Marketing Lambs at Heavier Weights

Dan H. Gee
South Dakota State University

A. L. Slyter

Follow this and additional works at: http://openprairie.sdstate.edu/sd_sheepday_1975

Recommended Citation
http://openprairie.sdstate.edu/sd_sheepday_1975/5

This Report is brought to you for free and open access by the Animal Science Reports at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in South Dakota Sheep Field Day Research Reports, 1975 by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu.
Marketing lambs at heavier weights may offer some advantages to the sheep industry. The factors favoring production of a heavier weight market lamb are:

1. Decreased slaughter cost per unit of carcass weight. Slaughter costs are about the same for a 100 lb. or a 140 lb. lamb.
2. A lamb chop with a larger loin eye area may have a wider variety of uses.
3. Help alleviate the seasonality of lamb marketing. With a longer feeding period and the use of a variety of management techniques, lamb marketing could be more uniformly distributed throughout the year.

Experimental Procedure

Thirty-three Suffolk-Targhee crossbred wethers and 31 Targhee wethers were randomly allotted to one of two ration treatments. One-half of the lambs received a 70:30 concentrate:roughage ration and the other one-half received a 30:70 concentrate:roughage ration. The ration was a mixture of ground alfalfa hay, cracked corn, SBOM, urea, trace mineral salt and aureomycin. Feed and water were available ad libitum to all lambs.

Within each ration treatment lambs were randomly assigned to a light (110 lb.) or heavy (140 lb.) termination weight. The lambs were slaughtered and data collected at the SDSU Meat Lab.

Results and Discussion

Table 1 presents the mean values for performance traits and carcass characteristics of light vs. heavy weight lambs and comparisons of the Suffolk x Targhee crossbreeds vs. straightbred Targhees.

Average daily gain was slightly higher for the light terminal weight lambs. The Suffolk-Targhee crossbreeds gained slightly faster than the Targhee wethers with the largest difference between the two breeds in the light weight group.

Feed efficiency was more desirable for the light lambs as expected. Within the light weight group the Suffolk-Targhee lambs were more efficient, but within the heavy weight group the Targhee lambs were most efficient in feed conversion.

The initial weight of all the lambs was similar. At slaughter the light weight group averaged 111 lb. and the heavy weight group 129 pounds. The intended termination weight for the heavy lambs was 140 pounds. The heavy group was terminated at 130 lb. because of their slower rate of gain and poorer feed efficiency as they approached the termination weight.

The loin eye area as measured between the 12th and 13th ribs was larger for the heavier weight lambs. In both weight groups the Suffolk-Targhee crossbreeds had a larger loin eye area than the Targhees.

Fat thickness as measured over the center of the loin eye area was less for the light weight lambs by 0.08 inch. The Suffolk-Targhee crossbreeds in the light weight group were slightly leaner than the Targhee wethers, the Targhees had less measurable fat than the crossbreeds. The heavier weight lambs were fatter as measured over the lower rib. In the heavy weight group the Targhees were leaner than the crossbreeds.

USDA yield grade in lamb carcasses is determined by using fat thickness, (measurement directly over center of loin eye area), percent kidney fat and leg conformation. The light weight lambs had a more desirable yield grade than the heavy weight lambs primarily because they were leaner.

Heavy weight lambs had a more desirable USDA quality grade than the light weight lambs. The higher quality grade was a result of the additional feathering and flank streaking in the heavier lambs.

Mean values for performance traits and carcass characteristics comparing the high concentrate and high roughage rations are presented in table 2. Average daily gain was considerably higher (0.26 lb./day) for the lambs fed the high concentrate ration. Also, as expected, the light weight lambs gained faster than the heavy weight lambs. The difference in rate of gain between the light and heavy weight groups was greatest when fed the high concentrate ration (0.14 lb./day vs. 0.05 lb./day).

Because of the present high cost of cereal grains, feed efficiency becomes more important in determining profit or loss in a lamb feeding operation. The lambs on the high concentrate ration were more efficient in feed conversion than the lambs on high roughage diets. These differences are to be expected because of the difference in energy content of the ration.

