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Beef Day 2022 
Relationship of DAG1 and SERPINA5 sperm 

proteins with bull fertility 
Saulo Menegatti Zoca, Julie A. Walker, Jerica J. J. Rich, Kaitlin M. Epperson, Taylor N. Andrews, Adalaide C. 

Kline, Jessica Nora Drum, M. Sofia Ortega, and George A. Perry  

Objective 

The first objective of these studies was to characterize DAG1 and SERPINA5 immunolocalization on bovine 
sperm and their potential as fertility markers by evaluating variability within and amongst bulls. The second 
objective was to investigate the relationship of DAG1 and SERPINA5 with field fertility (sire conception rate; 
SCR), in vitro fertility (in vitro embryo production), and sperm parameters. 

Study Description 

Semen from 22 dairy bulls was used to evaluate the presence, localization, and quantification of DAG1 and 
SERPINA5 on sperm. Sperm motility parameters and viability was also evaluated for semen from each bull. 
Semen from 19 out of the 22 dairy bulls was used for in vitro embryo production (two Low-SCR and one High-
SCR were not available for in vitro embryo production). Bulls were classified based on their sire conception 
rates (SCR) values as High-SCR (SCR > 1.0) or Low-SCR fertility (SCR < -4.0). Low fertility bulls were 
subdivided based on their blastocyst rate (BL) as High-BL (Low-SCR/High-BL BL ≥ 31%) or Low-BL (Low-
SCR/Low-BL BL ≤ 26%), and High-SCR bulls were not subdivided. The GLM procedure in SAS was used with 
bull as a fixed effect to determine if variance was greater between bulls compared to within bull. Correlations 
were determined among DAG1 and SERPINA5 concentrations, percentage of tail labeled for SERPINA5, SCR, 
sperm total motility, progressive motility, and viability, and in vitro embryo produced cleavage rate (CL) and BL. 
The GLIMMIX procedure of SAS was used to evaluate the relationship of bull field fertility (High- and Low-
SCR), and field and in vitro fertility (High-SCR, Low-SCR/High-BL, Low-SCR/Low-BL) classifications with 
sperm total (TMOT) and progressive (PROG) motility, viability, CL, BL, DAG1 and SERPINA5 relative 
concentration, and proportion of sperm tail labeled for SERPINA5. Both SERPINA5 and DAG1 were localized 
on the sperm head; however, SERPINA5 was also localized on the sperm tail. There was greater variance in 
concentration among bulls compared to within bull for both DAG1 (P < 0.01; 69.4 vs 49.1, respectively) and 
SERPINA5 (P < 0.01; 325.8 vs 285.4, respectively). There was a positive correlation between concentration of 
DAG1 and SERPINA5 (P = 0.01; r = 0.54). Concentrations of SERPINA5 were also correlated with CL (P = 
0.04; r = 0.48), and percentage of sperm tail labeled for SERPINA5 was correlated with viability (P = 0.05; r = 
0.44) and tended to be correlated with CL (P = 0.10; r = 0.39). There was no relationship between SCR or BL 
rate classifications and DAG1 (P ≥ 0.66), SERPINA5 (P ≥ 0.54), or percentage of sperm tail labeled for 
SERPINA5 (P ≥ 0.48).  

Take Home Points 

Proteins DAG1 and SERPINA5 are associated with cell-to-cell interactions and were localized on the bovine 
sperm head, also, SERPINA5 was localized on the sperm tail. Sperm relative concentration for both proteins 
were correlated to each other and SERPINA5 was correlated with CL. The percentage of sperm tail labeled for 
SERPINA5 was correlated with CL and sperm viability; however, proteins were not associated with bull field 
fertility measured by SCR. Thus, SERPINA5 may be related with sperm protection and/or oocyte fertilization 
while DAG1 may be related to sperm transport or formation of the sperm reservoir in the oviduct.  
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Introduction 

