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CHAPTER 1 

INTRODUCTION 

1.1 Significance of Calibration 

The sensors onboard the Landsat series satellites have recorded numerous images of the Earth’s 

surface since the beginning of the Landsat program in 1972. Each generation of sensor has been 

built with increased spectral, spatial, and radiometric resolution, leading to increased use of their 

imagery to study natural and human-induced changes to the planet. To ensure reliable information 

is derived from the image data, the sensors need to be accurately calibrated, both radiometrically 

and geometrically. 

Radiometric calibration of satellite-based imaging sensors has been extensively studied, and can 

be absolute or relative in nature. Absolute radiometric calibration of an individual sensor provides 

gains and offsets used to convert raw image pixel values to accurate estimates of top-of-atmosphere 

(TOA) radiance and/or reflectance. Relative radiometric calibration determines factors applied to 

each detector’s raw pixel values to equalize the detector’s radiometric response.  

The information required to perform radiometric calibration can be acquired from measurements 

obtained with sources onboard the sensor (e.g. solar diffuser panels, lamps, thermal blackbody 

sources, etc.), or from measurements derived directly from image data. Pseudo Invariant 

Calibration Sites (PICS), primarily located in desert or other arid regions, have demonstrated 

excellent potential as sources for image data used in radiometric calibration. They offer consistent 

temporal, spatial, and spectral stability to within 3% [1]. If PICS-based calibration results are 

compared with onboard calibration results, it can help to confirm whether any observed changes 

in radiometric response are due to changes to the sensor itself.   
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Several works were developed using PICS for trending of sensors gains, sensors cross-calibration, 

and, more recently, absolute calibration [2]. However, one issue that has not yet been addressed 

and studied thoroughly was the effects of the atmosphere on PICS. Water vapor, barometric 

pressure, ozone, and aerosols present in the atmosphere alter the amount of solar energy striking 

the Earth’s surface through scattering and absorption processes that are wavelength dependent. For 

PICS, it has been estimated that up to a third of the total estimated uncertainty is due to uncorrected 

atmospheric effects [2]. As PICS are located in drier regions, the effects of atmospheric water 

vapor are generally minimized. However, the lower the temporal uncertainty of the site, the more 

important it is to understand its atmosphere. 

1.2 Objective  

The objective of this work is to understand and quantify the relationship(s) between atmospheric 

parameters and TOA reflectance. The analysis uses Landsat-7 ETM+ and Landsat-8 OLI images 

data acquired over the Algodones Dunes and a desert site near Wadi ad-Dawasir, Saudi Arabia. 

The analysis focuses on atmospheric water content and barometric pressure, as ground truth 

measurements of these quantities are likely to be readily available from relatively nearby weather 

stations. Section II of the paper discusses the methodology used in the analysis. Section III presents 

the analysis results. Finally, Section IV provides a summary and considers potential directions for 

future investigation. 

1.3 Definition of Atmospheric Parameters Considered in the Paper 

This section briefly defines the atmospheric parameters considered in this work: relative (and 

absolute) humidity, and atmospheric pressure. These parameters were chosen because they were 

the most readily available in the weather station data. Humidity was the selected parameter for 

characterization of the longer wavelength bands,  
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1.3.1 Relative Humidity 

Relative humidity is defined as the ratio percentage of the water vapor pressure to the saturation 

water vapor pressure at the gas temperature (273° K) [3]: 

 𝑅𝑅𝑅𝑅 =  𝑃𝑃𝑤𝑤
𝑃𝑃𝑊𝑊𝑊𝑊

× 100%                                                                                                                       (1) 

where pw and pws are the absolute water vapor pressure and saturation water vapor pressure in Pa, 

respectively. The saturation water vapor pressure is the maximum pressure possible by water vapor 

at a given temperature.  

Relative humidity is a function of the ambient air temperature through pws: 

𝑝𝑝𝑤𝑤𝑤𝑤 = 1
𝑇𝑇8.2 × exp (77.345 + 0.0057 × 𝑇𝑇 −  7235

𝑇𝑇
)                                                                        (2) 

The absolute humidity is defined as the mass of water vapor in a given volume. It is also a function 

of the ambient air temperature. 

𝐴𝐴𝑅𝑅 = 𝑐𝑐 × 𝑝𝑝𝑤𝑤
𝑇𝑇

                                                                                                                                   (3) 

where c = 2.16679 gK/J and T is the ambient air temperature in °K. 

Relative humidity can be converted to absolute humidity as follows. First, solve equation (1) for 

pw: 

𝑝𝑝𝑤𝑤 = 𝑅𝑅𝑅𝑅 × 𝑝𝑝𝑤𝑤𝑤𝑤                                                                                                                           (4a) 

Then substitute (4a) into equation (3): 

𝐴𝐴𝑅𝑅 = 𝑐𝑐 × 1
𝑇𝑇9.2 × 𝑅𝑅𝑅𝑅 × exp (77.345 + 0.0057 × 𝑇𝑇 − 7235

𝑇𝑇
)                                                        (4b) 

 

1.3.2 Atmospheric Pressure (Barometric Pressure) 

Atmospheric pressure, or barometric pressure, is the pressure produced by the combined weight 

of the gasses comprising the Earth’s atmosphere. It is inversely proportional to elevation above 
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the Earth’s surface (i.e. atmospheric pressure is lower at higher elevation). For the purposes of this 

work, atmospheric pressure is measured in inches of mercury (in. Hg).  

Rayleigh scattering can be expressed as a linear function of atmospheric pressure [4]: 

𝜏𝜏𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ = 𝑘𝑘 𝑃𝑃
𝑃𝑃0

                                                                                                                            (5)                                                                                                                        

where P0 is the standard atmospheric pressure at sea level (approximately 29.92 in Hg), and k 

represents a function of λ-4. Since Rayleigh scattering is predominant at shorter wavelengths, it is 

expected that TOA reflectance at shorter wavelengths would be more affected by atmospheric 

pressure. 

