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ABSTRACT

DATA CENTER LOAD FORECAST USING DEPENDENT MIXTURE MODEL

MD RIAZ AHMED KHAN

2016

The dependency on cloud computing is increasing day by day. With the boom of data

centers, the cost is also increasing, which forces industries to come up with techniques and

methodologies to reduce the data center energy use. Load forecasting plays a vital role in

both efficient scheduling and operating a data center as a virtual power plant. In this thesis

work a stochastic method, based on dependent mixtures is developed to model the data

center load and is used for day-ahead forecast. The method is validated using three data

sets from National Renewable Energy Laboratory (NREL) and one other data centers. The

proposed method proved better than the classical autoregressive, moving-average, as well

as the neural network-based forecasting method, and resulted in a reduction of 7.91%

mean absolute percentage error (MAPE) for the forecast. A more accurate forecast can

improve power scheduling and resource management reducing the variable cost of power

generation as well as the overall data center operating cost, which was quantified as a

yearly savings of $13,705 for a typical 100 MW coal fired tier-IV data center.
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CHAPTER 1 : INTRODUCTION

1.1 Background

Data centers are the backbone of current world economy as they power up the

organizations of all scales. For years data centers have been the key for modern software

technology, performing demanding role for the business expansions. With high

availability, reliability, efficiency and staggering scalability, more and more enterprises are

moving towards cloud computing. All those error prone paper-pencil-documentation

methods today have completely been replaced with the ease of usability of data centers as

a whole. As a result the global electricity demand by the data centers is ever increasing

day by day. In 2013, 1.5 MW per 100 MW production of electricity was consumed by the

data centers to power up the business enterprises worldwide [1]. And the growth of data

centers is showing no sign of slowing down. Cisco conducted a study to forecast the

growth of global data centers [2]. It was reported that by 2019, 86% of the workloads will

be processed by cloud data centers, a 3.3 fold increase from 2014. About 2 billion users

will use personal cloud storage. Data created by the devices will reach 507 Zettabytes

(ZB) per year by 2019, from just 135 ZB in 2014. To cope with this industry trend, giants

like Google, Microsoft are coming forward, building new data centers. With 15 data

centers worldwide, Google announced to open 12 more data centers by 2017 [3].

Microsoft announced 5 new, that will add to their 22 current data centers [3].

The growth of cloud is making the data centers significant electricity consumers.

In 2013, data centers in USA only consumed 91 billion kW-hr electricity [4]. This is

equivalent to 34 500 MW power plants, dedicated to power up the data centers with
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$10.92 billion annual production cost. By 2019 there will be 17 more required. With the

current growth rate, 8% of the global electricity is forecasted to be consumed by data

centers in 2020 [5]. As the power consumption and electricity prices are going up, energy

cost is receiving more attention. Efficiency assessment became a priority in the industry

for the high cost involved in the data centers. Substantial work have been done to increase

the data center operating efficiency in the recent past [6], [7], [8]. Proper power

scheduling and management can play a role to reduce the energy consumption and reduce

the cost and carbon footprint. For proper energy management, one of the primary tasks is

to forecast the load. In the era of deregulated energy market, load forecast is vital with

applications like energy purchasing and on-site generation, maximize the use of renewable

resource and thus direct towards reduced cost and carbon emission. Load forecast will

also be significant since the industry are going for more renewable energy. Apple claimed

to be already 100% green. Google announced its goal for 100% renewable power,

purchasing 2.2 GW of clean energy to date. Amazon, by far the industry leader with 31%

market share of the total cloud based services [9], also committed for 100% renewable

energy. Microsoft is using wind and solar power to run their data centers. The industries

are mainly focusing on wind, solar and hydro-electric power, which are intermittent in

nature. Along with solar and wind forecast, load forecast is a key factor for proper hour by

hour operating schedule, maximizing renewable penetration and minimizing cost and

carbon footprint. Load forecast can also be useful to enable data centers to operate as

virtual power plants (VPP) [10]. Accurate load prediction can also expedite the dynamic

thermal load balancing by coordinating cooling units and improving the overall efficiency

of the data center.
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1.2 Datacenter overview

A data center is a facility to house large number of components for computing,

networking, storage. In addition, it provides infrastructure for power distribution and

cooling systems. In a broader sense, data center load can be divided into two categories,

IT load and non IT load. Non IT load can further be categorized into cooling load,

lighting, UPS and other miscellaneous load. According to the data provided by Lawrence

Berkeley National Laboratory, in a typical data center 46% of the total load is the IT load,

resulting in a power usage effectiveness (PUE) of 2.17 [11]. PUE is a metric used by the

industries to measure how efficiently power is being used and given by the ratio of overall

data center load to the IT load. The trend of designing facility has significantly changed

over the last decade and industries are achieving PUE as low as 1.12 [12].

The IT/server load of the data center shows great variability as it depends on user

activity. The server load fluctuates with high variance throughout the day. The cooling

load includes chillers, pumps, radiators, air side economizers. These equipments are

dedicated to maintain the environment temperature within limits. The cooling load also

varies with the server load. All other loads are almost constant. Peak to average load ratio

generally lies within the range of 1 to 4 [13].

1.3 Literature review

As the energy consumption by the data centers and electricity price are going up,

energy efficiency is fast becoming a priority. Various ways to improve data center energy

efficiency are presented in [6], [7], [8]. Many researchers focused on improved
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mechanical designs, proper sealing, proper sizing, optimized air flow, using air-side

economizers and strategic IT load distribution like distributed server power management,

peak provisioning, server-virtualization, standardization, which can reduce the overall

energy consumption. Power management is also another area which has been studied by

the researchers looking for cost reduction. An adaptive server workload scheduling

technique has been presented to optimize the data center profit in [14]. Regression tree

was applied to predict the load with reported prediction and validation mean squared error

(MSE) 9.9% and 12% respectively, to feed into the optimizer. A hierarchical server task

scheduling method was proposed to optimize the application placement in [15]. This

algorithm is applicable once the servers receive application requests; forecast of the tasks

had not been investigated. An online control algorithm was developed to minimize the

time average operating cost of the data center in [16]. In this work, the workload is

considered as independent and identically distributed (IID) random variables and modeled

via IID model . Although the algorithm was claimed to be applicable for non-IID load as

well, no non-IID process was undertaken for modeling the load. It was assumed that

enough number of servers can be activated instantly, which can greatly affect the optimal

server on-off states, neglecting the provision of unit commitment.

An adaptive data center job scheduler was proposed in [17]. The authors showed

that the use of green energy can be improved by proper forecasting of wind and solar

energy. Statistical profiling based and power re-routing based power provisioning

techniques were proposed in [18] and [19]. All these research works address the

importance of forecasting the load, but a solution was not proposed.

Attention has been drawn on the load forecast in [20], [21] and [22]. A simple
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exponential smoothing forecast mechanism has been used in [20]. A two step forecast

technique has been discussed in [21] and [22]. In the first step, an extra layer of cubic

spline was added with the exponential smoothing and then high peak was predicted by

auto regression. A model had been presented for the prediction of cloud data using neural

network blended with auto regression in [23]. A 3×2×1 neural network has been used,

where the input layer takes the previous three values as the input. Since the data center

load possess high variance and seasonality over year, an auto regression of order 3 is just

not appropriate. A load forecasting method was described to predict Google hostload

using Bayesian model in [24]. It extracted 10 features out of the emulated time series data

as covariates. The time series data was modeled as small packets over a chosen time

duration and analysis was done to evaluate the mean forecast for the time duration. This

forecast technique was reported to be performing better than eight other traditional

forecast method based on auto regression (AR), moving average (MA) and artificial neural

network (ANN).

Based on the study, it was found that researchers focused on increasing the data

center energy efficiency and came up with wide range of ideas like improved mechanical

design, oversubscribing, power provisioning, harnessing the green power. Most of them

addressed the importance of load forecast, but a convenient solution was not proposed. In

this research work, a technique to forecast the data center load was developed. The

methodology was developed based on hidden Markov model (HMM) Bayesian Inference.

Due to the high variance of the data center load profile, it was modeled as a finite mixture

of multiple groups. It bypasses the complexity of extracting the features from the past

history making the method relatively simple and robust. Along with the time stamp, only



6

temperature was used as exogenous variable for one of three cases. The model performed

well even without the temperature or any climate data for the other two cases.

1.4 Contributions

The main contribution of this thesis is the development of a new method for data

center load forecast using a dependent mixture model based on Bayesian inference.

1.5 Thesis outline

This thesis has been organized as follows: Chapter 2 describes the theory behind

the forecast technique described in this thesis. In chapter 3, the technique was applied on

three real data sets. It describes the step by step process of building the model for the

specific data and assessed in terms of mean absolute percentage deviation (MAPE).

