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Abstract 

Supersonic flow is a concept that has been researched heavily for the past twenty years. It has 

many applications, with the most notable one being for the defense industry. This project 

specifically is based off a model that is being currently used for Air Force research. With 

supersonic flow, where the Mach number is larger than one, there has been continual research 

specifically on flameholders. Flameholders involve the discussion of the mixing, ignition, and 

combustion of the fuel that is released into the lower cavity of the scramjet. There is a current 

standard for the placement of fuel jets, but very little data as to why this is the best choice. The 

objective of this research is to prove that the current placement of the fuel jet is optimal and to 

use computational fluid dynamics software to visualize the fuel/air mixing of various nozzle 

placements. Five nozzles were created and ran in Star-CCM+ and conclusions were drawn by 

use of the passive scalar function. As final conclusions were made it was determined that the 

current fuel jet placement is optimal and similarities between it and other referenced findings 

was noted. Even though this project was constrained by time, there is an ending discussion on 

how this project could be continued for further research. 
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Introduction 

In the past twenty years, research of supersonic flow has become increasingly popular with a 

variety of academic papers on the subject. Specifically, much research has been done on 

supersonic cavities and their flameholders. Flameholder research involves the mixing, ignition, 

and combustion of the fuel that is released into the lower level of the supersonic cavity.  

 

  Figure 1: Supersonic Cavity Geometry 

In brief, supersonic flow is achieved when the Mach number of the fluid being examined reaches 

a value of one or greater. Even though a high Mach number is almost always seen with turbulent 

flow, the transition that occurs from laminar to turbulent flow is deemed less efficient by an 

increase in the Mach number [8]. This transition efficiency is worth noting but will not be seen in 

this research since the air is entering the scramjet at a high velocity. To determine the Mach 

number, the velocity of the fluid at any point is divided by the speed of sound (represented with 

the variable c). 
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 𝑐 = √𝑘𝑅𝑇 =  343
𝑚

𝑠
= 767 𝑚𝑝ℎ    

𝑤ℎ𝑒𝑟𝑒: 𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 ℎ𝑒𝑎𝑡𝑠 𝑓𝑜𝑟 𝑎𝑖𝑟, 𝑅 𝑖𝑠 𝑡ℎ𝑒 𝑖𝑑𝑒𝑎𝑙 𝑔𝑎𝑠𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 

 𝑎𝑛𝑑 𝑇 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑖𝑛 𝐾𝑒𝑙𝑣𝑖𝑛 

The speed of sound at standard air and temperature conditions is represented above. 

𝑀 = 
𝑣

𝑐
     

𝑤ℎ𝑒𝑟𝑒: 𝑐 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑠𝑜𝑢𝑛𝑑, 𝑎𝑛𝑑 𝑣 𝑖𝑠 𝑡ℎ𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑙𝑢𝑖𝑑 

In the situation studied for this research, the Mach number reached Mach 2+ in the main 

chamber of the scramjet. 

The completed research specifically explored how varying fuel jet placement on the supersonic 

cavity would affect the mixing and eventual combustion of the fuel. Currently, there is a standard 

placement for these nozzles, but very little research as to why it is the best option. To investigate 

this, the computational fluid dynamics software Star-CCM+ was used and five different nozzles 

were created on the model of the supersonic cavity given. One nozzle represented the current 

fuel jet placement, and the other four were used as tools for comparison. 

To explore this topic, the potential mixing of the air and fuel (fuel/air ratio) will be visualized. 

Though it is possible to run a full combustion simulation in Star-CCM+, it takes a lot of time and 

energy to run each simulation. Visualizing the fuel/air mixing can draw the same conclusions in 

much less time, but more information on rich and lean supersonic combustion can be noted in the 

following references [15, 16]. 
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Objective 

Star-CCM+ [7, 17] was used for physics modeling of high-speed flows (Ma > 1) and 

visualization to observe how varying fuel jet placement on supersonic cavities alters the potential 

combustion and mixing of fuel. Proving that the current supersonic fuel jet placement is optimal 

could help form a better understanding of the processes of compressible mixing, a vital part of 

increasing the growing technologies that are using this process [5]. 

