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4.3.3 Pixel selection 

During the study ten pixels for each field were selected and extracted from NDVI, 

Kc and ETa maps. Those pixels were located within each maize field for each overpass 

date during two growing seasons. The same pixels were used throughout each growing 

season. The number of pixels (10) were assumed to be representative of the entire maize 

field.    

4.3.4 METRIC Model and Input Parameters 

METRIC model version 3.0 was used to estimate ETa using the energy balance 

(EB) method. Please see (R. G. Allen, Tasumi, & Trezza, 2007a; 2011a; 2014) for a 

detailed discussion of the model calculations.  

In the METRIC model four primary input parameters are used to estimate ETa 

namely the Landsat image, digital elevation map, land cover map, and weather data 

(Figure 2). National elevation data (USGS NED N44 W097) and National land cover 

dataset (NLCD 2011_LC N42 W096) for the study area were downloaded from 

http://viewer.nationalmap.gov. The elevation data and land cover map were reprojected 

in meters to the same pixel size as the Landsat image (30 m x 30 m). 

Hourly and daily weather observations (e.g. maximum and minimum air 

temperature, wind speed, relative humidity, solar radiation precipitation and ETr) were 

taken from the automated agricultural weather station located by Brookings, South 

Dakota. All weather data were subjected to a rigorous quality control prior to be used in 

any calculations as suggested by R. G. Allen et al. (1998).  
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4.4.5 ETa maps and Daily Spatial distribution of ETa Comparison 

The METRIC model was used to estimate daily ETa maps using all input 

parameters (EB method) and ERDAS Imagine software (model maker) was used to 

estimate daily ETa maps using only two input parameters (Kc-NDVI method) for ETa 

comparisons of both growing seasons. Figure 4.9 shows an example of ETa maps 

developed by EB method and developed by Kc-NDVI method on July 20, 2016. The ETa 

Kc-NDVI method map shows more dark blue color than in ETa EB method, this is due to 

mainly to pixel resolution between these methods. The pixel resolution in the ETa Kc-NDVI 

method is 30 by 30 m, while in ETa EB method the thermal pixel resolution for Landsat 7 

is 60 by 60 m and for Landsat 8 is 100 by 100 m. Thus, this visual difference is because 

the ETa EB method was affected by the thermal band at 100 m for Landsat 8.  

 

  

 

 

Figure 4.9 ETa maps generated using EB method and using Kc-NDVI method on July 20, 

2016. 

 

ETa EB method                                 ETa Kc-NDVI method                                 
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Similar comparison of ETa maps over agricultural areas generated by the 

METRIC model using energy balance and using vegetation index data were reported by 

R. Allen, A. Irmak, R. Trezza, J. M. H. Hendrickx, et al. (2011) and Martha C. Anderson 

et al. (2012) in Twin Falls, Idaho. Mokhtari et al. (2013), found that the METRIC-based 

ET is highly sensitive to surface temperature, but less sensitive to NDVI.  

For the 2015 season, Figure 4.10 shows that the ETa values were lower at the 

beginning and at the end of the season for EB method was around 4.2 mm day-1 and for 

Kc-NDVI method was around 3.0 mm day-1, indicating that less water is transpired by the 

crop. However, the highest ETa values were showed in the mid-season (July 18) 7.93 and 

7.68 mm day-1 for EB method and Kc-NDVI method, respectively.  

For the 2016 season, Figure 4.10 shows that the low ETa values were observed at 

the beginning of the growing season 2.78 and 1.72 mm day-1 for EB method and for Kc-

NDVI method, respectively. Moderate ETa values were presented at the end of the season 

for EB method was 4.23 mm day-1 and for Kc-NDVI method was 3.04 mm day-1. High ETa 

values were observed in the mid-season (July 12) with 8.87 mm day-1 for EB method and 

8.66 mm day-1 for Kc-NDVI method.  

