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a b s t r a c t

In the world0s semi-arid regions, high crop demands have produced short term economic incentives to
convert food production on native grasslands to dryland row crop food production, while genetic
enhancements and equipment have reduced the risk of crop failure. The objectives of this paper were to
discuss (1) the importance of considering the long-term sustainability of changing land use in semi-arid
regions; (2) the impact of extreme climatic events on ecosystem functioning; and (3) factors contributing
to higher crop yields in semi-arid regions. Semi-arid regions contain fragile areas where extreme climate
events may be a tipping point that converts an apparent sustainable system to a non-sustainable
ecosystem. However, semi-arid regions also contain zones where “better” management practices have
reduced the agricultural impacts on the environment, increased soil carbon levels, and stimulated
economic development. Research suggests that food production can be increased by enhancing the
productivity of existing cropped land. However, this statement does not infer that crop production on all
existing cropped lands in semi-arid regions is sustainable. Worldwide, targeted research should be
conducted to clearly identify local barriers to conservation practice adoption and identify the long-term
ramifications of extreme climatic events and land-use changes on semi-arid ecosystem functioning.

& 2014 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

Over the last three hundred years, immigration from Europe and
Asia to Africa, Australia, North America and South America resulted
in half of the arable grasslands being converted to cropland
(Goldewijk, 2001). Earliest grassland conversions occurred near
forest margins (Coupland, 1979) and are typified by the near
elimination of the North America tallgrass prairie (Samson and
Knopf, 1994) and the Argentinean Pampas (Hannah et al., 1994).
Until recently, arid and semi-arid grasslands, further from forest
margins remained in natural vegetation (Hannah et al., 1994; Samson
and Knopf, 1994). However, technology advances have provided the
ability to convert these grasslands to row crop production (Braschler,
1983; Marsh, 2003; Aadland, 2004; NASS, 2013).

Semi-arid regions often have high climate variability, vegeta-
tion that is dominated by grasses and shrubs, and precipitation/
potential evapotranspiration ratios that are greater than 0.2 and
less than 0.5. The semi-arid regions of the United States Great
Plains, Sub-Saharan Africa, Australia, and large portions of eastern
and southern Africa, India, and Asia provide important habitat for
numerous grazing animals, birds, insects, and livestock. Climate
variability, which is projected to increase, complicates agricultural
activities in these regions. For example, in the Turkana district in
Kenya droughts can occur as often as every 5 years (Ellis, 1992),
while in the Australia Murray–Darling River Basin drought occurs
on average once every 10 years (Schwabe and Conner, 2012).

Globally the amount of semi-arid grasslands converted to crop-
lands is unknown. However, at select locations the conversion rate
has been reported. For example, in North Dakota, South Dakota,
Nebraska, Iowa, and Minnesota alone Wright and Wimberly (2013)
estimated that from 2006 to 2011 over 530,000 ha of grassland
were converted to row crop production, while in South America,
Vega et al. (2009) reported that in the Río de la Plata grasslands,
1.2 million ha of grasslands from 1986–1990 to 2002–2005 were
converted to implanted forests or croplands. This conversion is
driven by many factors including high grain prices (http://futures.
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tradingcharts.com/chart/CN/M), increasing global food demand
(Tilman et al., 2011), the development of more drought resistant
maize (Zea mays) cultivars (Chang et al., 2014), policy changes
designed to produce economic development, and equipment
improvements.

To provide a more sustainable local food supply individuals,
communities, corporations, governments, and private foundations
are supporting efforts that stimulate economic development in many
of the world0s semi-arid areas. However, the need for economic
development and improved food production must be balanced with
agricultural long-term sustainability and the services provided by
grasslands. Tilman et al. (2011) states that, “Attainment of high yields
on existing croplands of under-yielding nations is of great impor-
tance if global crop demand is to be met with minimal environ-
mental impacts.” Based on Tilman et al. (2011) we identified several
key questions. First, can management and genetic improvements
increase yields in the world0s semi-arid regions? Second, can crops
be sustainability produced in the world0s semi-arid regions? The
objectives of this paper were to discuss: (1) the importance of
considering the long-term sustainability of changing land use in
semi-arid regions; (2) the impact of extreme climatic events on
ecosystem functioning; and (3) factors contributing to higher crop
yields in semi-arid regions.

