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ABSTRACT
Biochar, a by-product of pyrolysis made from a wide array of plant biomass when producing biofuels, is a
proposed soil amendment to improve soil health. This study measured herbicide sorption and efficacy
when soils were treated with low (1% w/w) or high (10% w/w) amounts of biochar manufactured from
different feedstocks [maize (Zea mays) stover, switchgrass (Panicum vigatum), and ponderosa pine (Pinus
ponderosa)], and treated with different post-processing techniques. Twenty-four hour batch equilibration
measured sorption of 14C-labelled atrazine or 2,4-D to two soil types with and without biochar
amendments. Herbicide efficacy was measured with and without biochar using speed of seed germination
tests of sensitive species. Biochar amended soils sorbed more herbicide than untreated soils, with major
differences due to biochar application rate but minor differences due to biochar type or post-process
handling technique. Biochar presence increased the speed of seed germination compared with herbicide
alone addition. These data indicate that biochar addition to soil can increase herbicide sorption and
reduce efficacy. Evaluation for site-specific biochar applications may be warranted to obtain maximal
benefits without compromising other agronomic practices.

KEYWORDS
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Introduction

Biochar is the by-product of a thermal process conducted under
low oxygen or oxygen-free conditions (pyroytic process) to
convert vegetative biomass to biofuel.[1] The wide variety of
feedstocks and pyrolysis processing parameters including tem-
perature, heating rate, processing time, and pressure can influ-
ence the end-products and recovery amounts, energy values of
bio-oils, and properties of the remaining biochar.[2,3] Biochar is
not a precisely defined material but can vary widely in proper-
ties depending on parent material type and quality,[4,5]

manufacturing process,[6–13] and post-process handling or
chemical activation. Biochar is a microbial recalcitrant form of
carbon[14] and land-spreading these carbon-rich products is
recommended for recycling of nutrients and sequestering of
carbon.

Biochar applications, based on types and rates can produce
diverse benefits including increased plant available water,[15–17]

increased soil organic matter; enhanced nutrient cycling;
reduced soil compaction, higher soil pH, higher base saturation,
and greater nutrient availability.[18–21] These factors often lead
to enhanced seed germination and positive impacts on plant
growth and development.[21–23] Biochars have been shown to
sorb high amounts of pesticides and nutrients,[13,24,25] reducing
potential movement to offsite areas, with concomitant
improvement of water quality.

However, biochar can reduce agronomic productivity by at
least three mechanisms. First, biochar may negatively impact
seed germination and early seedling growth of some species.[26]

Reduced germination is attributed to the release of a wide vari-
ety of volatile organic compounds.[27] Second, biochar may
reduce plant uptake of nutrients because of extreme affinity for
these nutrients.[28] Third, biochar may reduce herbicide or
other agrichemical efficacy due to high sorption rates [13,29–32]

reducing pest control.
Biochars are highly diverse, may be highly reactive, and have

long soil residence times. The challenge is to identify the bene-
fits that biochar can provide (e.g., fertility, increased water
holding capacity)[33] and balance these against any negative
effects (e.g., toxicity to seed germination,[26,27] interference with
agrichemical application,[13,29–32] negative impact on microbial
activity[5]). Much biochar research has been based on the
assumptions that biochar will improve soil fertility, water hold-
ing capacity, or mitigate greenhouse gas emissions. The greatest
positive impacts have been observed on degraded soils and
those with low fertility, whereas applications on highly produc-
tive soils have been reported to have low or minimal
impacts.[34] Therefore, the selection of specific biochar types
that have the desired properties, which are a function of pro-
duction and processing criteria,[5,13] need to be carefully con-
sidered to match with desired outcomes on a site-specific
application basis.

The null hypotheses of these experiments were that biochar
addition to soil would not: (1) influence soil pH or electrical
conductivity (EC); (2) influence herbicide sorption to soil; nor
(3) influence herbicide efficacy. Biochars from three parent
feedstock materials (maize, switchgrass, or ponderosa pine)
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and two post-processing methods (allowed to cool to ambient
air temperature with no intervention or water-cooled soon after
pyrolysis to accelerate cooling and reduce fire hazards) were
used. We quantified the effect of biochar applications at two
rates (1% and 10% w/w) to two soils (one highly productive
and the other degraded) on soil pH, EC, and the sorption of
two herbicides (2, 4-D, an acidic herbicide and atrazine, a basic
herbicide). To examine herbicide efficacy and possible biochar
toxicity,[27] we evaluated speed and percent of seed germination
of several indicator species, described below, with and without
herbicide or biochar addition.