In general, the ETa values estimated with EB method were higher than the ETa 

values estimated with Kc-NDVI method by 18 and 11% for 2015 and 2016 growing 

seasons, respectively. Because the Kc-NDVI method overwhelmingly considers 

transpiration from green vegetation, and only to a small extent evaporation from bare 

soil, some underestimation during the shoulder periods of the growing season is common. 

These results coincides with those in previous studies reported by Martha C. Anderson et 
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al. (2012), they reported that ETa calculated from vegetation index data only 

underestimate seasonal ETa values in irrigated area in Idaho.  

  

Figure 4.10 ETa EB and ETa Kc-NDVI values comparisons throughout the 2015 and 2016 

growing seasons. 

 

4.4.6 Average ratio of ETa Kc-NDVI method to ETa EB method  

The average ratio distribution of ETa Kc-NDVI to ETa EB method for 2015 and 

2016 corn growing seasons are showed in Figure 4.11. This figure shows that all average 

ratios are below 1, which is denoted by the thick blue line. This means that the Kc-NDVI 

method underestimated the ETa EB values during the two growing seasons. In early and 

late season the Kc-NDVI method showed the far values from 1, while in the mid-season the 

values were close to 1. Indicating that Kc-NDVI is more accurate for ETa estimations during 

the mid-season than early and late seasons, this probably due to in the early and late 

seasons the crop had low vegetation cover, high soil evaporation, and leaf senescence (R. 

Allen, A. Irmak, R. Trezza, J. M. H. Hendrickx, et al., 2011; Martha C. Anderson et al., 

2012; González-Dugo & Mateos, 2008; Tasumi et al., 2005). Therefore, Kc-NDVI method 

give less accurate estimation of ETa during early and late season periods, but for 

irrigation scheduling purposes, where the crop water demand is highest during the middle 

of the growing season, the Kc-NDVI method may be acceptable. However, ETa values from 
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Kc-NDVI method need to be adjusted during early and during late season to get close or 

accurate estimates to ETa EB values. The adjustment factor (ETa Kc-NDVI / 0.66 = ETa EB) 

for 2015 growing season was 0.66 and adjustment factor (ETa Kc-NDVI / 0.71 = ETa EB) 

for 2016 growing season was 0.71.  

For entire 2015 growing season the percent of error or underestimation was 21 

and for the mid-season only (excluding early and late seasons) was 12%, while for entire 

2016 growing season the percent of error was 13 and for mid-season was 7%. The total 

average percent of error for two growing seasons was 17%. This general percent of 

underestimation with the Kc-NDVI method is satisfactory compared with error for an 

experienced expert reported by R. G. Allen et al. (2011b), who reported error of 10-30% 

with remote sensing using vegetation indices. However, the average error for both 

growing seasons during the mid-season stage was less than 10%.  

 

  

Figure 4.11 Average ratio of ETa Kc-NDVI to ETa EB for 2015 and 2016 growing seasons. 

The thick blue line denotes 1 or 100% accuracy with ETa EB method. Bars in time series 

indicates standard deviation of ETa values. 
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4.4.7 Relationship between ETa EB method and ETa Kc-NDVI method 

A strong relationship was found between ETa EB method and ETa Kc-NDVI method 

during the period of study (2015 and 2016 seasons) with r2 of 0.97 (Figure 4.12). The 

corresponding mean bias error (MBE) (0.81 mm day-1) and root mean square error 

(RMSE) (0.37 mm day-1) were acceptable, assuming an average daily ETa of 5.3 mm day-

1.   

In this study, the Kc-NDVI method performed well for ETa estimations during the 

two growing seasons, indicating that Kc-NDVI method can be a robust and reliable method 

to estimate crop water requirements at regional and field scale in regions where digital 

elevation, land cover map and thermal infrared data are not available for ET estimations.  

 

 

Figure 4.12 Relationship between ETa EB method and ETa Kc-NDVI for maize fields 

during two growing seasons in eastern South Dakota. The black dashed line indicates the 

1:1 line. 

