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ABSTRACT 

EVALUATING CANOLA GENOTYPES FOR GROWTH AND YIELD UNDER 

DIFFERENT ENVIRONMENTAL CONDITIONS IN SOUTH DAKOTA  

UNIUS ARINAITWE 

2021 

Canola (Brassica napus L) and carinata (Brassica carinata A. Braun) are potential 

oilseed crops for diversifying cropping systems and expanding into marginal lands impacted 

by saline and sodic soils in South Dakota (SD). However, genotypes that are high yielding, 

with high agronomic adaptability and stability over diverse environments, and salt tolerant 

have not been selected. One field experiment was conducted at two environments (Brookings 

- eastern SD and Pierre - western SD) from 2019 to 2020 to evaluate genotypes for growth and 

yield stability. Three greenhouse experiments were conducted to evaluate genotypes for salt 

tolerance in soils varying in electrical conductivity (EC), and with or without amendments 

(biochar and composted manure). The field experiment in 2019 evaluated ten canola and three 

carinata genotypes, whereas in 2020, twelve canola genotypes were evaluated. The 

experimental design was RCBD with treatments replicated four times. The earliest genotype 

to flower was NCC101S reaching 50% flowering at 41 and 36 days after planting (DAP) in 

2019 and 2020, respectively. All carinata genotypes were later flowering reaching 50% 

flowering at >48 DAP. Seed yield for all genotypes averaged 1809 and 1740 kg ha-1 at 

Brookings and (1384 and 858 kg ha-1) at Pierre in 2019 and 2020, respectively. Similarly, seed 

oil concentration was greater at Brookings (410 g kg-1) than at Pierre (356 g kg-1) at Pierre in 

2019. Environment was the most dominant cause of variation among genotypes, explaining 

73.3%, 67.7%, 45.2% and 45.7%, of the variations in biomass yield, pods plant-1, 1000-seed 
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weight, and seed yield, respectively, while genotype by environment interactions (GEi) 

explained most of the remaining variation. Data indicated that four genotypes, CS2300, 

DKTF92SC, CS2500, and NCC101S were stable with good yield in the four environments.  

For greenhouse experiments, the first experiment evaluated ten canola and three 

carinata genotypes in three soils with EC ranging from non-saline (0.62 mmho/cm), 

moderately saline (5.17 mmho/cm) and highly saline (8.47 mmho/cm). The experimental 

design was an RCBD with treatments replicated three times. In the second experiment, two 

types of biochar (softwood and hardwood were introduced in each soil type at a rate of 5% by 

volume with an unamended control (no biochar) for each soil and 10 canola and three mustard 

genotypes were planted at a rate of eight seeds pot-1. The four most promising genotypes 

identified in experiment two (African cabbage, Brown mustard, DKTF91SC and NCC101S) 

were evaluated in the third experiment. In this experiment composted manure was added to 

each soil-biochar combination (as in second experiment) at rated of 0, 30 and 50% by volume. 

Treatments were arranged in a split-plot design with soil salinity level as the main plot and 

biochar, composted manure rate and genotype arranged in factorial design within soil salinity 

level. Seedling emergence had a negative relationship with soil salt content with an average of 

65.1%, 17.7% and 11.2% of emerged seedlings in non-saline, moderately saline and highly 

saline soils in experiment one. The genotypes with the greatest seedling emergence in 

moderately saline soils were L140P and NCC101S (29.2%), whereas NCC101S in the highly 

saline soil was the best at 29.2%. Averaged over biochar and genotypes, application of 

composted manure improved seedling emergence, number of leaves plant-1 and leaf 

chlorophyll content (SPAD values) as compared to treatments with no composted manure, 

irrespective of soil salt content (salinity level). However, application of composted manure 
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interacted with biochar type to influence number of leaves plant-1 and (SPAD values) in 

moderately saline and highly saline soil but not in non-saline soils. The interaction for number 

of leaves plant-1 was due to better response in moderately saline and highly saline soils 

amended with softwood biochar compared to soil with no biochar or amended with hardwood 

biochar to increasing composted manure rate with the greatest number of leaves obtained at 

the highest rate of 50%. For SPAD values, the interaction between biochar and composted 

manure was due to high variability in SPAD values response to applied composted manure 

among biochar treatments. In terms of genotype, there was high variability with all genotypes 

showing improvement with composted manure application in moderately saline and highly 

saline soils with or without biochar amendment, but with the best observed in soils amended 

with softwood biochar. These findings suggest that canola has a potential to become an 

alternative spring broadleaf oilseed crop for diversifying cropping systems in SD. However, 

more research is required for this crop to determine the best management practices in saline-

sodic soils. 
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EVALUATING CANOLA GENOTYPES FOR GROWTH AND YIELD UNDER 

DIFFERENT ENVIRONMENTAL CONDITIONS IN SOUTH DAKOTA 

INTRODUCTION 

Canola is the registered trademark of the Canola Council of Canada (CCC) for seed, 

oil, and meal derived from rapeseed cultivars low in erucic acid and low in glucosinolates 

(Mag, 1983). Canola and carinata are two oilseed crops from the rapeseed family that are 

thought to have originated from a cross where the maternal donor was closely related to diploid 

species of B. oleracea and B. rapa and B. juncea that are now cultivated in many parts of the 

world (Cardone et al., 2003; Licata et al., 2017; Paula et al., 2019; Seepaul et al. 2021b). Canola 

oil is primarily used for human edible products within a wide range of uses including cooking 

oil, margarine, salad dressing and shortening (U.S. Canola Association, (USCA)) (USCA, 

2007; CCC, 2016b). Canola oils are in high demand due to their low saturated fatty acids, 

moderate levels of vitamin E, and K, and high omega-3 fatty acids. Besides the human edible 

market, canola oil meal is used in livestock feed and can be used to produce biodiesel fuel, bio 

lubricants and bioplastics (USCA, 2007; CCC, 2016b).  

The European Union is the world’s largest producer of canola, followed by China and 

Canada (Myers, 2018). The U.S. produces approximately one third of the canola oil used in 

the country, providing an opportunity to significantly expand production of the U.S. crop to 

meet domestic demand. The US Northern Great Plains (NGP) region is the leading producer 

of canola in the U.S with North Dakota producing over 85% of the US total volume (USCA, 

2020).  

The dominant cropping system in SD includes the corn-soybean rotation in the eastern 

part of the state, whereas winter wheat rotations dominate the state’s western cropping region 
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and involves a single crop with about 14-month fallow period (Padbury et al., 2002; Tobin et 

al., 2020, O'Brien et al., 2020). However, many wheat farmers are interested in the alternative 

cropping system due to poor return on the investment considering the current cropping system. 

Canola and carinata hybrids are increasingly used as cover and rotation break crops in wheat, 

soybean to corn-based cropping systems (Mohammadi and Rokhzadi, 2012; Arcand et., 2014; 

Foyjunnessa et., 2018; Doolette et al., 2019) and several studies have investigated canola and 

carinata in different regions of USA to increase crop adoption with the purpose of diversifying 

rotations, increasing domestic production and reducing import costs (Starner et al., 2002; Pan 

et al., 2016; George et at., 2017) but less is known about their agronomic performance in 

different environmental conditions in SD. 

Saline and sodic soils are of great challenge to crop production in SD most especially 

in Beadle, Brown, and Spink Counties where an estimated 113,312 hectares are saline, leading 

to about $26.2 million in losses annually (USDA NRCS, 2019). Currently most acreages 

impacted by salinity/sodic soil conditions lies barren with little plant life, providing no income 

to producers, no habitat for wildlife or pollinators, and is a threat to neighboring upland areas 

through wind and water dispersal. Methods to remediate these soils are expensive (Birru et al., 

2019) compared with use of salt tolerant crops (Flowers et al., 1977; Munns, 2002). However, 

salt tolerant crops for the NGP have not yet been identified.  

Although canola is reported to be salt tolerant crop (Kumar, 1984; Wright et al., 1997; 

Zheng et al., 1998; Ashraf and McNeilly, 2004), its growth and yield is negatively associated 

with salinity (Francois, 1994). However, organic amendments such as biochar and composted 

manure are potential ameliorants in saline soil that can improve physical, chemical, and 

biological properties (Huang and Redmann, 1995; Feng et al., 2020; Obia et al., 2020; Song et 
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al., 2020), but these need to be evaluated since their performance varies with composition, 

application rates and soil conditions. More so, biochar performance varies based on biomass 

type and pyrolysis conditions. 

Canola crops fit well in rotation with wheat and other small grains because it shares 

similar growing season like wheat, with spring canola like spring wheat, planted in early spring 

and harvested in the late summer. There are over 510,314 ha dedicated to wheat production in 

SD (USDA NASS, 2017) therefore, there is an excellent potential for canola production in 

rotation with wheat. Inserting a broadleaf crop into a wheat-based rotation has been shown to 

provide benefits to the subsequent wheat crop. This “rotational effect” has been well 

documented for legumes (Williams et al., 2014) as well as for canola (Smith et al., 2004). Thus, 

canola can provide important ecosystem services and can be non-competitive with existing 

crops if strategically integrated into existing rotations, and in the marginal lands. Canola is 

well-suited to NGP production due to its short growing period and could support wheat 

production in the western part of the state by intensifying and diversifying crop rotations, 

reducing pest incidence, improving nutrient cycling, providing food for pollinators, and 

maintaining soil quality. By restoring saline/sodic soils to a more stable environment, 

producers will be given the opportunity to increase ecosystem services and restore lost 

productivity. Carinata is also an oilseed crop from the rapeseed family that is said to be drought 

tolerant (Kumar, and Singh, 1998; Seepaul et al., 2019). Because of that it has received 

attention for its potential to become an alternative oilseed crop for production in the semi-arid 

regions of the NGP of USA (Enjalbert et al. 2013; Seepaul et al., 2021a). However, it’s not 

used in food due to its long chain erucic acid and high concentrations of glucosinolates, but it 

is an alternative bio-jet fuel feedstock.  
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Previous research on canola under SD growing conditions is very limited and less is 

known about the adaptation and performance of canola genotypes to diverse environmental 

conditions typical of SD and performance in saline and sodic soils. Based on the knowledge 

gap mentioned above, the objectives of the current study were (i) to evaluate canola genotypes 

for growth and yield in different agroeco-zones with varying precipitation, temperature, and 

tillage systems in SD and (ii) evaluate different canola and carinata genotypes for tolerance to 

saline-sodic soils, and (iii) evaluate canola and mustard genotypes for emergence and growth 

in saline-sodic amended with biochar and composted manure under greenhouse conditions. 
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CHAPTER 1 

EVALUATION OF CANOLA AND CARINATA GENOTYPES FOR GROWTH, YIELD 
AND GE INTERACTION. 

LITERATURE REVIEW 

Canola is the second largest oilseed crop in the world after soybean (Myers, 2018). It 

is an amphidiploid member of Brassica family that resulted from the cross between B. oleracea 

L. and B. rapa (Raymer et al., 1990; Downey and Rimmer, 1993; Raymer, 2002; Chen et al., 

2010) a cytogenetic relationship that was described as the “U triangle” (Nagaharu, 1935). The 

triangle depicts the monogenomic diploids such as B. rapa (A genome, n=10), and digenetic 

species B. carinata (BC genome, n=17), B. juncea (AB genome, n=18) and B. napus (AC 

genome, n=19) (Vaughan, 1977; Downey and Rimmer 1993; Gulden et al., 2008). The term 

“canola” is a registered trade name by the Western Canadian Oilseed Crushers Association 

(WCOCA) representing rapeseed cultivars/varieties that are low in erucic acid content (<2 

percent), and less than 30 micromoles gram-1 of glucosinolates in the seed (Eskin and 

McDonald, 1991). This standard is now used popularly in the world on all canola-quality 

rapeseed products. Canola-quality rapeseed is in demand due to its healthy oils rich in omega-

3 fatty acids for use in cooking. After oil extraction, the remainder of the seed (canola meal) is 

processed into livestock feed. Canola meal has lower protein when compared to soybean meal 

(36-39% for canola vs 45-48 % for soybean), but canola meal can still be substituted for 

soybean meal in livestock, poultry, and fish feed. It has high levels of lysine and arginine amino 

acids and is rich in vitamins and essential minerals (Gauthier et al., 2019). 

The European Union is the world’s largest producer of canola, followed by China and 

Canada (Myers, 2018). The U.S. produces approximately one-third of the canola oil used in 

the country, providing an opportunity to significantly expand canola production to meet 
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domestic demand. The Northern Great Plains (NGP) is the biggest canola producing region in 

the US. In 2019, 809,000 hectares were planted to canola in the US, yielding on average 2,224 

kg ha-1 for a total production of 1.5 billion kilograms of canola (USDA NASS, 2019). North 

Dakota is the leading canola producer with 650,000 ha, with Oklahoma, Idaho, Minnesota, 

Montana, and Washington producing the rest (USDA NASS, 2019). In SD, canola is generally 

a new crop with only five canola farms that were reported by Census of Agriculture in 2017 

(USDA NASS, 2017). Canola has been shown to fit well in rotation with wheat and other small 

grains (Bushong et al., 2012). It has similar growing season like wheat, with spring canola, like 

spring wheat, planted in early spring and harvested in the late summer. There are over 510,300 

ha dedicated to wheat production in SD (USDA NASS, 2017) therefore, an excellent potential 

land for canola production in rotation with wheat. 

Since canola is not widely grown in SD, there is a need for more information on its 

adaptation to different environmental conditions to facilitate its integration into existing 

cropping systems. South Dakota has agro-ecologically diverse farming regions characterized 

by high temperatures, lower precipitation, and conservation tillage practices in the western 

region, and humid conditions with higher precipitation and mostly conventional tillage systems 

in the eastern region. The adaptation and performance of canola genotypes and or its relatives 

to these environments are largely influenced by their agronomic traits. These traits can be 

categorized as growth and yield traits and the important ones include emergence and stand 

establishment, days to flowering (DFL), plant height (PH), lodging (LR), biomass yield (BY), 

days to maturity (DM), harvest index (HI), number of pods plant-1 (pods plant-1) number of 

seeds pod-1, seed oil concentration (OC), and seed yield (SY) (CCC, 2017). 
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Canola lifecycle begins at seed germination and emergence, which is affected by 

seedbed preparation and tillage practices (CCC, 2017; Willenborg et al., 2004; Assefa et al., 

2014), abiotic stresses such as soil and air temperature conditions and moisture including 

freezing and or drought (CCC, 2017; McCauley, 2016; Zheng et al., 1998; Harker et al., 2015; 

Hwang et al., 2014). After emergence, biotic stresses such as soil-borne pathogens and insects 

can affect seedling at early stages of growth (Willenborg et al., 2004; Kaur and Bishnoi, 2011; 

Sharma et al., 2015; Beres et al.,2016), although seed treatments were reported to increase 

stand establishment (Willenborg et al., 2004; Sharma et al., 2015). For example, cold soils can 

delay emergence up to 20 days, resulting into non-uniform stands, and reducing growth and 

yield by 34 to 84% which is variable depending on genotype (McCauley, 2016). Canola has 

epigeal emergence and this exposes it to higher abiotic stress at early seedling stages compared 

to other crops (Koenig et al., 2011). So proper timing of planting under favorable conditions 

is critical (McGregor, 1987; Koenig et al., 2011). 

Hybrid vigor can influence germination and emergence, for example Assefa et al. 

(2014) found that hybrids with large seeds emerged more vigorously compared to open 

pollinated genotypes. In a study evaluating tillage and planting practices for spring canola 

performance, Young et al. (2012) reported higher yield under no-till, compared to conventional 

till. On the other hand, Showalter (2017) reported 11 to 29% increase in stand establishment 

under high residue reduced tillage compared to no residue in a water-limited environment and 

attributed this to the fact that no-till can conserve moisture in the seedbed in dry environments.  

Plant stands influence plant height, lodging rates, nutrient partitioning in plant and seed 

yield. Canola is very plastic and can attain optimum yield from stands ranging from as low as 

10 plant m-2 to stands as high as 200 plants m-2 (McGregor, 1987; O'Donovan, 1994; Yantai et 
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al., 2016). French et al. (2016) reviewed the performance of canola under different stands (10 

to 180 plants m-2) in 24 studies over four years under different moisture ranges and tillage 

systems, using hybrids and open pollinated cultivars. The economic optimum plant density 

ranged from 7 to 180 plants m-2 and higher for high precipitation zone and lower for low 

precipitation zone, but the difference in yield ranged from 0.3 to 1 % within each zone. This 

was because canola can compensate for stand losses up to 69% by branching, and increasing 

pods plant-1, and seeds pod-1 (Hosseini, 2006; Assefa et al., 2014; Yantai et al., 2016). Higher 

plant populations increase intraspecific competition resulting in taller plants with thin stems, 

fewer branches, and less pods. This increases competition among plants which increases 

potential for water and nutrient stress that can inhibit growth and development (Ma et al., 

2015). 

 Under normal conditions and optimum stands, canola can attain an average height 

ranging from 75 to 175 cm on average (CCC, 2017) and produce about six primary branches 

which are among the contributor traits to yield. These variations are influenced by seeding 

rates, established stands, moisture, and variety or genotype (Johnson and Hanson, 2003). 

Canola plants at low-density can have thicker stems that are more resistant to lodging (Wu and 

Ma, 2016; CCC, 2017) compared with high-density plants that are more prone to lodging 

(CCC, 2017; Dahiya et al., 2018). Reduction in plant height is a desirable trait in canola that 

can increase branching, pod area index and seed yield (Hua et al., 2014).  

 Lodging increases chances of disease infection that reduces the photosynthetic 

capacity of the stems and pods. This results into weaker plants, fewer flowers and pods and 

reduced seed yield. More so, lodging increases harvesting time and energy costs, and reduces 

yield (McGregor, 1987; Wu and Ma, 2016). The primary causes of plant root lodging are over-
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crowding of plants, wet soil, drought, and excess nitrogen in soil which can reduce seed yield 

by 16 to 80% (Islam and Evans, 1994; CCC, 2017). 

Canola has indeterminate flowering (Koenig et al., 2011; Seepaul et al., 2019), and 

therefore can continue to produce branches and putting on more flowers and pods if nutrients 

and space are not limiting, but it has a determinate growth (central stem is limited by the 

development of the floral reproductive structure, and therefore does not lengthen indefinitely). 