Materials and methods

Biochar and soil description

Ponderosa pine biomass (wood chips and shavings) was col-
lected from sawmill waste from a mill near Carbondale, CO,
USA (N 39�23041/W 107�12052). After grain harvest, maize sto-
ver was obtained in late fall 2012 from a field site near Brook-
ings, SD (N 44�18023/W 96�47017) that had been managed for
optimal yield by cutting about 6 cm above the soil and baling
the materials. Physiologically mature switchgrass was harvested
and baled in late fall from sites near Brookings, SD. The baled
biomass was then pelletized to an average pellet size of 6 mm
diameter by 15 cm length (Iowa Biofiber, Harlan, IA, USA) to
produce a more uniform feedstock. All materials were proc-
essed by the patented carbon optimized gasification process
which is a two stage continuous process where the reactor tem-
perature ramps from 150 to 850 C with a material residence
time of about 4 h (Biochar Solutions, Inc., Carbondale, CO,
USA). The oxygen-free condition was maintained by flushing
with nitrogen gas.

The gasification process was conducted at two different
times with two different post-process handling techniques. The
first batch of biochar was close to 0% water after processing
and was allowed to air-cool to ambient temperature prior to
shipping. Biochars from this batch were sieved to obtain two
size fractions, <2-mm and 2–4-mm, which were expected to
have different reactivity in soil.[35,36]

The second batch of biochar was doused with water to cool
immediately after gasification to prevent smoldering and fire
hazards. These water-cooled biochars were used as mixed size
blend. The percent water of these biochars was determined and
ranged from 30 to 70% water. The biochar amendments were
added based on their calculated dry weight. Specific surface
area, electrical conductivity (EC), and cation exchange capacity
(CEC) for bulk samples of each biochar are reported in Table 1,

more detailed information, including nutrient composition,
can be obtained from Chintala et al.[5]

The A horizon soils for these studies were: a Brookings silty
clay loam (Fine-silty, mixed, superactive, frigid Pachic
Hapludoll) [37] from a footslope position in the landscape with
60% sand, 16% clay, 24% silt, 34 g kg¡1 organic matter, pH of
6.1, and total C of 20.1 g kg¡1; and a Maddock loamy fine sand
(Sandy, mixed frigid Entic Hapludoll) [37] from a summit posi-
tion with 72.4% sand, 8.5% clay, 19.0% silt, 16 g kg¡1 organic
matter, pH of 5.2, and 10 g kg¡1 of total C.

Biochar effect on soil pH and EC

The maize, switchgrass, and ponderosa pine biochars were used
alone or mixed with the soils at 1 or 10% (w/w) to examine the
biochar influence on solution pH, EC, and atrazine and 2,4-D
sorption. To maximize homogeneity, each soil/biochar combi-
nation was individually mixed by adding air-dry soil and bio-
char (dry if allowed to cool naturally, or wet if water-cooled) to
each individual tube.

The pH of the biochar, soil or biochar/soil mix was deter-
mined by adding 0.01 M CaCl2 to the solid at 1:2 w/v creating a
slurry, and shaking the slurry for 30 min. After settling for
30 min, the pH was measured with a standardized pH electrode
(Thermo Fisher Scientific, Waltham, MA, USA) and recorded
after the reading on the probe had stabilized (about 15 s). Elec-
trical conductivity (EC) was determined on the same slurry
using a commercially available EC electrode (Thermo Fisher
Scientific). Experimental treatments were done in triplicate and
the experiments were repeated in time. Data were combined
for the studies due to similarity of means and homogeneity of
variance among the repetitions. Means for pH, and EC are the
average of six replicates per treatment. The 95% confidence
intervals are reported for each parameter.

Biochar effect on herbicide sorption

Atrazine (technical grade, >99% purity, Sigma Chemical Co.,
St. Louis, MO, USA) was weighed and dissolved in a small
amount of methanol (»1 ml) and then 0.01 M CaCl2 was added
to make a final concentration of 13mM atrazine. Serial dilutions
from this concentration were made to obtain solutions of 13,
6.5, 3.25, and 1.625 mM atrazine. Each solution was spiked with
about 0.4 kBq of uniformly-ring-labeled [14C] atrazine (specific
activity of 1000 MBq mmol¡1 with >99% purity; Sigma Chem-
ical Co.) with a final specific activity from 0.03 to
0.25 kBq mM¡1. The 2,4-D solution was made in a similar