 

4.5 Conclusions 

The linear relationships between NDVI derived from NDVI maps and Kc obtained 

based on literature values (ASCE manual 70) were K𝑐 = 1.1887 NDVI − 0.033 for 2015 
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and K𝑐 = 1.2508 NDVI − 0.093for 2016. These linear equations were used to generate 

Kc maps. The Kc values derived from the Kc maps were multiplied by ETr to estimate ETa 

values during two growing seasons using the Kc-NDVI method. The METRIC model was 

used to estimate ETa using the full suite of input parameters (Landsat image, weather 

data, digital elevation map, and land cover map) (EB method). 

Results showed that the ETa values estimated with Kc-NDVI method were lower than 

the ETa values estimated with EB method by 18% for 2015 and 11% for 2016 growing 

season. The ETa Kc-NDVI values were less than the ETa EB values during the two seasons 

especially early and late in the growing seasons when the vegetation cover is incomplete 

and soil evaporation is not fully captured by the Kc-NDVI method. As a result, the accuracy 

of ETa estimation with the Kc-NDVI method decreased 17% compared with EB method 

during the period of study (2015 and 2016 growing seasons). Finally, Kc-NDVI method 

give less accurate estimation of ETa during early and late seasons, but for irrigation 

scheduling purposes, where the crop water demand is highest during the middle of the 

growing season, the Kc-NDVI method may be acceptable. Nevertheless, ETa values from 

Kc-NDVI method need to be adjusted during early and late seasons to get close or accurate 

estimates to ETa EB values. 

The results of this study showed a strong relationship between the Kc-NDVI method 

and the EB method throughout two growing seasons with r2 of 0.97 and RMSE of 

0.37mm day-1. In conclusion, the Kc-NDVI method performed well for ETa estimations 

during two seasons, indicating that this method can be a robust and reliable method to 

estimate ETa with minimum input parameters at regional and field scales for short time 

periods. 
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CHAPTER 5: Estimation of Crop Evapotranspiration using Satellite Remote 

Sensing-based Vegetation Index 

 

5.1 Abstract  

As population increases, the scarcity of fresh water increases. Thus better 

estimations of irrigation water requirements are essential to conserve fresh water. The 

objective was estimate crop evapotranspiration (ETc) using satellite remote sensing-based 

vegetation index. The study was carried out in northern México during four growing 

seasons. Six, eleven, three, and seven clear Landsat images were acquired for 2013, 2014, 

2015, and 2016, respectively for the analysis. The NDVI was calculated using near-

infrared and red wavebands. The relationship between NDVI and tabulated Kc’s was used 

to generate Kc maps using Model Maker tool of ERDAS Imagine Software. Spatially ETc 

maps were generated as an output of Kc maps multiplied by reference evapotranspiration 

(ETr), which was taken from a local automatic weather station. The results showed that 

ETc was low at initial and early development stages, while high ETc was found from mid-

season to harvest stage. Daily ETc maps helped to explain the variability of crop water 

use during the growing season. Based on the results we can conclude that ETc maps 

developed from remotely sensed multispectral vegetation indices are a useful tool for 

quantifying crop water consumption at regional and field scales. Using ETc maps, 

farmers can supply appropriate amount of irrigation water corresponding to each growth 

stage, leading to water conservation. 
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5.2 Introduction 

As population increases, the scarcity of fresh water increases. Agriculture is the 

major consumer of fresh water (Gontia & Tiwari, 2010; Heermann & Solomon, 2007), 

but it is not necessary used efficiently due to farmers supplying more water than is 

consumed by the crop. Thus better estimation of irrigation water requirements is essential 

to conserve fresh water and avoid threatened food security. To achieve water 

conservation is necessary that the farmers adopt new technologies for estimating crop 

water requirements more efficiently. 

Crop evapotranspiration (ETc) represents crop water requirements and is affected 

by microclimate and actual crop conditions (Adamala, Rajwade, & Reddy, 2016; Parmar 

& Gontia, 2016). A useful method to estimate ETc or crop water requirements in cropland 

areas is to multiplying reference evapotranspiration (ETr) by a crop coefficient (Kc) 

values (Eq. 1). ETr is estimated based on meteorological information (e.g., solar 

radiation, wind speed, air temperature, and air vapor pressure deficit) from a local 

weather station, using the Penman-Monteith equation. The Kc is typically taken from 

literature values and is affected by soil water content, crop variety, and crop density (R. 