Moisture and heat stress above 25 oC reduce pollen fertility, pod formation, and seed 

development which also reduces seed weight, seed, and oil yield in canola (Assefa et al., 2014; 

Harker et al., 2015). For example, high temperatures were found to increase flower abscission 

and result into fewer, and smaller formed pods plant-1 (Nuttal et al., 1992; Angadi et al., 2000; 

Singh et al., 2014). Temperatures at or higher than 27 OC during reproductive growth stages 

increase pod abortion, and maximum heat (35/18 oC, maximum/minimum temperature) and 

moisture stress during pod development can cause 77% loss of seed yield, but if this happens 

during flowering, the yield loss can be 58% (Gan et al., 2004). Canola genotypes that flower 

early (before late June/early July) with efficient pod set may reduce seed yield and oil 

concentration penalty associated with high temperatures during flowering and seed filling. 

Seed size and number of seeds pod-1 have a strong association with pods plant-1, pod 

length and pod size which are all influenced by the genotype and the environmental conditions 

(Ivanovska et al., 2007, Zhang and Flottman, 2016). In canola, the number of pods plant-1 can 

be varying from 60 to 200 (CCC, 2016a) and is influenced by the availability of photosynthate 

during pod development. Lack of N supply at growth reproductive stage also will result in 

fewer smaller pods with fewer, lighter seeds, especially in the later secondary and top branches 

(Angadi et al., 2003). Substantial stress (abiotic) at pod expansion stage leads to shorter pods 
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and missing seeds (CCC, 2016a; CCC, 2017) which both negatively impacts yield. Canola 

seed size ranges from 2g 1000-seeds-1 for small seed cultivars to 7.5g 1000-seeds-1 for large 

seed size cultivars (Gusta et al., 2004; Hwang et al., 2014; Elliott et al., 2008; Harker et al., 

2015; Brill et al., 2016). Canola hybrids have larger seed size compared to open pollinated 

genotypes (Harker et al., 2015). Seed size or 1000-seed weight can be used as a selection 

parameter among canola genotypes (Elliott et al., 2008) since this is a mutagenic trait. 

Canola seed oil content is influenced both by genotype and environmental conditions 

with oil content for some genotypes reaching up to 60% (CCC, 2017). Drought stress 

terminates endosperm development, which directly influences seed size, and seed oil content, 

however, this varies from genotype to genotype. Availability of nutrients and moisture during 

seed development can influence seed oil content. Jackson (2000) reported a range of 370 to 

510 g kg-1 oil content in seeds with the variation attributed to differences in genotype, 

environmental conditions, and management factors. Comparable to this, Zhang and Flottmann 

(2016) found a close relationship between yield and biomass production among Australian 

canola hybrids in a high yield environment relative to a moisture stressed zone. 

The final seed yield in canola is a product of key yield components (pods plant-1, seeds 

pod, and biomass yield). However, this is influenced by growing conditions that affect biomass 

accumulation, days to flowering, days to maturity, pods and seed development and final seed 

and oil yield (Zhang and Flottmann, 2016). Canola yield is highly variable based on genotype 

and environmental growing conditions (Assefa et al., 2014). Over the years, canola yield has 

been on an increasing trend due to innovative research on high yielding genotypes. In 2016, 

for example average canola seed yield in United States was 1976 kg ha-1, (USDA NASS, 2017) 

which increased to 2164 kg ha-1 in 2019 (USCA, 2020). Seed yields vary from environment to 
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environment. Rahimi-Moghaddam et al. (2021) investigated irrigation regimes, temperature 

and water stress using the Agricultural Production Systems siMulator (APSIM) model with the 

known high yielding canola genotypes in Iran and found that canola can yield up to 3761 kg 

ha-1 under a cooler temperate environment and 1885 kg ha-1 under a water stressed hot climate 

with mid maturing genotype yielding higher than the rest.  

Yield of canola cultivars can also be affected by pod shatter which is a negative yield 

trait that varies among genotypes and environments. Wang et al. (2007) evaluated B. napus, B. 

juncea, S. alba and B. napus cultivars from a cross between B. rapa and B. napus, pod shatter 

was least at 4% in B. juncea and as high as 61% in hybrids. Newer cultivars however have 

lower pod shatter rates (Raman et al., 2014) due to intensive breeding and selection for pod 

shatter resistance. Pod shattering trait in canola is genetically inherited (Raman et al., 2014; 

Braatz et al., 2018) and is less controlled by the environment (Kadkol et al., 1989). 

Carinata is a non-food oilseed crop from rapeseed family that can be used as a feedstock 

for bio-jet fuel. Carinata is said to be drought tolerant (Kuma and Singh, 1998; Seepaul et al., 

2019). Because of that it has received attention for its potential to become an alternative oilseed 

crop for production in the semi-arid regions of the Northern Great Plains of USA (Enjalbert et 

al. 2013; Seepaul et al., 2021a). However, carinata is not used in food products due to its long 

chain erucic acid and high concentrations of glucosinolates. Three carinata genotypes were 

included in the study for comparison with canola genotypes. 

Since canola performance varies greatly depending on genotype, environmental 

conditions, and their interactions (Gunasekera et al., 2006), it is critical that genotype 

evaluations be conducted in areas intended for its production to enhance selection of best 

performing well adapted ones. The objective of the current study was to evaluate canola 
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genotypes for growth and yield in different agroeco-zones with varying precipitation, 

temperature, and tillage systems in SD. From the literature above, we hypothesize that canola 

growth and yield traits will differ by genotype which will vary among environments.  

MATERIALS AND METHODS 

 

A two-year study was conducted at Aurora Research farm-Brookings (44.6o N, 90.3o 

W) and Dakota Lakes Research farm-Pierre (44.3° N, 100.3° W) in 2019 and 2020. The soil 

type at the Brookings site was Brandt series characterized by fine silty, super active, frigid 

calcic hapludolls (Malo, 2003). At the Pierre site, study was conducted on a Dorna silty loam 

soil (coarse-silty over clayey, superactive, mesic Fluventic Haplustolls). The previous crop 

was winter wheat in Brookings and corn in Pierre. Pre-planting soil analysis results for the two 

locations and years are given on Table 1.1. 

The experimental design was a randomized complete block (RCBD) with treatments 

consisting of 10 canola and three carinata genotypes in 2019 and 12 canola genotypes in 2020 

(Table 1.2). The individual plot size was 1.62 x 9.14 meters (14.86 m2). In 2019, the planting 

dates were 3rd May at Pierre and 18th May at Brookings. In 2020, the planting dates were 28th 

April at Pierre and 8th May at the Brookings location. Planting was done using a seven-row 

Hege 500® (Wintersteiger-Austria). Each plot had seven rows, 22 cm apart. Seeding rate was 

based on seed size with a target population of 148 plants m-2 which is approximately 600,000 

plants acre-1. 

 Both years, 112 kg ha-1 N and 22 kg ha-1 S in the form of urea (46% N) and ammonium 

sulfate (21% N and 24% S) mixture was applied in a split application as recommended to 

ensure continuous supply of N. The first application occurred at planting and the second 
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application occurred around the bolting stage (30-35 DAP). The fertilizer was broadcast 

manually using an automatic hand-held spreader to ensure even application.  

Weeds were managed with pre-emergence application of Prowl H2O (Pendimethalin, 

BASF, Research Triangle, NC) herbicide at the rate of 2.8 L ha-1 applied 5 cm deep 

approximately 15 days prior to planting in both years. After crop emergence, Poast 

(Sethoxydim, BASF, Research Triangle, NC) herbicide was applied at the rate of 2.1 L ha-1 

four weeks after planting to control grassy weeds. Broadleaf weeds were managed by hand 

pulling from within each plot as required.  

Days to flowering (50% of flowers open within each plot) and days to maturity (50% 

of plant with pods turned yellow within each plot) were recorded for each plot at Brookings. 

At physiological maturity (when 90% of the pods plot-1 have reached a brown color and 50% 

of the plants parts have started turning color), average plant height was determined by 

measuring height of five random plants within each plot from soil line to the top of the plant. 

Lodging notes were taken and rated on a scale of 0 to 9 (0= no lodging, 9= completely lodged) 

(Passioura, 1977; Johnson and Hanson, 2003; Jan et al., 2016; Mahmood et al., 2018). Pod 

shattering notes were taken based on percent of pods shattered at the time of harvest within 

each plot (Spence et al., 1996; CCC, 2017). Plant samples were cut from a 30 x 30 cm area on 

each plot to determine yield traits. A subsample of 10 plants from each sample was used to 

determine number of pods plant-1 and seeds pod-1. The sample was then dried for 7 days at 60 

oC to moisture free weight and weighed to determine total biomass yield. The seeds were then 

threshed from the sample and weighed. Thousand seed weight was computed by counting one 

thousand clean dry seeds and taking their weight using a high precision scale (Sartorius Model 

TE3 13S-DS).  
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At physiological maturity, Roundup® (Glyphosate, Monsanto) was applied at the rate 

of 2.24 L ha-1 to burn-down the plants. Plots were harvested using a Kincaid 8XP® crop 

research combine (Kincaid Equipment and Manufacturing-Haven, KS) with the assistance of 

the H2 High-Capacity Grain Gage® (Juniper Systems Inc.- Juniper, UT) and seed yield was 

obtained from clean seeds and recorded as kg ha-1. Seeds were dried to stable moisture under 

open air drying for 7 days at 60 oC. 

Twelve samples of 50 g each from the harvested seeds from each genotype were dried 

again to moisture free weight, sent to SGS Mid-West Seed Services, Inc. in Brookings, SD for 

oil content analysis using a hexane solvent extraction method. The results of this analysis were 

used to calibrate the NMR instrument (minispec mq, Bruker-Billerica, MA) for oil content 

analysis and then the rest of the samples were analyzed using the NMR instrument. Oil yield 

was calculated by multiplying the total seed yield by the oil concentration (percent basis). 

Statistical analysis 

Growth and yield traits data from the four site-years were initially combined and 

analyzed together using analysis of variance (ANOVA) for RCBD in RStudio (version 4.1.0) 

using the package “agricolae” (De Mendiburu, 2017). Fisher’s Least Significant Difference 

(LSD) was used to compare the differences among treatments at the 95% confidence level. 

This analysis showed significant location/environment by genotype interactions for most traits 

evaluated, hence each site-year data was analyzed separately. Pearson correlation analysis was 

conducted using a four site-year combined data to determine relationships and associations 

among traits and trait profiles of genotypes (Yan et al., 2000; Yan, 2001; Yan et al., 2007; Yan 

and Frégeau-Reid, 2018). 
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The additive main effect and multiplicative interaction analysis (AMMI) which is a 

principal component-based method (Purchase et al., 2000; De Mendiburu, 2017; Ajay et al., 

2019) in R studio version 4.0.1 was used to validate the effect of genotype, environment, and 

their interactions on expression of a selected set of four yield traits across four site-years using 

eight genotypes that were present in all four site-years. If the interaction between genotype and 

the environment was significant, these were further evaluated in detail using the principal 

components procedure and constructing AMMI biplots based on principal components that 

explained the most variability of the traits (Purchase et al., 2000; De Mendiburu, 2017; Ajay 

et al., 2019). Genotypes located close to the horizontal line are characterized by stable yields 

and adaptability irrespective of the environmental conditions. Stability ranking of genotypes 

was further done based on criteria described by Lin et al. (1986) whereby the genotype is stable 

if its variance (σ2) over a range of environments is small and considering the sum of stability 

index (Becker and Leon, 1988; Crossa, 1990; Kang, 1988, Kang et al., 1991; Purchase et al., 

2000). The genotype having lower AMMI stability value (ASV), rank of AMMI stability value 

(rASV), and lower yield stability index (YSI) is stable across environments (Purchase et al., 

2000; Mut et al., 2010).  

RESULTS AND DISCUSSION 

Environmental conditions 

Rainfall and temperature data for the study location were accessed from Mesonet at 

South Dakota State University (SDSU), (Mesonet, 2020), and the 30-year average data from 

1985 to 2015 was accessed from National Weather Services used for comparison (Tables 1.3 

and 1.4). The experimental period (2019–2020) was characterized by varied weather 

conditions at different stages of spring canola genotypes growth and development. The year 
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2020 was warmer and drier than 2019 at both locations compared to the long-term average 

weather. In 2019, the growing season precipitation at Brookings was 1.7 mm more than the 

long-term average. In the month of June, the precipitation was 43.9 mm less than the long-term 

average whereas July was 51.4 mm higher than long-term average. Heavy rainfall in July (total 

132 mm) soaked root zone reducing anchorage that increased plants susceptibility to lodging. 

In 2020 at Brookings, total seasonal precipitation was 168.6 mm lower than the long-term 

average. Again, June was 43.7 mm drier than the long-term average whereas the July 

precipitation was close to the long-tern average. 

At Pierre in 2019 seasonal precipitation was 102.9 mm lower than the long-term 

average. During flowering period in June, precipitation was 80.1 mm lower than the long-term 

average whereas in July the precipitation was slightly greater (+4.7 mm) than the long-term 

average. The dry weather conditions constrained crop growth during the pod and seed 

development period. Pierre was even drier in 2020 with the whole growing season precipitation 

of 114.3 mm lower than the long-term average and with both June and July drier than the long-

term average (Table 1.3).  

Temperature varied between the two environments and among the four site-years of 

the study (Table 1.4). At Brookings in 2019, maximum temperatures during June/July, which 

is the reproductive growth and therefore heat-sensitive period for canola, were comparable to 

the long-term average, whereas in 2020, maximum temperatures were 2.8 and 0.3 oC higher 

than the long-term average. In April, which is the planting period, maximum temperatures were 

11.1 and 12.5 oC higher than the long-term average in 2019 and 2020, respectively. At the 

Pierre location in 2019 both June and July were slightly cooler than the long-term average. In 

2020, June was warmer than the long-term average whereas July was cooler (Table 1.4). In 
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general, the Brookings location was cooler, wetter, and much more comparable to the long-

term average in 2019 compared to 2020, and cooler in both years than the Pierre location. The 

Pierre location had more consecutive days of extreme hot days (above 25 oC) compared with 

the Brookings location (Table 1.5). 

Lower than optimum precipitation in April and May of 2020 at both locations resulted 

in reduced early growth and vigor which affected overall agronomic trait expressions, while 

heat stress during June and July constrained flowering, pod setting, seed development and seed 

filling which reduced seed yield and oil concentration. These results were similar to those 

reported by Morrison et al. (2016) in heat stress treatments. Drought was more severe at Pierre 

due to elevated temperatures resulting in reduced plant growth, pollen fertility, pods plant-1, 

seeds pod-1, and consequently leading to lower seed yield and seed oil content for all genotypes 

compared to Brookings location. 

Plant height and lodging. 

Plant height data were collected in three of four site-years, these data were not collected 

at Brookings in 2019 due to excessive lodging. Genotypes differed in plant height (Table 1.6 

to 1.8). At Pierre in 2019, the tallest genotype was CS2300 with this genotype taller than all 

other canola and carinata genotypes except DH140251 (Table 1.6). At Pierre in 2020, the same 

genotype CS2300 was significantly taller than all others (Table 1.7). The shortest genotype 

was NCC101S (96.1 cm and 85.7 cm tall) at Pierre in 2019 and Brookings in 2020, 

respectively. The average canola height was 111.3 cm in 2019 and 93.3 cm in 2020 likely due 

to higher precipitation and less heat stress in the 2019 growing season (Tables 1.3 and 1.4). 

Volkov et al. (2006) also reported a reduced growth in Arabidopsis due to heat and moisture 

stress. Elferjani and Soolanayakanahally (2018) also reported that canola plant height averaged 
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145.8 cm under normal conditions (control) but when cultivars were subjected to heat and 

moisture stress treatments, plant height reduced drastically. Canola genotypically is shorter 

when compared to carinata (CCC, 2016a) and average height can be in the rage of 75 to 175 

cm, which is consistent with the findings on plant height in this study. Taller plants tend to 

partition a lot of nutrients to biomass production, increasing susceptibility to lodging due to 

increased gravitational point and thinner nonlignified stem tissues. 

Data for stem lodging were collected at the Brookings site only. In both years lodging 

was significantly influenced by genotype (Tables 1.7 and 1.9). In 2019, the most lodged 

genotype was CS2600 (7.8) while the least lodged genotype was CS2500 (1.8). In 2020, the 

most lodged genotype was DKTFLL21SC (8.5) which was the greatest overall, while the least 

lodged genotype was CS2300 (0.3). Canola plants lodged more in 2019 compared to 2020 

likely due to higher moisture in the rooting zone that reduced anchorage, and plants were taller 

in 2019 leading to lodging (Wu and Ma, 2016). In the current study, taller genotypes lodged 

more than shorter ones, which is consistent with Alberti et al. (2019) who found positive 

correlation of plant height and lodging under similar South Dakota growing conditions. 

Likewise, Pan et al. (2016) found that lodging severity was strongly associated with plant 

height among canola hybrids. Favorable growing conditions in 2019 at early plant development 

resulted in tall, vigorous plants. This was followed by a mid-season heavy storms during the 

post-flowering to pod filling period in late July to August, creating conducive environment for 

stem and root lodging. Related to this, Zhang and Flottmann (2016) reported higher rates of 

lodging among Australian canola hybrids following heavy precipitation compared to a drier 

year. The Brookings location in 2019 was wetter, and plants were heavier with more pods 

plant-1 and higher biomass making them susceptible to lodging. 
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Days to flowering and days to maturity 

Days to flowering data were collected at the Brookings location only. Genotypes 

differed significantly in number of days to flowering (Tables 1.7 and 1.9). The earliest 

genotype to flower was canola NCC101S reaching 50% flowering at 41 and 36 DAP, in 2019 

and 2020, respectively. The latest genotype was carinata, DH140251 (51 DAP) in 2019 and 

canola genotype CS2300 at 44 DAP in 2020. The three carinata genotypes (A120, DH140251 

and DH069485) flowered late compared to canola genotypes, reaching 50% of flowering at 

>48 DAP in 2019. This variation in flowering between canola and carinata was also reported 

by Getinet et al. (1996) who observed a 5 to 19 delay in days to flowering by double haploid 

Ethiopian mustard genotypes compared to canola genotypes. On average, all canola genotypes 

flowered 2 to 4 days earlier in 2020 compared to 2019 which was likely due to early drought 

and mid-season heat stress that initiated early transitioning from vegetative to reproductive 

growth. Similar findings have also been reported by Tesfamariam et al. (2010) who reported 

early flowering due to stress, although this response varied from genotype to genotype under 

different environments. Canola is very sensitive to heat and moisture stress, and it is more 

devastating if flowering for spring canola coincides with high temperatures, especially in late 

June to early July. This often results in flower abortion and poor pod set, which negatively 

impact seed yield and oil concentration.  

