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Abstract 

Many studies with a range of subjects from Nematodes to Homo sapiens have found 

intermittent fasting (IF) to significantly improve the cardiometabolic health of individuals, but 

how IF promotes longevity through epigenetic modulations remains a sparse understanding 

throughout the literature. The process of aging may be characterized by a loss of cellular identity 

sprouted from a disrupted epigenome rich with information for a cell, while also losing the 

ability to recycle ineffective cellular components.  The nutrient-sensing kinase Mammalian 

Target of Rapamycin (mTOR) is disrupted during bouts of fasting which allows for the recycling 

of cellular components through increased autophagy. Furthermore, the Sirtuin (SIRT) family of 

NAD+-dependent deacetylases is a prominent transcriptional repressor via histone deacetylation 

and increased DNA-methyltransferase (DNMT) activity upon deacetylation of the enzyme. 

Although longitudinal studies spanning many years will be needed to provide definitive evidence 

for the long-term effects of IF. To date, the most profound pro-longevity evidence for IF is a 

significant reduction in the rate of biological aging determined from global genomic DNA 

methylation, of which is a more accurate measure of age in comparison to chronological age. 

Aside from specific cases in which IF may be detrimental to health, the practice of IF may add 

years onto an individual’s life, and more importantly, healthy years contributing to a better 

quality of life.  
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Introduction 

The proper practice of intermittent fasting (IF) has the potential to influence our body 

through physiological and genomic modifications. Until recent years, research and discussions 

regarding IF have been lacking. With the increase in studies underlying the scientific basis to 

support the practice of IF, the scientific communities’ support for the practice has grown as well. 

Most importantly, IF can slow the process of aging and therefore extend lifespan (Belsky, 

Huffman, Pieper, Shalev, & Kraus, 2017; Catterson et al., 2018; Liang et al., 2018; Maegawa et 

al., 2017; Petkovich et al., 2017; Thompson et al., 2018; Wang et al., 2017; Weir et al., 2017). 

But it is important to first understand the pre-historic relationship between IF and humans.  

Throughout the history of time, our ancestors survived on relatively small amounts of 

food, or periodic bouts of eating large portions with gaps of time in between each bout ranging 

from hours to days (Eaton & Konner, 1985; Mattson et al., 2014; Strohle, Hahn, & Sebastian, 

2010). Between long periods of no food consumption, which we now refer to as fasting, our 

ancestors had to function and thrive in order to find the energy to hunt, forage for food and 

collect resources. As humans have evolved through thousands of generations, our bodies now 

function at optimal capacity for performance when we are fasting, as we then achieve maximal 

cognitive functioning and peak awareness to perform better in vital situations (Mattson, 2015).  

If a human could not perform well cognitively and physically when enduring periods of food 

deprivation, such as a 12 to 24-hour our period of fasting, homo sapiens may have been 

eliminated through natural selection such as the Neanderthals were (Banks et al., 2008; Hortolà 

& Martínez-Navarro, 2013). Of course, the periods of food deprivation may have ranged from a 

few hours to even days at a time for our ancestors, depending on the circumstances faced.  

Fortunate as humans are today with unlimited resources and a consistent access to food, we may 
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capture the opportunity to reap the benefits associated with fasting through consuming proper 

nutrition in periods of eating and adhering to some type of fasting schedule.  

To understand how IF mechanistically slows the aging process to promote a longer and 

healthier life, it is important to know why and how we age. From a broad scope of factors that 

drive aging, this paper will focus on the environment and what we can control in respect to how 

we age. On a side note, purely genetic influence on aging is less significant considering studies 

on twins found that at the most, 27% of the variation in life span among individuals is due to 

genetics (McGue, Vaupel, Holm, & Harvald, 1993 1993; Skytthe et al., 2003 2012). At the 

molecular level, the factors of focus for this paper can be summed together in an overarching 

idea: the loss of information. The information lost is responsible for telling our cells how to 

maintain a younger and healthier state of homeostasis, and without this information, our cells no 

longer function as well as when they were younger, eventually leading to cell death.  Common 

factors throughout the literature that underlie aging are mutations to our DNA, small non-coding 

RNAs, shortening of our telomeres, and epigenetic alterations (Bayersdorf & Schumacher, 2019; 

Christensen et al., 2009; Kane & Sinclair, 2019).  

