South Dakota State University

Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange

Civil and Environmental Engineering Reports and Manuals

Department of Civil and Environmental Engineering

7-2021

How to Resolve Channel Travel Time Errors in the TR-55 Worksheet Using Arc Hydro Tools, HEC-GeoHMS and HEC-HMS

Philip A. Adalikwu

Suzette R. Burckhard

Follow this and additional works at: https://openprairie.sdstate.edu/cvlee_manual

Part of the Civil and Environmental Engineering Commons, and the Geographic Information Sciences Commons

How to Resolve Channel Travel Time Errors in the TR-55

Worksheet Using Arc Hydro Tools, HEC-GeoHMS

and HEC-HMS

Philip A. Adalikwu and Suzette R. Burckhard

Published by South Dakota State University (SDSU), Jerome J. Lohr College of Engineering, Civil and Environmental Engineering Department, Brookings, SD 57007.

C 2021 by South Dakota State University, Brookings, South Dakota, USA.

All rights reserved, including the right to reproduce any part of this book in any form, except brief quotations, without written permission from the publisher.

This material is based upon experience gained working on the dissertation entitled "A Study of Geographic Information System-Based Hydrologic Processing of Ungauged Watersheds". Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the colleges and universities with which the authors are affiliated.

Cover photo: North pond, Dakota Nature Park, Brookings, SD (photo credit: Philip A. Adalikwu)

How to Resolve Channel Travel Time Errors in the TR-55 Worksheet Using Arc Hydro Tools, HEC-GeoHMS and HEC-HMS

Philip A. Adalikwu and Suzette R. Burckhard

South Dakota State University

Jerome J. Lohr College of Engineering

Department of Civil and Environmental Engineering

Brooking, South Dakota

July 2021

This paper is meant to be used as a supplemental aid to the tutorials and user's manuals stated in the references. It is assumed that the user has basic knowledge of ArcGIS 10.4.

Table of Content

List of Tables	vi
List of Figures	vii
Introduction	1
Objective	1
Datasets and Sources	2
Watershed Modeling	4
HEC-GeoHMS	4
Data Preprocessing	4
Project Setup	25
Basin Processing	29
Watershed Characteristics Processing	30
Hydrologic Parameter Estimation	33
Using the Merge Basin tool to resolve channel travel time errors	39
References	43

List of Tables

Table 1. Showing dataset types, description, sources, special references, geodatic mode	els,
format, source scale denominator and year of processing.	3
Table 2. Worksheet showing negative and zero channel slope values and channel trave	1
time errors in W1020 and W1050 subbasins	. 39
Table 3. Showing no channel travel time errors after merging for W8570 and W8610	
subbasins	. 42

List of Figures

Figure 1. Showing Elevation and stream datasets loaded to Arc Map
Figure 2. Showing DEM Reconditioning dialog box6
Figure 3. Showing AgreeDEM layer resulting from DEM reconditioning
Figure 4. Showing Fill Sinks dialog box
Figure 5. Showing Fil layer resulting from fill sinks processing
Figure 6. Showing flow direction dialog box10
Figure 7. Showing Fdr layer resulting from flow direction processing
Figure 8. Showing flow accumulation dialog box 12
Figure 9. Showing Fac layer resulting from flow accumulation processing
Figure 10. Showing stream definition dialog box14
Figure 11. Showing Str layer resulting from stream definition
Figure 12. Showing stream segmentation dialog box16
Figure 13. Showing StrLnk layer resulting from stream segmentation
Figure 14. Showing catchment grid delineation dialog box
Figure 15. Showing Cat layer resulting from Catchment delineation
Figure 16. Showing catchment polygon processing dialog box 20
Figure 17. Showing Catchment layer resulting from Catchment Polygon Processing 20
Figure 18. Showing drainage line processing dialog box
Figure 19. Showing DrainageLine resulting from Drainage line processing
Figure 20. Showing adjoint catchment processing dialog box
Figure 21. Showing AdjointCatchment resulting from Adjoint Catchment Processing 23
Figure 22. Showing final product of data preprocessing

Figure 23. Showing the product of Project Setup processing	
Figure 24. Showing eleven (11) subbasins showing W1020 and W1050 subbasin	s where
channel travel time errors occur	
Figure 25. Showing W8570 and W8610 after merging	41

Introduction

This tutorial is an illustration of a stepwise procedure for resolving errors in calculated channel travel times that occur when processing watershed parameters in HEC-GeoHMS. Channel travel time errors occur when a GIS-defined channel slope value during preprocessing of the Digital Elevation Data (DEM) is zero or negative (Adalikwu, 2021). The tutorial is intended to assist a relatively experienced ArcMap user resolve channel travel time errors that are documented in the TR55 Worksheet. Particularly, this tutorial is useful if the Muskingum method is selected by the watershed modeler as the river routing method. The K parameter value in the Muskingum routing method is the channel travel time (Song, Kong, & Zhu, 2011). This value can be obtained from the TR55 Worksheet under the channel flow characteristics. According to the TR55 methodology, a watershed's time of concentration is a hydrologic parameter estimated as the sum of travel times for channel flow, concentrated shallow flow and sheet flow (Fleming & Doan, 2013; McCuen & Okunola, 2002). Therefore, errors in channel travel times will result in incorrect computed time of concentration.

The step-by-step approach in this tutorial begins with the preprocessing of GIS data in HEC-GeoHMS up until when channel errors are encountered and how the errors are resolved.

Objective

In this tutorial, a watershed has channel travel time errors in some subbasins. The Merge Basin tool in HEC-GeoHMS is used to merge subbasins having channel travel time errors with their subbasin neighbors that are error free. For demonstration purposes, the tutorial models Mud Creek Watershed in Perkins County, South Dakota, by subdividing the watershed into eleven (11) subbasins using a threshold area of 3.5 km². More detailed steps on how to model a watershed are outlined in the HEC-GeoHMS User's Manual (Fleming & Doan, 2013).

Datasets and Sources

There are a lot of different sources for the datasets needed for creating a HEC-GeoHMS project. The **GeoSpatialDataGateway** on the United State Department of Agriculture (USDA) website is one place where all the datasets can be downloaded (https://gdg.sc.egov.usda.gov/GDGOrder.aspx). The other widely used data source is the Earth Resources Observation and Science (EROS) Center of the United State Geological Survey (USGS) (https://earthexplorer.usgs.gov).