Chapter 4 presents the results of other methods of forecast for the same data sets and

compared with different other methods. The advantage of using the developed method

was also quantified in terms of yearly savings. Chapter 5 concludes the work, with

limitations and future development related to this study.
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CHAPTER 2 : THEORY

Forecasting is making the best use of information in hand to make prediction about

the future course. Electric load forecasting is immensely important in the planning and

operation of power system. In the age of deregulated energy market it is even more

important to direct towards optimal use of resources and planning for the future

establishments of power plants, transmission networks. Usually the independent system

operators (ISO) in the United States follow econometric model for long term and short

term forecast [25], [26], [27]. MISO, PJM, New England ISO take the economic factors,

temperature factors and historical load for up to 15 years to develop the forecast method.

But load behavior of utilities and data center differ in a number of ways. First, the

economic factor. The utilities usually incorporate economic variables to represent

different sectors of customer class (residential, industrial and commercial). For the case of

cloud, mainly three kinds of services, software as a service (SaaS), platform as a service

(PaaS) and infrastructure as a service (IaaS) are provided [28]. The first two kinds are

related to the soft service, while IaaS also includes the hardware as a part of the services.

The SaaS and the PaaS, both are deliverable over the web. But they have little difference

in job nature. The SaaS applications are usually light and robust requiring comparatively

less time than the PaaS applications. This makes sense that the PaaS applications would

display greater variance than the PaaS applications. Including the portion of each type

load would be appropriate while modeling the load of a mega data center, where all kinds

of services are being provided. But in a case where the size of the data center is smaller

and dedicated for a particular kind of service, then this fact can safely be ignored.
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Geographic location is another key factor that has been traditionally taken into

account for future load growth. But this is primarily essential in the T&D planning stage,

where future load, in magnitude has to be predicted, which heavily depends on the

geographic location. This is a part of long term load forecasting task, having little impact

on the short term forecasting on day ahead basis. This work does not aim to build new

infrastructure, rather it attempts to uncover the daily load behavior for an already existing

data center. So this factor was also treated as irrelevant for the case.

Unlike the user class and geographic location, climate effect is obvious in

modeling a data center load. Climate condition invokes a direct relation between the load.

This makes sense as cooling is an integrated part of a data centers. Heat removal is one of

the most essential tasks of data center. Heavy equipments like chillers, cooling towers,

evaporators, condensers, water pumps are engaged to maintain the data center environment

temperature and humidity. So when modeling the total data center load, temperature is

essential to be taken into account. Higher ambient temperature raises the total system

load, as the cooling system has more work to do to maintain the ambient temperature.

Making a temperature based load forecast model creates a minor problem. If one

includes temperature as covariate, it has to be kept in mind that temperature is also another

thing to forecast. Weather forecast is itself a vast topic involving complexity of chaotic

nature and partial differential equations governing the atmosphere. With the

advancements of data mining and supercomputers, models have been developed for

predicting the weather up to six days with 90% accuracy [29]. Since in the real scenario

there would be just forecast temperature, necessary transformation of the temperature was

made to emulate forecast temperature.
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This thesis presents the development of a data center load forecasting technique

using dependent mixture model, which relies on a hidden Markov model (HMM),

Bayesian inference in simple form. The underlying basis of the theory is explained in

section 2.1. Section 2.2 describes how the HMM was employed to forecast load.

2.1 Dependent mixture model

Over-dispersion is common when dealing with a series having multiple

seasonality. To deal with the problem, multimodal distribution is used [30]. The response

is considered to be aroused from multiple subpopulations or states. This is the underlying

basis of the mixture model. The model does not require that an observed data set should

pinpoint the corresponding subpopulation, to which an individual observation belongs to.

There are a number of approaches, attempt to derive the properties of the overall

population. In HMM, the subpopulation or state, depends on the previous state. The

transition of the states is modeled through a first order Markov process. Given that the

subpopulations or states are hidden, the model is also called Hidden Markov Model

(HMM). The HMM is the simple form of the dynamic Bayesian network. This offers a

comprehensive tool for representing the probability distribution over sequence of

observations.

The HMM gets the name from two of its properties. First, this is assumed that an

observation (the output) at any given time t, is generated through some process, whose

state is not visible to the observer, but inferred. Second, the invisible process is governed

by Markov property. That is, at any given time the state envelops all the necessary

historical information. An introduction of simple and hidden Markov process will be
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discussed in the following two subsections:

2.1.1 Markov process

A Markov process is a stochastic process that satisfies Markov property. Markov

property is a memoryless process of generating probability distribution of future states,

that depends only on the present state of the process, not on the preceding states. If the

random variables, known as states, undergoes the Markov property then the sequence

generated is called simple Markov chain.

Suppose Y1,Y2,Y3, . . . ,YT form a sequence, where each output belongs to a set of

finite states {S1,S2,S3, . . .SN}. Now the sequence will be called Markov chain if it holds

the following Markov property:

Pr(YT+1 = S|Y1 = S1,Y2 = S2,Y3 = S3, . . . ,YT = sT ) = Pr(YT+1 = S|YT = ST ) (2.1)

The transition of the states at any given time, say from t = T to t = T +1 is defined

by the transition matrix. The transition matrixA is a N×N matrix, where N is the number

elements of the finite state space set, i.e the number of states. Each element of the matrix,

ai j, is a non-negative number and defines the probability of transition to state j from state i

at any given time. Denoting the actual state at time t as rt , this can be written as:

ai j = Pr(rt+1 = S j|rt = Si) (2.2)

Any row of the transition matrix represents the probability of going to all the states
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from a definite state. Since the number of states is finite, the summation of any row is

unity.

The concept of simple Markov process can be explained by a simple example.

Suppose, the random variable is the probability of a day being sunny or cloudy. From the

history, it was inferred that given that currently the day is sunny, there is 70% chance for

the next day being sunny. Also, if a day is currently cloudy, there is 60% chance for the

next day to become cloudy. The state diagram and the transition matrix for the system is

shown in Figure 2.1. Now, for this simple case, there are two definite disjoint states. Now

to get the state probability distribution for the next day, one just needs the transition matrix

and probability distribution of the current state. In this simple example, it was assumed

that there is a fifty percent chance for a day to be sunny or cloudy. So the probability of

next day being sunny can be given by conditional probability:

Pr(sunny)Pr(sunny|sunny)+Pr(cloudy)Pr(sunny|cloudy) = 0.5×0.7+0.5×0.4 = 0.55.

Similarly the probability of next day being cloudy can be calculated as 0.45. This task can

be written in a compact form as:

stT+1 = stT ×A (2.3)

In equation (2.3), the left hand side is a row matrix, and the number of columns

equals the number of states. This gives the probability distribution of the next state. Right

hand side of the equation is the product of current probability distribution and the

transition matrix. For the simple sunny-cloudy example, there are a 1×2 and a 2×2

matrix on the right hand side. The product is a 1×2 matrix, which is the probability



12

distribution of the next state. Now this simple system can be extended for N states. Then

the transition matrix becomes an N×N matrix and the probability distribution is a 1×N

row matrix. The state diagram then becomes a transition grid as shown if Figure 2.2.

Equation (2.3) can still be applied to find the next state probability distribution.

Figure 2.1. State diagram and transition matrix of simple Markov process (Sunny-Cloudy
example)

Figure 2.2. Transition grid for Markov process

Now equation (2.3) can be applied recursively if one wants to infer the state

probability distribution more than one step ahead. The general form for this inference can

be written as:

stT+n = stT ×An (2.4)

In equation (2.4), stT becomes the initial probability distribution for the Markov process.

To denote initial probability distribution, τ will be used in the rest of the literature.
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2.1.2 Hidden Markov model

As stated earlier, in the hidden Markov model, the states are modeled as hidden to

the observer. Unlike the simple Markov process, where the states themselves are the

outcomes, in hidden Markov model the outputs are assumed to be generated from one the

of hidden or latent states. So the difference is made by adding one more layer keeping the

states hidden. Each state has its own probability distribution to generate an output from a

finite set. Hidden Markov model is thus a doubly stochastic process with an underlying

stochastic process hidden/not observable.

The concept of hidden Markov model can be best described with the classic urn

problem [31]. It is assumed that there is set of urns, each containing some colored balls.

For example the first urn contains 5 red, 3 yellow, and 2 black balls, the second urn

contains 12 red, 5 yellow, and 13 black balls. Each of the urns has its own probability for

generating the output. In this case, the output is the color of the ball. This is called the

emission probability. Now by some random process one urn is selected and one ball is

drawn from the selected urn. The ball is replaced and again by the random process another

urn is selected and a ball is drawn. It is to be noted that the selection process of the urn

permits a repetition of urn. The output of the system, Y is a sequence of colors of balls.

Figure 2.3 illustrates the urn-ball system. Here each urn symbolizes one state. The

observer only observes the color sequence of the ball. The information, each observation

is coming from which urn, is hidden. For each urn, i.e state, the color probability is well

defined. The selection of urn is governed by simple first order Markov process. Now the

problem here is finding the sequence of the urns, that maximizes the likelihood of the
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observed color sequence. This is a double stochastic process. First, within a state one

from multiple possible values (colors) is observed. Second, the choice of the urn. This is

another stochastic process and is hidden. So the problem is to find the sequence of the

hidden states, which maximizes the likelihood of the observed color sequence.

