
Benefits of the Snakemake Workflow Management Software in
Comparison to Traditional Programming

Josh Loecker, Patrick Ewing
North Central Agricultural Research Laboratory, USDA

Brookings, SD

Abstract

Tools surrounding bioinformatics have increased data acquisition and accuracy significantly,
especially with near-real time results using nanopore DNA sequencing. With large amounts of data,
reproducibility is of high importance, and long workflows can become convoluted. Snakemake, built
on the Common Workflow Language and Python, aims to alleviate this with readable formatting,
reproducibility, and portability for any machine. Using 97 fastq files, the usability of these three traits
were compared between a Bash and Snakemake workflow using a range of one to twelve threads. In
every test, Snakemake was faster than Bash. At its fastest, Snakemake was 27% faster than Bash.
Reproducibility of both workflows was verified using an MD5 hash of results. The hashes differed
between the workflows; this may be a result of executing the workflows in two different terminal
environments. Despite this, it is a valid method of validating reproducibility between tests within
individual workflows.

Outside speed tests, Snakemake offers quality of life features that allow it to pull ahead from Bash.
Containerization of workflows using Conda is one example of this. The ability to require specific
versions of software within a workflow boosts reproducibility. Additionally, portability is increased
because the container can be deployed almost anywhere, and the required software can be
downloaded on an as-needed basis. With readability comes maintainability. Snakemake will almost
always pull ahead of Bash in this regard with its simple input, output, and shell fields.

The field of Bioinformatics is moving very quickly, and it can be difficult for traditional Bash scripts to
keep up in certain aspects. While Bash is paramount in the execution of some software, more
powerful tools like Snakemake are required to handle the execution of an entire, complex workflow.

Introduction

The first successful DNA sequence was the

determination of twelve base pairs of a

bacteriophage lambda by Wu in 1968 (Wu &

Kaiser, 1968). Following this, Gilbert and

Maxam were able to sequence twenty-four

bases in two years, a rate of one base per

month (Shendure et al., 2017). Current

technology has risen leaps and bounds above

this. Nanopore sequencing can yield upwards

of 250 gigabytes of data in two days using

devices that fit in the palm of a hand

(Nanopore, 2021; Shendure et al., 2017).

Attempting to manage gigabytes of DNA

sequences gives rise to the idea of “Big Data”,

which can be understood – in basic terms – as

a method used to analyze tremendous

amounts of information in non-traditional

methods. The first challenge is data acquisition,

which has been overcome with “high

throughput” sequencing, of which nanopore is

an emerging technology (Labrinidis &

Jagadish, 2012). This massive increase in ability

to collect data is why bioinformatics has been

considered to be one of the most data

intensive fields, especially in terms of storage

and computation requirements (Khan et al.,

2019; Stephens et al., 2015). This shows the

second challenge: processing these data,

within a reasonable time frame, using tools that

are not overly complex.

The challenge with processing data introduces

reproducibility, scalability, and transparency of

analysis. Reproducibility is the idea that a

workflow should generate the same exact

results, no matter where it is run, as long as the

same settings are used. Scalability is the

capacity to be able to increase resource usage

based on resources available. If a cluster

supercomputer is available, then all resources

given should be used to their maximum

potential. Finally, transparency of analysis

should show the analysis methods in simple

terms that are easy to understand.

Of these three, reproducibility is the most

important. Despite this, Science magazine has

reviewed dozens of scientific articles not

providing an adequate model for

reproducibility, which is a major concern when

attempting to repeat an experiment or verify

results (McNutt, 2014). Reproducibility is also a

concern when extremely large datasets are

being analyzed, which is where scalability of

workflows are useful. The ability to scale

resource usage with the size of a dataset as

needed ensures the workflow is running at its

most optimal abilities. Reproducibility and

scalability are useful with large datasets

because computation can be time consuming

and repeating experiments is costly. Traditional

scripts rely on linear approaches; an input path

is stated as a command line argument, and the

target script iterates over the file(s). Because of

this, simple workflows can be made with ease;

