Document Type

Article

Publication Version

Version of Record

Publication Date

2016

Keywords

Landsat, pansharpening, spectral response function, panchromatic

Description

Pansharpening algorithms fuse higher spatial resolution panchromatic with lower spatial resolution multispectral imagery to create higher spatial resolution multispectral images. The free-availability and systematic global acquisition of Landsat 8 data indicate an expected need for global coverage and so computationally efficient Landsat 8 pansharpening. This study adapts and evaluates the established, and relatively computationally inexpensive, Brovey and context adaptive Gram Schmidt component substitution (CS) pansharpening methods for application to the Landsat 8 15 m panchromatic and 30 m red, green, blue, and near-infrared bands. The intensity images used by these CS pansharpening methods are derived as a weighted linear combination of the multispectral bands in three different ways using band spectral weights set (i) equally as the reciprocal of the number of bands; (ii) using fixed Landsat 8 spectral response function based (SRFB) weights derived considering laboratory spectra; and (iii) using image specific spectral weights derived by regression between the multispectral and the degraded panchromatic bands. The spatial and spectral distortion and computational cost of the different methods are assessed using Landsat 8 test images acquired over agricultural scenes in South Dakota, China, and India. The results of this study indicate that, for global Landsat 8 application, the context adaptive Gram Schmidt pansharpening with an intensity image defined using the SRFB spectral weights is appropriate. The context adaptive Gram Schmidt pansharpened results had lower distortion than the Brovey results and the least distortion was found using intensity images derived using the SRFB and image specific spectral weights but the computational cost using the image specific weights was greater than the using the SRFB weights. Recommendations for large area Landsat 8 pansharpening application are described briefly and the SRFB spectral weights are provided so users may implement computationally inexpensive Landsat 8 pansharpening themselves.

Publication Title

Remote Sensing

Volume

8

Issue

3

First Page

180

DOI of Published Version

10.3390/rs8030180

Pages

25

Type

text

Format

application/pdf

Language

en

Publisher

MDPI

Rights

Copyright © The Author(s)

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS