stocked had four years to reach carrying capacity and thus reduce the likelihood of 

reinvasion by pure northern parental type Bass.  

The number of pure northern parental type Largemouth Bass that reinvaded 

Grand Lake could also explain the persistence of the Florida Largemouth Bass genome. 

Several researchers have found the number of stockings to be one of the most important 
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factors driving the incorporation of Florida Largemouth Bass genes into northern 

Largemouth Bass populations (Kulzer et al. 1987; Dunham et al. 1992, Forshage and 

Fries 1995). Kulzer et al. (1987) hypothesized that repeated stockings in different years 

increased chances of successful introgression due to annual variation in survival of 

stocked individuals. New Lake only had two stockings of pure Florida parental type 

Largemouth Bass and one stocking of F1 hybrid Bass, whereas, reservoirs in the study 

conducted by Dunham et al. (1992) all had at least three stockings of pure Florida 

parental type Bass and as many as 11 in 18 years. Therefore, the number of Largemouth 

Bass trying to reinvade Grand Lake could also affect introgression of the northern 

parental type into the Florida population. Although pure northern parental type 

Largemouth Bass do occur in other water bodies within the watershed, it is unlikely that 

large numbers of pure northern parental type Bass similar to those that are stocked by a 

management agency tried to invade over many years.  

The biology of the two subspecies could also explain the persistence of the 

Florida genome.  In a study of a newly impounded Texas reservoir in which pure Florida 

parental type Largemouth Bass were stocked into a native northern parental type 

population, Maceina et al. (1988) found that female Florida parental type Largemouth 

Bass were significantly larger by age-3 than their northern counterparts and had 

significantly higher fecundity as a result. In that same study, Maceina et al. (1988) also 

found that pure Florida parental type and hybrid Largemouth Bass had significantly 

higher survival during the first few years of life compared to pure northern parental type 

Largemouth bass. Higher size specific fecundity and survival were two reasons pure 

Florida parental type and hybrid Largemouth Bass were the dominant genetic groups 
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within five years after stocking in a newly created reservoir in Texas (Maceina et al. 

1988) and could explain the dominance of Florida genetics in Grand Lake.    

No differences in growth were observed among genetic groups sampled for either 

sex of Largemouth Bass sampled from Grand Lake. The initial reason for stocking 

Florida parental type Largemouth Bass into Grand Lake was because at the time of 

stocking, it was thought that pure Florida parental type Largemouth Bass and their 

hybrids could grow faster and attain larger sizes than the native pure northern parental 

type Largemouth Bass in some environments. Research has since provided evidence that 

Largemouth Bass with Florida genetics do grow faster than their northern counterparts in 

some systems (e.g., Rieger and Summerfelt 1976; Inman et al. 1977; Bottroff and 

Lembeck 1978; Pelzman 1980; Maceina et al. 1988). However, we did not collect any 

pure northern parental type Largemouth Bass in our sample; therefore, we could not 

directly compare growth rates of the native parental type (i.e., northern parental type) of 

Largemouth Bass to those with introduced genetics (i.e., Florida parental type) to assess 

whether Largemouth Bass with Florida genetics grew faster than their northern 

counterparts in the same system. Additionally, it should be noted that in some water 

bodies in the south, pure Florida parental type Largemouth Bass may grow at similar 

rates to their northern counter parts or may not grow as well as pure northern parental 

type Bass at some ages (e.g., Zolczynski and Davies 1976; Kleinsasser et al. 1990). 

Therefore, the ability to successfully increase growth rates of Largemouth Bass by 

stocking Florida parental type Bass into water bodies where the northern parental type is 

native may be system specific. 
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Growth rates of juvenile (i.e., ages 1 and 2) Largemouth Bass in Grand Lake were 

fast as mean back-calculated lengths at these ages for the population were at or near the 

95th percentile for ecoregion eight. The habitat complexity and food web of Grand Lake 

could explain the fast growth rates for these ages. Bettoli et al. (1992) found that age-0 

Largemouth Bass in Lake Conroe, Texas switched to piscivory at smaller sizes and had 

significantly faster first year growth following the removal of all submersed aquatic 

vegetation by Grass Carp (Ctenopharyngodon idella). Other research has also shown that 

age-0 and juvenile Largemouth Bass forage efficiency is highest in areas with no 

vegetation or low densities of vegetation or areas where vegetation is removed (e.g., 

Hayse and Wissing 1996; Olson et al. 1998) Grand Lake also has a population of Grass 

Carp which have removed all of the submersed aquatic vegetation, thus potentially 

providing the opportunity for age-0 Largemouth Bass within Grand Lake to switch to 

piscivory at small sizes. Additionally, Grand Lake has an extensive prey fish community 

providing ample prey fish for age-0 Largemouth Bass. 

Despite fast growth rates at young ages, growth rates of older individuals (i.e., 

ages 3 and older) slowed as mean back-calculated lengths at age for the population 

decreased to the 50th percentile for ecoregion 8. All of the Largemouth Bass sampled 

were hybrids or pure Florida parental type fish so a factor other than just genetic group is 

likely limiting the growth potential of Largemouth Bass in Grand Lake. One possible 

explanation for decreased growth among older individuals is habitat limitations. As 

mentioned earlier, Grand Lake has no submersed aquatic vegetation as a result of Grass 

Carp, thus reducing the opportunity for Largemouth Bass to forage as efficiently as 

possible. Additionally, as reservoirs age, flooded timber decomposes and habitat 
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provided by coarse woody debris is lost (Kimmel and Groeger 1986). Grand Lake was 

constructed in the 1950s, allowing for nearly 60 years of decomposition of woody debris 

to take place. Therefore, without submersed aquatic vegetation or significant amounts of 

coarse woody debris, habitat may be limiting growth of adult Largemouth Bass in Grand 

Lake. Sass et al. (2006), found a significant decrease in consumption and growth of 

Largemouth Bass in a segment of Little Rock Lake, Wisconsin in which 75% of the 

coarse woody debris was removed compared to an unaltered reference segment of the 

lake. Although habitat in Grand Lake may be ideal for growth of juvenile Largemouth 

Bass, it may be limiting growth of adult Largemouth Bass thus highlighting the need to 

manage for all life stages of the species of interest.     

Through this study, we were able to evaluate the effects of different stocking 

strategies on the composition of Florida Largemouth Bass alleles in private 

impoundments. The different stocking strategies evaluated resulted in different levels of 

success as far as composition of Florida Largemouth Bass genetics within each 

population. Populations in which northern parental type Largemouth Bass were removed 

prior to stocking Florida parental type Bass alone or in combination with northern 

parental type Bass and F1 hybrids had higher contribution of Florida genetics than the 

impoundment where Florida parental type Largemouth Bass were stocked into an 

existing native northern parental type population. If the management objective of a 

particular water body is to maximize the contribution of Florida alleles where the 

northern subspecies is native, managers may want to consider removing northern parental 

type Largemouth Bass from the impoundment, or at least some portion of it (e.g., a cove 

or bay) prior to stocking Florida parental type Largemouth Bass to maximize success of 
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the stocking. We could not assess whether Largemouth Bass with Florida genetics grew 

faster than the native northern parental type Largemouth Bass in Grand Lake. However, 

growth of the population as a whole was not fast as mean back-calculated lengths at age 

were near the 50th percentile for adult Largemouth Bass, which lends evidence to the 

desired trait of faster growth rates not being expressed in the Grand Lake population as a 

whole. However, this does not mean that individuals cannot reach trophy potential. Since 

the introduction of Florida genetics to the state of Texas, the Texas state record 

Largemouth Bass has increased by over two kilograms with all new state records having 

Florida genetics (Texas Parks and Wildlife 2014) indicating the success of introducing 

Florida genetics to other Largemouth Bass populations in Texas. It is likely a factor other 

than genetics that is limiting the growth potential of Largemouth Bass in Grand Lake.    
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TABLE 2.1. Seven microsatellite loci used, number of alleles observed (A), observed 

allele size range (Range; in base pairs), and the references for each microsatellite locus 

used to assign genetic groups to Largemouth Bass sampled from Grand Lake, TX in 

December, 2011.  

Locus A Range  Reference 

Msa-01 21 109-219 Seyoum et al. 2013 

Msa-05 8 121-167 Seyoum et al. 2013 

Msa-14 17 171-253 Seyoum et al. 2013 

Msa-31 2 237-239 Seyoum et al. 2013 

Msa-32 16 257-313 Seyoum et al. 2013 

Lma10 9 109-133 Lutz-Carrillo et al. 2006 

Mdo3 6 105-121 Lutz-Carrillo et al. 2006 
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TABLE 2.2. Total number of Largemouth Bass sampled (N), number of Loci used (Loci 

Typed), unbiased heterozygosity (Unbiased Hz), observed heterozygosity (Observed Hz), 

and the mean number of alleles per loci (Number Alleles; value in parentheses is SD) for 

the Largemouth Bass populations as a whole sampled from Grand Lake, TX in 

December, 2011.  

Population N Loci Typed Unbiased Hz Observed Hz Number Alleles 

Grand Lake 80 7 0.708 (0.06) 0.736 (0.02) 11.29 (6.82) 
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TABLE 2.3. Results of an ANOVA comparing models fit to mean back-calculated lengths 

at age for male and female Largemouth Bass sampled from Grand Lake, TX in December 

2011. 

Source df Type III SS F-value Pr(>F) 

Intercept 1 400912 317.37 <0.0001 

Sex 1 575 0.46 0.500 

Inc 1 470711 372.63 <0.0001 

Incsq 1 127419 100.87 <0.0001 

Sex*Inc 1 16934 13.41 0.0003 

Sex*Incsq 1 9525 7.54 0.0064 

Residuals 373911 296   
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TABLE 2.4. Results of an ANOVA comparing models fit to mean back-calculated lengths 

at age for different genetic groups of male and female Largemouth Bass samples from 

Grand Lake, TX in December 2011. 

   Males Females 

Source df Type III SS F-value Pr(>F) df Type III SS F-value Pr(>F) 

Intercept 1 89803 160.38 <0.001 1 63129 39.71 <0.001 

Group 1 291 0.52 0.47 2 4416 1.39 0.252 

Inc 1 51627 92.2 <0.001 1 55698 35.04 <0.001 

Incsq 1 10024 17.90 <0.001 1 8796 5.53 0.020 

Group*Inc 1 68 0.12 0.72 2 3721 1.17 0.313 

Group*Incsq 1 2 0.004 0.95 2 2491 0.78 0.458 

Residuals 76 42556     146 232103     
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FIGURE 2.1. Length-frequency histogram for Largemouth Bass sampled from Grand Lake, TX in December, 2011. 
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FIGURE 2.2. Percent probability of an individual Largemouth Bass sampled from Big 

Sissabagama Lake, Sawyer County, Wisconsin (A) and the US Fish and Wildlife Service, 

Warm Springs Fish Technology Center, Warm Springs, Georgia (B) being pure northern 

parental type (Northern) or pure Florida parental type (Florida) as assigned by the 

program STRUCTURE. 
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FIGURE 2.3. Percent probability of an individual Largemouth Bass sampled from Grand Lake, TX in December, 2011 being pure 

northern parental type (Northern) or pure Florida parental type (Florida) as assigned by the program STRUCTURE.  
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FIGURE 2.4. Percent probability of an individual Largemouth Bass sampled from Grand Lake, TX in December, 2011 being pure 

northern parental type (Northern), pure Florida parental type (Florida), an F1 hybrid (F1 Hybrid), or an Fx hybrid (Fx Hybrid) as 

assigned by the program NewHybrids.
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FIGURE 2.5. Mean back-calculated lengths at age for male (Males Observed) and female 

(Females Observed) Largemouth Bass sampled from Grand Lake, Texas in December, 

2011. The two dashed lines represented predicted lengths at age from a von Bertalanffy 

growth model for each of the sexes. Error bars represent 95% confidence intervals.
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FIGURE 2.6. Mean back-calculated lengths at age for F1 hybrid (F1 Observed), pure 

Florida parental type (Florida Observed), and Fx hybrid (Fx Observed) Largemouth Bass 

sampled from Grand Lake, Texas in December, 2011. Mean back-calculated lengths at 

age were separated by sex. Dashed lines represented predicted lengths at age from a von 

Bertalanffy growth model for each of the genetics groups for both males and females.   
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FIGURE 2.7. Mean back-calculated lengths at age for all Largemouth Bass sampled from 

Grand Lake, Texas in December, 2011 (Observed). The solid line represents a von 

Bertalanffy growth curve fit to mean back-calculated lengths at age (Predicted). The 

triangles and circles represent mean back-calculated lengths at age for the 95th and 50th 

percentiles for Largemouth Bass from ecoregion eight. 
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CHAPTER 3: ESTIMATES OF SURVIVAL, GROWTH, AND CONDITION FOR 

THREE DIFFERENT STOCKED GENETIC PARENTAL TYPES AND NATIVE 

LARGEMOUTH BASS IN A PRIVATE TEXAS IMPOUNDMENT 

Abstract 

Different genetic parental types of Largemouth Bass are often stocked into 

impoundments to enhance the growth potential, condition, and survival of Bass in a 

particular fishery. However, the success of these stockings is not always evaluated. 

Growth, condition, and survival of three different genetics groups of Largemouth Bass 

stocked into a private impoundment were evaluated and compared to the performance 

(i.e., growth, condition, and survival) of native Largemouth Bass. Annual survival of 

Grand Lake native Largemouth Bass was high at approximately 70-75%, but growth was 

slow and relative weights tended to be lower than desired to create a trophy fishery with 

most fish having relative weights in the upper 80s. Stocked pure Florida parental type 

Largemouth Bass had the lowest annual survival rates (i.e., approximately 45%) and had 

growth and condition estimates similar to native Grand Lake Largemouth Bass. Feed 

trained hybrid Tiger Largemouth Bass had the highest annual survival rates at 

approximately 85% and this genetic group showed the fastest growth rates and 

maintained the highest condition with most fish maintaining relative weights over 100. 

Survival rates were not estimated for stocked pure northern parental type Largemouth 

Bass due to low sample sizes, but growth and condition estimates for this group were 

similar to native Grand Lake Largemouth Bass. Survival estimates for native Grand Lake 

Largemouth Bass are high enough to maintain a trophy Largemouth Bass fishery yet 

growth and condition is low, indicating a factor other than survival is limiting the 

creation of a trophy fishery in this impoundment. Stocking feed trained hybrid Tiger 

Largemouth Bass may increase the potential for creating a trophy fishery. Care should be 
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taken when choosing a genetic group to stock to prevent the effects of outbreeding 

depression. 

 

Keywords: Survival, growth, condition, Largemouth Bass, Stocking 

 

Introduction 

 Fish stocking is a tool used by fisheries managers to create, maintain, restore, and 

augment fish populations (Trushenski et al. 2010). In the United States, the practice of 

stocking fish by government agencies or organizations such as the Sierra Club began in 

the 1800s (e.g., Tunison et al. 1949; Pister 2001). By the 1930s, there were 87 Federal 

fish hatchery units and approximately 400 state fish hatcheries operating throughout the 

United States (Earle 1937; Tunison et al. 1949). Today, fish stocking continues to be an 

integral part of fisheries management throughout the United States. For example, in 2004, 

an estimated 1.7 billion fish from 104 fish species were stocked by state agencies and the 

U.S. Fish and Wildlife Service throughout the United States (Halverson 2008). Fish 

species stocked by these agencies include popular cold, cool, and warmwater sport fish 

species, rare and declining species, as well as forage fish species (Halverson 2008). 

Additionally, stocked fish can contribute significantly to sport fish angling as 40% of 

sport fishing in Michigan relies on stocked fish and 70% of trout and salmon caught in 

the Great Lakes are from stocked origins (Trushenski et al. 2010). 

 Many reasons exist as to why fisheries managers stock fish. One reason is to 

establish recreational fisheries in newly created water bodies (e.g., small impoundments), 

in water bodies that have been depauperate of sport fish, or in water bodies that have 
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been reclamated to remove undesirable fish species. For example, in the mid-late 1800s, 

trout were stocked in western mountain lakes that had few to no fish to establish new 

fisheries (Pister 2001). Additionally, an estimated 2.6 million small impoundments have 

been constructed in the U.S. (Smith et al. 2002), and many recommendations have been 

presented for initially creating fish communities in these impoundments or continuously 

managing these fisheries through stocking (e.g., Willis et al. 2010; Wright and Kraft 

2012).  A second reason for stocking fish is to supplement wild populations where natural 

reproduction is occurring but habitat modifications or limitations, erratic recruitment, 

intense harvest, or biological or anthropogenic interactions limit natural production (i.e., 

supplemental stocking). Supplementally stocked walleyes can increase year class strength 

in some lakes (e.g., Lajeone et al. 1992; Parsons et al. 1994; Li et al. 1996) and can 

contribute significantly to walleye harvest from some year classes (Parsons et al. 1994).    

A third reason for stocking fish is to control undesired organisms. Grass Carp 

(Ctenopharyngodon idella) have been successfully used to control nuisance aquatic 

vegetation in many water bodies (Mitzner 1978; Shireman and Maceina 1981; Martyn et 

al. 1986; Chilton II and Muoneke 1992). Additionally, walleye and northern pike 

stocking was used to reduce planktivorous fish (e.g., yellow perch and cisco) biomass and 

increase water clarity in Lake Mendota, WI due to an increase in Daphnia grazing on 

phytoplankton (Lathrop et al. 2002). Stocking has also been used to aid in the recovery of 

populations of rare and endangered fishes (e.g., Simons et al. 1989; Ryden 2000a; Ryden 

2000b), alter the genetics of a population for a preferred characteristic (e.g., growth; 

Forshage and Fries 1995; Buckmeier et al. 2003), creation of a trophy fishery (e.g., 
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muskellunge in Minnesota; Wingate and Younk 2007), and forage fish stocking to 

supplement available prey (e.g., Modde 1980; Dauwalter and Jackson 2005).   

 Regardless of the goal of the stocking program, all stocking programs should be 

evaluated to assess whether goals have been achieved, to assess whether unintended 

consequences have occurred within the stocked fish or native community, and to develop 

methods to improve the stocking program in the future (Murphy and Kelso 1986; Wahl et 

al. 1995; Trushenski et al. 2010). The possibility of several unintended consequences 

exists when stocking fish. One unintended consequence of hatchery reared fish in 

inbreeding if closely related individuals are used as brood stock. Fitness of inbred 

individuals can be lower due to physical abnormalities or developmental abnormalities 

and reduced reproductive viability as well as loss of genetic diversity and resulting ability 

to adapt to changing environments (Tave 1993; Trushenski et al. 2010).  A second 

concern with fish stocking is loss 0f fitness due to outbreeding depression, or the loss of 

fitness in offspring due to hybridization (Templeton 1986). For example, many 

populations have coadapted gene complexes that have evolved to allow for greatest 

survival and fitness within the local environment. These gene complexes could be lost if 

members of the same species with genes adapted for different environmental conditions 

are introduced (Templeton 1986; Phillipp and Claussen 1995; Phillipp et al. 2002). A last 

unintended consequence could be a reduction in growth, condition, and survival of 

stocked and/or resident individuals after stocking due to mechanisms such as predation or 

competition (Li et al. 1996; Buynack and Mitchell 1999).  

Florida parental type Largemouth Bass have been extensively stocked throughout 

the southern United States where northern parental type Largemouth Bass are native 
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(Gilliland and Whitaker 1989; Dunham et al. 1992; Forshage and Fries 1995). Florida 

parental type Largemouth Bass have been introduced into northern parental type 

populations because pure Florida parental type Bass and their intraspecific hybrids grow 

faster and attain larger sizes in some water bodies that closely resemble their native range 

in Florida (Rieger and Summerfelt 1976; Inman et al. 1977; Maceina et al. 1988). 

Furthermore, Florida parental type Largemouth Bass are less vulnerable to angling than 

their northern counterparts (Zolcynski and Davies 1976; Inman et al 1977; Kleinsasser et 

al. 1990).  Many researchers have evaluated introgression of Florida Largemouth Bass 

alleles into northern Largemouth Bass populations and results have shown variable 

success from complete absence of Florida alleles in some populations to highly 

introgressed populations (Gilliland and Whitaker 1989; Dunham et al. 1992; Forshage 

and Fries 1995). Although some studies have shown that pure Florida parental type 

individuals do grow faster their northern counterparts to young ages in wild northern 

parental type populations where Florida parental type Bass were stocked (e.g., Maceina et 

al. 1988), few studies have examined population level changes in growth following 

stocking of Florida Largemouth Bass (Phillipp et al. 2002). Additionally, Forshage and 

Fries (1995) noted that the Texas state record Largemouth Bass increased from 6.12 kg to 

8.25 kg after the introduction of Florida Largemouth Bass genetics to the state and that all 

new state record Largemouth Bass caught after 1980 were either pure Florida parental 

type or hybrids. 

Grand Lake, Texas is a private 45 hectare impoundment with a management goal 

of growing 6.8 kg Largemouth Bass. To achieve this goal, over 600 adult (250-550 mm 

total length [TL]) suspected pure Florida parental type Largemouth Bass (see description 
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in methods) from two different origins and feed trained F1 Largemouth Bass were 

stocked into Grand Lake during winter 2011-2012. Adult Largemouth Bass were stocked 

because of higher probability of survival and to achieve two primary goals: 1) To 

immediately introduce or increase Florida alleles in the population (the genetic makeup 

of the Largemouth Bass population in Grand Lake in 2011 was unknown; see Chapter 2) 

and 2) Create a lake with trophy potential within a year or two by stocking adults with 

genetics that select for fastest growth potential. This provided the unique opportunity to 

study changes in survival, growth, and condition of stocked adult Largemouth Bass 

following stocking as well as monitor changes in growth, condition, and mortality of the 

native Largemouth Bass population following the stocking event. The objectives of our 

study were to: 1) quantify survival of stocked Largemouth Bass of different origins and 

native Largemouth Bass in private impoundment; and 2) quantify changes in growth and 

condition of the different origins of stocked Largemouth Bass and native Largemouth 

Bass in a impoundment following a major stocking event of adult Largemouth Bass. 

Methods 

Live Recaptures Survival 

 Largemouth Bass from three different origins were stocked into Grand Lake, 

Texas during the winter of 2011-2012. The specific characteristics (i.e., number and 

sizes) of each genetic origin are described below. Genetics of the three different origins 

of Largemouth Bass were assessed using the methods described in Breeggemann et al. 

(2015) to verify the Largemouth Bass were of the expected genetic origin. Additionally, 

at the time of stocking, total length (mm) and weight (g) were recorded for each 

Largemouth Bass and each Bass had a Biomark® GPT12 12mm Passive Integrated 
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Transponder (PIT) tag implanted into the back musculature using a Biomark® MK-10 

implanter timmped with a N125 syringe style implanting needle. Numbers of PIT tags 

were also recorded at the time of stocking. The PIT tag was implanted of the left side of 

each Largemouth Bass, approximately 0.5cm under the skin and just below the dorsal fin. 

All tags were sterilized with 95% ethanol prior to implantation and the implanting needle 

was sterilized with 95% ethanol in between each injection (Wagner et al. 2007).  

 One hundred five hatchery raised Largemouth Bass from Alabama, whose genetic 

parental type was expected to be F1 hybrid Tiger Bass (i.e., female pure Florida parental 

type Largemouth Bass and male pure northern parental type Largemouth Bass), were 

stocked into Grand Lake on December 17, 2011. These Largemouth Bass ranged in size 

from 254 mm TL to 438 mm TL (Figure 3.1). Fin clips were taken from 51 of these 

Largemouth Bass to verify they were F1 hybrids. On that same stocking date, 25 hatchery 

raised Largemouth Bass from Arkansas, whose genetic parental type was thought to be 

pure Florida parental type, were also stocked into Grand lake. These Largemouth Bass 

ranged in size from 240 mm TL to 370 mm TL (Figure 3.1). Fin clips were taken from all 

25 of these Largemouth Bass to verify that they were pure Florida parental type. 

Additionally, 516 hatchery raised Largemouth Bass from Florida, whose genetic parental 

type was expected to be pure Florida parental type, were stocked into Grand Lake in 

February and March of 2012. These Largemouth Bass ranged in size from 330 mm TL to 

558 mm TL (Figure 3.1). Fin clips were taken from 43 of these Largemouth Bass to 

verify they were pure Florida parental type.  

 To collect mark-recapture data of Largemouth Bass in Grand Lake, pulsed DC 

electrofishing was used to sample Largemouth Bass multiple times each year beginning 
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in spring 2012 and ending in fall 2014. Three sampling events occurred throughout 2012: 

mid-May, mid-August, and mid-November. Five sampling events occurred in 2013: 

mid/late-May, mid-June, late-July, mid-September, and late-October. Five sampling 

events also occurred in 2014: early-February, mid-May, early-July, mid-September, and 

late-October. During each sampling event, every Largemouth Bass sampled that was 

larger than 250 mm TL was scanned for a PIT tag using a Biomark® hand held PIT tag 

reader. If an individual Largemouth Bass already had a PIT tag implanted, the tag number 

was recorded, total length and weight were measured and recorded, and the fish was 

released back into the lake. If a Largemouth Bass greater than 250 mm TL (we chose to 

use 250 mm TL as our minimum size for PIT tagging to reduce tagging induced 

mortality) did not have a PIT tag implanted at the time of capture, one was implanted 

using the methods described above, and again length and weight were measured and 

recorded and the fish was released into the lake. All Largemouth Bass sampled in Grand 

Lake that were not PIT tagged and stocked into Grand Lake in one of the three stocking 

events described above were considered a native Largemouth Bass to Grand Lake 

(subsequently referred to as Grand Lake native). Throughout all 13 sampling events, a 

total of 695 native Largemouth Bass were PIT tagged ranging in size from 251 mm TL to 

605 mm TL (Figure 3.2).  

The Cormack-Jolly-Seber (CJS) Live Recaptures model in Program MARK was 

used to estimate and compare survival of two different origins of Largemouth Bass 

stocked into Grand Lake as well as native Largemouth Bass within the system. Due to a 

low initial sample size at time of stocking and few recaptures, the stocked Florida 

parental type Largemouth Bass from Arkansas were not included in the mortality analysis 



64 
 

but were included in the growth and condition analysis described below. Additionally, 

because continuous marking and recaptures were used for the Grand Lake native 

Largemouth Bass whereas recaptures only were used for the stocked F1 hybrids and 

stocked Florida parental type Bass from Florida, two separate analyses were run in 

program MARK; one for the stocked F1 hybrids and stocked Florida parental type Bass 

from Florida (each as a separate group in MARK) and one for the Grand Lake native 

Bass. The Program RELEASE good of fit test in Program MARK was run on the most 

general model for the analysis of Grand Lake native Largemouth Bass as well as the 

analysis of the F1 hybrids and stocked Florida parental type Bass from Florida and c-hats 

were adjusted according to the results of these analyses. Lastly, because there were 

different time intervals between sampling events, the “Set Time Intervals” option in 

MARK was used to account for this. Initially, the number of weeks between sampling 

intervals was calculated and that number was divided by 26 (i.e., the number of weeks in 

six months) to have MARK estimate survival over 6 month seasons.  