This paper will discuss the outcomes associated attributed to fasting and in relation to IF. 

While consuming only water or coffee with zero calories, IF can include any of the following 

patters: fasting for 16 to 20 hours of a 24-hour day for 1-3 days a week, fasting for 24-hours two 

times a week, or alternate-day fasting (ADF) in which an individual restricts energy intake by 

75%, every other day (Arnason, Bowen, & Mansell, 2016; Overland et al., 2018; K. A. Varady, 

2011; Krista A. Varady & Hellerstein, 2007). There are many other subcategories of IF, and the 

understanding as to which type of IF is necessarily the best is yet to be determined. No specific 

IF intervention will be of focus, but it is important to know the most common characteristic of all 
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types of IF is decreased energy intake and bouts of no caloric intake at all, which allows the body 

to utilize other mechanisms to provide energy for us to survive. While many studies utilize 

caloric restriction (20-50% reduction in daily energy intake) as the mechanism for energy intake 

reduction, intermittent fasting has shown to provide equally effective outcomes for health 

measures such as weight loss and cardiovascular protection (K. A. Varady, 2011; Krista A. 

Varady & Hellerstein, 2007).  

Although telomeres and aging often pair together as a correlation, an in-depth discussion 

of telomere length and aging will be excluded. There is evidence supporting telomere length and 

aging, on the contrary, there exist inexplicable findings associated between telomere length and 

aging. For example, a study of 1000 70-year-olds found males to have significantly longer 

telomeres than females and concluded telomere length to be of “little evidence” as a biomarker 

of normal aging (Harris, Martin-Ruiz, von Zglinicki, Starr, & Deary, 2012).  Another study 

found greater mitochondrial DNA in a cell was found to be positively correlated with longer 

telomeres, except for individuals of the 90-100-year-old cohort, who had more mitochondrial 

DNA but shorter telomeres than the 60-89-year-old cohort (Zole, Zadinane, Pliss, & Ranka, 

2018). Lastly, an analysis of telomere length and aging-related outcomes (n=261,000) found that 

at most “telomere lengthening may offer little gain” with respect to an individual’s health as they 

age (Kuo, Pilling, Kuchel, Ferrucci, & Melzer, 2019). 

To narrow in on information from the broad range of data pertaining to aging, two 

aspects of aging will be of focus. In respect to molecular pathways relating to metabolism, 

Mammalian Target of Rapamycin (mTOR) serves as a well understood kinase that responds to or 

is turned off, in response to plethora of nutrients or fasting, respectively (Hay & Sonenberg, 

2004; D.-H. Kim et al., 2002; Lipton & Sahin, 2014). The second piece of information pertains 
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to the epigenome. The biological age or “epigenetic age” of an individual has in recent years 

come to the forefront of aging. The biological age of an individual is found by determining DNA 

methylation values at known CpG dinucleotides, of which undergo aberrant patterns of 

hypomethylation and hypermethylation as we age (Horvath, 2013). Even with the correction for 

factors contributing to increased fatality of an older individual, the biological age can predict all-

cause mortality (Chen et al., 2016; Marioni et al., 2015). It is fair to say the biological age of an 

individual is a more predictable and accurate representation of one’s “true” age in comparison to 

the chronological age of an individual. Lastly, an analysis of how the Sirtuin (SIRT) family of 

histone deacetylases contributes a vital role in the regulation of the epigenome will be reviewed.  

 

Intermittent Fasting Pro-Longevity Effects on Molecular Pathways and the Epigenome 

1. Mammalian Target of Rapamycin (mTOR) 

The mTOR protein kinase, encoded by a single mTOR gene, is constituted of two separate 

complexes termed mTORC1 and mTORC2. The similar molecular components of mTORC1 and 

mTORC2 include mLST8 (mammalian lethal with SEC13 protein 8) and DEP (DEP domain-

containing mTOR-interacting protein). The two complexes differ in that mTORC1 contain 

regulatory-associated protein of mTOR (RAPTOR) and proline-rich AKT1 substrate 1 

(PRAS40) while mTORC2 contains RICTOR  (rapamycin-insensitive companion of mTOR), 

mSIN1 (mammalian stress-activated protein kinase interacting protein 1), and Protor-1/2 (Saxton 