Literature Review 

By reviewing some of the many peer-reviewed articles on supersonic cavities, a better base 

knowledge of the topic was developed. When looking at freestream air that is traveling at Mach 

2, it has been documented that the wall temperature of the cavity would not lead to a significant 

source of error [13]. However, it is noted that as the flowfields become reactive, there could be 

sources of error worth noting in these walls [13]. Due to the fact that no combustion was 

simulated in this research, this source of error was deemed to be negligible.  

Though there has been little research specifying why the current fuel injection area is best for 

supersonic flow, it has been reported that having normal or tangential injection has shown 

success [9]. As expected, research has concluded that having directly fueled cavities is optimal 

for injecting fuel into the combustion chamber [4]. This will be represented in nozzles 1-4, with 

nozzle 5 showing what would happen if the fuel was not injected in the combustion chamber. For 

this specific research the true fuel that would be injected into the supersonic chamber is 

unknown, but it can be assumed that the fuel would be ethylene or ethylene-like. Even though 

combustion is deemed out of the scope of this research, much research was reviewed to gain a 
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better understanding on how others have approached ethylene injection in supersonic flow 

situations [1, 18]. 

Scramjet cavity flameholders have been researched and experimentally studied for supersonic 

flow in numerous ways. It was found that as the inlet is distorted, the fuel distribution within the 

cavity is affected [6]. This is interesting to note as the way the fuel is distributed has a large 

effect on the overall combustion of the fuel/air mixture. However, besides the placement of the 

fuel jet, this research will not cover distortion of the inlets. In terms of achieving good 

flameholding and stabilization, one of the best ways to do that is by the organization of a 

recirculation area where the fuel and air can mix before ignition [2]. This technique is the one 

that will be represented and seen in the research. 

Star-CCM+ 

One of the reasons that supersonic flow has become a more popular research topic is due to the 

creation of computer aided engineering software. The specific software used in this project, Star -

CCM+, is a multiphysics computational fluid dynamics (CFD) solver that is used to research and 

solve engineering problems in real-world conditions. CFD solvers allow engineers to visualize 

the analysis of fluid flow and how it changes based on the conditions and variables assigned that 

can be changed as needed by the engineer. This software uses the Navier-Stokes equations as a 

basis for solving the problem assigned, and it has been proven that CFD can accurately study and 

interpret turbulent flows [3]. The Navier-Stokes equations are referenced often in fluid dynamics, 

and there has been much research into defining boundary conditions for compressible and 

incompressible flows [14]. 
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The software does have different approaches that are available for modeling turbulence. The two 

most noteworthy options are RANS (Reynolds-Averaged Navier-Stokes) and LES (Large eddy 

simulation). LES allows for larger three-dimensional, unsteady, turbulent motions to be 

represented, while RANS utilizes the governing equations to determine the variable fields as a 

mean value with a fluctuating component that can change for each iteration. While in some ways 

LES may allow for more exact results, it was found by Peterson [12] that using RANS can take 

advantage of the flow symmetries that occur in the supersonic cavity. For this reason, and 

because it is easier to run using this option, simulations using the RANS method were 

completed. 

Review of Software 

When starting a new project, it is always a good idea review the software being used and confirm 

the results that were given. Therefore, a simulation was ran with the given model and variables to 

ensure that Mach 2 flow was reached. 

 

Figure 2: Mach Number 
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Once the first simulation was complete, more practice using the software was performed. By 

varying the given geometry using separate CAD software, simulations were run to see how the 

Mach number varied. The inlet and outlet of the supersonic cavity were changed to be smaller 

and then larger than the original value. 