2. The importance of considering long-term sustainability

Erosion or salinization has degraded agricultural land produc-
tivity in historic and modern times. For example, in modern times,
settlers of the United States Great Plains were granted land titles
through the U.S Homestead Act of 1862. These settlers plowed the
prairie, seeded wheat (Triticum aestivum), and controlled weeds
during fallow years with a one-way plow, which pulverized the
soil and increased the risk of erosion (Hansen and Libecap, 2004).
The impact of these practices when combined with a multi-year
drought resulted in the Dust Bowl that occurred during the 1930s.

Crop production in semi-arid regions has also been challenged by
irrigation and dryland salinization. One of the first recorded pro-
blems of irrigation induced salinization occurred in the Fertile
Crescent, between the Tigris and Euphrates rivers 3000–4000 years
ago. Salinization occurs when more salts are added in the irrigation
water than what is removed in the drainage water (http://archive.
unu.edu/unupress/unupbooks/80858e/80858E04.htm). The impact
of salinization was land abandonment, decreased food production,
and a gradual decline of the Sumerian civilizations.

Dryland agriculture salinity problems result when water move-
ment into groundwater is greater than outflow. Water imbalance
causes the water table to rise, which transports subsurface salts to
the surface soil. Salinity problems can result from a variety of
management changes including: (1) the replacement of deep root
shrubs by annual crops and/or, (2) switching from a moldboard
plow (high evaporation) to a no-tillage system (low evaporation).
For example, in Australia the removal of shrubs from backslopes
resulted in a rising water table and a gradual increase in the salt
concentration in footslope soils. Salinity is predicted to increase
the amount of salt effected lands in Australia from 2.5 million -
hectares in 1999 to 17 million hectares in 2050 (Merz et al., 2006).

Land use changes and sustainability

Local and global pressures are providing short term incentives
to convert grasslands to dryland row crop production in semi-
arid regions.

New technologies such as improved genetics, better planters,
and improved rotations can reduce the risk of crop failure in
semi-arid ecoregions.

Land use changes and sustainability

Caution must be used when promoting land use change
because grasslands provide services that are difficult to
quantify and extreme climate events may provide the trigger
that converts an apparently sustainable system to a non-
sustainable system.

Ecoregion stability can rapidly be degraded.
In many areas the adoption of conservation practices have been
limited by barriers that are not clearly understood.

Food production on the world0s fragile soils does not always
reduce food security. For example, the Incan Empire on the
Peruvian coast in South America improved sustainability (1) by
domesticating many plants including maize, squash (Cucurbita),
and beans (Phaseolus vulgaris) which were then planted in com-
plex rotations across landscapes; (2) by installing terraces that
reduced erosion at highly erodible sites; and (3) by using waru
waru (raised beds and water canals) to lengthen the growing
season http://www.oas.org/dsd/publications/Unit/oea59e/ch27.htm).
These technologies allowed the Incas to reduce erosion, reduce pest
pressures, and reduce the risk of crop failure in some of the world0s
most challenging environments (Mamani-Pati et al., 2011).

A second example of improved food security occurred during the
European middle ages (1500 to 700 years ago) when many farmers
switched from a three year rotation, consisting of a cereal (oats,
Avena sativa; rye, Secale cereale; wheat; and barley, Hordeum volare),
a legume (peas, Pisum sativum; and beans), and fallow (Knox, 2004)
to a 4 year rotation that included wheat, barley, turnips (Brassica
rapa) and ryegrass (Lolium multiflorum) or clover (Trifolium). This
change: (1) improved nutrient budgets, (2) increased the amount of
land devoted to food production by 33%, (3) increased wheat and
pulse yields 68 and 44% from 1750 to 1860, (4) increased stocking
densities for milk cows, sheep, and swine 46, 25, and 43%,
respectively; (5) powered the Industrial Revolution, (6) provided
the food needed to grow the English population from 5.7 million in
1750 to 16.6 million people in 1850, and (7) provided the theoretical
basis for the organic agricultural industry today (Broadberry et al.,
2010).