& Sabatini, 2017). Overall, mTOR functions as a serine/threonine kinase in response to insulin-

like growth factors, glucose, and amino acids, to function in an anabolic role through regulating 

different processes (Hay & Sonenberg, 2004; D.-H. Kim et al., 2002; Lipton & Sahin, 2014). The 
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usefulness of the anabolism promoting capabilities of mTOR is essential in development and 

growth, especially at a young age. But as we age, the growth-promoting capabilities of mTOR 

become less essential and eventually lead to negative outcomes when prolonged or frequent 

activation occurs. The confounding role of mTOR is described as antagonistic pleiotropic, with 

the specific genes activating early in life being beneficial to an organism and becoming 

detrimental later in life when hyperactive (Schmeisser & Parker, 2019). Aging associated cellular 

processes regulated by mTOR include cell proliferation, autophagy leading to disrupted 

proteostasis, protein synthesis, mitochondrial dysfunction and other metabolic growth-related 

pathways (Gonskikh & Polacek, 2017; Koga, Kaushik, & Cuervo, 2011; Papadopoli et al., 

2019)(figure 2).  

There are three general mechanisms the activation of mTOR, which may occur 

independently of one another or simultaneously to one another. In response to nutrient uptake, 

the liver will secrete insulin-like growth factors into the blood, which activates insulin-like 

growth factor-1 receptor when bound with insulin-like growth factor-1 (IFG-1) (Yin et al., 2016 

2016). Ligand-bound IGF-1 receptor allows the tyrosine kinase activity of the receptor to initiate 

a signaling cascade characterized by protein kinase B (Akt) phosphorylating tuberous sclerosis 

complex 2 (TSC2). Phosphorylated TSC2 breaks from TSC1, which inhibits the GTPase-

activating function of the TSC1/2 complex, and the Ras homologue enriched in brain (RHEB) 

protein is therefore never inhibited, allowing continual mTORC1 activity (Kwiatkowski & 

Manning, 2005). Since TSC1/2 complex is one of the central components that regulate mTORC1 

activity, other pathways converge onto the complex in addition to the IGF-1 receptor signaling. 

Depending on the ratio of ADP: AMP, a signature of a cell’s energy status, 5’ AMP-activated 

Protein Kinase (AMPK) will increase in activity as the concentration of AMP increases. 
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Activated AMPK phosphorylates TSC2 but activates the GAP activity of the complex rather than 

inhibit. Active TSC2 hydrolyzes the RHEB-GTP into GDP, inactivating RHEB, which inhibits 

mTORC1 (Mihaylova & Shaw, 2011). Also, an increase of intracellular amino acid levels 

activates a Ras GTPase that will go onto localize mTORC1 to the lysosomal membrane to 

initiate protein synthesis (Bar-Peled, Schweitzer, Zoncu, & Sabatini, 2012). 

Upon activation via GTP-bound 

RHEB, mTORC1 kinase activity 

phosphorylates the protein 4E-BP1, a 

translation inhibitor, and p70-S6 Kinase 1 

(S6K1) (Figure 1), which will begin the 

steps to start protein synthesis and 

therefore upregulate protein translation 

(Roux & Topisirovic, 2018). Further 

facilitation of pro-protein synthesis is 

favored by the mTORC1 induced 

inhibition of autophagy. mTORC1 

phosphorylates autophagy-related protein 

13 (Atg 13), preventing the protein from 

complexing with other Atg related proteins, to contribute to the Unc-51-like autophagy-

activating kinase (ULK1), effectively inhibiting autophagy (Alers, Loffler, Wesselborg, & Stork, 

2012; J. Kim, Kundu, Viollet, & Guan, 2011 2011).  This combination of factors creating a pro-

protein synthesis state within the cell leaves minuscule opportunities for the cell to perform 

functions like the unfolded protein response (UPR) and impedes on cellular restoration functions 

Figure 1. Protein extracts taken at various intervals of 

proliferation from normal Human Fibroblasts (WI-38) fed 

either normal glucose (NG) or glucose restricted (GR) 

medium. Each protein was probed with the corresponding 

antibody on a nitrocellulose membrane. (Li & Tollefsbol, 

2011) 
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like tagging denatured proteins with ubiquitin for degradation. Johnson, S. C., et al. 2013, 

demonstrated in C. elegans, Drosophila, yeast, and mice, that when rates of protein translation 

decrease, life span inversely increases and vice versa. This is reasonable because when 

autophagy is not inhibited, the cell will be able to recycle misfolded or dysfunctional proteins, 

leading to a clearer and improved signal cascades within the cell and a simple mechanism of 

which replaces worn-out components of the cell. 

