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Abstract 

Tools surrounding bioinformatics have increased data acquisition and accuracy significantly, 
especially with near-real time results using nanopore DNA sequencing. With large amounts of data, 
reproducibility is of high importance, and long workflows can become convoluted. Snakemake, built 
on the Common Workflow Language and Python, aims to alleviate this with readable formatting, 
reproducibility, and portability for any machine. Using 97 fastq files, the usability of these three traits 
were compared between a Bash and Snakemake workflow using a range of one to twelve threads. In 
every test, Snakemake was faster than Bash. At its fastest, Snakemake was 27% faster than Bash. 
Reproducibility of both workflows was verified using an MD5 hash of results. The hashes differed 
between the workflows; this may be a result of executing the workflows in two different terminal 
environments. Despite this, it is a valid method of validating reproducibility between tests within 
individual workflows.  
 
Outside speed tests, Snakemake offers quality of life features that allow it to pull ahead from Bash. 
Containerization of workflows using Conda is one example of this. The ability to require specific 
versions of software within a workflow boosts reproducibility. Additionally, portability is increased 
because the container can be deployed almost anywhere, and the required software can be 
downloaded on an as-needed basis. With readability comes maintainability. Snakemake will almost 
always pull ahead of Bash in this regard with its simple input, output, and shell fields.  
 
The field of Bioinformatics is moving very quickly, and it can be difficult for traditional Bash scripts to 
keep up in certain aspects. While Bash is paramount in the execution of some software, more 
powerful tools like Snakemake are required to handle the execution of an entire, complex workflow.  
  



Introduction 

The first successful DNA sequence was the 

determination of twelve base pairs of a 

bacteriophage lambda by Wu in 1968 (Wu & 

Kaiser, 1968). Following this, Gilbert and 

Maxam were able to sequence twenty-four 

bases in two years, a rate of one base per 

month (Shendure et al., 2017). Current 

technology has risen leaps and bounds above 

this. Nanopore sequencing can yield upwards 

of 250 gigabytes of data in two days using 

devices that fit in the palm of a hand 

(Nanopore, 2021; Shendure et al., 2017). 

Attempting to manage gigabytes of DNA 

sequences gives rise to the idea of “Big Data”, 

which can be understood – in basic terms – as 

a method used to analyze tremendous 

amounts of information in non-traditional 

methods. The first challenge is data acquisition, 

which has been overcome with “high 

throughput” sequencing, of which nanopore is 

an emerging technology (Labrinidis & 

Jagadish, 2012). This massive increase in ability 

to collect data is why bioinformatics has been 

considered to be one of the most data 

intensive fields, especially in terms of storage 

and computation requirements (Khan et al., 

2019; Stephens et al., 2015). This shows the 

second challenge: processing these data, 

within a reasonable time frame, using tools that 

are not overly complex. 

 

The challenge with processing data introduces 

reproducibility, scalability, and transparency of 

analysis. Reproducibility is the idea that a 

workflow should generate the same exact 

results, no matter where it is run, as long as the 

same settings are used. Scalability is the 

capacity to be able to increase resource usage 

based on resources available. If a cluster 

supercomputer is available, then all resources 

given should be used to their maximum 

potential. Finally, transparency of analysis 

should show the analysis methods in simple 

terms that are easy to understand.  

 



Of these three, reproducibility is the most 

important. Despite this, Science magazine has 

reviewed dozens of scientific articles not 

providing an adequate model for 

reproducibility, which is a major concern when 

attempting to repeat an experiment or verify 

results (McNutt, 2014). Reproducibility is also a 

concern when extremely large datasets are 

being analyzed, which is where scalability of 

workflows are useful. The ability to scale 

resource usage with the size of a dataset as 

needed ensures the workflow is running at its 

most optimal abilities. Reproducibility and 

scalability are useful with large datasets 

because computation can be time consuming 

and repeating experiments is costly. Traditional 

scripts rely on linear approaches; an input path 

is stated as a command line argument, and the 

target script iterates over the file(s). Because of 

this, simple workflows can be made with ease; 