The days to maturity data were collected at the Brookings location only and genotypes 

differed in days to maturity (Tables 1.7 and 1.9). In 2019, canola genotype NCC101S matured 

earlier than all other genotypes (Table 1.9) while the carinata genotype A120 was the latest 

genotype to mature. All three carinata genotypes matured later compared to most canola 

genotypes. In 2020, the earliest genotype was DKTF91SC reaching maturity at 79 DAP, but 
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this was like most other genotypes except four canola genotypes (CS2300, CS2600, 

DKLL82SC and L140P). Over the 2-year period, the number of days to maturity ranged from 

79 to 98. This is a slightly narrower range than 82 to 122 days reported by Yantai et al. (2016) 

for canola hybrids grown at 16 different locations. The variations in number to days to maturity 

were attributed to large moisture gradient among multiple locations/environments. There were 

only two location/environments in the current study (Brookings 2019 and 2020). Likely, high 

moisture in 2019 increased nutrient availability to plants which consequently increased 

vegetative growth and extended days to maturity by at least 4 days among genotypes compared 

to the slightly drier year of 2020. 

Number of pods plant-1, seeds pod-1, and 1000-seed weight 

Canola genotypes differed in number of pods plant-1 only at Brookings in 2020 (P = 

0.014) (Table 1.7). The genotype with greatest number of pods plant-1 was CS2300 (57 pods 

plant-1) while the genotype with least number of pods plant-1 was DKTF91SC (18 pods plant-

1). On average, plants had more pods in 2019 at Brookings (82 pods plant-1), and at Pierre (67 

pods plant-1) than in 2020 at Brookings (35 pods plant-1), and at Pierre (24 pods plant-1). This 

was not surprising since more than average rainfall is reported to enhance plant growth, 

promote branching and increasing the number of pods plant-1. Pods plant-1 in the current study 

ranged from 18 to 106 among all genotypes. This is in the lower end of the average range of 

60 to 200 pods plant-1 reported by CCC (2017). This is likely due to a combination of factors. 

For example, in 2020 precipitation was lower than optimum and temperatures higher than 

average at both locations. In 2020, we observed even lower pods plant-1, (24 and 35 pods plant-

1) at Brookings and Pierre, respectively. The effect of heat and moisture stress on Brassica 

crops have been reported in different studies to negatively impact their growth and yield 
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(Nuttal et al., 1992; Angadi et al., 2000; Singh et al., 2014). Higher temperatures greater than 

25 0C during flowering can prevent canola plants from forming pods, (Gan et al., 2004). 

Data for number of seeds pod-1 were collected at both locations in 2020 (Tables 1.7 and 

1.8). The number of seeds pod-1 varied among genotypes at Brookings (P = 0.050), and at 

Pierre (P = 0.008). At Brookings, the number of seeds pod-1 ranged from 7 (DKTF91SC) to 16 

(CS2300) with a mean of 12 seeds pod-1 whereas at Pierre the number of seeds pod-1 ranged 

from 7 seeds pod-1 (DKLL82SC) to 16 seeds pod-1 (CS2300) with an average of 11 seeds pod-

1. These results indicate that the number of seeds pod-1 are more stable across environmental 

conditions. In canola the number of seeds pod-1 can range from 15 to 40, depending on the 

genotype and environmental conditions (CCC, 2016a). Harsh environmental conditions such 

as drought during critical growth stages has been shown to reduce seed development in canola 

(Gan et al., 2004; Mirzaei et al., 2013), especially under higher plant population (Angadi et al., 

2000) due to elevated competition for moisture. In the current study, average established plant 

stands were greater at Brookings (168 plant m-2) compared to 135 plant m-2 at Pierre during 

the same growing season (data not shown) and greater than optimum plant population for 

canola production of 50 to 80 plants m-2 (CCC, 2017). These greater plant populations and 

harsher environmental conditions likely explain the lower-than-average number of seeds pod-

1 observed in the current study. Furthermore, heat and drought stresses increase flower 

abortion, reduce the number of formed pods and seeds (Gan et al., 2004, Assefa et al., 2014) 

which contribute negatively to yield. 

Canola seed size varied among genotypes at Brookings in 2019 (P<0.000) and 2020 (P 

= 0.045), and at Pierre in 2019 (P = 0.008) (Tables 1.6, 1.7, and 1.9). In 2019 at Brookings, 

seed size ranged from 2.8 g 1000 seeds-1 (L140P) to 5.3 g 1000 seeds-1 (DH140251) with a 
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mean of 3.5 g 1000 seeds-1. At Pierre in 2019, seed size ranged from 2.1 g 1000 seeds-1 

(DKTF92SC) to 5.2 g 1000 seeds-1 (DH140251) with a mean of 3.4 g 1000 seeds-1. Seed size 

was smaller in 2020 ranging from 1.9 g 1000 seeds-1 (L233P) to 3.3 g 1000 seeds-1 (CS2500) 

with a mean of 2.7 g 1000 seeds-1. Carinata genotypes had larger seeds than canola genotypes 

(Tables 1.6 and 1.9). The 1000-seed weight is an important genotype-specific trait (Thompson 

et al., 1977), so this can be used as a selection parameter among canola genotypes (Elliott et 

al., 2008). This trait is key in determining seeding rates, and has influence on seedling 

emergence rates, vigor, and growth. Canola seed development and expansion is influenced by 

the genotype (McGregor, 1987) as well as environmental conditions (Assefa et al., 2014; 

Harker et al., 2015). The partitioning and accumulation of growth assimilates into the seed 

endosperm determines seed size, and this can vary depending on availability of nutrients and 

moisture during critical seed development and maturation stages. Under optimal conditions, 

canola seed size can be in the range of 2 to 7.5 g 1000 seeds-1 (Elliott et al., 2008; Hwang et 

al., 2014). If we consider canola genotypes only, canola seeds in this study are in the lower 

range of average seed size likely due to stress conditions during seed development.  

Biomass yield, harvest index, and seed yield  

Genotypes differed in biomass yield at Brookings location in 2019 (P = 0.013), and in 

2020 (P = 0.033) (Tables 1.7 and 1.9). In 2019, biomass yield ranged from 1673 g m-2 

(DKL7114BL) to 2499 g m-2 (L233P) with an average of 1967 g m-2. In 2020, the biomass 

yield was much lower ranging from 329 g m-2 (DKT 96SC) to 1237 g m-1 (CS2300) with an 

average of 793 g m-2. On average, biomass yield was 2.5 times greater in 2019 (1967 g m-2) 

than in 2020 (793 g m-2). The earlier maturing genotypes produced less biomass in a drier year 

of 2020 compared to a cool, wetter year of 2019. Under excess nutrients and moisture later in 



23 

 

the growing season, canola can continue to accumulate significant amounts of biomass even 

after pod set is complete due to its indeterminate growth, while under terminal water stress, 

biomass production is terminated early in favor of pod and seed development (Zhang and 

Flottmann, 2016). Biomass production has a linear association with seed yield, although 

variations exist depending on plant density, moisture, and nutrient availability to plants during 

the growing season. Biomass accumulation is the main driver to yield of canola hybrids under 

favorable conditions (Laza et al., 2003; Zhang and Flottmann, 2016). This literature together 

with analysis herein strongly suggest that drought and heat stress (Tables 1.3 to 1.5) are 

responsible for variations in biomass yield among genotypes evaluated. 

 Seed yield varied significantly among genotypes at all site-years (Tables 1.6 to 1.9). 

In 2019 at Brookings, seed yield ranged from 1182 kg ha-1 (DH069485) to 2349 kg ha-1 

(DKTF91SC) with a mean of 1809 kg ha-1 which was the greatest yield among all site-years. 

At the Pierre location during the same growing season (2019), seed yield ranged from 1001 kg 

ha-1 (A120) to 1687 kg ha-1 (CS2100) (Tables 1.6 and 1.9). The three carinata genotypes were 

the lowest yielding at both locations in 2019. In 2020, canola seed yield at Brookings ranged 

from 1104 kg ha-1 (DKTFLL21SC) to 2964 kg ha-1 (L140P) with a mean of 1740 kg ha-1. At 

Pierre in the same year, seed yield was much lower ranging from 504 kg ha-1 (L233P) to 1375 

kg ha-1 (CS2600) with a mean of 858 kg ha-1 (Tables 1.7 and 1.8). Poor yield at Pierre was due 

to early drought stress and damage by chinch bugs (Blissus leucopterus) during early growth, 

and heat stress during reproductive growth. The drought and heat stress, and insect damage 

adversely affected the earlier flowering and maturing genotypes more that the later genotypes. 

Moisture and heat stresses have been reported in some studies to negatively impact seed yield 
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and oil concentration in Brassica crops (Tayo and Morgan, 1975; Morrison and Stewart, 2002; 

CCC, 2017).  

Seeds yield in Brassica crops is a function of pods plant-1, seeds pod-1, 1000-seed 

weight, and biomass yield which are key yield components (Angadi et al., 2003; Zhang and 

Flottmann, 2016). In the current study we found a significant positive correlation of seed yield 

with seeds pod-1 and pods plant-1. In addition, environmental conditions can affect the 

genotypes adaptability to growth and yield. Other studies reported higher yields under 

irrigation compared to non-irrigated controls under extremes of drought and heat stress (Taylor 

et al., 1991; Mohtashami et al., 2020), suggesting that supplemental irrigation at the Pierre 

location in 2020 would have reduced yield penalties associated with drought and heat stress. 

Oil concentration and oil yield  

Genotypes differed in seed oil concentration at Brookings and at Pierre in 2019 and at 

Brookings in 2020 (Tables 1.6, 1.7, and 1.9). At Brookings in 2019, oil concentrations ranged 

from 263 g kg-1 (A120) to 516 g kg-1 (CS2600) while in 2020, the range in oil concentration 

among genotypes was narrower from 305 g kg-1 (DKTFLL21SC) to 469 g kg-1 (L140P) (Table 

1.9). At Pierre seed oil concentration was lower ranging from 216 g kg-1 (NCC101S) to 437 g 

kg-1 (CS2100) in 2019 (Table 1.6). Oil concentration in seed was greater in 2020 compared to 

2019, and greater in canola genotypes than carinata genotypes. Seed oil concentrations in 

canola ranged of 370 g kg-1 to 510 g kg-1 under optimum field conditions and was 340 g kg-1 

under drought stress conditions with only 332 mm of precipitation (Jackson, 2000). Canola oil 

content is also influenced by the environmental conditions that affect seed endosperm 

development and maturation (Zhang and Flottmann, 2016). At Pierre in 2019 the total growing 

season precipitation was 102.9 mm lower than the long-term average while in the same year at 
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Brookings, weather was much more comparable to the long-term average, all explaining the 

lower oil concentration for most genotypes at Pierre (356 g kg-1) when compared to the same 

genotypes at Brookings (414 g kg-1) in 2019. Low oil concentration in semi-arid environments 

was attributed to accelerated growth and short growing season as reported by Getinet et al. 

(1996) which negatively impacted proper seed development, maturation and ultimately 

reduced seed oil accumulation. 

Genotypes differed in oil yield at Brookings in 2019 and 2020, and at Pierre in 2019 

(Tables 1.6, 1.7, and 1.9). Oil concentration and oil yield was not measured at Pierre in 2020 

since drought stress impacted seed development resulting in extremely small and shriveled 

seeds. In 2019 at Brookings oil yield ranged from 327 kg ha-1 to 1178 kg ha-1 with a mean of 

771 kg ha-1. At Pierre in the same year, oil yield was much lower ranging from 150 kg ha-1 to 

542 kg ha-1 and a mean of 361 kg ha-1. At Brookings in 2020, oil yield ranged from 323 kg ha-

1 (DKTFLL21SC) to 1405 kg ha-1 (L140P). Carinata genotypes had lower oil yield at both 

locations in 2019 in comparison with canola genotypes. Periods of high temperatures and low 

soil moisture during flowering and seed-filling periods in canola have been shown to reduce 

seed oil concentrations (Morrison and Stewart, 2002), which helps explain the low oil yield 

among all genotypes at Pierre compared to Brookings.  

Association between growth and yield traits 

Pearson correlation was used to determine the relationship between growth and yield 

traits. Number of days to flowering was significantly correlated with days to maturity (r = 0.69, 

P<0.000), biomass yield (r = 0.61, P<0.000), 1000-seed weight (r = 0.28, P = 0.006), and seed 

yield (r = 0.22, P = 0.034) (Table 1.10). Similarly, days to maturity had a strong positive 

association with biomass yield (r = 0.80, P<0.000), and 1000-seed weight (r = 0.49, P<0.000). 
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However, days to maturity had no relationship with seed yield (Table 1.10). This is contrary 

to findings by Zhang et al. (2010) who found a positive correlation of genotype’s days to 

maturity and seed yield. In the NGP, early flowering for spring canola is a desirable trait and 

flowering for late maturing genotypes often coincides with higher temperatures causing flower 

abscission, poor pod setting and seed development which negatively impacts on seed yield. 

However, in the presence of late-season precipitation, later flowering cultivars resume growth 

and produce more biomass, lengthening days to maturity without increasing seed yield, which 

agrees with Zhang and Flottmann (2016) who found a lengthened growth and delayed maturity 

under high precipitation zone compared to a lower precipitation zone using the same 

genotypes.  

The number of pods plant-1 had a positive correlation with biomass yield (r = 0.84, 

p<0.000), days to maturity (r = 0.77, P<0.000), 1000-seed weight (r = 0.34, P<0.000), and seed 

yield (r = 0.38, P<0.000). This means that late maturing genotypes produced more biomass, 

which lengthened days to flowering and partitioned more assimilates to growth and hence more 

pods plant-1. The number of seeds pod-1 were negatively correlated with 1000-seed weight (r 

= -0.29, P = 0.05), and positively correlated seed yield (r = 0.41, P<0.000) but with no 

relationship with biomass yield, pods plant-1, days to flower and days to maturity (Table 1.10). 

Lack of moisture and nutrient supply at reproductive growth stages can constrain pod and seed 

development, resulting in fewer pods and lighter seeds explaining the negative correlation 

between seeds pod-1 and 1000-seed weight. This is a common problem among late flowering 

genotypes under late drought and in early flowering genotypes during early drought (Angadi 

et al., 2003). However, is important to note that higher precipitation late in the growing season 

combined with soil nutrient availability can result in excessive vegetative growth and increased 
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number of pods plant-1 with lighter small seeds. This assertion is supported by Zhang et al., 

2010 who found no association of seeds m-2 with seed pod-1 and 1000-seed weight among late 

maturing Australian canola hybrids.  

Biomass yield had lower but significant correlations with seed yield (r = 0.26 P<0.000) 

and 1000-seed weight (r = 0.34, P<0.000) (Table 1.10). Increase in biomass accumulation 

results in elevated canopy photosynthesis, resulting in greater assimilate partitioning into seed 

development (Zhang and Flottmann, 2016) resulting in increased yield. However, under 

drought stress, plants partition less assimilates into pod and seed development hence the lower 

correlations observed in the present study. This agrees with the analysis of variance (Table 1.6 

to 1.9) where most genotypes at Pierre location accumulated higher biomass without 

partitioning the assimilate into seed development.  

Genotype-by-Environment Interaction (GEi). 

 The results of the AMMI analysis for four traits of eight canola genotypes that were 

present at all four-site years of this study are presented in Table 1.11. Environment effects were 

significant for all four traits. Environment explained 73.3% of the variation in biomass yield, 

67.7% of the variation in pods per plant, 45.2 % of the variation in 1000-seed weight and 45.7% 

of the variation in seed yield. Genotypic effect was not significant for all four traits and 

explained the least variation ranging from a low of 1.7 % in biomass yield to a high of 5.6 % 

in the 1000-seed weight. On the other hand, GE interactions were significant for three (biomass 

yield, pods plant-1, seed yield) of the four traits and explained the remainder of the observed 

variation ranging from 6.8% for 1000-seed weight to a high of 18.1% for seed yield. 

Acclimatizing a new cultivar in a new environment for optimum yield, demands that both must 

interact (GE interaction) to influence yield (Gunasekera et al., 2006) although this may 
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complicate selection for multiple environments (Shafii and Price, 1998). Unlike in the study 

by Nowosad et al. (2017) where the GE interaction was significant only for canola seed oil 

content, GE interactions were highly significant (P<0.000) for the three out of the four traits 

in the current study. The only exception was for the 1000-seed weight trait that was influenced 

only by environment. Although canola seed size is a mutagenic trait, (Hwang et al., 2014; 

Elliott et al., 2008; Harker et al., 2015; Brill et al., 2016) the lack of genotypic effect on 1000-

seed weight was surprising as seed size was variable among canola genotypes. 

Canola growers are mostly interested in seed yield and yet it is a function of many 

components with the most important being 1000-seed weight (seed size), pods plant-1 and 

biomass accumulation (Zhang and Flottmann, 2016). The GE interaction for these traits and 

seed yield were further analyzed in detail using AMMI-1 biplot following the criteria described 

by De Mendiburu (2017); Ajay et al. (2019). The results showed that GE interactions had the 

greatest effect on biomass yield with values of three principal components (PC’s), PC1, PC2 

and PC3 significant (Table 1.11). Genotype x environment interaction also had a great impact 

on seed yield with two first principal components, PC1 and PC2 values significant. While first 

two PC1 and PC2 explained >80% of observed GE variation for all four traits, it was PC1 that 

accounted for most of the observed variation, ranging from 57.1 % for 1000-seed weigh to 

83.2% in pods plant-1 (Table 1.11).  

We further analyzed the nature of the GE interaction focusing on PC1. The traits were 

plotted on the x-axis and the PC1 scores on the y-axis (Figure 1.1 a-d), (Ararsa et al., 2015; 

Załuski et al., 2020). On average, seed yield was greatest for genotypes L140P (6) and lowest 

for L233P (7) (Fig 1-1a). This agrees with the ranking of yield in Table 1.12. In terms of 

environmental adaptability (Fig 1.1 a-d), Brookings 2019 (11) and Pierre 2019 (21) were very 
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similar and had the greatest seed yield whereas Pierre 2020 (41) was the harshest environment 

for seed yield (Fig 1.1a) due to lower than long-term average precipitation and higher 

temperatures during the growing season (Table 1.2 to 1.4). Pierre 2019 (21) and Brookings 

2020 (31) differed greatly in terms of genotypes adaptability. Pierre 2020 (41) was very 

discriminating, as indicated by longer distance from the origin. The genotypes CS2300 and 

CS2500 were adapted to this environment with greater stability as indicated by closeness to 

the yield tester axis (YTA), as compared to L140P (6) which was also adapted to the Pierre 

2019 but was unstable. The Brookings 2020 (31) environment was less discriminating with 

four genotypes (NCC101S, DKTF92SC, CS2100 and L233P) uniformly and relatively stable 

under this environment. The two canola genotypes L140P (6) at Pierre 2019 (21) and 

DKTF91SC (4) at Brookings 2020 (31) produced the greatest seed yield under the two 

favorable environments which were cooler, and wetter compared to Pierre 2020 (41), therefore 

contributing greatly to the GE interactions (Figure 1.1 a). The Pierre 2020 environment (41) 

was the harshest in terms of growing conditions and very discriminating compared to other 

three other environments with no genotype adapted to this environment.  