Below is a list of the data requirement:

- Elevation: National Elevation Dataset (3, 10 or 30 meter)
- Hydrography: National Hydrography Dataset (1:24,000)
- Hydrologic Units: 12 Digit Watershed Boundary Dataset in HUC12 NRCS Version
- Land Use Land Cover: National Land Cover Dataset by state
- Soils: Soil Survey Geographic (SSURGO) by state or Conterminous US

Data Type	Description	Data Sources	Spatial Reference Information	Geodetic Model	Format	Source Scale Denominator	Year
National Elevation Data	The NED is a seamless mosaic of best-available elevation data.		Grid	Horizontal	GeoTIFF	10 meters	Unknown
National Hydrography Dataset (NHD)	Provides a network of rivers and streams, including intermittent streams, ditches, and canals.	USDA/NRCS - National Geospatial Center of Excellence (https://gdg.sc. egov.usda.gov /GDGOrder.as px)	Coordinate System: Universal Transverse Mercator	Datum Name: North American Datum of 1983 (NAD83)	ARC/INF O Shape	24,000	2016
Soil Survey Geographic (SSURGO II) Soil	These data provide information about soil features on or near the surface of the Earth.		- National Geospatial Center of Excellence (https://gdg.sc. egov.usda.gov /GDGOrder.as	Horizontal Coordinate System Definition: Geographic	Horizontal Datum Name: World Geodetic System of 1984 (WGS84)	ESRI Shape file	250,000
National Land Cover Dataset (NLCD)	The dataset is a generalized and nationally consistent land cover data layer for the United States		Grid Coordinate System: Universal Transverse	Horizontal Datum Name: North American Datum of 1983	Tag Image File Format (TIFF)	30 meters	2011
12 Digit Watershed Boundary Dataset in HUC12	This dataset is intended to be used as a tool for water resolution		Mercator	(NAD83)	ARC/INF O Shape	24,000	2013 - Present

Table 1. Showing dataset types, description, sources, special references, geodatic models,
format, source scale denominator and year of processing

Watershed Modeling

The watershed modeling demonstrated in this tutorial processes the Mud Creek Watershed in Perkins County, South Dakota, by subdividing the watershed into eleven (11) subbasins using a threshold area of 3.5 km². It is assumed that the user has a working knowledge of developing HMS models using HEC-GeoHMS in ArcGIS. The user is therefore expected to obtain and process appropriate spatial data by following stated referencing to develop models on his or her own.

HEC-GeoHMS

HEC-GeoHMS is a software developed by the US Army Corps of Engineers and can be downloaded and added to Arc Map desktop as a public domain extension from their website (*https://www.hec.usace.army.mil/software/hec-hms/downloads.aspx*). The program features include data preprocessing, project setup, basin processing, watershed characteristics processing, hydrologic parameter estimation, HMS model support for creation of input files for HMS.

Data Preprocessing

Before embarking on data preprocessing, the user must create a personal geodatabase, an Arc Map document saved to a folder directory. Then dataset layers are loaded to the Arc Map as shown in Figure 1.

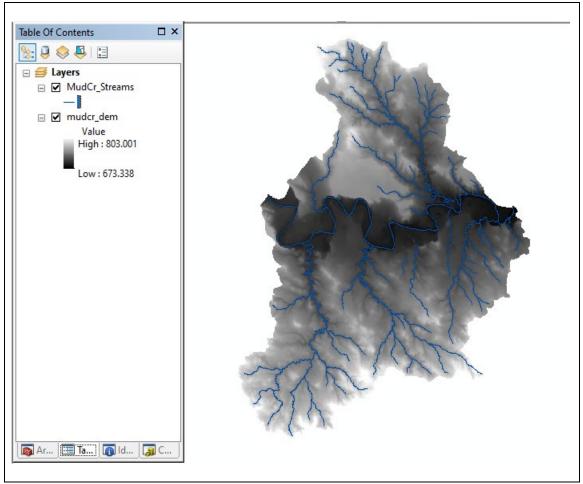


Figure 1. Showing Elevation and stream datasets loaded to Arc Map.

The preprocessing consists of steps that utilize the DEM and stream dataset to derive a drainage network. The following are data preprocessing steps:

- In the Preprocessing menu Preprocessing of the HEC-GeoHMS toolbar
 - Click on DEM Reconditioning. The DEM Reconditioning tool modifies the terrain by lowering elevation grid cells along streamlines.
 - In the pop-up window (Figure 2), select *mudcr_dem* for Input Raw DEM and *Mudcr_streams* for AGREE Stream from the drop-down menu.
 - Click OK to produce *AgreeDEM* layer (Figure 3)

		Raw DEM
	- 🔁	lcr_dem
Stream that will be burnt into the DEM.		AGREE Stream
		ICr_Streams
		er of Cells for Stream Buffer
	5	
		h Drop in Z Units
	10	
		Drop in Z Units
	1000	
		t AGREE DEM
	e errors (Pr 🛛 🚰	21SP\OpenPrairie_publication\How to resolve chnl travel
		aise Negative Values (ontional)
		allo regativo valaco (optional)
	1000 e errors\Pr	

Figure 2. Showing DEM Reconditioning dialog box

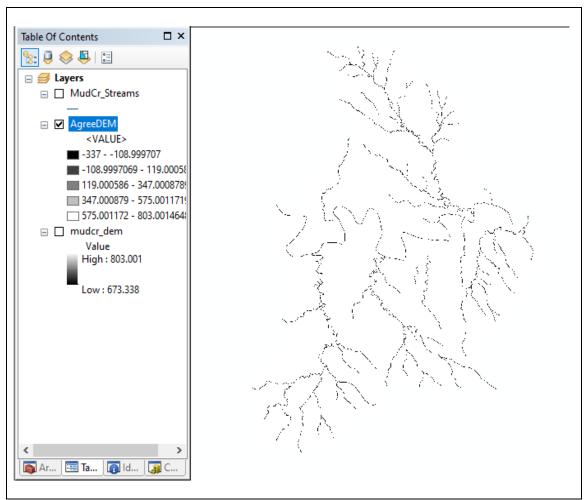


Figure 3. Showing AgreeDEM layer resulting from DEM reconditioning

- Click on Fill Sinks. The Fill Sinks tool creates depressionless DEM by increasing the elevation of pit cells in the DEM to allow water to flow along the terrain.
- In the pop-up window (Figure 4), select AgreeDEM from the drop-down menu.
- Click OK to produce *Fil* layer (Figure 5)