longer workflows, however, quickly become 

disorienting due to the potential lack of 

structure, ultimately reducing workflow 

transparency. In addition, attempting to 

customize parameters is more difficult without 

custom functions to read from a configuration 

file or parse parameters from the command 

line. This is because most parameters are 

defined in-line, next to the command when 

executed. If a change of commands is required, 

the specific line must be sought out and 

modified. As a result, specific parameters can 

become “lost” in a workflow, reducing 

transparency. Development on a local machine 

works well because it allows for faster build 

times and allows installation of any required 

software. However, it often lacks the 

computational power required for larger 

datasets. While pushing the project to a remote 

server is an option, installation of software 

requires administrative access – something not 

offered to users. The developer must work 

within the confines of their user space. The 

software used on a local machine may not be 

present on a remote one. While similar 



software may exist, if it is not the same between 

locations reproducibility cannot be verified. 

 

These specific downfalls – reproducibility, 

command line parameters, and installation on 

a remote server – can be solved with the 

combination of the Common Workflow 

Language (CWL) and Conda (Khan et al., 2019; 

Koester, 2021).  The Common Workflow 

Language is a framework that allows workflows 

to be “powerful, easy to use, portable, and 

support reproducibility” (Amstutz et al., 2016). 

Snakemake is built on the CWL and inherits 

these values. Conda is a package manager that 

allows software to be installed by non-

administrative users in an environment isolated 

from the host operating system (Grüning et al., 

2018).  Snakemake emerges from a mix of the 

CWL and Conda (Koester, 2021). The downfall 

of traditional scripts, as described above, is 

where Snakemake shows its strength. 

Reproducibility and portability are foundations 

of Snakemake; built upon the Common 

Workflow Language, certification of results is 

easily done (Mölder et al., 2021). Additionally, 

Snakemake attempts to ease the second 

challenge, described above, with its human 

readable, Python-friendly formatting (Koester, 

2021). 

 

Steps within the Snakemake workflow are 

defined via rules. On average, each rule has an 

input and an output section, much like 

traditional scripts. Transparency benefits from 

the explicit input/output sections. Snakemake 

also parses all input independent of the 

workflow – no user defined functions are 

required to handle command line parameters. 

This is important because it ensures all 

parameters are handled in the same way, every 

time, boosting reproducibility. On top of this, 

extra time is not required to build the code 

infrastructure required to handle command 

line parameters. While Snakemake is installed 

through Conda, it also offers Conda support 

within itself. This means each rule can be 



executed within a specific version of a Conda 

package, promoting reproducibility. Nearly 

every remote server allows users to install 

required software through Conda, as it reduces 

security risks. Exporting the Conda 

environment file allows deployment on a new 

computer within minutes, which greatly helps 

with portability between machines. A 

comparison of the Snakemake Workflow using 

two versions of this “Conda Directive” are done 

to show speed comparisons between them. A 

more detailed explanation of this is described 

under the Materials & Methods section 

“Snakemake’s Conda Directive”. 

 

The purpose of this work is to show that 

workflow management is required to improve 

reproducibility, portability, transparency, and 

show speedup improvements. Reproducibility 

and transparency be established with MD5 

hashes and ease of multithreading. Portability 

will be verified by downloading prerequisite 

software on-demand. Speedup effects will be 

seen through increasing the number of threads 

available to the workflow by one, until the 

workflow is utilizing the maximum number of 

threads available. I expect these tests to be 

much more easily completed within 

Snakemake than in Bash due to Snakemake’s 

infrastructure being built on these ideas. The 

results will be displayed through a series of 

speed tests between Bash and Snakemake.  

 

  



Materials & Methods 
Four total commands will be running within 

each of the workflows. These commands, and 

their descriptions, are listed in Table 1. These 

commands were executed on a 2019 MacBook 

Pro with a 6-core Intel i7 CPU and 16 GB of 

RAM. Samtools, Burrows-Wheeler Alignment, 

Snakemake, and Python 3.7 were used in the 

execution of this workflow (Danecek et al., 

2021; Li & Durbin, 2009; Mölder et al., 2021; 

Rossum, 2018). The software was installed in a 

Conda environment, and the original workflow 

was adapted to a Snakemake workflow 

(Anaconda Software Distribution, 2021; 

Loecker, 2021/2021; The Unix Shell: Automating 

a Workflow, 2017). These fastq files were 

aligned against the Zymogen Community 

Reference Database (ZymoBIOMICS Microbial 

Community DNA Standard, n.d.). The general 

workflow procedure can be found in Exhibit 1. 