Initially, seven models were run using the CJS Live Recaptures model in Program 

MARK to estimate survival of Grand Lake native Largemouth Bass between mid-May, 

2012 and late-October, 2014. The first and simplest model (i.e., had the fewest 

parameters) was a constant model (hereafter referred to as Constant) in which both 

survival and detection probabilities were constant across all 12 time intervals between the 

13 sampling events. The second model was a season by year survival and detection 

model (hereafter referred to as Season*Year) where survival and detection were held 

constant for all time intervals within a growing or non-growing season for a year but they 

differed among years. For example, survival and detection were held constant for the two 
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time intervals between the mid-May and mid-November, 2012 (i.e., the 2012 growing 

season), survival and detection were held constant for the single time interval between 

mid-November, 2012 and mid-May, 2013 (i.e., the 2012-2013 non-growing season), and 

survival and detection were held constant for the four time intervals between mid-May 

and late-October, 2013 (the 2013 growing season), etc. The third model was an annual 

survival and detection model (hereafter referred to as Year) in which survival and 

detection were held constant for all time intervals within a given year but survival and 

detection for time intervals among years could be different. For this analysis, we chose to 

start the year after our late-October to mid-November sampling period resulting in a 

partial year for the time period starting in May, 2012 and ending in mid-November. 

Therefore, all survival and detection were held constant for all time intervals between 

mid-November, 2012 and early November, 2013, etc.  

The fourth model was a seasonal survival and detection model (hereafter referred 

to as Season) where survival and detection were held constant for all sampling intervals 

within the growing season (i.e., between the May sample and the late-October to mid-

November sample each year) of all years and survival and detection were held constant 

for all non-growing season intervals (i.e., between the late-October to mid-November 

sample and May sample the following spring) of all years. For example, survival and 

detection were held constant for the two time intervals between the mid-May and mid-

November, 2012 and the four time intervals between mid-May and late-October, 2013, 

etc. Additionally, three more models were run keeping survival the same as in the latter 

four models described above (i.e., Year, Season, and Season*Year) but detection was 

held constant across all time intervals for the entirety of the summer. These models are all 
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referred to as survival times the time interval of interest plus (e.g., time or year) plus 

detection times constant. For example, the model in which survival varied by year and 

detection was help constant across all time intervals was referred to as Survival*Year + 

Detection*Constant. 

Upon evaluation of our parameter estimates from our initial seven models, we 

observed that detection probabilities during our May, 2013 sample (the second season in 

our Season*Year models) was extremely low. This was due to the fact that our 

electrofishing boat malfunctioned during the May, 2013 sampling limiting our effort 

during this sampling event. Therefore, five models were built to address this. In all of 

these five models, survival was held constant across the two non-growing seasons to 

better estimate survival over the 2012/2013 non-growing season under the assumption 

survival was similar among winters. The first model allowed survival to be constant 

across time periods and detection was constant across time periods except for May, 2013 

(Survival*Constant + Detection*Constant Except Gear Failure). The second model 

allowed survival to vary by season but seasonal survival was constant among years and 

detection was held constant except for May, 2013 (Survival*Season + 

Detection*Constant Except Gear Failure). The third model was similar in the survival 

was held constant across the two non-growing seasons, survival was allowed to vary 

among the three growing seasons but was constant within a growing season, and 

detection was held constant except for May, 2013 (Season*Non-

growing*Constant*Growing*Year + Detection*Constant Except Gear Failure). The 

fourth model allowed survival to vary by season but was held constant across years and 

detection was allowed to vary by season and year (Survival*Season + 
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Detection*Season*Year). The last model held survival constant across non-growing 

seasons, allowed survival to vary among the three growing seasons, and allowed 

detection to vary by time (Survial*Non-growing*Constant*Growing*Year + 

Detection*Season*Year).   

Thirty four models were run using the CJS Live Recaptures model in Program 

MARK to estimate survival of the stocked F1 hybrids and Florida parental type 

Largemouth Bass from Florida. Both of these stocking origins had one extra season (i.e., 

2011/2012 non-growing season) for which to estimate survival because they were 

stocked during that season. Recaptures did not begin until May, 2012 so the two of the 

three stocking events in which an individual was not stocked received periods in the 

capture history to denote that recapture was not possible. Each of the two origins of 

stocked Largemouth Bass were considered their own attribute group for this analysis, 

thus allowing us to quantify if the best predictive model(s) for survival resulted from the 

two stocked groups having different estimates of survival and/or detection probabilities.  

The first seven models used to estimate survival of the stocked F1 hybrid and 

Florida parental type Largemouth Bass from Florida were the same as the first seven 

models described for the analysis of survival of Grand Lake native Largemouth Bass (i.e., 

Constant, Season* Year, Year, Season, Survival*Season*Year+Detection*Constant, 

Survival*Year+Detection*Constant, and Survival*Season+Detection*Constant). For 

these seven models, we were not trying to detect differences in survival or detection 

between the two groups. Furthermore, we ran four additional models in which the four 

different survival scenarios (i.e., Constant, Season, Year, and Season*Year) were 

separated by groups (i.e., the two groups could have different estimates of survival for a 
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given time period) but detection was held constant across all time periods and was the 

same for each of the two groups (i.e., there was only one estimate of detection for the 

entire analysis that was the same across all time intervals and for each group). These four 

models were coded by adding a *Group behind only the survival part of the model name 

(e.g., Survival*Time*Group) with the detection portion of the model name stating 

Detection*Constant.  

Four more models were run in which survival was the same for the two groups 

over the four different survival time scenarios (i.e., Constant, Season, Year, and 

Season*Year) and the estimate of detection was constant across all time intervals but 

each group could have a different estimate of detection. These four models were named 

by having survival time the time interval of interest (e.g., Survival *Year) and by adding 

a *Group behind all of the Detection*Constant parts of the model name (i.e., 

Detection*Constant*Group).  Seven additional models were run with group affects for 

estimating both survival and detection. Four of these models were run in which survival 

was modeled over the four time intervals and differed by group with detection being held 

constant across all time intervals but allowed to differ by group. Naming of these models 

included a *Group behind the survival portion of the name and a Constant*Group behind 

the detection portion of the name. Three of these models allowed both survival and 

detection to be modeled over a given time interval of interest (i.e., Season, Year, or 

Season*Year) with both survival and detection differing among the two groups. Model 

names included the time interval and group interaction (e.g., Season*Group) behind both 

the survival and detection portions of the model names.  
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Similar to the Grand Lake native Largemouth Bass models, 12 additional models 

were built for the Florida parental type and F1 hybrid survival model set to account for 

the broken electrofishing boat and reduced effort and potentially lowered detection 

probability during the May, 2013 sampling event. These twelve models allowed survival 

to vary over different time scenarios (i.e., season, constant, etc.) except non-growing 

seasons were always held constant as with the Grand Lake native Largemouth Bass 

simulations. Furthermore, detection was held constant but in some models allowed for a 

group effect and detection during the May, 2013 sample was always different than the 

other detection probabilities.  

For this study, we assumed the effects of tag loss and tagging mortality to be 

negligible given the techniques used for PIT tag implantation. Although we did not 

directly evaluate tag loss or tagging mortality for this study, other studies have shown 

PIT tag retention to be 100% out to two years for Largemouth Bass implanted with PIT 

tags in their peritoneal cavity (Harvey and Campbell 1989) and near 100% retention 

(98.9-100%) in Muskellunge (Esox masquinongy) that had PIT tags implanted in the 

dorsal musculature out to 153 or 210 days (Wagner et al. 2007). Furthermore, many 

studies have shown tagging mortality associated with PIT tag implantation to also be low 

(e.g., Dare 2003; Wagner et al. 2007). Therefore, survival rates estimated from live 

recaptures of PIT tagged Largemouth Bass were not adjusted for either tag loss or tagging 

mortality. 

Known Fate Survival 

 Forty two Largemouth Bass had F1235 radio tags (Advanced Telemetry 

Systems© [ATS]) surgically implanted into their abdominal cavity beginning in May, 
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2013. For a complete description of the procedures used to surgically implant the radio 

tags and the dates tags were implanted, see Breeggemann et al. (2016). Largemouth Bass 

ranged in size from 446-601mm Total Length (TL) and weighed between 1345 and 

4010g (see Breeggemann et al 2016). Largemouth Bass were tracked and located on a 

weekly basis using an R4500 Challenger Receiver (ATS) and a 3-way yagi antenna 

(ATS) in combination with the zero-point tracking method described by Nelson (1990) 

and Cooke et al. (2012). Tracking of Largemouth Bass began in June, 2013 and ended in 

October, 2014. Largemouth Bass were considered dead when movement ceased for at 

least 3 weeks or the Bass washed up on shore. Largemouth Bass that were presumed dead 

were continually located even after a mortality was suspected in case movement resumed.  

 The known fates model in Program MARK was used to estimate survival of radio 

tagged Largemouth Bass. The year was divided up into four different three month 

seasons: spring (March – May); summer (June – August); fall (September – November); 

and winter (December – February). Because we were not interested in weekly survival, 

all weekly telemetry locations within a given season were held constant and were used to 

estimate survival for the entire 3 month season via the derived estimates in MARK. We 

were able to estimate survival over six total seasons beginning in summer 2013 and 

ending in fall 2014. Five models were run in MARK to estimate survival of radio-tagged 

Bass. The first and simplest model was again the constant model (referred to as Constant 

in the results) where survival was constant across all six seasons. The second and most 

general model was the time model (referred to as Time in the results) where survival was 

different across all six seasons. The third model was a season model (referred to as 

Season) where survival differed among each of the four seasons but year did not matter. 
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Therefore, survival was the same in summer 2013 and summer 2014 for this model. The 

fourth model was used to compare survival during the growing season and non-growing 

season (referred to as Growing Season in the results). For this model, survival was the 

same across the spring, summer, and fall seasonal periods but different during the winter 

season. Additionally, survival was the same among years for the “Growing Season” 

model. The last model was similar to the fifth model (i.e., comparing survival during the 

growing season to the non-growing season) except survival was different among years 

(referred to as Growing Season*Year). Therefore, survival during the 2013 growing 

season (i.e., summer and fall 2013) was compare to the non-growing season and the 2014 

growing season. Similar to the CJS models, model averaging was used to get the best 

overall estimates of seasonal survival from our candidate set of models.  

Growth and Condition 

 Lengths and weights of recaptured PIT tagged Largemouth Bass sampled during 

one of the 13 sampling events were used to assess temporal trends in growth and 

condition of the four different origins of Largemouth Bass. Growth of the different 

origins was assed using changes in total length. A Largemouth Bass must have been at 

large for at least the majority of the growing season (i.e., four months of the months of 

May through October) to be included in the growth analysis. The majority of at least one 

growing season from the time of tagging to the time of recapture was used so as not to 

bias our conclusion about growth by including Largemouth Bass that were at large for 

periods of time but likely not growing such as winter months. For example, if a 

Largemouth Bass was PIT tagged in November, 2012 and recaptured in May, 2013, it 
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was not included in the growth analysis because it was not at large for at least the 

majority of one growing season between the time of tagging and recapture. 

  Condition of the different genetic parental types was assessed using relative 

weights (Wr) as described by Anderson and Neumann (1996). All Largemouth Bass were 

included in the analysis of relative weight regardless of time at large between tagging and 

capture events because relative weights can change quickly over short periods throughout 

the entire year. Total length and condition at the time of stocking were the starting length 

and condition used for recaptured Largemouth Bass from one of the three stocked origins. 

Total length and condition of native Largemouth Bass at the first encounter event were 

the starting length and condition for native Bass. In the event that a stocked or native 

Largemouth Bass was recaptured multiple times throughout sampling, the length and 

condition of that fish during the latest sampling event in which it was recaptured was 

used and the final length and condition to assess temporal trends in growth and condition. 

Therefore, every single Largemouth Bass included in the analysis had only a starting and 

final length and condition regardless of the number of times it was recaptured.  

Results 

Live Recaptures Survival 

Genetic analyses revealed that some of the stocked Largemouth Bass were not the 

genetic parental type we expected. The stocked Largemouth Bass from Alabama that we 

expected to be all F1 hybrids were predominantly F1 hybrids (35 of 51 sampled 

Largemouth Bass or 69%), but there were some second generation or later hybrids within 

these stocked Bass (i.e., Fx hybrids; 10 of 51 sampled Largemouth Bass or 20%; Figure 

3.2). Six of the Largemouth Bass that we expected to be F1 hybrids (i.e., 11%) had an 
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uncertain genetic parental type (i.e., did not have at least 70% certainty of being a certain 

genetic parental type based on Breeggemann et al. [2015]; Figure 3.2). However, all six 

of these Largemouth Bass had a combined 99% probability of being a hybrid (i.e, F1 or Fx 

hybrid; Figure 3.2), making them one of the hybrid parental types. This origin will 

subsequently be referred to as stocked hybrids. Unexpectedly, none of the 25 hatchery 

raised Largemouth Bass from Arkansas that we expected to be pure Florida parental type 

were pure Florida parental type. Twenty four of the 25 (96%) Largemouth Bass from this 

stocking had a 99% probability of being pure northern parental type and one (4%) had a 

94% probability of being an F1 hybrid (Figure 3.2). This origin will be subsequently 

referred to as stocked northern parental type. The only stocking event in which all of the 

stocked Largemouth Bass were from the genetic origin we expected was the hatchery 

raised adult Largemouth Bass from the state of Florida. All 43 Largemouth Bass from 

this stocking had an 89% or greater probability of being pure Florida parental type, with 

42 of the 43 having a 96% or greater probability of being pure Florida parental type, 

indicating they were all pure Florida parental type (Figure 3.2). This origin will be 

subsequently referred to as stocked Florida parental type. 

No overdispersion was found in the data from the program RELEASE goodness 

of fit test (Chi-square = 24.8404, df = 30) for the Grand Lake native Largemouth Bass 

survival models.  Therefore, no adjustments were made to c-hat. The models in which 

capture probabilities accounted for the sampling event in which our electrofishing boat 

failed (i.e., gear failure) and sampling was limited were the best fitting models (Table 

3.1). The best model estimated survival to be constant across all seasons (both growing 

seasons and non-growing seasons) and years at 82% (95% confidence interval from 65-
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92%) for each 6 month season and detection was constant across seasons at 0.03 except 

for the sampling event with the gear failure where capture probability was 0.1x10-8. The 

other competing model, which held approximately Wi =32% of the AIC weight, 

estimated survival to be constant within seasons across years (i.e., the same in all 

growing seasons and the same in all non-growing seasons; Table 3.1). However, 

deviances were very similar between the top two models and the second model only 

added one parameter, thus making the second model a competing model without a much 

better fit. Due to the fact that the second model incorporated only one extra parameter but 

didn’t fit better, we consider only the top (i.e., constant) model as a competing model 

(Burnham and Anderson 2002). Furthermore, due to low sample sizes as a result of the 

gear failure in our spring, 2013 sampling event, non-growing season survival was poorly 

estimated (i.e., had large confidence intervals) in the second competing Survival*Season 

model, adding more evidence for not considering this model. Estimated annual survival 

from the top (Constant) model were approximately 67%. 

No overdispersion was found in the data from the program RELEASE goodness 

of fit test (Chi-square = 8.425, df = 15) for the stocked pure Florida parental type and 

stocked hybrid Largemouth Bass survival models. Similar to the Grand Lake native 

Largemouth Bass results, the models in which the detection probabilities as a result of the 

gear failure during the May, 2013 sampling event were the best fitting models (Table 

3.2). The model with the highest weight (i.e., 0.25) estimated survival to be constant 

across all seasons but different for the two groups and detection to be constant across all 

seasons and different for each group with different detection probabilities during the 

May, 2013 sampling event (Table 3.2). Seasonal survival estimates from this model were 
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higher for the stocked hybrid Largemouth Bass at approximately 92% (95% confidence 

interval of 30-99%) per six month season compared to the stocked Florida parental type 

Largemouth Bass at approximately 67% (95% confidence interval of 60-73%) per six 

month season. Similar to the Grand Lake native Largemouth Bass survival models, the 

next two competing models were both season models (i.e., survival was different among 

the growing season and non-growing seasons but constant with a season across years) 

with one of the two season incorporating a group effect (Table 3.2). Again similar to the 

Grand Lake native Largemouth Bass models, these models did not explain much more 

deviance and non-growing season survival estimates were poorly estimated due to low 

sample sizes from the gear failure and therefore these models were not considered 

(Burnham and Anderson 2002). Total annual survival rates for the pure Florida parental 

type Largemouth Bass were estimated to be approximately 45% whereas total annual 

survival rates for the stocked hybrids were estimated to be 85%.  

Known Fate Survival 

 Four models carried the majority of the AICc weight from the known-fate 

simulations (Table 3.3). The model with the highest weight (i.e., 0.45) was the growing 

season model (Table 3.3) in which survival was the same across all three seasons that 

encompass the growing season (i.e., spring, summer, and fall) among both years of 

sampling at 91% for the season and survival was higher for the winter season at 100% 

(Figure 3.3). The second best model (model weight = 0.21) was a constant model in 

which survival was constant across all seasons and years at just under 93% per season 

(Table 3.3; Figure 3.3). The model with the third highest weight (i.e., 0.17) was similar to 

the first model in which survival was constant across all three seasons in the growing 
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season except this model allowed for different survival rates during the 2013 and 2014 

growing seasons (Table 3.3). Survival estimates from this Growing Season*Year model 

were 91.3% during the two seasons in the 2013 growing season, 100% during the 

2013/2014 winter, and 90.7% during the three seasons in the 2014 growing season 

(Figure 3.3). The last model that carried any significant model weight (i.e., 0.15) was the 

season model in which survival was the same within seasons across years (Table 3.3). 

Estimates of survival from the season model were 95% for the summer, 86% for the fall, 

100% for the winter, and 89% for the spring (Figure 3.3). Model averaged estimates of 

survival were similar during all growing season months across the study at 92.1% during 

summer 2013, 90.6% during fall 2013, 90.9% during spring 2014, 92% during summer 

2014, and 90.4% during fall 2014 and were higher during winter 2013/2014 at 98.5% 

(Table 3.3). Annual survival rates from the model averaged results are estimated to be 

between 70-75%.  

Growth and Condition 

 Overall, growth was slow for all four origins of Largemouth Bass with the 

stocked F1 and Fx hybrids (i.e., stocked hybrids) from the hatchery in Alabama growing 

the fastest. All of the stocked hybrid Largemouth Bass that were at large for at least the 

majority of one growing season after they were stocked grew at least 34mm TL with the 

largest gain in length being 147mm for a hybrid Bass that was at large for just about 3 

years from the time of tagging until the time of its latest recapture (Figure 3.4). The 

stocked northern parental type Largemouth Bass from the hatchery in Arkansas did not 

grow as fast as the stocked hybrids. Only three of the stocked northern parental type 

Largemouth Bass were recaptured at least the majority one growing season after stocking 



77 
 

and the greatest gain in length was 53mm for a Bass that had two full growing seasons to 

grow (Figure 3.5). One of the stocked northern parental type Largemouth Bass had three 

full growing seasons to grow, yet it grew only 35mm (Figure 3.5). Sixty five of the 

stocked Florida parental type Largemouth Bass from Florida were at large for at least the 

majority of one growing season between stocking and the time of final recapture and 51% 

of these grew 10mm or less, despite having three growing seasons to grow in some 

instances (Figure 3.6). Only one of the stocked Florida parental type Largemouth Bass 

grew more than 100mm from the time it was stocked until the latest time it was 

recaptured and that individual grew 148mm over three growing seasons (Figure 3.6).  

Fifty four native Grand Lake Largemouth Bass were at large for at least four 

months of one growing season (i.e., the majority of one growing season) in between the 

time of initial tagging and final recapture. Twenty nine (54%) of these native Grand Lake 

Largemouth Bass grew 10mm or less despite having at least the majority of one growing 

season to grow (Figure 3.7). None of the native Grand Lake Largemouth Bass grew 

100mm between the times of initial tagging and recapture with the largest length gain 

being 81mm for a Bass that had two growing seasons to grow (Figure 3.7). Additionally, 

only 18 Grand Lake native Largemouth Bass grew more than 25mm and 16 of these 18 

largest gains in total length were from Bass whose initial total length at the time of 

tagging was between 260 and 381mm (Figure 3.7). Similarly, some of the Grand Lake 

native Largemouth Bass were at large for three growing seasons from the time of initial 

tagging until their final recapture, yet they grew very little (Figure 3.7). For example, a 

Grand Lake native Largemouth Bass was PIT tagged on 5/19/2012 when it was 386mm 

TL and it was recaptured on 10/30/2014 when it was 394mm TL. This Largemouth Bass 
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grew only 8mm TL in three growing seasons, despite being a length that should be 

growing at some of the fastest rates of its life.  

The stocked hybrid Largemouth Bass from the hatchery in Alabama were all in 

good condition at the time of stocking with all 14 Bass having relative weights ≥100 at 

the time of stocking (Figure 3.8). Despite the fact that nine of the 14 Largemouth Bass’ 

relative weights decreased between the time of stocking and their final recapture, the 

stocked hybrid Largemouth Bass performed the best of any of the fours parental types 

with 10 of the 14 Bass still having relative weights above 100 at the time they were 

recaptured (Figure 3.8). Additionally, only two of these stocked hybrids had relative 

weights below 90 when they were recaptured (Figure 3.8). The condition of the stocked 

northern parental type Largemouth Bass from the hatchery in Arkansas at the time of 

stocking was not as good as the stocked hybrids with the stocked northern parental type 

Bass having relative weights between 85 and 96 (Figure 3.9). The three stocked northern 

parental type Largemouth Bass whose final recapture came within a year after stocking 

(i.e., 2012 sampling) all showed decreases in relative weights into the 70s or 80s (Figure 

3.9). However, the two stocked northern parental type Bass that whose final capture came 

in 2013 or 2014 showed increases in condition and had relative weights in the 90s (Figure 

3.9).   

The stocked Florida parental type Largemouth Bass from a hatchery in Florida 

were also in very good condition at the time of stocking with 94% having relative 

weights above 90 and 67% having relative weights above 100 (Figure 3.10). No stocked 

Florida parental type Largemouth Bass from Florida had a relative weight below 84 at the 

time of stocking (Figure 3.10). However, the stocked Florida parental type Largemouth 
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Bass showed a dramatic decline in relative weights during the year after stocking (Figure 

3.10). All but three of the 60 stocked Florida parental type Largemouth Bass whose final 

recapture date occurred within a year after stocking (i.e., 2012) dropped in relative 

weights with some showing decreases in relative weights by as much as 45 and some 

relative weights dropping into the 60s (Figure 3.10). Additionally, only 6 of the 60 

stocked Florida parental type Largemouth Bass whose final recapture date occurred in 

2012 had relative weights above 100 at the time of recapture (Figure 3.10). Stocked 

Florida parental type Largemouth Bass from Florida whose final recapture came in 2013 

or 2014 had more variable relative weights but showed a progressive recovery (Figure 

3.10). Only eight of the 51 (16%) stocked Florida parental type Largemouth Bass whose 

finale recapture came in 2013 or 2014 had relative weights between 70 and 80 (none had 

relative weights below 70) while 12 of the 51 (24%) had relative weights above 100 

(Figure 3.10).  

Relative weights of native Grand Lake Largemouth Bass were variable 

throughout the entirety of the study and variable within individual sampling events with 

some Bass having relative weights above 100 with others having relative weights in the 

70s for the same sampling event (Figure 3.11).  Additionally, some native Grand Lake 

Largemouth Bass showed dramatic increases in relative weights from their tagging 

condition to their final recapture condition with one Bass having an initial tagging 

condition of 80 and a final recapture condition of 118 (Figure 3.11). Other native Grand 

Lake Largemouth Bass showed dramatic declines in condition with one Bass having a 

starting condition of 87 and a final recapture condition of 60 (Figure 3.11). Overall, 

native Grand Lake Largemouth Bass condition was below average throughout the 
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entirety of the study with the population having a mean relative weight of 87 at the time 

of initial tagging and the population having a mean relative weight of 86 at the time all 

Largemouth Bass were recaptured (Figure 3.11).   

Discussion  

 Predicted survival rates varied among the genetic origins with the stocked Florida 

parental type Largemouth Bass having the lowest predicted survival rates, followed by 

the Grand Lake native and radio tagged Bass, and the stocked hybrids having the highest 

predicted survival. Annual survival rates for native Largemouth Bass (i.e., both native 

PIT tagged and radio tagged Bass from the survival analyses) were higher than many 

other Largemouth Bass fisheries. For example, Allen et al. (1998) complied annual 

mortality rates for 34 Largemouth Bass populations throughout the United States and 

found that most populations had annual mortality rates >50% and some as high as 80%. 

However, it should be noted that all of the populations present in Allen et al. (1998) had 

exploitation and Grand Lake does not. Many of the Largemouth Bass populations 

presented by Allen et al. (1998) had natural mortality rates of approximately 30% which 

is what was observed in this study. Allen et al. (2002) compiled annual mortality rates for 

45 Largemouth Bass populations in Florida and found that the average annual mortality 

rate for these populations was 51% and that 70% of these populations had mortality rates 

between 40-60%. Survival rates from Grand Lake were again higher than for most of the 

populations in Florida (Allen et al. 2002). Furthermore, Crawford et al. (2002) predicted 

annual mortality rates to be from 27-41% in order to have a trophy Largemouth Bass 

fishery in Florida. Survival rates of Grand Lake Largemouth Bass fall right within the 
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range presented by Crawford et al. (2002) indicating Largemouth Bass should live long 

enough to reach trophy size in Grand Lake.  

 Unfortunately, we were not able to assess seasonal trends in survival using our 

PIT tagged data, but known fate models did suggest seasonal trends in survival of 

Largemouth Bass in Grand Lake with Largemouth Bass having higher survival during 

winter than the rest of the year. Our most plausible explanation for this is high water 

temperatures during the summer and associated metabolic stress associated with these. 

Optimal water temperatures for Largemouth Bass are 26-28°C (Coutant & Cox 1976) and 

summer water temperatures in Texas may exceed these optimal temperatures, especially 

during late afternoons at the hottest point of the day. Temperatures above a Largemouth 

Bass’ thermal optima may increase metabolic demands of the fish and the stress 

associated with that fish and may even force that individual to seek out more optimal 

water temperatures. Although movement of Largemouth Bass in response to sub-optimal 

water temperatures has not yet been evaluated in Largemouth Bass, it has been observed 

in Smallmouth Bass (Micropterus dolomieu), a very closely related speices (Schreer and 

Cooke 2002).  