 The background knowledge, literature and molecular components involved with mTOR 

signaling support intermittent fasting, which is often accompanied by a decrease of caloric 

intake, as a means of decreasing mTOR activity to improve longevity (Figure 1). Longevity has 

shown to be greatly improved when practicing dietary restriction (DR) and done so by promoting 

the regulation that occurs between TORC1, AMPK activation, insulin and insulin-like growth 

factor signaling axis (Hou et al., 2016). While mTOR functions in metabolism, inhibition of 

autophagy, and growth, it also regulates other cellular processes. In mice, the inhibition of 

mTORC1 activation promoted the expression of DNA repair proteins, N-myc downstream-

regulated gene 1 (NDRG1) and O-6-methylguanine-DNA methyltransferase (MGMT). Both 

proteins directly work to undo DNA damage. Although the mechanism of NDRG1 is not clear, 

MGMT is needed to maintain a stable genome for DNA replication and transcription by 

removing erroneous methyl groups from guanines in the genome (Dominick, Bowman, Li, 

Miller, & Garcia, 2017).  

 As we age, our cells slowly erode at their ability to keep levels of ATP high, high levels 

of oxidized nicotinamide adenine dinucleotide (NAD+) activate sirtuins, preventing the 

accumulation of reactive oxygen species (ROS) that leak into the other compartments of the cell. 

These deficiencies are resultants of deteriorating mitochondrial function such as the decreased 
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ability to induce mitophagy and mitochondrial biogenesis. Both ATP and NAD+ are key 

molecules in informing the cell of nutrient or energy status, via interactions with AMPK, and 

sirtuin proteins. mTOR activity directly regulates mitophagy and therefore regulates 

mitochondrial biogenesis as well (Bartolome et al., 2017; Palacios et al., 2009). As will be 

discussed later, the other nutrient-sensing pathway proteins like AMPK and sirtuins can work to 

halt mTOR inhibition of renewing our mitochondria to a higher level of function.  

 

2. Sirtuins 

Sirtuins (SIRTs) are a family of NAD+-dependent proteins that most often serve as protein 

deacetylases within the cell (Anderson, Green, Huynh, Wagner, & Hirschey, 2014). First 

discovered in yeast, eukaryotic cells are now known to contain seven different sirtuin proteins. 

SIRT1, SIRT6, and SIRT7 are of the most important focus in this paper, being the only sirtuin 

proteins located in the nucleus (Scher, Vaquero, & Reinberg, 2007). Sirtuins require NAD+ as a 

Figure 2. Adopted directly from (Papadopoli et al., 2019), a summary of events for the role of both mTORC1 

(A) and mTORC2 (B).  
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co-substrate in the reaction to remove 

acetyl groups from a protein and in the 

reaction to remove ribosyl groups. NAD+ 

is hydrolyzed, removing the nicotinamide 

group, and absorbing the acetyl group, to 

ultimately form both O-acyl-ADP-ribose 

(byproduct) and nicotinamide (Zhu, Su, & 

Lin, 2013). In-vitro analysis has 

determined that sirtuin enzyme activity is 

determined not only by NAD+ levels but 

by NADH levels as well. When NADH concentrations reach 10 mM and above, NADH will 

begin to compete for the active site of sirtuin, inhibiting the enzyme activity of sirtuin and 

thereby working as a competitive inhibitor. Although to be clear, since Sirtuins roughly have a 

1000-fold higher affinity for NAD+ than NADH, the concentration of NADH must reach far 

beyond the concentration of NAD+ (Schmidt, Smith, Jackson, & Denu, 2004). Sirtuin levels 

fluctuate within a cell-based on metabolic states but the approximated concentration of Sirtuins 

in the nucleus is from 10 μm to 100 μm, while the concentration within the mitochondria is 

around 230 μm (Yang et al., 2007). 

 Sirtuins serve at the forefront of interaction with a cell’s energy levels. NAD+ levels will 

be elevated in periods of low energy and nutrients, while NADH will be favored in periods of 

high energy and nutrients because NADH is an abundant electron carrier in our cells. NAD+ 

levels are significantly increased in mice after fasting in comparison to normal fed mice. What’s 

Figure 2. Mice fed under ad libitum (ad lib) and mice after 

a period of fasting for 24 hours, with water as the only 

intake, were compared for their NADH and NAD+ levels. 