G. Allen, Clemmens, Burt, Solomon, & O’Halloran, 2005; R. G. Allen et al., 1998; 

Marvin E Jensen & Allen, 2016). ETc has been estimated using conventional methods 

e.g., weighing lysimeters, evaporation pan, soil water balance, atmometer, Bowen Ratio 

Energy Balance System (BREBS), and Eddy covariance (EC). However, these methods 

are recognized as the point-based measurements. To overcome this problem, satellite-

based remote sensing can estimate crop water requirements and its spatial and temporal 

distribution on a field-by-field basis at a regional scale (R. Allen, A. Irmak, R. Trezza, J. 
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M. H. Hendrickx, et al., 2011; R. G. Allen, Tasumi, & Trezza, 2007; Bastiaanssen et al., 

2005; J Kjaersgaard et al., 2011). 

𝐸𝑇𝑐 = 𝐸𝑇𝑟  ×  𝐾𝑐                                                                                                               (1) 

Remote sensing is a technology that can estimate ETc at regional and local scale 

in less time and with less cost (R. G. Allen, Tasumi, & Trezza, 2007; J Kjaersgaard et al., 

2011). Remotely sensed can also estimate crop coefficients based on spectral reflectance 

of vegetation indices (VIs) (Adamala et al., 2016; Neale et al., 2005). The normalized 

difference vegetation index (NDVI) is the most common VIs (Glenn et al., 2011). NDVI 

takes into account the reflectance of red and near infrared wavebands (Rouse Jr et al., 

1974), where red waveband is strong absorbed by chlorophyll in leaves of the top layers, 

while near infrared wavebands is reflected by the mesophyll structure in leaves, 

penetrating into deeper leaf layers in a healthy vegetation (Figure 5.2) (Glenn, Nagler, & 

Huete, 2010; Glenn et al., 2011; Romero-Trigueros et al., 2016). High values of NDVI 

are related with healthy and dense vegetation, which presents high reflectance values in 

the NIR band and low reflectance values in the red band (Toureiro, Serralheiro, 

Shahidian, & Sousa, 2016). Crop coefficients generated from VIs determine ETc better 

than a tabulated Kc because it represents the actual crop growth conditions and capture 

the spatial variability among different fields (Gontia & Tiwari, 2010; Kullberg et al., 

2017; Lei & Yang, 2012). 

Several studies have used multispectral vegetation indices derived from remote 

sensing to estimate Kc values on agricultural crops including corn crop (e.g., (Bausch, 

1995; Campos et al., 2010; Duchemin et al., 2006; Garatuza-Payan et al., 2003; Gontia & 

Tiwari, 2010; González-Dugo & Mateos, 2008; Hunsaker et al., 2003; Jayanthi et al., 
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2007; Kamble et al., 2013; Neale et al., 1989; Arturo Reyes-Gonzalez et al., 2015; 

Tasumi et al., 2005; Trout et al., 2008). Crop coefficients derived from remotely sensed 

vegetation index also have used to generate local and regional ETc maps (Farg, Arafat, 

El-Wahed, & El-Gindy, 2012; Gontia & Tiwari, 2010; Vanino et al., 2015; Zhang et al., 

2015), however in northern México ETc maps using satellite remote sensing-based 

vegetation index remains unexplored. 

The objectives of this study were to 1) calculate NDVI values for each corn field 

for each growing season, 2) develop a simple linear regression model between NDVI 

derived from satellite-based remote sensing and tabulated Kc obtained of alfalfa-based 

crop coefficient from ASCE Manual 70, 3) generate Kc maps using the linear regression 

equation obtained between NDVI and Kc values, and 4) create ETc maps with high spatial 

resolution at regional and field scales.    