Figure 2.3. Urn-ball illustration of discrete symbol HMM

2.1.3 Hidden Markov model elements

In this subsection the HMM will be formally defined in mathematical terms. Most

of the theory is adapted from the classical Rabiner tutorial paper on HMM [31]. The

problems associated with the model and describe the classical methods of handling the

problems will be discussed. First the discussion will be confined to discrete outputs. Then

the idea will be extended for continuous output.

Suppose there are some states in a system S = {S1,S2,S3, . . .SN}. Some outputs

Y = {Y1,Y2,Y3, . . .YT} are observed in T time segments. The outputs are coming from a

finite set of distinct values, U , where U = {u1,u2,u3, . . .uM}. The actual state at any time

t is denoted by rt . To model the system with HMM, five elements are required. Two of

them are model specifications and the remaining three are model parameters.
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2.1.3.1 Hidden Markov model specifications

1. The number of hidden states: This is denoted by N. Although the states are

hidden to the observer, it might carry physical significance. For example, in the urn

example, the state represents urn. So the number of urns becomes the number of

states. The states undergoes a first order Markov process. Generally, the states are

so interconnected that transition from any state to any state is possible. Since the

states are hidden, there is no way of knowing this prior to the modeling. It has to be

specified. Bayesian Information Criterion (BIC) will be used to choose the number

of states.

2. The number of distinct observations within a state: This represents the discrete

alphabet of the observation symbols and relates to the physical output. The discrete

symbols will be denoted as U = {u1,u2,u3, . . .uM}, where M is the alphabet size.

For the urn example, the observation symbols are three colors,

colors= {red,yellow,black} and M = 3.

2.1.3.2 Hidden Markov model parameters

1. Transition matrix: This is a N×N matrix, portraying the state transition

probability distribution.This will be denoted byA= {ai j}, where

ai j = Pr(rt+1 = S j|rt = Si), 1≤ i, j ≤ N (2.5)

2. Emission probability distribution: Within each state, each symbol has some
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probability to appear as output. Within state i, it will be denoted by E = {ei(k)},

where

ei(k) = Pr(uk at t|rt = Si), 1≤ i≤ N, 1≤ k ≤M (2.6)

3. Initial distribution: This represents the initial state distribution. It will be denoted

by τ = {τk}, where

τk = Pr(r1 = Sk), 1≤ k ≤ N (2.7)

Given the model elements, HMM can be used to generate a sequence of

observations. Figure 2.4 shows the algorithm for generating the observation using HMM.

At the beginning of the process, it picks one state according to the initial state probability

distribution and generates an output according to the emission probability. Then at the

second time slot it switches to one state (may come back to the previous state as well) and

again generates an output according to the emission probability distribution. This process

goes on until the final time segment. This procedure can be used to model a given

sequence of observation. Figure 2.5 illustrates a graphical representation of the generation

of a sequence through HMM. Each state is associated with two probability measures. One

relates to the conditional probability of generating an output within that state, other one

relates to the conditional probability of switching to other state from that state. Thus the

HMM creates a simple dynamic Bayesian network. The initial probability distribution it

creates the root node, which is the state at the first time interval. Every other state

becomes an intermediate node and every output is a leaf node. The network is a very

simple one for the Markov property of the states. All the states are only directed by just
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one preceding mode and all the outputs are connected to just one state.

Figure 2.4. Observation sequence generation using HMM

2.1.4 Evaluating hidden Markov model parameters

For a complete description of HMM, two specifications, N and U and three

parameters,A, E and τ are required. How the parameters of a HMM can be evaluated

will be discussed in this section. For convenience, the compact symbol φ will be used to

represent the model parameter. That is, φ = {A,E,τ}.

To model a sequence of observations by HMM, there are three fundamental
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Figure 2.5. Graphical illustration of sequence generation by HMM

problems that must be solved:

• Problem 1: Given a HMM φ = {A,E,τ}, how to compute the probability of a

given observation sequence Y = {y1,y2,y3, . . .yT}.

• Problem 2: Given a HMM φ = {A,E,τ}, how to choose the state sequences

{r1,r2,r3, . . .}, that will maximize the likelihood of a given observation sequence

Y = {y1,y2,y3, . . .yT}.

• Problem 3: How to adjust the model parameters φ = {A,E,τ}, that will maximize

the conditional probability Pr(Y |φ).

Problem 1 is known as the Evaluation problem of HMM. It is mainly associated

with the computation of the probability of a given sequence according to the given model.

Problem 2, which is known as the Decoding problem of HMM, attempts to reveal the

hidden part. It tries to find the state sequence that maximizes the optimality of the

sequence based on some criterion. Problem 3 is the Learning problem of HMM. It adjusts

the model parameters φ = {A,E,τ}, so an optimal solution comes out through iteration.

In the following section, the mathematical formulation of and present state of art of

solving these three fundamental problems will be discussed.
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Solution to Problem 1: The Evaluation problem deals with the computation of the

probability of a given observation sequence Y = {y1,y2,y3, . . .yT} for a given model

φ = {A,E,τ}. In mathematical notation, Pr(Y |φ) is to be evaluated. From the

preceding discussion, it is clear that this conditional probability is an outcome of a joint

distribution. First, the probability of the emission; second, the probability of the states. An

explicit state sequenceR= r1,r2,r3, . . .rT is considered. Now the probability of the

observation sequence for this explicit state sequence can be given by:

Pr(Y |R,φ) =
T

∏
t=1

Pr(yt |rt ,φ), 1≤ t ≤ T (2.8)

Equation (2.8) can be written in terms of emission probabilities as follows:

Pr(Y |R,φ) = er1(y1).er2(y2). . . .erT (yT ) (2.9)

The probability of the explicit state sequence is given by:

Pr(R|φ) = τr1.ar1r2.ar2r3. . . .arT−1rT (2.10)

The joint probability of the observation and the explicit state occurring simultaneously is

simply the product of the two expressions:

Pr(Y ,R|φ) = Pr(Y |R,φ)×Pr(R|φ) (2.11a)
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or, Pr(Y ,R|φ) = τr1.er1(y1).ar1r2.er2(y2).ar2r3.er3(y3) . . .arT−1rT .erT (yT ) (2.11b)

or, Pr(Y ,R|φ) = τr1.erT (yT )
T−1

∏
t=1

ert (yt).artrt+1 (2.11c)

Equation (2.11) gives the probability of the observation sequence for an explicit

state sequence. The objective here is to find the probability of the observation sequence,

unconditional to a definite state. Taking sum over all the states gives the necessary

probability, irrespective of a definite state sequence:

Pr(Y |φ) = ∑
r1,r2...rT

τr1.erT (yT )
T−1

∏
t=1

ert (yt).artrt+1 (2.12)

Although equation (2.12) gives the necessary probability in a straight forward

manner, it is computationally exhaustive. The summation has to be performed over all the

possible states, which is NT , which is a very large number for even small values of N and

T . The dimensionality problem is handled with forward-backward procedure. First the

forward and backward terms α and β are defined, respectively:

αt(i) = Pr(y1,y2, . . .yt ,rt = Si|φ) (2.13)

βt(i) = Pr(yt+1,yt+2, . . .yT ,rt = Si|φ) (2.14)

The forward term defines the partial probability of the observations up to time t and the
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state Si at that time. This can be calculated inductively by:

αt+1( j) = [
N

∑
i=1

αt(i).ai j].e j(yt+1), 1≤ t ≤ T −1, 1≤ j ≤ N (2.15)

Equation 2.15 is interpreted as follows: At time t +1 state S j can be achieved from any of

the N possible states. Since the forward term is the joint probability of observing

y1,y2, . . .yt and having state Si at time t, the product αt(i)ai j is the joint probability of

observing y1,y2, . . .yt and reaching state S j at time t +1 via state Si. The summation of

this joint factor over all the states gives the probability of observing y1,y2, . . .yt and

reaching state S j at time t +1. This reserves all the possible state scenarios in the

preceding time frames. The forward term is initialized according to the initial state

probabilities by α1(i) = λi.ei(y1) for all possible values of N. The terminal forward term,

αT (i) is the probability of observing Y with Si as the final state. Since the states are

disjoint, summing all the forward term (over all the states) gives the necessary probability:

Pr(Y |φ) =
N

∑
i=1

αT (i) (2.16)

The backward term can similarly be utilized to calculate the observation probability.

Rather than calculating the partial probability by a forward induction, the backward term

is used to calculate the partial probability through backward induction. The backward

induction is given by:

βt(i) =
N

∑
j=1

ai j.e j(yt+1)βt+1( j) (2.17)

The backward term is initialized arbitrarily by defining βT (i) = 1 for all i. In the induction
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procedure, which involves calculating βt(i) from βt=1(i), all the possible states are

considered with associated transition. Either forward term or backward term can be

utilized to solve the first fundamental problem. And both of them are used extensively to

solve the remaining two.