1.4   Relative Spectral Response of Landsat-7 ETM+ and Landsat-8 OLI 

Figures 1a and 1b show the relative spectral responses (RSRs) for each band in the ETM+ and 

OLI. The OLI RSRs are narrower and exhibit less variability in response across the passband than 

the corresponding ETM+ RSRs. The OLI NIR band is shifted considerably towards the falling 

edge of the ETM+ NIR band, and the OLI SWIR1 band is shifted towards the rising edge of the 

ETM+ SWIR1 band. These changes to the OLI response were intended to reduce the sensitivity 

of these bands to water vapor absorption.  

The OLI has 2 additional bands the ETM+ does not:  a Coastal/Aerosol band (approximately 430 

to 450 nm) and a Cirrus band (approximately 1360 to 1380 nm). The Coastal/Aerosol band is 

approximately centered on the rising edge of the ETM+ Blue band. As its name suggests, the 

Coastal/Aerosol band is intended to measure atmospheric aerosols, while the Cirrus band is 

intended to detect thin cirrus clouds. For the purposes of this work, the Cirrus band is not 

considered further. 
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Figure 1a: ETM+ and OLI RSR for shorter wavelength bands.

 
Figure 1b: ETM+ and OLI RSR for longer wavelength bands. 
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CHAPTER 2 

METHODOLOGY 

This chapter discusses the methodology used to perform the analysis, beginning with the 

procedure(s) used to select the test sites. The remainder of the chapter describes the characteristics 

of the selected sites and the procedures used to perform the analysis. 

2.1 Site Selection 

The following criteria were used to guide the target site selection process: 

• The target(s) should be as bright as possible. Reflectance measurements from brighter targets 

have higher signal-to-noise ratios. 

• The target(s) should exhibit low temporal and spatial uncertainty. This will help to ensure that 

any changes measured by the sensor represent changes in the sensor response only 

• Atmospheric measurements should be available for the target(s), and should come from an 

operative weather station situated as close as possible to the target ROI. Atmospheric 

measurements from stations close to the ROI should better represent the “true” condition of 

the atmosphere over the ROI. There could be significant differences in atmospheric 

measurements between the two locations. 

Initially, PICS target(s) were considered in order to meet the first two criteria. From the set of 

North African PICS studied by the Image Processing Laboratory, Libya-1 (WRS2 path/row 

187/043), Libya-4 (WRS2 path/row 181/040), Niger-1 (WRS2 path/row 189/046), Niger-2 (WRS2 

path/row 188/045), and Sudan-1 (WRS2 path/row 177/045) were chosen, as these demonstrated 

the most temporal and spatial stability. Unfortunately, co-incident atmospheric measurements 
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from a nearby weather station were not available for these sites. Two alternative sites were selected 

that had co-incident ground truth atmospheric measurements: (i) Algodones Dunes, CA (USA); 

and (ii) a site near the city of Wadi ad-Dawasir, Saudi Arabia. Both sites are described below. 

2.1.1 Algodones Dunes 

The Algodones Dunes (WRS-2 path/row 039/037), located near the U.S.-Mexico border, has been 

previously used for sensor absolute and cross calibrations [5].  Due to surface characteristic 

similarities with the Libya-4 PICS and its easier accessibility, it has been identified as a potential 

intercalibration site. 

   
Figure 2: (a) Algodones Dunes, 2015 Image Processing Laboratory Field Campaign; (b) Landsat-8 
OLI Image of Algodones Dunes. The solid red rectangle represents the optimal ROI. 
 
The site itself consists of sparsely vegetated sand dunes (Figure 1) covering an area approximately 

45 miles in length and 6 miles in width, running from northwest to southeast. The ROI containing 

the minimum spatial and temporal uncertainty was identified with techniques developed by the 

Image Processing Laboratory [6]. Co-incident measurements of relative humidity, ambient 

temperature, and barometric pressure were available through the Imperial County Airport weather 

station in Imperial CA, located approximately 30 miles from the selected ROI. 
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2.1.2 Wadi ad-Dawasir, Saudi Arabia 

An additional site in southwestern Saudi Arabia within the Arabian Desert (WRS2 path/row 

166/046) (Figure 2), near the city of Wadi ad-Dawasir, was selected based on initial identification 

through a global search as potential PICS [7] with an estimated temporal uncertainty within 3% 

across all bands.  

      
Figure 3: (a) Selected site near Wadi ad-Dawasir, Saudi Arabia (indicated by red marker); (b) 
Landsat-8 OLI Image of Wadi-ad-Dawasir, Saudi Arabia. The red rectangle represents a 40x40 
ROI in a region identified as stable in the SWIR2 band. 

 
The site is smaller in area than Algodones Dunes. It is located near the base of a rocky outcropping 

north of a significant area of irrigated agriculture. Co-incident atmospheric measurements were 

available from the Wadi ad-Dawasir Airport weather station, located approximately 35 miles from 

the selected ROI. 

2.2  Analysis Methodology 

2.2.1 Image Selection and Pre-processing 

The data used to find the TOA reflectance over Algodones Dunes were 260 cloud-free images of 

Landsat-7 ETM+ from 1999 to 2017, and 68 Landsat-8 OLI images from 2013 to 2017 selected 

from the Image Processing Laboratory archive of collection 1 image data. Similarly, 79 cloud-free 
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Landsat-8 OLI images from 2013 to 2017 were selected for the Wadi ad-Dawasir site; ETM+ 

image data were not used in the analysis of this site as there was insufficient co-incident weather 

station data available.  