After differentiation, sperm lose the ability to grow, divide, repair, and synthesize proteins, and have limited 
metabolic function (Hammerstedt, 1993). After spermiation, sperm are stored in the tail of the epididymis in a 
dormant state until ejaculation (Acott and Carr, 1984; Carr and Acott, 1984; Barth and Oko, 1989). Upon 
ejaculation, epididymal sperm are diluted with seminal plasma from accessory sex glands and motility is 
initiated (Acott and Carr, 1984; Carr and Acott, 1984). Sperm with fertilizing ability reach the oviduct 
approximately 6-12 h after insemination, populate the isthmus portion of the oviduct and form the sperm 
reservoir (Hunter and Wilmut, 1984; Wilmut and Hunter, 1984; Lefebvre et al., 1995). Sperm that bind to 
oviductal cells have prolonged motility and fertilization ability (~30 h) compared to sperm suspended in the 
media (Pollard et al., 1991). Cell-to-cell interactions (i.e. sperm to oviduct and sperm to oocyte) are mediated 
through proteins; thus, these interactions are important for successful fertilization. The sperm’s apical surface 
binds to oviductal isthmus and ampullary ciliated cells (Pollard et al., 1991; Lefebvre et al., 1995) and Binder of 
Sperm Proteins (BSP) have been reported to be involved with sperm reservoir formation (Ignotz et al., 2001; 
Gwathmey et al., 2003; 2006). There are only a few proteins known to be required for fertilization, and include 
CD9 (Kaji et al., 2000; Le Naour et al., 2000; Miyado et al., 2000) and JUNO (Bianchi et al., 2014) on the egg, 
and IZUMO1 on the sperm (Inoue et al., 2005). Other proteins have been identified to be associated with 
mammalian fertility, but not required (see review by Sutovsky, 2009). 

Previous research from our laboratory identified that DAG1 and SERPINA5 were present and loosely attached 
to ejaculated sperm, but they were not present on epididymal sperm, thus they coated the sperm when it was 
diluted with seminal plasma. The presence of DAG1 has been reported in seminal plasma but not on human 
sperm (Jodar et al., 2016). Beta-dystroglycan has been reported to be localized to the tail middle piece of 
guinea pig sperm (Hernández-González et al., 2001) and the post-acrosomal region and middle piece of 
mouse sperm (Hernández-González et al., 2005). The gene SERPINA5 encodes the plasma serine protease 
inhibitor. This protein is also known as serpin family A member 5, protein C inhibitor, and others. The presence 
of SERPINA5 protein has been reported in many body fluids, including plasma (blood), seminal plasma, 
follicular fluid, amniotic fluid, milk, and others (Laurell et al., 1992). In double knockout mice for SERPINA5, 
females were fertile, and males were infertile in both in vitro (0.5% pregnancy) and in vivo (0% pregnancy) 
experiments. Also, sperm motility (12.5% motility) and the percentage of morphologically normal sperm (5% 
normal morphology) were decreased in double knockout mice (Uhrin et al., 2000). Similarly, SERPINA5 
concentrations were decreased in infertile men with normal sperm motility compared to fertile men (Panner 
Selvam et al., 2019). Nevertheless, in men, SERPINA5 has been localized to the sperm head (Zheng et al., 
1994; Elisen et al., 1998). Thus, the first objective of these studies was to characterize DAG1 and SERPINA5 
immunolocalization on bovine sperm and their potential as fertility markers by evaluating variability within and 
amongst bulls. The second objective was to investigate the relationship of DAG1 and SERPINA5 with field 
fertility (sire conception rate; SCR), in vitro fertility (in vitro embryo production), and sperm parameters. 