longer workflows, however, quickly become

disorienting due to the potential lack of

structure, ultimately reducing workflow

transparency. In addition, attempting to

customize parameters is more difficult without

custom functions to read from a configuration

file or parse parameters from the command

line. This is because most parameters are

defined in-line, next to the command when

executed. If a change of commands is required,

the specific line must be sought out and

modified. As a result, specific parameters can

become “lost” in a workflow, reducing

transparency. Development on a local machine

works well because it allows for faster build

times and allows installation of any required

software. However, it often lacks the

computational power required for larger

datasets. While pushing the project to a remote

server is an option, installation of software

requires administrative access – something not

offered to users. The developer must work

within the confines of their user space. The

software used on a local machine may not be

present on a remote one. While similar

software may exist, if it is not the same between

locations reproducibility cannot be verified.

These specific downfalls – reproducibility,

command line parameters, and installation on

a remote server – can be solved with the

combination of the Common Workflow

Language (CWL) and Conda (Khan et al., 2019;

Koester, 2021). The Common Workflow

Language is a framework that allows workflows

to be “powerful, easy to use, portable, and

support reproducibility” (Amstutz et al., 2016).

Snakemake is built on the CWL and inherits

these values. Conda is a package manager that

allows software to be installed by non-

administrative users in an environment isolated

from the host operating system (Grüning et al.,

2018). Snakemake emerges from a mix of the

CWL and Conda (Koester, 2021). The downfall

of traditional scripts, as described above, is

where Snakemake shows its strength.

Reproducibility and portability are foundations

of Snakemake; built upon the Common

Workflow Language, certification of results is

easily done (Mölder et al., 2021). Additionally,

Snakemake attempts to ease the second

challenge, described above, with its human

readable, Python-friendly formatting (Koester,

2021).

Steps within the Snakemake workflow are

defined via rules. On average, each rule has an

input and an output section, much like

traditional scripts. Transparency benefits from

the explicit input/output sections. Snakemake

also parses all input independent of the

workflow – no user defined functions are

required to handle command line parameters.

This is important because it ensures all

parameters are handled in the same way, every

time, boosting reproducibility. On top of this,

extra time is not required to build the code

infrastructure required to handle command

line parameters. While Snakemake is installed

through Conda, it also offers Conda support

within itself. This means each rule can be

executed within a specific version of a Conda

package, promoting reproducibility. Nearly

every remote server allows users to install

required software through Conda, as it reduces

security risks. Exporting the Conda

environment file allows deployment on a new

computer within minutes, which greatly helps

with portability between machines. A

comparison of the Snakemake Workflow using

two versions of this “Conda Directive” are done

to show speed comparisons between them. A

more detailed explanation of this is described

under the Materials & Methods section

“Snakemake’s Conda Directive”.

The purpose of this work is to show that

workflow management is required to improve

reproducibility, portability, transparency, and

show speedup improvements. Reproducibility

and transparency be established with MD5

hashes and ease of multithreading. Portability

will be verified by downloading prerequisite

software on-demand. Speedup effects will be

seen through increasing the number of threads

available to the workflow by one, until the

workflow is utilizing the maximum number of

threads available. I expect these tests to be

much more easily completed within

Snakemake than in Bash due to Snakemake’s

infrastructure being built on these ideas. The

results will be displayed through a series of

speed tests between Bash and Snakemake.

Materials & Methods
Four total commands will be running within

each of the workflows. These commands, and

their descriptions, are listed in Table 1. These

commands were executed on a 2019 MacBook

Pro with a 6-core Intel i7 CPU and 16 GB of

RAM. Samtools, Burrows-Wheeler Alignment,

Snakemake, and Python 3.7 were used in the

execution of this workflow (Danecek et al.,

2021; Li & Durbin, 2009; Mölder et al., 2021;

Rossum, 2018). The software was installed in a

Conda environment, and the original workflow

was adapted to a Snakemake workflow

(Anaconda Software Distribution, 2021;

Loecker, 2021/2021; The Unix Shell: Automating

a Workflow, 2017). These fastq files were

aligned against the Zymogen Community

Reference Database (ZymoBIOMICS Microbial

Community DNA Standard, n.d.). The general

workflow procedure can be found in Exhibit 1.