Input DEM		_ ^	Input DEM	
AgreeDEM		- 🖆		
Output Hydro DEM			Input DEM	
E:\2021SP\OpenPrairie_pub	ication\How to resolve d	hnl t 🔁		
Fill Threshold (optional)				
Input Deranged Polygon (opt	onal)			
		🖻 🗸		
Use IsSink field (optional)		- •		

Figure 4. Showing Fill Sinks dialog box

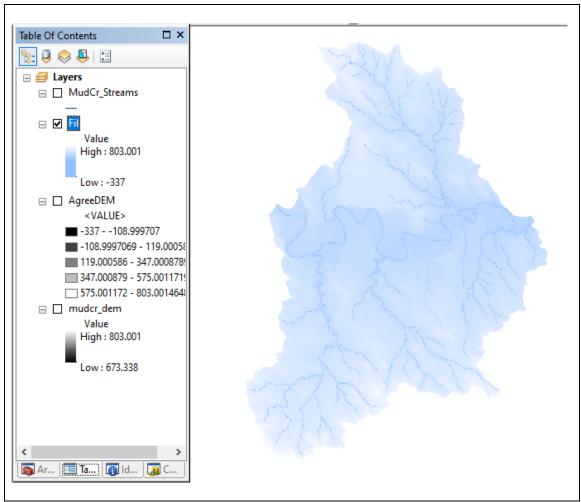


Figure 5. Showing Fil layer resulting from fill sinks processing

- Click on Flow Direction. The Flow Direction tool define the direction of steepest decent for each terrain cell in eight possible directions.
- In the pop-up window (Figure 6), confirm that the Input Hydro DEM is the *Fil* layer
- Click OK to produce *Fdr* layer (Figure 7)

Input Hydro DEM		\sim	Flow Direction	
Fil	I 🖻		Conceptor the flow	
Output Flow Direction Grid			Generates the flow direction grid where each	
E:\2021SP\OpenPrairie_public	tion\How to resolve chnl t 🛛 🚰		cell indicates the direction	
Input Outer Wall Polygon (opti	nal)		of the steepest descent	
			from that cell. If an Outer	
			Wall Polygon is specified, the resulting Flow Direction	
			Grid will be masked to this	
		×1	feature class. This allows	
			getting rid of the expanded	

Figure 6. Showing flow direction dialog box

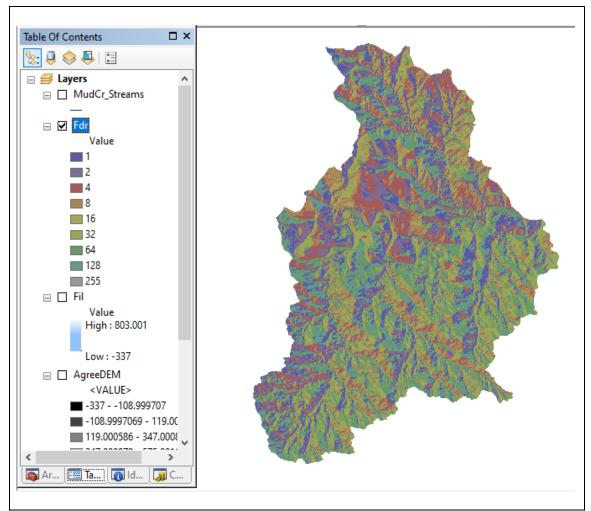


Figure 7. Showing Fdr layer resulting from flow direction processing.

- Click on Flow Accumulation. The Flow Accumulation tool determines the number of upstream cells draining to any given cell.
- In the pop-up window (Figure 8), confirm that the Input Flow Direction Grid is the *Fdr* layer.
- Click OK to produce a *Fac* layer (Figure 9)

Input Flow [Direction Grid			Flow Accumulation	,
-	/ Accumulation Gri	id lication\How to resolv	e chni t	Computes the flow accumulation grid that contains the accumulated number of cells upstream of a cell, for each cell in the input flow direction grid.	

Figure 8. Showing flow accumulation dialog box

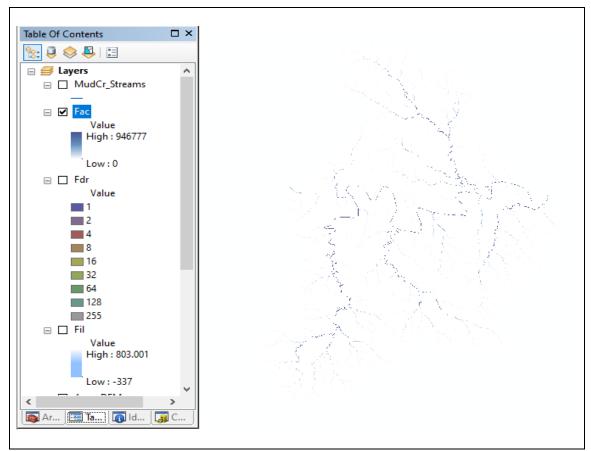


Figure 9. Showing Fac layer resulting from flow accumulation processing

- Click on Stream Definition. The Stream Definition tool classifies all cells with a flow accumulation greater than the user-defined threshold of cells in the stream network. In this illustration, the threshold for stream definition is 3.5 KM².
- In the pop-up window (Figure 10), confirm that the Input Flow Accumulation Grid is the *Fac* layer and the *Area Sqkm to define stream* is 3.5.
- Click OK to create *Str* layer (Figure 11).

Input Flow A	Accumulation Grid	ł	^	Number of cells to
Fac			- 🖻	define stream
Number of c	ells to define str	eam	\$5000	Number of cells to define
Output Stre	am Grid			stream
E:\2021SP	\OpenPrairie_pu	blication\How to resol	ve chnl t 🔁	
Area Sqkm t	o define stream	(optional)		
			3.5	
			~	
/			>	

Figure 10. Showing stream definition dialog box

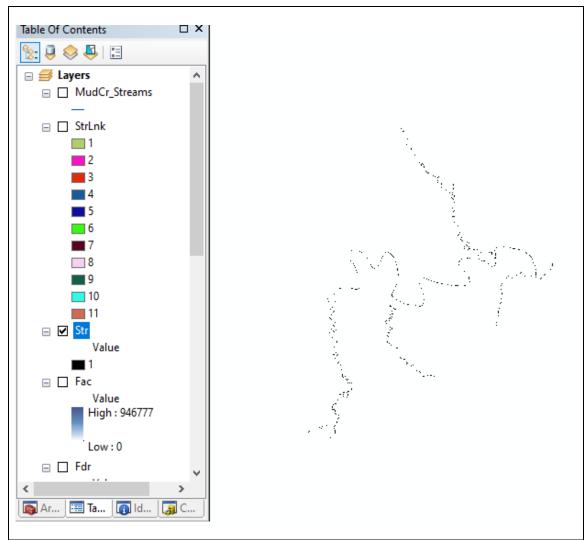


Figure 11. Showing Str layer resulting from stream definition.