Overall, the stocked, feed-trained hybrid Tiger Bass had higher estimated 

survival, grew more, and maintained higher relative weights that any other genetic group 

within the population. One potential reason for the higher survival, faster growth, and 

higher condition of these hybrids is readily available food throughout the entire growing 

season. Grand Lake has 11 commercial fish feeders stationed on shore around the lake as 

well as two floating feeders which are all programmed to dispense commercial feed three 

times a day throughout the growing season, thus providing a continuous feed source for 
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these fish. Furthermore, diet analyses revealed that pellets were observed in Largemouth 

Bass diets in Grand Lake as late as the 2014 growing season indicating continued use of 

pelleted food by these feed-trained stocked hybrid Largemouth Bass years after stocking 

(Chapter 4). Other researchers have shown that Largemouth Bass respond behaviorally to 

the availability of food which can thus translate to growth. For example, Savitz et al. 

(1983) found that Largemouth Bass released at control feeders that released 10 Fathead 

Minnows (Pimephales promelas) per hour had significantly smaller home ranges than 

Largemouth Bass released at control feeders. Having a readily available high energy food 

source combined with reduced energy expenditures to acquire food (Savitz et al. 1983) 

could maximize growth and survival of Largemouth Bass.  

A second possible explanation for the faster growth of the stocked feed-trained 

hybrid Largemouth Bass is hybrid vigor or heterosis in which first generation hybrids 

may be more aggressive than their pure parental type counterparts at feeding or other 

behaviors, have faster growth, be more resistance to disease, have higher survival, or 

express another enhanced trait that increases growth and survival (Shull 1948). Although 

our genetic analyses revealed that not all of the individuals from this stocking were F1 

hybrids, >70% were so the vast majority could express hybrid vigor. Hybrid vigor has 

been shown to occur in many fish species throughout the world including sunfishes 

(Krumholz 1950; Hubbs 1955), trout and salmonids (Ayles and Baker 1983; Einum and 

Fleming 1997), hybrid striped bass (Kirby et al. 1987), and catfish (Rahman et al. 1995). 

The feed trained hybrid Largemouth Bass were all bred with the female having pure 

Florida parental type genetics and the male having pure northern parental type genetics 

(i.e., a Tiger Bass) to maximize growth and the expression of hybrid vigor as pure Florida 
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parental type Largemouth Bass have been shown to grow faster and attain larger size than 

the pure northern parental type counter parts (Rieger and Summerfelt 1976; Inman et al. 

1977; Maceina et al. 1988). Perhaps the combination of hybrid vigor as well as being 

feed trained and having feed pellets readily available led to the faster growth and higher 

relative weights observed in the feed trained hybrid Largemouth Bass in Grand Lake. 

Future research using feed trained hybrid Largemouth Bass and Largemouth Bass that 

only eat natural prey in a common garden design could disentangle the mechanism of 

faster growth observed in this study.   

Aside from the feed trained hybrid Largemouth Bass stocked into Grand Lake, the 

other three genetic origins (i.e., stocked northern parental type, stocked Florida parental 

type, and Grand Lake native Largemouth Bass) had slow growth except for some of the 

small Largemouth Bass <300mm TL. Growth rates for these three genetic origins were 

similar to Largemouth Bass growth rates in Grand Lake prior to the major stocking event 

(Chapter 2). As mentioned earlier, several researchers have shown that Florida parental 

type and hybrid Largemouth Bass can grow faster and maintain better condition than 

northern parental type Largemouth Bass (Rieger and Summerfelt 1976; Inman et al. 

1977; Maceina et al. 1988). Furthermore, the Grand Lake native Largemouth Bass 

population was comprised primarily of a mix of pure Florida parental type Largemouth 

Bass and hybrids (Chapter 2). Therefore on a genetic basis alone, we would have 

predicted faster growth among the stocked pure Florida parental type Largemouth Bass as 

well as the Grand Lake native Largemouth Bass. This provides evidence that simply 

stocking Florida genetics into a water body does not guarantee fast growth rates if some 

other factor is limiting growth. 
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One factor that could be potentially limiting growth of Largemouth Bass in Grand 

Lake is food resources. Largemouth Bass are considered piscivorous and several studies 

have shown that age-0 Largemouth Bass grow significantly faster on diets comprised 

primarily of fish prey compared to other types of prey (Shelton et al. 1979; Timmons et 

al. 1980; Gutreuter and Anderson 1985; Adams and DeAngelis 1987; Bettoli et al. 1992). 

Furthermore, other piscivorous fish species such as the Walleye (Sander viterus) grow 

faster on diets composed primarily of fish compared to those in invertebrates (Ward et al. 

2007; Graeb et al. 2008). Diets collected from Grand Lake Largemouth Bass over three 

years showed that early in the spring (i.e., May) Largemouth Bass often consumed a 

considerable amount of crayfish (family Cambaridae) and that other invertebrates are 

found at least in small quantities in Largemouth Bass diets throughout the year (Chapter 

4). Additionally, Largemouth Bass did shift over to feeding on primarily fish by mid-

summer and maintained that feeding strategy for the rest of the growing season (Chapter 

4). However, bioenergetics simulations assessing growth potential of Largemouth Bass in 

Grand Lake on a diet consisting of 100% shad (i.e., Dorosoma spp.) throughout the entire 

growing season revealed that there is room for improvement in Largemouth Bass growth 

if they consumed even more fish. Stocking a more cool water tolerant species such as 

Rainbow Trout (Oncorhynchus mykiss) could give Largemouth Bass a high energy prey 

source early in the spring until the age-0 shad and sunfish become desirable prey sizes.  

A second factor that could be limiting the growth potential of Largemouth Bass in 

Grand Lake is habitat as Largemouth Bass are considered a species that closely associates 

with structure and cover. For example, Wiley et al. (1984) found that intermediate 

densities of vegetation maximized Largemouth Bass production in small Illinois ponds. 
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In another study, Sass et al. (2006) found that Largemouth Bass in a lake in northern WI 

in which 75% of the coarse woody debris had been removed consumed less fish and grew 

more slowly than fish in a reference basin. Additionally, Ahrenstorff et al. (2009) found 

that Largemouth Bass in northern WI lakes with lower densities of coarse woody debris 

had larger home ranges and consumed less prey than Bass in lakes with more woody 

debris. Ahrensorff et al. (2009) hypothesized that when habitat (i.e., woody debris) was 

reduced, Largemouth Bass spent extra time and expended additional energy searching for 

prey and thus growth slowed as a result. Grand Lake was built in the 1950s and is 

considered an aging reservoir in which habitat quality and quantity has declined. 

Furthermore, Grass Carp have been stocked into Grand Lake removing all submersed 

aquatic vegetation. Radio telemetry of Largemouth Bass in Grand Lake has shown that 

some Largemouth Bass have large seasonal use areas as well as travel over 1,000 meters 

in a 24hours period (Chapter 5). Thus a lack of habitat could be forcing Largemouth Bass 

to move extensive distances to capture food, etc., similar to the results of Ahrenstorff et 

al. (2009).    

At the time of stocking, the pure Florida parental type Largemouth Bass were all 

in very good condition (i.e., relative weights >90) and we expected this genetic origin to 

perform much better than the native Largemouth Bass in Grand Lake. However, within 

months after stocking, their relative weights declined dramatically down to the 70s and 

80s and subsequent recaptures throughout the following years showed that some relative 

weights for this origin remained poor while a few recovered. Furthermore, estimated 

survival rates for the stocked pure Florida parental type Largemouth Bass were lower 

than for any other genetic origin and growth rates for most of the individuals recaptured 
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were poor. All of these factors provide evidence for the potential for outbreeding 

depression or the loss of fitness due to the breakup of coadapted gene complexes (i.e., 

favorable allele combinations) following the stocking of this genetic origin (Hallerman 

2003). Outbreeding depression has been shown in other Largemouth Bass populations 

following the introduction of new genetics. For example, pure Florida parental type 

Largemouth Bass and hybrids between northern parental type and Florida parental type 

Bass were shown to have lower growth and survival than pure northern parental type 

Largemouth Bass in Illinois (Phillipp 1991; Phillipp and Whitt 1991). Furthermore, 

Phillipp and Clausen (1995) showed that outbreeding depression can occur by moving the 

same parental type of Largemouth Bass from different water bodies within the same state. 

Although there is some evidence for the potential for outbreeding depression, growth 

rates and condition of pure Florida parental type Largemouth Bass in the years 2013 and 

2014 were similar to Grand Lake native Largemouth Bass and therefore they may not 

reduce growth or condition of the population going forward. However, we did not 

observe the enhanced growth that we expected from the stocked pure Florida parental 

type Bass and the true effect of stocking may not be seen until these stoked fish have had 

a couple of years to spawn and introduce their genetics into the population.    

Management Implications  

 Survival rates of the native Largemouth Bass population in Grand Lake are high 

enough to allow Largemouth Bass to reach ages in which they can reach their full growth 

potential and create a trophy fishery. During a population assessment in December, 2011, 

otoltihs were collected from 75 Largemouth Bass from Grand Lake and nearly 10% (i.e., 

seven Largemouth Bass) of the Bass sampled were estimated to be age-9 or age-10 from 



87 
 

sectioned otoliths (Chapter 2). Thus, management does not need to be tailored to enhance 

survival. The genetic origin that performed the best (i.e., highest survival rates, fastest 

growth, and highest relative weights) were the feed trained hybrid Largemouth Bass 

stocked into Grand Lake. However, to maintain feed trained hybrids in the population, 

they may have to be repeatedly stocked every couple of years. Subsequent generations 

will not be feed trained and therefore offspring from the hybrids may not grow as 

quickly. Furthermore, offspring from the hybrids will be second generation hybrids and 

second generation and later hybrids may not show the same hybrid vigor as first 

generation hybrids (Emlen 1991; Hallerman 2003; McGinnity et al. 2003). The stocked 

pure Florida parental type Largemouth Bass from Florida did not perform as well as we 

had expected. It is unknown if stocking these fish will result in outbreeding depression as 

growth for the native population was slow as well. Stocking a few individuals into a 

smaller pond with similar conditions to the Lake in which you want to do a major 

stocking and subsequently monitoring their performance in this small pond may provide 

insight into whether a major stocking event into a larger system using those genetics is 

appropriate. Simply managing for genetics does not guarantee that you can create a 

trophy Largemouth Bass fishery. All other factors that affect growth such as diet and 

habitat must be optimal in order for Largemouth Bass to reach their full growth potential.    

  



88 
 

References 

Adams, S. M., and D. L. DeAngelis. 1987. Indirect effects of early bass-shad interactions  

on predator population structure and food web dynamics. Pages 103-117 in W. C. 

Kerfoot and A. Sih, editors. Predation: direct and indirect impacts on aquatic 

communities. University Press of New England, Hanover, NH.  

Ahrenstorff, T. D., G. G. Sass, and M. R. Helmus. 2009. The influence of littoral zone  

coarse woody habitat on home range size, spatial distribution, and feeding 

ecology of Largemouth Bass (Micropterus salmoides). Hydrobiologia 623:223-

233. 

Allen, M. S., L. E. Miranda, and R. E. Brock. 1998. Implications of compensatory and  

additive mortality to the management of selected sportfish populations. Lakes and 

Reservoirs: Research and Management 3:67-79. 

Allen, M. S., W. Sheaffer, W. F. Porak, and S. Crawford. 2002. Growth and mortality of  

Largemouth Bass in Florida waters: implications for use of length limits. Pages 

559-566 in D. P. Phillipp and M. S. Ridgway, editors. Black bass: ecology, 

conservation, and management. American Fisheries Society, Symposium 31, 

Bethesda, Maryland.  

Anderson, D. R., K. P. Burnham, and W. L. Thompson. 2000. Null hypothesis testing:  

problems, prevalence, and an alternative. Journal of Wildlife Management 

64:912-923. 

Anderson, R. O., and R. M. Neumann. 1996. Length, weight, and associated structural  

indices. Pages 447-482 in B. R. Murphy, and D. W. Willis, editors. Fisheries 

Techniques, 2nd edition. American Fisheries Society, Bethesda, Maryland. 



89 
 

Ayles, G. B., and R. F. Baker. 1983. Genetic differences in growth and survival between  

strains and hybrids of Rainbow Trout (Salmo gairdneri) stocked in aquaculture 

lakes in the Canadian prairies. Aquaculture 33:269-280. 

Bettoli, P. W., M. J. Maceina, R. L. Noble, and R. K. Betsill. 1992. Piscivory in  

Largemouth Bass as a function of aquatic vegetation abundance. North American 

Journal of Fisheries Management 12:509-516. 

Buckmeier, D. L, J. W. Schlechte, and R. K. Betsill. 2003. Stocking fingerling  

largemouth bass to alter genetic composition: efficacy and efficiency of three 

stocking rates. North American Journal of Fisheries Management 23:523-529. 

Burnham, K. P., and D. R. Anderson. 2002. Model selection and multimodel inference. A  

practical information-theoretic approach, 2nd edition. Springer. New York, New 

York.  

Buynak, G. L., and B. Mitchell. 1999. Contribution of stocked advanced-fingerling  

largemouth bass to the population and fishery at Taylorsville Lake, Kentucky. 

North American Journal of Fisheries Management 19:494-503. 

Chilton II, E. W., and M. I. Muoneke. 1992. Biology and management of grass carp  

(Ctenopharyngodon idella, Cyprinidae) for vegetation control: a North American 

perspective. Reviews in Fish Biology and Fisheries 2:283-320. 

Crawford, S., W. F. Porak, D. J. Renfro, R. L. Cailteux. 2002. Characteristics of trophy  

Largemouth Bass populations in Florida. Pages 567-581 in D. P. Phillipp and M. 

S. Ridgway, editors. Black bass: ecology, conservation, and management. 

American Fisheries Society, Symposium 31, Bethesda, Maryland.  

 



90 
 

Cooke, S. J., S. G. Hinch, M. C. Lucas, and M. Lutcavage. 2012. Biotelemetry and  

biologging. Pages 819-881 in A. V. Zale, D. L. Parrish, and T. M. Sutton, editors. 

Fisheries techniques, 3rd edition. American Fisheries Society, Bethesda, 

Maryland.  

Coutant, C.C. & Cox, D.K. 1976. Growth rates of subadult largemouth bass at 24 to 35.5  

C. Proceedings of the Thermal Ecology II, Augusta, Georgia, USA. 

Dare, M. R. 2003. Mortality and long-term retention of passive integrated transponder  

tags by spring Chinkook salmon. North American Journal of Fisheries 

Management 23:1015-1019. 

Dauwalter, D. C., and J. R. Jackson. 2005. A re-evauation of U.S. state fish-stocking  

recommendations for small, private, warmwater impoundments. Fisheries 30:18-

28. 

Dunham. R. A., C. J. Turner, and W. C. Reeves. 1992. Introgression of the Florida  

Largemouth Bass genome into native populations in Alabama public lakes. North 

American Journal of Fisheries Management 12:494-498. 

Earle, S. 1937. Fish culture is big business in the United States. The Progressive Fish- 

Culturist 4:1-29. 

Emlen, J. M. 1991. Heterosis and outbreeding depression: a multilocus model and an  

application to salmon production. Fisheries Research 12:187-212. 

Einum, S., and I. A. Flemming. 1997. Genetic divergence and interactions in the wild  

among native, farmed and hybrid Atlantic salmon. Journal of Fish Biology 

50:634-651. 

 



91 
 

Forshage, A. A., and L. T. Fries. 1995. Evaluation of the Florida Largemouth Bass in  

Texas, 1972-1993. Pages 484-491 in H. L. Schramm, Jr., and R. G. Piper, editors. 

Use and effects of cultured fishes in aquatic ecosystems. American Fisheries 

Society, Symposium 15, Bethesda, Maryland.  

Gilliland, E. R., and J. Whitaker. 1989. Introgression of Florida Largemouth Bass  

introduced into northern Largemouth Bass populations in Oklahoma reservoirs. 

Proceedings of the Annual Conference Southeastern Association of Fish and 

Wildlife Agencies 43:182-190. 

Graeb, B. D. S., S. R. Chipps, D. W. Willis, J. P. Lott, R. P. Hanten, W. Nelson-Stastny,  

and J. W. Erickson. 2008. Walleye response to rainbow smelt population decline 

and liberalized angling regulations in a Missouri River reservoir. Pages 275-291 

in M. S. Allen, S Sammons, and M. J. Maceina, editors. Balancing fisheries 

management and water uses for impounded river systems. American Fisheries 

Society, Symposium 62, Bethesda, Maryland. 

Gutreuter, S. J., and R. O. Anderson. 1985. Importance of body size to recruitment  

process in largemouth bass populations. Transactions of the American Fisheries 

Society 114:317-327. 

Hallerman, E. 2003. Coadaptation and outbreeding depression. Pages 239-259 in E. M.  

Hallerman, editor. Population genetics: principles and applications for fisheries 

scientists. American Fisheries Society, Bethesda, Maryland.  

Halverson, M. A. 2008. Stocking trends: a quantitative review of governmental fish  

stocking in the United States, 1931 to 2004. Fisheries 33:69-75. 

Hubbs, C. L. Hybridization between fish species in nature. Systematic Zoology 4:1-20. 



92 
 

Harvey, W. D., and D. L. Campbell. 1989. Technical notes: retention of passive  

integrated transponder tags in Largemouth Bass brood fish. The Progressive Fish 

Culturist 51:164-166. 

Inman, C. R., R. C. Dewey, and P. P. Durocher. 1977. Growth comparison and  

catchability of three Largemouth Bass strains. Fisheries 2:20-25.  

Kirby, J. H., J. M. Hinshaw, and M. T. Huish. 1987. Increased growth and production of  

Striped Bass x White Bass hybrids in earthen ponds. Journal of the World 

Aquaculture Society 18:35-43. 

Kleinsasser, L. J., J. H. Williamson, and B. G. Whiteside. 1990. Growth and catchability  

of northern, Florida, and F1 hybrid Largemouth Bass is Texas ponds. North 

American Journal of Fisheries Management 10:462-468. 

Krumholz, L. A. 1950. Further observations on the use of hybrid sunfish in stocking  

small ponds. 1950. Transactions of the American Fisheries Society 79:112-124. 

Lajeone, L. J., T. W. Bowzer, and D. L. Bergerhouse. 1992. Supplemental stocking of  

fingerling walleyes in the upper Mississippi River. North American Journal of 

Fisheries Management 12:307-312. 

Lathrop, R. C., B. M. Johnson, T. B. Johnson, M. T. Vogelsang, S. R. Carpenter, T. R.  

Hrabik, J. F. Kitchell, J. J. Magnuson, L. G. Rudstam, and R. S. Stewart. 2002. 

Stocking piscivores to improve fishing and water clarity: a synthesis of the Lake 

Mendota biomanipulation project. Freshwater Biology 47:2410-2424. 

Li, J., Y. Cohen, D. H, Schupp, and I. R. Adelman. 1996. Effects of walleye stocking on  

year-class strength. North American Journal of Fish Management 16:840-850.  

 



93 
 

Maceina, M. J., B. R. Murphy, and J. J. Isely. 1988. Factors regulating Florida  

Largemouth Bass stocking success and hybridization with northern Largemouth 

Bass in Aquilla Lake, Texas. Transactions of the American Fisheries Society 

117:221-231. 

Martyn, R. D., R. L. Noble, P. W. Bettoli, and R. C. Maggio. 1986. Mapping aquatic  

weeds with aerial color infrared photography and evaluating their control by grass 

carp. Journal of Aquatic Plant Management 24:46-56. 

McGinnity, P, P. Prodohl, A. Ferguson, R. Hynes, N. O. Maoileidigh, N. Baker, D.  

Cotter, B. O’Hea, D. Cooke, G. Rogan, J. Taggart, and T. Cross. Fitness reduction 

and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a 

result of interactions with escaped farm salmon. Proceedings of the Royal Society 

of London B: Biological Sciences 270:2443-2450. 

Mitzner, L. 1978. Evaluation of biological control of nuisance aquatic vegetation by grass  

carp. Transactions of the American Fisheries Society 107:135-145. 

Modde, T. 1980. State stocking policies for small warmwater impoundments. Fisheries  

5:13-17.  

Murphy, B. R., and W. E. Kelso. 1986. Strategies for evaluating freshwater stocking  

programs: past practices and future needs. Pages 306-313 in R. H. Stroud, editor. 

Fish culture in fisheries management. American Fisheries Society, Bethesda, 

Maryland. 

 

 

 



94 
 

Nelson, D. R. 1990. Telemetry studies of sharks: a review, with applications in resource  

management. Pages 239-256 in H. L. Pratt, S. H. Gruber, and T. Taniuchi, editors. 

Elasmobranchs as living resources: advances in the biology, ecology, systematics, 

and the status of fisheries. NOAA (National Oceanic and Atmospheric 

Administration) National Marine Fisheries Service Technical Report 90. 

Parsons, B. G., D. L. Pereira, and P. D. Eiler. 1994. Evaluation of walleye fingerling  

stocking in three west-central Minnesota lakes. Minnesota Department of Natural 

Resources, Section of Fisheries Investigational Report 435. 

Phillipp, D. P. 1991. Genetic implications of introducing Florida Largemouth Bass,  

Micropterus salmoides floridanus. Canadian Journal of Fisheries and Aquatic 

Sciences 48:58-65. 

Phillipp, D. P., and G. S. Whitt. 1991. Survival and growth of northern, Florida, and  

reciprocal F1 hybrid Largemouth Bass in central Illinois. Transactions of the 

American Fisheries Society 120:58-64. 

Phillipp, D. P., and J. E. Claussen. 1995. Fitness and performance differences between  

two stocks of largemouth bass from different river drainages within Illinois. Pages  

236-243 in H. L. Schramm, Jr. and R. G. Piper, editors. Uses and effects of 

cultured fishes in aquatic ecosystems. American Fisheries Society, Symposium 

15, Bethesda, Maryland.  

 

 

 

 



95 
 

Phillipp, D. P., J. E. Claussen, T. W. Kassler, and J. M. Epifanio. Mixing stocks of  

largemouth bass reduces fitness through outbreeding depression. Pages 349-363 

in D. P. Phillipp and M. S. Ridgway, editors. Black bass: ecology, conservation, 

and management. American Fisheries Society, Symposium 31, Bethesda, 

Maryland.  

Pister. E. P. 2001. Wilderness fish stocking: history and perspective. Ecosystems 4:279- 

286. 

Rahman, M. A., A. Bhadra, N. Begum, M. S. Islam, and M.G. Hussain. Production of  

hybrid vigor through cross breeding between Clarias batrachus Lin. and Clarias 

gariepinus Bur. Aquaculture 138:125-130. 

Rieger, P. W., and R. C. Summerfelt. 1976. An evaluation of the introduction of Florida  

Largemouth Bass into an Oklahoma reservoir receiving a heated effluent. 

Proceedings of the Annual Conference Southeastern Association of Fish and 

Wildlife Agencies 30:48-57.  

Ryden, D. W. 2000a. Monitoring of experimentally stocked razorback sucker in the San  

Juan River: March 1994 through October 1997. Fianl Report, US Fish and 

Wildlife Service, Grand Junction, Colorado. 

Ryden, D. W. 2000b. Monitoring of razorback sucker stocked into the San Juan River as  

part of a five-year augmentation effort: 1997-1999 Interim Progress Report. US 

Fish and Wildlife Service, Grand Junction Colorado. 

Sass, G. G., J. F. Kitchell, S. R. Carpenter, T. R. Hrabik, A. E. Marburg, and M. G.  

Turner. 2006. Fish community and food web responses to a whole-lake removal 

of coarse woody habitat. Fisheries 31:321-330. 



96 
 

Savitz, J., P. A. Fish, and R. Weszely. 1983. Effects of forage on home-range size of  

Largemouth Bass. Transactions of the American Fisheries Society 112:772-776. 

Schreer, J. F., and S. J. Cooke. 2002. Behavioral and physiological responses of  

Smallmouth Bass to a dynamic thermal environment. Pages 191-203 in D. P.  

Phillipp and M. S. Ridgway, editors. Black bass: ecology, conservation, and 

management. American Fisheries Society, Symposium 31, Bethesda, Maryland.  

Shelton, W. L., W. D. Davies, T. A. King, and T. J. Timmons. 1979. Variation in the  

initial year class of largemouth bass in West Point Reservoir, Alabama and 

Georgia. Transactions of the American Fisheries Society 108:142-149. 

Shireman, J. V., and M. J. Maceina. 1981. The utilization of grass carp,  

Ctenopharyngodon idella Val., for hydrilla control in Lake Baldwin, Florida. 

Journal of Fish Biology 19:629-636. 

Shull, G. H. 1948. What is “heterosis”?. Genetics 33:439-446. 

Simons, L. H., D. A. Hendrickson, and D. Papoulias. 1989. Recovery of the Gila  

topminnow: a success story? Conservation Biology 3:11-15. 

Smith, S. V., W. H. Renwick, J. D. Bartley, and R. W. Buddemeier. 2002. Distribution  

and significance of small, artificial water bodies across the United States 

Landscape. The Science of the Total Environment 299:21-36. 

Tave, D. 1993. Genetics for fish hatchery managers, 2nd edition. AVI, Westport,  

Connecticut.  

Templeton, A. R. 1986. Coadaptation and outbreeding depression. Pages 105-116 in M.  

Soulé, editor. Conservation biology: the science and scarcity of diversity. Sinauer 

Associates, Sunderland, Massachusetts.  



97 
 

Timmons, T. J., W. L. Shelton, and W. D. Davies. 1980. Differential growth of  

largemouth bass in West Point Reservoir, Alabama-Georgia. Transactions of the 

American Fisheries Society 109:176-186. 

Trushenski, J., T. Flagg, and C. Kohler. 2010. Use of hatchery fish for conservation,  

restoration, and enhancement of fisheries. Pages 261-293 in W. A. Hubert and M. 

C. Quist, editors. Inlnad fisheries management in North America, 3rd edition. 

American Fisheries Society, Bethesda, Maryland. 

Tunison, A. V., S. M. Mullin, and O. Lloyd Meehean. 1949. Survey of fish culture in the  

United States. The Progressive Fish-Culturist 11:31-69. 

Wahl, D. H., R. A. Stein, and D. R. DeVries. 1995. An ecological framework for  

evaluating the success and effects of stocked fishes. Pages 176-189 in H. L. 

Schramm and R. G. Piper, editors. Uses and effects of cultured fishes in aquatic 

ecosystems. American Fisheries Society, Bethesda, Maryland.  

Wagner, C. P., M. J. Jennings, J. M. Kampa, and D. W. Wahl. 2007. Survival, growth  

and tag retention in age-0 Muskellunge implanted with passive integrated 

transponders. North American Journal of Fisheries Management 27:873-877. 

Ward, M. J., D. W. Willis, B. H. Miller, and S. R. Chipps. 2007. Walleye consumption  

and long-term population trends following gizzard shad introduction into a 

western South Dakota reservoir. Journal of Freshwater Ecology 22:339-345. 

Wiley, M. J., R. W. Gorden, S. W. Waite, and T. Powless. 1984. The relationship  

between aquatic macrophyte and sportfish production in Illinois ponds: a simple 

model. North American Journal of Fisheries Management 4:111-119. 

 



98 
 

Willis, D. W., R. D. Lusk, and J. W. Slipke. 2010. Farm ponds and small impoundments.  