 

Table 1: A list of commands to execute in the workflow 
Command Function 
bwa aln Align an input file to a reference database 
bwa samse Convert the output from bwa aln to a sam file 

samtools view Convert the sam file to a bam file. Much easier for computer 
manipulation, but near-impossible for human-readability 

samtools sort Sort the sam file with respect to their position in the genome. 
Allows for much easier human-readability 

 

Exhibit 1: Commands to execute to run each workflow 
git clone github.com/JoshLoecker/CapstoneProject 
conda env create -f CapstoneProject/snakemake/environment.yaml -n capstone 
conda activate capstone 
Bash Execution 
cd CapstoneProject/bash 
bash run_alignment.sh ../testing_data/testing.fastq.gz 
 
Snakemake Execution 
cd CapstoneProject/snakemake 
snakemake -j all 

 
 
 
 

 
 



Bash Script Procedure 
A modified Bash script was used to align 97 

fastq files to the Zymogen Community 

reference database (The Unix Shell: Automating 

a Workflow, 2017). This script (from here known 

as the “Bash Script”) takes an input file location 

as a command line parameter and performs the 

following steps. 

1. Create a results subdirectory 
2. Create sai, sam, bam, and 

bam_sorted subdirectories under the 
results directory 

3. Execute bwa aln to align the incoming 
fastq file with the reference database. 

4. Convert the aligned file into a machine-
readable format with bwa samse. 

5. Format the machine-readable into a 
human-readable format with 
samtools view 

6. Sort reads based on their position in 
the genome with samtools sort 

 
Snakemake Procedure 
The same Bash Script was translated to a 

Snakefile. The same 97 fastq files were aligned 

to the same Zymogen Community reference 

database (ZymoBIOMICS Microbial Community 

DNA Standard, n.d.). Snakemake performs the 

following steps. 

1. Look in the input directory for all files 
with the .fastq.gz extension 

2. Use the requested input for rule all 
as the base rule and determine which 

rule(s) can produce the request input as 
its own output 

3. Work backwards until the input of a 
rule cannot be matched to an output 

4. Execute the rules in the following order, 
on each input file: 

a. Run bwa aln to align the 
incoming file with the reference 
database. 

b. Convert the aligned file into a 
machine-readable format with 
bwa samse. 

c. Format the machine-readable 
into a human-readable format 
with samtools view 

d. Sort reads based on their 
position in the genome with 
samtools sort 

 

Analysis Procedure 
A secondary Bash script was created for the 

Snakemake Procedure and Bash Script 

Procedure. This allowed for timing the runtime 

of scripts. As extreme precision was not 

required, the command  date +%s was used. 

This shows the current Epoch time. Calculating 

the difference in Epoch between the end of the 

workflow and the start of the workflow, the 

total run time to the nearest seconds can be 

determined. These results were written to a file. 

To determine the speedup effects of 

parallelization, this secondary Bash script 

started each workflow a total of twelve times, 



adding an additional thread at each iteration. 

Twelve total threads were utilized because this 

was the maximum number of threads available 

on the laptop used in testing. Reproducibility 

was tested by generating an MD5 hash of the 

contents of each output file for each command 

executed. Each hash was saved in a respective 

file. These files were hashed again, to produce 

four total hashes corresponding to the four 

commands ran.  

 

Snakemake’s Conda Directive 
The Conda Directive allows for containerization 

of rules within their own Conda environment. 

This is useful because environments can be 

downloaded at runtime, allowing workflows to 

be downloaded on-demand. Two options are 

available for this directive are: 1) Download the 

environment at runtime and activate it for each 

input file or 2) Just activate the Conda 

environment for each input file. The Conda 

environment must be downloaded for the first 

run when using this directive. Subsequent 

executions will use the already-downloaded 

environment files. In the former scenario, when 

N files are used as input Snakemake downloads 

the bam and samtools environments. Then 

the environment containing bam activates N 

individual times, and the environment 

containing samtools activates N separate 

times. For the latter scenario, only the 

activation of environments is necessary, not 

downloading the environment. These Conda 

Directives are not available within Bash, and as 

such were only used to evaluate Snakemake. 