- Click Stream Segmentation. The Stream Segmentation tool divides the stream grid into segments.
- In the pop-window (Figure 12), confirm that the Input Stream Grid is *Str*, and the Input Flow Direction Grid is *Fdr*.
- Click OK to create *StrLnk* layer (Figure 13)

Input Stream Grid				Stream	
Str		- 🖻		Segmentation	
Input Flow Direction Grid	I	- 🖻		Creates a grid of stream segments that have a	
Output Stream Link Grid E:\2021SP\OpenPrairie	_publication\How to resol	lve chnl t 🔁		unique identification.	
Input Sink Watershed Gi	id (optional)	- 🖻			
Input Sink Link Grid (opti	onal)	-	\sim		
(>			

Figure 12. Showing stream segmentation dialog box

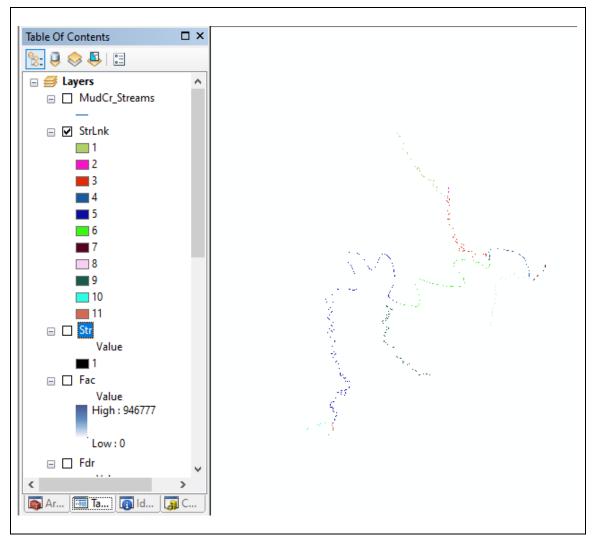


Figure 13. Showing StrLnk layer resulting from stream segmentation

- Click on Catchment Grid Delineation. The Catchment Grid Delineation tool delineates a subbasin for every stream segment.
- In the pop-up window (Figure 14), confirm that the Input Flow Direction Grid is *Fdr*, and Input link Grid is *StrLnk*.
- Click OK to create *Cat* layer (Figure 15)

Input Flow Direction Grid	^	Catchment Grid	,
Fdr		Delineation	
Input Link Grid StrLnk		Creates a grid in which each cell carries a value	
Output Catchment Grid E:\2021SP\OpenPrairie_p	ublication\How to resolve chnl t	(grid code) indicating to which catchment the cell belongs. The value corresponds to the value carried by the stream segment that drains that	

Figure 14. Showing catchment grid delineation dialog box

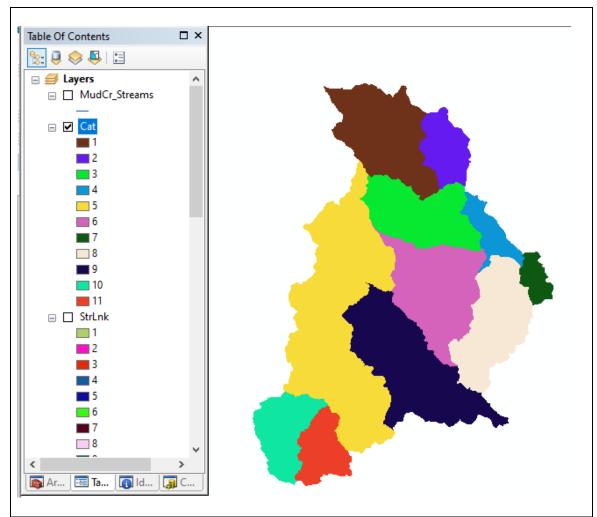


Figure 15. Showing Cat layer resulting from Catchment delineation.

- Click Catchment Polygon Processing. The Catchment Polygon Processing tool creates a vector layer of subbasins.
- In the pop-up window (Figure 16), confirm that the Input Catchment Grid is *Cat*.
- Click Ok to create *Catchment* layer (Figure 17)

Click error and warning icons for more information		Catchment Polygon	
Input Catchment Grid		Processing	
Cat Output Catchment E:\2021SP\OpenPrairie_publication\How to reso	ve chnl t	Converts an input catchment grid into a catchment polygon feature class.	
OK Cancel Environments	<< Hide Help	Tool Help	

Figure 16. Showing catchment polygon processing dialog box

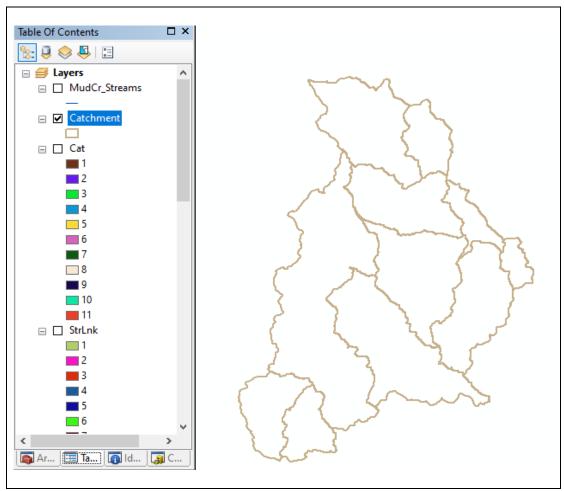


Figure 17. Showing Catchment layer resulting from Catchment Polygon Processing.