Pages 501-543 in W. A. Hubert and M. C. Quist, editors. Inland fisheries 

management in North America, 3rd edition. American Fisheries Society, Bethesda, 

Maryland.  

Wingate, P. J., and J. A. Younk. 2007. A program for successful muskellunge  

management – A Minnesota success story. Environmental Biology of Fishes 

79:163-169. 

Wright, R. A., and C. E. Kraft. 2012. Stocking strategies for recreation small  

impoundments. Pages 155-180 in J. W. Meal and D. W. Willis, editors. Small 

impoundment management in North America. American Fisheries Society, 

Bethesda, Maryland.  

Zolcynski, S. J., W. D. Davies. 1976. Growth characteristics of the northern and Florida  

subspecies of Largemouth Bass and their hybrid, and a comparison of catchability 

between the subspecies. Transactions of the American Fisheries Society 105:240-

243. 



99 
 

TABLE 3.1. AIC rankings among competing Cormack Jolly Seber models to estimate seasonal survival of Grand Lake native 

Largemouth Bass sampled between May, 2012 and October, 2014. 

  Delta AICc Model   

Model AICc AICc Weight Likelihood Parameters Deviance 

Survival*Constant + Detection*Constant Except Gear Failure 943.55 0.00 0.538 1.00 3 162.93 

Survival*Season + Detection*Constant Except Gear Failure 944.61 1.06 0.317 0.59 4 161.97 

Survival*Non-growing*Constant*Growing*Year +  948.27 4.72 0.051 0.09 6 161.57 

             Detection*Constant Except Gear Failure       

Survival*Season + Detection*Season*Year 948.71 5.16 0.041 0.08 7 159.97 

Survival*Non-growing*Constant*Growing*Year +  950.44 6.89 0.017 0.03 9 157.61 

             Detection*Season*Year       

Constant 950.94 7.38 0.013 0.02 2 172.33 

Season*Year 952.02 8.46 0.008 0.01 10 157.14 

Survival*Year + Detection*Constant 952.63 9.08 0.006 0.01 4 169.99 

Survival*Season + Detection*Constant 952.77 9.22 0.005 0.01 3 172.15 

Season 954.68 11.12 0.002 0.00 4 172.03 

Year 956.32 12.77 0.001 0.00 6 169.62 

Survival*Season*Year + Detection*Constant 956.63 13.08 0.001 0.00 6 169.93 
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TABLE 3.2. AIC rankings for different Cormack Jolly Seber models to estimate seasonal survival of stocked Pure Florida parental type 

and hybrid Largemouth Bass sampled from Grand Lake, TX between May, 2012 and October, 2014.  

    Delta AICc Model     

Model AICc AICc Weight Likelihood Parameters Deviance 

Survival*Constant*Group+Detection*Constant*Group Except Gear Failure 1388.32 0.00 0.25 1.00 6 154.02 

Survival*Season*Group+Detection*Constant*Group Except Gear Failure 1388.76 0.44 0.20 0.80 8 150.38 

Survival*Season+Detection*Constant*Group Except Gear Failure 1389.07 0.75 0.17 0.69 6 154.77 

Survival*Season+Detection*Constant Except Gear Failure 1390.44 2.12 0.09 0.35 4 160.19 

Survival*Constant+Detection*Constant Except Gear Failure 1390.88 2.55 0.07 0.28 3 162.65 

Survival*Constant+Detection*Constant*Group Except Gear Failure 1391.32 3.00 0.06 0.22 5 159.05 

Survival*Non-growing*Constant*Growing*Year+ 1391.37 3.05 0.06 0.22 8 152.99 

              Detection*Constant*Group Except Gear Failure       

Survival*Non-growing*Constant*Growing*Year+ 1392.64 4.31 0.03 0.12 6 158.33 

              Detection*Constant Except Gear Failure       

Survival*Constant*Group+Detection*Constant Except Gear Failure 1392.76 4.44 0.03 0.11 4 162.52 

Survival*Season*Group+Detection*Constant Except Gear Failure 1393.22 4.90 0.02 0.09 6 158.92 

Survival*Non-growing*Constant*Growing*Year*Group+ 1394.52 6.20 0.01 0.05 12 147.92 

              Detection*Constant*Group Except Gear Failure       

Survival*Non-growing*Constant*Growing*Year*Group+ 1397.32 9.00 0.00 0.01 10 154.84 

              Detection*Constant Except Gear Failure       

Season*Year 1398.80 10.48 0.00 0.01 12 152.20 

Survival*Constant*Group+Detection*Constant*Group 1400.40 12.07 0.00 0.00 4 170.15 

Survival*Year*Group+Detection*Constant 1402.27 13.95 0.00 0.00 7 165.93 
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TABLE 3.2 CONTINUED. AIC rankings for different Cormack Jolly Seber models to estimate seasonal survival of stocked Pure Florida 

parental type and hybrid Largemouth Bass sampled from Grand Lake, TX between May, 2012 and October, 2014.  

    Delta AICc Model     

Model AICc AICc Weight Likelihood Parameters Deviance 

Year 1402.84 14.52 0.00 0.00 6 168.54 

Survival*Year*Group+Detection*Constant*Group 1403.04 14.72 0.00 0.00 8 164.66 

Survival*Year+Detection*Constant 1403.04 14.72 0.00 0.00 4 172.80 

Survival*Season*Year+Detection*Constant*Group 1403.15 14.83 0.00 0.00 8 164.77 

Constant 1403.33 15.01 0.00 0.00 2 177.12 

Survival*Season*Group+Detection*Constant*Group 1403.54 15.22 0.00 0.00 6 169.24 

Survival*Year+Detection*Constant*Group 1403.60 15.28 0.00 0.00 5 171.33 

Survival*Constant+Detection*Constant*Group 1403.61 15.28 0.00 0.00 3 175.38 

Survival*Season+Detection*Constant*Group 1404.37 16.05 0.00 0.00 4 174.13 

Survival*Season+Detection*Constant 1404.86 16.54 0.00 0.00 3 176.64 

Survival*Season*Year+Detection*Constant 1405.03 16.71 0.00 0.00 7 168.69 

Survival*Constant*Group+Detection*Constant 1405.20 16.88 0.00 0.00 3 176.98 

Survival*Year*Group+Detection*Year*Group 1405.47 17.15 0.00 0.00 12 158.86 

Season 1406.64 18.31 0.00 0.00 4 176.39 

Survival*Season*Group+Detection*Season*Group 1406.91 18.59 0.00 0.00 8 168.53 

Survival*Season*Year*Group+Detection*Constant 1407.42 19.10 0.00 0.00 13 158.75 

Survival*Season*Group+Detection*Constant 1407.82 19.50 0.00 0.00 5 175.55 

Survival*Season*Year*Group+Detection*Constant*Group 1408.67 20.35 0.00 0.00 14 157.92 

Survival*Season*Year*Group+Detection*Seasoon*Year*Group 1410.23 21.91 0.00 0.00 24 138.41 
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TABLE 3.3. AIC rankings for different known fate models to estimate seasonal survival of radio tagged Largemouth Bass in Grand 

Lake, TX from summer, 2013 through fall, 2014. 

    Delta AICc Model     

Model AICc AICc Weight Likelihood Parameters Deviance 

Growing Season 98.71 0.00 0.45 1.00 2 31.65 

Constant 100.27 1.56 0.21 0.46 1 35.21 

Growing Season*Year 100.71 2.00 0.17 0.37 3 31.64 

Season 100.95 2.24 0.15 0.33 4 29.86 

Time 104.64 5.92 0.02 0.05 6 29.52 
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FIGURE 3.1. Length frequency histograms for PIT tagged Largemouth Bass of four different origins. One of the origins was hatchery 

raised F1 and Fx hybrids stocked into Grand Lake in December, 2011 (A), one of the origins was hatchery raised pure northern 

parental type Largemouth Bass with one F1 hybrid stocked into Grand Lake in December, 2011 (B), and one of the origins was pure 

Florida parental type wild caught Largemouth Bass from the state of Florida stocked into Grand Lake in February and March, 2012 

(C). The last origin was native caught Largemouth Bass from Grand Lake which were sampled from May, 2012 – September, 2014 

(D).    
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FIGURE 3.2. Percent probability of an individual Largemouth Bass from three different source populations stocked into Grand Lake, 

Texas being pure northern parental type (Northern), pure Florida parental type (Florida), an F1 hybrid (F1 Hybrid), or an Fx hybrid (Fx 

Hybrid). Source populations were expected to be hatchery raised F1 Tiger Largemouth Bass (A), hatchery raised pure Florida parental 

type Largemouth Bass (B), and wild caught Florida parental type Largemouth Bass from the state of Florida (C).  
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FIGURE 3.3. Seasonal (3 month) survival of Grand Lake radio tagged Largemouth Bass sampled from June, 2013 through the end of 

October, 2014. Error bars represent 95% confidence intervals.    
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FIGURE 3.4. Growth (changes in total length) of hybrid Largemouth Bass that were stocked in December, 2011 and were recaptured 

between May, 2012 and October, 2014 from Grand Lake, TX.   
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FIGURE 3.5. Growth (changes in total length) of northern parental type Largemouth Bass that were stocked in December, 2011 and 

were recaptured between May, 2012 and October, 2014 from Grand Lake, TX.   
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FIGURE 3.6. Growth (changes in total length) of Florida Largemouth Bass that were stocked in February and March, 2012 and were 

recaptured between May, 2012 and October, 2014 from Grand Lake, TX.   
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FIGURE 3.7. Growth (changes in total length) of native Largemouth Bass that were captured between May, 2012 and September 2014 

and recaptured between June, 2012 and October, 2014 from Grand Lake, TX.   

 

250
275
300
325
350
375
400
425
450
475
500
525
550
575

1
0

/1
4

/2
0

1
1

1
/1

2
/2

0
1

2

4
/1

1
/2

0
1

2

7
/1

0
/2

0
1

2

1
0

/8
/2

0
1

2

1
/6

/2
0

1
3

4
/6

/2
0

1
3

7
/5

/2
0

1
3

1
0

/3
/2

0
1

3

1
/1

/2
0

1
4

4
/1

/2
0

1
4

6
/3

0
/2

0
1

4

9
/2

8
/2

0
1

4

1
2

/2
7

/2
0

1
4

To
ta

l L
e

n
gt

h
 (

m
m

)

Date

1
0

9
 



110 
 

 
FIGURE 3.8. Changes in condition (relative weight [Wr]) of hybrid Largemouth Bass that were stocked in December, 2011 and were 

recaptured between May, 2012 and October, 2014 from Grand Lake, TX.   
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FIGURE 3.9. Changes in condition (relative weight [Wr]) of northern parental type Largemouth Bass that were stocked in December, 

2011 and were recaptured between May, 2012 and October, 2014 from Grand Lake, TX.   
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FIGURE 3.10. Changes in condition (relative weight [Wr]) of Florida parental type Largemouth Bass that were stocked in February and 

March, 2012 and were recaptured between May, 2012 and October, 2014 from Grand Lake, TX.   
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FIGURE 3.11. Changes in condition (relative weight [Wr]) of native Largemouth Bass that were captured between May, 2012 and 

September 2014 and recaptured between June, 2012 and October, 2014 from Grand Lake, TX.   
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CHAPTER 4: EFFECTS OF DIET AND TEMPERATURE ON GROWTH 

POTENTIAL OF LARGEMOUTH BASS IN A TEXAS IMPOUNDMENT WITH 

IMPLICATIONS FOR CLIMATE CHANGE 

 

 

 

Abstract 

Optimal quantity and quality of prey resources combined with optimal water 

temperatures are necessary to maximize the growth potential of Largemouth Bass. 

Furthermore, future water temperatures as a result of climate change may limit growth of 

Largemouth Bass in lakes and impoundments at the southern edge of their range. 

Largemouth Bass diets were assessed over three years in a private Texas impoundment 

and bioenergetics models were used to simulate growth of Largemouth Bass over 

different diet scenarios and future temperature models. Largemouth Bass tended to 

consume a mix of fish (i.e., 30-40% by weight) and crayfish (i.e., 20-40% be weight) 

during spring and then switched to feeding on a diet of primarily fish (i.e., >60% by 

weight) from mid-summer through the rest of the growing season. Largemouth Bass will 

have to increase consumption by 5-25% under future temperature scenarios just to meet 

baseline metabolic demands. If current rates of consumption are maintained under future 

predicted temperature scenarios, Largemouth Bass growth will decrease with some size 

classes failing to even meet their baseline metabolic demands. Largemouth Bass will 

have to increase p-values from 0.35-0.4 to 0.45-0.5 in order to meet baseline metabolic 

demands and begin to grow under a diet of 100% crayfish and observed 2013 and 2014 

water temperatures. However, Largemouth Bass can meet their baseline metabolic 

demands and begin to grow at p-values as low as 0.3 under a diet of 100% Shad spp and 

observed 2013 and 2014 water temperatures. Management strategies (e.g., aerators) 
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should be used to ensure water temperatures are as close to those that optimize growth, 

especially in the face of future temperature models. Additionally, management strategies 

such as stocking prey fish should be used to optimize available prey in all seasons. 

 

Keywords: Diet, temperature, Largemouth Bass, climate change, bioenergetics 

 

Introduction 

 Quantity and quality of food resources can affect growth rate and condition of all 

living organisms. For example, Kaibab mule deer (Odocoileus hemionus) that used 

reseeded areas of their summer range designed to provide higher quality food sources 

returned to good condition earlier in the spring than mule deer in reference areas. 

(Hungerford 1970). Additionally, a 24.5% increase in the number of fawns was also 

observed following reseeding due to better summer food supply (Hungerford 1970). In 

another example, Walleye (Sander viterus) are a piscivorous fish that have been shown to 

grow faster and achieve larger sizes when consuming fish compared to invertebrates 

(e.g., Graeb et al. 2008). Furthermore, Walleye were shown to grow faster in Lake Erie 

when diets consisted of Gizzard Shad (Dorosoma cepedianum), a species with high 

energetic value, compared to diets of Emerald Shiner (Notropis atherinoides) and Spottail 

Shiner (N. hudsonius) or White Perch (Morone americana) and Walleye growth in Upper 

and Lower Red Lake, MN was positively correlated to strong year classes of Yellow 

Perch (Perca flavescens; Hartman and Margraf 1992; Ostazeski and Spangler 2001). 

Thus, providing adequate food resources for a desired organisms must be a goal of any 

fisheries or wildlife manager. 
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Historically, many fisheries, and especially small impoundments, were viewed 

and managed as a way to provide a source of food throughout the United States (Willis 

and Neal 2012). Additionally, small impoundments were often stocked with a wide 

variety of species, plants, and invertebrates, making management complex and outcomes 

difficult to predict (Wright and Kraft 2012).  To more effectively manage small 

impoundments and have predictable management outcomes, Swingle (1949) moved to 

simplify the fish community within small impoundments, using only Largemouth Bass 

(Micropterus salmoides), Bluegill (Lepomis macrochirus), and minnows. Additionally, 

Swingle (1950) developed metrics based on the composition of forage fish and 

carnivorous fish within an impoundment to be used to assess simple fish communities 

and provided management recommendations based on the goals and results of 

assessemnts of these simple fish communities. Following Swingle’s work, fisheries 

managers have been manipulating food webs through stocking standardized combinations 

of prey fish and predators or specialized combinations of fishes to achieve the goals of 

private impoundment owners or public constituents (e.g., Modde 1980; Ney 1981; 

Dauwalter and Jackson 2005; Wright and Kraft 2012). More recently, many fisheries 

managers have seen a shift among anglers in the way they view fisheries from one of 

primarily subsistence to a more recreational view in which quality fishing opportunities 

are preferred (i.e., catch trophy fish; Weithman and Anderson 1978). Largemouth Bass 

anglers may be leading the paradigm shift to the creation of trophy fisheries (e.g., 

Forshage and Fries 1995). 

Largemouth Bass are currently one of the most popular freshwater sport fish 

species throughout the world and one of the most intensively managed sport fish species 
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throughout North America. According to the 2011 national survey of fishing, hunting, 

and wildlife associated recreation, 10.6 million anglers and 171 million fishing days were 

spent targeting Black Bass (M. spp.), making them the most popular freshwater sportfish 

in the United States outside of the Great Lakes (USDI 2011). Additionally, since the time 

of Swingle in the 1930s and 40s, Largemouth Bass and Bluegill have been the most 

commonly stocked fish species throughout the southern United States and 34 of the 48 

lower states in the United States have recommendations for stocking rates and ratios for 

Largemouth Bass and Bluegill in small impoundments (Dauwalter and Jackson 2005; 

Wright and Kraft 2012).  Due to their popularity with anglers, Largemouth Bass have 

been stocked throughout much of the world including most of the United States outside 

their native range, southern Canada, Central America, South America, Europe, Asia, and 

Africa (e.g., Powers and Bowes 1967; Robins and MacCrimmon 1974; Azuma and 

Motomura 1999; Weyl and Hecht 1999; Gratwicke and Marshall 2001; Jackson 2002; 

Bernardo et al. 2003; Maezono and Miyashita 2003; Schulz and Leal 2005). 

 Fisheries managers who are trying to create trophy Largemouth Bass fisheries 

must be cognizant of the food web within the water body they are trying to manage as 

diets of Largemouth Bass have been shown to affect growth rates of all life stages of the 

species. For example, first year growth of Largemouth Bass in Lake Conroe, TX was 

significantly faster for age-0 Bass that switched to piscivory at 60 mm total length (TL) 

following vegetation removal compared to age-0 Bass that switched to piscivory at 100 

mm TL prior to vegetation removal (Bettoli et al. 1992). Similarly, Gutreuter and 

Anderson (1985) found differential growth rates of some age-0 Largemouth Bass based 

on availability of proper size and type of food with age-0 Bass that consumed Gizzard 
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Shad growing faster than age-0 Bass that in ponds without availability of Gizzard Shad. 

Several other studies have also showed age-0 Largemouth Bass growth to be dependent 

on types, sizes, and numbers of available prey with Largemouth Bass that consume fish 

often growing faster than Bass that consume other diets such as invertebrates (e.g., 

Shelton et al. 1979; Timmons et al. 1980; Adams and DeAngelis 1987). In a study of the 

effects of coarse woody habitat removal on feeding and growth of Largemouth Bass, Sass 

et al. (2006) found that following removal of coarse woody habitat from the treatment 

basin of Little Rock Lake, WI, Largemouth Bass in the treatment basin of consumed 

fewer yellow perch and other aquatic prey species, consumed a higher proportion of 

terrestrial prey, overall consumed a lower weight of prey and grew significantly slower 

than Largemouth Bass in the unaltered reference basin.   

 Given the fact that Largemouth Bass are ectotherms, water temperature may also 

affect their growth rates with Largemouth Bass having an optimal growth temperature 

range of 26-28 °C (Coutant & Cox 1976).  Additionally, as climate change progresses, 

increased temperatures will increase a fish’s basal metabolic demands necessary to 

maintain cardiac function and respiration (Brown et al. 2004; Breeggemann et al. 2015) 

leading to increased consumption necessary to meet basal metabolic needs and 

potentially a reduction in growth as a result (Christie & Regier 1988). It is likely that the 

effects of climate change will be most severe at the southern edge of a fish’s range where 

temperatures are already near the upper thermal limit of tolerance (e.g., Magnuson 2001; 

Casselman 2002; Breeggemann et al. 2015). Although Breeggemann et al. (2015) did not 

show significant decreases in growth of Largemouth Bass as a result of climate change 

near the center of their range in the Sandhills of Nebraska, the possibility exists that 
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climate change could have a more significant impact of Largemouth Bass growth in 

southern states such as Texas. As of yet, no research has been conducted to explore the 

potential effects of climate change on Largemouth Bass growth in the southern United 

States.  

 Grand Lake is a 45ha private impoundment located in eastern Texas with a 

current fisheries goal of growing 6.8kg Largemouth Bass. The current management 

strategy includes an enhanced food web which consists of Bluegill, Redear Sunfish 

(Lepomis microlophus), Redbreast Sunfish (Lepomis auritus), Gizzard Shad, Black 

Crappie (Pomoxis nigromaculatus), White Crappie (Pomoxis annularis), Channel Catfish 

(Ictalurus punctatus), and Black Bullhead (Ameiurus melas), among others as prey fish 

with self-sustaining populations as well as stocking of Threadfin Shad (Dorosoma 

petenense) and Mozambique Tilapia (Oreochromis mossambicus) every year because 

these two species die every fall due to thermal limitations. However, it is not known 

which if any of these species make up a significant portion of Largemouth Bass diets in 

Grand Lake. Furthermore, it is not known which prey fish species or combination of prey 

fish species will maximize growth of Largemouth Bass in Grand Lake nor are the effects 

of water temperature on growth of Largemouth Bass in Grand Lake known. Knowledge 

of the effects of prey and water temperature on growth of Largemouth Bass could aid in 

the management (e.g., adjust stocking regimes or add aeration to adjust water 

temperatures) of this systems as well as other systems throughout the world. The 

objectives of our study were to 1) quantify seasonally important diet items from 

Largemouth Bass in Grand Lake, TX; and 2) simulate changes in growth and 

consumption of Largemouth Bass under predicted future climate change scenarios, 
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different diet scenarios, and a combination of predicted future climate change scenarios 

and diets.  

Methods 

Study site 

Grand Lake is a 45ha private impoundment located just east of Athens, TX. 

Grand Lake was built in the 1950s and is intensively managed as a trophy Largemouth 

Bass fishery. Grand Lake is considered a eutrophic (secchi disc readings ≤ 0.75 m year 

round) impoundment with a mean depth of 3.2 meters and a maximum depth of 7.9 

meters. In order to enhance the population genetics of Grand Lake, over 600 adult pure 

Florida parental type Largemouth Bass and over 100 adult feed trained F1 hybrid 

Largemouth Bass were stocked into the lake over the winter of 2011-2012 (Chapter 2). 

Additionally, the food web is intensively managed every year through stocking of 

different prey fish species (see introduction for a complete description) as well as an 

intensive feeding program that consists of two floating feeders and 11 feeders dispersed 

around the lake on the shore or docks. The goal of the feeders is to enhance prey fish 

production that can then support higher Largemouth Bass production. No exploitation of 

Largemouth Bass occurs in Grand Lake except to reduce densities when density-

dependent competition is evident.   

Field sampling 

Pulsed DC electrofishing was used to sample Largemouth Bass from Grand Lake 

multiple times each year beginning in spring 2012 and ending in fall 2014. Three 

sampling events occurred throughout 2012: mid-May, mid-August, and mid-November. 

Four sampling events occurred in 2013: late-May/early-June, late-July/early August, mid-
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September, and late-October. Five sampling events also occurred in 2014: early-

February, mid-May, early-July, mid-September, and late-October. During each sampling 

event, total length (mm; TL) and weight (g) of all Largemouth Bass collected were 

measured. Diet samples were collected from all Largemouth Bass with a TL ≥250mm 

using pulsed gastric lavage (Kamler and Pope 2001). A stratified random sampling 

design was used based on lengths of Largemouth Bass to ensure a representative diet 

sample was collected during each sampling event. Therefore, the goal during each 

sampling event was to collect at least 20 diets from Largemouth Bass 250-381mm TL, 20 

diets from Largemouth Bass 382-508mm TL, and as many diets as could be collected 

from Largemouth Bass >508mm TL knowing diets from the largest size class would be 

rare. Upon collection, all diet samples were preserved in 10% formalin.  

Twelve HOBO® Pendant® temperature loggers (Onset® Computer Corporation) 

were deployed on two towers in Grand Lake, one tower in the north central region and 

the other in the south central region. The north temperature logger tower consisted of 

seven temperature loggers affixed to a rope that extended from the surface to the bottom. 

One temperature logger was affixed to the rope at approximately 0.5m below the surface 

and each subsequent temperature logger was affixed at a distance of at approximately 1m 

apart starting at 1.5m below the surface (i.e., 1m below the temperature logger closest to 

the surface). The temperature logger tower in the south central region had the same 

configuration (i.e., one temper logger 0.5m below the surface and a temperature logger 

evenly spaced every meter below the one closest to the surface), except only five 

temperature loggers were used due to shallower water. The two towers were initially 

deployed in May 2013, and then all temperature loggers were replaced with new ones in 
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May, 2014 using the same configuration described above and then all temperature 

loggers were removed from Grand Lake in November, 2014. All temperature loggers 

were programmed to record water temperatures every hour. 

Lab processing 

 Following preservation, all diet samples were transferred to water and then stored 

in 70% ethanol. All diet samples for individual Largemouth Bass were identified to the 

lowest possible taxonomic resolution (i.e., species for fish and other vertebrates and 

family for invertebrates). All diet items of a given taxon for an individual Largemouth 

Bass were weighed to the nearest 0.01g for large diet items and to the nearest 0.0001g for 

small diet items (e.g., Odonata wings).  

Food habits 

 The relative importance of major prey categories (i.e., fish, Cambaridae, 

vegetation, invertebrates other than Cambaridae, vertebrates other than fish [frogs, 

salamanders, turtles, snakes], pellets from feed trained Bass, and other prey) in seasonal 

Largemouth Bass diets was quantified using mean percent composition by wet weight. 

Vegetation was included as a descriptor and was presumed to be consumed 

unintentionally when consuming other prey items such as Cambaridae or fish. Percent 

composition by wet weight was calculated for the entire population as a whole, as well as 

the three size classes discussed previously (i.e., 250-381mm TL, 382-508mm TL, and 

>508mm TL). Furthermore, frequency of occurrence (i.e., the percentage of stomachs in 

which a given diet item was found; Chipps and Garvey 2007) and prey specific 

abundance (PSA; Amundsen et al. 1996) were also calculated for individual prey types 



123 
 

(i.e., family for invertebrates and species for vertebrates). Prey-specific abundance was 

calculated as: 

𝑃𝑆𝐴 =
∑ 𝑆𝑖

∑𝑆𝑡𝑖
∗ 100, 

where PSA equals the prey-specific abundance of prey item i, Si equals the stomach 

contents (by weight) comprised of prey i, and Sti equals the total stomach contents (by 

weight) of only the predators with prey item i in their stomach (Amundsen et al. 1996). 

Frequency of occurrence and PSA were calculated for all Largemouth collected within 

each of the 12 sampling events and for each of the three size classes of Largemouth bass 

described above collected within each sample (i.e., 250-381mm TL, 382-508mm TL, and 

>508mm TL). Results of the Amundsen plots are all presented in Appendix A.  