 

Safety Considerations 

There are no known immediate safety 

considerations with this research. Long term 

computer usage can cause carpel tunnel and 

eye fatigue.  

 

  



Results 

Speed Comparisons 
A comparison of Bash and Snakemake 

workflows require them to produce identical 

output. A simple workflow to align DNA 

sequences to a reference databased was used 

(The Unix Shell: Automating a Workflow, 2017). 

This Bash script was translated to a Snakemake 

workflow, and 97 input files were used in 

analysis. 

 

Table 2 shows the raw data containing the 

runtime for each workflow. A Graphic 

representation of this can be seen in Figure 1. 

The largest speed decrease was found when 

going from just one to two threads. At one 

thread, Snakemake and Bash took 630 seconds 

and 676 seconds, respectively. When using two 

threads, Snakemake dove to a 325 second 

runtime, and Bash took 414 seconds. This 

makes sense, as the computing power was 

doubled. Time differences between the two 

workflows can be seen in the “Difference” 

column. 

 
 
 
 
 
 
 
 

Table 2: Bash and Snakemake workflow runtimes 

 

Threads Snakemake Bash Difference
-
1 606 676 70
2 325 414 89
3 228 308 80
4 184 248 64
5 166 200 34
6 144 181 37
7 147 181 34
8 124 159 35
9 127 141 14

10 122 136 14
11 119 127 8
12 117 133 16

Time (s)



 
Figure 1: Computation time for Bash and Snakemake workflows 

 

Snakemake also allows workflow rules to be 

contained in separate Conda environments. 

This means Snakemake is the only required 

Conda package to be installed at runtime; other 

required packages will be downloaded on an 

as-needed basis. Table 3 shows the runtime 

differences between two methods of running a 

workflow using this method. The “Download 

Environment” column states the length of time 

required to download the required Conda 

environment(s), install it, and run the workflow. 

The “Preinstalled Environment” column lists the 

length of time required to activate the 

environment and run the workflow. As 

expected, the Traditional workflow was the 

fastest in every scenario. At its fastest, it was 

41% faster than the Downloaded workflow, and 

28.5% faster than the Pre-Downloaded 

workflow. At the slowest times, the Traditional 

workflow was 21.1% faster than the 

Downloaded workflow and just 6.8% faster 

than the Pre-Downloaded workflow.  
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Reproducibility Analysis 

To determine if reproducibility is possible 

within Snakemake and Bash, each workflow 

was ran using an increasing number of threads, 

from 1 to 12. An MD5 hash was generated from 

each of the files generated, resulting in 96 

hashes. A second MD5 hash was created from 

these 96 hashes. This resulted twelve total 

hashes to compare, as opposed to 1,152 

hashes split evenly among 12 files.  These 

results can be seen in Table 4. Snakemake and 

Bash have the same resulting hash for bwa 

aln, but none of the other commands.

 
 

Table 3: Snakemake runtimes using Conda directives 

 

Threads Traditional Downloaded Pre-Downloaded
-
1 606 809 772
2 325 413 393
3 228 310 268
4 184 232 210
5 166 201 181
6 144 186 185
7 147 178 157
8 124 175 155
9 127 167 146

10 122 157 140
11 119 151 135
12 117 147 133

Time (s)



 
Figure 2: Graph of Snakemake workflow runtimes using Conda directive 

 
Table 4: MD5 hash of results from Snakemake and Bash 

Command Hashes Match? 

bwa aln Yes 

bwa samse No 

samtools view No 

samtools sort No 
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Discussion 

Table 3 shows the time elapsed for Bash and 

Snakemake to perform their routine using 𝑁 

number of threads. As expected, time elapsed 

decreases with an increase in thread count. 