3. Increasing yields on semi-arid croplands and reducing
erosion

The development of the moldboard plow, tractors, disk-harrow,
cultivators, and the one-way plow during the 18th, 19th, and 20th
centuries provided the technology needed to convert grasslands to
row crop production. In the United States Great Plains, these
technologies pulverized soil, improved weed control, and produced
economic development between 1880 and 1930. However, in 1930s a
series of droughts resulted in crop failure and extensive erosion that
eventually was called the Dust Bowl. The impact of tillage technol-
ogies on soil erosion can be staggering. For example, in Ethiopia soil
loss rates as high as 290 Mg (ha year) were reported in grasslands
that were converted to dryland crop production (Fowler and
Rockstram, 2001). Tillage had similar impacts in Turkey where
grassland conversion to crop production resulted in a 10.5% increase
in bulk density, a 46.2% increase in soil erodibility, a 48.8% decrease in
soil organic matter, and a 30.5% decrease in plant available water
(Evrendilek et al., 2004).

Tillage produced similar impacts on erosion in the Northern
Great Plains. However, research also showed that erosion can be
reduced by adopting no-tillage. For example, Lindstrom et al. (1994)
reported that in the Northern Great Plains the conversion of grass
sod to a moldboard plow crop production system increased runoff

D.E. Clay et al. / Global Food Security 3 (2014) 22–30 23

http://futures.tradingcharts.com/chart/CN/M
http://archive.unu.edu/unupress/unupbooks/80858e/80858E04.htm
http://archive.unu.edu/unupress/unupbooks/80858e/80858E04.htm
http://www.oas.org/dsd/publications/Unit/oea59e/ch27.htm


from 0 to 66% of a simulated rainfall. However, when the native sod
was converted to a no-tillage dryland crop production system
runoff was only marginally (0 to 3% of simulated rainfall) increased.
Across a region, the impacts of conservation tillage on erosion can
be substantial. For example, from 1982 to 2007 there was a 34, 23,
and 20% decrease in wind, sheet, and rill erosion in South Dakota,
Nebraska, and North Dakota, respectively (Table 1, NRCS, 2007).
Additional benefits from conservation tillage adoption are increased
C storage, increased plant available water and reduced water
evaporation from the soil surface (Smika, 1983; Hatfield et al.,
2000; Pryor, 2006; Su et al., 2007; Triplett and Dick, 2008; Salado-
Navarro and Sinclair, 2009; Klocke et al., 2009; Baumhardt et al.,
2010; Clay et al., 2012; Mitchell et al., 2012).

No-tillage is not uniformly adopted in world0s semi-arid regions.
Adoption rates are high in the United States Great Plains and the
Argentina and Brazilian grasslands, whereas adoption rates are low
in Africa, Asia, and Europe (Frisvold et al., 2007; Givens et al., 2009;
Clay et al., 2012; Hansen et al., 2012).

No-tillage induced increases in soil organic C (SOC) can produce
many positive impacts on long-term sustainability. To demonstrate
these effects, the impact of tillage on SOC and plant available water
was calculated (Fig. 1; Cardwell, 1982). Over a 25 year period (1985
to 2010) a tillage change from moldboard plow to conservation
tillage corresponded to a 24% increase in soil organic matter
(Clay et al., 2012). Associated with the SOC increase was an increase
in plant available water, which represents the maximum amount of
water that plants can extracted from a soil, and it is the difference
between the amount of water held at the permanent wilting
point (�1500 kPa) and field capacity (�33 kPa). Based on Fig. 1,

the 24% increase in SOC, from 1985 to 2010 should increase the
surface soil plant available water 0.61 cm {15 cm� [(0.39�0.142)�
(0.34�0.134)]}.

Reduced tillage systems also have lower water evaporation
than conventional tillage systems. Based on Pryor (2006) a South
Dakota water savings resulting from a tillage change was esti-
mated with the equation, δ(soil water, cm)¼1.3 (cm/tillage pass)�
(δ in # of tillage passes) (Table 2). Based on this equation, it was
estimated that annual evaporation decreased 5.2–2.6 cm in the
no-tillage and reduced tillage systems, respectively.