The Image Processing Laboratory archived image data were originally processed at the USGS 

EROS Data Center with the Landsat Product Generation System (LPGS) [8] to correct radiometric 

and geometric artifacts.  The corresponding calibrated pixel values were then converted to TOA 

reflectances as follows [9]: 

𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇 = 1
cos𝜃𝜃𝑧𝑧

(𝑀𝑀𝜌𝜌𝑄𝑄𝑐𝑐𝑅𝑅𝑅𝑅 + 𝐴𝐴𝜌𝜌)                                                                                                        (6) 

where Mρ and Aρ are band-specific, reflectance-based multiplicative and additive scaling factors 

given in the product metadata, Qcal is the calibrated DN value for the given pixel, and θz is the solar 

zenith angle for the given pixel, obtained from a solar angle “image” band generated for the 

particular image product. 

 

2.2.2 Deriving the Relationships Between TOA Reflectance and Atmospheric Parameter 

Once the TOA reflectance summary statistics (i.e. mean, standard deviation, and temporal 

uncertainty) were obtained from the selected ROIs at the target site and the corresponding set of 

atmospheric parameter measurements were identified, the following steps were performed to 

identify any relationships between TOA reflectance and atmospheric parameters. First, least-

squares linear regressions were fit to the TOA reflectance data: 

 𝜌𝜌𝑇𝑇𝑇𝑇𝑇𝑇 = 𝛽𝛽0 + 𝛽𝛽1 × 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝                                                                                                             (7) 

where β0 and β1 are the intercept and slope coefficients and param is the atmospheric parameter 

of interest (in this work, absolute humidity and barometric pressure). The slope is represented in 

units of reflectance / unit of atmospheric parameter. 
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The significance of the regression slopes was then tested using a two-sided hypothesis test at the 

0.05 significance level. If the p-value of the test was greater than 0.05, there was insufficient 

evidence to reject the null hypothesis of zero slope. If the p-value of the test was less than or equal 

to 0.05, there was sufficient evidence to reject the null hypothesis and conclude a (statistically 

significant, at least) relationship between TOA reflectance and the given atmospheric parameter 

existed. 

For those bands exhibiting sufficient statistical evidence to reject the null hypothesis of zero slope, 

additional processing was performed to determine whether a linear function of atmospheric 

parameter adequately accounted for the observed TOA reflectance behavior. This additional 

processing is described in the following sections. 

 

2.2.3 Consideration of Higher-Order and/or Nonlinear Atmospheric Parameter Models 

In addition to linear functions of a single atmospheric parameter, higher-order and nonlinear 

functions of a single atmospheric parameter were also considered. For each model tested, the R2 

value was calculated to estimate the goodness of the model fit. The model having the highest R2 

value was selected as the “optimal” model, and used to normalize the initial TOA reflectance data 

as follows: 

𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝜌𝜌𝑜𝑜𝑜𝑜𝑊𝑊
𝜌𝜌𝑚𝑚𝑜𝑜𝑚𝑚𝑚𝑚𝑙𝑙

× 𝜌𝜌𝑐𝑐𝑜𝑜𝑤𝑤������                                                                                                                     (8) 

where ρobs is the observed TOA reflectance, ρmodel is the predicted TOA reflectance accounting for 

the given atmospheric parameter(s), and 𝜌𝜌𝑐𝑐𝑜𝑜𝑤𝑤������ is the temporal mean of the observed TOA 

reflectance. The normalized TOA reflectances were then replotted to check whether the temporal 

uncertainty (i.e. the “spread” in the set of data points) was reduced after the correction. 
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2.2.4 BRDF Normalization 

Typical analyses of desert site image data have used large areas (on the order of several hundred 

km2) in order to minimize BRDF effects [10]. Since the optimal regions used in this work tend to 

be much smaller in area, BRDF effects due to variation in solar position and/or sensor viewing 

position throughout the year cannot be ignored. 

For the Algodones Dunes site, a two-angle quadratic BRDF model was used: 

𝜌𝜌𝐵𝐵𝑅𝑅𝐵𝐵𝐵𝐵 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥12 + 𝛽𝛽2𝑦𝑦12 + 𝛽𝛽3𝑥𝑥1𝑦𝑦1                                                                                           (9) 

For the Wadi ad-Dawasir site, a four-angle linear BRDF model was used: 

𝜌𝜌𝐵𝐵𝑅𝑅𝐵𝐵𝐵𝐵 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑦𝑦1 + 𝛽𝛽3𝑥𝑥2 + 𝛽𝛽4𝑦𝑦2                                                                                    (10) 

For both models, x1, x2, y1, and y2 are the plane Cartesian coordinate values transformed from the 

solar position zenith/azimuth angles (SZA, SAA) and sensor viewing zenith/azimuth angles (VZA, 

VAA) based in a spherical coordinate system. 

𝑥𝑥1 = sin(𝑆𝑆𝑆𝑆𝐴𝐴) cos(𝑆𝑆𝐴𝐴𝐴𝐴)                                                                                                                (11a) 

𝑦𝑦1 = sin(𝑆𝑆𝑆𝑆𝐴𝐴) sin(𝑆𝑆𝐴𝐴𝐴𝐴)                                                                                                             (11b) 

𝑥𝑥2 = sin(𝑉𝑉𝑆𝑆𝐴𝐴) cos(𝑉𝑉𝐴𝐴𝐴𝐴)                                                                                                            (11c) 

𝑦𝑦2 = sin(𝑉𝑉𝑆𝑆𝐴𝐴) sin(𝑉𝑉𝐴𝐴𝐴𝐴)                                                                                                           (11d) 

 

 

 



12 
 

CHAPTER 3 

RESULTS 

This chapter presents the results of the analysis methodology given in the previous chapter. Results 

for normalization using the “optimal” atmospheric parameter model are presented only for those 

bands demonstrating a statistically significant linear relationship between TOA reflectance and the 

atmospheric parameter of interest. The results for each sensor are presented according to site; the 

results for absolute humidity are presented first, followed by the results for barometric pressure. 

3.1  Algodones Dunes 

3.1.1 Relationship Between TOA Reflectance and Absolute Humidity—Landsat 7 ETM+ 

NIR Band: 

Figure 3 shows the relationship between TOA reflectance and absolute humidity for the NIR band. 