What was not expected, however, was that 

Snakemake would have faster runtimes than 

bash in every case. While both Python and Bash 

are both interpreted languages, Snakemake 

has a slight overhead by translating from its 

own scripting language into the Python 

language. In theory, Bash is faster than 

Snakemake when given an unlimited number 

of threads, which can be seen with the slightly 

more-negative exponential value from Figure 

1. However, large-scale computing is 

expensive, and it is unreasonable to assume 

infinite resources are available. When using the 

line of best fit to extrapolate on an ever-

increasing number of threads, Bash will 

become just two-hundredths of a second faster 

than Snakemake when the workflows have 

access to 275 threads, with this specific dataset. 

This estimation may be inaccurate because it 

does not take into account the I/O time that is 

notorious in writing large amounts of data to 

traditional hard drives (Hsu & Smith, 2004). 

Again, assuming this many resources are 

available is unreasonable, and it is safe to say 

for this workflow, Snakemake was faster than 

Bash in every scenario.  

 

It was difficult to ensure Bash was utilizing all 

threads made available to it. Appendix C shows 

an example snippet of the code used to enable 

multithreading within Bash. A downfall of Bash 

multithreading in this format is that output to 

STDOUT generally occurs after the main thread 

has completed its tasks, which means it can be 

challenging to truly know when all threads have 

finished processing. The terminal will allow 

keyboard input, despite other processes 

potentially printing data to the screen. This is 

just one example of where Snakemake has the 

upper hand. It is much easier to define N 

number of threads to be used for the job; 



Snakemake will use these threads, and the 

main thread will not allow keyboard input until 

all jobs are complete. 

 

To improve reproducibility and portability, 

Snakemake offers the ability to 

compartmentalize each rule in the workflow 

into specific Conda environments. This allows 

fine-tuning available packages, package 

versions, and ensures conflicts do not exist with 

software installed on the operating system 

(Koester, 2021). These processes add additional 

computation time to the workflow, although it 

is negligible. In theory, just ten hundredths of a 

second is required for a conda environment to 

be activated on the hardware used in this 

experiment. Adding slight overhead to activate 

the environment within Snakemake, it is safe to 

say thirteen hundredths of a second will be 

used to activate one Conda environment. 

Expanding this to the 96 input files used, with 

two environments to activate, approximately 

24.96 additional seconds will be required just in 

the activation of environments. This 

performance difference can be seen in Table 3 

and Figure 2. The key difference between these 

two workflows is that in the “Downloaded” plot, 

the Conda environment was downloaded 

before the workflow began. However, after 

downloading the Conda environment, it can be 

used in a near-identical fashion as the 

Traditional workflow. Figure 2 shows the 

differences between using this version of the 

cached workflow (or “Pre-Downloaded”) and 

the “Traditional” workflow. Again, the 

Traditional workflow is faster because the 

Conda environments in the Pre-Downloaded 

Workflow must be activated for every file being 

processed, for each rule being ran. This amount 

of time is not significant enough to not use the 

compartmentalization features of Conda. Due 

to the uncertainty of download speeds, 

attempting to extrapolate how long it takes to 

download a Conda environment is not reliable. 

 



Snakemake was always faster than – or as fast 

as – Bash. Snakemake’s speed was especially 

seen when using all packages in a single Conda 

environment. At Snakemake’s fastest, it was 

almost 1.5 minutes faster than Bash. Even at 

Snakemake’s slowest runtime, it was 8 seconds 

faster than Bash. These results assume 

“Traditional” workflow uses.  

 

Outside raw performance, other benefits exist 

within Snakemake that push the advantage far 

in its favor. Reproducibility is a requirement in 

research, and as previously stated, is a 

foundation of Snakemake (Koester, 2021; 

McNutt, 2014). To compare the differences in 

output from Snakemake and Bash, and MD5 

algorithm is used. This function produces a 

128-bit string of text that is distinct from any 

other string that could possibly be generated 

(Rivest & Dusse, 1992, p. 5). While the MD5 

hashes generated from each workflow’s results 

were consistent within the workflow, only the 

bwa aln command was identical between the 

workflows. This means the results between 

Snakemake and Bash were not identical, and 

therefore not reproducible, in any command 

except for the bwa aln command. The reason 

why this was the only hash that matched is 

unknown. One possible explanation is that 

Snakemake was ran in the terminal of an IDE 

while Bash was ran in a traditional terminal 

window. 