On average, biomass yield was greatest for genotypes L233P (7) and lowest for 

DKTF91SC (4) (Fig 1.1b). This agrees with the ranking of genotype’s biomass yield in Table 

1.12. In terms of environments, Brookings 2019 (11) and Brookings 2020 (31) were very 

similar and were the greatest yielding environments in terms of biomass yield whereas Pierre 

2019 (21) and Pierre 2020 (41) were least favorable environment for biomass yield (Fig 1.1b). 

The two canola genotypes NCC101S (8), and L233P (7) produced the greatest biomass yield 

under the two favorable environments of Brookings 2019 and 2020 which were cooler, and 

wetter compared to Pierre 2019 (21) and 2020 (41) (Fig 1.1 b). However, the same two 
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genotypes (NCC101S and L233P) and CS2300 (2) were the most unstable genotypes 

contributing to the observed GE interaction as indicated by the fact that they are the farthest 

from the tester axis.  

For pods plant-1, the two Brookings environments (Brookings 2019 (11) and Brookings 

2020 (31) were similar in terms of growing conditions, although 2019 (11) was more 

discriminating compared to Brookings 2020 (31) (Fig 1.1c). The three environments, 

Brookings 2019 (11), Pierre 2019 (21) and Pierre 2020 (41) were characterized by varied 

growing conditions as shown by their placement in relation the center of origin (Fig 1.1c). This 

contributed greatly to GE interactions for pods plant-1 with Brookings 2019 (11) being the most 

favorable for pod production while the dry, hot growing environment of Pierre 2020 (41) being 

the least favorable for pod production. Pods plant-1 was greatest for L233P (7) and lowest for 

L140P (6) (Fig 1.1c) agreeing with the ranking of pods plant-1 in Table 1.12. This means that 

same genotype that accumulated the greatest biomass yield (Fig 1.1b) produced the greatest 

number of pods plant-1. These results agree with earlier report suggesting a close relationship 

between biomass yield and pods plant-1 (Zhang and Flottmann, 2016) and supports the high 

and significant correlation between biomass yield and pods plant-1 observed in the current 

study (Table 1.10).  

Unlike the other three traits (biomass yield, pods plant-1, seed yield), seed size was 

greatly influenced by the environment but did not show GE interactions. The four 

environments were highly discriminating for seed size as indicated by extreme projections 

from the tester axis. This means that each environment was very distinct in growing conditions 

that impacted seed size. Canola seeds were larger at Brookings 2019 (11) and Brookings 2020 

(31) both environments with favorable growing conditions in terms of precipitation and 
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temperature (Fig 1.1d). Seeds were smaller at Pierre location in both years. The genotype with 

the largest seed size was CS2500 (3) while DKTF92SC (5) had the smallest seeds. 

Environmental conditions such as moisture and temperature influences seed formation and 

development (Assefa et al., 2014) although this may be a function of genotype since variations 

in seed size exist between hybrid and conventional cultivars (Hwang et al., 2014; Harker et al., 

2015).  

Genotypes stability indices 

In addition to the AMMI-1 biplot we analyzed the eight genotypes for stability using 

the AMMI stability procedures as described by Kang, (1988) and Purchase et al. (2000). With 

this method the genotype is stable if its variance (σ2) (ASV) over a range of environments is 

small (Lin et al., 1986; Purchase et al., 2000). The AMMI stability value (ASV) represents the 

variance and the lower the (ASV), the more stable the genotype. Thus, according to ASV-

values, the ranking of the genotypes for stability in the four environments from most stable to 

least stable are NCC101S, DKTF92SC, CS2100, L233P, CS2300, CS2500, DKTF91SC, and 

L140P (Table 1.12). However, based on seed yield, the ranking of genotypes in from highest 

to lowest yield are as follows: L140P, CS2300, CS2500, DKTF91SC, DKTF92SC, NCC101S, 

CS2100, and L233P (Table 1.12). The most stable genotypes with high seed yield were 

CS2300, DKTF92SC, CS2500, DKTF91SC and NCC101S agreeing with the results from the 

GE biplots analysis (Figure 1.1a). When the stability ranking for seed yield was compared to 

stability for the other three traits, the three genotypes (L233P, DKTF92SC and CS2100) stood 

out as being stable in seed yield as well as in the three other traits. However, when considering 

stable canola genotypes with high yield, the top genotypes are CS2300 (late maturing), 

CS2500, (Intermediate), DKTF92SC, and NCC101S (early maturing) (Table 1.12).  
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CONCLUSIONS 

Even though canola can be adapted to diverse environments, genotype performance 

varied from one environment to another. Greatest seed yield was observed at the Brookings 

environments which had higher precipitation and cooler temperatures compared to the Pierre 

environments (2019 and 2020). Environment was the most dominant cause of variation among 

genotypes, explaining 73.3%, 67.7%, 45.2% and 45.7%, of variations in biomass yield, pods 

plant-1, 1000-seed weight, and seed yield, respectively whereas GE interactions explained most 

of the remaining variation. Data from the four site years indicated that four genotypes, CS2300, 

DKTF92SC, CS2500, and NCC101S were stable over the four environments and had good 

yields. The overall findings indicate that canola can be an alternative spring broadleaf oilseed 

crop for diversifying the cropping systems in SD. 
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Table 1.1. Pre-planting soil chemical characterization at Aurora farm-Brookings and Dakota Lakes farm-Pierre experimental study 
sites during 2020 growing season 

Location Depth Rotation pH a EC b OM c NO3 
d P e K f Na g S h 

 cm   dS/m-1 %  kg ha-1 ............................ mg kg-1 .................................... 

Brookings  0-15 WH 6.5 0.21 4.4 32.1 10 86 11 13.8 

Brookings  15-61 WH 6.6 0.14 2.9 37.1 4 44 11 7.2 

Pierre  0-15 WH 6.4 0.26 1.7 15.1 24 629 12 11.2 

Pierre  15-61 Corn 7.4 0.29 1.6 23.0 12 417 16 6.7 

Abbreviations: WH=Winter wheat 

a Potential of hydrogen concentration 

b Soil electrical conductivity 

c Soil organic matter 

d Soil nitrates (NO3 -N) 

e Soil phosphorous  

f Soil potassium 

g Soil sodium content 

h Sulfur 
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Table 1.2. Genotypes evaluated in 2019 and 2020 field experiments at Brookings and Pierre locations 

 Treatments in 2019 field experiment  Treatments in 2020 field experiment 

Entry  Name Crop  Source Maturity Entry Name Crop Source Maturity 

1 NCC101S Canola Caldbeck Consult  Early 1 NCC101S Canola Caldbeck Consult Early 

2 CS2300 Canola Meridian Seeds Med/Late 2 CS2100 Canola Meridian Seeds Med/Late 

3 CS2500 Canola Meridian Seeds Med/Late 3 CS2300 Canola Meridian Seeds Med/Late 

4 CS2100 Canola Meridian Seeds Med/Late 4 CS2500 Canola Meridian Seeds Med/Late 

5 L140P Canola Invigor Medium 5 CS2600 Canola Meridian Seeds Early/Med 

6 L233P Canola Invigor Early 6 DKTF91SC Canola DEKALB Canola Early 

7 DKL7114BL Canola DEKALB Canola - 7 DKTF92SC Canola DEKALB Canola Early 

8 DH140251 Carinata Agrisoma - 8 DKTFLL21SC Canola DEKALB Canola  - 

9 DH069485 Carinata Agrisoma - 9 DKTF96SC Canola DEKALB Canola  - 

10 A120 Carinata Agrisoma - 10 DKLL82SC Canola DEKALB Canola  - 

11 DKTF91SC Canola DEKALB Canola - 11 L233P Canola Invigor Early 

12 DKTF92SC Canola DEKALB Canola Early 12 L140P Canola Invigor Med/Late 

13 CS2600 Canola Meridian Seeds Early/Med 
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Table 1.3. Monthly precipitation data (mm) collected throughout the growing seasons for 2019 and 2020 at Brookings and Pierre, 
SD. 

Months P. Date Apr May Jun Jul Aug Total 

  ..............................................................mm....................................................................................... 

Brookings 2019 5/18/ 2019 62.8 105.7 67.1 132.4 62.3 430.3 

Brookings 2020 5/8/ 2020 15.3 61.8 67.3 83.6 35.4 263.4 

30-Year average  63.0 90.0 111.0 84.0 84.0 432.0 

Pierre 2019 5/3/2019 17.4 67.0 12.9 69.7 79.1 246.1 

Pierre 2020 4/28/2020 6.5 48.7 88.6 61.4 29.6 234.7 

30-year average  54.1 81.0 93.0 65.0 56.0 349.0 

Source: (Mesonet, 2020; http://www.noaa.gov/). 30-year average is the average rainfall from 1985-2015. 

 

 

 

 

 

 

Table 1.4. Maximum and average monthly temperatures (oC) during 2019 and 2020 growing seasons at Brookings and Pierre SD. 
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Site-Year Apr May Jun Jul Aug 

Temp. (oC) Max. a Avg b. Max. Avg. Max. Avg. Max. Avg. Max Avg. 

 ..................................................................................OC ....................................................................................... 

Brookings 2019 11.1 6.2 16.5 11.4 25.2 19.5 26.9 21.9 24.2 19.3 

Brookings 2020 12.5 5.6 17.5 12.4 27.8 21.8 28.6 22.8 28.5 22.0 

30-Year average 13.3 6.9 20.0 13.9 25.0 19.7 28.3 22.2 27.2 20.8 

Pierre 2019 13.7 7.4 17.4 11.7 27.2 20.2 29.6 23.4 26.4 21.0 

Pierre 2020 14.6 6.5 19.1 13.1 28.3 22.2 31.0 24.3 31.6 23.8 

30-year average 16.1 9.2 22.2 15.3 27.8 21.1 32.2 25.0 31.1 29.9 

Source: (Mesonet, 2020; http://www.noaa.gov/) 30-year average is the average rainfall from 1985-2015.  

Abbreviations: 

a Maximum temperatures. 

b Average temperatures.  

 

 

 

 

Table 1.5. Number of days above 25, 28, and 30 °C in June and July at Brookings and Pierre SD in 2019 and 2020 growing 
seasons. 
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  2019 2020 

Month Location Periods month-1 Days >25 Days >28 Days >30 Days >25 Days >28 Days >30 

June Brookings 1 to 10 6 5 4 8 4 3 

June Brookings 11 to 20 5 2 1 8 6 5 

June Brookings 21 to 30 7 5 5 8 6 4 

July Pierre 1 to 10 10 4 2 10 8 5 

July Pierre 11 to 20 9 9 9 9 9 4 

July Pierre 21 to 30 9 5 4 10 10 8 

  

 

 

 

 

 

 

 

 

 

 

 

Table 1.6. Growth, yield, and yield traits of canola and carinata genotypes at Pierre 2019. 
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Genotype PH a PD b SW c BY d SY e OC f SR g OY h Rank 

 cm Count G g m-2 kg ha-1 g kg-1 % kg ha-1  

Canola Genotypes 
CS2100 107.8 de 67 3.8 abc 1946 1687 a 437 a 2.8 c 476 ab 1 

CS2300 123.9 a 70 2.3 c 1843 1409 abcd 415 a 11.3 ab 403 abc 6 

CS2500 113.5 bc 61 3.7 abc 1771 1477 abc 432 a 8.8 ab 240 bc 5 

DKL7114BL 108.2 de 67 3.0 bc 2002 1485 abc 383 ab 2.5 c 504 ab 4 

DKTF91SC 106.8 e 82 2.9 bc 1824 1531 abc 426 a 0.5 c 531 a 3 

DKTF92SC 110.9 cde 58 2.1 c 1601 1653 ab 380 ab 2.8 c 542 a 2 

L140P 112.1 bcd 57 2.8 bc 1827 1237 bcd 387 ab 2.0 c 409 abc 9 

L233P 114.8 bc 80 3.3 bc 2115 1400 abcd 396 a 0.5 c 353 abc 7 

NCC101S 96.1 f 71 3.5 bc 2427 1352 abcd 216 c 2.8 c 287 abc 8 

Carinata genotypes 
A120 114.3 bc 60 4.1 ab 1824 1001 d 241 c 1.3 c 150 c 12 

DH069485 111.0 cde 70 4.4 ab 2322 1207 bcd 302 bc 7.5 b 255 bc 10 

DH140251 116.3 b 67 5.2 a 2026 1172 cd 258 c 12.5 a 190 c 11 

Mean 111.3 67 3.4 1960 1384 356 4.6 361  
P-value <0.000 0.266 0.008 0.065 0.034 <0.000 <0.000 0.013  
i SEM 1.6 6.9 0.5 166.4 135.0 28.0 1.3 83.0  
j SEd 2.3 9.8 0.7 235.4 190.5 39.2 1.8 117.3  
k CV 2.9 20.6 30.3 17.0 19.5 16.0 57.5 46.0  

Mean values followed by same lower-case letters within the column are not significantly different at P ≤ 0.05. 

Abbreviations: a Plant height, b Pods plant-1, c Weight of 1000 seeds, d Biomass yield, e Seed yield, f Oil concentration, g Shatter rates, 

h Oil yield, i Standard error of mean, j Standard error of difference, k Coefficient of variations. 
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Table 1.7. Growth, yield, and yield traits of canola genotypes at Brookings in 2020.  

Genotype PH a LRb DFLc DM d PD e SD f SW g BY h SY i OC j OY k Rank 

 cm 1-9 Days Days Count count g g m-2 kg ha-1 g kg-1 kg ha-1  
CS2100 89.4 b 5.8 ab 39 cd 80 cd 26 c 10.0 bc 2.7 abc 604 bc 1661 bc 343 bc 557 bc 8 
CS2300 117.0 a 0.3 b 45 a 93 a 57 a 15.9 a 3.1 ab 1237 a 1797 bc 416 abc 764 b 3 
CS2500 97.3 b 3.8 b 42 abc 83 bcd 44 abc 15.4 ab 3.3 a 1014 ab 1793 bc 449 ab 804 b 4 
CS2600 92.7 b 3.5 b 40 bc 85 bcd 54 ab 13.8 ab 3.0 ab 1231 a 1600 bc 312 c 510 bc 9 
DKLL82SC 88.0 b 5.3 b 41 bc 85 bc 33 abc 12.9 ab 3.0 ab 588 bc 1407 bc 423 abc 603 bc 11 
DKTF91SC 88.1 b 6.3 ab 40 bc 79 d 18 c 7.1 c 2.7 abc 329 c 1509 bc 468 a 705 bc 10 
DKTF92SC 89.1 b 4.3 b 40 bc 84 bcd 40 abc 13.1 ab 3.0 ab 675 abc 1697 bc 436 ab 737 b 7 
DKTF 96SC 96.4 b 4.5 b 44 ab 84 bcd 30 bc 11.9 abc 2.6 abc 717 abc 1930 b 438 ab 849 b 2 
DKTFLL21SC 93.7 b 8.5 a 40 bc 81 cd 25 c 10.4 abc 2.3 bc 679 abc 1104 c 305 c 323 c 12 
L140P 94.3 b 2.5 b 43 ab 88 ab 40 abc 12.8 ab 2.6 abc 1044 ab 2964 a 469 a 1405 a 1 
L233P 87.8 b 3.5 b 41 bc 83 bcd 38 abc 12.9 ab  1.9 c 847 abc 1701 bc 452 ab 766 b 6 
NCC101S 85.7 b 3.3 b 36 d 79 cd 20 c 11.6 abc 2.9 ab 546 bc 1711 bc 368 abc 626 bc 5 
Mean 93.3 4.3 41 84 35 12.3 2.7 793 1740 406 720  
P-value 0.001 0.021 0.002 0.001 0.014 0.050 0.045 0.033 0.002 0.019 <0.000  
l SEM 4.1 1.3 1.2 2.0 7.7 1.7 0.3 188.3 232.4 37.2 118.0  
mSEd 5.8 1.8 1.6 2.7 11.0 2.3 0.4 266.3 329.0 53.0 167.0  
n CV 8.8 61.0 5.7 4.5 43.3 27.0 19.0 47.5 27.0 18.3 33.0  

Mean values followed by same lower-case letters for each treatment within the column are not significantly different at P≤0.05. 
Abbreviations: a Plant height, b Lodging rates, c Days to flowering, d Days to maturity, e Pods plant-1, f Seeds pod-1, g 1000-seed 
weight, h Biomass yield, j Seed yield, l Oil concentration, k Oil yield, l Standard error of mean, m Standard error of difference, n 
Coefficient of variation. 
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Table 1.8. Growth, yield, and yield traits of canola genotypes at Pierre in 2020. 

Genotype PH a PD b SD c SW d BY e SR f SY g Rank 

 cm Plant-1 Pod-1 g g m-2 % kg ha-1  

CS2100 94.2 22 11.1 abc 1.7 660 3.0 c 576 b 12 

CS2300 100.0 22 16.1 a 2.1 980 10.3 bc 1355 a 1 

CS2500 100.0 32 14.5 ab 1.9 823 22.5 a 1345 a 2 

CS2600 100.4 33 11.3 abc 2.0 1035 6.5 c 1375 a 3 

DKLL82SC 98.0 30 7.4 c 1.5 914 1.0 c 512 b 10 

DKTF91SC 90.0 23 10.0 bc 2.2 986 3.3 c 749 b 8 

DKTF92SC 103.0 24 9.7 bc 1.7 1038 1.8 c 607 b 9 

DKTF 96SC 72.3 19 10.0 bc 2.0 722 1.7 c 863 ab 7 

DKTFLL21SC 93.4 23 9.2 bc 1.8 776 15.0 ab 666 b 6 

L140P 102.4 23 14.4 ab 1.7 880 3.8 c 1084 ab 4 

L233P 94.1 21 8.3 c 2.3 771 4.8 c 504 b 11 

NCC101S 93.8 20 9.3 bc 2.0 695 1.8 c 667 b 5 

Mean 95.1 24 10.9 1.9 857 6.2 858  
P value 0.520 0.524 0.008 0.782 0.559 <0.000 0.003  
h SEM 4.2 5.0 1.6 0.2 135.4 2.7 185.4  
I Sed 6.0 7.0 2.2 0.3 191.5 4.0 262.1  
j CV 8.7 37.0 28.6 21.0 31.0 86.4 43.2  

Mean values followed by same lower-case letters within the column are not significantly different at P≤ 0.05. 