Experimental Procedures 

Experimental design 

Dairy bulls (n = 22) with different SCR values, ranging from -7.7 to 4.45, were classified as High (High-SCR > 
1.0; n = 11) or Low (Low-SCR < -4.0; n =11) field fertility. Semen from two ejaculates (average days between 
ejaculates 140 d; minimum difference 4 d and maximum difference 1,349 d) were used to assess sperm 
relative concentrations of DAG1 and SERPINA5, total (TMOT) and progressive (PROG) motility, and plasma 
membrane integrity (viability; n = 20; semen of two bulls had already been processed before viability could be 
assessed). Semen from these bulls was also used for in vitro production of embryos (n = 19; one High-SCR 
and two Low-SCR bulls’ semen were not available for in vitro production of embryos). Cleavage (CL) and 
blastocyst (BL) rates were recorded. Low-SCR bulls were subdivided further based on their blastocyst rate 
(BL) as High (Low-SCR/High-BL ≥ 31%; n = 6) or Low (Low-SCR/Low-BL ≤ 26%; n = 3). 
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Sperm Analyses 

Sperm motility (TMOT and PROG) analyses were performed using a computer assisted sperm analysis system 
(CASA). Sperm plasma membrane integrity (viability) was analyzed by evaluating a minimum of 100 sperm per 
sample in a Nikon Fluorescence microscope. Remaining samples not used for CASA were fixed in 2% 
formaldehyde solution, washed, diluted to 5 million sperm per mL and stored at 4 ºC until analyzed for DAG1 
or SERPINA5. 

Anti-DAG1 antibody (goat anti-human, ab136665, polyclonal, ABCAM, United Kingdom) was purified and 
conjugated to PE/R-Phycoerythrin (ab102918, ABCAM) according to manufacturer instructions. Anti-DAG1 and 
fixed sperm were incubated for 4 h at room temperature without exposure to light. Samples were evaluated 
with a Nikon Fluorescence microscope at 400 × magnification, and the NIS-Elements software package was 
used to outline 100 individual spermatozoa per sample and fluorescence intensity was determined. Also, 
immunolocalization of DAG1 on the sperm was determined. Anti-SERPINA5 antibody (rabbit anti-human, 
mouse, rat, PA579976, polyclonal, Invitrogen, Waltham, MA) was conjugated to Dylight 405 Fast (ab201798, 
ABCAM) according to manufacturer instructions. Anti-SERPINA5 and fixed sperm were incubated for 4 h at 
room temperature without exposure to light. Samples were evaluated as described for DAG1. Also, 
immunolocalization of SERPINA5 on the sperm was determined. 

In vitro embryo production 

All media for in vitro embryo production and in vitro embryo production followed previous published procedures 
(Ortega et al., 2016; 2018; Tríbulo et al., 2019; Stoecklein et al., 2021). Briefly, cumulus-oocyte complexes 
(COC) were retrieved by follicular aspiration from ovaries collected at a commercial abattoir. Tubes with COC 
were shipped overnight in a portable incubator (Minitube USA Inc., Verona, WI, USA) at 38.5 ºC to the 
University of Missouri. After approximately 24 h of maturation, groups of 100 COC were washed three times 
and placed in a 35-mm dish containing fertilization media. Each group of COC was fertilized with sperm from a 
single bull. Fertilization proceeded for approximately 18 h at 38.5 ºC in a humidified atmosphere of 5% (v/v) 
CO2. Putative zygotes (oocytes exposed to sperm) were vortexed to denude from the surrounding cumulus 
cells at the end of fertilization. Embryos were then cultured in four-well dishes in groups of up to 50 embryos in 
culture medium covered with mineral oil at 38.5 ºC in a humidified atmosphere of 5% (v/v) O2 and 5% (v/v) 
CO2. Percentage of putative zygotes that cleaved (cleavage rate; CL) was determined at day 3 of development 
(day 0 = day of insemination) and BL at day 8 of development.  

Statistical Analysis 

Fluorescence intensity (concentration of SERPINA5 and DAG1) was analyzed using the GLM procedure in 
SAS (9.4) with bull as a fixed effect to determine the variance in mean protein concentration between bull and 
within bull. Protein immunolocalization was determined based on visual characterization and statistical analysis 
was not performed. The CORR procedure of SAS was used to evaluate correlations between SCR, TMOT, 
PROG, viability, CL, BL, DAG1 and SERPINA5 relative concentration, and proportion of sperm tail labeled for 
SERPINA5. The GLIMMIX procedure of SAS was used to evaluate the relationship of bull field fertility (High- 
and Low-SCR), and field and in vitro fertility (High-SCR, Low-SCR/High-BL, Low-SCR/Low-BL) classifications 
with sperm TMOT, PROG, viability, CL, BL, DAG1 and SERPINA5 relative concentration, and proportion of 
sperm tail labeled for SERPINA5. Results are presented as least square mean ± SE unless otherwise stated. 
Statistical differences were defined as P ≤ 0.05, when P > 0.05 but P ≤ 0.10 the results were considered as 
tendency. 