 

While containers were not used in this test, they 

have a very common use-case. Singularity 

containers allow custom software to be 

installed on an operating system where the 

user does not have root privileges. When ran, 

the software will be encapsulated in its own 

miniature sandbox, where it can only reach 

resources specified at runtime. Much like using 

Conda environments, this does add a slight 

amount of overhead. However, Singularity 

allows for reproducibility and portability 

because the installed software has a specific 

version, and the runtime environment is 



consistent no matter where it is executed (Le & 

Paz, 2017). Snakemake’s ability to use 

Singularity containers causes it to pull further 

ahead of Bash, especially when transparency is 

taken into account. While a Bash script can be 

executed within a Singularity container, 

Snakemake has a simple container: 

command that is easy to read, and ensures that 

individuals referencing the workflow 

understand exactly how commands are being 

executed. This option is not available in Bash, 

and it may be problematic to execute a Bash 

workflow with the same parameters as previous 

executions. 

 

Outside reproducibility, maintainability is 

almost always a requirement for software 

development; transparency is a prerequisite for 

maintainability. When comparing Snakemake 

and Bash, it can be almost guaranteed that 

Snakemake pulls ahead in transparency as well. 

On average, Snakemake has three fields: 

input, output, and shell. When used in a 

Snakefile (Snakemake’s equivalent to an 

executable file), it is quite easy to understand 

where files are coming from, where they will 

end up, and the command being ran on the file. 

An example of this can be seen in  

Appendix A. Intuitively, the input for this rule is 

my_input.txt and the output is 

my_output.txt. The shell command will 

simply copy data from the input into the 

output, but any terminal command can be 

entered here. Bash has a very similar layout 

when using simple workflows, such as the one 

just mentioned. Appendix B shows a Bash script 

that will perform the same function as the 

Snakefile in  

Appendix A. Input and output are specified, 

and the input is copied to the output. While the 

Bash script initially appears simple, it becomes 

more convoluted when multiple steps are in a 

workflow, which is often required.  

 

  



Conclusion 

While data are important, the basis of scientific 

discovery lies in the interpretation of these 

data.  With an ever-increasing amount of data 

being gathered through nanopore sequencing, 

the ability to process these data requires 

smarter analysis to ensure verification and 

reproducibility. This idea started with the 

Common Workflow Language; Snakemake 

used this as a foundation and created a 

workflow management system that places 

reproducibility at its core. Without Snakemake, 

an unreasonably large amount of time would 

be spent managing, processing, and storing 

data to just obtain results – not in the 

interpretation of these results.  

 

Bash is vital in the execution of command line 

programs, but it has fallen behind in its overall 

usefulness as a workflow manager. Snakemake 

offers a multitude of features – including 

executing Bash commands – that allow it to be 

more than just a scripting language. 

Snakemake’s ease of parsing command line 

parameters, deployment to remote servers, and 

specific package versioning through Conda 

sets it far ahead of traditional workflow scripts. 

 

Ultimately, data acquisition in bioinformatics is 

accelerating. Traditional scripts are falling 

further behind in their ability to handle this 

extensive amount of information being 

generated nearly in real-time. As a result, data 

analysis in bioinformatics is nearly impossible 

without the use of workflow management, 

including Snakemake, to ensure reproducibility 

and portability. 
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Appendix A 
A very simple Snakefile with input, output, 
and shell directives 
rule example: 
    input: “my_input.txt” 
    output: “my_output.txt” 
    shell: “cat {input} > 
{output}” 
 

Appendix B 
A simple Bash file moving input to output 
input=”my_input.txt” 
output=”my_output.txt” 
cat “$input” > “$output” 
 

Appendix C 
An example code snippet showing the process 
used to enable Bash multithreading 
core_count=2 
( 
for file in "[INPUT LOCATION]/"*; 
do 
 
    if (( i % core_count == 0 )); 
then 
        wait 
    fi 
    ((i++)) 
    start=$(date +%s) 
    echo “Thread: $i” 
    end=$(date +%s) 
    total_time=$((end-start)) 
done 
) 