- Click Drainage Line Processing. The Drainage Line Processing tool creates a vector stream layer.
- In the pop-up window (Figure 18), confirm that the Input Stream Link Grid is *StrLnk*.
- Click OK to create *DrainageLine* (Figure 19)

Click error and warning icons for more information	×	Drainage Line Processing	1
Input Stream Link Grid		Frocessing	
StrLnk Input Flow Direction Grid Fdr	- 6 - 6	Converts the input Stream Link grid into a Drainage Line feature class Each	
Output Drainage Line		line in the feature class	
E:\2021SP\OpenPrairie_publication\How to resolve d	nlt 🖻 🗡	carries the identifier of the catchment in which it resides and how it	

Figure 18. Showing drainage line processing dialog box

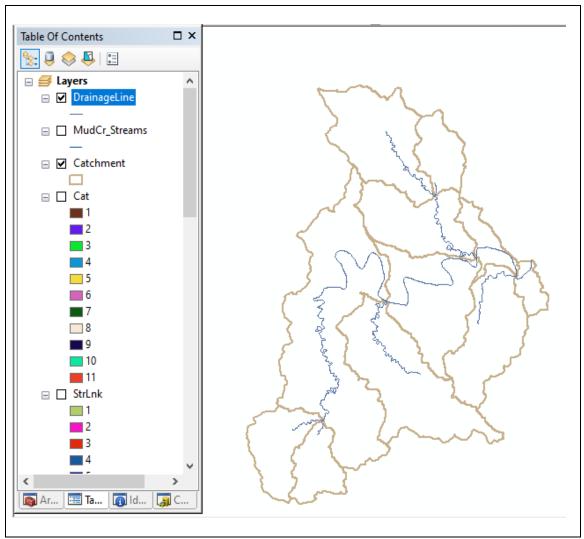


Figure 19. Showing DrainageLine resulting from Drainage line processing.

- Click on Adjoint Catchment Processing. The Adjoint Catchment tool aggregates upstream subbasins at every stream confluence.
- In the pop-window (Figure 20), confirm that the Input Drainage Line is DrainageLine.
- Click OK to create the *AdjointCatchment* layer (Figure 21).

Click error and warning icons for more information	Adjoint Catchment	
Input Drainage Line	Adjoint Catchment Processing	1
DrainageLine 🗾 🖻		
Input Catchment	Generates the aggregated upstream catchments from	
Catchment 🗾 🖻	the "Catchment" feature	1
Output Adjoint Catchment	class. For each catchment	
E:\2021SP\OpenPrairie_publication\How to resolve chnl t	that is not a head catchment, a polygon	
>	representing the whole	
OK Cancel Environments << Hide Help	Tool Help	

Figure 20. Showing adjoint catchment processing dialog box

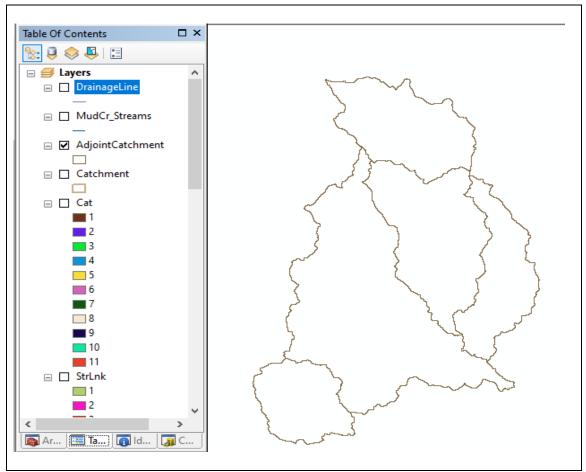


Figure 21. Showing AdjointCatchment resulting from Adjoint Catchment Processing.

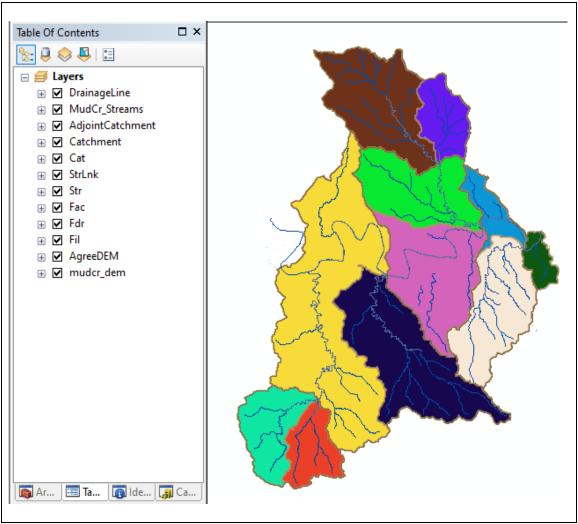
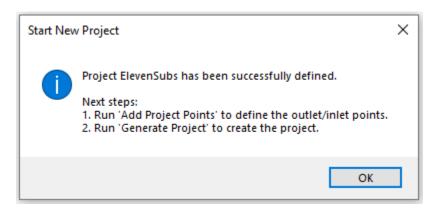


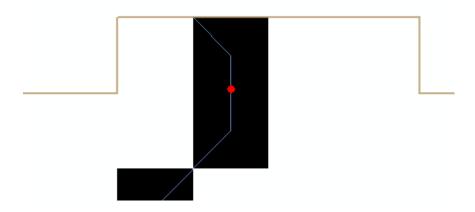
Figure 22. Showing final product of data preprocessing.

Project Setup

The next step in the modeling process is to set up a project. The following are the Project Setup steps.


- On the HEC-GeoHMS Tools bar
 - Click on Project Setup * menu.
 - Click on *Start New Project* Start New Project
 - In the poop-up *Start New Project* window, click OK.

🔮 Start New Project	
Project Area	ProjectArea
Project Point	ProjectPoint
ОК	Help Cancel


 In the pop-up *Define a New Project window*, enter a project name, description, meta data for the project, check the *Inside Mainview Geodatabase* box, and click OK.

💐 Define a New Proje	ect X			
Project Name	Eleven Subs ~			
Description	Wtrsh is subdivided inot eleven			
Extraction Method	Original Stream Definition $\qquad \lor$			
Metadata for Project:				
Threshold area for stream	n definition is 3.5 Sq KM			
Project Data Location				
Inside MainView Geodatabase				
Outside MainView	v Geodatabase			
Target: E:\2021SP\OpenPrairie_publication\How to resolve ch				
ОК	Help Cancel			

• In the pop-up *Start New Project* window, click Ok.

- On the HEC-GeoHMS tool bar, click *Add Project Points* icon
- On the Preprocessed map layer, define the project outlet point.

• In the Project Points pop-up window, click OK.

Rroject Points	s for ElevenSubs	×
Point Name	Dutlet 1	
Description	Outlet 1	
ОК	Help Cancel	

- Click on Project Setup * menu.
- Click on Generate Project Generate Project
- In the pop-up Generate Project window, click OK.

Generate Project	×
Do you want to create a project for the area shown?	
Yes No	

• Click Ok in the new pop-up window.