Table 1. Selected properties of bulk corn stover, switchgrass, and ponderosa pine biochars, one set that was allowed to air-cool after pyrolysis and the other water cooled
and allow to air-dry (data modified from Chintala et al.).[5]

Corn stover Switchgrass Ponderosa pine

Property Air-dried Water-cooled Air-dried Water-cooled Air-dried Water-cooled

Specific surface area(m2 g¡1) 196 (3)a 176 (1) 260 (2) 188 (1) 296 (4) 233 (2)
EC (uS cm¡1) 773 (46) 800 (21) 516 (20) 550 (11) 106 (6) 120 (14)
CEC (Cmol kg¡1) 468 (9) 459 (11) 447 (6) 458 (9) 406 (8) 397 (5)

aNumbers in parentheses are standard errors based on four replications.
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manner with about 13 mM of technical grade 2,4-D added to
0.01 M CaCl2. Serial dilutions from this concentration were
made to obtain solutions of 13, 6.5, 3.25, and 1.625 mM 2,4-D.
Each solution was spiked with uniformly-ring-labeled [14C]-
2,4-D (specific activity of 1000 MBq mmol¡1 with > 99%
purity; Sigma Chemical Co.) with final specific activities from
0.03 to 0.25 kBq mM¡1.

The batch equilibration method was used to examine herbi-
cide sorption to soil.[13] A 4-mL aliquot of herbicide solution
containing the appropriate radioactive chemical was added to
2 g soil or soil amended with 1 or 10% 2–4 mm, <2 mm, or
wet mixed-sized biochars (final slurry solution 2:1 v/w) in glass
centrifuge tubes sealed with a Teflon-lined cap. Herbicide sorp-
tion to biochar alone was evaluated by adding a 5 ml aliquot of
each herbicide solution to 0.5 g of each biochar resulting in a
final solution/biochar ratio was 10:1 v/w, due to the highly solu-
tion-sorbent characteristics of the biochar. After solution addi-
tion, the mixtures were vortexed for about 10 s to create a
slurry. Tubes containing the slurries were shaken for 24 h, cen-
trifuged at 7000 g for 30 min, and a 250-mL aliquot of superna-
tant removed. The amount of 14C remaining in the supernatant
solution was determined by liquid scintillation counting (Beck-
man LS6500, Fullerton, CA, USA) after the addition of scintilla-
tion cocktail (Thermo Fisher Scientific). The amount of
radioactivity sorbed was determined by comparing the counts
in the supernatant samples with counts recorded from the orig-
inal soil and biochar-free blank solution samples.

Sorption was calculated as L kg¡1 correcting for the differen-
ces in volume added per g of material. The Freundlich isotherm
(except for maize biochar treated with a single 2,4-D solution
containing 13 mM) often is used to describe nonidealized het-
erogeneous surface sorption[38,39] and was used to compare
sorption by treatments across concentrations. The Freundlich
isotherm[38]

x6 m D Kf C
1 6 n;

where x/m D weight of absorbate per unit weight of absorbent
(mmol kg¡1); C D the absorbate concentration in solution
(mmol L¡1); and Kf and n are empirical constants was used to
describe sorption isotherms for each treatment and herbicide.
The log-log transformation of this equation:

Log x6 m D log Kf C 16 n log Cð Þ

provides the linearized form so that the intercept (Kf) and the
slope (1/n) of the isotherm lines are easily compared. The
regression equations for isotherms were compared within a
biochar feedstock and application rate across post-handling
treatments. Individual isotherms and combined isotherms
within a feedstock type were calculated. Regressions were com-
pared using an F-test and the P value determined.[40] If the P >

0.05, indicating no significant difference among the regression
equations, data were combined, as appropriate, and a single iso-
therm reported.

Biochar effect on speed of seed germination

The speed of seed germination (see calculation below) using
water and herbicide solutions, with and without biochar,
and with and without soil, was evaluated. Based on herbi-
cide labels, species sensitivity,[41,42] and seed availability,
Daikon radish (Raphanus sativus) and black-seeded Simp-
son lettuce (Lactuca sativa) were selected as indicator spe-
cies for 2,4-D. Daikon radish and winter wheat (Triticum
aestivum) were used as indicator species for atrazine.
Twenty seeds of each species were placed in an 8-mm petri
dish with a filter paper placed above the seeds. The 2–4-
mm size of maize, switchgrass, or Ponderora pine biochar
(0.1, or 0.5 g) or 5 g of Brookings or Maddock A horizon
soil alone or mixed with 0.1 or 0.5 g each biochar was
spread atop the filter paper. Five-ml of deionized water,
atrazine solution (0.5, 1.0, 2.0, or 2.5 g atrazine L¡1), or
2,4-D solution (0.02, 0.05, 0.1, or 0.2 g L¡1of 2,4-D) was
distributed evenly over the top. A water-only treatment was
used as a control. Dishes were covered, and germinated
seeds were counted daily and removed, for 10 days. Germi-
nation percent was calculated by: total number of seeds ger-
minated during the 10 d test/total number of test seeds.