Bioenergetics simulations 

 Bioenergetics models (Fish Bioenergetics 4.0; Chipps et al. 2016) were used to 

simulate the effects of prey and temperature (i.e., climate change) on growth and 

consumption of Largemouth Bass. Energy densities of Largemouth Bass prey items used 

in bioenergetics simulations were taken from the following published sources (Cummins 

and Wuycheck 1971; Kelso 1973; Miranda and Muncy 1989; Pope et al. 2001; Eggelton 

and Schramm 2002; Vatland et al. 2008; James et al. 2012). Mean observed daily water 

temperatures were calculated by taking the average of all hourly water temperatures 

recorded from the four temperature loggers that were closest to the surface on each of the 

two temperature logger towers described above. Only the top four temperature loggers 

from each tower were used because these loggers were located above the hypolimnion 

where adequate oxygen was available for Largemouth Bass survival during stratified 

periods. Diet samples collected during the 2013 and 2014 growing seasons were used in 
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bioenergetics simulations.  Vegetation and pellets were removed from diet proportion for 

bioenergetics simulations because vegetation was considered an inadvertent diet item 

consumed while eating other prey and is also of little benefit energetically to a top level 

piscivore and pellets were considered to be consumed only by stocked feed-trained F1 

hybrid Largemouth Bass and not representative of the greater Largemouth Bass 

population as a whole.  Bioenergetics simulations for the 2013 growing season were 

simulated over the period of June 1 through October 31 encompassing the four diet 

samples that took place during this time period described above. Bioenergetics 

simulations for the 2014 growing season were simulated over the period of May 15 

through October 30 and also included four diet samples as described previously. 

 Due to the inaccuracies and imprecision associated with using non-lethal calcified 

structures (e.g., scales or fin spine) to estimate ages of Largemouth Bass along with the 

need for non-lethal sampling methods, no calcified structures were collected from Bass 

during sampling to assign ages for modeling of age specific cohorts. However, size 

groups corresponding to individual age classes were assigned to all individual 

Largemouth Bass collected during each sampling event based on a von Bertalanffy 

growth curve fitted to mean back-calculated lengths at age derived from sectioned sagittal 

otoliths collected from Largemouth Bass in Grand Lake during December, 2011 (Chapter 

1 of this dissertation). Initial lengths for each age class (i.e., size class) used for 

bioenergetics models were the observed mean back-calculated lengths at age from the 

December, 2011 sample. Final lengths used in simulations in which probable growth was 

modeled were the length at one year older under the assumption that most of the growth 

was completed by the end of October in each year when simulations ended. For example, 
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the final length for the two year old age class was based on the mean back-calculated 

length at age three assuming that the two year olds had now completed three full growing 

seasons. All starting and ending lengths for both sampling seasons (i.e., 2013 and 2014) 

were derived from the sample taken in December, 2011. Initial and final weights for each 

age class in each year were derived from length-weight regressions built from fish 

collected during the initial (i.e., May/June) or final (i.e., October) sample of Largemouth 

Bass collected in each growing season.  

 The mid-length between two adjacent lengths at age was used to assign individual 

Largemouth Bass to a given size/age class. For example, the predicted mean back-

calculated length at age two and three were 280 and 335 mm TL, respectively. Therefore, 

307 mm TL (i.e., the mid-point between lengths at age two and three) was used separate 

individuals into size/age classes for initial and final samples, or samples at the start or end 

of the growing season. For samples taken in the middle of the growing season (e.g., July), 

it was assumed that Largemouth Bass had completed half of their growth for that growing 

season. Therefore, lengths at age were assumed to be the mid-length between their 

starting and ending lengths. The same process described above where the mid-point 

between lengths at age was used to assign individual Largemouth Bass to a size/age class 

was also used to separate individual Largemouth Bass into size/age classes during the 

middle of the growing season using the mid-season predicted lengths at age. Changes and 

growth and consumption were modeled for seven age/size classes (i.e., ages 2 through 8) 

for each growing season. Starting and final lengths and weights for each age class for 

each growing season are presented in Table 4.1. Evidence from individual growth 

trajectories from PIT tag data (Chapter 2 of this dissertation) shows that population 
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growth has not changed much since 2011, justifying the use of the methods described 

above to assign growth increments.    

 Bioenergetics simulations were then used to assess the effects of climate change 

on Largemouth Bass growth and consumption in a southern climate. For purposes of 

comparison across studies, the same predicted monthly temperature changes from each of 

three climate change models (i.e., MPI, USGS, and GFDL) and two predicted time 

intervals in the future (i.e., 2040 and 2060) from Breeggemann et al. (2015) were applied 

to baseline temperatures (i.e., observed Grand Lake water temperatures) to simulate the 

effects of climate change on the Grand Lake Largemouth Bass population (Table 4.2). 

Furthermore, two of the same simulations run by Breeggemann et al. (2015) were run for 

this study. Initially, observed (i.e., 2013 and 2014) diets and temperature scenarios from 

Grand Lake were used to build a baseline model of total cumulative consumption 

necessary to meet baseline metabolic needs (i.e., a no growth scenario). Subsequently, the 

percent change in total cumulative consumption was then quantified for each of the seven 

age classes in each of the two years (i.e., 2013 and 2014) across all three climate change 

models and two future time intervals to assess additional consumption necessary to meet 

baseline energetic demands under future predicted climate scenarios. Additionally, total 

consumption necessary to meet probable growth scenarios for each age class (i.e. using 

predicted initial and final weights under projected growth conditions) was quantified 

under baseline (i.e., 2013 and 2014) conditions. Subsequently, consumption (i.e., p-

values from baseline models) was held constant and predicted end weight under all 

climate change models (i.e., each of the three models across both time periods) were 

simulated to assess changes in growth under predicted future climate scenarios.  
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 Bioenergetics simulations were also used to simulate the effects of different diet 

scenarios on growth potential of Largemouth Bass in Grand Lake under observed 

temperature conditions. The three diet scenarios modeled were the observed diet (i.e., 

baseline diet), a diet consisting of 100% shad (i.e., a mix of Gizzard Threadfin Shad), and 

a diet of 100% crayfish. The fit to consumption model was used to quantify growth (i.e., 

percent change in initial weight) for all seven age classes in each year feeding on each of 

the three diet scenarios over a range of p-values (i.e., percent maximum consumption). P-

values modeled ranged from 0.3 to 0.5 and were modeled over increments of 0.05.     

Results  

Seasonally Important Diet Items 

 The Largemouth Bass from all size classes (i.e., population) sampled from Grand 

Lake were consuming primarily a mix of fish and crayfish (Cambaridae) during the mid-

May, 2012 sampling event (Figure 4.1). Fish composed the highest percent composition 

by weight at just under 50% followed by crayfish at 32% (Figure 4.1). Fish observed in 

diets included Bluegill, Largemouth Bass, Ictaluridae, Gizzard Shad, and Lepomis spp. 

Also present in diets of all fish combined were invertebrates which were primarily 

Odanata and Dipterans (Figure 4.1). Crayfish made up the higest percentage of weight for 

the smallest size class of Largemouth Bass during the May, 2012 sample at 36% followed 

by fish and invertebrates at 26% and 19% of percentage by wet weight respectively 

(Figure 4.1). The two larger size classes were consuming primarily fish as fish comprised 

57% of the weight for the middle size class and 67% of the weight for the largest size 

class (Figure 4.1). Crayfish made up the majority of the rest of the diets for the middle 

and largest size classes in mid-May, 2012 (Figure 4.1). 
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 By mid-August, Largemouth Bass in Grand Lake had switched over to feeding 

primarily on fish with fish making up between 59 and 100% of the wet weight of diet 

items for all size classes including all Lagemouth Bass combined (Figure 4.1). 

Identifiable fish were primarily Bluegill and both Gizzard Shad and Threadfin Shad. 

Aside from fish, the Largemouth Bass were comsuimg primarily invertebrates such as 

Odonata and terrestrial crickets Gryllidae (Figure 4.1). Diets during mid-November, 2012 

were similar to mid-August, 2012, being composed primarily of fish with fish making up 

>75% of the weight for all size classes and all Largemouth Bass combined (Figure 4.1). 

Observed fish from the November, 2012 sample included Gizzard and Threadfin Shad, 

Largemouth Bass, Pomoxis spp., and members of both the Centrarchidae and Ictaluridae 

families (Figure 4.1). Aside from fish, Largemouth Bass were consuming invertebrates 

such as Coleopterans and also some vertebrates such as salamnders and one turtle (Figure 

4.1). Vegetation made up a small (~5%) proportion of the weight for all 2012 sampling 

events but was again assumed to be eaten incidentally (Figure 4.1). We also sampled 

some pellets from feed trained Largemouth Bass stocked into Grand Lake in December, 

2011 (Figure 4.1). 

 Diets collected during 2013 sampling showed similar seasonal trends to 2012 

sampling. Crayfish and fish comprised the majority of the weight of diet items during the 

May/June, 2013 sampling event (Figure4. 2). Fish and crayfish comprised about 80% of 

the weight of the May/June 2013 sample when all Largeouth Bass diets were combined, 

with fish making up just over 55% and crayfish making up 25% (Figure 4.2).  However, 

differences were observed in diets for different size classes during this sample with the 

smalles size class eating primarily fish (60% of the weight compared to only 20% for 
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crayfish) whereas the middle size class consumed primarily caryfish (61% of the weight 

compared to 28% for fish; Figure 4.2). Invertebrates observed in diets included Dipterans 

(e.g., Culicidae), Odonata, and terrestrial grasshoppers (Acrididae). By mid-summer (late 

July/early August) 2013, Largemouth Bass in Grand Lake had again switched over to 

feeding primarily on fish with fish making up ≥50% of the weight of diets for all size 

classes (Figure 4.2). Observed fish in diets included Gizzard and Threadfin Shad, 

Bluegill, and Ictalurid spp. The smallest size class of Largemouth Bass was consuming 

priamrily fish with fish making up 75% of the weight of diet items (Figure 4.2). Crayfish 

did compries 10-16% of the weight of the diets of the small and middle size classes of 

Largemouth Bass (Figure 4.2). Two diets weer collected from Largemouth Bass >508mm 

TL and one contained a Bluegill while the other contained an unidentified salamander 

(Figure 4.2).  

During mid-September, the trend of Largemouth Bass feeding primarily on fish 

continued as >68% of the weight of diets was fish for the two size classes in which diets 

were sampled as well as all diets combined (Figure 4.2). The majority of fish observed in 

diets were Threadfin Shad but Gizzard Shad, Bluegill, and Largemouth Bass were also 

observed. Additionally, one frog (Ranidae) was also observed along with one 

Cambaridae (Figure 4.2). During early-November, 2013, fish were still an important 

component of the Largemouth Bass diets comprising between 40-50% of the weight for 

all fish combined and the small and medium size classes (Figure 4.2). Only one diet was 

collected from Largemouth Bass >508mm and it contained a Bluegill (Figure 4.2). The 

majority of fish observed in diets were Bluegill, but also observed were Threadfin Shad 

and Largemouth Bass. Cambaridae comprised between13-17% of the weight of diets for 
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the small and medium size classes as well as the population as a whole (Figure 4.2). An 

increase in consumption of vertebrates was also observed during early-November, most 

of which were unidentified salamanders and snakes (Figure 4.2). Similar to 2012, 

vegetation was found throughout the diets, again presumed to be incidentally consumed, 

and pellets were also found in some Largemouth Bass diets (Figure 4.2).  

 February, 2014 was the only winter diet sample collected and the majority of the 

weight of diet items was again fish (Figure 4.3). Fish comprised at least 57% of the 

weight of diets from all size classes including the population as a whole (Figure 4.3). 

Bluegill and Largemouth Bass were the two fish species identified in diets collected 

during winter. Other observed diet items include invertebrates (i.e., Dipterans, and 

Ephemeropterans), Cambaridae, and also a Salamander (Figure 4.3). By mid-May, 2014, 

the Largemouth Bass population switched over to feeding on almost an even mixture of 

fish and crayfish with fish comprising between 44 and 53% of the weight of diets for the 

population as a whole and the small and medium size classes of Bass and crayfish 

comprising between 40 and 42% of the weight of diets for these same three groups 

(Figure 4.3). One diet was collected from the large size class of Largemouth Bass and it 

contained an adult Gizzard Shad (Figure 4.3). Fish species obderved in diets included 

Shad spp., Ictalurid spp., and Largemouth Bass. Also observed in May, 2014 diets were 

invervetrbates including Chironomidae and Odonata, which comprised approximately 

10% of the weight of diet items for the small size class of Largemouth Bass (Figure 4.3).  

 By early-July, 2014, the Largemouth Bass population was still feeding on a mix 

of fish and Cambaridae (Figure 4.3). Fish comprised 66% of the weight of all 

Largemouth Bass diets collected but comprised 84% of the weight of diets for the small 
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size class compared to 20% of the weight of the medium size class (Figure 4.3). Fish 

species observed in the diets included Threadfin Shad, Shad spp., Largemouth Bass, and 

Lepomis spp. Cambaridae also remained an important diet item comprising 30% of the 

weight of all diets combined and 76% of the weight of diets for the middle size class of 

Largemouth Bass (Figure 4.3). By mid-September, 2014, the Largemouth Bass 

population had again switched over to feeding primarily on fish, with fish comprising 

73% of the weight of diets of all Largemouth Bass sampled, 82% of the weight of diets of 

the smallest size class, and just under 50% of the weight of the middle size class (Figure 

4.3). Fish species ocurring in the diets included Threadfin Shad, Shad spp. Largemouth 

Bass, and Ictalurid spp. Cambaridae were also observed in the diets, consisting of 3% of 

the weight of diets for the smallest size class and 14% for the middle size class (Figure 

4.3). Invertbrates (i.e., Odonata and Coleoptera) were also observed in the diets with 

invertbrates comprising 8-14% of diet weights for the different size classes (Figure 4.3). 

 The dominance of fish in Largemouth Bass diets continued into late-October, 

2014 with fish making up 62-75% of the weight of diets for all size classes observed 

(Figure 4.3). Fish species observed in diets included Threadfin Shad, Gizzard Shad, 

Largemouth Bass, Ictalurid spp., and Lepomis spp. Crayfish were also observed but 

contributed only 4-8% of the weight if diet items for different size class of Largemouth 

Bass (Figure 4.3). Also observed were invertebrates, coprising 10-15% of the weight of 

diet items for the different size classes as well as vertebrates making up 7-8% of the 

weight of diet items (Figure 4.3). Invertbrates observed in the diets included Hemipterans 

and Odonata while the vertebrates observed included unidentified snakes, unidentified 

salamanders and one snake of the family Crotalidae. Throughout all sampling events in 
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2014, vegetation was again sparsely observed in the diets and considered a byproduct of 

consuming other prey items such and fish and Cambaridae and pellets were observed but 

were less common than in previous years.    

 Under predicted 2040 temperature scenarios, all age classes across both the 2013 

and 2104 growing seasons required a 6-16% increase in total consumption to meet 

baseline energy requirements (Figure 4.4). Furthermore, the three different temperature 

change models showed high variability in the percent change in total consumption 

necessary to meet baseline energy requirements with the USGS model requiring the 

lowest increase in consumption at 6-7% and the GFL model requiring the highest 

increase in consumption at 11-15% for all age classes across both growing seasons 

(Figure 4.4). Under predicted 2060 temperature scenarios, the percent increase in 

consumption necessary to meet baseline energy requirements increased compared to 2040 

temperature models with all age classes across all years requiring a 14-23% increase in 

consumption (Figure 4.4).  The variability in percent increases in consumption necessary 

to meet baseline energy requirements was much lower among the three models under 

predicted 2060 temperature scenarios (Figure 4.4).  

 Future temperature increases could reduce the growth capacity of Largemouth 

Bass in already warm climates such as those in TX. When consumption was held 

constant to the observed 2013 or 2014 p-values under full growth models, no age class of 

Largemouth Bass was able to grow as much under predicted 2040 temperature scenarios 

compared to observed temperatures for either the 2013 or 2014 growing season (Figure 

4.5). When consumption was held constant to the 2013 or 2014 scenarios, all age classes 

would have lost weight (i.e., were not able to consume enough to meet baseline energetic 
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requirements) under the predicted 2040 GFDL temperature scenario (Figure 4.5). 

However, the younger age classes under 2013 consumption p-values were able to grow 

under the 2040 MPI and USGS temperature scenarios, just not as much as they would 

have under the 2013 temperature scenarios (Figure 4.5).  Furthermore, when consumption 

was held to 2013 levels but temperatures were simulated out to 2040 scenarios, older age 

classes again lost weight under the MPI and USGS models (Figure 4.5). When 

consumption from the 2014 growing season was simulated out to 2040 temperature 

scenarios, all age-classes but one (i.e., age-8) would still have grown but none would 

have grown as much as they had during the 2014 growing season (Figure 4.5). When 

consumption was held to 2013 or 2014 p-values, no age class was able to even meet 

baseline energetic demands (i.e., all lost weight) under the predicted 2060 temperature 

scenarios for all three models (Figure 4.5). All age class had at least a 35% reduction in 

end weight compared to predicted 2013 or 2014 end weights under the full growth 

models with some age classes having as much as a 70% reduction in end weight (Figure 

4.5).  

 Diet also had an impact on the growth potential of Largemouth Bass in Grand 

Lake. Most age classes of Largemouth Bass needed to consume at a p-vlaue of 0.35-0.4 

under the observed (baseline) 2013 and 2014 diet scenarios in order to meet their baseline 

energy requirements and begin to grow (i.e., have a 0% change in initial weight; Figures 

4.6-4.9). However, all age classes of Largemouth Bass would have to consume prey at p-

values of 0.45-0.5 in order to meet baseline energy requirements and begin to consume 

enough energy to grow under a diet of 100% crayfish during both the 2013 and 2014 

growing seasons (Figures 4.6-4.9).  Furthermore, when feeding on a diet of 100% shad 
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(i.e., the most energetically beneficial fish species sampled in diets of Grand Lake 

Largemouth Bass), all age classes in both the 2013 and 2014 growing seasons were able 

to meet baseline energy requirements and begin to grow at p-values as low as 0.3 and 

always by a p-value of 0.35 (Figures 4.6-4.9).     

Discussion 

 A wide variety of prey items were observed in Largemouth Bass diets sampled 

from Grand Lake; however, from mid-summer through the end of fall, Largemouth Bass 

diets consisted of primarily fish from the families Centracrchidae, Ictaluridae, and 

Clupeidae. In many other systems, adult Largemouth Bass have been shown to feed 

primarily on fish when proper sized prey fish are available (Minckley 1982; Moyle 2002; 

Sass et al. 2006). However, Largemouth Bass have been shown to be opportunistic and 

even when fish are available Largemouth Bass may consume a wide variety of diet 

organisms including amphibians such as tadpoles and frogs (Lewis et al. 1961) and 

crayfish (Wheeler and Allen 2003). Similar to what these previous studies have shown, 

crayfish and vertebrates other than fish (e.g., salamanders, frogs, and snakes) were the 

most common diet items other than fish. As with other studies as well, aquatic and 

terrestrial invertebrates other than crayfish were also found to make up small percentages 

of Largemouth Bass diets throughout the year, providing evidence of their opportunistic 

and flexible feeding strategy (e.g., Schindler et al. 1997; Sass et al. 2006; Ahrenstorff et 

al. 2009).    

 Aside from fish, crayfish were the largest contributor to Largemouth Bass diets in 

Grand Lake. Furthermore, crayfish contributed the highest proportion by weight during 

our spring (i.e., May) sampling events in each year. We hypothesize that crayfish 
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contributed such a high proportion during spring due to lower amounts of available prey 

fish in Grand Lake during the spring as most age-0 prey fish are not yet large enough to 

be beneficial to adult Largemouth Bass. Additionally, Threadfin Shad were one of the 

most abundant prey fish in Grand Lake by mid-summer due to their high reproductive 

potential and were also a common fish species observed in Largemouth Bass diets. 

However, Threadfin Shad do not overwinter in Grand Lake and thus one of the most 

important prey fish is not available during spring. Research has shown that Largemouth 

Bass will often feed on prey sources that are most available to them (Schindler et al. 

1997) making crayfish a likely diet item when prey fish are not available. Research has 

also shown that even when ample prey fish are available to Largemouth Bass, they still 

may feed on crayfish (Lewis et al. 1961; Wheeler and Allen 2003).  

Available habitat along with less available prey fish could also be contributing to 

Largemouth Bass relying more heavily on crayfish during spring. For example, 

Ahrenstorff et al. (2009) showed that differing amounts of course woody habitat in 

Wisconsin lakes affected both consumption and the amounts of fish and invertebrates 

observed in Largemouth Bass diets. Furthermore, Anderson (1984) developed an optimal 

foraging model for Largemouth Bass based on search time, encounter rates, and capture 

success, of different prey types in different densities of vegetation and his model showed 

that Largemouth Bass will feed on different prey types when different habitat is available. 

Grand Lake is an aging reservoir with little habitat. Reduced habitat as a result of being a 

reservoir that is 60+ years old combined with fewer available prey fish may mean that 

search time, encounter rates, and energy spent trying to capture fish in the spring is not as 

energetically beneficial as feeding on crayfish.     
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 The results of our bioenergetics simulations show that predicted increased 

temperatures as a result of climate change will significantly impact consumption and 

growth of Largemouth in climates that are already considered warm such as Texas. 

Consumption by Largemouth Bass in Grand Lake will need to increase by 6-16% under 

predicted 2040 temperature models and 15-25% under predicted 2060 temperature 

models just to meet baseline energetics requirements. The percent increases in cumulative 

consumption observed in Grand Lake are similar to those observed in other studies as 

Breeggemann et al. (2015) observed similar increases in percent change in total 

cumulative consumption necessary to meet baseline energetic demands for both 

Largemouth Bass and Northern Pike (Esox lucius) in West Long Lake, NE. However, 

predicted 2040 and 2060 water temperatures in Grand Lake are beyond a Largemouth 

Bass’ thermal optimum temperature for most of the growing season and thus maximum 

consumption will be reduced under future predicted temperatures (Rice et al. 1983).  As a 

result, Largemouth Bass will have to devote a higher proportion of available consumption 

to meet baseline energetic demands and less will be available for growth, thus limiting 

the growth potential of Largemouth Bass in Grand Lake.  

 Growth of Largemouth Bass in Grand Lake was predicted to be much slower 

under future predicted temperatures when consumption is held at the same rate as was 

observed in 2013 and 2014.  Furthermore, some age classes were predicted to lose weight 

(i.e., fail to consume enough to meet baseline energy requirements) under some of the 

2040 temperature models and all of the 2060 temperature models. Therefore, 

consumption rates in 2040 and 2060 will have to increase above 2013 and 2014 

consumption rates just to meet baseline energy requirements and will have to increase 
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even higher for Largemouth Bass growth to occur. Reduced growth can be attributed to 

two factor; first, reduced maximum consumption due to water temperatures exceeding the 

thermal optima of a Largemouth Bass and second, due to increased metabolic demands 

associated with increased temperature (Rice et al. 1983). While some research has shown 

that climate change may have little effect on the growth of species in the center of their 

range (i.e., Largemouth Bass in Breeggemann et al. 2015) and that climate change may 

actually increase growth in species at the northern edge of their range (i.e., King et al. 

1999; Pease and Paukert 2014), climate change will likely have a negative impact on 

growth of species near the southern edge of their range as in this study and also with 

Northern Pike in West Long Lake, NE (Breeggemann et al. 2015). Although our results 

showed significant decreases in growth over the time periods modeled, it may be possible 

that Largemouth Bass growth increases earlier in the spring (i.e., April and early May) 

and later in the fall (i.e., November) when water temperatures increase closer to the 

thermal optima, offsetting some of the losses in growth observed during the peak summer 

months. 

  Reduced growth of Largemouth Bass may affect other dynamic rate functions, 

prey fish species composition, as well as overall fishing quality. For example, reduced 

growth could delay maturation rates, fecundity, and fitness of the population (Roff 1984; 

Shuter & Meisner 1992) as well as affect recruitment and egg development (Straile et al. 

2007; Karjalainen et al. 2014). If consumption is extended later into the fall due to higher 

temperatures, more prey fish may get consumed thus affecting year class strength of prey 

fish species and future production of prey fish populations. Breeggemann et al. (2015) 

showed that prey fish production will have to increase in order to maintain similar prey 
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fish populations in the face of increased predation. Furthermore, fishing historically was 

viewed as a way to provide protein for a family. Over the past several decades, this 

perspective has changed with more anglers desiring quality fishing experiences with the 

opportunities to catch trophy fish (Weithman and Anderson 1978; Forshage and Fries 

1995). Reduced growth due to climate change could reduce the growth potential of 

Largemouth Bass in the southern United States and thus complicate management in order 

to overcome this hurdle.  

 Bioenergetics models also showed that Largemouth Bass in Grand Lake would 

grow better on a diet that consists of 100% shad compared to observed baseline diets. 

Other researchers have shown that age-0 Largemouth Bass growth is significantly faster 

when consuming fish compared to other available diet items (Shelton et al. 1979; 

Timmons et al. 1980; Gutreuter and Anderson 1985; Adams and DeAngelis 1987). Sass 

et al. (2006) found that adult Largemouth Bass growth was higher in section of a northern 

WI lake which had ample habitat and a strong Yellow Perch population compared to a 

section of the lake in which habitat was more limiting and Largemouth Bass were forced 

to consume primarily terrestrial invertebrates. Research on other piscivorous species such 

as the Walleye has also shown that growth of species that prefer fish is maximized on a 

diet consisting of primarily fish compared to a diet consisting of invertebrates (Hartman 

and Margraf 1992; Ostazeski and Spangler 2001; Graeb et al. 2008). Bioenergetics also 

showed that Largemouth Bass would lose weight or grow very little on a diet consisting 

of exclusively crayfish, which has also been shown with other piscivorous fish species as 

well (Ward et al. 2007).  

Management Implications 
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 This research highlights the effects of temperature and diet composition of the 

growth potential of Largemouth Bass at southern latitudes and sheds light on possible 

management recommendations to mediate the effects of climate change. First off, 

stocking Florida parental type Largemouth Bass could lessen the effects of climate 

change as Florida parental type Largemouth Bass can withstand warmer slightly water 

temperatures than their pure northern parental type counterparts (Fields et al. 1987; 

Beitinger et al. 2000). However, to the best of our knowledge, no researchers have 

created a bioenergetics model for Florida parental type Largemouth Bass and therefore 

we used the northern parental type Bass model for our simulations. The Largemouth Bass 

population in Grand Lake is already composed primarily of pure Florida parental type 

Largemouth Bass and their hybrids so the effects of climate change may not be as severe 

as shown by our simulations. An added benefit to stocking pure Florida parental type 

Largemouth Bass is that in some aquatic systems where water temperatures are already 

warm, pure Florida parental type Bass and their hybrids have been shown to grow faster 

and reach larger attainable sizes than their northern counterparts (Rieger and Summerfelt 

1976; Inman et al. 1977; Bottroff and Lembeck 1978; Pelzman 1980; Maceina et al. 

1988). 

 Management of the food web will also be critical in order to ensure growth of 

Largemouth Bass is maximized under future warmer climates. Most important is going to 

be ensuring proper amounts and sizes of prey fish are available throughout the entire year 

because the added growth potential of Largemouth Bass on a diet consisting of 

exclusively fish could offset the increased metabolic demands associated with warmer 

water temperatures. In our study, spring diets were when invertebrates and particularly 
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crayfish had the highest contribution to Largemouth Bass diets. Our hypothesis as to the 

strong influence of crayfish early in the spring was the lack of small prey fish due to 

overwinter consumption and no age-0 prey fish available to Largemouth Bass yet because 

they are too small. One way to increase the probability of increased consumption of fish 

during spring could be to stock a high energy cool water prey fish such as a Rainbow 

Trout (Oncorhynchus mykiss) during late winter or early spring. Furthermore, Grand 

Lake is stocked with both Threadfin Shad and Mozambique Tilapia every spring and 

these species could be stocked at the earliest possible time given water temperatures to 

ensure that most fish are available earlier in the year. Managers could also stock Bluegill 

or another prey fish that can withstand cooler water earlier in the spring to provide a 

pulse of prey fish for Largemouth Bass.   