Table 1: A list of commands to execute in the workflow
Command Function
bwa aln Align an input file to a reference database
bwa samse Convert the output from bwa aln to a sam file

samtools view Convert the sam file to a bam file. Much easier for computer
manipulation, but near-impossible for human-readability

samtools sort Sort the sam file with respect to their position in the genome.
Allows for much easier human-readability

Exhibit 1: Commands to execute to run each workflow
git clone github.com/JoshLoecker/CapstoneProject
conda env create -f CapstoneProject/snakemake/environment.yaml -n capstone
conda activate capstone
Bash Execution
cd CapstoneProject/bash
bash run_alignment.sh ../testing_data/testing.fastq.gz

Snakemake Execution
cd CapstoneProject/snakemake
snakemake -j all

Bash Script Procedure
A modified Bash script was used to align 97

fastq files to the Zymogen Community

reference database (The Unix Shell: Automating

a Workflow, 2017). This script (from here known

as the “Bash Script”) takes an input file location

as a command line parameter and performs the

following steps.

1. Create a results subdirectory
2. Create sai, sam, bam, and

bam_sorted subdirectories under the
results directory

3. Execute bwa aln to align the incoming
fastq file with the reference database.

4. Convert the aligned file into a machine-
readable format with bwa samse.

5. Format the machine-readable into a
human-readable format with
samtools view

6. Sort reads based on their position in
the genome with samtools sort

Snakemake Procedure
The same Bash Script was translated to a

Snakefile. The same 97 fastq files were aligned

to the same Zymogen Community reference

database (ZymoBIOMICS Microbial Community

DNA Standard, n.d.). Snakemake performs the

following steps.

1. Look in the input directory for all files
with the .fastq.gz extension

2. Use the requested input for rule all
as the base rule and determine which

rule(s) can produce the request input as
its own output

3. Work backwards until the input of a
rule cannot be matched to an output

4. Execute the rules in the following order,
on each input file:

a. Run bwa aln to align the
incoming file with the reference
database.

b. Convert the aligned file into a
machine-readable format with
bwa samse.

c. Format the machine-readable
into a human-readable format
with samtools view

d. Sort reads based on their
position in the genome with
samtools sort

Analysis Procedure
A secondary Bash script was created for the

Snakemake Procedure and Bash Script

Procedure. This allowed for timing the runtime

of scripts. As extreme precision was not

required, the command date +%s was used.

This shows the current Epoch time. Calculating

the difference in Epoch between the end of the

workflow and the start of the workflow, the

total run time to the nearest seconds can be

determined. These results were written to a file.

To determine the speedup effects of

parallelization, this secondary Bash script

started each workflow a total of twelve times,

adding an additional thread at each iteration.

Twelve total threads were utilized because this

was the maximum number of threads available

on the laptop used in testing. Reproducibility

was tested by generating an MD5 hash of the

contents of each output file for each command

executed. Each hash was saved in a respective

file. These files were hashed again, to produce

four total hashes corresponding to the four

commands ran.

Snakemake’s Conda Directive
The Conda Directive allows for containerization

of rules within their own Conda environment.

This is useful because environments can be

downloaded at runtime, allowing workflows to

be downloaded on-demand. Two options are

available for this directive are: 1) Download the

environment at runtime and activate it for each

input file or 2) Just activate the Conda

environment for each input file. The Conda

environment must be downloaded for the first

run when using this directive. Subsequent

executions will use the already-downloaded

environment files. In the former scenario, when

N files are used as input Snakemake downloads

the bam and samtools environments. Then

the environment containing bam activates N

individual times, and the environment

containing samtools activates N separate

times. For the latter scenario, only the

activation of environments is necessary, not

downloading the environment. These Conda

Directives are not available within Bash, and as

such were only used to evaluate Snakemake.

Safety Considerations

There are no known immediate safety

considerations with this research. Long term

computer usage can cause carpel tunnel and

eye fatigue.

Results

Speed Comparisons
A comparison of Bash and Snakemake

workflows require them to produce identical

output. A simple workflow to align DNA

sequences to a reference databased was used

(The Unix Shell: Automating a Workflow, 2017).