The slope of the regression line was found to be strongly statistically significant (p-value = 

approximately 6.83x10-23 at the 0.05 significance level) and, as expected, indicated a negative 

relationship between TOA reflectance and absolute humidity. The linear model accounted for 

approximately 31.4% of the variability in the TOA reflectance. 

The optimal atmospheric parameter model was found to be the initial linear model:  

𝜌𝜌𝑚𝑚𝑐𝑐𝑚𝑚𝑅𝑅𝑅𝑅 = 0.4071 − 0.001318 × 𝐴𝐴𝑅𝑅                                                                                         (12) 

Figure 4 shows the resulting normalization provided with this model. The figure indicates that 

after normalization the overall “spread” in the data was reduced. The reflectances of a few data 

points (e.g. the early 2006 acquisition), however, appeared to be reduced further away from the 

TOA reflectance mean. Table 1 shows the resulting statistics before and after normalization with 

the atmospheric model. Clearly, the temporal uncertainty was reduced by the normalization.  
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Figure 3: Linear relationship between NIR TOA Reflectance and Absolute Humidity. 

 

 

Figure 4: NIR Band TOA Reflectance before and after optimal atmospheric model normalization. 
 

Table 1: NIR Band TOA Reflectance Statistics Before and After Atmospheric Normalization.  
Before Normalization After Normalization 

Mean STD Uncertainty Mean STD Uncertainty 
0.40 0.0099 2.49% 0.40 0.0081 2.07% 
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SWIR1 Band: 

Figure 5 shows the relationship between TOA reflectance and absolute humidity in the SWIR1 

band. The regression slope was found to be statistically significant (p-value = approximately 

3.28x10-4 at the 0.05 significance level), and indicated the negative relationship between TOA 

reflectance and absolute humidity. The model accounted for approximately 4.89% of the 

variability in the TOA reflectance. 

As in the NIR band, the “optimal” atmospheric parameter model was found to be the initial linear 

model:  

𝜌𝜌𝑚𝑚𝑐𝑐𝑚𝑚𝑅𝑅𝑅𝑅 = 0.4936 − 0.0005 × 𝐴𝐴𝑅𝑅                                                                                                     (13) 

Figure 6 shows the resulting normalization provided with this model. As suggested by the low R2 

value, the normalization had little apparent effect on the overall data spread. This can also be 

observed in Table 2, where the temporal uncertainty shows only a slight reduction.  

 

 
Figure 5: Linear Relationship between SWIR1 TOA Reflectance and Absolute Humidity. 
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Figure 6: SWIR1 Band TOA Reflectance before and after Optimal Atmospheric Model 

Normalization. 
 

Table 2: SWIR1 Band TOA Reflectance Statistics Before and After Atmospheric Normalization. 
Before Normalization After Normalization 

Mean STD Uncertainty Mean STD Uncertainty 
0.49 0.0092 1.87 % 0.49 0.0089 1.82 % 

 
 

SWIR2 Band: 

Figure 7 shows the relationship between TOA reflectance and absolute humidity for the SWIR2 

band. The slope of the regression line was found to be strongly statistically significant (p-value = 

approximately 4.35x10-12 at the 0.05 significance level) and indicated a negative relationship 

between TOA reflectance and absolute humidity. The model accounted for approximately 17% of 

the variability in the TOA reflectance. 

Again, the initial linear model was identified as the “optimal” atmospheric model for this band:  

𝜌𝜌𝑚𝑚𝑐𝑐𝑚𝑚𝑅𝑅𝑅𝑅 = 0.4422 − 0.0014 × 𝐴𝐴𝑅𝑅                                                                                                     (14)  
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Figure 8 shows the resulting normalization provided with this model. As in the NIR and SWIR1 

bands, this normalization reduced the overall spread of the data, but increased the deviation from 

the mean for a few points, such as the early 2006 acquisition. 

Table 3 shows the statistics before and after normalization. With the normalization, the temporal 

uncertainty has been reduced by approximately 0.32% in magnitude.  

 
Figure 7: Linear Relationship Between SWIR2 TOA Reflectance and Absolute Humidity. 

 
Figure 8: SWIR2 Band TOA Reflectance Before/After Optimal Atmospheric Model 

Normalization. 
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Table 3: SWIR2 Band TOA Reflectance Statistics Before and After Atmospheric Normalization 
Before Normalization After Normalization 

Mean STD Uncertainty Mean STD Uncertainty 
0.43 0.0148 3.43% 0.43 0.0134 3.11 % 

 

3.1.2 Relationship Between TOA Reflectance and Atmospheric Pressure - Landsat 7 ETM+ 

Blue Band: 

Figure 9 shows the relationship between TOA reflectance and atmospheric pressure in the Blue 

band. The regression slope was found to be statistically significant (p-value = approximately 

4.95x10-4 at the 0.05 significance level), and indicated a positive relationship between TOA 

reflectance and atmospheric pressure. The model accounted for approximately 4.6% of the 

variability in TOA reflectance. 

Based on the model R2 values, the optimal atmospheric parameter model was found to consist of 

an exponential term and a constant term:  

𝜌𝜌𝑚𝑚𝑐𝑐𝑚𝑚𝑅𝑅𝑅𝑅 = 0.2037 + 4.082 × 10−16exp (𝑝𝑝𝑅𝑅𝑎𝑎𝑚𝑚)                                                                             (15) 

The very small coefficient value on the exponential term ensures that for a range of realistic 

atmospheric pressures, the predicted reflectance will assume realistic values. The corresponding 

R2 and p-values for the model were found to be approximately 0.04993 and 2.816x10-4, 

respectively. 

Figure 10 shows the resulting exponential model fit to the data. For the given pressure data, the 

two curves are very similar. The atmospheric model was able to slightly normalize the original 

TOA reflectance. 