Germination speed was calculated by:[43]

SpeedD
X10

1
# seed germinated day 16 1ð Þ

C # seed germinated on day 26 2ð Þ
C # seed germinated on day n6 nð Þ:

The greatest speed of germination D 20, if all seeds germi-
nated on day 1. These studies were conducted twice with three
replications per treatment and repeated in time, with data com-
bined across the repeated studies.

Results

Biochar materials

Initial feedstock and post-process handling had the greatest
influence on biochar specific surface area, moderate influence
on EC values, and no influence on CEC values (Table 1). In
general, surface areas were greater for air-dried compared with
water-cooled biochars. The influence of initial feedstock on sur-
face area from greatest to least was ponderosa pine>switch-
grass>maize (Table 1) whereas EC was lowest for biochars of
ponderosa pine (110 mS cm¡1), and greatest for maize biochars
(775 mS cm¡1). The pH of maize and switchgrass biochar types
were greater than > 9.5 (Fig. 1) whereas the pH of ponderosa
pine biochar ranged from 7.8 (2–4 mm and water-cooled) to
about 9.5 (<2mm).

Biochar effect on soil EC and pH

Unamended Brookings soil samples had an average pH of 6.74
(95% CI D 0.55) (Fig. 1) and an average EC of 2070 (95% CI D
30) mS cm¡1. Unamended Maddock soil samples had a pH of
5.24 (CI D 0.58) and an average EC of 2110 (95% CI D 160) mS
cm¡1. A 1% biochar addition did not influence either soil’s EC
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value whereas a 10% addition of maize biochars increased the
EC value of the Maddock soil by about 23%.

Although biochars had much higher pHs than either soil
(Fig. 1), the addition of 1% biochar to the Brookings soil

decreased the soil pH by about 0.4 pH units in eight of the nine
treatments (Fig. 1). Brookings soil amended with 10% of any of
the biochar types had pH values similar to unamended soil.
The 1% biochar addition did not change the Maddock soil pH.
However, the 10% addition of ponderosa pine and switchgrass
biochars increased the Maddock soil pH by about 0.5 pH units
and maize biochar raised the pH by about 1 pH unit.

Biochar influence on atrazine sorption

About 90% of the Freundlich atrazine sorption isotherms for bio-
char, soil, or soil amended with biochar, had a goodness of fit
(adjusted r2 value) of>0.73. The sorption isotherms had 1/n values
that ranged from 0.44 to 1.4 (Table 2) with values <1 indicating
that sorption to the matrix was greater when the initial atrazine
concentration was low and less sorbed when the initial concentra-
tion was high. Atrazine sorption to the Brookings soil was greater
than sorption to the Maddock soil (Fig. 2 and Table 2) with Kf val-
ues of 10 and 6.8mmol1–1/n L1/n kg¡1, respectively. The slopes (1/n)
of these isotherms were 0.83 for the Brookings soil and 0.92 for the
Maddock soil.

Atrazine sorption to biochars ranged from 7 to 90X greater
than to either soil alone (Fig. 2 and Table 2). Kf values ranged

Figure 1. The pH of maize, switchgrass, and ponderosa pine biochars of two sizes
of dry material (2–4 mm and <2 mm) and water cooled post-pyrolysis alone, and
soil amended pH with 1 or 10% biochar (w/w). The Brookings unamended soil pH
is represented by the solid line, whereas the Maddock unamended soil pH is repre-
sented by the dashed line.

Table 2. Atrazine sorption isothermsa with adjusted R2 values, coefficients for log Kf, Kf, and slope (1/n) of the Fruendlich isotherms for each biochar type and soil alone
and 1% or 10% of the biochar added to soil.