Abbreviations: a Plant height, b Pod plant-1, c Seeds pod-1, d 1000-seed weight, e Biomass yield, f Pod Shatter, g Seed yield, h Standard 

error of mean, i Standard error of difference, j Coefficient of variation. 
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Table 1.9. Growth, yield, and yield traits of canola and carinata genotypes at Brookings in 2019. 

Genotypes LR a DFL b DM c PD d SW e BY f SY g OC h SR i OY j Rank 

 0-9 Days Days Plant-1 g g m-2 kg ha-1 g kg-1 % kg ha-1  
Canola genotypes 
CS2100 4.8 abcd 45 bcde 95 cd 95 3.4 cde 2227 abc 1907 abc 429 bc 3.8 803 bc 6 
CS2300 5.0 abcd 46 bcd 94 d 68 3.4 cde 1770 cd 1778 bcd 420 c 6.3 761 c 7 
CS2500 1.8 d 47 bcd 96 bc 69 3.5 cde 1834 bcd 1679 cde 475 abc 5.0 800 bc 10 
CS2600 7.8 a 46 bcd 94 de 87 3.5 cde 1723 cd 2012 abc 516 a 3.0 1038 ab 3 
DKL7114BL 6.8 ab 44 de 95 d 78 3.9 bcd 1673 d 1811 bc 467 abc 5.5 843 bc 8 
DKTF91SC 5.5 abc 43 e 93 f 91 3.5 cde 1843 bcd 2349 a 501 ab 4.8 1178 a 1 
DKTF92SC 4.5 abcd 45 cde 94 ef 74 3.0 de 2029 abcd 1956 abc 477 abc 3.5 922 bc 5 
L140P 3.5 bcd 48 bc 95 cd 64 2.8 e 1692 cd 1927 abc 469 abc 3.8 903 bc 9 
L233P 4.5 abcd 46 bcd 97 ab 106 3.2 cde 2499 a 2178 ab 467 abc 1.8 1017 ab 2 
NCC101S 3.3 cd 41 f 87 g 92 4.0 bc 2031 abcd 2106 abc 342 d 4.0 726 c 4 
Carinata genotypes 
A120 4.8 abcd 48 bc 98 a 69 4.0 bc 1811 bcd 1338 def 263 e 3.8 350 d 11 
DH069485 2.5 cd 48 b 97 ab 84 4.7 ab 2334 ab 1182 f 276 de 0.7 327 d 13 
DH140251 4.8 abcd 51 a 96 bc 81 5.3 a 2107 abcd 1298 ef 281 de 0.5 365 d 12 
Mean 4.5 46 95 82 3.7 1967 1809 414 3.6 771  
P-value 0.021 <0.000 <0.000 0.175 <0.000 0.013 <0.000 <0.000 0.252 <0.000  
k SEM 1.0 0.6 0.5 10.3 0.3 163.4 149.0 22.3 1.5 74.3  
l SEd 1.5 1.2 0.6 14.5 0.4 231.1 210.3 31.5 2.1 105.1  
m CV 46.0 4.0 1.0 25.1 14.4 17.0 16.4 11.0 82.0 19.2  

Mean values followed by same lower-case letters within the column are not significantly different at P≤ 0.05. 
Abbreviations: a Lodging rate, b Days to flowering, c Days to maturity, d Pods plant-1, e 1000-seed weight, f Biomass yield, g Seed 
yield, h Oil concentration, i Shatter rates, j Oil yield, k Standard error of mean, l Standard Error of Difference, m Coefficient of 
variation. 
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Table 1.10. Pearson correlations between traits of canola genotypes evaluated at Brookings and Pierre SD in 2019 and 2020. 

Trait   DFL a DM b PD c SD d BY e TSW f YLD g 

 Units df Days Days Plant-1 Pod-1 g m-2 g kg ha-1 

DFL a Days 94 1 0.69*** 0.55*** 0.00 0.61*** 0.28* 0.22* 

DM b Days 94  1 0.77*** 0.07 0.80*** 0.49*** 0.14 

PD c Plant-1 190   1 0.06 0.84*** 0.34** 0.38*** 

SD d Pod-1 94    1 0.17 -0.29* 0.41*** 

BY e g m-2 190     1 0.34*** 0.26*** 

TSW f g 190      1 -0.04 

YLD g kg ha-1 190       1 

*=Significant at P≤0.05, ** Significant at p≤0.1, *** Significant at p<0.00. 

a Days to flowering 

 b Days to maturity 

 c Pods plant 
d Seeds pod-1 

e Biomass yield 

f 1000-seed-weight 

g Seed yield 

df=Degrees of freedom 

Note: Data for days to flowering and days to maturity were collected at only Brookings location. 
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Table 1.11. The additive main effects and multiplicative interaction (AMMI) analysis of variance (G by G*E (ANOVA) for yield 
and yield traits of eight canola genotypes in 2019 and 2020 at Pierre and Brookings SD. 

  Biomass yield Pods plant-1 1000-seed weight. Seed yield 

  g m-2 Count g kg ha-1 

Source df ss (%)a Fv Pr(>F) ss (%)a Fv Pr(>F) ss (%)a Fv Pr(>F) ss (%)a Fv Pr(>F) 

Total  127 100   100   100   100   

Env 3 73.3 126.8 <0.000 67.7 187.0 <0.000 45.2 29.5 <0.000 45.7 16.5 <0.000 

Blocks (Env) 12 2.3 1.3 0.221 1.4 0.6 0.806 6.2 1.2 0.304 11.1 3.5 <0.000 

Gen 7 1.7 1.7 0.124 2.3 1.6 0.188 5.6 2.0 0.088 2.9 1.6 0.151 

Env: Gen 21 10.5 3.4 <0.000 11.3 2.6 <0.000 6.8 0.8 0.748 18.1 3.2 <0.000 

PC1 9 [61.6]b 4.9 <0.000 [83.2]b 5.1 <0.000 [57.1]b 1.0 0.423 [61.2]b 4.6 0.000 

PC2 7 [22] 2.2 0.040 [11] 0.8 0.573 [36] 0.8 0.573 [32] 3.1 0.006 

PC3 5 [17] 2.4 0.042 [7] 0.7 0.610 [7] 0.2 0.944 [7] 1.0 0.429 

Residuals 84 12.2   17.2   36.2   22.2   

Significant level P≤ 0.05. 

Abbreviations: 
a Percentage of the sum of squares; b[ ] Percentage of the sum of squares of Genotype-by-Environment Interaction 

Env=Environment, Blocks (Env)=Replications, Gen=Genotypes, Env: Gen=Genotype by Environment interactions (GEi) 

df= Degrees of freedom, Fv= F value, ss= Sum of squares. 

The principal components are equal to the environment degrees of freedom, and the first two principal components explained >80% 

of the overall variations in the observed traits among genotypes. 
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Table 1.12. Genotype means and stability indices for yield and yield traits for eight canola 
genotypes evaluated at four environments in SD.  

 ........Biomass yield......... .........Pods plant-1......... 
 (g m-2) Count 
Gen ASVa rASVb Meanc  rYd  ASVa rASVb Meanc  rYd 
CS2100 28.7 4 1359 6 13.3 3 53 4 

CS2300 45.4 8 1458 2 20.1 8 54 2 

CS2500 27.2 3 1360 5 15.2 5 51 5 

DKTF91SC 18.7 2 1246 8 19.5 7 53 3 

DKTF92SC 17.3 1 1336 7 9.0 1 49 7 

L140P 35.1 6 1361 4 14.9 4 46 8 

L233P 30.4 5 1558 1 10.1 2 64 1 

NCC101S 43.5 7 1425 3 16.7 6 51 6 

 

 …. Thousand seed weight…. …………...Seed yield…………...…… 
 g m2 kg ha-1 
Gen ASVa rASVb Meanc rYd ASVa rASVb Meanc  rYd 
CS2100 0.9 6 2.5 3 15.3 3 1458 7 

CS2300 1.1 7 2.3 6 20.7 5 1585 2 

CS2500 0.4 4 2.8 1 22.2 6 1574 3 

DKTF91SC 0.4 3 2.4 5 26.5 7 1535 4 

DKTF92SC 0.8 5 1.8 8 14.0 2 1478 5 

L140P 0.2 1 2.2 7 54.4 8 1803 1 

L233P 0.3 2 2.5 2 17.7 4 1446 8 

NCC101S 1.1 8 2.4 4 10.0 1 1459 6 

Abbreviations: 

 AMMI stability value, b Rank of AMMI stability value, c Mean yield for each trait,  

d Rank of yield.
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Fig 1.1. AMMI-1 biplot of seed yield (kg ha-1) (a), biomass yield (b) pods plant-1 (c) and 1000-seed weight (d) of eight canola 
genotypes (blue) across four environments (red) characterized with varied weather conditions (Tables 1.2 to 1.4) in 2019 and 
2020. Environment Key: 11= Brookings 2019, 21= Pierre 2019, 31= Brookings 2020, and 41= Pierre 2020 

Genotypes Key: 1 CS2100, 2 CS2300, 3 CS2500, 4 DKT F91SC, 5 DKTF92SC, 6 L140P, 7 L233P, 8 NCC101S. 
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CHAPTER TWO  
EVALUATION OF CANOLA GENOTYPES FOR TOLERANCE TO SALINE/SODIC 

SOILS UNDER GREENHOUSE CONDITIONS 
 

LITERATURE REVIEW 

The global demand for food, feed and fuel is increasing due to increasing population 

that is estimated to reach 9.1 billion by year 2050 (Shelley et al., 2015). To feed this population 

food and biofuels need to be increased by at least 70% (Shelley et al., 2015). Some of the past 

strategies to increase food production through input and crop intensification have resulted in 

soil degradation including sodicity and salinity which is reducing arable land for food 

production. Potentially, the soil is saline when its electrical conductivity (EC) of the saturated 

solution extract is greater than 5 mmho/cm (Shahid et al., 2018). However, this can be 

categorized into saline, sodic, and saline-sodic soil based on the ratio of concentration of 

soluble salts to amount of sodium salts in the soil solution (Franzen, 2003). Soil that has 

electrical conductivity (EC) (mmho/cm) >4.0, SAR<13 and pH >8.5 is saline, while soil with 

EC <4, SAR>13, and pH>8.5 are sodic. Soil with EC> 4, SAR> 13, and pH <8.5 is saline-

sodic (Franzen, 2003; Bauder et al., 2008). Therefore, saline soil can be simply grouped as 

saline, sodic and saline sodic (Franzen, 2003; Bauder et al., 2008; Dahlawi et al., 2018). 

Today, over one billion hectares are saline, which is over 30% of the world's arable soil 

(Drake et al., 2016; Ivushkin et al., 2019). Irrigated soil is becoming saline at a rate of 10 

million ha year-1 (Pimentel et al., 2004, Rengasamy, 2006). This is estimated to cause over $27 

billion in financial loss annually on global basis at an average of $441 acre-1 ($1,067 ha-1) 

(Shelley et al., 2015). In SD, between 2008 and 2012, the surface soil electrical conductivity 

(EC) increased by at least 1 mmho/cm on over 1.4 million acres (566,560 ha) (13.4% of 

cropped acres) due to the rising water table where saline seeps are deposited on the soil surface. 
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The annual economic losses due to salinity in SD are estimated at about $26.2 million on over 

113,312 ha) mostly in Beadle, Brown, and Spink counties (USDA NRCS, 2019). The 

commonly affected system is corn in eastern SD where 14% of the farmers are already affected 

(Birru et al., 2019). It has been reported that Montana alone has over 121406 ha off production 

due to salinity (USDA NRCS, 2019).  

Despite the farmers efforts to remediate these saline soil, chemical and mechanical 

restoration methods used have additional non-economic costs and negative impact on 

untargeted salt tolerant microbial organisms, and ground water contaminations (Birru et al., 

2019). Moreover, these methods are expensive for example, about $968-1,936 ha-1 is needed 

to install tile drainage (Hadrich, 2012) therefore alternative salt tolerant crops may be a cheaper 

option (Flowers et al., 1997). 

Previous studies have indicated the potential for Brassica species like canola, mustard 

and carinata to become alternative salt tolerant crops (Kumar, 1984; Chandler and Thorpe, 

1987; Huang and Redmann, 1995; Flowers et al., 1997; Wright et al., 1997; Zheng et al., 1998; 

Bybordi et al., 2010; Zamani et al., 2010; Tunçtürk et al., 2011). But these crops need to be 

evaluated since salt tolerance vary by species. For example, Brassica amphidiploid are 

relatively more salt tolerant compared to Brassica diploid species (Ashraf and McNeilly, 1990; 

2004). Seedling stages are more vulnerable to salt stress compared with vegetative and 

reproductive growth stages (Greenway and Munns, 1980; Sakamoto and Murata, 2000; 

Bybordi et al., 2010), but even biomass and yield were found to be negatively related with soil 

salts (Kumar, 1984; Francois, 1994 Zamani et al., 2010). 

Soils high in salt content impede seed germination by reducing water availability for 

hydrolyzing endosperm seed tissue reserves to enhance radicle emergence (Kaymakanova, 
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2009), and reduce water and nutrient uptake by emerged seedling leading to reduced stomatal 

conductance and depression in carbon uptake (Seemann and Critchley, 1985). This means that 

photosynthesis can be used as nondestructive phenotyping technique for growth and stress in 

plants (Krause and Weis, 1991; Stirbet et al., 2018). More so, salt stress reduces shoot and root 

growth (Delfine et al., 1999; Sakamoto and Murata, 2000; Munns, 2002; Zamani et al., 2010; 

Shabani et al., 2013; Athar et al., 2015), basically due to ionic and osmotic stress (Munns and 

Tester, 2008). Salt stress also reduces growth specific leaf area index, number of leaves plant-

1, fresh and dry root biomass, and leaf longevity (Francois, 1994).  

Recently, biochar (a solid carbonaceous residue, produced under oxygen-free or 

oxygen-limited conditions at temperatures ranging from 200 to 1000 °C) has attracted 

considerable attention as a soil amendment to remediate and improve physical, chemical, and 

biological properties of degraded soil (Dahlawi et al., 2018) and promote plant growth 

(Cárdenas-Aguiar et al., 2020). However, this depends on biochar source (biomass type) and 

pyrolysis temperature; either slow or carbonization pyrolysis (~500 °C), fast pyrolysis (>500 

°C) or intermediate gasification (Resende, 2016). 

Biochar is highly heterogeneous in nature and generally contains volatile compounds, 

labile and recalcitrant carbons, ash, and moisture (Antal and Gronli, 2003). Carbon yield may 

range from 400 g kg-1 to up to 900 g kg-1 depending on feedstock and pyrolysis conditions 

(Antal and Gronli, 2003; Van Zwieten et al., 2010b; Gaskin et al., 2010). Hardwood feedstock 

pyrolyzed at high temperature produces high carbon char, while soft and non-wood feedstocks 

such as crop residues, manures and straw biomass produces biochar with low carbon content. 

For example, Gaskin et al. (2010) reported 817 g kg-1 carbon content of biochar produced from 

pinewood chips at 500 oC under slow pyrolysis, whereas poultry manure pyrolyzed char had 
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only 399. 9 g kg-1 carbon content. Biochar produced from herbaceous feedstock tends to 

contain lower proportions of mesopores and macropores and exhibit smaller surface area 

compared with biochar pyrolyzed from woody biomass (Van Zwieten et al., 2010a). Biochars 

properties vary greatly, even when produced from the same or related feedstock due to 

pyrolysis conditions like kiln temperature and pressure held on the biomass (Van Zwieten et 

al., 2010a; Van Zwieten et al., 2010b; Zimmerman, 2010; Mukherjee et al., 2011). Biochar 

produced at temperatures above 1000 °C tends to have lower surface area (Lua and Guo, 1998) 

compared to one produced at lower temperatures. These properties affect biochar functioning. 

For example, biochar prepared at 450 °C, and 600 °C with canola as a test crop increased 

uptake of arsenic, and soil bacteria enzyme activity (Cárdenas-Aguiar et al., 2020). In another 

study by Song et al. (2020) using camellia (Camellia sinensis) derived char at three pyrolysis 

temperatures (300, 500, and 700 ◦C), and two application rates (3% and 5%), biochar improved 

soil pH, total P, and available P at 700 oC and 5% application rate. Similarly, greater beneficial 

properties of biochar were reported at pyrolysis temperature between 400 to 700 oC (Kimetu 

and Lehmann, 2010; US-Biochar, 2016; Mohanty et al., 2018). So, all these variations in 

biochar properties influence its performance in different soil conditions (Nguyen et al., 2004). 

Although so much good has been reported on biochar by various studies, a review of 

17 studies on biochar by Jeffery et al. (2011) reported mixed results on crop yield ranging from 

-28 to +39 %, with an overall average yield increase of 10 %. Some studies reported completely 

negative effects of biochar on soil organic carbon and nutrient mineralization (Kuzyakov et al., 

2009; Van Zwieten et al., 2010a; Wang et al., 2015) while others showed that biochar 

application negatively affected plant growth on case-by-case basis (Jones and Quilliam, 2014). 
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The problems associated with biochar application in agricultural systems could be 

alleviated by using a biochar-composted manure mixture but use of composted manure is 

limited by undisputed claims on antibiotic contaminants (Steiner et al., 2008; Qian et al., 2016), 

soil salt contaminants (Steiner et al., 2008; Qian et al., 2016; Zhou et al., 2020), and ground 

water contaminations (Hao and Chang, 2002; Gondek et al., 2020). However, when composted 

manure is used in combination with biochar it is a less expensive soil ameliorant (Zeng et al., 

2015) that can improve soil organic-matter content, nutrients levels, soil water-storage capacity 

and other soil physical and biological properties (Schulz et al., 2013; Zeng et al., 2015; 

Abujabhah et al., 2016). For example, Rogovska et al. (2011) reported 17.6 to 68.8% increase 

in soil organic carbon by addition of biochar to the soil compared to untreated control and 

reduction in N2O emissions. The same study found that biochar-by-manure interaction for 

CO2 flux indicated that biochar either helped stabilize manure carbon or the presence of 

manure reduced the effect of biochar on the mineralization of SOC.  