Solution to Problem 2: The Decoding problem deals with finding the optimal

states, which will maximize some score. This is different from Evaluation, where an exact

solution can be possible. But in Decoding, multiple solutions are possible based on the

criterion of optimality. One choice is to choose the states that will maximize the

individual likelihood i.e Pr(rt |yt ,φ), of the observations. But this criterion does not

establish any bridge between states. So a problem could arise when an individual state

comes with a zero or low probability, or makes transition to the next individually most

likely state with zero or low probability. Although taking pairs or triplets could be a

reasonable solution, the most used technique is to choose the best single path in terms of

likelihood. In this case, one path is chosen so that Pr(R|Y ,φ) is maximized. This is

known as Viterbi algorithm [32].

The Viterbi algorithm is based on dynamic programming. This uses the fact that If

policy A has a best solution s, then another policy B must contain s in the best solution if

A is a sub policy of B. A score variable χ is defined to determine the highest probability

along a single path for the first t observations ending at state Si.

χt(i) = max
r1,r2,...rt−1

Pr(r1,r2, . . .rt = Si,y1,y2, . . .yt |φ) (2.18)
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The variable is initialized by:

χ1(i) = τiei(y1), 1≤ i≤ N (2.19)

and calculated inductively by:

χt+1( j) = [max
i

χt(i)ai j].e j(yt+1), 1≤ j ≤ N (2.20)

It should be noted here that the Viterbi algorithm works almost in a similar way like in the

forward procedure. In any time segment t, there are N ”best” score variables up to that

point. Now for the next time segment, each of the N states is reached via N best paths and

the path having the best score is retained. When the procedure terminates when t = T , the

best single path is retrieved by backtracking the states.

Solution to Problem 3: The third problem associated with HMM deals with finding

the model parameters φ = {A,E,τ} to maximize the likelihood of the observations.

Although there is no analytical way to find the model parameters for maximum likelihood

[31], a local maximum can be achieved using Expectation Maximization (EM) algorithm,

which is an iterative procedure, classically developed by Baum et al [33].

To begin with, for adjusting the model parameters, a new term ωt(i, j) is

introduced to define joint the probability of having state Si at some time and state S j at the

next time, for the given observation sequence and model parameters:

ωt(i, j) = Pr(rt = Si,rt+1 = S j|Y ,φ) (2.21)
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Now ωt(i, j) can be written in terms of forward and backward terms:

ωt(i, j) =
αt(i)ai je j(yt+1)βt+1( j)

P(Y |φ)
(2.22)

The numerator of equation (2.22) gives the probability of seeing Si at time t and S j at time

t +1 for the given observation sequence and model. The denominator is to get the

required probability measure. It can be written as a double summation of the numerator

term, over all the states as
N
∑

i=1

N
∑
j=1

αt(i)ai jb jyt+1βt+1( j). Now another variable µt(i) is

defined as the probability of having the state Si at time t for the given observation

sequence and model parameter:

µt(i) = Pr(rt = Si|Y ,φ) (2.23)

Now the two conditional probability terms, ω and µ can be correlated. The former term

evaluates the joint probability of having two states at two consecutive times. Taking the

summation of ωt(i, j) over all the states at time t +1 gives the probability of having some

state at earlier time slot. Mathematically,

µt(i) =
N

∑
j=1

ωt(i, j), 1≤ i≤ N (2.24)

Both the probability terms, ω and µ , give us very useful inceptions. Taking

summation of µt(i) over the entire time interval, that is t = 1 to t = T , gives the expected

number that the state Si visited. Excluding t from the time interval, the summation can be

interpreted as the expected number of transitions from state Si. Also, taking the sum of
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ωt(i, j) over the time interval t = 1 to t = T −1, it gives us the expected number of

transitions that the a transition from state Si to S j occurs. That is,

T−1

∑
t=1

µt(i) = expected number of transitions from Si (2.25)

T−1

∑
t=1

ωt(i, j) = expected number of transitions from Si to S j (2.26)

Using the above formulas and the concept of counting, method can be developed for

readjusting the HMM model parameters. There will be a set of formulas for reestimating

the model parameters as follows:

τ̄i = expected number of times state Si visited at time (t = 1) = µ1(i) (2.27a)

āi j =
expected number of transitions from state Si to S j

expected number of transitions from state Si
=

T−1
∑

t=1
ωt(i, j)

T−1
∑

t=1
µt(i)

(2.27b)

ē j(k) =
expected number of times in state S j and onserving uk

expected number of times in state S j
=

T
∑

t=1
s.t. yt=uk

µt( j)

T
∑

t=1
µt( j)

(2.27c)

Based on the equations (2.27a)-(2.27c), model parameters can be readjusted

iteratively. It has been shown by Baum et al. that if a new set of model parameters

φ̄ = {Ā,Ē, τ̄} is computed through equations (2.27a)-(2.27c), then it will 1) be equal to

the existing model parameters φ = {A,E,τ}, or, 2) would give a better likelihood in
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terms of probability [34]. That is, Pr(Y |φ̄) greater than Pr(Y |φ). The model converges

better parameters through successive iterations.

2.2 Data fitting and n-step ahead forecast

When a given model is fitted with covariates, it returns model parameters. N sets

of coefficients with intercepts associated with the covariates are returned, along with 1

N×N transition matrixA and T probability densities of dimension 1×N for T time slots.

The states take the form of N functions fi,1≤i≤N , each associated with 1 set of coefficients.

These parameters are estimated from training data and used forecast future data.

2.2.1 Data fitting

Let us denote the coefficients by θi,1≤i≤N and the state probabilities densities by

st j,1≤ j≤T . IfXT are T covariates for T time slots, N fitted values are found for each time

slot using the state functions and coefficients,

Ŷi j = fi(θi,X j), 1≤ i≤ N, 1≤ j ≤ T (2.28)

Left hand side of equation (2.28) contains two indexes. They indicate states and time slots

respectively. So {Ŷi j} is a N×T matrix, with columns indicating the states. Now for each

time slot, N values are aggregated using the state probability densities. The aggregate

estimated value for time slot j is written as Ŷj and is found by:

{Ŷj}= [st j]×{Ŷi j}, 1≤ j ≤ T (2.29)
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2.2.2 n-step ahead forecast

Make forecasts for the future data, equations identical to those stated in the

preceding subsection were used. The only difference is, the state probability densities had

to be calculated, which are used as weights of N forecast values for each time slot.

Suppose T data is used to train the model. Setting j = T in st j gives the last state

probability densities of the given data, which is used as initial state probabilities for

forecasting, denoted as stinit . For n-step ahead forecast, w first it is necessary to calculate

N forecast values for n time slots using equation (2.28),taking j withing the interval of

1 : n. Each j is associated with each future step. Then N estimated values are aggregated

for each step using equation (2.29), where the state probability density is calculated using:

[st j] = [stinit ]×A j, 1≤ j ≤ n (2.30)

2.3 BIC: criterion of number of states

When a dataset is modeled through a statistical tool, model selection is a

fundamental task. Different covariates, different distributions, different powers of

covariates result in a number of candidate models. When a dataset is modeled through

HMM, it is possible to go for a infinite number of states. Bayesian Information Criterion

(BIC) criterion was invoked to determine optimal number of states [35]. Mathematically,

it is given by:

BIC =−2× logeL̂+ k× loge(number o f data points) (2.31)
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where, L̂ = Pr(y|θ̂ ,M), maximum likelihood of the model M with parameters θ̂ , and k is

the number of free parameters to be estimated, including the number of states. The first

term in Equation (2.31) is a measure of goodness of fit and the second term is associated

with the complexity of the model. Complex model with more parameters often leads to

better goodness of fit, but leans itself to overfitting as well. The second term deals with

model complexity. It penalizes for adding more states and safeguards against overfitting.

2.4 MAPE: metric of prediction accuracy

There exists a number of metrics to assess time series forecasting models e.g Mean

Absolute Error (MAD), Mean Squared Error (MSE), Root Mean Squared Error (RMSE),

Mean Absolute Percentage Error (MAPE). In this thesis, MAPE was used consistently.

Mathematically, it is given by:

MAPE =
1
T

T

∑
i=1
|yi− ŷi

yi
|×100% (2.32)

where ŷi is the predicted value and yi is the actual one. Although there is no absolute

criterion for a ”good” value of MAPE [36], it gives a metric for making comparison of

several models.
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CHAPTER 3 : PROCEDURES

Dynamic Bayesian based HMM method was applied on three cases. In the first

case, the NREL RSF data center hourly load for the year 2011 was used to validate the

proposed method. In the second case, load from Microsoft Data center was used. This

data set also contains hourly load, but for just a month. For the third case, again Microsoft

data center load of one month was used, but with a higher resolution (1 observation/2

minutes, 30 observations/hour).

3.1 Case Study I

Using the depmixS4 package of the statistical computing programming language

R [37] [38], a HMM model was made to forecast the load. The NREL RSF data center

hourly load for the year 2011 was found in [39]. Hourly data is given for 2011, with a

total of 24×365=8760 observations. There are date and time stamps. Total data center

load and the breakdown of the load into cooling load, mechanical load, heating load, plug

load, server load is also provided. In this case the total data center load was considered for

modeling.

Figure 3.1 gives the plot of the response variable as a time series. There is a yearly

trend in the load. The average monthly load increases from January to July. The increase

rate increases in April. In August, there is a decrease in the load and it goes high again in

September. From September through rest of the year, the load profile possesses some

constancy.

To check daily seasonality in the load pattern, 15 days were randomly selected.
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The load behaviors for these days are depicted in Figure 3.2. For most of the cases the

load profile is almost constant and does not show any periodicity.

Figure 3.1. Data center load, Case I

The next three sub-subsections describe the methodology of model selection,

model assessment, and model validation for this data set.

3.1.1 Model Selection

For this specific case of data set, two HMM models were considered:

Model 1 : Load = a+b× temperature+ c×hour+d×month+ ε

Model 2 : Load = a+b× temperature+ c×hour+d×monthly Fourier term+ ε

Temperature is incorporated as a linear covariate in both the models. This is reasonable as

the data centers constantly strive to maintain the temperature and humidity within limits.

More HVAC load are expected to be running during the high temperature. The original

NREL data was time stamped. The temperature data was collected from [40]. The

correlation of load and the temperature was found to be 0.64.

In both the models, hour is incorporated as a simple linear covariate. From Figure 3.2,

most of the time the load was almost constant. In few occasions there were trends. Hour
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Figure 3.2. Load profile of 15 selected days, Case I

was kept as linear covariate. This is not restricted by the apparent constancy. The model

can adjust parameters based on the response. Moreover, since HMM is a stochastic

process, including this variable would widen the scope to capture any or no dependency

on hour of the day in different states.

Figure 3.3. Monthly average load with linear and first order Fourier fit, Case I

To reflect the yearly seasonality of the load, two different approaches have been

adapted. In the first model, month is taken as a linear covariate, whereas in the second

model, it is transformed in a Fourier term. Figure 3.3 shows the monthly average load



32

with linear fit and first order Fourier fit. The correlations were 0.65 and 0.68 respectively.

Figure 3.4. BIC and execution time vs number of states, Case I

A critical part to model a dataset with HMM is to select the number of states

associated. Although often there is physical significance attached to the states, for the case

of data center load, there is no straightforward significance that can used in selecting the

number of states. BIC criterion was used to find the optimal number of states. Simulations

were performed varying the number of states from 2 through 10. Figure 3.4 shows the

BIC values associated with each number states. For both the models, taking 4 states leads

to the lowest BIC score. Moreover, the first model, where the yearly seasonality was

modeled as a linear fit, gives the lowest BIC. In this thesis, the analysis will be performed

with 4 states for both the models.

Figure 3.5 shows the NREL data fitted with two models. It can be observed that

both models were able to follow the average trend featuring high load in the mid months

of the year and comparatively low loads towards the beginning and the end of the year.
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Figure 3.5. Fitted values from two models, Case I

The first model fits better than the second one as the mean estimates follow the actual

trend more intently. From May to July, the second model is constantly under-forecasting.

Also in October, the actual load is mostly populated above 110 kW, but the fitted values

from model 2 is settled under 110 kW. In model 2, the monthly trend was modeled as

Fourier term, which has lower values at both tails. Including the monthly Fourier as a

linear covariate forced the estimates to take lower values. The goodness of fit of the

models are reflected in their training MAPEs. The MAPEs were found to be 1.49% and

3.89% respectively for models 1 and 2.

3.2 Case Study II

In this case hourly load data from a Microsoft data center was used. The data is

provided for a time period of one month. The resolution of the data is similar to that of
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Case I, observations are made on hourly basis. There are 24×30=720 observations. Figure

3.6 shows the hourly load as a time series.

Figure 3.6. Normalized Load vs Time, Case II

Based on the data set, below are couple of observations associated with the dataset:

• From Figure 3.6, a daily seasonality can be observed. The first observation is

assumed to be made at midnight of the starting day of the month. The load tends to

slightly decrease at midnight and reaches the minimum point at around 8/9 am in

the morning. Then, it starts to rise again. This rise continues up-to 5 pm. However,

the rate of rise slowly decays over time. Until 10 pm, a significant variation is not

observed. Then, it starts to decay. The decay continues up-to 9 am next morning.

The rate of decay, again decreases slowly over time.

• Along with the daily cyclic pattern, a weekly seasonality is also observed. From

Figure 3.6, there are smaller peaks for two consecutive days in every seven days. It

was assumed that those two days represent the weekend. Data centers are used by

mostly the corporations, along with personal usage. Naturally there will be
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decreased load from corporations in the weekend. For those days, there is still a

daily cyclic pattern, but reduced in magnitude.

Data preparation: The time variable possesses repetition. Every 24 observations have the

values 1:24. So a hour variable was created.

Regarding the daily cyclic behavior, it was observed that for some period the load tends to

increase and for some period it decreases. Within the increase period the rate of increase

slowly rises and again shows some decay. After reaching the peak, the load starts to

decrease. The decrease rate also rises over time and again decays before reaching the

minimum. So the rate of change also exhibits a cyclic pattern, resembling a sinusoidal

wave. In Figure 3.7, the load and a pure sinusoidal curve were plotted together. The phase

shift of the curve was determined using the R package harmonic.regression(). The

amplitude and bias were adjusted so that it matches the actual pattern. It is worth to note

that this manual fixing of amplitude and bias does not affect the correlation of the sine

curve and the load pattern. The correlation between the given time series and the first

order Fourier expansion was found to be 0.855. Since this suggests a strong correlation, a

Fourier variable was created to be used as a linear covariate.

3.2.1 Model selection

Since the hour variable was converted into a Fourier term, it would be redundant to

use both hour and Fourier term in a model. The Fourier term was used in the model. To

represent the weekday (and weekend), a binary variable was created, encoded with 1 and

0 representing weekend and weekday respectively. Two models were considered for this
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Figure 3.7. Load and pure sinusoidal curve, case II

case:

Model 1 : Load = a+b× f ourier term+ c×weekend + ε

Model 2 : Load = a+b× f ourier term+ ε

In the first model, the weekend was incorporated as a linear covariate. It is expected to get

a negative coefficient corresponding to this term as the average load is lower in the

weekends. The second model is a simpler one, where just the hourly Fourier term was

considered.

A hidden Markov model was applied with multiple number of states. The number of states

were varied 2:10 like the previous case to find the optimal number. This is depicted in

Figure 3.8. It is observed that taking the number of states=4 gives the lowest BIC score for

both the models. So 4 states were taken into consideration for this case. Figure 3.9 shows

the fitted values. The training MAPE values were found to be 5.04% and 6.05%

respectively.
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Figure 3.8. BIC and execution time vs number of states, Case II

Figure 3.9. Fitted values from two models, Case II
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3.3 Case Study III

In this case, the same dataset is used in the previous case. The only difference is

that the data resolution is higher in this case with 1 observation in 2 minutes. Data

provided for 1 month. Figure 3.10 presents the response variable.

Figure 3.10. Normalized Load vs Time, Case III

Based on the case 3 load patten, below are the observations associated with the data set:

• From the plot in Figure 3.10, a daily cyclic pattern is observed like in the previous

case. The same assumption of starting at midnight holds for this case as well.

• There are smaller peaks for consecutive two days in every seven days. Again, these

days with smaller peaks are assumed to be weekends.

Before starting the model, a new variable was added in the dataset for simplicity.

Due to the evidence of the cyclic pattern, again an hourly Fourier variable was added into

the dataset. This is illustrated in Figure 3.11. The linear correlation of the Fourier variable

and load was found to be 0.85.
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Figure 3.11. Load and pure sinusoidal curve, Case III

After adding the Fourier term, formal procedures to build the hidden Markov

model is described. The succeeding subsections describe the methodology of model

selection, assessment, and validation for this data set.

3.3.1 Model Selection

The hour variable in converted into a Fourier term, only Fourier term was included

in the model to avoid redundancy like in the previous case. Apart from this, the minute

variable was also included in the model. The weekends and weekdays were binary coded

like before. Starting with a simple model, Load = a+b×minute+ c× f ourier term+ ε

HMM was applied to find the optimal number of states.

Figure 3.12 shows the BIC values against the number of states. Number of states

was varied in the range 2:10. The BIC curve has a decreasing trend, suggesting better

model with higher number of states. But it does not come free. It incurs the cost in terms

of computational time. Along with the BIC, the execution time is also plotted in Figure

3.12. The execution time drastically increases if over 7 states. And the difference of BIC

between state 6 and 7 is not very significant. So 6 was chosen as the number of states.