This Bash script was translated to a Snakemake

workflow, and 97 input files were used in

analysis.

Table 2 shows the raw data containing the

runtime for each workflow. A Graphic

representation of this can be seen in Figure 1.

The largest speed decrease was found when

going from just one to two threads. At one

thread, Snakemake and Bash took 630 seconds

and 676 seconds, respectively. When using two

threads, Snakemake dove to a 325 second

runtime, and Bash took 414 seconds. This

makes sense, as the computing power was

doubled. Time differences between the two

workflows can be seen in the “Difference”

column.

Table 2: Bash and Snakemake workflow runtimes

Threads Snakemake Bash Difference
-
1 606 676 70
2 325 414 89
3 228 308 80
4 184 248 64
5 166 200 34
6 144 181 37
7 147 181 34
8 124 159 35
9 127 141 14

10 122 136 14
11 119 127 8
12 117 133 16

Time (s)

Figure 1: Computation time for Bash and Snakemake workflows

Snakemake also allows workflow rules to be

contained in separate Conda environments.

This means Snakemake is the only required

Conda package to be installed at runtime; other

required packages will be downloaded on an

as-needed basis. Table 3 shows the runtime

differences between two methods of running a

workflow using this method. The “Download

Environment” column states the length of time

required to download the required Conda

environment(s), install it, and run the workflow.

The “Preinstalled Environment” column lists the

length of time required to activate the

environment and run the workflow. As

expected, the Traditional workflow was the

fastest in every scenario. At its fastest, it was

41% faster than the Downloaded workflow, and

28.5% faster than the Pre-Downloaded

workflow. At the slowest times, the Traditional

workflow was 21.1% faster than the

Downloaded workflow and just 6.8% faster

than the Pre-Downloaded workflow.

y = 650.98x-0.68
R² = 0.9966

y = 510.79x-0.646
R² = 0.9703

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5 6 7 8 9 10 11 12

Ti
m

e
(s

)

Threads

Bash vs Snakemake Computation Time

Bash Snakemake

Reproducibility Analysis

To determine if reproducibility is possible

within Snakemake and Bash, each workflow

was ran using an increasing number of threads,

from 1 to 12. An MD5 hash was generated from

each of the files generated, resulting in 96

hashes. A second MD5 hash was created from

these 96 hashes. This resulted twelve total

hashes to compare, as opposed to 1,152

hashes split evenly among 12 files. These

results can be seen in Table 4. Snakemake and

Bash have the same resulting hash for bwa

aln, but none of the other commands.

Table 3: Snakemake runtimes using Conda directives

Threads Traditional Downloaded Pre-Downloaded
-
1 606 809 772
2 325 413 393
3 228 310 268
4 184 232 210
5 166 201 181
6 144 186 185
7 147 178 157
8 124 175 155
9 127 167 146

10 122 157 140
11 119 151 135
12 117 147 133

Time (s)

Figure 2: Graph of Snakemake workflow runtimes using Conda directive

Table 4: MD5 hash of results from Snakemake and Bash

Command Hashes Match?

bwa aln Yes

bwa samse No

samtools view No

samtools sort No

y = 633.44x-0.681
R² = 0.9653

y = 510.79x-0.646
R² = 0.9703

y = 670.16x-0.657
R² = 0.9661

0
100
200
300
400
500
600
700
800
900

0 1 2 3 4 5 6 7 8 9 10 11 12

Ti
m

e
(s

)

Threads

Snakemake Computation Time with Conda Directive

Pre-Downloaded Traditional Downloaded

Discussion

Table 3 shows the time elapsed for Bash and

Snakemake to perform their routine using 𝑁

number of threads. As expected, time elapsed

decreases with an increase in thread count.

What was not expected, however, was that

Snakemake would have faster runtimes than

bash in every case. While both Python and Bash

are both interpreted languages, Snakemake

has a slight overhead by translating from its

own scripting language into the Python

language. In theory, Bash is faster than

Snakemake when given an unlimited number

of threads, which can be seen with the slightly

more-negative exponential value from Figure

1. However, large-scale computing is

expensive, and it is unreasonable to assume

infinite resources are available. When using the

line of best fit to extrapolate on an ever-

increasing number of threads, Bash will

become just two-hundredths of a second faster

than Snakemake when the workflows have

access to 275 threads, with this specific dataset.