5.3 Material and methods 

5.3.1 Study Area 

The study was carried out in northern México (Comarca Lagunera) during four 

growing seasons. The Comarca Lagunera had an average latitude of 25° 40' N and 

longitude of 103° 18' W, and elevation of 1115 m above mean sea level (Figure 5.1). In 

the Comarca Lagunera forage crops (alfalfa, corn, sorghum, and oat (planted in winter 

season)) occupied more than 75% of the total irrigated area (SAGARPA, 2016). Silage 

corn is the most important crop after alfalfa in this region. Five silage corn fields in each 

growing season were selected for NDVI calculations. The corn fields were irrigated using 

surface irrigation system. The plant population density was 78, 000 plants ha-1. Silage 
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corn is typically planted from late March to early April and chopped for silage from late 

July to early August depends on the crop variety. The corn fields selected ranged between 

10 and 20 hectares in size. The soil texture for this region is clay loam soil. The mean 

annual maximum temperature is 28 °C, minimum 13 °C, and mean 21 °C. (Pedro & del 

Consuelo, 2002). The mean annual precipitation is 200 mm, while the annual potential 

evapotranspiration is 2,000 mm (Levine, 1998). 

 

 

Figure 5.1 Location of the study area at northern México (left map). The subset of the 

area of interest, Landsat with false color composite (bands 4, 3, 2), the yellow rectangles 

represent five locations where we selected the corn fields, and the white star indicates 

weather station (right image).   

 

5.3.2 Landsat Images 

Clear sky images from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and 

Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) (Path 30, 

Row 42) were used to estimate NDVI, Kc and ETc values. The images were downloaded 

Torreon, Coah. 
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from the United States Geological Survey (USGS) EROS Datacenter. Six, eleven, three, 

and seven clear Landsat images were acquired for 2013, 2014, 2015, and 2016, 

respectively (Table 5.1). The satellite images were processed using the Model Maker tool 

of ERDAS Imagine Software.  

Table 5.1 The year, acquisition dates, day after planting (DAP), Landsat satellite, and 

path/row for 2013, 2014, 2015, and 2016 growing seasons. 

Year 
Acquisition 

dates 
DAP Satellite Path/Row 

2013 April 14 10 Landsat 8 30/42 

 April 22 18 Landsat 7 30/42 

 April 30 26 Landsat 8 30/42 

 May 16 42 Landsat 8 30/42 

 June 9 66 Landsat 7 30/42 

 June 17 74 Landsat 8 30/42 

2014 April 17 8 Landsat 8 30/42 

 May 3 24 Landsat 8 30/42 

 May 11 32 Landsat 7 30/42 

 May 19 40 Landsat 8 30/42 

 May 27 48 Landsat 7 30/42 

 June 4 56 Landsat 8 30/42 

 June 12 64 Landsat 7 30/42 

 June 28 80 Landsat 7 30/42 

 July 6 88 Landsat 8 30/42 

 July 14 96 Landsat 7 30/42 

 July 22 104 Landsat 8 30/42 

2015 April 28 22 Landsat 7 30/42 

 May 30 54 Landsat 7 30/42 

 July 17 102 Landsat 7 30/42 

2016 April 14 8 Landsat 7 30/42 

 May 16 40 Landsat 7 30/42 

 June 9 64 Landsat 8 30/42 

 June 25 80 Landsat 8 30/42 

 July 3 88 Landsat 7 30/42 

 July 11 96 Landsat 8 30/42 

 July 19 104 Landsat 7 30/42 
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5.3.3 Pixel selection 

Ten pixels for each corn field and each season were selected and extracted from 

NDVI maps. The pixels were located in the center of each corn field for each overpass 

date during the four growing seasons. The same pixels were observed throughout the corn 

growing season. We assumed that the pixels are representative of the entire corn field. All 

corn fields had flat terrain. The number of pixels per year are presented in Table 5.2. 

Table 5.2 The year and number of pixels selected throughout the growing season. 

