•  
  •  
 

Faculty Mentor

Gregory Michna

Abstract

The ongoing development of faster and smaller electronic components has led to a need for new technologies to effectively dissipate waste thermal energy. The pulsating heat pipe (PHP) shows potential to meet this need, due to its high heat flux capacity, simplicity, and low cost. A flat plate PHP was integrated into an aluminum flat plate heat sink with a simulated electronic load. The PHP heat sink used water as the working fluid and had 20 parallel channels with dimensions 2 mm × 2 mm × 119 mm. Experiments were run under various operating conditions, and the thermal resistance of the PHP was calculated. The performance enhancement provided by the PHP was assessed by comparing the thermal resistance of the heat sink with no working fluid to that of it charged with water.

Uncharged, the PHP was found to have a resistance of 1.97 K/W. Charged to a fill ratio of approximately 75% and oriented vertically, the PHP achieved a resistance of 0.49 K/W and 0.53 K/W when the condenser temperature was set to 20°C and 30°C, respectively. When the PHP was tilted to 45° above horizontal, the PHP had a resistance of 0.76 K/W and .59 K/W when the condenser was set 20°C and 30°C, respectively. The PHP greatly improves the heat transfer properties of the heat sink compared to the aluminum plate alone. Additional considerations regarding flat plate PHP design are also presented.

Share

COinS
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.