Figure 11 compares the reflectance trend before and after normalization. The apparent data spread 

changed little. The corresponding TOA reflectance statistics shown in Table 4 indicate little 

change in the overall temporal uncertainty, approximately 0.04% in magnitude. 
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Figure 9: Linear relationship between Blue Band TOA Reflectance and Atmospheric Pressure. 

 

  
Figure 10: Exponential relationship between Blue Band TOA Reflectance and Atmospheric 
Pressure. 
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Figure 11: Blue Band TOA Reflectance Before/After Optimal Atmospheric Model Normalization. 

Table 4: Blue Band TOA Reflectance Statistics Before and After Normalization with Optimal 
Atmospheric Model 

Before Normalization After Normalization 
Mean STD Uncertainty Mean STD Uncertainty 
0.21 0.0034 1.63% 0.21 0.0030 1.59 % 

 

3.1.3 Relationship Between TOA Reflectance and Absolute Humidity—Landsat 8 OLI 

SWIR2 Band: 

For Landsat8 OLI only the SWIR2 band was shown to have a statistically significant relationship 

between TOA reflectance and absolute humidity. This is not surprising given that the OLI NIR 

and SWIR1 bands were narrowed in order to avoid significant water absorption features affecting 

the corresponding ETM+ bands (see Figure 1). In addition, the OLI SWIR2 RSR is quite similar 

in center wavelength location and bandwidth to the ETM+ SWIR2 RSR, as can be seen in 

Figure 1b; the analysis results should be consistent with those for the ETM+ SWIR2 band. 
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Figure 12 shows the expected negative relationship between TOA reflectance and absolute 

humidity for the SWIR2 band. The slope of the regression line was found to be statistically 

significant (p-value = approximately 3.4x10-6 at the 0.05 significance level). The model accounted 

for approximately 28% of the variability in the TOA reflectance, which was consistent with the R2 

value for the ETM+ linear model. 

As with the ETM+ SWIR2 band, the “optimal” atmospheric parameter model was found to be the 

initial linear model. Given the similarity in spectral responses, the model coefficients were 

consistent with the corresponding ETM+ model coefficients. 

𝜌𝜌𝑚𝑚𝑐𝑐𝑚𝑚𝑅𝑅𝑅𝑅 = 0.4759 − 0.0020 × 𝐴𝐴𝑅𝑅                                                                                           (16) 

Figure 13 shows the resulting normalization provided with this model. As with the ETM+ SWIR2 

band, the normalization visibly reduced the overall data spread. Interestingly, no reflectance 

appeared to be significantly over-normalized. 

Table 5 shows the statistics before and after the normalization. The temporal uncertainty was 

reduced approximately 0.45% in magnitude.  

 
Figure 12: Linear Relationship between SWIR2 Band TOA Reflectance and Absolute Humidity. 
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Figure 13: SWIR2 Band TOA Reflectance Before/After Optimal Atmospheric Model 

Normalization. 
 
Table 5: SWIR2 Band TOA Reflectance Statistics Before and After Atmospheric Normalization 

Before Normalization After Normalization 
Mean STD Uncertainty Mean STD Uncertainty 
0.46 0.0136 2.93% 0.46 0.0116 2.48 % 

 
 
3.1.4 Relationship Between TOA Reflectance and Atmospheric Pressure--Landsat8 OLI 

As with the ETM+, the Blue band was shown to have a statistically significant relationship 

between TOA reflectance and atmospheric pressure. Not surprisingly, the Coastal/Aerosol band 

was also shown to have a statistically significant relationship, as was the Green band. The resulting 

optimal models were found to be exponential in nature. However, the exponential plots were 

visually almost indistinguishable from the linear plots, as can be seen in Figures 9 and 10. 

Consequently, plots of the exponential model fits will not be shown here.  

Coastal/Aerosol Band: 

Figure 14 shows the relationship between TOA reflectance and atmospheric pressure in the 

Coastal/Aerosol band. The regression slope was found to be statistically significant (p-value = 
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approximately 4.97x10-5 at the 0.05 significance level), and indicated a positive relationship 

between TOA reflectance and atmospheric pressure. The model accounted for approximately 

22.2% of the variability in TOA reflectance.  

Based on the model R2 values, the optimal atmospheric parameter model was found to consist of 

an exponential term and a constant term. The R2 and p-value for this model were found to be 

approximately 0.02239 and 4.6×10-5 respectively. 

𝜌𝜌𝑚𝑚𝑐𝑐𝑚𝑚𝑅𝑅𝑅𝑅 = 0.1982 + 1.002 × 10−15exp (𝑝𝑝𝑅𝑅𝑎𝑎𝑚𝑚)                                                                                       (17) 

Figure 15 shows the trend comparison before and after normalization. It can be seen that the 

atmospheric model was able to normalize the original TOA reflectance significantly. However, 

some of the lower reflectance data points, such as the two acquisitions in early 2017, were reduced 

further away from the overall reflectance mean.  

Table 6 shows the statistics before and after normalization using atmospheric model. It can be 

noticed that the temporal uncertainty was reduced by approximately 0.22% in magnitude.  

 
Figure 14: Linear Relationship between C/A Band TOA Reflectance and Atmospheric Pressure. 
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Figure 15: C/A Band TOA Reflectance Before/After Optimal Atmospheric Model Normalization. 

 

Table 6: CA Band TOA Reflectance Statistics Before and After Optimal Atmospheric Model 
Normalization 

Before Normalization After Normalization 
Mean STD Uncertainty Mean STD Uncertainty 
0.21 0.0036 1.75% 0.21 0.0032 1.53 % 

 

Blue Band: 

Figure 16 shows the relationship between TOA reflectance and atmospheric pressure in the Blue 

band. The regression slope was found to be somewhat statistically significant (p-value = 

approximately 0.015 at the 0.05 significance level), and indicated a positive relationship between 

TOA reflectance and atmospheric pressure. The model accounted for approximately 8.7% of the 

variability in the TOA reflectance.  

Similar to the Coastal/Aerosol band, based on the model R2 values, the optimal atmospheric 

parameter model was found to consist of an exponential function and a constant term. The R2 and 

p-value for this model were found to be approximately 0.0916 and 0.0121, respectively. 
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𝜌𝜌𝑚𝑚𝑐𝑐𝑚𝑚𝑅𝑅𝑅𝑅 = 0.2084 + 4.988 × 10−16exp (𝑝𝑝𝑅𝑅𝑎𝑎𝑚𝑚)                                                                                   (18) 

Figure 17 shows the trend comparison before and after normalization. Not surprisingly, the overall 

uncertainty (Table 7) was reduced by approximately 0.07% in magnitude, a slight change.  

 
Figure 16: Linear Relationship Between Blue Band TOA Reflectance and Atmospheric Pressure. 

 
Figure 17: Blue Band TOA Reflectance Before/After Optimal Atmospheric Model 
Normalization. 
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Table 7: Blue Band TOA Reflectance Statistics Before and After Optimal Atmospheric Model 
Normalization  

Before Normalization After Normalization 
Mean STD Uncertainty Mean STD Uncertainty 
0.21 0.0028 1.33% 0.21 0.0027 1.26 % 

 
 
Green Band: 

Figure 18 shows the relationship between TOA reflectance and atmospheric pressure in the Green 

band. The regression slope was found to be marginally statistically significant (p-value = 

approximately 0.033 at the 0.05 significance level), and indicated a negative relationship between 

TOA reflectance and atmospheric pressure. The model accounted for approximately 6.7% of the 

variability in TOA reflectance.  

The “optimal” atmospheric model consisted of a constant term and an exponential term. The R2 

and p-value for this model were found to be approximately 0.0723 and 0.031, respectively--slightly 

better than the linear model. 

𝜌𝜌𝑚𝑚𝑐𝑐𝑚𝑚𝑅𝑅𝑅𝑅 = 0.2689 − 4.327 × 10−16exp (𝑝𝑝𝑅𝑅𝑎𝑎𝑚𝑚)                                                                            (19) 

Figure 19 shows the trend comparison before and after normalization. The atmospheric model was 

able to slightly normalize the original TOA reflectance.  

Table 8 shows the statistics before and after normalization using atmospheric model. It can be 

noticed that the overall uncertainty was reduced by approximately 0.04% in magnitude, a slight 

change. 
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Figure 18: Linear Relationship between Green Band TOA Reflectance and Atmospheric Pressure. 

  

 
Figure 19: Green Band TOA Reflectance Before/After Optimal Atmospheric Model 
Normalization. 

 

Table 8: Green Band TOA Reflectance Statistics Before and After Optimal Atmospheric Model 
Normalization 

Before Normalization After Normalization 
Mean STD Uncertainty Mean STD Uncertainty 
0.26 0.0031 1.18% 0.26 0.0030 1.14 
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3.2 Wadi ad-Dawasir Desert Site 

This section presents the characterization results obtained for the Wadi ad-Dawasir site. Only the 

results for the OLI are presented, as there was insufficient weather station data available to allow 

a similar analysis for the ETM+. 

3.2.1 Relationship Between TOA Reflectance and Absolute Humidity 

Figure 20 shows the relationship between TOA reflectance and absolute humidity for the SWIR2 

band. The slope of the regression line was found to be statistically significant (p-value = 

approximately 3.27x10-3 at the 0.05 significance level) and indicated a negative relationship 

between TOA reflectance and absolute humidity. The model accounted for approximately 10.7% 

of the variability in the TOA reflectance.  

As in the SWIR2 band, the “optimal” atmospheric parameter model was found to be the initial 

linear model: 

𝜌𝜌𝑚𝑚𝑐𝑐𝑚𝑚𝑅𝑅𝑅𝑅 = 0.4696 − 0.0014 × 𝐴𝐴𝑅𝑅                                                                                                     (20) 

Figure 21 shows the resulting normalization provided with this model. The normalization visibly 

reduced the overall spread of the data. Reflectances for some of the data points, such as the early 

2017 acquisition, appeared to be over normalized. 

Table 9 shows the statistics before and after normalization using atmospheric model. The overall 

uncertainty was reduced by approximately 0.16% in magnitude. 
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Figure 20: Linear Relationship Between SWIR2 Band TOA Reflectance and Absolute Humidity. 

 
Figure 21: SWIR2 Band TOA Reflectance Before/After Optimal Atmospheric Model 
Normalization. 

 

Table 9: SWIR2 Band TOA Reflectance Statistics Before and After Atmospheric Normalization 
Before Normalization After Normalization 

Mean STD Uncertainty Mean STD Uncertainty 
0.45 0.0130 2.88% 0.46 0.0116 2.72 % 
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3.2.2 Relationship Between TOA Reflectance and Atmospheric Pressure 

Coastal/Aerosol Band: 

Figure 22 shows the relationship between TOA reflectance and atmospheric pressure in the 

Coastal/Aerosol band. The regression slope was found to be marginally statistically significant (p-

value = approximately 0.043 at the 0.05 significance level), and, interestingly, indicated a negative 

relationship between TOA reflectance and atmospheric pressure. The model accounted for 

approximately 5.2% of the variability in the TOA reflectance. 

The “optimal” atmospheric parameter model for this band consisted of an exponential term and a 

constant term. The R2 and p-value for this model were found to be 0.0537 and 0.0391 respectively. 

𝜌𝜌𝑚𝑚𝑐𝑐𝑚𝑚𝑅𝑅𝑅𝑅 = 0.2151 − 7.283 × 10−16exp (𝑝𝑝𝑅𝑅𝑎𝑎𝑚𝑚)                                                                                           (21) 

Figure 23 shows the trend comparison before and after normalization. The observed data spread 

was slightly reduced. However, no data points appeared to be significantly over-normalized. The 

corresponding uncertainty, as shown in Table 10, was reduced by approximately 0.06% in 

magnitude. 