40

Figure 3.12. BIC and Execution time vs number of states of model 1, Case III

With 6 states, three models were considered:

Model 1 : Load = a+b×minute+ c× f ourier term+ ε

Model 2 : Load = a+b×minute+ c× f ourier term+d×wk+ ε

Model 3 : Load = a+b×minute+ c× f ourier term+d×wk+ e×wk× f ourier+ ε

where, wk stands for weekday. The first model is straight forward, keeping just minute

and the hour variable (mapped to Fourier terms). In the second model the weekday was

included as a covariate since some weekend effect was observed. In the third model, an

interaction of weekday and hour is also included.

Figure 3.13 shows the refitted normalized load. In the first model weekday was not

incorporated. Model 1 failed to detect the reduced magnitude of the daily cycle for the

first weekend. However, in the next three weeks, the reduced magnitude was detected for

the weekends.The training MAPEs were 3.51%, 2.98%, and 3.13% respectively.



41

Figure 3.13. Fitted values from three models, Case III
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CHAPTER 4 : LOAD FORECAST AND PERFORMANCE EVALUATION

4.1 Load Forecast

The ultimate goal of the models developed above is to predict the future load of

the data center. The models were used to forecast loads for the next 24-hour period for the

three cases.

4.1.1 Forecast: Case I

To make forecasts of dth day, data up-to (d−1) days were used to train a model.

After fitting the data, four (equal to the number of states) distinct functions were returned

to find four estimates ŷ1, ŷ2, ŷ3, ŷ4 for the nth hour. These estimates were aggregated by

their respective weights wn = [wn1,wn2,wn3,wn4].

To calculate the weight vector wn for the nth forecast, initial state probability

density and transition probability matrix were used. If stinit = [stinit1,stinit2,stinit3,stinit4]

andA= ai j denote the two quantities respectively, then ∑
4
i=1 stiniti×ai j gives the

probability of being at state j at the next hour. Setting j = 1,2,3,4 gives probabilities for

all the states. The new state probabilities can then be used to obtain state probabilities for

the next time interval, inductively. Mathematically, this can be written as

wn = stinit×An (4.1)

For validation, thirty days were picked: the first five days of July and October, five days

from the middle of August and November, and the last five days of September and
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December. The forecast MAPEs from the two models are shown in Figure 4.1. Both

models display similar patterns with a noticeable difference for the October forecasts.

This can be explained with the help of Figure 3.1. In October the linear fit model closely

matches the actual trend line, which made the second model worse than the first one for

October. In the last two months both lines deviated from the actual trend which is

reflected in the MAPE distribution. The mean forecast MAPEs were found to be 2.93%

and 3.52% from two models.

Figure 4.1. Forecast MAPE values, Case I

For graphical representation of the forecast, selected 3 days were randomly

selected. Figure 4.2 shows the forecast of 15th Aug, 5th Oct and 19th November. Similar

comment can be made for the model 2 forecasts as well, except for the constant under

forecast of 5th October.

Both the models failed to pick up the non periodic downward spikes of November

forecast. Observing the yearly data trend, it can be seen that the load approaches an

almost constant value towards the end of the year with some random, equal, and

non-periodic spikes, possibly from switching the heating load on and off. Because the

model is learning from all the previous hourly loads, the training data becomes inadequate
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for learning. Looking at Figure 3.5, these spikes are picked by the fitted values. So, it can

be concluded that using more data to train the model would result in a better learning and

better forecasting.

Figure 4.2. Load forecast, Case I

4.1.2 Forecast: Case II

In case II, exactly the same procedure was followed for forecasting like in the

previous case. However, since the data window is different for this case, the choice of the

validation days was also different. Out of the 30 days, the last 15 days were selected for

validation purpose. The forecast MAPE values are presented in Figure 4.3. The simpler
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model performed better than the complex model. The simpler model had significant

higher training error than the complex one. But when it comes to the matter of forecast,

the simpler model had lower MAPE. The mean forecast MAPE from model 1 was

15.10%, whereas model 2 had a mean forecast MAPE of just 9.40%. From Figure 4.3, in

Figure 4.3. Forecast MAPE values, Case II

model 1, there is a jump on error at day 18, and again at day 26. Both of them are

weekends. Model 1 incorporated the weekend as a variable. In training data, there are

mostly four weekends, which might be insufficient for training. So using model 1 would

be more viable if there were more data including more weekends.

For graphical representation, two days were randomly selected. Figure 4.4 shows

the actual and forecast load for randomly chosen days (day 17 and day 23). Model 1

makes a day ahead forecasts with some spikes, which is wiped out in model 2. The

average forecast trend from both the models follows the actual load pattern.

4.1.3 Forecast: Case III

Like in the previous two cases, similar method was used for load forecasting.

Since for this case the resolution is different and there are 30 observations in one hour,
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Figure 4.4. Load forecast, Case II

30×24=720 future data had to be predicted for day ahead forecast. Like the previous

cases, forecast had been done with the three models described above for the same 15 days

of case II. The average forecast MAPEs were found to be 10.03%, 10.03%, and 9.67%

respectively. Although the training error was higher than the second and the third, the

forecast MAPE for all the models are almost consistent. Model 3 returned slightly lower

error. All the MAPE distributions are shown in Figure 4.5.

Figure 4.5. Forecast MAPE values, Case III

For graphical representation, again 2 days were randomly selected. These are

shown in Figure 4.6. Even though the models did not capture all the minute by minute
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spikes, but there is success in grabbing the average seasonality. The MAPE values were

proved to be better than four other different methods, which is discussed in the next

chapter.

Figure 4.6. Load forecast, Case III

4.2 Forecast by other methods

In addition to the hidden Markov method, four other forecast methods were also

implemented for comparison. Classical forecasting methods like simple moving average,

exponential moving average, auto-regression integrated moving average and a hybrid of

auto-regression and neural network described in [23] were used. A brief description of

each of the methods is provided in the following subsections.
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4.2.1 Simple Moving Average (SMA)

SMA is a basic, and widely used technique for analyzing data. It is arguably the

most popular method used for trend detection [41]. It works as a finite impulse filter

smoothing out the data by taking average of previous data. The mathematical expression

to forecast y (response variable) is given by:

ŷt+1 =
yt + yt−1 + · · ·+ yt−m+1

m
(4.2)

where m is the order of SMA and indicates how many previous terms are being used to

take the mean. Selecting m is a crucial part of modeling a data set with SMA. There is a

trade off choosing this too high or too low, which is analogous to bias variance trade off.

Using fewer previous values to take the mean, it leads to lack of inertia and responds too

heavily to the changes in data. On the other hand, selecting too high m overweights the

inertia, resulting in a poor or no response at all to the data trend.

The training MAPE was used as the criterion of choice of m. The data were fitted

with SMA using a range of m values and calculated the training MAPE for all of our

cases. The results are tabulated in Table 4.1. Looking at the MAPE values, using m = 1

always leads to perfect data fitting for all the cases. SMA model with order 1 is equivalent

to random walk model, where the forecast is simply equal to the last value. Results from

random walk model shifted one step backward simply returns exactly the same values as

in the original data. The reason of backward shifting is that the average age of SMA

forecast is given by (m+1)/2, that is whatever is being predicted, is what one would have
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Table 4.1. Training MAPE, SMA model

Training MAPE (%)
m value Case I Case II Case III

1 0.00 0.00 0.00
3 1.21 2.00 1.97
5 1.33 3.79 2.10
7 1.38 5.77 2.33
9 1.41 7.74 2.61

11 1.44 9.79 2.63
13 1.47 11.88 2.82
15 1.51 13.98 2.90
17 1.55 16.04 3.00
19 1.59 18.03 3.11
21 1.62 19.86 3.13
23 1.66 21.47 3.20
25 1.69 22.87 3.23

expected (m+1)/2 step earlier.

Looking at Table 4.1, it can be seen that taking three terms for averaging out the

data gives the minimum training error for all the cases. So m = 3 was used for all the

cases.

4.2.2 Simple Exponential Moving Average (SEMA)

The idea of SEMA is similar to that of SMA, with an exception on the weights put

on the previous values to take the average. In SMA, all the previous terms are equally

weighted, while in SEMA, more weight is given to the more recent value to discount the

past data in more gradual fashion. In the simplest form, the mathematical expression is

given by:

ŷt+1 = w1× yt +w2× yt−1 + · · ·+wm× yt−m+1 (4.3a)

m

∑
i=1

wi = 1 (4.3b)
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Using m = 3 resulted the weights for three terms to be 0.65, 0.25 and 0.1. These values

were determined by integrating the exponential curve e−x, covering 94% region, over

three uniform time intervals [0,1], [1,2], and [2,3]. This is depicted in Figure 4.7. Initially

the weights were found to be 0.63, 0.23 and 0.08. To meet the stochastic criterion as

described in equation (4.3b), 0.02 was added with all the weights.