Corn and soybean rotation systems dominate in SD especially in the Central and eastern 

regions (O'Brien et al., 2020). More so, long-term application of livestock manure in corn-

based cropping systems in SD enhances soil physical and hydraulic properties (Ozlu et al., 

2019). This is because manure improves soil bulk density, porosity and water holding capacity 

(Xin et al., 2016), although this varies depending on the manure application rates, source, 

chemical and biological properties (Asada et al., 2012; Bottinelli et al., 2013; Khalid et al., 

2014). Manure improves soil structure by binding soil particles (Celik et al., 2010) and 

increasing N, P, and K mineralization and availability to plants (Vivekanandan and Fixen, 

1990). 



61 

 

 

Most of the previous studies on plant tolerance to saline-sodic soils in SD evaluated 

mostly native plants with less attention given to traditional crops. Besides, most of the chemical 

and physical methods employed in remediation of salt impacted soil are expensive and less 

environmental and ecosystem friendly. Different biomass types for charring are available in 

SD, but these may behave differently in different soil types. Therefore, investigating the 

influence of different types of biochar and composted manure mix rates in degraded soil is 

necessary to supplement the available literature. The objectives of the study were to (i) evaluate 

different canola and carinata genotypes for tolerance to saline-sodic soils, and (ii) evaluate 

canola and mustard genotypes for emergence and growth in saline-sodic amended with biochar 

and composted manure.  

MATERIALS AND METHODS 

Soil description 

Soils used in this study were collected from Clark (44.7o N, -97.8o S), SD on a site with 

historical saline seeps, eroded and degraded soil at a depth of up to 20 cm. The landscape was 

not in use for crop production before sampling of the soil. Soils were collected at three 

landscape positions; (i) a highly saline soil with no vegetation growing on it, (ii) transitioning 

zone (moderately saline) characterized by scattered vegetation, and (ii) good soil zone (non-

saline) characterized by vigorous vegetation growth. A sub-sample from each soil zone was 

taken for chemical and biological analysis. The soil samples for biological analysis were sealed 

in Ziplock bags and held at <4 oC, while soil samples for chemical analysis were air dried, 

ground and sieved to pass through a 2-mm sieve. These were then forwarded to Ward 

Laboratories Inc, Nebraska for analysis. Post termination, soil chemical analysis was also 

conducted by Ward laboratories Inc. for chemical changes in the soil. 
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Biochar source and characterization 

The softwood and hardwood biochar used in experiment two were produced using 

carbon optimized gasification technique with reactor temperatures ranging from 90 to 200 °C 

and a residence time of 0.5 hour and 3 minutes by Wakefield biochar-particle technology labs, 

USA. Hardwood biochar was processed from maple wood chips, while pinewood chips was 

used for softwood biochar. Biochar used in the third experiment were produced under medium 

pyrolysis conditions using carbon optimized gasification technique up to 450 oC by advanced 

renewable energy technology international (ARTi) http://www.arti.com/, a biomass incubation 

center located at Iowa State University. The biomass used was pine wood chips for softwood 

biochar, and maple wood chips for hardwood biochar. Biochar was dried to moisture free 

weight before mixing it with the soil. The biomass types used in this study were alkaline 

(pH=7.9-8.2), low in micro and macronutrients but with high ash content (820 g kg-1 and 842 

g kg-1) for softwood and hardwood biochar. Composted manure used in this study was low in 

micro and macronutrients but higher cation exchange capacity (CEC) and organic matter 

content. The chemical properties of biochar and composted manure used in this study are 

included in Table 2.2. The two biochar types and composted manure were selected to represent 

common bioenergy feedstocks available for farmers in SD. 

Experiment 1 

The experiment was conducted at the Plant Science Greenhouse, South Dakota State 

University (44.3° N; 96.8° W). The experimental design was a randomized complete block 

design with treatment arranged in a factorial design, (13 genotypes x 3 soil type) for a total of 

39 treatments replicated three times. Soils with salinity ranging from non-saline (0.62 

mmho/cm), moderately saline (5.17 mmho/cm), and highly saline (8.47 mmho/cm) 
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corresponding to good, transitioning, and saline soils used in the study are detailed in Table 

2.1. These soil samples were collected at a site near Clark, SD that is characterized with saline-

sodic soil issues which is the current focus of SDSU saline/sodic soil remediation 

investigations. Soil samples were from topsoil (0-20 cm). A total of 117 pots, 500 ml each, 

were arranged on the table in the greenhouse chamber and filled with the soils. Ten canola 

(CS2100, CS2300, CS2500, CS2600, DKTF7114BL, DKTF91SC, DKTF92SC, L140P, 

L233P, and NCC101S) and three carinata (A120, DH069485, and DH140251) genotypes were 

evaluated for seedling emergence at each soil salinity level. Eight seeds of a genotype were 

hand-planted in each pot. The pots were watered to maintain sufficient soil moisture for 

emergence and growth. The greenhouse air temperature ranged between 22 and 27 degrees 

Celsius with a 14 to 16-hr photoperiod. Seedling emergence was observed on daily basis in 

each of the treatments for up to four weeks after planting after which the experiment was 

terminated. 

Experiment 2 

This experiment was like experiment one, only that biochar was introduced into each 

soil salinity level (soil type) at a rate of 5% by volume with untreated control (0% biochar/no 

biochar), and the three carinata genotypes (AC120, DH069485, DH140251) replaced with 

three mustard genotypes (Broadleaf mustard, African cabbage, and Brown mustard). Two 

biomass-based char types differing by wood type (softwood and hardwood biomass), and 

physical properties (large and small surface area) due to sources and pyrolysis conditions were 

introduced into each of the soil type at 5% dry weight basis. The soil salinity level, biochar and 

genotype treatments were arranged in a split-plot with soil type/salinity level as the main plot 

and biochar and genotypes factorially arranged in subplots within each soil salinity level and 
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replicated three times. This experiment was carried out in small pots of 500 ml each, arranged 

on greenhouse bench and laid in flat trays. The pots were watered and allowed to settle before 

planting. Eight seeds of a genotype were planted by hand into each pot and monitored for days 

to emergence. These were later thinned to uniformly one vigorous seedling pot-1 at 21 DAP. 

Plants were watered to maintain sufficient soil moisture for emergence and growth. 

Measurements included seedling emergence 7DAP, shoot dry weight, and leaf chlorophyll 

content (SPAD values). Leaf chlorophyll content (SPAD values) was measured using SPAD 

meter version SPAD-502, Minolta, Japan. An average of four leaves plant-1 were used to record 

the SPAD values. Fresh biomass weight was determined for all treatments at termination of 

the study at 59 DAP. After taking fresh weight (g) of plants, whole plants were oven dried at 

105 oC for 3 days to a constant moisture free weight, and dry weight determined using a high 

precision electrical balance. 

Experiment 3 

The best genotypes identified in the second experiment (NCC101S, DKTF91SC, 

African cabbage and Brown mustard) were evaluated in the third experiment. In experiment 3 

composted manure rates of 0, 30 and 50 % by volume basis were introduced to each of the 

soil-biochar treatment (no biochar, softwood, and hardwood) within each soil salinity level (as 

illustrated in Figure 2A.1). Soil salinity levels were the main plots and biochar, composted 

manure and genotypes were arranged in a factorial design within each soil type/salinity level. 

Composted manure was mixed thoroughly by hand into each soil salinity level biochar 

treatment combinations before filling the pots. Pots were watered thoroughly and allowed to 

settle before seeding. Eight seeds of each genotype were planted in each pot and thinned to 

uniformly one plant pot-1 at 21 DAP. Plants were watered based on visual observations on the 
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plants. Measurements included percentage emergence, number of leaves plant-1, and leaf 

chlorophyll content (SPAD values) at 39 DAP using a soil plant analysis development (SPAD) 

version SPAD-502, Minolta, Japan. This was achieved using an average of four young fresh 

growing leaves plant-1 (Uddling et al., 2007; Ehsanzadeh et al., 2009; Nauš et al., 2010; Ling 

et al., 2011). The whole plant was then harvested, and oven dried at 105 oC for 3 days to 

constant moisture free weight and then plant dry biomass weight determined using a high 

precision electrical balance.  

Statistical analysis 

Analysis of variance (ANOVA) was conducted for each soil type using linear mixed 

model for RCBD experiments at alpha 0.05 in RStudio version 0.1.0 using the package “doe 

bioresearch” (De Mendiburu, 2017) and significant differences among means were separated 

using Fisher’s least significant difference (LSD) at 95% confidence level.  

RESULTS AND DISCUSSION 

Experiment 1. 

Seedling emergence for each soil salinity level differed among genotypes (Table 2.3). 

In each salinity level, percentage of emerged seedlings were much lower at 7DAP than at 

28DAP. The percentage of emerged seedlings declined with increasing soil salt content. In the 

good soil, DKTF91SC had greatest emergence (90%) at 28DAP whereas NCC101S had the 

lowest (49.2%). In the soil collected from the transitioning zone, the best emergence at 28DAP 

was observed for NCC101S and L140P (29.2 %) and DH140257 (27.5%). In the saline soil, 

seedling emergence was low ranging from 0% (DH140251, L233P and CS2600) to 29.2% 

(NCC101S) (Table 2.3). High soil salt content in the seed-soil contact zone lowers available 

moisture for hydrolyzing seed endosperm contents (Bybordi et al., 2010; Mousavi and Omidi, 
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2019) resulting in seedling desiccation due to reverse osmosis (Kaymakanova, 2009). The 

results in the current study are consistent with Francois (1994); Sakamoto and Murata, (2000); 

Bybordi et al., (2010) who observed a negative association of seedling emergence and high 

soil salt content. 

Experiment 2  

Seedling emergence at 7DAP was influenced by biochar in transitioning soil (P<0.000) 

and in saline soil (P = 0.017) but not in good soil (Table 2.4). In transitioning soil, seedling 

emergence was greater with addition of softwood biochar while hardwood biochar and no 

biochar had similar results based on percentage of emerged seedlings. In the saline soil 

however, addition of hardwood biochar resulted in the greatest percentage of emerged 

seedlings, significantly greater than no biochar but similar to that of soil amended with 

softwood biochar (Figure 2.1). Greater performance of softwood biochar relative to hardwood 

biochar is likely explained by the fact that softwood biochar has a larger surface area (376.0 

m2/g) compared to 18.0 m2/g for hardwood biochar (Table 2.2) which increases on water 

holding capacity and nutrient availability that enhance seedling emergence. 

 Genotypes differed in seedling emergence only in saline soil (Table 2.4). Florida 

broadleaf mustard had the greatest emergence (52.2%) under saline soil. The other canola 

genotypes (NCC101S and L233P) had 48.2% emerged seedlings. However, even the best 

seedling emergence in transition and saline soil was much lower than the mean emergence in 

good soil (73.6%). The variation in salt tolerance among genotypes in saline soil used in this 

study is likely related to the fact that genotypes such as Florida broadleaf mustard is an 

amphidiploid as Brassica amphidiploid species have been said to be relatively salt tolerant 

compared to Brassica diploid species (Kumar,1984; Ashraf and McNeilly, 2004). Even though 
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Francois (1994), reported the threshold for growth in saline soil to be 10 dS/m-1 for most canola 

genotypes, in the current study, only 36.0% of the seeds emerged at EC 5.16 and pH 6.9. 

Leaf chlorophyll content (SPAD values) varied by biochar type only in transitioning 

soil (P = 0.052) (Table 2.4, Fig 2.2). The highest SPAD values were recorded on transitioning 

soil with no biochar, although this was not significantly different from soil treated with 

hardwood biochar. Hardwood biochar used in this study has small surface area, but higher ash 

content compared with softwood biochar (Table 2.1). This small` surface area improves soil 

porosity, aeration and improves water and nutrient availability thereby reducing osmotic stress 

which results in greater growth and higher solute accumulation (Zhao et al., 2020). In addition, 

biochar is reported to improve soil physical and chemical properties of saline soil, thereby 

enhancing nutrient uptake by plants (Sajedi and Sajedi, 2019), and reduce salt stress (Naveed 

et al., 2020). However, this may vary based on the biochar (Cárdenas-Aguiar et al., 2020), and 

soil properties as well (Nguyen et al., 2004; Nobile et al., 2020). These may be reasons why 

there was no differences in SPAD values in saline and good soil when biochar was applied.  

Experiment 3 

Seedling emergence (%)  

In good soil, seedling emergence was influenced by the main effects of biochar, 

composted manure, and genotype (Table 2.6). The interaction between biochar and composted 

manure for percent seedling emergence was also significant (Table 2.6). The interaction 

between biochar and composted manure was because of increase in seedling emergence with 

increase in applied composted manure in good soil without biochar with the best seedling 

emergence obtained at the highest rate of composted manure applied (50%). In good soil with 

softwood biochar, however, the best seedling emergence was obtained at 30% composted 
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manure rate. In good soil with hardwood biochar, seedling emergence was not influenced by 

application of composted manure but was significantly greater than that in all other treatment 

combination except good soil without biochar at 50% composted manure rate. Genotypes also 

influenced seedling emergence in good soil with the best seedling emergence obtained in 

DKTF91SC (57.4%), but this emergence was similar to African cabbage and Brown mustard 

but significantly greater than seedling emergence for NCC101S (43.4%).  

In transitioning soil, seedling emergence was also influenced by the main effects of 

biochar, composted manure, and genotype (Table 2.6). Seedling emergence was greater in 

transitioning soil with no biochar than in the soil with either softwood or hardwood biochar. 

Emerged seedlings increased with increasing rate of composted manure applied (Table 2.6). 

The interaction effects between biochar and genotype as well as composted manure and 

genotype for percentage of emerged seedlings was also significant. The interaction between 

biochar and genotype (Fig 2.3b) is explained by variations among genotypes in percent of 

emerged seedling in transitioning soil treated with different types of biochar in relation to the 

unamended soil. For example, Brown mustard had the best emergence in transitioning soils 

with no biochar or in transitioning soil with softwood biochar but not in soil with hardwood 

biochar (Fig 2.3 b). Seedling emergence was also influenced by the interaction between 

composted manure rate and genotypes (Fig 2.3c). This again was due to variations in 

performance of genotypes with changes in composted manure application rate. For example, 

African cabbage had the worst seedling emergence in transitioning soil with no composted 

manure but was among the best when composted manure at 50% was present (Fig 2.3 c).  

In saline soil only composted manure had a significant effect on seedling emergence 

with seedlings emerging greatest in saline soil mixed with composted manure at the 50% rate 
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(Table 2.6). The interaction between biochar and genotypes was likely due to Brown mustard 

being among the best emerged genotype in saline soils with no biochar or saline soils with 

softwood biochar but the same genotype emerging worst in saline soils with hardwood biochar 

added (Fig 2.3 d)  

The mixed effects of biochar on seedling emergence in salt impacted soils is explained 

by the fact that moisture stress is one of the challenges in saline soil (Wadleigh, 1946), yet 

biochar absorbs moisture to its surface (Tanure et al., 2019). This means that seeds in the soil-

biochar contact zone may not get enough moisture for radicle emergence. However, this varies 

based on the soil condition, and biochar type. For example, saline soil used in this study (Table 

2.1) were higher in EC (7.21), higher SAR (4.6) and very high ESP (44.9 cmol/kg-1) which 

makes it very poorly drained but having high macro nutrients. Therefore, addition of biochar 

may have improved its physical structural properties as well as increasing moisture and 

nutrient/availability improving seedling emergence (Fig 2.3 d). Li et al. (2015) found that 

higher application rates of slow pyrolyzed residue char inhibited tomato germination than 

lower rates, but Silva et al. (2020) found no significant effect of similar biochars on seed 

germination but both studies related the problem to insufficient moisture. Improvement in 

seedling emergence in composted manure-amended soil is explained by the fact that 

composted manure application increased organic matter, which improved moisture holding 

capacity and available moisture in the seed-soil contact zone, resulting into higher seedling 

emergence an assertion that is consistent with Smith et al. (2001); Srivastava et al. (2016). In 

addition, composted manure can stabilize pH and increase phosphorous mineralization, which 

can enhance seedling emergence (Jin et al., 2019). Differences in genotypes emergence rates 

in different soil-biochar composted manure combinations is likely related to the differences in 
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genetic inherent traits in salt tolerance. For example, Brassica amphidiploids are said to be 

more salt tolerant compared to Brassica diploids (Ashraf et al., 2001). This means that mustard 

may be more salt tolerant than canola used in this study.  

Number of leaves plant-1 

In good soil, leaves plant-1 was influenced by the main effects of biochar, composted 

manure, and genotype with no interaction between them. The number of leaves plant-1 were 

significantly greater in good soil with softwood biochar (5.0 leaves plant-1) relative to good 

soil with no biochar and with hardwood biochar (4.1 leaves plant-1). Number of leaves plant-1 

were greatest at 30% composted manure application rate (5.3 leaves plant-1), but these were 

similar and significantly lower than at 0% and 50% composted manure rates. The number of 

leaves plant-1 also varied by genotypes in good soil with African cabbage having the greatest 

number of leaves plant-1 at 5.1 leaves plant-1 although this was similar to DKTF91SC at 4.5 

leaves plant-1.  

In transitioning soil, number of leaves plant-1 was influenced by the main effects of 

composted manure and genotype (Table 2.6) with number of leaves plant-1 greatest at 50% 

composted manure rate and African cabbage having the greatest number of leaves plant-1. The 

interaction effects between biochar and composted manure, biochar and genotype, and 

composted manure and genotypes for leaves plant-1 was also significant (Table 2.6). The 

interaction between biochar and composted manure for leaves plant-1 is shown on Figure 2.4a 

and was due to the greater number of leaves for transitioning soils with a combination of 

biochar amendments (softwood and hardwood) and composted manure applied at a rate of 50% 

compared to soil with no biochar at the same composted manure rate (Figure 2.4a). In 

transitioning soil, leaves plant-1 was also influenced by the interaction between biochar and 
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genotype (Table 2.6, Fig 2.4b) because Brown mustard had lower number of leaves in 

transitioning soil amended with hardwood biochar when compared to the same genotype in 

transitioning soil with no biochar or amended with softwood biochar. The significant 

interaction between composted manure and genotypes was because African cabbage had 

significantly greater leaves plant-1 at 50% composted manure rate compared to the same 

genotypes at lower rates (Fig 2.4c). 

In saline soils the interaction effects between biochar and composted manure, biochar 

and genotype and composted manure with genotype for the most part, mirrored what was 

observed in transitioning soil for the same interactions. For example, the greatest number of 

leaves plant-1 were observed in the saline soils amended with a combination of softwood 

biochar and composted manure at a rate of 50%. The interactions of genotype with biochar or 

composted manure rates were as observed in saline soil, due change in genotype rank as 

biochar amendment changed or as composted manure rate changed. 