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦: 𝐼𝑛𝑙𝑒𝑡 = 6.16 𝑖𝑛 𝑎𝑛𝑑 𝑂𝑢𝑡𝑙𝑒𝑡 = 3.27 𝑖𝑛     

  𝑆𝑚𝑎𝑙𝑙 𝐼𝑛𝑙𝑒𝑡: 𝐼𝑛𝑙𝑒𝑡 = 3 𝑖𝑛 𝑎𝑛𝑑 𝑂𝑢𝑡𝑙𝑒𝑡 = 3.27 𝑖𝑛    

 𝐿𝑎𝑟𝑔𝑒 𝐼𝑛𝑙𝑒𝑡: 𝐼𝑛𝑙𝑒𝑡 = 9 𝑖𝑛 𝑎𝑛𝑑 𝑂𝑢𝑡𝑙𝑒𝑡 = 3.27 𝑖𝑛   

                                     𝑆𝑚𝑎𝑙𝑙 𝑂𝑢𝑡𝑙𝑒𝑡: 𝐼𝑛𝑙𝑒𝑡 = 6.16 𝑖𝑛 𝑎𝑛𝑑 𝑂𝑢𝑡𝑙𝑒𝑡 = 1.5 𝑖𝑛      

𝐿𝑎𝑟𝑔𝑒 𝑂𝑢𝑡𝑙𝑒𝑡: 𝐼𝑛𝑙𝑒𝑡 = 6.16 𝑖𝑛 𝑎𝑛𝑑 𝑂𝑢𝑡𝑙𝑒𝑡 = 6 𝑖𝑛  

 

Figure 3: Small Inlet Mach Number 
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Figure 4: Large Inlet Mach Number 

 

Figure 5: Small Outlet Mach Number 
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Figure 6: Large Outlet Mach Number 

The simulations showed expected changes in Mach number and fluid flow based on the 

geometry changes. This helps conclude that the results found for the fuel jets that were simulated 

are accurate. 

Methodology 

Mesh Values 

To achieve accurate results, a mesh must be created in the CFD software. A broken or poor mesh 

will yield inaccurate results. The mesh used had the following properties: 

𝐸𝑛𝑎𝑏𝑙𝑒𝑑  𝑀𝑒𝑠ℎ𝑖𝑛𝑔 𝑀𝑜𝑑𝑒𝑙𝑠: 𝑃𝑟𝑖𝑠𝑚 𝐿𝑎𝑦𝑒𝑟 𝑀𝑒𝑠ℎ𝑖𝑛𝑔, 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑊𝑟𝑎𝑝𝑝𝑒𝑟, 

 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑅𝑒𝑚𝑒𝑠ℎ𝑒𝑟, 𝐸𝑥𝑡𝑟𝑢𝑑𝑒𝑟,𝑇𝑟𝑖𝑚𝑚𝑒𝑟 

𝑀𝑒𝑠ℎ 𝐵𝑎𝑠𝑒 𝑆𝑖𝑧𝑒: 0.001 𝑚    

𝑃𝑟𝑖𝑠𝑚 𝐿𝑎𝑦𝑒𝑟𝑠: 4     
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𝑁𝑜𝑧𝑧𝑙𝑒𝑠 𝐵𝑎𝑠𝑒 𝑆𝑖𝑧𝑒 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒: 15 

 

Figure 7: Mesh Scene 

 

Figure 8: Nozzle Mesh 

As can be seen in Figure 7, the mesh for the entire supersonic cavity was created to be very fine. 

However, since the main area of study was the nozzle inlets created, Figure 8 shows how the 
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mesh was developed to be much more refined in those areas. This allows for a more accurate 

simulation to be ran in less time. 

Physics Values 

The variables for pressure, temperature, and velocity had already been determined by the advisor 

of this project. Additional information on the supersonic cavity is given by this reference [10]. 

The following values and physics models were used: 

𝑃ℎ𝑦𝑠𝑖𝑐𝑠 𝑀𝑜𝑑𝑒𝑙𝑠: 𝑆𝑡𝑒𝑎𝑑𝑦 − 𝑠𝑡𝑎𝑡𝑒, 𝑐𝑜𝑢𝑝𝑙𝑒𝑑 𝑓𝑙𝑜𝑤, 𝑖𝑑𝑒𝑎𝑙 𝑔𝑎𝑠, 

 𝑝𝑎𝑠𝑠𝑖𝑣𝑒 𝑠𝑐𝑎𝑙𝑎𝑟, 𝑘 − 𝑜𝑚𝑒𝑔𝑎, 𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡  