Soil Species Amount of biochar added Post-process treatment Adj r2 Log Kf Kf mmol1–1/n L1/n kg¡1 1/n

None Maize 100% <2 mm 0.72 2.96 912 (477–1746)b 1.4 (0.26)
100% 2–4 mm 0.45 2.32 209 (109–400) 0.86 (0.28)
100% wet 0.86 2.18 151 (126–182) 0.98 (0.12)

None Switchgrass 100% <2 and 2–4 mm 0.9 2.20 159 (138–182) 0.79 (0.08)
100% wet 0.93 1.87 74 (67–82) 0.74 (0.08)

None Ponderosa pine 100% <2 and 2–4 mm 0.53 2.35 224 (141–356) 0.78 (0.20)
100% wet 0.58 2.72 525 (201–1368) 0.83 (0.31)

Maddock 0% 0.97 0.83 6.8 (6.5–7.0) 0.92 (0.04)
Maize 1% All 0.95 0.99 9.8 (9.4–10.2) 0.79 (0.04)

10% <2 mm 0.89 1.48 30 (24–38) 0.73 (0.10)
10% 2–4 mm 0.78 1.14 14 (11–17) 0.44 (0.10)
10% wet 0.86 1.30 20 (17–24) 0.76 (0.15)

Switchgrass 1% <2 and 2–4 mm 0.96 0.90 7.9 (7.6–8.3) 0.88 (0.06)
1% wet 0.95 0.99 9.8 (8.9–10.7) 1.0 (0.10)
10% <2 mm 0.97 1.40 25 (22–28) 0.79 (0.04)
10% 2–4mm 0.86 1.25 18 (15–22) 0.67 (0.12)
10% wet 0.83 1.23 17 (14–21) 0.84 (0.17)

Ponderosa pine 1% All 0.73 1.00 10 (9–11) 0.58 (0.08)
10% <2 and 2–4 mm 0.58 1.36 23 (17–30) 0.46 (0.12)
10% wet 0.71 2.01 102 (47–224) 1.07 (0.36)

Brookings 0% 0.98 0.91 8.1 (7.9–8.4) 0.83 (0.04)
Maize 1% <2mm 0.93 1.00 10.0 (9–11) 0.98 (0.12)

1% 2–4 mm 0.88 1.08 12 (10–14) 1.23 (0.19)
1% wet 0.95 0.99 9.8 (9.3–10.2) 0.94 (0.08)
10% <2 mm 0.87 1.67 47 (35–62) 0.98 (0.17)
10% 2–4 mm 0.44 1.38 24 (14–43) 0.79 (0.37)
10% wet 0.92 1.39 25 (20–30) 0.83 (0.12)

Switchgrass 1% All 0.96 0.99 9.8 (9.4–10.1) 0.83 (0.04)
10% <2mm 0.96 1.41 26 (22–30) 0.76 (0.06)
10% 2–4 mm and wet 0.85 1.28 19 (17–22) 0.77 (0.10)

Ponderosa pine 1% <2 mm 0.96 1.06 12 (11–12) 0.8 (0.08)
1% 2–4 mm 0.84 1.02 11 (9–12) 0.57 (0.10)
1% wet 0.86 1.06 12 (10–13) 0.63 (0.10)
10% <2 mm 0.85 1.58 38 (29–51) 0.77 (0.15)
10% 2–4 mm and wet 0.79 1.63 43 (32–56) 0.68 (0.10)

aIsotherms for different biochar types within a biochar species and amount were tested for homogeneity and if not significantly different using the F statistic and a
P � 0.05, the regression was developed using appropriate combined datasets.
bNumbers in parentheses for the log Kf and 1/n values are confidence intervals for the given parameters.
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from 74 to 912 mmol1–1/n L1/n kg¡1 and were influenced by the
initial feedstock material and, to a lesser extent, post-process
handling. Biochar made from ponderosa pine had the greatest
variability for atrazine sorption, with low adjusted r2 values
(<0.6), and the water-cooled biochar had slightly greater sorp-
tion than either of the dry biochar types. Switchgrass had
adjusted r2 values >0.9. Water-cooled maize and switchgrass
biochars had lower Kf values compared with the <2-mm or 2–
4-mm biochars (Fig. 2).

Soil amended with 1% biochar increased atrazine sorp-
tion (Fig. 3 and 4 and Table 2). The 1% addition of most
biochars increased atrazine Kf values for the Maddock soil
by about 45% and for the Brookings soil about 25%. Post-
processing technique of maize and ponderosa pine biochar
did not influence the atrazine sorption isotherm in the
Maddock soil (Fig. 3a and c). However, Maddock soil
amended with water-cooled switchgrass biochar had greater
atrazine sorption than soils amended with the air-dried

Figure 2. Freundlich isotherms for atrazine sorption to unamended Brookings and Maddock soil and for (a) maize biochars; (b) switchgrass biochars; and (c) ponderosa
pine biochars. The points are the treatment mean and the bidirectional lines for each point are confidence intervals for amount in solution (horizontal) and sorbed (verti-
cal). Fitted parameters are provided in Table 2.
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switchgrass biochar (Fig. 3b). Post-processing of maize and
ponderosa pine biochars when added at 1% influenced sorp-
tion isotherms, with different Kf values but similar 1/n val-
ues for the three types of maize biochar (Fig. 4a) and
similar Kf values but different 1/n values for the three types
of ponderosa pine biochar (Fig. 4c). The 1% switchgrass
addition had similar sorption isotherm regardless of post-
process handling and was described using a single isotherm
(Fig. 4b).