Results and Discussion 

Rate of genetic improvement in a herd is far more efficient through bull selection than female selection due to 
the larger number of offspring generated by one single bull versus one single female. Bull fertility, especially for 
use in AI, has been evaluated heavily or exclusively through semen quality which relies predominantly on 
sperm motility and morphology, and more recently sperm viability (Barth and Oko, 1989; Koziol and Armstrong, 
2018; DeJarnette et al., 2021). However, even among bulls that pass AI quality control analysis in commercial 
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AI semen service centers, it is not possible to guarantee that bulls will have high fertility (DeJarnette, 2005). 
Thus, the study of semen characteristics that can better predict bull fertility is necessary. Animal variation is 
necessary for a test to be considered as a potential fertility marker. Also, any new test must not be correlated 
with current evaluations of semen quality or must provide a simpler method of evaluation over current analyses 
(DeJarnette, 2005; Harstine et al., 2018; DeJarnette et al., 2021). In the present study, a greater variation 
amongst bulls compared to within bull was observed for both DAG1 (P < 0.01; 69.4 vs 49.1, respectively) and 
SERPINA5 (P < 0.01; 325.8 vs 285.4, respectively), fulfilling the first characteristics for a potential fertility 
marker. Further, DAG1 and SERPINA5 were not correlated with TMOT, PROG, or viability (Table 1), fulfilling 
the second characteristic of a potential novel fertility marker; however, percentage of tail labeled for SERPINA5 
was correlated with viability. 

The objective of the bovine AI industry is to provide semen of high quality to cattle producers. Semen that 
passes quality control and is commercially available has met specific thresholds (Harstine et al., 2018; 
DeJarnette et al., 2021). With that, sperm motility, morphology and viability of commercially available semen 
are expected to not correlate with field fertility, especially in large samples (DeJarnette et al., 2021). In the 
present study; however, High-SCR bulls tended to have greater viability compared to Low-SCR bulls (P = 0.06; 
Table 2). Interestingly, it was observed that some Low-SCR bulls had good BL production with no difference 
from High-SCR bulls (reason for BL fertility separation); Ortega et al. (2018) reported similar findings in which 
one (out of three) Low-SCR bull had BL similar to High-SCR bulls. Interestingly, Low-SCR/High-BL had 
decreased mean SCR compared to Low-SCR/Low-BL (Table 3). It is possible that bulls with Low-SCR, but 
good BL (Low-SCR/High-BL), have sperm transport problems or are more susceptible to the timing of 
insemination (sperm longevity) or the uterine/oviduct environment compared to Low-SCR bulls with lower BL 
(Low-SCR/Low-BL), which the problem may be related to fertilization itself rather than sperm transport; this 
hypothesis is partially explained by the “compensable” and “uncompensable” characteristics of sperm 
previously reported (Saacke et al., 1994; Saacke, 2008; Amann et al., 2018). However, when low fertility bulls 
were further divided into Low-SCR/High-BL and Low-SCR/Low-BL, there was no relationship between sperm 
parameter or proteins with fertility classification (Table 3). 

In the present study, it was identified that DAG1 was present on the sperm head; however, DAG1 was not 
associated with field fertility or field and in vitro embryo fertility in which High-SCR and Low-SCR (Table 2) or 
High-SCR, Low-SCR/High-BL and Low-SCR/Low-BL (Table 3) were not different, respectively. Additionally, 
DAG1 concentrations between fertility classification groups were almost identical (Tables 2 and 3). 
Furthermore, DAG1 was not correlated with SCR, CL, or BL. Thus, DAG1 may function to stabilize the 
acrosomal region as a decapacitating factor, preventing premature acrosomal reaction or formation of the 
sperm reservoir due to its localization on the sperm head.  