Year No. pixels 

2013 300 

2014 550 

2015 150 

2016 350 
 

 

5.3.4 NDVI Calculations 

The NDVI is the difference between near-infrared (𝑁𝐼𝑅) and red waveband 

reflectances divided by their sum (Rouse Jr et al., 1974). NIR and red wavebands present 

different reflectance on healthy vegetation as shown in Figure 5.2. NDVI values range 

between -1 and +1, where water presents negative values and dense canopy presents high 

positive values (Bannari et al., 1995; Bausch, 1993; Toureiro et al., 2016). The NDVI 

was calculated for each overpass date and for each growing season using Model Maker 

tool of ERDAS Imagine Software as shown in the next equations: 

For Landsat 7 was calculated as: 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅𝑏𝑎𝑛𝑑 4−𝑅𝑒𝑑𝑏𝑎𝑛𝑑 3)

(𝑁𝐼𝑅𝑏𝑎𝑛𝑑 4+𝑅𝑒𝑑𝑏𝑎𝑛𝑑 3)
                                                                                                                        (2) 
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For Landsat 8 was calculated as: 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅𝑏𝑎𝑛𝑑 5−𝑅𝑒𝑑𝑏𝑎𝑛𝑑 4)

(𝑁𝐼𝑅𝑏𝑎𝑛𝑑 5+𝑅𝑒𝑑𝑏𝑎𝑛𝑑 4)
                                                                                                                       (3) 

where 𝑁𝐼𝑅𝑏𝑎𝑛𝑑  and 𝑅𝑒𝑑𝑏𝑎𝑛𝑑  are the near-infrared and red wavebands, 

respectively. 

 

 

Figure 5.2 Absorbance and reflectance of NIR and Red wavebands on healthy vegetation. 

5.3.5 Crop coefficient (Kc) values from Manual 70 

The Kc values were taken from ASCE Manual 70 (Appendix E) and were adjusted 

according to different corn growth stages throughout the growing season. For Kc 

estimations the ASCE Manual 70 divides the growing season into two periods, viz. 

percent of time from planting to effective cover and days after effective cover to harvest. 

The effective cover and harvest of corn in our study occurred around 55 and 105 DAP, 

respectively based on the crop phenology. 

5.3.6 Relationship between NDVI and Kc and Kc maps development 

The relationships between NDVI derived from Landsat images and tabulated Kc’s 

values obtained from ASCE Manual 70 (Appendix E) (Marvin E Jensen & Allen, 2016) 

NIR Red 

Absorbance 

Reflectance 
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corresponding to each satellite overpass date for 2013, 2014, 2015, and 2016 corn 

growing seasons were established. These relationships were used to generate an average 

linear regression equation for entire period of study.   

5.3.7 Reference Evapotranspiration (ETr) calculations 

The meteorological information was taken from an automated weather station. 

The weather station was located at the National Institute of Forestry, Agriculture, and 

Livestock Research (INIFAP) Matamoros Coahuila, México (Figure 5.1). The ETr values 

were taken from the weather station, where ETr was calculated using the Penman-

Monteith equation (R. G. Allen et al., 1998; ASCE-EWRI, 2005) as follows: 

𝐸𝑇𝑟𝑒𝑓 =  
0.408 ∆(𝑅𝑛− 𝐺)+ 𝛾

𝐶𝑛
𝑇+273

 𝑢2(𝑒𝑠−𝑒𝑎)

∆ + 𝛾(1 +𝐶𝑑𝑢2)
                                                                                                   (4) 

where 𝐸𝑇𝑟𝑒𝑓 is the alfalfa reference (mm day-1), ∆ is the slope pressure versus air 

temperature curve (kPa °C-1), 𝑅𝑛 is the net radiation at the crop surface (MJ m-2 day-1), 𝐺 

is the soil heat flux at the soil surface (MJ m-2 day-1), 𝑇 is the mean air temperature at 1.5 

to 2.5 m height (°C), 𝑢2 is the mean daily wind speed at 2 m height (m s-1), 𝑒𝑠 is the 

saturation vapor pressure of the air (kPa), 𝑒𝑎 is the actual vapor pressure of the air (kPa), 

𝛾 is the psychrometric constant (0.0671 kPa °C-1), 𝑒𝑠 − 𝑒𝑎 is the vapor pressure deficit 

(kPa), 𝐶𝑛 is the numerator constant (1600 K mm s3 Mg-1 day-1), 𝐶𝑑 is the denominator 

constant (0.38 s m-1) for alfalfa reference, and 0.408 is the coefficient constant (m2 mm 

MJ-1). 