🔮 Generate Project	×
MainViewDEM	MainViewDEM ~
Raw DEM	RawDEM
Hydro DEM	Fil
Flow Direction Grid	Fdr
Flow Accumulation Grid	Fac
Stream Grid	Str
Stream Link Grid	StrLnk
Catchment Grid	Cat
Subbasin	Subbasin40
Project Point	ProjectPoint40
River	River40
ОК	Help Cancel

• Click OK after Project has been successfully generated.

Generate Project	×
Generate Project su	uccessfully completed.
	ОК

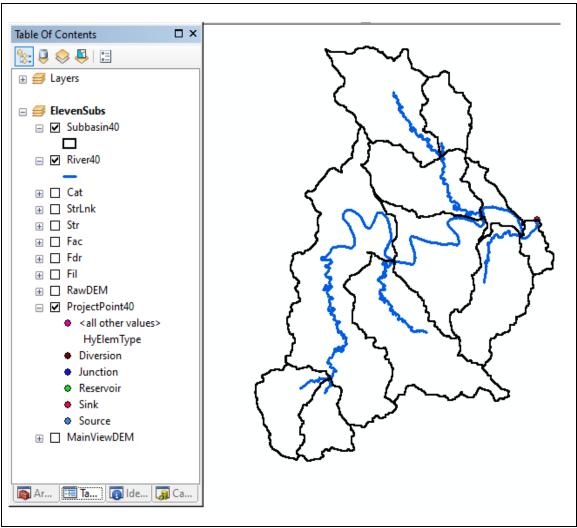


Figure 23. Showing the product of Project Setup processing

Basin Processing

In this illustration, there was no need for *Basin Processing* ^{Basin Processing} at this point.

The illustration therefore proceeded with Watershed characteristics processing.

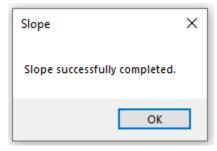
Watershed Characteristics Processing

In this step, physical characteristics such as stream lengths, upstream ad downstream elevations and slopes are extracted from the datasets. The following are the characteristics processing steps:

- In the Characteristics menu ^{Characteristics} of the HEC-GeoHMS tolls bar
 - Click on *River Length* River Length and click OK in the pop-up window River
 Length tool window.

🔨 River Length		- 0	×
Input River	~	River Length	~
River40	*	GeoHMS River Length function	
<	>		
OK Cancel Environments << Hide	Help	Tool Help	

• Click on *River Slope* River Slope and click OK in the pop-up window River Slope


tool window.

🔨 River Slope	- 🗆	×
Input Raw DEM	River Slope	~
RawDEM 🗾 🖻		
Input River	GeoHMS River Slope function	
River40 💌 🖻 🗸	lunction	
		\sim
		_
OK Cancel Environments << Hide Help	Tool Help	

- In the Terrain Processing menu Terrain Preprocessing of the Arc Hydro Tools bar
- Click on *Slope* **Slope** and click OK in the pop-up window Slope window.

🔮 Slope	×
Raw DEM	RawDEM ~
Slope Type	PERCENT_RISE ~
Slope	WshSlope
ОК	Help Cancel

• Click OK in the pop-up window to successfully complete slope processing.

- In the Characteristics menu Characteristics of the HEC-GeoHMS tolls bar
- Click on *Basin Slope* ^{Basin Slope}, select WshSlope as the Input Slope Grid from the drop-down menu in the pop-up Basin Slope tool window, click OK.

🔨 Basin Slope			- 0	×
Input Slope Grid		~	Input Slope Grid	~
WshSlope	- 🖻		No description available	
Input Subbasin Subbasin40	- 🖻	J	·	
<	>			\sim
OK Cancel Environments	<< Hide Help		Tool Help	

• Click on Longest Flowpath Longest Flowpath, in the Longest Flowpath tool

window, click OK.

🔨 Longest Flowpath	- 0	×
Input Raw DEM	Longest Flowpath	~
RawDEM 💌 🖻		
Input Flow Direction Grid	GeoHMS Basin Slope function	
Fdr 💌 🖻	lunction	
Input Subbasin		
Subbasin40 💌 🖻		
Output Longest Flow Path		
E:\2021SP\OpenPrairie_publication\How to resolve chnl 1 🔁		
< >		~
OK Cancel Environments << Hide Help	Tool Help	

• Click on Basin Centroid Basin Centroid, in the Basin Centroid tool window, click

OK.

🖇 Basin Centroid	- 0	\times
Select Centroid Method	Basin Centroid	~
Center of gravity 🗸		
Input Subbasin	GeoHMS Basin Centriod	
Subbasin40 💌 🔁	function	
Output Centroid		
E:\2021SP\OpenPrairie_publication\How to resolve chnl t		
Input Flow Accumulation Grid (optional)		
🗹 🔁		
Input River (optional)		
🖂 🗹		
Input Longest Flow Path (optional)		
		\sim
>		
OK Cancel Environments << Hide Help	Tool Help	
or concer environmentant « « nac nep	(our help	

• Click on *Centroid Elevation* Centroid Elevation , in the pop-up Centroid elevation

tool window, click OK.

🔨 Centroid Elevation	- 0	×
Input Raw DEM	Centroid Elevation	~
RawDEM 💌 🖻		
Input Centroid	GeoHMS Centroid Elevation function	
Centroid40 🗾 🚰 🗸	Elevation function	
		\sim
< >>		
OK Cancel Environments << Hide Help	Tool Help	

o Click on Centroidal Longest Flowpath Centroidal Longest Flowpath, in the Centroidal

Longest Flowpath tool window, click OK.

Centroidal Longest Flowpath	– 🗆 X
Input Subbasin	Centroidal Longest
Subbasin40 💌 🖻	Flowpath
Input Centroid Centroid40	GeoHMS Centroid Longest
Input Longest Flow Path	Flow Path function
LongestFlowPath40 💌 🖻	
Output Centroidal Longest Flow Path	
E:\2021SP\OpenPrairie_publication\How to resolve chnl 1	
< >	~
OK Cancel Environments << Hide Help	Tool Help
Cancer Environments (Kinderheip	тоотпер

Hydrologic Parameter Estimation

The next step in the creating the HMS models is hydrologic parameter estimation. The *Parameters* menu is used to estimate hydrologic parameters for subbasin (loss method and transform method) and reach (river route method) processes.

• In the HEC-GeoHMS menu tool bar, Click on the Parameters Parameters menu to

display the submenu.