The immunolocalization of SERPINA5 on the bovine sperm head was similar to human sperm (Zheng et al., 
1994; Elisen et al., 1998); however, bovine sperm also had SERPINA5 on the sperm tail, diverging from 
human sperm. The protease inhibitory activity of SERPINA5 has been described in multiple body tissues and 
fluids (España et al., 1989; Ecke et al., 1992; Christensson and Lilja, 1994; Hermans et al., 1994; Zheng et al., 
1994; Elisen et al., 1998). The activity and target enzyme of SERPINA5 can be modulated by heparin and 
other glycosaminoglycans (Kuhn et al., 1990; Pratt and Church, 1992; Ecke et al., 1997). Heparin and 
glycosaminoglycans are present in the oviduct from oviductal fluid and follicular fluid which has been reported 
to induce sperm capacitation (Parrish et al., 1985; 1988; Mahmoud and Parrish, 1996; Bergqvist et al., 2007). 
A positive correlation was observed between SERPINA5 concentration on the sperm head and CL, also, the 
percentage of sperm tail labeled for SERPINA5 was correlated with sperm viability and CL (Table 1). When the 
SERPINA5 gene was disrupted in mice, male mice were infertile both in vitro and in vivo because of 
morphologically abnormal sperm, lower motility, and lack of sperm-egg binding (Uhrin et al., 2000). Also, men 
with normal sperm motility with unknown reason for infertility had decreased concentration of SERPINA5 
compared to fertile men (Panner Selvam et al., 2019). Controversially, there was no association of SERPINA5 
concentration or percentage of tail labeled for SERPINA5 with field fertility or field and in vitro embryo fertility 
(Tables 2 and 3).  
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The ability of human sperm to bind to human zona pellucida was evaluated in the presence of different 
concentrations of anti-SERPINA5 or SERPINA5 in the media (Elisen et al., 1998). Interestingly, a lower 
concentration of anti-SERPINA5 increased the ability of sperm to bind to the zona pellucida; however, the 
greater the concentration of SERPINA5 in the media the lower the ability of sperm to bind to the zona pellucida 
(Elisen et al., 1998). Another member of the serine protease inhibitor (SERPIN) family, called glia-derived 
nexin or protease nexin-1 (SERPINE2), has been reported to be a decapacitating factor in mice (Lu et al., 
2011). When sperm were processed for in vitro fertilization, the processing may have accelerated sperm 
capacitation and increased damage to the sperm (Baldi et al., 2020). Thus, it is possible to hypothesize that 
increased concentrations of SERPINA5 may have provided enough protection to the sperm; and bulls with 
greater concentration of SERPINA5 on the sperm head, and percentage of tail labeled, had increased CL likely 
due to resistance to sperm processing (protection against premature capacitation). More investigation is 
necessary to understand whether SERPINA5 or DAG1 could be used as a fertility marker. 

Implications 

DAG1 and SERPINA5 proteins that are associated with cell-to-cell interactions were localized on the bovine 
sperm head, also, SERPINA5 was localized on the sperm tail. Sperm relative concentration for both proteins 
were correlated to each other and SERPINA5 was correlated with CL. The percentage of sperm tail labeled for 
SERPINA5 was correlated with CL and sperm viability; however, proteins were not associated with bull field 
fertility measured by SCR. Thus, SERPINA5 may be related with sperm protection and/or oocyte fertilization 
while DAG1 may be related to sperm transport or formation of the sperm reservoir in the oviduct. 
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Tables 

Table 1. Pearson’s correlation coefficient (above diagonal) and significance level (below diagonal) between 
sire conception rate (SCR), total motility (TMOT), progressive motility (PROG), sperm plasma membrane 
integrity (viability), SERPINA5 mean relative concentration (SERPINA5), percentage of sperm tail positive for 
SERPINA5 (SERPINA5 Tail), in vitro produced embryos cleavage (CL) and blastocyst (BL) rate, and DAG1 
mean relative concentration (DAG1). 