(Hayashida et al., 2010) 
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more, NADH levels decrease significantly in the same mice, creating a 

significant difference in the NAD+ to NADH ratio in the fasting mice 

compared to the regular diet mice (Figure 2). 

Since NAD+ is an activating co-substrate for Sirtuins, the deacetylase 

activity of Sirtuins increases in proportion with the increase of NAD+ 

levels within a cell, and vice versa (Peek et al., 2013). Intermittent fasting, 

associated with lower energy availability, will then increase NAD+ levels 

as well as increase the enzymatic activity of Sirtuins. More intriguing is 

the interconnected network of events regulating the expression of 

proteins for DNA stress responses, repair, and longevity. After fasting, 

mice hepatocytes have significantly increased mRNA levels of SIRT1 

and significantly increased SIRT1 total protein levels as well (Figure 3). 

While fasting itself aside from the increased NAD+ levels is likely 

responsible for the increased SIRT1 expression and protein translation, its possible NAD+ works 

as a positive feedback to promote the increased gene expression and protein translation.   

A deacetylase can remove an acetyl group from different protein products, for the case of 

Sirtuins, and specifically SIRT1, the protein target varies, ranging from histones, DNA, to cell 

cycle control proteins like p53. Histones are grouped as an octamer, with their positive charge 

attracting the negatively charged DNA to tight wrap around each histone, constituting a 

nucleosome. Nucleosomes wind our DNA together, regulating the condensation or loose 

conformation of chromatin as a result of modifications to the histones. An acetyl group carries a 

negative charge, the same charge of DNA. When an acetyl group is covalently added to a 

histone, the acetyl most often is bonded with the positively charged lysine tail. This interaction 

Figure 3. (A) mRNA 

levels from the 

hepatocytes of mice 

fed ad libitum (ad lib) 

and of mice that after 

24 hours of fasting. 

(B) Western blot of 

total protein extracted 

from the mice 

hepatocytes. 

(Hayashida et al., 

2010) 
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rids the positively charged lysine from 

interacting favorably with the DNA, while 

the negatively charged acetyl group 

induces repulsion and therefore a looser 

conformation of DNA. Loosely associated 

chromatin is then more accessible to 

transcription factors that may promote 

gene expression. When the acetyl group is 

removed however, this repulsion ceases to 

exist, causing a more tightly associated 

wrapping of the histones and DNA due to 

the positive charge of lysine and negative 

charge of DNA. The removal of the acetyl 

group on lysine tails of histones is 

prominently under the control of Sirtuin 

proteins. The histone acetylation activity of sirtuins is directly increased in fasting subjects 

(Figure 4).  

 Besides functioning as a DNA acetylase, SIRT1 repair double-stranded DNA breaks by 

homologous recombination and prevent nonhomologous end-joining, which is a more error-

prone DNA repair mechanism (Uhl et al., 2010 2010). The ability of SIRT1 to promote 

homologous recombination makes this protein one of the most important proteins throughout our 

body in preserving the epigenetic structure of our chromatin and in preserving the integrity of 

our linear DNA genome. Homologous recombination suffices to repair DNA while preserving 

Figure 4. In-vitro demonstration of IF effects. Normal 

human fibroblasts (WI-38) and human fetal lung fibroblasts 

(MRC-5 and IMR-90) were fed either normal glucose (NG) 

or glucose restricted (GR) medium. mRNA extraction 

occurred at the intervals of early, intermediate, and late 

proliferation. (A) Analysis of SIRT1 mRNA extracted from 

the three fibroblasts via transcription-PCR. (B) Protein 

extract analysis of SIRT1 protein throughout cell 

proliferation stages, and with GAPDH as a control group. 

(C) HDAC activity of SIRT1 and the relationship to SIRT1 

binding to p16 promoter. (Li & Tollefsbol, 2011) 
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the original nucleotide sequence. Other forms of DNA repair may lead to mutated sequences that 

do not match the original sequence. Of course, this may not always be a terrible issue, but in the 

chance that this unmatching sequence cannot base pair with the original strand of DNA, a bulge 

in the DNA will be created which throws off DNA replication machinery.  