This estimation may be inaccurate because it

does not take into account the I/O time that is

notorious in writing large amounts of data to

traditional hard drives (Hsu & Smith, 2004).

Again, assuming this many resources are

available is unreasonable, and it is safe to say

for this workflow, Snakemake was faster than

Bash in every scenario.

It was difficult to ensure Bash was utilizing all

threads made available to it. Appendix C shows

an example snippet of the code used to enable

multithreading within Bash. A downfall of Bash

multithreading in this format is that output to

STDOUT generally occurs after the main thread

has completed its tasks, which means it can be

challenging to truly know when all threads have

finished processing. The terminal will allow

keyboard input, despite other processes

potentially printing data to the screen. This is

just one example of where Snakemake has the

upper hand. It is much easier to define N

number of threads to be used for the job;

Snakemake will use these threads, and the

main thread will not allow keyboard input until

all jobs are complete.

To improve reproducibility and portability,

Snakemake offers the ability to

compartmentalize each rule in the workflow

into specific Conda environments. This allows

fine-tuning available packages, package

versions, and ensures conflicts do not exist with

software installed on the operating system

(Koester, 2021). These processes add additional

computation time to the workflow, although it

is negligible. In theory, just ten hundredths of a

second is required for a conda environment to

be activated on the hardware used in this

experiment. Adding slight overhead to activate

the environment within Snakemake, it is safe to

say thirteen hundredths of a second will be

used to activate one Conda environment.

Expanding this to the 96 input files used, with

two environments to activate, approximately

24.96 additional seconds will be required just in

the activation of environments. This

performance difference can be seen in Table 3

and Figure 2. The key difference between these

two workflows is that in the “Downloaded” plot,

the Conda environment was downloaded

before the workflow began. However, after

downloading the Conda environment, it can be

used in a near-identical fashion as the

Traditional workflow. Figure 2 shows the

differences between using this version of the

cached workflow (or “Pre-Downloaded”) and

the “Traditional” workflow. Again, the

Traditional workflow is faster because the

Conda environments in the Pre-Downloaded

Workflow must be activated for every file being

processed, for each rule being ran. This amount

of time is not significant enough to not use the

compartmentalization features of Conda. Due

to the uncertainty of download speeds,

attempting to extrapolate how long it takes to

download a Conda environment is not reliable.

Snakemake was always faster than – or as fast

as – Bash. Snakemake’s speed was especially

seen when using all packages in a single Conda

environment. At Snakemake’s fastest, it was

almost 1.5 minutes faster than Bash. Even at

Snakemake’s slowest runtime, it was 8 seconds

faster than Bash. These results assume

“Traditional” workflow uses.

Outside raw performance, other benefits exist

within Snakemake that push the advantage far

in its favor. Reproducibility is a requirement in

research, and as previously stated, is a

foundation of Snakemake (Koester, 2021;

McNutt, 2014). To compare the differences in

output from Snakemake and Bash, and MD5

algorithm is used. This function produces a

128-bit string of text that is distinct from any

other string that could possibly be generated

(Rivest & Dusse, 1992, p. 5). While the MD5

hashes generated from each workflow’s results

were consistent within the workflow, only the

bwa aln command was identical between the

workflows. This means the results between

Snakemake and Bash were not identical, and

therefore not reproducible, in any command

except for the bwa aln command. The reason

why this was the only hash that matched is

unknown. One possible explanation is that

Snakemake was ran in the terminal of an IDE

while Bash was ran in a traditional terminal

window.

While containers were not used in this test, they

have a very common use-case. Singularity

containers allow custom software to be

installed on an operating system where the

user does not have root privileges. When ran,

the software will be encapsulated in its own

miniature sandbox, where it can only reach

resources specified at runtime. Much like using

Conda environments, this does add a slight

amount of overhead. However, Singularity

allows for reproducibility and portability

because the installed software has a specific

version, and the runtime environment is

consistent no matter where it is executed (Le &

Paz, 2017). Snakemake’s ability to use

Singularity containers causes it to pull further

ahead of Bash, especially when transparency is

taken into account. While a Bash script can be

executed within a Singularity container,

Snakemake has a simple container:

command that is easy to read, and ensures that

individuals referencing the workflow

understand exactly how commands are being

executed. This option is not available in Bash,

and it may be problematic to execute a Bash

workflow with the same parameters as previous

executions.