The 10% addition of biochar increased sorption to both
soils compared with unamended or 1% biochar amended
soils (Table 2 and Figs. 3 and 4). Sorption isotherms gener-
ally differed among feedstock materials and post-process

handling. The addition of 10% <2-mm biochar size of
maize or switchgrass feedstock to either soil had higher Kf
values than the 2–4-mm and the wet biochars. The wet
ponderosa pine biochar had a higher atrazine sorption Kf
value than the <2-mm or 2–4-mm biochars.

Biochar influence on 2,4-D sorption

2,4-D sorption to maize biochars was evaluated at one initial
concentration (13 mmol L¡1). The sorption coefficient (Kd)
averaged 240 L mmol¡1 kg¡1, and was similar among all post-
processing treatments. The 2,4-D sorption isotherms for
switchgrass and ponderosa pine biochars had adjusted r2

Figure 3. Freundlich isotherms for atrazine sorption to unamended Maddock soil and amended with 1 and 10% additions of (a) maize biochars; (b) switchgrass biochars;
and (c) ponderosa pine biochars. The points are the treatment mean and the bidirectional lines for each point are confidence intervals for amount in solution (horizontal)
and sorbed (vertical). Fitted parameters are provided in Table 2.
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values, that were greater than 0.84 (Table 3). The 1/n values for
the 2,4-D sorption isotherms were much lower than atrazine
values, indicating less 2,4-D sorption from solution at higher
concentrations compared with atrazine.

The 2,4-D sorption Kf values for unamended Maddock and
Brookings soils were 0.22 and 0.60 mmol1–1/n L1/n kg¡1, respec-
tively (Table 3). When compared with the atrazine isotherms,
the 2,4-D isotherms generally had lower adjusted r2 values,
indicating that the isotherms were less good fits to the data,
most likely due to high variability in sorption data (Figs. 5–7).
The addition of 1% biochar increased Kf values of 2,4-D sorp-
tion markedly [from 10X (ponderosa pine added to Brookings

soil) (Fig. 7) to 136X (switchgrass added to Maddock soil)
(Fig. 6)].

In both soils, post-processing techniques within a feed-
stock had little influence the sorption parameters. For
example, post-processing treatment was only found to be
significant in two cases. The first was ponderosa pine added
to Maddock soil with <2-mm having a similar Kf value but
higher 1/n value than the 2–4-mm and wet biochar iso-
therms. The other exception was maize added to the Brook-
ings soil with <2-mm biochar having both a higher 1/n
value and greater Kf value than the 2–4-mm and wet bio-
char isotherms. Biochars made from maize and switchgrass

Figure 4. Freundlich isotherms for atrazine sorption to unamended Brookings soil and amended with 1 and 10% additions of (a) maize biochars; (b) switchgrass biochars;
and (c) ponderosa pine biochars. The points are the treatment mean and the bidirectional lines for each point are confidence intervals for amount in solution (horizontal)
and sorbed (vertical). Fitted parameters are provided in Table 2.
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feedstocks had increased sorption by about 5X compared
with biochar made from ponderosa pine feedstock. The
10% addition of biochar increased 2,4-D sorption compared
with unamended soils and soils amended with 1% biochar.

Biochar influence on speed of seed germination

The percent of germinable seeds and the speed of germination [43,44]

werecomparedamongtreatments.Germinationpercentages forrad-
ish, lettuce, and wheat were generally similar and greater than 90%
(data not shown). Adding any of the biochars at either a low or high
rate increased the speed of germination (Figs. 8 and 9). These data
also indicated that the biochars did not adversely affect germination

speed. As herbicide rate increased the speed of germination
decreased.Theadditionofbiochar to radish (atrazineand2,4-D)and
wheat (atrazine) seeds counteracted the herbicide addition, with
faster germination speeds when compared within a herbicide rate
(Fig. 8). The larger seed size and the herbicide sorption by the bio-
chars most likely contributed to these results. Speed of germination
for the maize and switchgrass biochars at either rate were similar
across atrazine rates. The 10% rate of ponderosa pine biochar for the
radish-atrazine assaywasmore effective in protecting against phyto-
toxic effects than the 1% rate when atrazine was applied at 1.0 g L¡1

orhigher (Fig. 8).
The addition of high or low rates of biochar for the lettuce

assay with 2,4-D present decreased speed of germination when
compared with 2,4-D solutions with no biochar present
(Fig. 9). The small seed size of lettuce may be a contributing
factor to this result.