Carcass weights were higher for the lambs on the high concentrate rations, although their initial weights were lower. The size of the loin eye area was larger for the lambs fed the high concentrate rations.

The average fat cover as measured over the loin eye area was the same for both rations. However, the difference in loin eye area between the light and heavy weight groups was greatest for the high concentrate ration. The lambs on the high roughage rations were trimmer as measured over the lower rib. The USDA yield and quality grades were similar for lambs on both levels of roughage.
Table 1. Effect of Market Weight and Breed on Performance and Carcass Parameters

<table>
<thead>
<tr>
<th>Variable</th>
<th>Light weight group</th>
<th>Heavy weight group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Suffolk x</td>
<td>Targhee</td>
</tr>
<tr>
<td>Average daily gain, lb.</td>
<td>0.57</td>
<td>0.62</td>
</tr>
<tr>
<td>Feed efficiency, lb.</td>
<td>6.50</td>
<td>6.35</td>
</tr>
<tr>
<td>Initial wt., lb.</td>
<td>61.8</td>
<td>63.4</td>
</tr>
<tr>
<td>Slaughter wt., lb.</td>
<td>111.2</td>
<td>112.2</td>
</tr>
<tr>
<td>Carcass wt., lb.</td>
<td>52.7</td>
<td>54.1</td>
</tr>
<tr>
<td>Loin eye area, sq. in.</td>
<td>2.21</td>
<td>2.26</td>
</tr>
<tr>
<td>Fat cover over loin eye area.</td>
<td>0.22</td>
<td>0.21</td>
</tr>
<tr>
<td>in. a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fat cover over lower rib, in. b</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>Yield grade</td>
<td>3.5</td>
<td>3.3</td>
</tr>
<tr>
<td>Quality grade c</td>
<td>11.8</td>
<td>11.6</td>
</tr>
</tbody>
</table>

a Measurement taken directly over center of loin eye area.
b Measurement taken over the lower rib at a point 2 inches from lower end of rib eye area.
c Based on High Prime = 15, High Choice = 12, High Good = 9.
Opportunities for improving lamb production include increasing the rate of reproduction through a higher number of lambs born per ewe exposed. Importation of Finnsheep to the U.S. in 1968 to 1970 provided an opportunity to evaluate the effect of a litter bearing breed when used in a crossbreeding program with our domestic breeds. Results of studies conducted at South Dakota State University involving Finn crossbred ewes are reported in this paper.

Experimental Procedure

Seventy-five grade Columbia and Suffolk x Columbia ewes were randomly mated to a Finn or Suffolk ram in the fall of 1970, 1971 and 1972 to produce $\frac{1}{2}$ Finn or Suffolk crossbred ewes. All Finn blood introduced in this study is the result of using two purebred Finn sires. In addition, ewes of $\frac{1}{2}$ Finn blood were produced in 1972, 1973 and 1974 from mating either Finn-Columbia rams with Targhee and Suffolk x Targhee ewe lambs or from Suffolk rams on the $\frac{1}{2}$ Finn ewes produced in 1972. Approximately 50 ewes each of $\frac{1}{2}$ Finn and $\frac{1}{2}$ Finn and 80 control Suffolk crossbred ewes are currently in this study. All breed groups are combined and managed as a single flock under a typical early spring lambing system.

Rams are turned with the mature ewes in late September or early October for a 34-day breeding season. The breeding season for the ewe lambs started approximately 20 days later. Suffolk rams have been used for the production of market lambs from these ewes for all years except for the breeding season of 1972 when Columbia sires were used. All ewes were exposed to lamb first at 12 months of age. No selection has been practiced other than that occurring naturally. Ewes failing to lamb for two consecutive years, not including their 12 month lambing, are culled. Lambs produced from these ewes are creep fed and weaned when the group averages 60 to 80 days of age. Male lambs were castrated in 1972 and 1973 and left intact in 1974. Carcass data were collected in 1974 on a portion of the ram lambs. Ewes having multiple births (in excess of twins) receive credit for them in lambing data. However, no ewe is allowed to raise more than twins under our management system and therefore no credit is given the ewe above twins in the weaning and subsequent data.

Appreciation is expressed to Dr. Lee Tucker for assistance in the analyses of these data.