 

Figure 22: Linear Relationship Between C/A TOA Reflectance and Atmospheric Pressure. 
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Figure 23: C/A Band TOA Reflectance Before/After Optimal Atmospheric Model Normalization. 

Table 10: Coastal/Aerosol Band TOA Reflectance Statistics Before and After Optimal 
Atmospheric Model Normalization. 

Before Normalization After Normalization 
Mean STD Uncertainty Mean STD Uncertainty 
0.21 0.0060 2.88% 0.21 0.0058 2.82 % 

 
Blue Band: 

Figure 24 shows the relationship between TOA reflectance and atmospheric pressure in the Blue 

band. The regression slope was found to be statistically significant (p-value = approximately 

4.25x10-3 at the 0.05 significance level), and indicated a negative relationship between TOA 

reflectance and atmospheric pressure. The model accounted for approximately 10.1% of the 

variability in TOA reflectance.  

The “optimal” atmospheric model consisted of an exponential term and a constant term. The R2 

and p-value for this model were found to be 0.1014 and 0.0042, respectively. 

𝜌𝜌𝑚𝑚𝑐𝑐𝑚𝑚𝑅𝑅𝑅𝑅 = 0.2210 − 1.113 × 10−15exp (𝑝𝑝𝑅𝑅𝑎𝑎𝑚𝑚)                                                                                           (22) 
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Figure 25 shows the trend comparison before and after normalization. The overall spread of the 

data was reduced with the normalization. The reflectance from the early 2015 acquisition appeared 

to be over normalized.  

Table 10 shows the statistics before and after normalization using atmospheric model. It can be 

noticed that the overall uncertainty was reduced by approximately 0.16% in magnitude. 

 
Figure 24: Linear Relationship Between Blue Band TOA Reflectance and Atmospheric Pressure. 

 
Figure 25: Blue Band TOA Reflectance Before/After Optimal Atmospheric Model Normalization. 
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Table 11: Blue Band TOA Reflectance Statistics Before and After Optimal Atmospheric Model 
Normalization. 

Before Normalization After Normalization 
Mean STD Uncertainty Mean STD Uncertainty 
0.21 0.0064 3.08% 0.21 0.0061 2.92 % 

 
Green Band: 

Figure 26 shows the relationship between TOA reflectance and atmospheric pressure in the Green 

band. The regression slope was found to be statistically significant (p-value = approximately 

2.55x10-3 at the 0.05 significance level), and indicated a negative relationship between TOA 

reflectance and atmospheric pressure. The model accounted for approximately 11.2% of the 

variability in TOA reflectance.  

The “optimal” atmospheric model consisted of an exponential term and a constant term. The R2 

and p-value for this model were found to be 0.1169 and 0.0020 respectively. 

𝜌𝜌𝑚𝑚𝑐𝑐𝑚𝑚𝑅𝑅𝑅𝑅 = 0.2617 − 1.110 × 10−15exp (𝑝𝑝𝑅𝑅𝑎𝑎𝑚𝑚)                                                                                           (23) 

Figure 27 shows the trend comparison before and after normalization. Again, the overall data 

spread was reduced with the normalization. The reflectance data from the acquisition in early 2015 

appeared to be over-normalized in this band as well. The corresponding overall temporal 

uncertainty was reduced by approximately 0.15% in magnitude, as shown in Table 12. 
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Figure 26: Linear Relationship between Green Band TOA Reflectance and Atmospheric Pressure. 

 
Figure 27: Green Band TOA Reflectance Before/After Optimal Atmospheric Model 

Normalization. 
 

Table 12: Green Band TOA Reflectance Statistics Before and After Optimal Atmospheric Model 
Normalization 

Before Normalization After Normalization 
Mean STD Uncertainty Mean STD Uncertainty 
0.25 0.0060 2.40% 0.25 0.0056 2.25 
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3.3 Effects of BRDF Normalization 

The spread in TOA reflectance data was reduced to varying degrees with atmospheric 

normalization. The amount of reduction varied by band, with more reduction apparent at longer 

wavelengths. At this stage, BRDF normalization was not performed. One question to be answered 

was whether BRDF normalization would effectively reduce the reflectance variability even 

further, especially at shorter wavelengths. 

As mentioned in Chapter 2, once the TOA reflectance data were normalized with the optimal 

atmospheric parameter models, BRDF normalization was performed using a two-angle quadratic 

model for Algodones Dunes and a four-angle linear model for Wadi-ad-Dawasir. For the purposes 

of this analysis, this normalization order was chosen in order to “preserve” the statistical 

significance of the relationship between the atmospheric parameter of interest and TOA 

reflectance. If BRDF normalization was performed before attempting atmospheric modeling in the 

shorter wavelength bands, the statistical significance of the relationship was significantly 

weakened or eliminated entirely. Following BRDF normalization, the overall uncertainty at both 

sites was determined for both sensors. The summarized results are shown in Tables 13 and 14 for 

Algodones Dunes, and Table 15 for Wadi-ad-Dawasir. 

Algodones Dunes: 

For both sensors, the SWIR bands are more sensitive to BRDF effects. The OLI NIR band is less 

sensitive to BRDF than the ETM+ -- not surprising given the significant narrowing and center 

location shift in the OLI band. 
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Table 13: TOA Reflectance Summary Statistics for ETM+ Bands After Atmospheric and BRDF 
Normalization. 

 Before Atmospheric 
Normalization 

After Atmospheric 
Normalization 

Uncertainty 
After BRDF 

Normalization  
(%) Bands Mean STD Uncertainty  

(%) Mean STD Uncertainty 
(%) 

Blue 0.21 0.0034 1.63 0.21 0.0030 1.59 1.44 

Green 0.26 0.0039 1.48 0.26 0.0039 1.48 1.36 

Red 0.35 0.0056 1.59 0.35 0.0056 1.59 1.41 

NIR 0.40 0.0099 2.49 0.40 0.0081 2.07 2.01 

SWIR1 0.49 0.0092 1.87 0.49 0.0089 1.82 1.66 

SWIR2 0.43 0.0148 3.43 0.43 0.0134 3.11 2.69 

 

Table 14: TOA Reflectance Summary Statistics for OLI Bands After Atmospheric and BRDF 
Normalization. 