3.1. Extreme climatic events impact on productivity

Agricultural production has been challenged by extreme cli-
matic events (droughts, flooding, frosts, and hurricanes), growing
populations, the use on non-sustainable practices, habitat destruc-
tion, invasive species, and soil erosion since the agricultural
revolution 10,000 years ago. The inability to mitigate these factors
contributed to the failure of Greenland Norse, and the Maya and
Anasazi civilizations (Diamond, 2005). Modern societies are not
immune from this problem. For example, drought in Syria
between 2006 and 2011 resulted in wide spread crop failures,
which in turn resulted in the migration of farmers and ranchers
from rural to urban areas, and eventually political unrest.

To assess the risk of extreme climatic events (drought) causing a
modern crop failure the South Dakota crop yields of 1974 and 2012
were compared. From 1974 to 2012 the dominant tillage system in
South Dakota changed from moldboard plow to conservation tillage
and the maize hybrids changed from non-transgenic to transgenic
with improved ability to withstand abiotic and biotic stresses (Clay
et al., 2012). Under similar climatic conditions, South Dakota maize,

Table 1
The influence of year on land use and erosion in South Dakota, Nebraska, and North Dakota (modified from NRCS, 2007). Developed land has been permanently removed
from the rural land base.

Year Land use Erosion

Developed Rural Cropland Range Pasture Wind Sheetþrill Windþsheet
ha�1000 ha�1000 ha�1000 ha�1000 ha�1000 Mg/(ha y) Mg/(ha y) Mg/(ha y)

1982 370 18,050 8668 7850 785 8.9 7.2 16.1
1987 374 18,037 8712 7659 717 8.9 6.6 15.4
1992 384 18,004 8148 7590 702 6.9 5.4 12.4
1997 403 17,977 8256 7536 657 6.3 4.7 11.0
2002 410 17,961 8193 7585 660 7.2 4.8 12.0
2007 417 17,954 8130 7597 682 7.2 4.8 12.0
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Fig. 1. Relationship between soil orgnaic carbon (SOC) and plant available water
(modified from http://soils.usda.gov/sqi/assessment/files/available_water_capaci
ty_sq_physical_indicator_sheet.pdf). In the chart, PWP is permanent wilting point
and PAW is plant available water. Percent organic matter was converted to SOC by
dividing soil organic matter by 1.72. Based on Clay et al. (2012). SOC was estimated
to be approximately 2% in 1974 (100�38,000/188,000,000). A 24% increase would
increase SOC to 2.48%.

Table 2
The impact of SD NASS region on no-tillage adoption and estimated increase in
plant available water (Clay et al., 2012). The no-tillage estimates are based on
34,704 production surveys.

SD NASS No-tillage Water increase in the
surface 15 cm

region 2004–2007 2008–2010 2004–2010 No-till Con. till SOC Total
% adoption cm cm cm cm

NC 97 69 85 4.42 0.39 0.61 5.42
C 68 57 63 3.28 0.96 0.61 4.85
NE 20 11 16 0.83 2.18 0.61 3.63
EC 11 5 8 0.42 2.39 0.61 3.42
SE 29 33 31 1.61 1.79 0.61 4.02
NW 40 ns nc 2.08 1.56 0.61 4.25
SC 88 ns nc 4.58 0.31 0.61 5.50
CW 82 ns nc 4.26 0.47 0.61 5.34

Ave. 54 35 41 4.55

ns the sample did not contain adequate samples and nc is not calculated.
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soybeans, and wheat yields were 4.26, 0.671, and 1.84 Mg grain ha�1