 Creation of cool water refuges could also provide water temperatures that 

maximize Largemouth Bass growth even if that majority of the water within a given 

system is above the thermal optima for the species. Aeration systems could be used to 

mix cooler hypolimnetic waters with warmer surface waters, thus providing cooler 

overall temperatures. However, care must be taken to ensure that anoxic waters and 

toxins are not mixed in with the epilimnion to the point that a fish kill occurs. 

Additionally, technology could be used to create a system in which oxygen could be 

injected directly into the cold waters of the hypolimnion without trying to mix water 

through aeration. Directly injecting oxygen into the hypolimnion would provide the 

coolest cool water refuge for Largemouth Bass while still ensuring all of the Bass’ other 

needs (i.e., food and habitat) are being met. 
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TABLE 4.1. Initial and final lengths (mm), initial and final weights (g), and growth increments (g) for Largemouth Bass ages two 

through eight sampled from Grand Lake, TX during the 2013 and 2014 growing seasons used for bioenergetics modeling to simulate 

the effects of diet and future predicted climate change temperatures on growth and consumption. 

  2013 and 2014 Lengths (mm) 2013 Weights (g) 2014 Weights (g) 

Age Initial  Final  Initial Final  Increment Initial  Final Increment 

2 280 335 275 485 210 274 512 238 

3 335 377 479 701 222 480 745 265 

4 377 408 689 898 209 694 958 264 

5 408 433 879 1082 203 888 1158 270 

6 433 450 1056 1220 164 1070 1309 239 

7 450 464 1189 1343 154 1206 1442 236 

8 464 476 1307 1455 148 1328 1564 236 

1
5

1
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TABLE 4.2. Predicted temperature changes from three climate change models over two 

time intervals into the future used to simulate the effects of temperature on growth and 

consumption of Largemouth Bass in Grand Lake, TX. 

  Mean Monthly Predicted Temperature Changes 

 2040   2060 

Month MPI USGS GFDL   MPI USGS GFDL 

May 1.23 -0.1 1.34  3.03 1.31 3.06 

June 0.96 0.28 2.32  2.4 1.09 2.96 

July 0.96 0.94 2.07  2.34 2.84 3.36 

August 0.94 1.33 2.17  2.84 2.99 3.14 

September 1.73 0.77 1.96  2.5 2.1 1.73 

October 2.01 1.3 0.98   2.65 2.93 3.51 
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FIGURE 4.1. Mean percent composition by weight of major diet items collected from different size classes of Largemouth Bass 

sampled from Grand Lake, TX in May (A), August (B), and November (C), 2012. Numbers in parentheses represent sample sizes for 

different size classes.  
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FIGURE 4.2. Mean percent composition by weight of major diet items collected from different size classes of Largemouth Bass 

sampled from Grand Lake, TX in May/June (A), July/August (B), September (C), and November (D), 2013. Numbers in parentheses 

represent sample sizes for different size classes. 
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FIGURE 4.3. Mean percent composition by weight of major diet items collected from different size classes of Largemouth Bass 

sampled from Grand Lake, TX in February (A), May (B), July (C), and September (D), 2014. Numbers in parentheses represent 

sample sizes for different size classes.  
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FIGURE 4.3 CONTINUED. Mean percent composition by weight of major diet items collected from different size classes of Largemouth 

Bass sampled from Grand Lake, TX in October (E), 2014. Numbers in parentheses represent sample sizes for different size classes. 
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FIGURE 4.4. Percent Change in cumulative consumption of different age classes of Grand Lake Largemouth Bass simulated over three 

different climate change scenarios at two different time periods in the future. The top row represents Largemouth Bass sampled during 

the 2013 growing season (A) and 2014 growing season (B) simulated out to predicted 2040 temperature scenarios. The bottom row 

represent Largemouth Bass sampled during the 2013 growing season (C) and 2014 growing season (D) simulated out to predicted 

2060 temperature scenarios.  

1
5

7
 



158 
 

 
 

FIGURE 4.5. Percent change in end weights of different age classes of Grand Lake Largemouth Bass simulated over three different 

climate change scenarios at two different time periods in the future. The top row represents Largemouth Bass sampled during the 2013 

growing season (A) and 2014 growing season (B) simulated out to predicted 2040 temperature scenarios. The bottom row represent 

Largemouth Bass sampled during the 2013 growing season (C) and 2014 growing season (D) simulated out to predicted 2060 

temperature scenarios.  Asterisks denote weight loss (i.e., did not consume enough to maintain baseline energetic requirements).  
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FIGURE 4.6. Percent change in initial weight for age-2 and age-3 Largemouth Bass sampled in Grand Lake, TX during the 2013 and 

2014 growing seasons simulated over a range of p-values and three different diet scenarios (i.e., observed baseline diet, a diet of 100% 

crayfish, and a diet of 100% shad). 
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FIGURE 4.7. Percent change in initial weight for age-4 and age-5 Largemouth Bass sampled in Grand Lake, TX during the 2013 and 

2014 growing seasons simulated over a range of p-values and three different diet scenarios (i.e., observed baseline diet, a diet of 100% 

crayfish, and a diet of 100% shad). 
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FIGURE 4.8. Percent change in initial weight for age-6 and age-7 Largemouth Bass sampled in Grand Lake, TX during the 2013 and 

2014 growing seasons simulated over a range of p-values and three different diet scenarios (i.e., observed baseline diet, a diet of 100% 

crayfish, and a diet of 100% shad). 
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FIGURE 4.9. Percent change in initial weight for age-8 Largemouth Bass sampled in Grand Lake, TX during the 2013 and 2014 

growing seasons simulated over a range of p-values and three different diet scenarios (i.e., observed baseline diet, a diet of 100% 

crayfish, and a diet of 100% shad). 
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CHAPTER 5: HABITAT PREFERENCE, HOME RANGE SIZE, AND MOVEMENT 

OF LARGEMOUTH BASS IN AN AGING RESERVOIR 

 

 

Abstract 

Habitat is essential for the recruitment/reproduction, growth, condition, survival 

of all animal species. Fisheries managers throughout the world face the challenge of 

managing habitat in aging reservoirs. As reservoirs age and habitat quality and quantity 

declines, fish movements may change and performance may decline. We quantified 

Largemouth Bass daily, seasonal, and annual use areas, daily movement rates, and habitat 

preferences (e.g., distance from shore, depth of water used, depth of Largemouth Bass) 

over 15 months in an aging reservoir to evaluate the effects of reduced habitat on 

movement and performance of Largemouth Bass. Seasonal use areas were large (mean of 

4-5 ha) during the growing season but decreased during spring spawning. Annual use 

areas were also large with a mean >9 ha. Largemouth Bass showed seasonal movement 

patterns staying on average 30-50 m from shore throughout most of the growing season 

and winter and then moving closer to shore to spawn and then moving offshore again 

once spawning is complete. Largemouth Bass tended to use the coolest water in which 

optimal amounts of oxygen (i.e., >5 ppm) were still available. Daily movement rates 

(m/h) were significantly different among seasons with Largemouth Bass having the 

highest movement rates during the summer, although the only time of year when 

movement rates were significantly lower was during spring spawning. Largemouth Bass 

also showed significant differences in activity patterns throughout the day, being most 

active during low light periods (i.e., dawn and dusk). Daily telemetry showed that 

Largemouth Bass were closest to shore during spring, were an intermediate distance from 
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shore during winter, and were farthest from shore during summers and fall. Lack of 

habitat due to reservoir aging has resulted in large daily, seasonal, and annual activity 

patterns and is likely limiting the growth potential of Largemouth Bass in Grand Lake.   

 

 

Keywords: Habitat preference, home range, movement, Largemouth Bass, aging 

reservoir 

 

Introduction 

Critical habitat type, quality, and quantity, is essential for the 

recruitment/reproduction, growth, condition, survival of animal species (e.g., Roth et al. 

1996). If critical habitat is missing at any life stage of a species, health may decline, 

growth may slow, survival may decrease, the number of individuals an ecosystem can 

support may go down, or the species may even go extinct (e.g., Leidy and Moyle 1998; 

Dudgeon et al. 2006; Jelks et al. 2008). Several researchers have shown the importance of 

critical habitat to the performance of many animal species. For example, Kaibob mule 

deer (Odocoileus hemionus) had a 24.5% higher fawn crop following a significant habitat 

enhancement to their summer range and deer using the areas that received the habitat 

enhancement recovered from their poor winter condition much earlier in the spring than 

those deer that used areas that did not receive a habitat enhancement (Hungerford 1970). 

Additionally, Pough et al. (1987) found fewer salamanders in recently (i.e., <7 years) 

clearcut areas compared to old-growth forests and above ground activity was positively 

correlated with depth of leaf litter and percent cover of understory vegetation. 

Researchers have tried to predict how many acres of old-growth coniferous forests in the 
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Pacific Northwest must be preserved in order to prevent the northern spotted owl (Strix 

occidentalis caurina), a strict old-growth coniferous forest specialist, from going extinct 

(Lande 1988). Other examples of a species’ need for critical habitat, the effects of habitat 

research and habitat management on a species of interest, and areas where information 

regarding critical habitat needs for a particular species abound in peer-reviewed literature 

(e.g., Guthery 1997; Herrnkind et al. 1999; Minns 2001; Miller et al. 2003; Hanley 2005). 

Reservoirs and other man-made small impoundments can be found in most places 

where humans live throughout the world (Downing et al. 2006). Recent estimates of the 

number of small (i.e., <40 acres) man-made water bodies in the United States range from 

at least 2.6 million (Smith et al. 2002) to between 2.6 and 9 million (Renwick et al. 2005) 

and it has been estimated that these man-made water bodies cover approximately 21,000 

km2 (Smith et al. 2002; Downing et al. 2006). Additionally, many of these impoundments 

have different management objectives that may range from a balanced Bluegill (Lepomis 

macrochirus) and Largemouth Bass (Micropterus salmoides) fishery (Swingle 1950) to a 

trophy hybrid Striped Bass fishery (Morone chrysops x Morone saxatillis; Wright and 

Kraft 2012). Despite their frequency throughout the world, small man-made 

impoundments and reservoirs provide a unique challenge to maintain and manage critical 

habitat because of their aging (Kimmel and Groeger 1986). Immediately following 

completion of a reservoir or impoundment, there is often an initial spike in labile detritus 

and available habitat which coincides with a spike in plankton production followed by a 

significant pulse in fish production (Kimmel and Groeger 1986). However, this initial 

spike in overall system productivity is short lived as availability of detritus and habitat 

usually decrease due to basin filling, decreased internal nutrient loading, and habitat 
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decomposition (Kimmel and Groeger 1986). Based on mean annual rate of reservoir 

filling, Kimmel and Groeger (1986) predicts that 50% of small reservoirs with a volume 

less than 123,348 m3 would completely fill with sediment in 67 years and their usefulness 

would be impaired in just 30 years. Similarly, Renwick et al. (2006) predicted that 

between 30-90% of ponds constructed in the 1950s had either filled in with sediment or 

been converted to other land uses by 2000. 

 Since fishing is one of the most common uses of reservoirs and small 

impoundments in the United States (e.g., Kimmel and Groeger 1986; Dauwalter and 

Jackson 2005), managing fisheries in these water bodies can be difficult for fisheries 

managers given the rapid impoundment aging process and subsequent loss of habitat and 

production. Largemouth Bass are one of the most commonly stocked fish species in 

public and private impoundments (Dauwalter and Jackson 2005) and more anglers and 

fishing days were spent targeting Black Bass (Micropterus spp), than any other 

freshwater fish category in the U.S. (USDI 2011). Additionally, over the past several 

decades, there has been an increase in the desire among anglers to have quality fishing 

experience (i.e., catch trophy fish; Weithman and Anderson 1978) and especially among 

Largemouth Bass anglers (Forshage and Fries 1995). As a result, managers have been 

trying to create more trophy Largemouth Bass fisheries, especially in the southern United 

States (e.g., Gilliland and Whitaker 1989; Forshage and Fries 1995). 

 As fisheries managers try to create more trophy Largemouth Bass fisheries in 

reservoirs and small impoundments and especially aging impoundments, they must 

carefully evaluate and manage habitat in a water body of interest. Managing habitat is 

important because habitat has been shown to affect movement patterns, feeding strategy, 
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and coincidentally growth of Largemouth Bass.  For example, Wiley et al. (1984) found a 

parabolic relationship between aquatic macrophyte standing crop and Largemouth Bass 

production in small ponds, indicating an intermediate level of vegetation maximized 

Largemouth Bass production. Additionally, Sass et al. (2006) removed 75% of the coarse 

woody habitat from a treatment section of Little Rock Lake, WI and left a reference basin 

unaltered to compare feeding and growth of Largemouth Bass following a significant 

removal of habitat. Prior to the woody habitat removal in Little Rock Lake, Largemouth 

Bass in both basins consumed primarily aquatic prey (Sass et al. 2006). Following the 

woody habitat removal, Largemouth Bass in the treatment basin consumed less fish and 

grew more slowly than Largemouth Bass in the reference basin (Sass et al. 2006). In a 

similar study, Ahrenstorff et al. (2009) found that Largemouth Bass in lakes in northern 

Wisconsin with lower densities of coarse woody habitat had significantly larger home 

ranges and consumed less prey. In that same study, Ahrenstorff et al. (2009) hypothesized 

that when coarse woody debris densities decreased, Largemouth Bass switched from a 

sit-and-wait foraging strategy to one which Bass actively searched for prey. When using 

an actively searching foraging strategy Ahrenstorff et al. (2009) proposed that 

Largemouth Bass spend extra energy searching for food and growth may slow.   

 Furthermore, Largemouth Bass are ectotherms whose behavior and physiological 

processes can be influenced by temperature (McCauley and Kilgour 1990). Largemouth 

Bass are considered a warm water fish species with an optimal temperature range of 26 – 

28°C (Coutant & Cox 1976) with equilibrium loss occurring at approximately 36°C and 

death occurring between 36 and 42°C for Largemouth Bass acclimated to water temps 

>24°C at the start of experiments to test upper thermal maxima under dynamic thermal 
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changes (Smith and Scott 1975; Fields et al. 1987; Smale and Rabeni 1995; Beitinger et 

al 2000). If water temperatures in a given part of a waterbody exceed the upper limit for 

which a Largemouth Bass could account for increased water temperatures through 

physiological processes such as increased cardiac function, Largemouth Bass may seek 

out other portions of the water body with more preferred temperatures. For example, 

Schreer and Cooke (2002) found that Smallmouth Bass (Micropterus dolomieu) adjusted 

for changes in water temperature by adjusting cardiac function when water temperatures 

were low during winter and spring. However, when water temperatures reached 25-30°C, 

Smallmouth Bass attempted to locate thermal refuge by moving to different areas of the 

lake with cooler water because their cardiac function alone could not account for 

increased water temperatures (Schreer and Cooke 2002). Knowledge of Largemouth Bass 

behavioral responses and movement patterns to summer water temperatures that may 

exceed the range for which their body can account for by increasing cardiac function 

could aid in the management of this species.   

 Grand Lake is a 45ha private impoundment located in eastern Texas that was built 

in the 1950s. The current management goal of Grand Lake is to be able to consistently 

grow 6.8kg Largemouth Bass. To achieve this goal, Grand Lake was intensively managed 

through maintenance of the food web. Available prey fish in Grand Lake include 

Bluegill, Redear Sunfish (Lepomis microlophus), Redbreast Sunfish (Lepomis auritus), 

Gizzard Shad (Dorosoma cepedianum), Threadfin Shad (Dorosoma petenense), 

Mozambique Tilapia (Oreochromis mossambicus), Black Crappie (Pomoxis 

nigromaculatus), White Crappie (Pomoxis annularis), Channel Catfish (Ictalurus 

punctatus), and Black Bullhead (Ameiurus melas), among others. Additionally, an intense 
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feeding program is used on Grand Lake including10 fish feeders. Grass Carp 

(Ctenopharyngodon idella) have been stocked to remove all submersed aquatic 

vegetation and water lotus (Nelumbo lutea) are chemically treated each year. Aside from 

vegetation control, little is known about available habitat for Largemouth Bass in Grand 

Lake, and not much additional habitat management takes place. Given that Grand Lake is 

over 50 years old and all aquatic vegetation is removed from the lake, this reservoir could 

be experiencing the effects of an aging reservoir and habitat could be limiting growth of 

Largemouth Bass. Additionally, given Grand Lake’s southern latitude, summer water 

temperatures could easily exceed the upper thermal optimum for Largemouth Bass, at 

least in part of the water column, thus affecting behavior of Largemouth Bass and habitat 

available to them during warm water periods.  The objectives of our study were to: 1.) 

Quantify seasonal and annual use areas of Largemouth Bass in Grand Lake; 2.) Quantify 

seasonal patterns in Largemouth Bass movement patterns (i.e., distance from shore, depth 

of water used, and depth of Largemouth Bass during summer stratified months) in Grand 

Lake; 3.) Quantify daily movement rates, distances moved, daily home range size, and 

daily movement patters (i.e., distance from shore and depth of water used) in Grand Lake. 

Methods 

Study site 

Grand Lake is a 45ha private impoundment located in eastern TX, USA. Grand 

Lake was built in the 1950’s and was one of the first impoundments in the state of Texas 

stocked with pure Florida parental type Largemouth Bass (Micropterus salmoides 

floridanus) by the Texas Parks and Wildlife Department. Florida Largemouth Bass alleles 

continue to dominate the genetic makeup of the Largemouth Bass population in Grand 
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Lake (Chapter 1). A detailed bathymetric map was created by PondMedics© in January, 

2012 and the lake border and 0.305m contours (GIS shapefiles) from that mapping were 

used in this study (Figure 5.1) Grand Lake is a eutrophic (secchi disc readings ≤ 0.75 m 

year round) impoundment with a mean depth of 3.2 meters, a maximum depth of 7.9 

meters, and fairly steep banks throughout most of the littoral zone as shown by the 

0.305m contours (Figure 5.1). The fish community of Grand Lake is very diverse 

including all species listed in the introduction as well as Coppernose Bluegill (Lepomis 

macrochirus purpurescens), Flathead Catfish (Pylodictis olivaris), Common Carp 

(Cyprinus carpio), and Brook Silverside (Labidesthes sicculus). As mentioned earlier, 

Grand Lake is depauperate of any submersed aquatic vegetation and rooted floating 

aquatic plants due to biological and chemical control, yet the majority of the water <1m 

in depth is composed of a diverse community of emergent aquatic plants.  

Field methods-Weekly Telemetry 

Forty two Largemouth Bass had Advanced Telemetry Systems© (ATS) F1235 

Fish Body Implant tags (dimensions = 18 x 78 mm; weight = 30 g) surgically implanted 

into their abdominal cavity between May, 2013 and May, 2014. F1235 radio tags are also 

temperature sensitive and can be used to asses depth of radio tagged Largemouth Bass 

when there is a range of water temperatures within a given water body (e.g., during 

stratification). Radio tags were implanted in 22 Largemouth Bass between May 25, 2013 

and June 11, 2013. Two of these Largemouth Bass died within two weeks after surgery 

and their tags were collected and implanted in Largemouth Bass in later surgeries. Radio 

tags were also surgically implanted in 11 Largemouth Bass between November 1, 2013 

and November 2, 2013 and nine Largemouth Bass between May 28, 2014 and May 30, 
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2014. Largemouth Bass were sampled via a combination of angling (N = 10) and pulsed 

DC electrofishing (N = 32). Surgically implanted Largemouth Bass ranged in size from 

446-601mm Total Length (TL; Figure 5.2) and weighed between 1345 and 4010g. All 

but two Largemouth Bass weighed 1500 grams, the minimum weight required to satisfy 

the 2% rule presented by Winter (1983, 1996). Of the two fish that for which the tags 

weighed more than 2% of the Largemouth Bass, the radio tags weighed 2.2 and 2.0004% 

of the weight Bass; thus they were very close to satisfying the 2% rule.  Additionally, 

other researchers have suggested that radio tags that weigh 2-3% of the body mass can be 

used without affecting the physiology or behavior fish (Lefrancois et al 2001; Jadot et al. 

2005; Zale et al. 2005)   

All surgeries to implant radio tags were completed following similar methods to 

those described by Cooke et al. (2003). Largemouth Bass were initially anesthetized in a 

tub containing 60ppm clove oil. Once anesthetized, Largemouth Bass length and weight 

were measured and they were transferred to a surgery trough made out of polyvinyl 

chloride (PVC) board. While in the surgery trough, water which contained 30ppm clove 

oil was continuously pumped over the Largemouth Bass’ gills to keep the Largemouth 

Bass alive and anesthetized. A slit in the bottom of the surgery trough allowed for excess 

water to drain from the trough and keep water out of the incision during surgery. A small 

20-25mm incision was made to the side of the midventral line using a disposable #10 

scalpel. After the tag was inserted, the incision was sutured shut using four interrupted 

sutures using a 3-0, 3/8 circle reverse cut needle and 24mm black nylon monofilament 

suturing material. All non-disposable tools and tags were disinfected with an ethanol 

solution between all surgeries (Winter 1996). Following completion of surgery, all 
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Largemouth Bass were allowed to recover for at least a half hour in an aerated recovery 

tank and then released at the location from which they were captured at or off a dock near 

the location of the surgeries.  

All Largemouth Bass were allowed a 2-3 week recovery period following release 

to resume normal behavior prior to the start of tracking a fish. Tracking was conducted 

using an R4500 Challenger Receiver (3-5m accuracy; ATS) and a 3-way yagi antenna 

(ATS). The zero-point tracking method described by Nelson (1990) and Cooke et al. 

(2012) was used throughout the duration of this study to find all Largemouth Bass. In 

order to locate a fish using this method, the gain on the receiver was progressively turned 

down as the tracker approached the Largemouth Bass. Once the gain was turned to near 

zero and a strong signal was being received omnidirectionally, a GPS point was marked 

using the receiver or a Garmin© GPSMAP78 hand held GPS (3-5m accuracy). This was 

considered the location of the Largemouth Bass. All tracking was conducted using a 5m 

john boat with a 30 or 35lb thrust electric trolling motor so as not to disturb the 

Largemouth Bass. We estimate accuracy of this method to be ≤5m and were not 

concerned with this method interfering with fish behavior or disturbing individual fish 

because of the use of a poor water clarity (i.e., <.75m secchi disc depth year round) and 

the use of a small electric motor. In order to validate the accuracy of this method, 

individual tags were placed at different depths in the water column and a buoy was 

floated directly above the location. Relationships between distance from the buoy, the 

gain on the receiver, and the signal strength of the receiver were developed to aid the 

tracker in approximating distance from the tag based on gain and signal strength of the 

receiver.  
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Largemouth Bass were tracked and GPS locations recorded over two different 

sampling frequencies for the duration of the study. The first sampling frequency involved 

weekly tracking (i.e., every Largemouth Bass located once per week; e.g., Thomspon et 

al. 2005) beginning on June 15, 2013 and continued until September 10, 2014. Weekly 

tracking data was used to assess broad scale movement patterns and habitat preferences 

and asses seasonal and annual use areas. Three different eight hour time intervals were 

used (i.e., mid-day = 0800-1559, evening = 1600-2359, and overnight = 0000-0759) 

when conducting weekly telemetry to account for differences in movement and habitat 

use at different times of the day. The three different time intervals were used in a 

stratified random fashion with the evening time period used the week following mid-day 

time period and the overnight time period used the week following the evening time 

period, etc. The only exception was during the fall when dense fog on most nights 

prevented the use of the overnight time period some weeks. If fog prevented using the 

overnight time period, one of the other two time periods was randomly used to get 

location data each week.  

For each weekly sampling event, tracking began at the start time for the assigned 

time interval for that week (i.e., 0800. 1600, or 0000) and ended at the end of the eight 

hour time period for that week. If all fish were not located within the eight hour time 

frame on the first day of tracking for the week, tracking began at the same start time the 

next day and continued on the second day until all fish were located. Tracking never took 

more than two days to find all Largemouth Bass within a given week and the assigned 

sampling time period. Additionally, the entire lake was searched until all Largemouth 

Bass were found each week within the confines of the assigned time interval. 
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Immediately after locating a fish, the temperature of that fish was recorded using the 

R4500 Challenger Receiver programmed with the regression formulas provided by ATS 

for each radio tag. A temperature/dissolved oxygen profile was taken at each of four 

evenly spaced locations throughout the length of the reservoir using an YSI ProODO 

Optical Dissolved Oxygen Instrument (YSI Inc/Xylem Inc©) beginning two hours and 

six hours into the time interval used (Figure 5.1). For example, for the mid-day time 

interval, temperature and dissolved oxygen profiles began at 1000 and 1400. This meant 

that each Largemouth Bass was located within two hours of a temperature/dissolved 

oxygen profile. A Largemouth Bass was considered dead if the fish did not move for 3 

consecutive sampling locations and the last time that Largemouth Bass moved last 

location used for analyses. 

Data Analysis-Weekly Telemetry 

 Weekly telemetry locations were used to calculate 95% and 50% seasonal use 

areas (Mohr 1947; Odum and Kuenzler 1955; Rogers and White 2007) for each 

Largemouth Bass. Seasons were three months in duration with summer extending from 

June through August, fall from September through November, winter from December 

through February, and spring from March through May. Seasonal use areas were only 

calculated for Largemouth Bass that had at least 10 marked locations for a given season. 

For example, if a Largemouth Bass died with only seven locations collected during a 

season, that individual Largemouth Bass was not included in seasonal use area 

calculations. The adehabitatHR, sp, and maptools packages in program R were used to 

calculate 95% and 50% minimum convex polygon seasonal use areas (Pebesma and 

Bivand 2005; Calange 2006; Bivand et al. 2013; Bivand and Lewin-Koh 2015; R Core 
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Team 2016). Subsequently, seasonal use areas were clipped by the lake border from the 

bathymetric map to calculate final use areas using the clip tool in ArcGIS 10.2.2. Both 

mean 95% and 50% seasonal use areas were compared using repeated measures linear 

mixed effects models in Program R (packages lme4, pbkrtest, and lsmeans; Bates et al. 