 In a study performed by Jamshed, H., et al. (Jamshed et al.), a comparison was 

determined between two different fasting regimes. The group found early time-restricted feeding 

groups in contrast to regular fasting groups that underwent periods of no eating as they saw fit, 

had statistically significant increased gene expression of SIRT1 in the a.m., and increased 

expression in the p.m., although that was not shown to be statistically significant. If these groups 

were to be compared to individuals who undergo no specific or intentional fasting regime and at 

ad-lib, its only causal to suggest that the SIRT1 expression would be significantly higher at all 

times in a fasting cohort compared to the ad-lib cohort. A probable role could then be suggested 

that increased SIRT1 expression may increase longevity, exactly like was shown in animals 

(Mitchell et al., 2019 2019). The improved insulin sensitivity resulting from intermittent fasting 

may contribute as well to longevity through SIRT1. A study by Sun, C., et al. 2007 found SIRT1 

to have a decreased gene expression in response to decreased insulin sensitivity, indicating the 

likely hood that improved insulin sensitivity promotes greater expression of SIRT1.  

 

3. DNA Methylation 

DNA methylation is a type of epigenetic modification which functions to silence a gene, 

while it also functions to allow recognition of the template or original strand in DNA replication 

and homologous recombination. From our years of childhood through middle-aged years, DNA 
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methylation is abundant and tightly regulated to contribute to an overall highly regulated genetic 

expression. Methylation most often occurs on cytosine residues of CpG dinucleotides located 

within CpG islands. Adding a methyl group to a cytosine forms a 5-methylcytosine. In addition 

to methylation of cytosine residues, adenine residues may be methylated as well, but often much 

less frequently.  

As we age, we lose DNA methylation in an almost exact proportion to our chronological age 

(Gonzalo, 2010). DNA hypomethylation is most accounted for within highly repetitive genomic 

regions and genomic interspersed elements (Bollati et al., 2009; Zampieri et al., 2015). In 

addition to DNA hypomethylation, hypermethylation within gene promoters as we age 

contributes to the overall disruption of global DNA methylation patterns, causing an overall loss 

of the proper epigenetic information needed to maintain a healthy gene expression pattern (Bell 

Figure 5. Methylation comparison of mice fed 40% CR diet from the age of 0.3 years old to the age of 2.7-3.2 

years old (CR-old, n=12) and Rhesus monkeys fed a 30% CR diet from the age of 7-14 years old until 30 years 

old (CR-old, n=6, median age= 26 y) to the methylation of AL animals. (A) Green to red is the methylation 

values in percent across all genomic regions. (B) Full range (0-100%) and low range (0-20%) of DNA 

methylation levels at CpG sites. (C) Methylation difference between CR-old and AL-old at specific CpG sites 

(y-axis) compared to the percent methylation change per year in AL (x-axis). 
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et al., 2012; Christensen et al., 2009). The ability to characterize the “biological age” of an 

organism based on DNA methylation patterns is so effective that an “epigenetic clock” is the 

term now used to characterize the age of an individual based on these patterns (Horvath, 2013). 

The alteration of or loss of DNA methylation patterns are not just coupled with aging, but 

likely give rise to accelerated aging. But the genetic information carried by the pattern of DNA 

methylation is different from the genetic information carried by DNA, which remains unalterable 

by our choice. On the other hand, it is possible to alter DNA methylation patterns favorably, to 

slow the aging process and the related onset of diseases.  Caloric restriction remains at the 

forefront of feasible methods to retain and maintain the global genomic DNA methylation 

patterns. 

 A study by Maegawa, S., et al. 2017 utilizing Rhesus monkeys and mice as test subjects, 

demonstrated just how effective caloric restriction is for delaying DNA methylation drift.  In 

both mice and monkeys, when the most highly methylated regions of the genome are preserved 

in the caloric restricted old groups compared to the ad libitum old groups (Fig. 5a). When fed ad 

libitum, there is a distinctive hypomethylation of the overall genome as both mice and monkey 

age (Fig 5a).  The hypomethylation of non-CpG island genomic regions of ad libitum old in 

comparison to caloric restricted old (Fig. 5b) may occur at gene promoters such as a proto-

oncogene, accelerating aging and the cell cycle altogether. And for every year that passes in an 

ad libitum subject, the difference in the percentage of methylation at identical genomic regions 

between ad libitum and caloric restricted subjects widens proportionally (Fig. 5c).  
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Maegawa, S., et al. 2017 further provided evidence for the credibility of caloric 

restriction to reduce the loss of global DNA methylation and to, therefore, slow the process of 

aging. In testing both mice and monkeys, calorically restricted old subjects have a statistically 

significant correlation with a lower predicted or “biological age” in comparison to their actual 

chronological age (Fig. 6). Unsurprisingly, the ad libitum old subjects had a predicted or 

“biological age” that was much more like their actual chronological age (Fig. 6).  It is evident to 

conclude that caloric restriction will reduce the loss of DNA methylation patterns, this 

preventative practice will ensure a much more stable genome and telomere stability as well.  