higher in 2012 than 1974 (Tables 3 and 4). Based on the 2012 crop
selling prices the net impact of higher maize, soybean, and wheat
yields were $1183, 347, and 556 per hectare. Management impacts
were calculated by multiplying water savings, discussed above, by
the precipitation use efficiency (PUE) values [yield/(rainfall�changes
in stored soil water)] for maize (Kim et al., 2008), soybeans
(Monsanto Company, 2010), and wheat (Kharel et al., 2011). These
calculations suggest that increases in plant available water derived
from improved soil management could account for 22, 63, and 36% of
the maize, soybean, and wheat yield increases from 1974 to 2012.
These findings indicated that improved soil management had a
1.1 billion dollar impact on South Dakota0s net agricultural returns
in 2012. These calculations were based on semi-arid dryland agri-
culture having a positive relationship between crop yield and rainfall
and that water savings can be converted to yield increases (Clay et al.,
2003; Munodowafa, 2012; Guo et al., 2012). These yield increases
were attributed to the implementation of locally-based adaptive
management practices that leveraged genetic improvements with
crop and soil management practices. We believe that similar results
could be observed in semi-arid regions worldwide. These findings
are conceptually in agreement with Norwood (1999).

The above discussion suggests that in semi-arid regions the
long-term sustainability of dryland agriculture can be improved by
adopting reduced tillage technologies. Unfortunately, no-tillage
has not been uniformly adopted in semi-arid regions worldwide.
Conservation tillage adoption is much lower Asia, Africa, and
Europe than South America, North America, and Australia
(Derpsch et al., 2010). The barriers to increasing the adoption of
conservation tillage in areas with low adoption rates are numerous
and in some locations they are based on societal beliefs. For
example, many African communities view crop residues as com-
munity assets, and that the soil conservation structures, built by

colonists as instruments of oppression (Fowler and Rockstram,
2001). Overcoming local barriers will likely require a paradigm
change, and may result in the use of hedgerows or terraces to
reduce runoff (Stroosnigder, 2009), providing low cost fertilizers
and high quality seeds to increase yields, or promoting low
technology solutions to problems (Sanchez, 2002, 2013). Other
barriers to conservation tillage techniques are the lack of local
knowledge, the lack of available equipment to test reduced tillage
techniques, the lack of effective alternative techniques to control
pests, and small farm sizes.

3.2. Increasing extreme climatic events in semi-arid regions

Climate change is projected to complicate food production in
the world0s semi-arid regions, which already have high climate
variability (Fig. 2; Molles et al., 1992; IPCC, 2008). Regardless of
conservation tillage practice adoption, extreme climate events will
likely provide the tipping point that converts an apparently
sustainable system to a non-sustainable system. However, due to
the lack of research funding this risk cannot be calculated (Chang
et al., 2014).

4. Improved ability to manage abiotic and biotic stresses

The factors responsible for land use change are different in
various parts of the world (Maitima et al., 2009). In Africa, the
primary factor might be to convert local economies from sub-
sistence agriculture to small businesses, while in South Dakota the
goal might be to create jobs and produce economic development.
Higher yield potentials in semi-arid regions can result in two
outcomes. The first outcome is higher yields on current cropland
which reduces the pressure to convert grasslands to crop produc-
tion. The second outcome is higher profits which increases the
economic incentives to covert grasslands to crop production.

Crop yield gains are being achieved through improved ability to
manage abiotic and biotic stresses. For maize, yield increases have
been derived from better genetics as well as improved soil health,
matching genetics and plant populations to locations, reduced
tillage intensity, and increased precipitation use efficiencies (PUE)
(Duncan, 1954; Eck, 1984; Norwood, 1999; Fig. 3). The easiest way
to increase PUE is to reduce evaporation through the adoption of
no-tillage. However, the ability to convert water savings into
greater yield is dependent on many factors including temperature,
soil drainage, and location (DeFelice et al., 2006).

Higher PUE could also be related to improved stress tolerance
(Gaskell and Pearce, 1983; O0Neill et al., 2004; Kim et al., 2008;
Lorenz et al., 2010). Gaskell and Pearce (1983) reported that maize

Table 3
A comparison between rainfall and corn, wheat and soybean yields in 1974 and
2012 (NASS, 1973, 1974, 2011, 2012; http://www.ncdc.noaa.gov/temp-and-precip/
time-series/index.php?parameter=hdd&month=11&year=2012&filter=7&state=
39&div=0). A Palmer Drought Severity of �2 is characterized as a moderate
drought and a �4 value is extreme drought. The South Dakota heating degree days
was calculated using a base 18.3 1C.