5.3.8 Crop Evapotranspiration (ETc) maps 

The Kc values taken from the Kc maps were multiplied by ETr (Eq. 1) to create 

ETc maps with high spectral resolution (30 m) for 2014 growing season, using Model 
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Maker tool of ERDAS Imagine Software and ArcGIS version 10.3.1. The ETc maps were 

designed to monitoring the spatial distribution and temporal evolution of the crop water 

requirements during the growing season.  

5.3.9 Flowchart of estimation of ETc  

A summary of estimation of ETc using satellite remote sensing-based vegetation 

index is showed in Figure 5.3. The Landsat images and weather data are the two major 

inputs parameters in the vegetation index method. 

      

      

      

      

      

      

 

Figure 5.3 Flowchart of crop evapotranspiration estimation. 
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5.4 Result and Discussion 

5.4.1 NDVI curves 

The NDVI average values (10 pixels) selected and extracted from NDVI maps for 

five corn fields and for different corn growing seasons are shown in Figure 5.4. The 

figures show similar NDVI curves for 2014 and 2016, while for 2013 and 2015 the 

curves are not well pronounced due to lack of clear sky images during the growing 

seasons. In general NDVI values at initial stage were low around 0.15 in early April 

(DAP 8), and then increase as the crop develops reaching its maximum value (0.8) at 

mid-season stage followed by plateau from late May to middle July (DAP 55-95) and 

slight decreasing (0.7) at the end of the season by the end of July (DAP 105). Several 

researchers reported similar seasonal NDVI curves for corn (P.-Y. Chen et al., 2006; de 

Souza et al., 2015; F. Gao et al., 2017; Jackson et al., 2004; Kamble et al., 2013; Neale et 

al., 1989; Singh & Irmak, 2009; Tasumi et al., 2005; Thomason et al., 2007; Toureiro et 

al., 2016). All NDVI curves developed by these researchers showed low corn NDVI 

values at early stage and then increased at mid-season stage and decline at late stage. 

However, Thomason et al. (2007) reported NDVI curves of forage corn, where NDVI 

values gradually increase and then remains longer plateau until the end of the season.   

In this study, the NDVI values derived from Landsat 8 (L8) were greater than 

NDVI derived from Landsat 7 (L7), not only in mid-season stage (Figure 5.4 (2014 and 

2016)) but also in early stage (Figure 5.4 (2013)). The difference between L8 and L7 

ranged from 0.03 to 0.09 (data no shown), those difference values are in agreement with 

values reported by Flood (2014) (0.04) and  Ke, Im, Lee, Gong, and Ryu (2015) (0.06), 

but greater than reported by D. Roy et al. (2016) (0.02). The difference between L8 and 
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L7 was due to L8 has narrowed near-infrared waveband (L7 = 0.77-0.90μm, L8 = 0.85-

0.88μm), higher signal to noise ratio (SNR), and higher 12-bit radiometric resolution 

(Flood, 2014; Holden & Woodcock, 2016; Ke et al., 2015; D. P. Roy et al., 2014). These 

features provide less influenced by atmospheric conditions, more sensitive to surface 

reflectance and more precise measurements (Flood, 2014; Holden & Woodcock, 2016; 

Ke et al., 2015). Although the comparison of NDVI between L8 and L7 was not objective 

of this study, it is important to mention that inconsistent or unreliable values of NDVI can 

produce poor estimates of crop evapotranspiration (Ke et al., 2015).  

  

  

Figure 5.4 Seasonal evolution of NDVI at five corn fields for 2013, 2014, 2015, and 2016 

growing seasons in northern México. 