Correlation/ 
P-value 

SCR TMOT PROG Viability SERPINA5 
SERPINA5 

Tail 
CL BL DAG1 

SCR  0.09 0.01 0.36 -0.13 -0.19 -0.08 0.15 -0.08 

TMOT 0.69  0.82 0.00 0.14 0.15 0.17 0.34 -0.25 

PROG 0.95 < 0.01  0.06 0.15 -0.07 -0.04 0.22 -0.26 

Viability 0.12 0.99 0.79  0.11 0.44 0.24 0.15 -0.10 

SERPINA5 0.56 0.53 0.50 0.65  0.28 0.48 0.11 0.54 

SERPINA5 Tail 0.39 0.52 0.74 0.05 0.21  0.39 0.20 0.05 

CL 0.73 0.49 0.88 0.35 0.04 0.10  0.50 0.33 

BL 0.55 0.15 0.38 0.56 0.66 0.42 0.03  0.32 

DAG1 0.72 0.25 0.25 0.66 0.01 0.81 0.17 0.18  

 

Table 2. Relationship of sire conception rate (SCR) fertility classification (High-SCR vs Low-SCR) on total 
motility (TMOT), progressive motility (PROG), sperm plasma membrane integrity (viability), in vitro produced 
embryos cleavage (CL) and blastocyst (BL) rate, SERPINA5 concentration (SERPINA5), percentage of sperm 
tail positive for SERPINA5 (SERPINA5 Tail), and DAG1 concentration (DAG1). 

Variable High-SCR Low-SCR SEM1 P-value 

SCR, au2 3.4 -5.7 0.31  < 0.0001 

TMOT, % 52.0 51.3 2.89 0.86 

PROG, % 35.7 35.8 2.61 0.99 

Viability, % 64.0 57.3 2.39 0.06 

CL, % 77.4 78.3 2.39 0.81 

BL, % 33.5 31.7 2.18 0.56 

SERPINA5, au2 52.4 54.2 2.04 0.54 

SERPINA5 Tail, % 32.4 35.1 3.23 0.56 

DAG1, au2 35.6 36.5 1.41 0.66 
1 SEM = Standard error of the mean 
2 au = arbitrary unit 
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Table 3. Relationship of field (sire conception rate; SCR) and in vitro (blastocyst rate; BL) fertility classification 
(High-SCR, Low-SCR/High-BL, and Low-SCR/Low-BL) on total motility (TMOT), progressive motility (PROG), 
sperm plasma membrane integrity (viability), in vitro produced embryos cleavage rate (CL) and BL, SERPINA5 
concentration (SERPINA5), percentage of sperm tail positive for SERPINA5 (SERPINA5 Tail), and DAG1 
concentration (DAG1). 

Variable High-SCR 
Low-SCR/ 
High-BL 

Low-SCR/ 
Low-BL 

SEM1 P-value 

SCR, au2 3.4a -6.2b¶ -4.8b* 0.59  < 0.0001 

TMOT, % 52.0 49.3 50.0 4.86 0.81 

PROG, % 35.6 34.3 32.8 4.38 0.84 

Viability, % 64.0 58.8 60.3 3.79 0.32 

CL, % 77.5 80.3 73.9 4.23 0.43 

BL, % 33.4a 35.9a 23.9b 2.73 0.02 

SERPINA5, au2 52.4 52.7 56.0 4.16 0.75 

SERPINA5 Tail, % 32.6 38.5 32.7 5.60 0.48 

DAG1, au2 35.6 36.4 36.7 2.60 0.91 
1 SEM = Standard error of the mean 
2 au = arbitrary unit 
a-b Values within the same row not sharing a common superscript differ P ≤ 0.01 
*,¶ Values within the same row not sharing a common superscript differ P ≤ 0.08 
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