 Before Atmospheric 
Normalization 

After Atmospheric 
Normalization 

Uncertainty 
After BRDF 

Normalization 
(%) Bands Mean STD Uncertainty  

(%) Mean STD Uncertainty 
(%) 

CA 0.21 0.0036 1.75 0.21 0.0032 1.53 1.14 

Blue 0.21 0.0028 1.33 0.21 0.0027 1.26 0.97 

Green 0.26 0.0031 1.18 0.26 0.0030 1.14 0.95 

Red 0.35 0.0044 1.26 0.35 0.0044 1.26 1.00 

NIR 0.43 0.0046 1.05 0.43 0.0046 1.05 0.92 

SWIR1 0.50 0.0074 1.48 0.50 0.0074 1.48 0.90 

SWIR2 0.46 0.0136 2.93 0.46 0.0116 2.48 1.87 

 

Wadi ad-Dawasir: 
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Consistent with the behavior observed for Algodones Dunes, BRDF normalization reduced the 

overall uncertainty in all bands, with more reduction occurring in the longer wavelength bands. 

Atmospheric normalization alone appeared to have little effect on the overall uncertainty, not 

surprising given this is a desert site. 

 

 

 

Table 15: TOA Reflectance Summary Statistics for OLI Bands After Atmospheric and BRDF 
Normalization. 

 

 

 

 

 

 

 Before Atmospheric 
Normalization 

After Atmospheric 
Normalization 

Uncertainty 
After BRDF 

Normalization 
(%) Bands Mean STD Uncertainty 

(%) Mean STD Uncertainty 
(%) 

CA 0.21 0.0060 2.89 0.21 0.0060 2.82 2.75 

Blue 0.21 0.0065 3.08 0.21 0.0065 2.92 2.81 

Green 0.25 0.0060 2.40 0.25 0.0060 2.25 2.08 

Red 0.34 0.0071 2.11 0.34 0.0071 2.11 1.68 

NIR 0.41 0.0089 2.17 0.41 0.0089 2.17 1.56 

SWIR1 0.50 0.0100 2.00 0.50 0.0100 2.00 1.18 

SWIR2 0.45 0.0131 2.88 0.45 0.0131 2.72 1.80 
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CHAPTER 4 

Conclusion and Future Directions 

A new model was developed to characterize and normalize effects of atmospheric parameters on 

TOA reflectance, using available ETM+/OLI image data and nearby weather station data acquired 

for the Algodones Dunes and Wadi-ad-Dawasir sites. Moreover, according to the results presented 

in Chapter 3, the following observations can be made: 

• Atmospheric pressure was found to be significant at shorter wavelengths. This result is not 

unexpected, as i) Rayleigh scattering at shorter wavelengths is greater, and Rayleigh scattering is 

a function of atmospheric pressure; and ii) shorter wavelengths are more affected by atmospheric 

aerosols. For Algodones Dunes, the relationship was positive for the ETM+ Blue and OLI 

Coastal/Aerosol and Blue bands (increased TOA reflectance at higher atmospheric pressures). For 

Wadi-ad-Dawasir, the relationship was negative in the OLI Coastal/Aerosol and Blue bands 

(decreased TOA reflectance at higher atmospheric pressures); for both sites, the relationship was 
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negative in the OLI Green band. This was a surprising result for the Coastal/Aerosol and Blue 

bands, suggesting a potential site dependence.  

• Also, not surprisingly, water vapor was found to be significant at longer wavelengths, tending to 

reduce TOA reflectance. This was found to be more of an issue with the ETM+ in the NIR and 

SWIR1 bands, and with both sensors in the SWIR2 band. Again, this is not unexpected, as it 

follows from each sensor’s observed spectral response. 

• In all cases, linear models of atmospheric parameters accounted for less than 50% of the observed 

variability in TOA reflectance, based on the estimated regression R2 values. Exponential models 

for atmospheric pressure accounted for similarly low levels of variability. 

• For Algodones Dunes, BRDF normalization after atmospheric normalization reduced the 

uncertainty to within 2% for all ETM+ bands except SWIR2, whose uncertainty was reduced from 

approximately 3.5% to approximately 2.7%. Similar normalizations reduced the uncertainty to 

within 1% for all OLI bands except SWIR2, whose uncertainty was reduced to approximately 2%. 

For the Wadi ad-Dawasir site, BRDF normalization reduced the uncertainty to within 2% for all 

OLI bands except the Coastal/Aerosol and Blue bands. However, these figures should be 

considered tentative pending additional characterization of each site. 

 

4.1 Processing Recommendations 

Based on the results obtained from this work, the following processing recommendations can be 

made: 

• Atmospheric parameter measurements should be acquired as close to the image acquisition time 

as possible. 
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• Ground stations measuring surface humidity and atmospheric pressure should be as close as 

possible to the test site. 

• Locally accessible databases containing more temporally complete ground station information 

should be developed. 

• To provide maximum reduction in uncertainty, BRDF correction should be performed after 

atmospheric correction. 

 

 

 

 

4.2 Future Directions 

This work could be extended in one or more of the following ways: 

• Explore more stable sites throughout the world having nearby weather stations, so that those sites 

would be useful for calibration purposes. 

• Try to characterize the relationship between additional atmospheric parameters and TOA 

reflectance at shorter wavelengths. Potential parameters for these bands would most likely be those 

affecting aerosol characteristics, such as wind speed and/or visibility. 

• Develop a “composite” model simultaneously accounting for atmospheric and BRDF effects. 
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