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒: 0 𝑃𝑎  

𝑆𝑡𝑎𝑡𝑖𝑐 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒: 300 𝐾   

𝐼𝑛𝑙𝑒𝑡 𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒: 483000 𝑃𝑎   

𝐼𝑛𝑙𝑒𝑡 𝑇𝑜𝑡𝑎𝑙 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒: 589 𝐾  

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒: 101325 𝑃𝑎  

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒: 5000 𝐾  

Analysis and Results 

All the nozzles were simulated as velocity inlets with a velocity magnitude of 100 m/s. While in 

the real-world the fuel flowing through the nozzles would be ethylene, it was modeled as air 

since the two fluids are very similar in density. The passive scalar function was used since it 

shows the mixing of the fuel and air while considering the entire supersonic cavity system, but it 

will not show the interference of the main cavity in the visualization. 
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Nozzle 1 

 

Figure 9: Passive Scalar Nozzle 1 

This nozzle represents the current real-world fuel nozzle placement. Note that the fuel 

concentration and distribution is showing peak recirculation near the bottom wall. This 

observation was also noted by the following reference [11]. This similarity in the CFD 

simulation gives confidence in the accuracy of this research. 

Nozzle 2 

 

Figure 10: Passive Scalar Nozzle 2 
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Nozzle 2 shows fuel flowing into the cavity from the bottom section of the cavity. You can see 

very poor circulation at the bottom right of the cavity, which leads to a very poor fuel/air 

mixture. 

Nozzle 3 

 

Figure 11: Passive Scalar Nozzle 3 

Nozzle 3 shows a representation of the fuel being inserted from the bottom left side of the cavity. 

At first, this seemed like a better placement of the fuel jet in comparison to Nozzle 1. However, 

as the simulation finished you could see that there was actually very little recirculation in the 

cavity. Instead, there was a lot of unmixed fuel that would be combusted leading to a situation 

where the combustion would be considered fuel rich. A fuel rich combustion is not ideal in 

supersonic cavities. 
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Nozzle 4 

 

Figure 12: Passive Scalar Nozzle 4 

Nozzle 4 shows no circulation. The way the fuel is injected straight from the left side of the 

mixing chamber gives it no ability to circulate with the air.  

Nozzle 5 

 

Figure 13: Passive Scalar Nozzle 5 
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The last nozzle that was created demonstrates why the fuel must be injected into the lower 

chamber and not directly into the main flow of air. The air is moving so fast in the main 

chamber, the fuel has no time to mix and eventually combust. A fuel inlet at this position would 

lead to a large waste in resources. 

Conclusions 

Based on the results, the current fuel jet placement represented by Nozzle 1 is the best option. 

The placement of the nozzle allows for recirculation to occur in the cavity. The more the fuel/air 

mixture recirculates, the better the combustion. In comparison, Nozzle 2 is placed on the other 

side of the cavity. The fuel/air mixture is not placed to achieve good recirculation in the 

chamber, which would yield sub-par combustion. Nozzle 4 is much the same way. Even though 

it is placed where more recirculation would be possible, it is too close to the air flowing through 

the main cavity. The air that is moving at Mach 2 would cause the fuel being injected to have 

little time to combust. Nozzle 3 appeared to be placed better at first, but over time the simulation 

showed that the upper area of the cavity has no circulation of the air/fuel mixture. This unused 

space would cause fuel rich combustion, which is not ideal. Fuel being released through Nozzle 

5 would not combust due to the speed of the air in the main cavity. These observations prove that 

the current nozzle placement is ideal for supersonic cavities. 

Further Research 

If this research was to be continued, showing the actual combustion of the fuel/air mixture in the 

cavity would be a very good next step. The reason this wasn’t completed for this research was 

due to the complexity of simulations involving combustion and time constraints. Visualizing the 

combustion to further prove the results would be a good extension to this research. Also, 
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comparing results to other research by changing the inlets to be distorted would be a good way to 

prove already published data, or choosing to physically model the inlet and change the length 

and diameter to find the optimized length and size ratio would be a way to easily continue the 

research and add to the flameholder discussion. 
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