Parameters 🛛 HMS 🗸 Utility 🗸 💈 🐤 🗛 🗠 🖉 Reservoir
Data Management
Select HMS Processes
River Auto Name
Basin Auto Name
Grid Cell Processing
Subbasin Parameters from Raster
Subbasin Parameters from Features
Muskingum-Cunge and Kinematic Wave Parameters
TR55 Flow Path Segments
TR55 Flow Path Parameters
TR55 Export to Excel
CN Lag

 In the *Select HMS Processes*, make sure to select Muskingum as the river route method after selecting other desired processes from the dropdown menus and click OK.

Kinematic Wave Muskingum Cunge	2		
Muskingum			
Lag Straddle Stagger Modified Puls [Current Method] None			

• Select the *River Auto Name* and click OK.

🔨 River Au	uto Name				
Input Rive River841				- 🖻	<
	ОК	Cancel	Environments	<< Hide Help	

• Select *Basin Auto Name* and click OK.

🔨 Basin Auto Nar	ne		
Input Subbasin			^
Subbasin841			- 🖻 🔳
			~
	DK Cance	el Environments	<< Hide Help

• Click on Grid Cell Processing only if you plan on using gridded precipitation,

select the grid cell method and click OK.

🔀 Grid Cell Processing	\times
Select the grid cell method:	
⊖ HRAP	
● SHG	
SHG Parameters Select SHG grid cell:	
2000 ~	
Select the projection:	
Default (Albers Equal Area Conic USGS) Change	
OK Help Cancel	

 Click on *Subbasin Parameters From Features* if you plan to calculate the average hydrologic parameters for each subbasin, upload all required from polygon features using the dropdown menus and click OK.

🔨 Subbasin Parameters From Features	
Click error and warning icons for more information	×
Input Subbasin	
Subbasin841	- 🖻
S Input Parameter Layer	
ParamLayer	- E
Parameter Tag	
	~
Parameter Field	~ ~
OK Cancel Environments	<< Hide Help

o Click on Subbasin Parameters From Raster, upload all required parameters

using the dropdown menus and click OK.

Input Subbasin		
Subbasin841	-	6
Input Total Storm Precipitation Grid (optional)		
	-	6
Input 2-Year Rainfall Grid (optional)		_
	-	6
Input Percentage Impervious Grid (optional)		
	•	6
Input Initial Abstraction Grid (optional)		
	-	6
Input Curve Number Grid (optional)		
	-	2

• Click on TR55 Flow Path Segments and click OK.

🔮 TR55 Flow Path Se	×	
Raw DEM	RawDEM	~
Flow Direction Grid	Fdr	~
Subbasin	Subbasin	\sim
River	River841	~
Longest Flow Path	LongestFlowPath841	~
Flow Break Points	FlowBreakPoints841	
ОК	Help Cancel	

• Click on TR55 Flow Segment Parameters and click OK.

🔮 TR55 Flow Path Parameters				
Raw DEM	WshSlope	~		
Subbasin	Subbasin841	\sim		
Flow Break Points	FlowBreakPoints841	~		
Longest Flow Path	CentroidalLongestFlowPath841	~		
ОК	Help Cancel			

• Click on *TR55 Export Tt Parameters to Excel* and click OK. This tool exports the

TR55 flow segments to an Excel spreadsheet (Figure 1)

In this illustration, channel travel time errors occurred in the reaches in W1020 and W1050 subbasins (Figure 24) and are presented as #NUM! and #DIV/0! in the Excel worksheet. In Table 2, W1020 and W1050 have channel slope values of -0.0001 and 0.0, respectively.

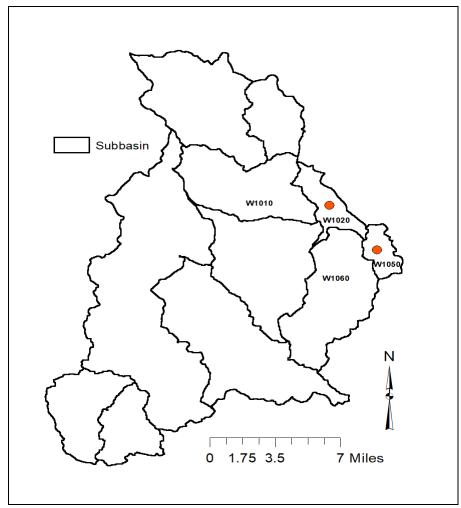


Figure 24. Showing eleven (11) subbasins showing W1020 and W1050 subbasins where channel travel time errors occur.

Blue - GIS defined, Green - user specified, White and	ellow - calcu	lated, Red	l - final res	ult							
Watershed Name	W990	W1000	W1010	W1020	W1030	W1040	W1050	W1060	W1070	W1080	W109
Watershed ID	99	100	101	102	103	104	105	106	107	108	10
Sheet Flow Characteristics											
Manning's Roughness Coefficient	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.2
Flow Length (ft)	100	100	100	100	100	100	100	100	100	99.9998	99.99
Two-Year 24-hour Rainfall (in)	1	1	1	1	1	1	1	1	1	1	
Land Slope (ft/ft)	0.01	0.0548	0.0463	0.0148	0.0761	0.0445	0.039	0.035	0.3365	0.0097	0.15
Sheet Flow Tt (hr)	0.58	0.29	0.31	0.50	0.26	0.32	0.34	0.35	0.14	0.59	0.
Shallow Concentrated Flow Characteristics											
Surface Description (1 - unpaved, 2 - paved)	1	1	1	1	1	1	1	1	1	1	
Flow Length (ft)	11683	10808	16085	7567	10766	15502.665	6763.7386	12717.91	15198.76	12585.711	10658
Watercourse Slope (ft/ft)	0.0182	0.0187	0.0144	0.0197	0.0191	0.0155	0.0222	0.0163	0.0179	0.0216	0.02
Average Velocity - computed (ft/s)	2.18	2.21	1.94	2.26	2.23		2.40	2.06		2.37	2.
Shallow Concentrated Flow Tt (hr)	1.49	1.36	2.31	0.93	1.34	2.14	0.78	1.71	1.96	1.47	1.
Channel Flow Characterisitics											
Cross-sectional Flow Area (ft2)	20	20	20	20	20	20	20	20	20	20	
Wetted Perimeter (ft)	20	20	20	20	20	20	20	20	20	20	
Hydraulic Radius - computed (ft)	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.
Channel Slope (ft/ft)	0.0043	0.0076	0.003	-0.0001	0.0018	0.0007	0	0.0051	0.0038	0.0041	0.00
Manning's Roughness Coefficient	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.
Average Velocity - computed (ft/s)	3.26	4.33			2.11	1.31	0.00	3.55		3.18	3.
Flow Length (ft)	15382	2010		6548	53965		1497.0084	11838.67	22309.081		
Channel Flow Tt (hr)	1.31	0.13		#NUM!	7.11		#DIV/0!	0.93	2.02	0.46	0.
Watershed Time of travel (hr)	3.38	1.78	3.55	#NUM!	8.71	5.34	#DIV/0!	2.99	4.12	2.52	1.5
Number of watersheds	11										

Table 2. Worksheet showing negative and zero channel slope values and channel travel time errors in W1020 and W1050 subbasins.