Salts in the root zone lowers the water available in the salt-contaminated soil, inducing 

reduction in nutrients availability to plants, resulting in osmotic, and ionic stress (Munns and 

Tester, 2008; Siringam et al., 2011) which result in limited or no growth (Irshad et al., 2002). 

The increase in number of leaves with increasing composted manure rates, observed in this 

study was likely because composted manure improved soil moisture retention capacity which 

increased nutrient availability to plants resulting in an increase in growth of leaves an assertion 

that is consistent with Irshad et al. (2002). Brassica amphidiploid are relatively more salt 

tolerant compared to Brassica diploid species (Ashraf et al., 2001; Ashraf and McNeilly, 

2004). This explains higher number of leaves plant-1 in mustard genotypes relative to canola 

which is due to inherent salt tolerance traits. Even though Francois (1994) did not find a 
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negative effect of salt stress on vegetative growth of canola, in the current study, leaves plant-

1 reduced with increasing soil salt content especially in no amendments treatments which is 

consistent with (Kumar, 1984; Zamani et al., 2010). 

Leaf chlorophyll content (SPAD values) 

In good soil, SPAD values were influenced by the main effects of biochar, composted 

manure, and genotype (Table 2.6). Good soil amended with softwood biochar had similar 

SPAD values as the untreated control, but greater SPAD values compared to soil amended with 

hardwood biochar. Good soil with no composted manure amendments and soil amended with 

composted manure at 30% rate had greater SPAD values compared to soil amended with 

composted manure at 50% rate. The interaction effects between biochar and genotype and 

composted manure and genotype for SPAD values were also significant (Table 2.6). The 

genotype by biochar interaction was due to Brown mustard having a lower SPAD values 

compared to all other genotypes in all biochar treatments (Figure 2.5a). The genotype by 

composted manure interaction on the other hand was due to inconsistent SPAD values for 

NCC101S across composted manure rates.  

The main effect of biochar, composted manure, and genotypes also influenced SPAD 

values in the transitioning soil (Table 2.6). In terms of main effects of biochar, softwood still 

maintained greater SPAD values compared to no biochar and soil amended with hardwood 

biochar. On the other hand, transitioning soil amended with composted manure at 50% rate 

had greater SPAD values than soil with no amendment or amended with composted manure at 

30%. Interactions between main effects were all significant (Table 2.6). Figure 2.5c shows 

interaction effects between biochar and composted manure rates for SPAD values. While 

SPAD values increased with increasing composted manure rates in transitioning soil with no 
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biochar or transitioning soil with hardwood biochar, SPAD values for soil amended softwood 

biochar were greater and but not influenced by composted manure rate (Figure 2.5c). Biochar 

and genotypes interactions also influenced SPAD values in transitioning soil (Fig 2.5d). The 

interaction was due to Brown mustard having significantly lower SPAD values in soil amended 

with hardwood biochar compared to soil amended with softwood biochar or soils with no 

biochar amendment. 

SPAD values in saline soil were influenced by the main effect of biochar and 

composted manure rates (Table 2.6). In saline soils, as in good soil, soil amended with 

softwood biochar had similar SPAD values as good soil with no biochar and this value greater 

than that for soil amended with hardwood biochar. However, the interactions between biochar 

and composted manure, biochar and genotypes were also significant for SPAD values (Table 

2.6). These interactions are presented on Figures 2.5e and f. For biochar by composted manure 

rates, the interaction was due differential response to composted manure application observed 

in the biochar treatments. In saline soils with no biochar, SPAD values increased with increase 

in composted manure rate peaking at a rate of 30% whereas in the softwood amended soil, the 

SPAD values peaked at the highest composted manure rate of 50% but lower compared with 

that in no biochar. In the saline soils amended with hardwood biochar the response to 

composted manure application was poor irrespective of rate. Biochar and genotypes interaction 

was because in saline soil without biochar, genotypes performed similarly in SPAD values. 

However, in saline soil with softwood biochar, genotype NCC101S had higher SPAD values 

than DKTF91SC and African cabbage but similar to that in saline soil with no biochar. In 

saline soil with hardwood biochar, SPAD values were lower on all genotypes relative to saline 

soil with no biochar and softwood.  
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Softwood biochar in combination with composted manure increased leaf chlorophyll 

content (SPAD values). This elevated leaf chlorophyll content is explained by high 

phosphorous accumulation from composted manure (Eghball, 2002), and the fact that softwood 

biochar had a large surface area for moisture storage and increase on availability of other 

nutrients (Asai et al., 2009). The lower SPAD values in saline soil with no amendments is 

likely due to ionic and osmotic stresses that result in production of reactive oxygen species 

leading to degradation of photosystem 1 and 2 in thylakoid membrane (Wiencke, 1982) which 

resulted into lower solutes accumulation in the leaf due to depression in carbon assimilation. 

However, saline soils used in this study were high in nitrates. Therefore, composted manure 

and softwood biochar application may have increased availability of nitrates and moisture to 

plants which reduced the effects of sodium in the soil, relieving the plants of osmotic stress 

and increased on leaf tissue chlorophyll development (Akhtar et al., 2015; Marchand et al., 

2016). 

Shoot dry weight 

In good soil, shoot dry weight was influenced by the main effects of biochar, composted 

manure rates and genotype (Table 2.6). However, the interactions between biochar and 

composted manure rates, biochar and genotypes and composted manure and genotypes were 

also significant. Shoot dry weight was greater in good soil with softwood biochar than in soil 

amended with hardwood biochar but this value was not different from untreated control/no 

biochar. Shoot dry weight was significantly greater at 30% composted manure application rate 

(Table 2.6). The interactions effects between biochar and composted manure, biochar and 

genotypes, and composted manure and genotypes for shoot dry weight were also significant in 

good soil (Table 2.6). The interaction between biochar and composted manure was a result of 
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a significantly lower shoot dry weight when 30% composted manure was applied in good soil 

amended with hardwood biochar as compared to the same composted manure rate in the soil 

with no amendment and soil amended with softwood biochar (Figure 2.6a). The significant 

interaction between biochar and genotypes was because of inconsistencies in ranking of 

genotypes for shoot dry weight in soils amended with biochar as compared to the soil with no 

biochar (Figure 2.6b). Composted manure and genotypes interactions were also significant for 

shoot dry weight in good soil due to higher variations in shoot dry weight among genotypes.  

In transitioning soil, the interaction between biochar and composted manure for shoot 

dry weight was because in soil amended with hardwood biochar, shoot dry weight response to 

composted manure rate of 30% was significantly lower compared to the same rate in softwood 

biochar or in soils with no biochar (Figure 2.6d). Biochar and genotypes interaction was 

significant for shoot dry weight due to changes in genotype ranking for shoot dry weight from 

one biochar treatment to the other (Fig 2.6e). 

In saline soil, shoot dry weight varied by biochar and composted manure, and the 

interaction between biochar and composted manure, as well as interaction between biochar and 

genotype were significant (Table 2.6). The interaction between biochar and composted manure 

for shoot dry weight was because application of biochar only influenced shoot dry weight in 

saline soil with no biochar (Figure 2.6f). In addition, saline soil amended with hardwood 

biochar had extremely low shoot dry weight irrespective of composted manure application rate 

as compared to same soil amended with softwood biochar or control (Figure 2.6f). Shoot dry 

weight also varied by biochar and genotypes interactions in saline soil. This was due to variable 

shoot dry weight among genotypes with Brown mustard reaching the highest in saline soil with 
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no biochar, while NCC101S had the highest shoot dry weight in saline soil with softwood 

biochar (Fig 2.6g).  

The increase in shoot dry weight with increase in composted manure rate in saline soil 

was due to increased nutrients and moisture availability resulting in higher plant growth. 

However, the variation between the biochar types also influenced plants growth due to the 

biochars physical properties that influenced on the availability of moisture and nutrients to 

plants. When comparing application of biochar and composted manure combinations and their 

interactions on plant growth in saline soil, shoot dry weight was greater in treatments with no 

biochar, and increased with increasing composted manure rate applied and this was greater 

than when composted manure is added in either softwood or hardwood biochar treatment. This 

was because biochar can sequester nutrients and reduce availability of soil moisture leading to 

reduced growth (Qasim et al., 2002). However, biochar improves soil physical and biological 

properties of saline soil which can also support growth (Dahlawi et al., 2018). This therefore 

explains a slightly higher shoot dry weight at 0% composted manure with softwood biochar 

compared to 0% composted manure in no biochar in saline soil. Despite the mixed results of 

biochar on seedling emergence and growth of genotypes evaluated under different soil salt 

contents (salinity levels), softwood biochar produced better results in most cases compared to 

hardwood biochar and no biochar and addition of composted manure improved the overall 

performance in all treatments. 

 CONCLUSIONS 

Seedling emergence and growth decreased with increasing soil salt concentrations. The 

impact of biochar application on seedling emergence and growth varied depending on type of 

biochar and soil salinity level. In good soil (non-saline) biochar did not influence seedling 
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emergence. In transitioning soil (moderately saline) seedling emergence was best with 

softwood biochar application while in saline soil (highly saline), the two biochar types showed 

slightly improved seedling emergence compared to the control (no biochar). On average, 

application of composted manure improved seedling emergence and growth in all soil salinity 

levels. However, significant interactions were observed between biochar and composted 

manure in transitioning and saline soils for leaf chlorophyll content, number of leaves plant-1 

and shoot dry weight plant-1. These interactions were mostly due to inconsistence of response 

of these genotypes to composted manure application in soil amended with softwood biochar 

when compared to those amended with hardwood biochar. In most cases, plant growth traits 

had a positive and more consistent response is transition and saline soil amended with softwood 

biochar than those amended with hardwood biochar. Four genotypes NCC101S, DKTF91SC, 

African cabbage and Brown mustard have salt tolerance traits and could be further investigated 

for their physiological salt tolerance mechanisms as well as their genetic characteristics under 

salt stress. Biochar use in remediating saline soils needs further investigation due to the mixed 

results produced under different soil salt content. 
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Table 2.1. Chemical properties for good, transitioning, and saline soils used in Experiment 1, Experiment 2, and Experiment 3 
 

Soil type pH EC OM NO3 P K Ca Mg Na S SAR ESP 
   mmho/cm % kg/ha-1 .....................................mg/kg-1........................ ..........cmol/kg-1 
Expt 1 Good soil  7.5 0.62 4.9 30 0.02 0.36 2.74 0.41 0.05 0.14 2.82 8.1  

Transitioning soil 6.9 5.17 4.4 67 0.03 0.20 2.07 1.16 2.35 2.74 4.25 45.5  
Saline soil 6.8 8.47 4.3 100 0.02 0.19 1.61 1.24 4.29 3.51 5.46 50.6 

Expt 2 Good soil  6.5 1.85 5.3 100 0.03 0.11 2.48 0.87 0.21 0.79 2.71 11.4  
Transitioning soil 7.0 4.53 4.4 128 0.03 0.11 2.01 1.25 1.56 2.08 3.41 34.4  
Saline soil 6.9 5.16 4.4 335 0.02 0.14 2.33 1.31 1.97 1.22 4.05 38.2 

Expt 3 Good soil  7.3 0.42 5.4 104 0.01 0.38 2.51 0.42 0.04 0.00 2.57 9.5  
Transitioning soil 7.1 5.54 4.6 6.7 0.02 0.23 2.20 1.36 1.94 2.96 3.86 35.0  
Saline soil 7.4 7.21 4.3 121 0.05 0.13 1.96 1.50 3.24 3.15 4.61 44.9 

Abbreviations: Expt=Experiment, EC=Electrical conductivity, OM=Organic matter 
Note: EC>4.0, SAR<13, pH >8.5 = saline soil, EC <4, SAR>13, and pH>8.5 = sodic soil, EC> 4, SAR> 13, and pH <8.5 =saline-
sodic  
 (Franzen, 2003; Bauder et al., 2008; Dahlawi et al., 2018). 
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Table 2.2. Chemical properties of biochar and composted manure used in the Experiment 3 

Parameter Unit Softwood Hardwood Composted manure 
SA m2/g 375.80 18.00 nd 
Ph  7.90 8.20 7.90 
EC dS m-1 Nd nd 0.41 
OM % Nd nd 13.20 
N kg N ha-1 1.28 0.00 0.00 
P g kg-1 0.13 0.00 0.08 
K g kg-1 1.20 0.00 5.99 
S g kg-1 0.27 0.00 0.17 
Ca g kg-1 1.20 0.00 19.20 
Mg g kg-1 0.57 0.00 4.00 
Zn g kg-1 0.03 0.00 nd 
Fe g kg-1 1.51 2.73 nd 
Mn g kg-1 0.09 0.29 nd 
Na g kg-1 0.01 0.00 0.13 
C g kg-1 820.00 842.00 nd 

Abbreviations: SA= Surface area, nd=Undetermined 

 

 

 

 

 

 

 

 

 

 



89 

 

 

Experiment 1 

Table 2.3. Percentage seedling emergence of canola and carinata genotypes at 7 DAP and 28 DAP in good, transitioning, and 
saline soils in greenhouse experiment 1. 

 Good soil  Transitioning soil Saline soil 
 7DAP a 28DAP b 7DAP c 28DAP d 7DAP e 28DAP f 

Genotype ............................Percentage seedling emergence at seven and twenty-eight days after planting..................... 

Canola       
CS2100 45.5 bcd 59.2 d - 17.5 b - 10.0 b 
CS2300 65.9 a 57.5 d - 17.5 b - 9.2 b 
CS2500 44.9 bcd 67.5 c 10.0 9.2 c 3.3 7.5 b 
CS2600 49.8 b 80.0 b - 17.5 b - - 
DKL14BL 34.0 de 59.2 d - 19.2 b - 10.0 b 
DKTF91SC 39.6 bcde 90.0 a 10.0 19.2 b 3.3 9.2 b 
DKTF92SC 48.0 bc 47.5 e 10.0 20.0 b - 7.5 b 
L140P 47.7 bc 70.0 c - 29.2 a - 10.0 b 
L233P 45.0 bcd 68.3 c 10.0 9.2 c - - 
NCC101S 30.0 e 49.2 e - 29.2 a 3.3 29.2 a 
Carinata 

  
    

AC120 37.5 bcde 80.0 b 10 7.5 c - 9.2 b 
DH069485 34.8 cde 60.0 d 20.0 7.5 c 7.5 10.0 b 
DH140251 38.2 bcde 58.3 d 20.3 27.5 a - - 
Mean 43.0 65.1 13.4 17.7 1.4 11.2 
CV 19 3 108 9 218 15 
 P-value 0.002 <0.000 <0.000 <0.000 0.080 <0.000 

Different letters in each column indicate significant differences (P≤ 0.05) due to treatments. 
Abbreviations: DAP= Days after planting. Seedling emergence recorded in percentage based on eight seeds planted in each pot. 
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Experiment 2  

Table 2.4. Percentage of emerged seedlings at 7DAP based on eight seeds, and shoot dry weight plant-1, (59DAP), and SPAD 
(59DAP) for canola and mustard genotypes, in good, transitioning, and saline soils at 59DAP in greenhouse experiment 2. 

 Good soil  Transitioning soil Saline soil 
Genotype 7DAP a SDW b SPAD c 7DAP a SDW b SPAD c 7DAP a SDW b SPAD c 
 % g/plant nmol/mg-1 % g/plant nmol/mg-1 % g/plant nmol/mg-1 
Canola       

   

NCC101S 70.4 12.4 43.0  35.1  3.9 44.8  48.2 ab 3.7  52.5 
DKTF91SC 88.7 9.2 43.6  40.9  5.4 46.9  30.2 bcd 2.6 44.1  
CS2500 65.9 8.7  40.4 19.0  2.9 40.8  20.2 d 3.1 46.4 
L140P 75.7 10.4 42.3 47.9  4.7 43.0 32.2 bcd 5.0  56.2 
L233P 71.4 8.7  39.9 45.0  1.6 39.0  48.2 ab 3.5  44.6 
DKL7114BL 73.6  8.3  43.5 42.6  4.7 47.0 25.2 cd 2.5  45.5 
DKTF96SC 77.5  7.6 40.4 33.8  2.6  45.6  34.2 abcd 2.3  48.5  
DKLL82SC 85.2 8.5  44.2 47.5  4.7 43.5  32.2 bcd 2.4  42.9  
DKTFLL21SC 67.1  6.0 39.9 46.9 4.0 45.4  38.2 abcd 1.9 37.2  
DKTF92SC 66.4 8.9  41.1 36.6  2.3 40.9  42.2 abc 4.3  43.5  
Mustard        

 
 

A.Cabbage d 55.6 12.4 45.7 38.6 4.5 46.4  29.2 bcd 2.3  47.5 
B.Mustard e 83.0  10.0 37.1 44.0 3.6  40.2  33.2 abcd 5.5  43.4  
Fb.Mustard f 75.9  8.3 38.2 41.8  3.8 37.3 52.2 a 5.0  34.1  
Mean 73.6 9.2 41.4 40.0 3.8 43.2 36.0 3.3 44.4 
SEM 5.514 0.962 2.087 5.257 0.624 1.896 4.874 0.540 1.995 
  Analysis of variance (P-value)   
Biochar type (a) 0.729 0.733 0.244 0.000 0.216 0.052 0.017 0.501 0.170 
Genotypes (b) 0.266 0.476 0.864 0.468 0.645 0.589 0.051 0.305 0.246 
Factor a*b 0.705 0.608 0.995 0.161 0.720 0.849 0.433 0.786 0.916 

Different letters within each column indicate significant differences (P≤ 0.05) among treatments. 
Abbreviations: a Percentage seedling emergence at 7DAP, b Shoot dry weight plant-1,(59DAP) c Leaf chlorophyll content (59DAP). 
Genotype key: d African cabbage, e Broadleaf mustard, f Florida broadleaf mustard. DAP=Days after planting  
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Figure 2.1. Percentage seedling emergence under different soil salt content at 7DAP in experiment 2 

 

 
 
Figure 2.2. Influence of biochar soil amendments on SPAD values under different soil salt conntent at 59DAP in experiment 2 

Abbreviations: DAP=Days after planting 
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Experiment 3  

Table 2.5. Changes in chemical properties of soil used in experiment 3 after applying biochar in greenhouse experiment 3 

Treatment pH EC OM NO3 P K Ca Mg Na S 
  mmho/cm % kg ha-1 ................................... g kg-1........................... 