Outside reproducibility, maintainability is

almost always a requirement for software

development; transparency is a prerequisite for

maintainability. When comparing Snakemake

and Bash, it can be almost guaranteed that

Snakemake pulls ahead in transparency as well.

On average, Snakemake has three fields:

input, output, and shell. When used in a

Snakefile (Snakemake’s equivalent to an

executable file), it is quite easy to understand

where files are coming from, where they will

end up, and the command being ran on the file.

An example of this can be seen in

Appendix A. Intuitively, the input for this rule is

my_input.txt and the output is

my_output.txt. The shell command will

simply copy data from the input into the

output, but any terminal command can be

entered here. Bash has a very similar layout

when using simple workflows, such as the one

just mentioned. Appendix B shows a Bash script

that will perform the same function as the

Snakefile in

Appendix A. Input and output are specified,

and the input is copied to the output. While the

Bash script initially appears simple, it becomes

more convoluted when multiple steps are in a

workflow, which is often required.

Conclusion

While data are important, the basis of scientific

discovery lies in the interpretation of these

data. With an ever-increasing amount of data

being gathered through nanopore sequencing,

the ability to process these data requires

smarter analysis to ensure verification and

reproducibility. This idea started with the

Common Workflow Language; Snakemake

used this as a foundation and created a

workflow management system that places

reproducibility at its core. Without Snakemake,

an unreasonably large amount of time would

be spent managing, processing, and storing

data to just obtain results – not in the

interpretation of these results.

Bash is vital in the execution of command line

programs, but it has fallen behind in its overall

usefulness as a workflow manager. Snakemake

offers a multitude of features – including

executing Bash commands – that allow it to be

more than just a scripting language.

Snakemake’s ease of parsing command line

parameters, deployment to remote servers, and

specific package versioning through Conda

sets it far ahead of traditional workflow scripts.

Ultimately, data acquisition in bioinformatics is

accelerating. Traditional scripts are falling

further behind in their ability to handle this

extensive amount of information being

generated nearly in real-time. As a result, data

analysis in bioinformatics is nearly impossible

without the use of workflow management,

including Snakemake, to ensure reproducibility

and portability.

References

Amstutz, P., Crusoe, M. R., Tijanić, N.,
Chapman, B., Chilton, J., Heuer, M., &
et al. (2016). Common Workflow
Language, v1.0 [Data set]. figshare.
https://doi.org/10.6084/m9.figshare.31
15156.v2

Anaconda Software Distribution. (2021).
Conda (4.10.1) [Computer software].
Anaconda. docs.conda.io/

Danecek, P., Bonfield, J. K., Liddle, J., Marshall,
J., Ohan, V., Pollard, M. O., Whitwham,
A., Keane, T., McCarthy, S. A., Davies, R.
M., & Li, H. (2021). Twelve years of
SAMtools and BCFtools. GigaScience,
10(2).
https://doi.org/10.1093/gigascience/gi
ab008

Grüning, B., Dale, R., Sjödin, A., Chapman, B. A.,
Rowe, J., Tomkins-Tinch, C. H., Valieris,
R., & Köster, J. (2018). Bioconda:
Sustainable and comprehensive
software distribution for the life
sciences. Nature Methods, 15(7), 475–
476. https://doi.org/10.1038/s41592-
018-0046-7

Hsu, W. W., & Smith, A. J. (2004). The
performance impact of I/O
optimizations and disk improvements.
IBM Journal of Research and
Development, 48(2), 255–289.
https://doi.org/10.1147/rd.482.0255

Khan, F. Z., Soiland-Reyes, S., Sinnott, R. O.,
Lonie, A., Goble, C., & Crusoe, M. R.
(2019). Sharing interoperable workflow
provenance: A review of best practices
and their practical application in
CWLProv. GigaScience, 8(giz095).
https://doi.org/10.1093/gigascience/gi
z095