2014; Halekoh and Højsgaard 2014; Lenth 2016) with season (i.e., summer 2013, fall 

2013, winter 2013/2014, spring 2014, and summer 2014) as a main effect and individual 

fish as a random effect. To test whether significant differences existed among season, an 

ANOVA was used to compare a baseline mixed effects model (i.e., base) without season 

as a main effect to a mixed effect model with season (i.e., season) as a main effect. A 

TukeysHSD multiple range test was used to assess what seasons had different use areas if 

differences existed in seasonal use areas at an alpha of 0.05. Seasonal use areas (i.e., 95% 

and 50%) were natural log transformed to meet the assumptions of normality and equal 

variance. Annual use areas were calculated for Largemouth Bass tagged in May/June 

2013 and November 2013 using the same methods described above to calculate seasonal 

use areas. The first year of tracking (i.e., June, 2013 – May, 2014) was used to calculate 

annual use areas for Largemouth Bass tagged in May/June, 2013. Tracking ended in 

September, 2014 and therefore, we do not have a full year of tracking data for 

Largemouth Bass tagged in November, 2013. Annual use areas were only calculated for 

Largemouth Bass with at least 10 GPS locations. No analyses were conducted on annual 

use areas due to only one year of data.  

 Weekly telemetry locations were also used to calculate mean distance from shore 

and mean depth of water used for each tracking event throughout the duration of weekly 

tracking (i.e., June, 2013 – September, 2014). The near tool in ArcGIS 10.2.2 was used to 
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calculate the minimum distance from shore for each telemetry location. The lake border 

from the bathymetric map created in January 2012 was used as the shore for all distance 

from shore calculations. Reservoir levels fluctuated less than ~0.305 most of the year 

making this a representative shore edge. Depth of water in which the Largemouth Bass 

was located was also calculated using the near tool in ArcGIS 10.2.2. The nearest 0.305 

contours from the bathymetric map was assumed to be the depth of water the Largemouth 

Bass was using.  Mean available water temperature was calculated for each day that 

Largemouth Bass were located during weekly telemetry by calculating the mean of all 

water temperatures that had at least 2.5 mg/liter of O2 (Cech et al. 1979) at the four 

locations where temperature and dissolved oxygen profiles were taken. Plots of mean 

distance from shore, mean available water temperature, and mean depth of water used 

were created to asses patterns in Largemouth Bass movement throughout the year.  

The combination of the GPS location of a given Largemouth Bass, the observed 

water temperature of that Largemouth Bass, and the nearest temperature/dissolved 

oxygen profile taken at the closest time to the Bass’ location were used to assign a depth 

to each Largemouth Bass using only days when Grand Lake was stratified during the 

months of June through August. Grand Lake was not stratified during most of the rest of 

the year. Additionally, depths were not assigned to Largemouth Bass located during the 

0000-0759 sampling interval because Grand Lake surface temperatures cooled and depths 

were difficult to assign for this time period due to reduced stratification. Therefore, 

depths of Largemouth Bass were only assigned for tracking events between June and 

August that started at 0800 or 1600. Furthermore, if tracking took place over two days, all 

available water temperatures, fish temperatures, etc. were pooled across both days and 
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considered one tracking event. The near tool in ArcGIS 10.2.2 was used to asses which 

temperature/dissolved oxygen profile was closest to the location of the Largemouth Bass 

on the date of tracking.  When assigning a depth to an individual Largemouth Bass, an 

actual depth of water was assigned as well as the minimum and maximum possible depth 

based on +/- 0.5°C accuracy of the radio tags (ATS). For example, if the recorded 

temperature of a Largemouth Bass was 28.5°C, then the assigned depth was the depth of 

water at 28.5°C and the minimum and maximum depths of water that Largemouth Bass 

could have occurred were the depths associated with 29.0 and 28.0°C, respectively. Mean 

assigned depths and minimum depths and maximum depths were calculated for the 0800 

and 1600 time periods for each of the two seasons in which water temperatures were 

stratified (i.e., June through September). Furthermore, the deepest water assigned to a 

Largemouth Bass was the depth of water the individual was found in or the depth of 

water with at least 2.5 mg/liter O2 (Cech et al. 1979), whichever was shallower.  

Mean maximum available temperature (i.e., mean temperature at 0.305 m under 

the surface), mean available temperature (i.e., mean temperature throughout the water 

column with at least 2.5 mg/liter O2), mean minimum temperature with at least 2.5 

mg/liter O2, and mean minimum temperature were calculated from each of the four 

locations at which temperature/dissolved oxygen profiles were taken on each day a depth 

of water was assigned to Largemouth Bass. Additionally, mean maximum available 

dissolved oxygen (i.e., mean dissolved oxygen at 0.305 m under the surface), mean 

available dissolved oxygen (i.e., mean dissolved oxygen throughout the water column 

with at least 2.5 mg/liter O2), mean minimum dissolved oxygen with at least 2.5 mg/liter 

O2, and mean minimum dissolved oxygen were also calculated from each location where 



178 
 

temperature/dissolved oxygen profiles were taken. Simple linear regression models were 

used to compare mean observed Largemouth Bass temperature to mean available water 

temperature as well as compare mean observed Largemouth Bass dissolved oxygen 

(dissolved oxygen at the assigned depth of each Largemouth Bass) to mean available 

dissolved oxygen. The response variable was in the regression models was either water 

dissolved oxygen or water temperatures and the main effects were date, fish 

temperatures, and the interaction between fish temperatures and date. All models were 

run using the lm function in Program R.   

Field Methods-24 Hour Telemetry 

The second sampling frequency involved daily tracking which was used to assess 

fine scale movement patterns and habitat preferences (i.e., depth and distance from 

shore). For each daily sampling event, five radio tagged Largemouth Bass were randomly 

selected and tracking of these five Bass began at 0800 hours using the methods described 

above and GPS locations were again marked using the R4500 Challenger Receiver or a 

Garmin© GPSMAP78 hand held GPS. These same five Largemouth Bass were then 

located every four hours (i.e., tracking began again at 1200, 1600, etc.) for a 24 hour 

period and tracking ended by finding the same five fish at 0800 the following day. This 

resulted in seven GPS points for each of the five fish over the 24 hours period. Twenty 

four hour telemetry was conducted four times during summer, 2013, two times during 

fall, 2013, three times during winter, 2013/2014, one time during spring, 2014, and four 

times during summer, 2014. Five different Largemouth Bass were randomly selected 

(i.e., random selection without replication) for each tracking event within a given season 

(i.e., summer 2013) to get account for variability in movements of individual fish. The 
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only exception was summer, 2013 when one fish was tracked on two separate tracking 

occasions due to fewer than 20 Largemouth Bass available by the fourth tracking event.    

Data Analysis-24 Hour Telemetry 

  The minimum distance (m) between consecutive tracking points was calculated 

for each Largemouth Bass for the duration of the 24 hour tracking period. Distances were 

constrained by the lake border from the bathymetric map, forcing all Largemouth Bass to 

travel within the lake boundary between consecutive points. Minimum distances were 

calculated in program R using the raster, gdistance, and rgdal packages (Hijmans 2015; 

van Etten 2015; Bivand et al. 2016). Initially, these packages converted the lake polygon 

into a raster data set with 1 m cells prior to calculating distances between points. Mean 

distances (m) between consecutive points were calculated for each time interval between 

four hour location events (i.e., 0800-1200) for each of the five seasons. Additionally, 

Largemouth Bass movement rates (m/h) were calculated by dividing the minimum 

distance between consecutive points by the time elapsed between each check for an 

individual Largemouth Bass. Movement rates were calculated because exactly four hours 

did not pass between each time an individual Largemouth Bass was located within a 

given tracking event. Mean movement rates were calculated for each time interval 

between four hour location events for each of the five seasons. A repeated measure mixed 

effect factorial was used to compare mean movement rates among seasons and times of 

day. Season, time of day, and the interaction between season and time of day were 

considered main effects with individual fish considered a random effect. To test whether 

a significant interaction existed between season and time of day, and ANOVA was used 

to compare a mixed effect model with a significant interaction term (i.e., Interaction) to a 
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model with season and time of day as additive effects (i.e., Additive). If no interaction 

existed, mixed effects models with the main effect of only season (i.e., Season) and only 

time of day (i.e., Time of Day) were compared to a model without the main effects 

included (i.e., baseline) using ANOVA to quantify which main effect(s) were significant. 

Analyses were conducted in Program R using the lme4, pbkrtest, and lsmeans packages 

(Bates et al. 2014; Halekoh and Højsgaard 2014; Lenth 2016; R Core Team 2016). Data 

were natural log transformed to meet the assumptions of normality and equal variance. A 

TukeysHSD multiple range test was used to assess where movement rates differed in 

season or time of day if significant differences in movement rates were detected at an 

alpha of 0.05.  

 Additionally, the seven consecutive locations for an individual Largemouth Bass 

on each tracking event were used to calculate a 100% daily use area. The same methods 

and packages described above for seasonal use areas were used to calculate 100% daily 

use areas. Mean daily use areas were then compared among the five seasons using a 

repeated measure mixed effect model with season as a main effect and individual fish as 

a random effect. The same packages described above used to compare mean seasonal use 

areas from the weekly telemetry data were used to compare daily use areas across season. 

A TukeysHSD multiple range test was used to assess what seasons had different daily use 

areas if differences existed in mean daily use area at an alpha of 0.05. Daily use areas 

were natural log transformed prior to analyses to meet the assumptions of normality and 

equal variance. Using the same methods described above to calculate distance from shore 

and depth of water used by Largemouth Bass during weekly tracking, mean distance from 

shore and depth of water used were calculated for each starting time or time of day (e.g., 
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0800, 1200, 1600) for each season. A repeated measure mixed effect factorial was used to 

compare mean distance from shore among seasons and times of day. No analyses were 

conducted on depth of water used due to the correlation between distance from shore and 

depth of water used. Season, time of day, and the interaction between season and time of 

day were considered main effects with individual fish considered a random effect. The 

same methods used to determine if there was a significant interaction terms and main 

effects with movement rate as the response variable was repeated expect distance from 

shore was the response in this analysis. Analyses were conducted in Program R using the 

same packages described above. Data were natural log transformed to meet the 

assumptions of normality and equal variance. A TukeysHSD multiple range test was used 

to assess where distances from shore differed in season or time of day if significant 

differences in distance from shore were detected at an alpha of 0.05. 

Results 

Weekly Telemetry 

 Both 95% and 50% use areas differed significantly among seasons (Table 5.1; 

Table 5.2; Figure 5.3). In general, times of year with the highest water temperatures (i.e., 

summer and fall) had the highest seasonal use areas with summer, 2013 having a mean 

95% seasonal use area of just under 5 hectares, summer, 2014 having a mean 95% 

seasonal use area of just under 4.5 hectares and fall, 2013 having a mean 95% seasonal 

use area of just under 4 hectares (Figure 5.3). Mean 50% seasonal use areas showed the 

same pattern with use areas ranging between 0.7 and 1.5 hectares for summer, 2013, 

summer, 2014 and fall, 2013 (Figure 5.3). Both 95% and 50% use areas were smallest 

during the spring season (i.e., March through May) when Largemouth Bass were 
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spawning with a 95% seasonal use area of 1.6 ha and a 50% seasonal use area of 0.26 

hectares (Figure 5.3). Mean winter 95% and 50% seasonal use areas were intermediate 

between spring seasonal use areas and seasonal use areas during both summers and fall 

and were not significantly different than either spring or warm water seasonal use areas 

(Figure 5.3). Annual use areas were large with a mean 95% annual use area of 9.25 

hectares (standard error = +/- 1.51 ha) and a mean 50% annual use area of 2.6 hectares 

(standard error =+/- 0.65 ha).  

 Largemouth Bass distance from shore and depth of water used showed seasonal 

trends (Figure 5.4). During summer and fall, 2013, and winter, 2013/2014, Largemouth 

Bass tended to average 30-50 m from shore and used water between 2.5 and 4.0 m deep 

(Figure 5.4). Mean distance from shore and depth of water used during summer and fall, 

2013 and winter, 2013/2014 was variable depending on the date, although no statistics 

were calculated to test for significant differences (Figure 5.4). As water temperatures 

began to warm in the beginning of March, 2014, Largemouth Bass distance from shore 

and depth of water used decreased to distances of approximately 20m from shore and 

1.5m depth of water used (Figure 5.4). As water temperatures warmed beginning at the 

end of April/beginning of May, Largemouth Bass moved offshore again with mean 

distances from shore of 30-50m and mean depth of water used between 2.5 and 4m 

(Figure 5.4). Again, during warm water times during summer, 2014, distances from shore 

and depth of water used were variable depending on the date (Figure 5.4).  

Grand Lake was polymictic throughout the summer, with the lake breaking 

stratification several times throughout the growing season (Figure 5.5, Breeggemann, 

unpublished data). Overall, slight differences were observed between mean fish 
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temperatures and mean available water temperatures with fish often having slightly lower 

observed temperatures than available water temperatures, but these differences were not 

determined to be significant (Table 5.3). The only significant main effect in our model 

was date, indicating temperatures on different dates were significantly different from one 

another. Furthermore, no differences were detected between observed fish dissolved 

oxygen levels and mean available dissolved oxygen levels with the no significant main 

effects (Table 5.4). Additionally, mean depth of Largemouth Bass on days in which 

Grand Lake was stratified were approximately 2m on most days (Figure 5.6). Two meters 

of depth tended to coincide with the top of the thermocline in most instances. These 

results indicate that Largemouth Bass were selecting for the coolest available water in 

which dissolved oxygen levels were still comfortable. Temperatures were not adding so 

much stress that Largemouth Bass had to seek out the coolest available water with the 

bare minimum amounts of dissolved oxygen to still survive. 

24-hour Telemetry 

 Daily 24-hour telemetry was conducted four times during summer, 2013, two 

times during fall, 2013, three times during winter, 2013/2014, one time during spring, 

2014, and four times during summer, 2014. Daily movement rates (m/h) and daily 

distances move (m) were variable depending on season and time of day (Figure 5.7). 

Highest mean daily movement rate for any season and time of day was >60m/h whereas 

lowest mean daily movement rate for any season and time of day was <5m/h (Figure 5.7). 

A significant interaction term was not found when comparing mean movement rates 

across seasons and time of day, indicating that pattern in movement across different times 

of day was the same among seasons (Table 5.5). However, there were significant 
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differences in movement rates when comparing main effects individually (i.e., seasons to 

one another and times of day to one another; Table 5.5). Similar to what was observed 

when comparing seasonal use areas to one another from weekly telemetry data, daily 

movement rates were highest during warm water seasons (i.e., summer, 2013, fall, 2013, 

and summer 2014; Figure 5.7; Figure 5.8). Furthermore, daily movement rates were the 

lowest during spring, 2014 which were significantly lower than all other seasons except 

fall, 2013 (Figure 5.7; Figure 5.8). Significant differences among movement rates (m/h) 

over different times of day were complicated, although Largemouth Bass tended to show 

crepuscular behavior, being most active during low light conditions, with the highest 

activity taking place between the hours of 16:00 and 20:00 (i.e., late afternoon towards 

dusk) and 04:00 and 08:00 (i.e., early morning towards dawn; Figure 5.7; Figure 5.8). 

Largemouth Bass daily movement rates were lowest overnight, although these rates were 

not significantly lower than some other times of the day (Figure 5.7; Figure 5.8).  

 Trends in daily use areas across seasons followed trends in daily movement rates 

across seasons. Significant differences existed in daily use areas across seasons with 

warm water periods having the highest daily use areas (Table 5.6; Figure 5.9). Observed 

daily use areas were highest during the summer, 2014 season with daily use areas 

averaging almost 4 ha (Figure 5.9). Daily use areas from summer, 2013, fall, 2013, and 

winter, 2013/2014 were smaller than summer, 2014 but were not significantly smaller 

(Figure 5.9). Daily use areas during spring, 2014 were significantly smaller than all other 

seasons except winter 2013/2014 with spring, 2014 having an observed daily use area of 

~0.1ha (Figure 5.9). Small spring, 2014 daily use areas were likely due to spawning 

occurring during spring daily telemetry tracking. Back-transformed mean daily use areas 
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for winter 2013/2014 were much smaller than observed daily use areas during winter 

2013/2014 because two of the 15 daily use areas during this season were very large and 

the rest were <1ha and when data were log-transformed, these two large use areas had a 

much smaller influence on the mean daily use area for this season. 

 Again similar to what was observed from weekly telemetry data, distance from 

shore and depth of water used was variable among seasons from daily telemetry locations 

of Grand Lake Largemouth Bass (Figure 5.10). A significant interaction term was not 

detected when comparing season and time of day, indicating that patterns in distance 

from shore were similar across times of day and seasons (Table 5.7). A significant 

difference was only detected across seasons indicating differences in Largemouth Bass 

distances from shore did not vary across times of day when averaged within a season 

(Table 5.7). Largemouth Bass in Grand Lake had the highest distance from shore during 

summer, 2013 and fall, 2013 when Largemouth Bass distances from shore were 

approximately 50m across all times of day (Figure 5.10; Figure 5.11). Largemouth Bass 

were slightly closer to shore during summer, 2014 at approximately 40 m which was 

significantly closer than distances observed during summer, 2013 and fall, 2013 (Figure 

5.10; Figure 5.11). Largemouth Bass were again significantly closer to shore during 

winter, 2013/2014 at a distance of approximately 30m from shore (Figure 5.10; Figure 

5.11). Largemouth Bass were closest to shore during spring, 2014 when they were 

approximately 15m from shore and distance from shore during this season was 

significantly lower than any other season (Figure 5.10; Figure 5.11). Trends in depth of 

water used by Largemouth Bass from daily telemetry locations showed similar patterns to 
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distance from shore, although statistical differences were not calculated on depth of water 

used (Figure 5.10).      

Discussion 

 Seasonal use areas of Largemouth Bass in Grand Lake were variable among 

seasons and among individuals within a season. Given the management objective of 

creating a trophy Largemouth Bass fishery in Grand Lake, seasonal use areas were larger 

than we expected going into the study and larger than we hoped if the goal is trying to 

create a trophy fishery, assuming seasonal use areas represent energy spent on activity 

rather than growth. Although it is difficult to compare use areas and home ranges across 

studies due to differences in sampling techniques and, waterbody size, etc., several other 

studies have found that Largemouth Bass can have smaller home ranges and use areas 

than those observed in this study. For example, Winter (1977) found that maximum 

summer home range sizes for Largemouth Bass in Mary Lake, MN ranged from 0.3-1.4 

hectares, which is much lower than summer seasonal use areas in either summer of our 

study. In a similar study, Mesing and Wicker (1986) tracked 22 Largemouth Bass for 

over 1.5 years yet only found that home ranges for these Bass ranged in size from 0.01-

5.16 hectares. Despite Grand Lake being much smaller than either lake in the study by 

Mesing and Wicker (1986), maximum annual home range sizes from Largemouth Bass in 

Grand Lake were five times as large at just over 28 ha and four Largemouth Bass in 

Grand Lake had annual home ranges larger than 20 ha. In a last study, Fish and Savitz 

(1983) found that 3-6 month home range sizes of Largemouth Bass in Cedar Lake, IL 

ranged in size from 0.18-2.07ha, with maximum home range sizes in this study being 

smaller than mean home range sizes in our study.  
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 One possible explanation for the large observed seasonal and annual use areas of 

Largemouth Bass in Grand Lake could be a lack of habitat as Largemouth Bass are 

considered a species that often associates with structure and cover and whose behavior 

may change depending on available habitat (Savino and Stein 1982; Anderson 1984). As 

mentioned earlier, Grass Carp have been stocked into Grand Lake to remove all 

submersed aquatic vegetation and the current management strategy involves chemically 

treating water lotus, thus removing most aquatic vegetation as habitat for Largemouth 

Bass in Grand Lake. Furthermore, side scan sonar imagery revealed a paucity of woody 

habitat for Largemouth Bass in Grand Lake (Breeggemann, unpublished data). Results 

from over 80 transects to map available habitat following methods described by Kaeser 

and Litts (2008), Kaeser and Litts (2010), and Kaeser et al. (2013) revealed 

approximately 22 woody structures (i.e., brush bundles, laydown log, stump, upright 

trees) per acre of lake surface area (Breeggemann, unpublished data). Thus, Grand Lake 

is experiencing the habitat effects of an aging reservoir. In a study of the effects of habitat 

on home range size and activity of Largemouth Bass in northern WI, Ahrenstorff et al. 

(2009) found that Largemouth Bass in lakes with lower densities of coarse woody habitat 

had significantly larger home ranges and consumed less prey. In that same study, 

Ahrenstorff et al. (2009) hypothesized that when coarse woody debris densities 

decreased, Largemouth Bass switched from a sit-and-wait foraging strategy to one which 

Bass actively searched for prey. When using an actively searching foraging strategy 

Ahrenstorff et al. (2009) proposed that Largemouth Bass spend extra energy searching 

for food and growth may slow.  Other studies have also revealed that habitat 

manipulations affect Largemouth Bass movements and activity rates. For example, 
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following a large removal of hydrilla from Lake Seminole Georgia, Largemouth Bass 

movement increased and they inhabited deeper water compared to pre-treatment of the 

hydrilla (Sammons et al. 2003).  In a similar study, Colle et al. (1989) found that 

following elimination of submersed aquatic vegetation in Lake Baldwin, Florida, some 

Largemouth Bass moved offshore and associated, did not associate with any structure, 

and maintained large home ranges that average 21.0 hectares.  

The lack of habitat due to reservoir aging and resulting large seasonal and annual 

use areas and movement could be limiting the growth potential of Largemouth Bass in 

Grand Lake, thus preventing achievement of the goal to create a trophy Largemouth Bass 

fishery. Although percent coverage was not quantified from mapped habitat features 

describe earlier, percent coverage of habitat in Grand Lake was much lower than percent 

habitat coverage that maximized Largemouth Bass production in other studies. For 

example, Wiley et al. (1984) found that 40-50% coverage of aquatic macrophytes 

maximized Largemouth Bass production in small ponds in Illinois. Additonally, 

Durocher et al. (1984) evaluated seven biotic and abiotic factors to assess what factors 

were driving standing crop of Largemouth Bass in Texas reservoirs and vegetation 

coverage was found to be the only significant variable of those evaluated. Furthermore, 

standing crop of Largemouth Bass increased with vegetation coverages up to 20% 

highlighting the importance of habitat for the growth and production of Largemouth Bass 

in Texas reservoirs. In a last study, Sass et al. (2006) removed 75% of the coarse woody 

habitat from a treatment section of Little Rock Lake, WI and left a reference basin 

unaltered to compare feeding and growth of Largemouth Bass following a significant 

removal of habitat. Prior to the woody habitat removal in Little Rock Lake, Largemouth 
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Bass in both basins consumed primarily aquatic prey (Sass et al. 2006). Following the 

woody habitat removal, Largemouth Bass in the treatment basin consumed less fish and 

grew more slowly than Largemouth Bass in the reference basin (Sass et al. 2006).  

 Largemouth Bass in Grand Lake tended to stay fairly far from shore (i.e. >30-40 

m) and use deep water (i.e., >2.5-3.5 m) during most of the growing seasons. Three 

possible factors could explain these movement patterns. First, littoral habitat could be 

limiting and Largemouth Bass could be moving offshore as a results. For example, six of 

sixteen Largemouth Bass stayed predominantly in water deeper than 3.5 m following 

removal of submersed aquatic vegetation in Lake Baldwin, Florida (Colle et al. 1989). 

Additionally, Sammons et al. (2003) also noted that Largemouth Bass used deeper water 

after removal of the majority of hydrilla in Lake Seminole, Georgia. A second 

explanation could be Largemouth Bass are seeking cooler water offshore. Largemouth 

Bass growth is optimized at a temperature range of 26 – 28°C (Coutant & Cox 1976). 

Surface temperatures and shallow water temperatures in Grand Lake exceeded this 

optimal temperature for much of the growing season. Therefore, Largemouth Bass may 

have moved offshore to deeper, cooler water closer to their thermal optima. When water 

temperatures reached 25-30°C, Smallmouth Bass (Micropterus dolomieu) attempted to 

locate thermal refuge by moving to different areas of the lake with cooler water because 

their cardiac function alone could not account for increased water temperatures (Schreer 

and Cooke 2002). Largemouth Bass in Grand Lake could be exhibiting the same 

response. The last explanation could be prey. Diet analyses of Largemouth Bass in Grand 

Lake have revealed that Shad spp. are a significant component of Largemouth Bass diets. 

Given that Gizzard Shad and Threadfin Shad are pelagic, Largemouth Bass could be 
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moving offshore to feed. Other studies have shown Gizzard Shad to be important in diets 

of Largemouth Bass thus indicating they move offshore in other systems to feed as well 

(Storck 1986; Michaletz 1997). 

 Although water temperatures that Largemouth Bass were using were not 

significantly cooler than mean available water temperatures during stratified times, 

Largemouth Bass were likely moving in response to water temperatures. For example, 

differences between water temperatures Largemouth Bass were using and mean available 

water temperatures were highest when water temperatures were warmest and Largemouth 

Bass were avoiding the warmest water in the lake. Also, depth of water that a 

Largemouth Bass was in was slightly higher when water temperatures were warmer, 

although these differences in depth of water used were slight. Water temperatures and 

depth of water Largemouth Bass were using in response to available water temperatures 

could show a behavioral response in that Largemouth Bass are seeking water 

temperatures closer to their thermal optimum, similar to the response of Smallmouth Bass 

to warmer water presented earlier (Schreer and Cooke 2002).  

 Furthermore, water temperatures to Largemouth Bass in Grand Lake were warmer 

than the thermal optima of 26 – 28°C (Coutant & Cox 1976), yet Largemouth Bass did 

not seek out the coolest available water temperatures with enough oxygen to survive. 

Additionally, mean water temperatures as well as the water temperatures Largemouth 

Bass were using in Grand Lake were not close to the temperatures at which Largemouth 

Bass begin to lose equilibrium and death occurs (i.e., 36°C; Smith and Scott 1975; Fields 

et al. 1987; Smale and Rabeni 1995; Beitinger et al 2000). Additionally, Largemouth 

Bass activity rates (i.e., movement and use area) were high despite temperatures above 
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the thermal optima, indicating that Largemouth Bass in Grand Lake were not severly 

limited by water temperatures. However, given the fact that Largemouth Bass were using 

water temperatures above their thermal optima during extended periods of the growing 

season, growth could be slowed by water temperatures. Additionally, slight increases in 

water temperatures (1-2°C) could dramatically lower growth of Largemouth Bass in 

Grand Lake as observed water temperatures are getting so far past the thermal optimum 

of Largemouth Bass that metabolic activity may slow dramatically (Rice et al. 1983; 

Chapter 3). 