Good soil (Control) 7.3 0.42 5.4 104 0.01 0.38 2.51 0.42 0.04 0.00 

Good soil +Softwood biochar 6.6 1.72 5.6 82 0.02 0.31 2.08 0.46 0.10 0.28 
 Transitioning soil  7.1 5.54 4.6 6.7 0.02 0.23 2.20 1.36 1.94 2.96 

 Transitioning + Softwood biochar 6.6 5.93 9.2 0.1 0.02 0.22 1.68 1.21 1.55 1.97 
Saline soil  7.4 7.21 4.3 121.0 0.05 0.13 1.96 1.50 3.24 3.15 

Saline soil + Softwood biochar 6.7 6.87 9.2 5.0 0.05 0.18 1.6 1.28 2.99 2.52 
Saline soil + Hardwood biochar 7.3 5.77 3.5 0.7 0.04 0.19 1.6 1.19 4.34 4.22 

Key: Italicized and colored values represent the original soil properties before adding either softwood or hardwood biochar 
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Table 2.6. Effect of biochar type, composted manure rates, and genotypes on seedling emergence (14DAP), number of leaves 
plant-1 (39DAP), SPAD values (39DAP) and shoot dry weight plant-1 (39DAP) in greenhouse experiment 3. 

 Good soil  Transitioning soil Saline soil 
Treatments 14DAPa  NLb SPADc SDWd 14DAPa  NLb SPADc SDWd 14DAPa  NLb SPADc  SDWd  

% Plant-1 nmol/mg-1 g plant-1 % Plant-1 nmol/mg-1 g plant-1 % Plant-1 nmol/mg-1 g plant-1 
Biochar type (Factor a) 
Control 46.4 b 4.1 b 41.0 ab 1.4 a 37.0 a 2.1  22.1 b 0.4 39.1 4.0 a 33.0 a 0.8 a 
Softwood 34.4 c 5.0 a 44.0 a 1.6 a 13.1 b 3.0 32.2 a 0.5 32.0 3.4 a 30.0 a 0.8 a 
Hardwood 71.0 a 4.1 b 36.1 b 1.1 b 19.0 b 2.1 22.1 b 0.6 36.1 1.1 b 8.1 b 0.2 b 
Composted manure rates (Factor b) 
0 41.1 b 3.9 b 40.3 a 1.2 b 7.0 c 0.4 c 8.4 c 0.1 c 9.6 c 0.7 b 8.1 b 0.9 a 
30 55.0 a 5.3 a 45.2 a 1.7 a 21.0 b 2.2 b 26.0 b 0.5 b 43.1 b 3.4 a 31.0 a 0.8 a 
50 57.1 a 3.7 b 34.1 b 1.1 b 41.0 a 4.1 a 33.5 a 0.9 a 55.1 a 3.9 a 29.2 a 0.2 b 
Genotypes (Factor c) 
A.cabbage 52.0 ab 5.1 a 40.4 ab 1.4 b 24.8 a 3.2 a 28.7 a 0.6 a 35.0  2.8 24.8 0.5 
B.mustard 50.9 ab 3.7 b 35.1 b 1.1 b 30.3 a 2.2 b 26.9 a 0.6 a 35.7 2.5 21.7 0.6 
DKTF91SC 57.4 a 4.5 ab 44.6 a 1.7 a 26.0 a 2.0 b 24.0 ab 0.5 a 35.2 2.7 23.7 0.5 
NCC101S 43.4 b 4.0 b 38.7 ab 1.3 b 10.4 b 1.4 b 18.0 b 0.3 b 37.2 3.0  23.4 0.7 

Analysis of variance (P-value) for main effects  
Factor a <0.000 0.052 0.022 0.000 <0.000 0.087 0.007 0.155 0.263 <0.000 <0.000 <0.000 
Factor b 0.000 <0.000 0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 
Factor c 0.023 0.015 0.040 0.002 <0.000 0.000 0.031 0.004 0.973 0.751 0.877 0.102 

Analysis of variance (P-value) for interactions 
Factor a * b 0.002 0.082 0.257 0.051 0.189 <0.000 <0.000 <0.000 0.171 <0.000 <0.000 <0.000 
Factor a * c 0.223 0.167 0.023 0.029 0.003 0.007 0.041 0.004 0.002 0.018 0.026 <0.000 
Factor b * c  0.722 0.478 0.000 <0.000 0.003 0.000 0.312 0.121 0.527 0.035 0.092 0.233 
Factor a * b *c 0.211 0.408 0.058 0.202 0.225 0151 0.328 0.555 0.916 0.035 0.035 0.084 

Mean values followed by different lower-case letters within the column represent significant differences at P<0.05. No letters are 
shown where there are no significant differences.  
Abbreviations: a Percentage of emerged seedlings (14DAP) based on eight seeds, b Number of leaves plant-1, c Leaf chlorophyll 
content (SPAD values), and d Shoot dry weight plant-1 at 39 DAP 
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Figure 2.3. Effect of biochar, composted manure rates and genotypes interactions on percentage of emerged seedlings of canola 
and mustard genotypes at 14DAP in good (a), transitioning (b-c), and saline soils (d) in experiment 3 

Means are averaged over each treatment. Bars sharing different lower-case letters represent a significant difference at P≤0.05 
Treatment key: Biochar levels: NB= no biochar, SW= softwood biochar, HW = hardwood biochar. Composted manure levels: 0C, 
30C, and 50C = 0%, 30%, and 50% composted manure application rates. Genotypes: AC= African cabbage, BM= Brown mustard, 
DK= DKTF91SC, NC= NCC101S. 
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Figure 2.4. Effects of biochar, composted manure rates and genotypes interactions on number of leaves plant-1 of canola and 
mustard genotypes in transitioning soil (a-c) and saline soil (d-f) at 39 DAP in greenhouse experiment 3.  

Bars sharing different lower-case letters represent a significant difference at P≤0.05 
Treatment key: Biochar levels: NB= no biochar, SW= softwood biochar, HW = hardwood biochar. Composted manure levels: 0C, 
30C, and 50C = 0%, 30%, and 50% composted manure application rates. Genotypes: AC= African cabbage, BM= Brown mustard, 
DK= DKTF91SC, NC= NCC101S 
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Figure 2.5. Effects of biochar, composted manure rates and genotypes on leaf chlorophyll content (SPAD values) of canola and 
mustard genotypes in good (a-b), transitioning soils (c-d) and saline soil (e-f) at 39 DAP in greenhouse experiment 3. 

Bars sharing different lower-case letters represent a significant difference at P≤0.05 
Treatment key: Biochar levels: NB= no biochar, SW= softwood biochar, HW = hardwood biochar. Composted manure levels: 0C, 
30C, and 50C = 0%, 30%, and 50% composted manure application rates. Genotypes: AC= African cabbage, BM= Brown mustard, 
DK= DKTF91SC, NC= NCC101S 
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Figure 2.6. Effect of biochar, composted manure rate, and genotypes on shoot dry weight plant-1 of canola and mustard genotypes 
in good (a-c) and transitioning soil (d-e) measured at 39 DAP in greenhouse experiment 3 

Bars sharing different lower-case letters represent a significant difference at P≤0.05 
Treatment key: Biochar levels: NB= no biochar, SW= softwood biochar, HW = hardwood biochar. Composted manure levels: 0C, 
30C, and 50C = 0%, 30%, and 50% composted manure application rates. Genotypes: AC= African cabbage, BM= Brown mustard, 
DK= DKTF91SC, NC= NCC101S 
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Fig 2.6. Effects of biochar, composted manure rates and genotypes on shoot dry weight plant-1 of canola and mustard genotypes in 
saline soil (a-b) at 39 DAP in greenhouse experiment 3. 

 Bars sharing different lower-case letters represent a significant difference at P≤0.05 
Treatment key: Biochar levels: NB= no biochar, SW= softwood biochar, HW = hardwood biochar. Composted manure levels: 0C, 
30C, and 50C = 0%, 30%, and 50% composted manure application rates. Genotypes: AC= African cabbage, BM= Brown mustard, 
DK= DKTF91SC, NC= NCC101S. 
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APPENDICES 
 

 
Fig 2A.1. The diagrammatical flow of the greenhouse experiments 1, 2, and 3. 
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Table 2A.1. ANOVA for effect of composted manure, biochar, and genotypes on canola and mustard seedling emergence (7 and 
14DAP), leaf plant-1 SPAD and shoot dry weight 39 DAP in greenhouse experiment 3 

Source 
 

7DAP a 14DAP b  NL c SPAD d SDW e 
Unit  % % count nmol/mg-1 g  

Df Pr(>F) Pr(>F) Pr(>F) Pr(>F) Pr(>F) 
Block 2 0.935 0.863 0.731 0.843 0.652 
Soil type 2 <0.000 <0.000 <0.000 <0.000 <0.000 
Composted manure  2 <0.000 <0.000 <0.000 <0.000 0.000 
Genotype 3 0.121 0.003 0.001 0.120 0.279 
Soil type: Composted manure 4 0.000 0.000 0.000 <0.000 0.000 
Soil type: Genotype 6 0.005 0.031 0.114 0.111 0.000 
Composted manure: Genotype 6 0.576 0.250 0.066 0.010 0.047 
Soil type: Composted manure: Genotype  12 0.710 0.331 0.028 0.051 0.001 
R2 

 
0.321 0.298 0.299 0.266 0.329 

Residuals 934 934 932 759 729 759 
Block 2 0.936 0.873 0.759 0.849 0.662 
Soil type 2 <0.000 <0.000 <0.000 <0.000 <0.000 
Biochar 2 <0.000 0.000 0.000 0.000 <0.000 
Genotype 3 0.099 0.007 0.004 0.137 0.271 
Soil type: Biochar 4 <.0000 0.000 0.000 0.000 <0.000 
Soil type: Genotype 6 0.003 0.038 0.151 0.166 0.001 
Biochar : Genotype 6 0.002 0.011 0.008 0.001 0.000 
Soil type: Biochar: Genotype 12 0.795 0.274 0.690 0.691 0.016 
R2  0.313 0.237 0.202 0.231 0.303 
Residuals 934 934 932 959 729 758 

 Abbreviations: a, b Percentage seedling emergence at 7 and 14DAP, c Number of leaves plant-1, d leaf chlorophyll content (SPAD 
values), e Shoot dry weight plant-1 at 39DAP. DAP=Days after planting.



Table 2A.2. Effect of biochar (softwood, hardwood, and no biochar) and composted manure mix rates (0,30,50%) on seedling 
emergence of canola and mustard genotypes in good, transitioning, and saline soil at 14DAP in greenhouse experiment 3. 

 Good soil  Transitioning soil Saline soil 
Composted manure rates 0% 30% 50% 0% 30% 50% 0% 30% 50% 
Factor a          
No biochar (control) 29.0 b 46.8 b 64.4 a 18.2 a 39.1 a 53.5 a 13.4 a 47.3 ab 57.1 
Softwood 26.0 b 44.3 c 33.1 b 2.1 b 10.3 b 27.5 b 10.2 ab 32.1 b 57 
Hardwood 69.1 a 73.3 a 71.1 a 0.7 b 13.1 b 41.1 ab 5.1 b 50.1 a 52 
Factor b          
A.cabbage 39.1 56.2 ab 61.1 2.8 b 24.5 a 47.1 a 6.5 bc 43.2 62.5 
B.mustard 46.1 48.9 b 58.2 13.4 a 28.4 a 49.1 a 15.0 a 45.7 55.4 
DKTF91SC 45.1 66.0 a 61.6 6.0 ab 21.0 a 51.1 a 4.3 c 46.6 54.9 
NCC101S 34.4 48.1 b 47.5 5.6 b 8.6 b 17.1 b 12.5 ab 36.6 46.8 
Mean 41 55.3 57.1 0.41 21.1 41.1 9.6 43.1 55.1 
  Analysis of variance (P-value)  

Factor a <0.000 0.001 <0.000 <0.000 <0.000 0.004 0.035 0.073 0.842 
Tactor b 0.399 0.119 0.278 0.036 0.002 0.003 0.015 0.709 0.583 
Factor a * b 0.337 0.969 0.065 0.018 <0.000 0.183 0.023 <0.000 0.349 

Genotypes Key: A.cabbage = African cabbage, B.mustard = Brown mustard. 
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Table 2A.3. Effect of biochar (softwood, hardwood, and no biochar), and composted manure mix rates (0,30,50%) on number of 
leaves plant-1 of canola and mustard genotypes in good, transitioning, and saline soil measured at 39 DAP in greenhouse 
experiment 3. 

 Good soil  Transitioning soil Saline soil 
Composted manure rates 0% 30% 50% 0% 30% 50% 0% 30% 50% 
Factor (a)          
No biochar (control) 4.1 5.6 a 2.8 b 0.8 a 2.9 a 2.0 b 0.6 ab 5.5 a 4.4 a 
Softwood 3.9 5.8 a 4.6 a 0.3 ab 2.5 ab 5.1 a 1.3 a 3.3 b 5.7 a 
Hardwood 3.8 4.5 b 3.9 ab 0.0 b 1.4 b 4.4 a 0.0 b 1.1 c 1.8 b 
Factor (b)          
A.cabbage 5.0 a 6.1 a 4.1 0.2 2.9 a 6.1 a 0.7 ab 3.3 ab 4.3 ab 
B.mustard 3.9 ab 4.4 b 2.7 0.5 2.7 a 3.2 b 1.2 a 3.2 b 2.9 b 
DKTF91SC 3.8 ab 5.3 ab 2.7 0.3 2.4 ab 3.1 b 0.0 b 2.7 b 4.6 a 
NCC101S 3.2 b 5.3 ab 3.4 0.5 1.2 b 2.6 b 0.7 ab 4.7 a 3.3 ab 
Mean 3.9 5.3 3.7 0.4 2.2 3.7 0.7 3.4 3.8 
  Analysis of variance (P-value)  
Factor a 0.889 0.025 0.073 0.024 0.020 <0.000 0.008 <0.000 <0.000 
Tactor b 0.018 0.050 0.343 0.666 0.039 0.000 0.096 0.064 0.270 
Factor a * b 0.411 0.066 0.098 0.522 0.048 0.075 0.239 0.002 0.290 

Genotypes Key: A.cabbage = African cabbage, B.mustard = Brown mustard  
Different letters in each column indicate significant differences at P≤ 0.05 due to treatments. 
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Table 2A.4. Effect of biochar (softwood, hardwood, and no biochar), and composted manure mix rates (0,30,50%) on shoot dry 
weight (g plant-1) of canola and mustard genotypes in good, transitioning, and saline soil measured at 39 DAP in greenhouse 
experiment 3. 

 Good soil  Transitioning soil Saline soil 
Composted manure rates 0% 30% 50% 0% 30% 50% 0% 30% 50% 
Factor a          
Control 1.9 a 2.0 a 1.0 0.2 a 0.64 a 0.4 c 0.1 b 1.4 a 1.1 a 
Softwood 1.5 a 1.7 a 1.4 0.1 b 0.5 a 0.8 b 0.7 a 0.8 b 0.8 a 
Hardwood 0.9 b 1.3 b 1.0 0.0 b 0.2 b 1.4 a 0.0 b 0.2 c 0.2 b 
Factor b          
A.cabbage 1.3 a 1.7 a 1.0 b 0.0 b 0.7 a 1.2 a 0.1 b 0.9 0.6 
B.mustard 1.4 a 0.8 b 1.1 ab 0.3 a 0.7 a 0.8 ab 0.1 b 0.9 0.7 
DKTF91SC 1.2 ab 2.1 a 1.5 a 0.1 b 0.4 ab 0.9 ab 0.0 b 0.6 0.7 
NCC101S 0.9 b 1.9 a 0.9 b 0.1 b 0.2 b 0.6 b 0.6 a 0.9 0.7 
Mean   1.1  0.5  0.2 0.8 0.7 
  Analysis of variance (P-value)  
Factor a 0.001 0.000 0.181 0.047 0.000 <0.000 <0.000 <0.000 0.000 
Tactor b 0.050 <0.000 0.075 0.057 0.001 0.119 <0.000 0.465 0.902 
Factor a * b 0.012 0.053 0.005 0.031 0.022 0.277 <0.000 0.001 0.048 

Genotypes Key: A.cabbage = African cabbage, B.mustard = Brown mustard 
Different letters in each column indicate significant differences at P≤ 0.05 due to treatments. 
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Table 2A.5. Effect of biochar (softwood, hardwood, and no biochar) and composted manure mix rates (0,30,50%) on leaf 
chlorophyll content (SPAD values) in good, transitioning, and saline soils measured at 39 DAP in greenhouse experiment 3 

 
......................Good soil....................... ........... Transitioning soil................. ...................Saline soil........................ 

CM Control Softwood Hardwood control softwood Hardwood Control Softwood Hardwood 

0 40.1 ab 48.3 a 34.1 13.1 b 45.4 0.0 a 8.3 c 16.1 c 0.0 b 

30 48.5 a 45.2 a 42.1 31.0 a 33.7 16.8 b 50.1 a 30.1 b 10.1 a 

50 33.1 b 37.1 b 32.7 21.4 ab 29.7 42.4 a 36.1 b 43.1 a 12.2 a 

mean 41.0 43.5 36.1 21.6 32.2 21.7 33.0 30.0 8.1 

SEM 5.314 4.238 6.420 6.523 6.339 5.140 5.487 5.488 4.922 

 P-value 0.003 0.013 0.197 0.012 0.639 <0.000 <0.000 <0.000 0.024 

CM= Composted manure rates 
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Table 2A.6. Effect of biochar (softwood, hardwood, and no biochar) and genotypes on leaf chlorophyll content in good, 
transitioning, and saline soils measured at 39 DAP in greenhouse experiment 3 

 ....................Good soil....................... ........... Transitioning soil............... ................Saline soil....................... 

Genotypes Control Softwood Hardwood Control Softwood Hardwood Control Softwood Hardwood 

A.CABBAGE 35.9 45.8 39.1 a 26.1 a 40.1 ab 24.6 35.0 26.0 12.1 

B.MUSTARD 44.9  40.4 23.5 b 30.4 a 44.3 a 14.9 35.0 29.2 1.3 

DKTF91SC 43.3 44.6 45.7 a 19.6 ab 26.3 b 27.2 32.0 26.1 14.0 

NCC101S 38.3 42.1 35.6 ab 11.8 b 23.8 b 20.4 28.1 38.1 4.8  

SEM 6.102 4.893 7.413 7.532 7.319 6.235 6.336 6.337 5.684 

 P-value 0.268 0.492 0.005 0.036 0.033 0.219 0.445 0.127 0.078 
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