Figure 4.7. Determining weights, SEMA model

The average age for this case is determined by calculating the value, which divides

the area under the exponential curve equally. Since
∫

∞

0 e−xdx = 1, the average age can be

calculated intuitively by solving
∫ x

0 e−xdx = 0.5 for x. For the third order SEMA model,

the average age was found to be loge2 = 0.69.

4.2.3 Auto Regression Integrated Moving Average (ARIMA)

Autoregressive Integrated Moving Average (ARIMA): ARIMA is time series

modeling tool described by two polynomials, one for auto-regression (AR) and other one

for moving average (MA). The AR process specifies the response as a linear combination
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Table 4.2. ARIMA(p,d,q) model order for three cases

p d q
Case I 1 1 1
Case II 2 0 2
Case III 3 1 4

of its own previous values as specified by equation (4.4):

ŷt+1 = c+
p

∑
i=1

= ϕiyt−i+1 + ε (4.4)

where p is the order of AR process. The generalized ARIMA is described as of order

(p,d,q), where they refer to the order of AR, differencing and MA part. The ARIMA

model was implemented for three cases using the R function auto.arima() which chooses

the best (p,d,q) based on BIC. For the three cases, the ARIMA orders were found to be

(1,1,1), (2,0,2) and (3,1,4) respectively. This is shown in tabular format in Table 4.2.

4.2.4 Auto Regression Neural Network (ARNN)

This method is described in [23]. This is a blend of AR and Neural Network (NN).

This model basically is a 3×2×1 NN architecture, which had been applied to forecast

the load by training in a supervised manner with back propagation algorithm. The neural

model receives own three previous data as input and links the output response through the

hidden layer. Figure 4.8 provides the synopsis of the ARNN model.
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Figure 4.8. Synopsis of ARNN model [23]

4.3 Results Comparison

For case I, 30 days were selected for forecast. For the other two cases, last 15 days

of the month were selected. Forecast MAPEs are tabulated in Table 4.3, 4.4, and 4.5.

Figure 4.9. Models comparison

The training MAPEs and mean forecast MAPEs from different models are

tabulated in TABLE 4.6, 4.7, and 4.8 for three cases respectively. The forecast summaries

are graphically presented in Figure 4.9. For case I, where the NREL data was modeled,

the ARIMA model performed better than all other models including the proposed two
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Table 4.3. Forecast Evaluation, Case I

Forecast MAPE (%)
Forecast Date HMM 1 HMM 2 SMA SEMA ARIMA ARNN

01-Jul 4.28 4.09 2.10 2.80 2.86 9.65
02-Jul 7.62 6.88 2.75 3.65 4.44 12.51
03-Jul 2.89 4.10 2.97 3.52 4.10 10.58
04-Jul 3.93 3.44 3.22 3.31 5.31 10.67
05-Jul 5.84 4.79 2.74 3.09 3.21 11.49

15-Aug 1.27 1.78 1.04 2.34 2.49 6.42
16-Aug 1.34 1.92 1.45 2.21 3.15 5.92
17-Aug 1.36 1.73 1.51 2.41 3.48 5.88
18-Aug 1.26 1.01 1.46 1.94 1.59 4.85
19-Aug 0.93 1.36 1.51 1.10 2.76 5.01
26-Sep 3.17 2.42 1.50 2.50 3.99 4.41
27-Sep 1.47 2.10 2.34 2.40 3.31 3.98
28-Sep 1.75 2.09 1.91 2.60 2.81 4.38
29-Sep 0.90 0.98 1.77 1.51 2.46 2.23
30-Sep 2.08 3.00 2.80 2.69 3.07 4.19
01-Oct 5.39 7.22 2.35 3.10 4.47 4.59
02-Oct 4.44 6.45 2.35 5.32 4.71 4.77
03-Oct 2.09 6.40 2.46 3.15 3.04 5.44
04-Oct 2.80 6.06 2.19 3.07 3.44 6.18
05-Oct 2.69 5.62 3.21 3.04 3.81 5.06
15-Nov 1.83 2.51 2.24 1.63 3.65 2.38
16-Nov 1.92 3.23 2.16 1.72 3.61 2.56
17-Nov 2.59 3.01 2.17 4.94 2.59 2.38
18-Nov 2.83 2.71 2.25 3.47 5.14 2.56
19-Nov 1.85 2.66 2.38 4.60 4.34 2.38
27-Dec 3.62 3.78 3.54 4.23 4.28 3.42
28-Dec 4.13 3.50 3.57 4.40 5.16 3.43
29-Dec 4.10 3.47 3.56 4.39 4.29 3.25
30-Dec 4.10 3.50 3.52 3.52 4.74 3.43
31-Dec 3.56 3.75 3.57 3.91 5.36 3.61

Table 4.4. Forecast Evaluation, Case II

Forecast MAPE (%)
Day HMM 1 HMM 2 SMA SEMA ARIMA ARNN
16 15.11 9.26 24.47 33.73 13.94 19.19
17 11.73 7.67 24.93 29.33 12.01 18.49
18 18.36 12.26 21.48 22.48 9.03 12.81
19 10.98 11.09 16.21 19.38 15.74 14.10
20 11.81 9.15 19.31 27.47 22.18 21.09
21 11.61 8.43 27.63 23.28 15.79 18.14
22 10.77 7.88 21.80 23.15 10.79 14.91
23 10.71 9.84 16.18 25.80 14.25 17.69
24 10.95 10.48 24.13 30.96 13.46 21.82
25 8.94 10.48 28.42 28.31 11.32 18.10
26 25.91 12.65 26.18 28.13 13.74 15.51
27 23.83 6.32 23.25 26.60 20.81 20.31
28 23.16 6.66 25.77 25.62 11.50 16.85
29 17.13 8.39 22.13 28.60 13.49 19.20
30 15.48 10.51 24.02 34.06 14.71 20.93
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Table 4.5. Forecast Evaluation, Case III

Forecast MAPE (%)
Day HMM 1 HMM 2 HMM 3 SMA SEMA ARIMA ARNN
16 11.80 10.33 9.37 27.42 21.09 28.19 19.74
17 7.77 7.79 7.48 25.19 20.49 24.44 18.97
18 8.02 10.52 11.19 17.36 18.53 17.04 13.11
19 8.07 7.78 10.75 19.11 13.36 18.92 14.61
20 11.20 10.56 9.63 28.01 13.08 27.42 20.03
21 11.86 10.77 9.97 23.17 20.63 23.95 18.15
22 9.07 7.57 7.71 22.07 18.85 22.45 16.19
23 9.59 9.57 8.11 25.33 12.13 24.93 18.23
24 12.00 14.37 12.64 29.40 18.12 29.42 21.22
25 9.36 9.64 13.91 28.26 22.29 29.23 18.26
26 11.45 6.67 6.61 23.50 19.82 23.83 16.12
27 9.75 10.96 9.45 26.40 15.17 26.14 20.41
28 9.38 9.86 8.43 24.83 19.12 24.87 17.47
29 8.50 10.92 8.92 26.92 16.76 26.21 18.65
30 12.57 13.21 10.92 28.55 18.67 28.75 21.18

Table 4.6. Model summary, Case I

HMM 1 HMM 2 SMA SEMA ARIMA ARNN
Training MAPE (%) 1.49 3.89 1.21 1.59 1.72 1.70

Mean Forecast MAPE (%) 2.93 3.52 2.42 3.09 3.72 5.25

Table 4.7. Model summary, Case II

HMM 1 HMM 2 SMA SEMA ARIMA ARNN
Training MAPE (%) 5.04 6.05 2.00 2.65 4.92 5.31

Mean Forecast MAPE (%) 15.10 9.40 27.13 23.06 14.19 17.94

Table 4.8. Model summary, Case III

HMM 1 HMM 2 HMM 3 SMA SEMA ARIMA ARNN
Training MAPE (%) 3.51 2.98 3.13 1.97 3.44 2.99 3.39

Mean Forecast MAPE (%) 10.03 10.03 9.67 25.03 17.87 25.05 18.16



55

hidden Markov models, in terms of both training and forecast. However, one of our

proposed two models, where the month was used as a linear covariate, performed better

than all other models except for the ARIMA in both training and forecasting. In other two

cases, our proposed models lacked in performance while training the data. The other

models described in the preceding subsection performed better than the proposed hidden

Markov models in most cases. However, looking at forecast MAPEs demonstrates the

superior performance of the proposed hidden Markov models over the other methods. All

the different hidden Markov models returned lower MAPE values than the other methods.

Considering the best one from different proposed hidden Markov models for all the cases,

there are 3×4=12 comparisons. On 11 occasions out of these 12, HMM was proved better

forecast method. To find a global metric for comparison, a reduction index was formulated

as Ir, which is given by:

Ir =

3
∑
j=1

4
∑

k=1
[mk j−min(mi j)]

3
∑
j=1

4
∑

k=1
1

(4.5)

where m indicates the mean forecast MAPE. Index k denotes one of the other methods

implemented for comparison, j denotes the three cases and i denotes the several hidden

Markov models developed for corresponding cases. The redution index indicates how well

the proposed model performed on average. Using equation (4.5), Ir was found to be 7.91.

that is, on overage the proposed model resulted 7.91% lower forecast MAPE than the

other four methods.
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4.4 Economic Impact

A good load forecast can be significant for the operational cost of a datacenter.