Koester, J. (2021, March 3). Snakemake.
https://snakemake.readthedocs.io

Labrinidis, A., & Jagadish, H. V. (2012).
Challenges and opportunities with big
data. Proceedings of the VLDB
Endowment, 5(12), 2032–2033.
https://doi.org/10.14778/2367502.236
7572

Le, E., & Paz, D. (2017). Performance Analysis
of Applications using Singularity
Container on SDSC Comet.
Proceedings of the Practice and
Experience in Advanced Research
Computing 2017 on Sustainability,
Success and Impact, 1–4.
https://doi.org/10.1145/3093338.3106
737

Li, H., & Durbin, R. (2009). Fast and accurate
short read alignment with Burrows-
Wheeler transform. Bioinformatics
(Oxford, England), 25(14), 1754–1760.
https://doi.org/10.1093/bioinformatics
/btp324

Loecker, J. (2021). JoshLoecker/CapstoneProject
[Shell, Python].
https://github.com/JoshLoecker/Capst
oneProject (Original work published
2021)

McNutt, M. (2014). Reproducibility. Science,
343(6168), 229–229.
https://doi.org/10.1126/science.12504
75

Mölder, F., Jablonski, K. P., Letcher, B., Hall, M.
B., Tomkins-Tinch, C. H., Sochat, V.,
Forster, J., Lee, S., Twardziok, S. O.,
Kanitz, A., Wilm, A., Holtgrewe, M.,
Rahmann, S., Nahnsen, S., & Köster, J.
(2021). Sustainable data analysis with
Snakemake. F1000Research, 10, 33.
https://doi.org/10.12688/f1000researc
h.29032.1

Nanopore, O. (2021). MinION. Oxford
Nanopore Technologies.
http://nanoporetech.com/products/mi
nion

Rivest, R., & Dusse, S. (1992). The MD5
message-digest algorithm. MIT
Laboratory for Computer Science
Cambridge.

Rossum, G. (2018). Python (3.7) [Python].
Python Software Foundation.
https://python.org/

Shendure, J., Balasubramanian, S., Church, G.
M., Gilbert, W., Rogers, J., Schloss, J. A.,
& Waterston, R. H. (2017). DNA
sequencing at 40: Past, present and
future. Nature, 550(7676), 345–353.
https://doi.org/10.1038/nature24286

Stephens, Z. D., Lee, S. Y., Faghri, F., Campbell,
R. H., Zhai, C., Efron, M. J., Iyer, R.,
Schatz, M. C., Sinha, S., & Robinson, G.
E. (2015). Big Data: Astronomical or
Genomical? PLOS Biology, 13(7),
e1002195.
https://doi.org/10.1371/journal.pbio.1
002195

The Unix Shell: Automating a workflow. (2017,
June 11).
https://thejacksonlaboratory.github.io/
introduction-to-hpc/08-workflow/

Wu, R., & Kaiser, A. D. (1968). Structure and
base sequence in the cohesive ends of
bacteriophage lambda DNA. Journal of
Molecular Biology, 35(3), 523–537.
https://doi.org/10.1016/S0022-
2836(68)80012-9

ZymoBIOMICS Microbial Community DNA
Standard. (n.d.). ZYMO RESEARCH.
Retrieved April 22, 2021, from
https://www.zymoresearch.com/produ
cts/zymobiomics-microbial-
community-dna-standard

Appendix A
A very simple Snakefile with input, output,
and shell directives
rule example:
 input: “my_input.txt”
 output: “my_output.txt”
 shell: “cat {input} >
{output}”

Appendix B
A simple Bash file moving input to output
input=”my_input.txt”
output=”my_output.txt”
cat “$input” > “$output”

Appendix C
An example code snippet showing the process
used to enable Bash multithreading
core_count=2
(
for file in "[INPUT LOCATION]/"*;
do

 if ((i % core_count == 0));
then
 wait
 fi
 ((i++))
 start=$(date +%s)
 echo “Thread: $i”
 end=$(date +%s)
 total_time=$((end-start))
done
)