Discussion

The 1% biochar addition to either of the two soil types did not
impact soil pH or EC. Several prior studies [45–47] have noted
increased EC and pH with biochar amendments as low as 2%.
The 10% maize biochar addition increased the Maddock soil
EC value. The Maddock soil has less buffering capacity than
the Brookings soil due to the high sand content (724 g kg¡1)
and lower clay and organic matter contents (85 and 16 g kg¡1,
respectively) compared with a higher clay and organic matter
content (310 and 34 g kg¡1, respectively). If biochars would be
applied in high amounts or frequently, the EC values should be
monitored to avoid salt problems as eastern South Dakota has
soil parent materials and hydrologic cycles that promote saline
conditions, and crop injury may occur in soils >4000
uS cm¡1.[48]

Table 3. The parameters for the 2,4-D sorption isothermsa with coefficients for the log Kf, Kf, and slope (1/n) of the isotherm lines for switchgrass and ponderosa pine bio-
chars and soil alone and 1% or 10% of the biochar added to soil.

Soil type Species Amount of biochar added Post-process treatment Adj r2 Log Kf Kf mmol1–1/n L1/n kg¡1 1/n

None Switchgrass 100% <2mm 0.90 2.60 398 (299 – 529)b 0.64 (0.08)
100% 2–4 mm 0.84 2.28 190 (150 – 242) 0.35 (0.06)
100% wet 0.85 2.07 117 (93–149) 0.63 (0.10)

Ponderosa pine 100% <2 mm 0.88 2.29 195 (169–225) 0.33 (0.04)
100% 2–4 mm 0.90 2.63 427 (354–514) 0.59 (0.06)
100% wet 0.93 1.65 45 (41–49) 0.58 (0.06)

Maddock 0% 0.45 ¡0.66 0.22 (0.1–0.4) 0.93 (0.39)
Maize 1% All 0.75 1.32 21 (17–25) 0.63 (0.10)

10% All 0.78 1.55 35 (28–45) 0.85 (0.12)
Switchgrass 1% All 0.61 1.48 30 (23–40) 0.96 (0.18)

10% All 0.73 1.44 28 (23–33) 0.49 (0.08)
Ponderosa pine 1% All 0.73 0.62 4.0 (3.6–4.8) 0.44 (0.10)

10% <2mm 0.62 1.45 28 (19–41) 0.85 (0.34)
10% 2–4 mm and wet 0.74 1.45 28 (22–36) 0.63 (0.12)

Brookings 0% 0.76 ¡0.23 0.6 (0.5–0.8) 0.79 (0.21)
Maize 1% All 0.76 1.33 21 (19–25) 0.63 (0.08)

10% <2 mm 0.75 1.99 98 (47–203) 1.27 (0.38)
10% 2–4 mm and wet 0.78 1.56 36 (28–48) 0.88 (0.15)

Switchgrass 1% All 0.62 1.48 30 (23–40) 0.96 (0.19)
10% All 0.71 1.50 32 (31–33) 0.61 (0.12)

Ponderosa pine 1% All 0.75 0.79 6.2 (5.6–6.8) 0.48 (0.08)
10% All 0.62 1.47 30 (22–40) 0.62 (0.12)

aIsotherms for different biochar post-processing treatments within a biochar species and amount were tested for homogeneity and if not significantly different using the F
statistic and a P � 0.05, the regression was developed using appropriate combined datasets.
bNumbers in parentheses for the log Kf and 1/n values are confidence intervals for the given parameters.