Inaccurate forecast leads to sub optimal set points and incurs penalty. In this section, the

penalty associated with inaccurate forecast will be investigated. For this, a 100 MW grid

connected datacenter with wind power, solar power, battery reserve and on site generator

was considered. Optimal set points were solved for the actual load (perfect forecast) and

forecasted load. Set points for forecasted load were used to operate the datacenter for

actual load. Optimal cost was subtracted from the actual operational cost to find the

penalty.

Based on the [10], a 100 MW datacenter benchmark was developed, including 40

MW peak solar power, 20 MW peak wind power, 192 MWhr AGM PbA battery, 10 MW

on site natural gas generator and and grid power. The hourly data from second case was

used as the load. It was scaled to have a peak of 100 MW load. Figure 4.10 shows the

solar and wind power profile for a typical day. For simplicity, these were considered as

free energy. The wear costs associated with these renewables were not included in the

operational cost.

The cost of grid power varies throughout the day. Figure 4.11 shows the locational

marginal price of a typical summer day, which was collected from PJM. The generator

cost was adapted from [VPP]. It composes of startup cost and running cost and governed

by the following equation:

Cgen(Pgen) = 0.07×P2
gen +20.2×Pgen +7.27 (4.6)
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Figure 4.10. Solar and Wind power profile for a typical day

where, Cgen is given in $/hour and Pgen is given in MW. The generator cost is plotted in

Figure 4.12. Along with the actual plot, a linear fit was also plotted dropping the quadratic

term of the cost function. Being the quadratic coefficient small compared to the linear

coefficient and the constant term, two curves almost overlap. In the simulation, the

simpler linear cost model was considered.

Figure 4.11. Locational Marginal Price (LMP) for a typical day
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Figure 4.12. Natural gas generator cost curve

Generator efficiency is also a function of output power. High efficiency is achieved

with higher loading. Figure 4.13 shows the efficiency of the generator as a function of

percentage loading of rated power. Below 40% loading, generator operates in low

efficiency and shows a greater degree of variability. Above 50% loading, there is still a

trend, but with lower variability. For high efficiency, the on-site generator was constrained

to operate at least at 50% of its maximum efficiency.

Figure 4.13. Natural gas generator efficiency curve [10]

The battery wear cost was taken as $0.506/MWhr while discharging, considering

AGM PbA battery [42]. Two constraints were imposed while charging/discharging power

from battery bank. First, the charging/discharging rate should not exceed 45MW/hr and
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battery state of charge (SoC) remains within [0.5 1] [43].

With the system benchmark described above, an optimized day ahead schedule of

the grid power, battery power and the on-site generation was calculated to minimize the

cost. The optimization objective is formulated as:

Minimize Costtotal =
24

∑
i=1

(Pgrid,i×LMPi +Pgen,i×Cgeni +Pbat,i×Cbatwear,i) (4.7)

subject to,

Psolar,i +Pwind,i +Pgrid,i−Pbat,i +Pgen,i−Pload,i = 0 (4.8a)

24

∑
i=1

[Pbatcharging,i×η +Pbatdischarging,i/η ] = 0 (4.8b)

0.5≤ SoCbat,i ≤ 1 (4.8c)

−45 MW ≤ Pbat,i ≤ 45 MW (4.8d)

Pgen,i = 0 or 5 MW ≤ Pgen,i ≤ 10 MW (4.8e)

Pgrid,i ≥ 0 (4.8f)

The first constraint (Equation (4.8a)) ensures the load balance; total power generation

would equal the total load. The negative sign of the battery power means battery power is

treated positive when charging, and negative when discharging. The next three constraints

(Equation (4.8b)-(4.8d)) relate to the operation of battery and ensure that the battery

would come back to initial reserve level and SoC and charging/discharging rate remain



60

within the defined limits. The fourth constraint (Equation (4.8e)) secures at least 50%

loading of the generator, otherwise it would not run. Finally, the last constraint (Equation

(4.8f)) guarantees one-way power flow from the grid. It was assumed that no power can be

sold to the grid operator.

First the schedules of the generator, battery and the grid power was made using

deterministic optimization method. The actual load of day 16 was used for the scheduling.

This is illustrated in Figure 4.14. Based on this schedules, the optimal cost was found to

be $22,036.62. However, in the real scenario, the load profile will be different since

forecasted load will differ from the actual load. This would make a shift of the set points,

as shown in Figure 4.15. Black bars represent the dispatch schedules for the HMM

forecast load. However, although these set points are optimal for the forecast load, this is

not optimal for the actual load. While dispatching in real time, the operator would require

to continuously adjust the power from resources to meet the load balance resulting from

under-forecast or over-forecast.

As stated earlier, in real time dispatching, the residual load must be absorbed.

While doing so, care must be taken so that the constraints used in the optimization must

satisfy. This is critical as there are minimum and maximum limits for the generator. Also

there are limits for battery SoC, governed by complex equations. So while dispatching,

the battery set points were not perturbed in this case. The actual and forecast mismatch

would be compensated by the generator and grid only. Two kinds of load mismatches

could can be emerged. One from under-forecasting and another one from

over-forecasting. In this work, the dispatching algorithm relied on these two cases, which

is shown in Figure 4.16. Using the algorithm, the operational cost was found to be
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Figure 4.14. Profiles for actual load

Table 4.9. Penalty for inaccurate forecast ($)

HMM SMA SEMA ARIMA ARNN
Day 16 590.21 1092.00 928.86 1033.01 974.73
Day 20 655.18 1243.25 960.65 1337.64 967.74
Day 22 394.52 629.42 1168.10 1179.14 798.05
Day 27 450.06 1736.39 1364.79 1221.71 942.63
Day 28 409.86 816.58 944.95 912.78 931.24
Mean 499.97 1103.53 1073.47 1136.86 922.88

$22,626.83. The difference is $590.21, which is the penalty for inaccurate forecast.

Four days were randomly picked to find the operational cost penalty.

Optimizations were performed with forecast loads from all methods discussed previously.

Table 4.9 shows the results, and graphically presented in Figure 4.17.

From Table 4.9 it can be seen that non-perfect forecast always leads some penalty,

resulting from sub-optimal set points of scheduling. However, penalty can be reduced by

better forecast. For forecasting in Case II, it was found that HMM performed better than
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Figure 4.15. Profiles for actual and forecast load

the other forecast methods. This is reflected in the penalty cost. For each of the selected

days, the penalty from HMM forecast scheduling was lower than the penalties from other

forecast scheduling. The mean penalty for HMM forecast scheduling was found to be

$499.97. The mean penalties from SMA, SEMA, ARIMA and ARNN forecast based

scheduling were $1,103.53, $1,073.47, $1,136.86 and $922.88, 121%, 115%, 127%, and

85% higher than the mean penalty from HMM forecast based scheduling respectively.
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Figure 4.16. Flowchart of dispatching

Figure 4.17. Penalties for inaccurate forecast
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CHAPTER 5 : CONCLUSION

With the increase of dependency on cloud computing the cost involved in

datacetners operation is also increasing. Industries are coming up with new ideas and

technologies to optimize the cost by reducing the energy used by datacenters. Load

forecasting plays a vital role in both efficient scheduling and operating a data center as a

virtual power plant. In this thesis work a stochastic method based on dependent mixture

and Bayesian inference is developed to model the datacenter load and is used for

day-ahead forecast. The model was used to predict the unforeseen day-ahead load and was

cross validated a using three data sets from National Renewable Energy Laboratory

(NREL) and one another data center. The proposed method was proved better than

classical auto-regression, moving average and neural network based forecasting systems

and resulted on average reduction of 7.91% forecast MAPE. This leads to a yearly savings

of $13,705 for a typical 100 MW coal fired tier-IV data center [44].

Datacenter load forecast can have economic impact. The variability and

uncertainty of load affects the unit commitment decisions of the generators. A good

forecast can also help the utilities and regulatory commissions for integrated resource

planning to meet the energy requirement cost-effectively. This was investigated by setting

up a 100 MW datacenter benchmark. It was found that inaccurate forecast always leads to

sub-optimal set points for resource scheduling, which further leads to operational penalty.

However, improved accuracy tends to decrease the cost of penalty.

Currently datacenters are incorporating such as PV and wind by either having own

sources of buying from existing off-site generation to reduce the carbon footprint. This
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potentially widened the scope of Demand Response (DR) program, which reduces the

electricity usage during peak periods. Prediction of load is one of the preliminary tasks to

schedule load shifting. It has been shown that there is a potential to reduce the peak

electricity by as much as 20% in the US through DR [45].

An accurate load forecast can help strategic scheduling, optimal unit commitment

decision and DR. These approaches reduce not only the cost, but also the carbon footprint,

from which the society can greatly be benefited.
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