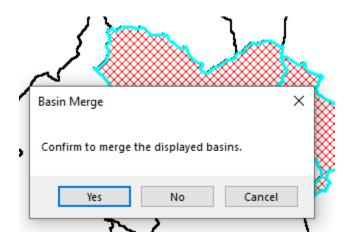
Using the Merge Basin tool to resolve channel travel time errors.

After inspecting the TR55 worksheet and identifying the subbasins with channel travel

time errors, the Merge Basin tool is used to merge the subbasins that have errors with any

of their error free neighbors, using the following step.

• Using Select Feature tool in the ArcMAp tools menu, click on the layers you want to merge (hold down CNTL+SHIFT keys on the keyboard to select multiple layers as shown below).



• In the Basin Processing tab Basin Processing, on the HEC-GeoHMS menu bar,

click on Basin Merge Basin Merge .

Basi	in Processing Characteristics Paramete
	Data Management
	Basin Merge
	Subbasin Divide by Maximum Area
	River Merge
	Split Basin at Confluences
	Import Batch Points
	Delineate Batch Points

• In the pop-up Dialog Box

• Click Yes confirm merge.

This final step merges W1010 and 1020 subbasins to produce W8570 subbasin, and 1060 and 1060 subbasin to produce W8610 subbasin, respectively (Figure 25). After the merging exercise, the user will once again complete the stream and subbasin characteristics processing and the hydrologic parameters estimation processing. Thereafter, a new Excel worksheet will be produced, displaying all error free subbasins as shown in Table 3. However, in this illustration, the number of subbasins in the watershed are reduced from eleven subbasins to nine subbasins after merging.

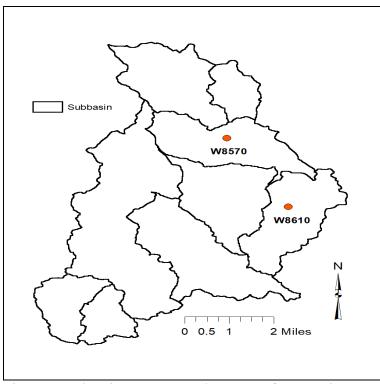


Figure 25. Showing W8570 and W8610 after merging

Blue - GIS defined, Green - user specified, White and	yellow - calculated	l, Red - final re	esult						
Watershed Name	W8540	W8550	W8570	W8580	W8590	W8610	W8620	W8630	W8640
Watershed ID	854	855	857	858	859	861	862	863	86
Sheet Flow Characteristics									
Manning's Roughness Coefficient	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.1
Flow Length (ft)	100	100	100	100	100	100	100	99.9998	99.99
Two-Year 24-hour Rainfall (in)	1	1	1	1	1	1	1	1	
Land Slope (ft/ft)	0.01	0.0548	0.0463	0.0761	0.0445	0.035	0.3365	0.0097	0.15
Sheet Flow Tt (hr)	0.58	0.29	0.31	0.26	0.32	0.35	0.14	0.59	0.1
Shallow Concentrated Flow Characteristics									
Surface Description (1 - unpaved, 2 - paved)	1	1	1	1	1	1	1	1	
Flow Length (ft)	11683	10808	16085	10766	15503	12717.9104	15198.7595	12585.7112	10658.4
Watercourse Slope (ft/ft)	0.0182	0.0187	0.0144	0.0191	0.0155	0.0163	0.0179	0.0216	0.02
Average Velocity - computed (ft/s)	2.18	2.21	1.94	2.23	2.01	2.06	2.16	2.37	2.4
Shallow Concentrated Flow Tt (hr)	1.49	1.36	2.31	1.34	2.14	1.71	1.96	1.47	1.
Channel Flow Characterisitics									
Cross-sectional Flow Area (ft2)	20	20	20	20	20	20	20	20	
Wetted Perimeter (ft)	20	20	20	20	20	20	20	20	
Hydraulic Radius - computed (ft)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.
Channel Slope (ft/ft)	0.0043	0.0076	0.0016	0.0018	0.0007	0.0046	0.0038	0.0041	0.00
Manning's Roughness Coefficient	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.
Average Velocity - computed (ft/s)	3.26	4.33	1.99	2.11	1.31	3.37	3.06	3.18	3.
Flow Length (ft)	15382	2010	17767	53965	13619	15360.5441	22309.0807	5227.6603	2459.42
Channel Flow Tt (hr)	1.31	0.13	2.48	7.11	2.88	1.27	2.02	0.46	0.1
Watershed Time of travel (hr)	3.38	1.78	5.11	8.71	5.34	3.33	4.12	2.52	1.5
Number of watersheds	9								
Number of watersheds MXD Path	9 chnl trvl times.n	ıxd							

Table 3. Showing no channel travel time errors after merging for W8570 and W8610 subbasins.

To finish developing the HMS models, the user can find more detailed steps in the HEC-

GeoHMS User's Manual (Fleming & Doan, 2013) and HEC-HMS User's manual (USACE,

2016).

References

- Adalikwu, P. (2021). A Study of Geographic Information System-Based Watershed Processing for Hydrologic Analysis of Ungauged Watersheds. South Dakota State University,
- Fleming, M. J., & Doan, J. H. (2013). HEC-GeoHMS Geospatial Hydrologic Modeling Extension User's Manual Version 4.2. US Army Corps of Engineers, Institute for Water Resources, Hydrologic Engineering Centre, Davis, CA.
- McCuen, R. H., & Okunola, O. (2002). Extension of TR-55 for Microwatersheds. Journal of Hydrologic Engineering, 7(4), 319-325.
- Song, X.-m., Kong, F.-z., & Zhu, Z.-x. (2011). Application of Muskingum routing method with variable parameters in ungauged basin. Water Science and Engineering, 4(1), 1-12.
- USACE. (2016). Hydrologic modeling system HEC-HMS: User's manual. In: Hydrologic Engineering Center Davis, CA.