 Grand Lake is considered polymictic and broke stratification several times 

throughout both summers of this study. When Grand Lake broke stratification, water 

temperatures dropped closer to thermal optima for Largemouth Bass, but dissolved 

oxygen levels dropped with maximum observed dissolved oxygen levels below 4ppm 

(Breeggemann, unpublished data). Given high water temperatures of Grand Lake, even 

when the lake breaks stratification, dissolved oxygen levels below 4ppm are getting very 

close to the threshold at which Largemouth Bass can survive at these temperatures (Cech 

et al. 1979). High water temperatures combined with low dissolved oxygen when Grand 

Lake breaks stratification lends evidence to the consideration of adding an aeration 

system or some other system (e.g., directly injecting oxygen into the hypolinium) to 

maintain high oxygen levels at temperatures that are as close to the thermal optima of 

Largemouth Bass as possible. Cool water with adequate levels of oxygen may be crucial 

in the future as global climate change increases water temperatures if creating a trophy 

fishery is the desired management goal (Chapter 3). 
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  Similar to seasonal and annual use areas, daily movement rates and daily home 

range sizes during warm water periods in Grand Lake were larger than we expected given 

the goal of creating a trophy Largemouth Bass fishery. Daily Largemouth Bass 

movement rates and home range sizes were larger than what other researchers have 

observed in other reservoirs and is likely driven by the lack of habitat in Grand Lake due 

to reservoir aging. For example, daily Largemouth Bass movement rates and home range 

sizes in Grand Lake were similar to those in a 25 ha lake in Colorado in following a water 

level drawdown and significant loss of habitat for Largemouth Bass (Rogers and 

Bergersen 1995). In the same study in Colorado, Largemouth Bass in a lake with a water 

level drawdown had significantly larger movement rates and daily home ranges 

compared to a lake in which there was not a drawdown (Rogers and Bergersen 1995). 

Additionally, Sammons et al. (2003) noted that Largemouth Bass exhibited greater 

movement in Lake Seminole, Georgia following removal of most of the hydrilla in the 

lake.  

 Daily activity rates of Largemouth Bass in Grand Lake were highest during both 

the summer of 2013 and summer of 2014. Mesing and Wicker (1986) found that greatest 

average daily movements of Largemouth Bass in two central Florida Lakes occurred 

during June, May, and February, and that smallest movement rates occurred during 

August. Greatest daily movement rates of Largemouth Bass in Grand Lake occurred 

during July and August in our study. Surprisingly, no differences were detected in 

Largemouth Bass distances from shore at different times of day from daily telemetry. I 

hypothesized that during warm water periods, Largemouth Bass would have moved 

closer to shore during the overnight and early morning hours when water temperatures 
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were coolest in shallow areas of the lake. However, lack of littoral habitat as well as 

adequate pelagic prey (i.e., Shad spp.) could have precluded Largemouth movements 

toward shore during low light periods.  

Management Implications 

 Daily, seasonal, and annual movements and use areas observed in this study 

highlight the effects of reservoir aging on Largemouth Bass behavior. I hypothesize that 

the reservoir aging process proposed by Kimmel and Groeger (1986) has resulted in 

significant habitat losses in Grand Lake and Largemouth Bass have responded with high 

movement rates and activity patterns as a result. In a study of lakes in northern WI, 

Ahrenstorff et al. (2009) found that Largemouth Bass in lakes lower densities of coarse 

woody habitat had significantly larger home ranges and consumed less prey. In that same 

study, Ahrenstorff et al. (2009) hypothesized that when coarse woody debris densities 

decreased, Largemouth Bass switched from a sit-and-wait foraging strategy to one which 

Bass actively searched for prey. When using an actively searching foraging strategy 

Ahrenstorff et al. (2009) proposed that Largemouth Bass spend extra energy searching 

for food and growth may slow. Habitat loss due to reservoir aging has the same effect as 

removing habitat in a lake. Increased activity patterns in Grand Lake as a result of habitat 

loss has likely resulted in the slow growth rates of Largemouth Bass in Grand Lake 

(Chapter 2 and Chapter 3). All other factors necessary to optimize Largemouth Bass 

growth are present in Grand Lake (i.e., Florida Largemouth Bass genetics, high energy 

forage, and high survival) lending further evidence to the effects of reservoir aging and 

lack of habitat as the factor limiting growth of Largemouth Bass in Grand Lake. 

Furthermore, management strategies aimed at maintaining water temperatures and 
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dissolved oxygen at levels that maximize Largemouth Bass should be considered in 

southern latitudes especially as water temperatures are predicted to rise in the face of 

climate change. This study highlights the need to consider managing habitat to enhance 

Largemouth Bass growth especially in aging reservoirs. Furthermore, habitat should be 

considered in all systems in which the goal is to optimize growth of Largemouth Bass. 

For example, lakeshore development may be removing habitat from lakes as home 

owners prevent coarse woody debris from entering aquatic systems and this may also 

contribute to reduced growth of Largemouth Bass in natural lakes at more northerly 

latitudes (Gaeta et al. 2011). 
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TABLE 5.1. Summary statistics to test whether differences exist among 95% seasonal use 

areas for Largemouth Bass sampled from Grand Lake, TX between June, 2013 and 

August, 2014. Use areas were calculated from weekly telemetry locations. 

Model D.F. AIC Log-likelihood Chi-square statistic P-value 

base 3 344.18 -169.09   

season 7 326.88 -156.44 25.297 <0.01 
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TABLE 5.2. Summary statistics to test whether differences exist among 50% seasonal use 

areas for Largemouth Bass sampled from Grand Lake, TX between June, 2013 and 

August, 2014. Use areas were calculated from weekly telemetry locations. 

Model D.F. AIC Log-likelihood Chi-square statistic P-value 

base 3 394.67 -194.34   

season 7 374.37 -180.19 28.3 <0.01 
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TABLE 5.3. Results of regression model to test if observed water temperatures 

Largemouth Bass were using were significantly different than mean available water 

temperatures on different dates in Grand Lake, TX over the 2013 and 2014 growing 

seasons. 

Parameter Estimate Standard Error t-value Pr(>|t|) 

Intercept 30.95 0.14 227.71 <0.01 

Fish -0.34 0.25 -1.38 0.17 

Date 6/2/2014 -3.07 0.15 -20.70 <0.01 

Date 6/21/2013 0.17 0.18 0.93 0.35 

Date 7/14/2014 1.18 0.16 7.15 <0.01 

Date 7/16/2013 -2.39 0.16 -15.13 <0.01 

Date 7/2/2014 -1.24 0.15 -8.31 <0.01 

Date 7/23/2014 -1.55 0.17 -9.07 <0.01 

Date 7/9/2013 -0.74 0.16 -4.60 <0.01 

Date 8/21/2013 -1.39 0.16 -8.85 <0.01 

Date 8/25/2014 -0.39 0.16 -2.42 0.02 

Date 8/26/2013 -0.57 0.16 -3.56 <0.01 

Date 8/5/2013 0.74 0.16 4.66 <0.01 

Date 9/16/2013 -1.20 0.16 -7.47 <0.01 

Fish 6/2/2014 0.26 0.31 0.84 0.40 

Fish 6/21/2013 0.04 0.34 0.12 0.91 

Fish 7/14/2014 0.08 0.31 0.28 0.78 

Fish 7/16/2013 0.32 0.32 1.00 0.32 

Fish 7/2/2014 0.37 0.30 1.24 0.22 

Fish 7/23/2014 -0.34 0.31 -1.10 0.27 

Fish 7/9/2013 0.08 0.33 0.24 0.81 

Fish 8/21/2013 0.25 0.33 0.77 0.44 

Fish 8/25/2014 -0.05 0.30 -0.16 0.88 

Fish 8/26/2013 0.30 0.33 0.91 0.36 

Fish 8/5/2013 -0.09 0.33 -0.26 0.79 

Fish 9/16/2013 -0.08 0.33 -0.24 0.81 
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TABLE 5.4. Results of regression model to test if observed dissolved oxygen levels 

Largemouth Bass were using were significantly different than mean available dissolved 

oxygen levels on different dates in Grand Lake, TX over the 2013 and 2014 growing 

seasons. 

Parameter Estimate Standard Error t-value Pr(>|t|) 

Intercept 6.45 0.53 12.25 <0.01 

Fish -0.25 1.15 -0.21 0.83 

Date 6/2/2014 1.23 0.55 2.23 0.03 

Date 6/21/2013 0.19 0.63 0.31 0.76 

Date 7/14/2014 -0.04 0.59 -0.06 0.95 

Date 7/16/2013 -1.97 0.57 -3.45 <0.01 

Date 7/2/2014 1.12 0.55 2.02 0.04 

Date 7/23/2014 1.15 0.60 1.91 0.06 

Date 7/9/2013 -0.09 0.58 -0.16 0.87 

Date 8/21/2013 -0.55 0.57 -0.97 0.33 

Date 8/25/2014 0.71 0.58 1.24 0.22 

Date 8/26/2013 -0.63 0.57 -1.10 0.27 

Date 8/5/2013 -0.17 0.57 -0.30 0.77 

Date 9/16/2013 -0.15 0.58 -0.26 0.79 

Fish 6/2/2014 1.20 1.27 0.95 0.34 

Fish 6/21/2013 -0.16 1.33 -0.12 0.91 

Fish 7/14/2014 -0.38 1.26 -0.30 0.76 

Fish 7/16/2013 0.14 1.29 0.11 0.91 

Fish 7/2/2014 0.80 1.24 0.65 0.52 

Fish 7/23/2014 -1.66 1.26 -1.32 0.19 

Fish 7/9/2013 0.23 1.30 0.18 0.86 

Fish 8/21/2013 0.44 1.30 0.34 0.74 

Fish 8/25/2014 -0.44 1.26 -0.35 0.72 

Fish 8/26/2013 0.06 1.30 0.05 0.96 

Fish 8/5/2013 -0.48 1.29 -0.37 0.71 

Fish 9/16/2013 -0.91 1.31 -0.70 0.49 
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TABLE 5.5. Summary statistics to test whether differences exist among movement rates 

over different seasons and times of day for Largemouth Bass sampled from Grand Lake, 

TX between June, 2013 and August, 2014. Movement rates were calculated from 24-hour 

daily telemetry locations. 

Model D.F. AIC Log-likelihood Chi-square statistic P-value 

Additive 12 1348.6 -662.28   

Interaction 32 1371.9 -653.96 16.645 0.676 

Baseline 3 1381.0 -687.48   

Time of Day 8 1364.6 -674.32 26.314 <0.01 

Season 7 1365.9 -675.96 23.04 <0.01 
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TABLE 5.6. Summary statistics to test whether differences exist among daily use areas for 

Largemouth Bass sampled from Grand Lake, TX between June, 2013 and August, 2014. 

Use areas were calculated from 24-hour daily telemetry locations. 

Model D.F. AIC Log-likelihood Chi-square statistic P-value 

base 3 283.11 -138.55   

season 7 269.34 -127.67 21.767 <0.01 
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TABLE 5.7. Summary statistics to test whether differences exist among distance from 

shore over different seasons and times of day for Largemouth Bass sampled from Grand 

Lake, TX between June, 2013 and August, 2014. Distances from shore were calculated 

from 24-hour daily telemetry locations. 

Model D.F. AIC Log-likelihood Chi-square statistic P-value 

Additive 13 862.56 -418.28   

Interaction 37 890.59 -408.3 19.97 0.699 

Baseline 3 954.92 -474.46   

Time of Day 9 958.12 -470.06 8.8 0.19 

Season 7 861.43 -423.71 101.49 <0.01 
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FIGURE 5.1. Detailed bathymetric map of Grand Lake, Texas showing 0.305m contours. 

Stars represent locations where temperature/dissolved oxygen profiles were taken during 

weekly telemetry. 

  



214 
 

 

FIGURE 5.2. Length frequency histogram of Largemouth Bass sampled from Grand Lake, 

TX between May, 2013 and May, 2014 which had radio tags surgically implanted in 

them.  
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FIGURE 5.3. Observed 95% (A) and 50% (C) seasonal use areas and back-transformed 95% (B) and 50% (D) seasonal use areas for 

Largemouth Bass sampled from Grand Lake, TX between June, 2013 and August, 2014. Back-transformed seasonal use areas are 

from the natural log transformed seasonal use areas used to analyze difference between seasonal use areas. Error bars represent 

standard errors. 
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FIGURE 5.4. Mean distance from shore, available water temperature, and depth of water used by Largemouth Bass sampled from 

Grand Lake, TX between June, 2013 and September, 2014. Each point represents a tracking event from weekly telemetry tracking. 

Error bars represent standard errors. 
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FIGURE 5.5. Mean maximum temperature and dissolved oxygen (DO), mean available temperature and dissolved oxygen, mean 

Largemouth Bass temperature and dissolved oxygen, mean minimum temperature and dissolved oxygen with 2.5 ppm oxygen, and 

mean minimum temperature and dissolved oxygen in Grand Lake, TX during stratified times of the year of the 2013 and 2014 

growing seasons. Each point represents a tracking event from weekly telemetry tracking. Error bars represent standard errors.  
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FIGURE 5.6. Mean Largemouth Bass depth, shallowest Largemouth Bass depth, deepest Largemouth Bass depth, and mean available 

temperature for Largemouth Bass in Grand Lake, TX during stratified times of the year of the 2013 and 2014 growing seasons. Each 

point represents a tracking event from weekly telemetry tracking. Error bars represent standard errors.
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FIGURE 5.7. Mean movement rate (m/h) and mean distance traveled (m) across different seasons and times of day for Largemouth 

Bass sampled with 24-hour daily telemetry from summer, 2013 through summer, 2014 in Grand Lake, TX. Error Bars represent 

standard errors.
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FIGURE 5.8. Significant differences in back-transformed movement rates (m/h) across 

seasons (A) and times of day (B) from 24-hour daily telemetry locations taken from 

Largemouth Bass sampled from Grand Lake, TX between summer, 2013 and summer, 

2014. Error bars represent standard errors. 
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FIGURE 5.9. Mean observed daily use area (A) and back-transformed daily use areas (B) 

for Largemouth Bass sampled from Grand Lake, TX between June, 2013 and August, 

2014. Back-transformed seasonal use areas are from the natural log transformed seasonal 

use areas used to analyze difference between seasonal use areas. Telemetry locations are 

from 24-hour daily telemetry. Error bars represent standard errors.  
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FIGURE 5.10. Mean distance from shore (A) and mean depth of water used (B) for Largemouth Bass sampled from Grand Lake, 

TX across different seasons and times of day. Telemetry locations are from 24-hour daily telemetry locations collected 

between summer, 2013 and summer, 2014. Error Bars represent standard errors.
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FIGURE 5.11. Mean back-transformed distances from shore across different seasons and 

years for Largemouth Bass sampled from Grand Lake, TX between summer, 2013 and 

summer, 2014.  Significant differences are denoted by letters.  Telemetry locations were 

taken from 24-hour daily telemetry. Error bars represent standard errors. 
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CHAPTER 6: CONCLUSIONS 

 

 All four factors that can affect the growth potential of Largemouth Bass 

(Micropterus salmoides) in Grand Lake, TX were successfully evaluated and information 

gleaned from these results can be used to tailor management to reach the goal of growing 

trophy Largemouth Bass. Surprisingly, prior to the major stocking event in late 

2011/early 2012, the Largemouth Bass population in Grand Lake was already comprised 

of almost exclusively Bass that had some Florida genetics as all Largemouth Bass 

sampled were either pure Florida strain or F1 or Fx hybrids. Although rare, Grand Lake 

must still have some pure northern strain Largemouth Bass as F1 hybrids were captured. 

Therefore, the genetic makeup of the Largemouth Bass population in Grand Lake is 

optimal for growing trophy Bass as pure Florida strain Largemouth Bass and their 

hybrids have been shown to grow faster and attain larger sizes than northern strain 

Largemouth Bass (Rieger and Summerfelt 1976; Inman et al. 1977; Bottroff and 

Lembeck 1978; Pelzman 1980; Maceina et al. 1988).  

However, despite having optimal genetics, growth of Largemouth Bass in Grand 

Lake was still slower than desired to create a trophy fishery, with mean back-calculated 

lengths at age of adult Largemouth Bass being similar to the 50th percentile for ecoregion 

8 of North America taken from Brouder et al. (2009). Therefore, some factor other than 

genetics must be limiting the growth potential of Largemouth Bass in Grand Lake. 

Evaluations of the performance of the different stocked genetic groups revealed that feed 

trained hybrid Tiger Largemouth Bass consistently grew faster and maintained higher 

relative weights than any other stocked genetic strain or native Largemouth Bass. The 

fact that these feed trained Tiger Largemouth Bass have easy access to readily available, 
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high energy pelleted food throughout the growing season or hybrid vigor (Shull 1948) 

could explain why this group performed better than any other stocked genetic strain or 

native Largemouth Bass. If available, stocking feed trained, Tiger Largemouth Bass 

along with a feeding program could increase the chances of growing trophy Largemouth 

Bass. 

Overall, Largemouth Bass survival rates were high in Grand Lake compared to 

many other Bass populations throughout the country and were within the range of 

survival rates Crawford et al. (2002) deemed necessary to create a trophy Largemouth 

Bass fishery.  Given the strictly catch-and-release nature of the Grand Lake fishery, it is 

not surprising that survival rates are high as exploitation can remove as many as 40% or 

more of the Largemouth Bass from heavily exploited fisheries, contributing to low 

population level survival. The stocked pure Florida strain Largemouth Bass from Florida 

had the lowest survival rates and their performance (i.e., growth and condition) was 

similar to native Grand Lake Largemouth Bass. The poor performance of these stocked 

pure Florida strain Largemouth Bass from Florida raises concerns for outbreeding 

depression following stocking (Hallerman 2003). Given their much lower survival rate, 

lack of performance benefit, and possibility of outbreeding depression, no future 

stockings of pure Florida strain Largemouth Bass.   

The current prey fish management strategy is providing ample high energy fish 

for Largemouth Bass from early/mid-summer through the rest of the growing season. 

However, a prey bottleneck still exists in spring when Largemouth Bass are consuming 

large amounts of crayfish. Results of bioenergetics simulations showed that Largemouth 

Bass growth could improve if a higher proportion of fish were consumed and getting 
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Largemouth Bass to switch from crayfish to fish in the spring provides the largest area 

for increases in fish consumption. Perhaps stocking a high energy cool water fish species 

such as Rainbow Trout (Oncorhynchus mykiss) could allow for consumption of fish 

rather than crayfish during this time. Additionally, water temperatures in Grand Lake 

during May will be nearing the upper thermal limit of Rainbow Trout, making them an 

easy target for opportunistic Largemouth Bass. At the very least, future prey management 

should be aimed at ensuring crayfish do not become a larger portion of Largemouth Bass 

diets as crayfish have a low energy density and bioenergetics simulations showed that 

growth will slow even more if crayfish make up a larger proportion of diets.  

Bioenergetics simulations also showed that water temperatures in Grand Lake are 

nearing the point in which they will limit growth of Largemouth Bass and climate change 

will exacerbate the effects of warmer temperatures. Under future predicted temperatures 

over the next 50-100 years, Largemouth Bass consumption will have to increase by 5-

20% just to meet baseline energetic demands, depending on the model and future time 

scenario. Compounding this is the fact that current water temperatures are already above 

a Largemouth Bass’ upper thermal optimum and total consumption is limited by water 

temperatures and will decrease under future climate scenarios. Therefore, climate change 

has the potential to dramatically limit the growth potential of Largemouth Bass in the 

southern US if attempts are not made to create a cool water refuge. Installing an aeration 

system that provides cooler water that contains ample oxygen or installing a system that 

directly injects oxygen into the thermocline now will limit the impacts of climate change 

beginning now.  
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Habitat appears to be the major limiting factor with regards to Largemouth Bass 

growth in Grand Lake. The fact that Grass Carp (Ctenopharyngodon idella) have 

removed all of the submersed aquatic vegetation along with the effects of reservoir aging 

on decomposition and loss of woody habitat means there is very little habitat for 

Largemouth Bass, a species that closely associates with cover and structure. This lack of 

habitat has resulted in daily, seasonal, and annual home ranges of Largemouth Bass that 

were all larger than expected and larger than those reported in other studies (e.g., Fish 

and Savitz 1983; Mesing and Wicker 1986; Rogers and Bergersen 1995). Furthermore, 

daily movement rates were also higher than expected. Other studies have shown that 

Largemouth Bass movement rates and activity increase as available habitat decreases 

(Sammons et al. 2003; Ahrenstorff et al. 2009). Similar to Ahrenstorff et al. (2009) it is 

hypothesized that increased metabolic expenditures associated with large daily, seasonal, 

and annual movement patterns are limiting the growth potential of Largemouth Bass in 

Grand Lake. If Largemouth Bass consumption remained the same, yet movement rates 

decreased dramatically as a result of increased habitat, growth should increase. The fact 

that reservoir aging and the loss of habitat is limiting growth of Largemouth Bass in 

Grand Lake could pose a management challenge to fisheries managers throughout the 

county as millions of reservoirs are >40 years old.  

This research highlights the need to take an ecosystem based management 

approach to fisheries to ensure successful achievement of management objectives.  Most 

often, the easiest and cheapest approach to management is taken without consideration 

for other factors. For example, Florida strain Largemouth Bass have been stocked 

throughout the southern United States where the northern strain Largemouth Bass is 
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native to try to increase growth rates and create higher quality fishing opportunities. 

Genetics are very easy to evaluate as well as easy to manage through simple stockings, 

which is why manipulating genetics are often the first management strategy taken when 

managing for Largemouth Bass growth. However, stocking pure Florida strain 

Largemouth Bass into a lake in which habitat or prey are limiting does not ensure 

successful creation of a trophy fishery as shown in this study. Therefore, it is 

recommended that managers evaluate all factors that could affect growth of Largemouth 

Bass prior to selecting and implementing a best management strategy. 
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APPENDIX 

Plots of prey specific abundance versus frequency of occurrence for all Largemouth Bass diet samples collected from Grand Lake 

Texas during the 2012-2014 sampling seasons. 

 

FIGURE A.1. Prey specific abundance (%) versus frequency of occurrence (%) for all diet items collected from all Largemouth Bass 

sampled from Grand Lake, TX in mid-May, 2012.  
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FIGURE A.2. Prey specific abundance (%) versus frequency of occurrence (%) for all diet items collected from Largemouth Bass 250-

381 mm TL (A), 382-508 mm TL (B), and ≥ 509 mm TL (C) sampled from Grand Lake, TX in mid-May, 2012.  
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FIGURE A.3. Prey specific abundance (%) versus frequency of occurrence (%) for all diet items collected from all Largemouth Bass 

sampled from Grand Lake, TX in mid-August, 2012.  
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FIGURE A.4. Prey specific abundance (%) versus frequency of occurrence (%) for all diet items collected from Largemouth Bass 250-

381 mm TL (A), 382-508 mm TL (B), and ≥ 509 mm TL (C) sampled from Grand Lake, TX in mid-August, 2012.  
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FIGURE A.5. Prey specific abundance (%) versus frequency of occurrence (%) for all diet items collected from all Largemouth Bass 

sampled from Grand Lake, TX in mid-November, 2012.  

  

2
3

6
 



237 
 

 

FIGURE A.6. Prey specific abundance (%) versus frequency of occurrence (%) for all diet items collected from Largemouth Bass 250-

381 mm TL (A), 382-508 mm TL (B), and ≥ 509 mm TL (C) sampled from Grand Lake, TX in mid-November, 2012.  
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FIGURE A.7. Prey specific abundance (%) versus frequency of occurrence (%) for all diet items collected from all Largemouth Bass 

sampled from Grand Lake, TX in late-May/early-June, 2013.  
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FIGURE A.8. Prey specific abundance (%) versus frequency of occurrence (%) for all diet items collected from Largemouth Bass 250-

381 mm TL (A), 382-508 mm TL (B), and ≥ 509 mm TL (C) sampled from Grand Lake, TX in late-May/early-June, 2013.  
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FIGURE A.9. Prey specific abundance (%) versus frequency of occurrence (%) for all diet items collected from all Largemouth Bass 

sampled from Grand Lake, TX in late-July/early-August, 2013.  
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FIGURE A.10. Prey specific abundance (%) versus frequency of occurrence (%) for all diet items collected from Largemouth Bass 250-

381 mm TL (A), 382-508 mm TL (B), and ≥ 509 mm TL (C) sampled from Grand Lake, TX in late-July/early-August, 2013.   
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FIGURE A.11. Prey specific abundance (%) versus frequency of occurrence (%) for all diet items collected from all Largemouth Bass 

sampled from Grand Lake, TX in mid-September, 2013.  
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FIGURE A.12. Prey specific abundance (%) versus frequency of occurrence (%) for all diet items collected from Largemouth Bass 250-

381 mm TL (A) and 382-508 mm TL (B) sampled from Grand Lake, TX in mid-September, 2013.  
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FIGURE A.13. Prey specific abundance (%) versus frequency of occurrence (%) for all diet items collected from all Largemouth Bass 

sampled from Grand Lake, TX in early-November, 2013.  
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FIGURE A.14. Prey specific abundance (%) versus frequency of occurrence (%) for all diet items collected from Largemouth Bass 250-

381 mm TL (A), 382-508 mm TL (B), and ≥ 509 mm TL (C) sampled from Grand Lake, TX in early-November, 2013.  
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FIGURE A.15. Prey specific abundance (%) versus frequency of occurrence (%) for all diet items collected from all Largemouth Bass 

sampled from Grand Lake, TX in early-February, 2014.  
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FIGURE A.16. Prey specific abundance (%) versus frequency of occurrence (%) for all diet items collected from Largemouth Bass 250-

381 mm TL (A), 382-508 mm TL (B), and ≥ 509 mm TL (C) sampled from Grand Lake, TX in early-February, 2014.  
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FIGURE A.17. Prey specific abundance (%) versus frequency of occurrence (%) for all diet items collected from all Largemouth Bass 

sampled from Grand Lake, TX in mid-May, 2014.  
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FIGURE A.8. Prey specific abundance (%) versus frequency of occurrence (%) for all diet items collected from Largemouth Bass 250-

381 mm TL (A), 382-508 mm TL (B), and ≥ 509 mm TL (C) sampled from Grand Lake, TX in mid-May, 2014.  
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FIGURE A.19. Prey specific abundance (%) versus frequency of occurrence (%) for all diet items collected from all Largemouth Bass 

sampled from Grand Lake, TX in early-July, 2014.  
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FIGURE A.20. Prey specific abundance (%) versus frequency of occurrence (%) for all diet items collected from Largemouth Bass 250-

381 mm TL (A), 382-508 mm TL (B), and ≥ 509 mm TL (C) sampled from Grand Lake, TX in early-July, 2014.  
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FIGURE A.21. Prey specific abundance (%) versus frequency of occurrence (%) for all diet items collected from all Largemouth Bass 

sampled from Grand Lake, TX in mid-September, 2014.  
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FIGURE A.22. Prey specific abundance (%) versus frequency of occurrence (%) for all diet items collected from Largemouth Bass 250-

381 mm TL (A), 382-508 mm TL (B), and ≥ 509 mm TL (C) sampled from Grand Lake, TX in mid-September, 2014.  
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FIGURE A.23. Prey specific abundance (%) versus frequency of occurrence (%) for all diet items collected from all Largemouth Bass 

sampled from Grand Lake, TX in late-October, 2014.  
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FIGURE A.20. Prey specific abundance (%) versus frequency of occurrence (%) for all diet items collected from Largemouth Bass 250-

381 mm TL (A) and 382-508 mm TL (B) sampled from Grand Lake, TX in late-October, 2014. No diets were collected from 

Largemouth Bass ≥509mm TL from this sampling period.   
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