DNA methyltransferases are responsible for the addition of methyl groups to the 5’ 

carbon of cytosine. There are three main types of DNA methyltransferases, but DNA 

methyltransferase 1 (DNMT1) is found in the highest amounts throughout the nucleus of a cell 

(Hermann, Gowher, & Jeltsch, 2004). DNMT1 is the most abundant DNA methyltransferase not 

by coincidence, but because DNMT1 prefers to localize to and interact with hemimethylated 

DNA often present at DNA replication forks and therefore also helps the cell to copy 

methylation patterns from the template strand to the daughter strand(Chuang et al., 1997; Egger 

et al.; Goll & Bestor, 2005). Aside from the preference of hemimethylated DNA, DNMT1 

Figure 6. Comparison between the chronological age and biological age based on methylation percentage. 

Monkey CR-old (n=18) vs AL-old (n=12) and mouse CR-old (n=12) vs AL-old (n=12). 
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inhibits the expression of tumor suppressor genes through methylation and encourages cell 

survival (Egger et al., 2006). DNMT1 activity is regulated by post-translational modifications 

such as phosphorylation, ubiquitination, and acetylation. DNMT1 activity is inhibited when 

acetylated at either two of its lysine residues. Accordingly, SIRT1 which can deacetylate various 

proteins colocalizes with DNMT1 in the nucleus and removes the acetyl group to increase 

DNMT1 enzymatic activity (Peng et al., 2011). As we age DNMT1 enzymatic activity decreases 

in correspondence to decreased expression of DNMT1 as well (Ciccarone et al., 2016).  When 

intermittent fasting increases the expression of SIRT1, we can now know that it also increases 

DNMT1 activity, further contributing to the maintenance of genomic stability to encourage 

longevity.  

When DNA methylation patterns are altered by caloric restriction, the effects outlast the 

length of time spent practicing caloric restriction. Four-month-old mice that underwent one-

month of caloric restriction had statistically significant changes in the expression of various 

genes in comparison to the ad libitum mice group which at ad libitum for five-months. The study 

further demonstrated that for the caloric restricted mice, 20 to 50% of the changes in gene 

expression were still in effect two-months after caloric restriction ended (Lopatina et al., 2002; 

Unnikrishnan et al., 2017).  

In a study conducted by Belsky, D. W., et al. 2018 in nonobese humans, subjects which 

underwent a 25% caloric restriction had a not statistically significant rate of change of biological 
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aging over two years’ time, meaning 

much greater retention of the DNA 

methylation patterns and genome stability 

(Fig. 7). On the other hand, subjects 

which at ad libitum experienced a 

statistically significant rate of change in 

biological aging over the two years’ time 

period (Fig. 7).  

 

 

 

Conclusion 

 The epigenomic and metabolic molecular pathway alterations as a result of IF 

demonstrate a role in slowing the rate of biological aging of an individual. IF is therefore a 

practical intervention, when performed safely without malnutrition and in consideration of other 

health variables, may indeed promote longevity. In addition, IF promotes a “healthy” longevity 

in which the extended lifespan is fulfilled with much more healthy years, rather than a time of 

disease and suffering. In review, IF contributes to longevity by promoting the inhibition of the 

mTOR kinase to allow the recycling of dysfunctional cellular components through autophagy 

and conservation and restoration of the a more regulatory epigenome through upregulation of 

SIRT deacetylases and DNMTs.  

 

Figure 7. Mean values with 95% confidence intervals for 

change in biological age from baseline biological age. n=75 

for AL and n=145 for CR. CR with a p-value of 0.353 and 

AL p-value of p=2.97 x 10-6. Difference between treatment 

arms in rate of biological aging is statistically significant 

with a p-value of 0.03. 
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