Figure 5. Freundlich isotherms for 2,4-D sorption to switchgrass and ponderosa
pine biochars. The points represent individual replications of treatments. Fitted
parameters are provided in Table 3.
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In this study, all biochar types had high sorption values for
both atrazine, a basic herbicide (Fig. 2) and 2,4-D, an acidic
herbicide (Fig. 5). Post-processing handling also influenced
herbicide sorption. Clay and Malo [13] and Deng et al.[49] also
reported atrazine sorption differed among different processing
types within a feedstock species. Higher heat, longer processing
times, and particle size have been reported to influence sorp-
tion. In addition, other post-processing treatments of biochars,
for example the addition of ammonium dihydrogen phosphate,
have been reported to increase atrazine sorption by increasing
the specific area of sorption on char produced from corn
stover.[50]

Sorption to soil was much lower than to biochar alone.
Based on past atrazine sorption studies of soils with high
sand and low clay and organic matter content vs soils with
high clay and organic matter,[30,39] the sorption differences
between the unamended Maddock and Brookings soils were
expected.

The overriding factor for both atrazine and 2,4-D sorption
to soil was the amount of biochar added, with 10% amendment
have greater sorption than 1%. Feedstock type and post-proc-
essing technique had more limited influences on herbicide
sorption. Organic carbon content and pH are known to

Figure 6. Freundlich isotherms for 2,4-D sorption to Maddock soil alone or amended with 1 or 10% maize, switchgrass or ponderosa pine biochars. The points are the
treatment mean and the bidirectional lines for each point are confidence intervals for amount in solution (horizontal) and sorbed (vertical). Fitted parameters are provided
in Table 3.

Figure 7. Freundlich isotherms for 2,4-D sorption to Brookings soil alone or
amended with 1 or 10% maize, switchgrass or ponderosa pine biochars. The points
are the treatment mean and the bidirectional lines for each point are confidence
intervals for amount in solution (horizontal) and sorbed (vertical). Fitted parame-
ters are provided in Table 3.

Figure 8. Speed of germination of radish and wheat treated with differing
amounts of atrazine and differing amounts of biochar derived from pyrolysis of
three feedstock materials.
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influence triazine herbicide sorption.[39] Increased atrazine
sorption to biochar amended soil has been reported in many
studies.[13,30,49] Other studies have shown higher sorption of
neutral herbicides (treflan and pendimethalin).[32,51] Acidic
herbicides, like 2,4-D, are less sorbed to soil when compared
with slightly positively charged herbicides like atrazine, but
sorption also is influenced by soil organic matter content and
pH.[52] Kearns et al.[53] reported that 2,4-D sorption to biochar
(feedstocks of bamboo, pine, or corn cobs) depended on initial
biochar production temperature, with greater sorption to bio-
chars produced at higher temperatures or undergoing longer
pyrolysis times.

In speed of seed germination assays, germination in herbicide
treatments was similar to untreated controls when biochar was
present. These results are in line with the Mesa and Spokas [25]

review where they reported that biochar (regardless of type)
application to soils increased herbicide sorption, decreased dissi-
pation (i.e., the half-life of the chemical was longer in the envi-
ronment), but also, in general, decreased herbicide
bioavailability. Our germination assay results also are similar to
previous studies that reported reduced herbicide uptake or weed
efficacy when soils were amended with biochar.[31,32,51] For
example, Nag et al.[32] reported that straw biochar applied at 0.5
or 1% decreased bioavailability of atrazine and trifluralin in

calcarosol and ferrosol soils types. Soni et al.[51] reported a 75%
reduction in weed control in the field studies with atrazine
applied preemergence to soils amended with 0.5 kg m¡2 biochar.

While herbicide sorption was increased and efficacy
decreased, biochar effect on the ultimate environmental fate
of herbicides is not straightforward. Typically, increased
herbicide sorption in A horizon soils is reported to reduce
leaching through the soil profile.[54] However, Delwiche
et al.[55] reported that while biochar addition to a soil sur-
face reduced peak flow of atrazine leachate in homogeneous
packed columns, the flow of atrazine through undisturbed
soil was more influenced by soil heterogeneity and marco-
pore flow than by the addition of biochar.

Summary

Biochars that were manufactured from different types of feed-
stocks under different post-production handling conditions
had slightly different baseline properties. Biochars used in this
study had different specific surface areas,[5] EC, and CEC val-
ues. Herbicide sorption and, as a consequence, herbicide effi-
cacy were influenced by biochar addition to soil, with greater
amounts increasing the effects.

Overall, our results suggest that biochar applications to soils
should be done in a deliberate, well planned manner. General
addition of biochars to soil increased herbicide sorption and
reduced herbicide efficacy, which may result in the need for
greater herbicide application rates, additional application times,
or more weed control operations required for controlling prob-
lem weeds. However, biochar additions to waterways may help
reduce pesticides in runoff waters, although not necessarily
leaching waters, from field sites before reaching off-site areas as
a result of increased sorption to the amended soil.
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