 

5.4.2 Relationship between NDVI and Kc  

The NDVI values were taken from NDVI maps generated as an output using 

Landsat 7 and Landsat 8, while Kc’s values were taken from ASCE Manual 70 (Appendix 
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E) table for 2013, 2014, 2015, and 2016 corn growing seasons. Figure 5.5 shows the 

relationship between NDVI of five corn fields and tabulated Kc values for four growing 

seasons. Strong relationships were observed for 2013 and 2015 growing seasons, with r2 

equal to 0.99, whereas for 2014 and 2016 the r2 was equal to 0.96. The slightly low 

values of r2 found in 2014 and 2016 seasons, probably were due to major numbers of 

NDVI values, where some of them were lower than Kc values, especially in development 

growth stage. Similar values of coefficients of determination (0.99) between NDVI and 

Kc for corn crop were found by Rocha et al. (2012) and  Reyes-González et al. (2016) but 

low coefficients were reported by Singh and Irmak (2009), Kamble et al. (2013), and 

Toureiro et al. (2016), who reported values of r2 equal to 0.83, 0.81, and 0.82, 

respectively.  

The NDVI computed from Landsat images and Kc’s obtained from ASCE manual 

70 (Appendix E) were used to develop the linear regression equations. Linear 

relationships between NDVI and Kc for 2013, 2014, 2015, and 2016 were establish as the 

following equations: 

𝐾𝑐 = 1.3301 𝑁𝐷𝑉𝐼 + 0.0021          (2013)                                                                                                (5) 

𝐾𝑐 = 1.2234 𝑁𝐷𝑉𝐼 + 0.0242          (2014)                                                                                                (6) 

𝐾𝑐 = 1.4556 𝑁𝐷𝑉𝐼 + 0.0618          (2015)                                                                                               (7) 

𝐾𝑐 = 1.0968 𝑁𝐷𝑉𝐼 + 0.1054          (2016)                                                                                                (8) 

Similar linear equations for corn were reported by other researchers e.g., (Neale et 

al., 1989; Rafn et al., 2008; Reyes-González et al., 2016; Rocha et al., 2012), all these 

authors used alfalfa-reference crop coefficient for generating linear equations. 
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Figure 5.5 Linear relationship between NDVI derived from NDVI maps and Kc from 

ASCE manual 70 for four growing seasons. The dashed line indicates the 1:1 line.  

 

The four year linear regression equations were compared using the t test method to 

test statistical difference between two independent regressions (Steel & Torrie, 1980). 

Table 5.3 shows the results of all comparisons, where all t values were less than tabulated 

t values, which means that there were no statistical differences between linear regression 

equations. Based on these results all data from the four years were pooled to create a 

general linear equation as shown in Figure 5.6. This linear equation was used to create Kc 

maps for 2014 season.    
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Table 5.3 Comparisons between linear regression equations using the t test method. 

Compared 

years t value  

t  from 

table 

2013 to 2014 1.14 2.16 

2013 to 2015 0.96 2.57 

2013 to 2016 2.13 2.26 

2014 to 2015 1.53 2.22 

2014 to 2016 1.08 2.14 

2015 to 2016 2.31 2.44 
 

 

 

 

Figure 5.6 Linear relationship between NDVI and Kc for all data. The dashed line 

indicates the 1:1 line. 

  

5.4.3 Kc maps and Kc values 

Previous empirical linear equation between NDVI and Kc were used to generate 

Kc maps using Landsat images processed in ERDAS Imagine (Model Maker) for 2014 

growing season. Figure 5.7 shows spatial and temporal variability of Kc values 

throughout the 2014 growing season. The Kc maps showed low Kc values early in the 

growing season (DAP 8) (light blue-green color) and gradually increase at mid-season 

stage (DAP 56), where remains plateau until harvest (DAP 105) (brown color). Similar 

Kc maps of corn were developed by Singh and Irmak (2009), Ayse Irmak et al. (2011), 