Year SD
Palmer
drought
Severity

SD heating
degree day
(1C)

Eastern SD
rainfall
(cm)

All
wheat
(kg/ha)

Soybean
(kg/ha)

Corn
(kg/ha)

1974 �2.18 1091 28.2 1234 1341 2065
2012 �3.35 1048 28.2 3071 2012 6321
2012–1974 – – 0 1837 671 4256

Table 4
The impact of increased plant available water on net economic return for corn, soybean, and wheat grown in South Dakota in 2012 (NASS, 2012). The selling prices for maize,
soybean, and wheat was $277/mg, $518/mg, and $302/mg, respectively. The precipitation use efficiency for maize, soybean, and wheat was 217 kg of grain (cm�ha)�1,
95.1 (cm�ha)�1, and 302 (cm�ha)�1, respectively.

NASS Water Harvested Total yield $ return

Region increase (cm) maize (ha) soybean (ha) wheat (ha) maize (ha) soybean (mg) wheat (mg) due to management ($)

NC 5.42 487,647 450,011 137,593 573,541 231,955 114,846 314,079,090
C 4.85 348,435 240,384 145,930 366,710 110,873 108,995 192,165,957
NE 3.63 368,265 373,121 53,580 290,086 128,806 29,953 156,307,287
EC 3.42 403,836 397,402 5220 299,703 129,252 2750 150,989,862
SE 4.02 372,311 397,402 29,927 324,782 151,928 18,527 174,465,985
NW 4.25 81,625 2023 114,041 75,279 818 74,640 43,869,379
SC 5.50 73,936 34,317 99,229 88,243 17,950 84,047 59,185,895
WC 5.34 61,148 0 56,575 70,857 0 46,525 33,724,833

Total 2,197,204 1,894,660 642,095 2,089,201 771,581 480,282 1,124,788,289
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hybrids with relatively high CO2 exchange capacity tend to have
higher stomatal frequency and lower resistance (sec/cm). Hammer
et al. (2009) suggested that PUE is influenced by root architecture
while Lee and Tollenaar (2007) suggested that higher yields could
be linked to more erect leaves, higher plant population, and the
selection of leaves that stay green longer. Others have reported
that modern maize hybrids have (1) higher photosystem II

quantum efficiency (O0Neill et al., 2006), and (2) improved photo-
synthesis and reduced transpiration under water stressed condi-
tions (Nissanka et al., 1997). Nissanka et al. (1997) also reported
that (1) recovery from water stress was slower in the hybrid
released in 1959 (Pride 5) than 1988 (Pioneer 3902); (2) CO2 losses
through respiration were less for the hybrid released in 1988, and
(3) water use efficiency (CO2 fixed/transpiration) was less for Pride

Fig. 2. The 25 year precipitation (a) and temperature (b) coefficient of variation for the north central region of the United States. These maps are based on data collected from
1640 weather stations between 1982 and 2006. The data source was the U.S.National Weather Service.
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5 than Pioneer 3902 when exposed to water stress. Tollenaar and
Wu (1999) attributed corn yield increases to increased leaf long-
evity, a more active root system and a higher assimilate supply to
demand ratio during grain filling. There are a several studies that
conducted side-by-side comparisons of maize plants released in
different decades (Pioneer, 2009; Monsanto Company, 2011).
These studies show that improvements in PUE are at least partially
attributed to genetic improvements.

In many semi-arid regions, opportunities to increase yields
through improved management exist. For example, in Africa
subsidized fertilizers provided to small farmers increased yields
10% to 30% from 2005 to 2010 (Sanchez, 2013); while in the North

America Great Plains precision nutrient, water, populations, pests,
cover crops, and cultivar selection could reduce the gap between
the crops genetic potential and achieved yield. In both systems,
significant opportunities exist to increase yields (Fig. 4; Duvick and
Cassman., 1999; Dobermann and Shapiro, 2004; Stewart et al.,
2005; Kitchen et al., 2010; Bundy et al., 2011; Butzen, 2011;
Midwest Cover Crop Council, 2012; Tremblay et al., 2012;
Sanchez, 2013). Closing the gap between the crop genetic potential
and achieved yield can increase food production without convert-
ing grasslands into crop production.

In the past, the adoption of precision systems was limited by
barriers related to simplicity, economic returns, and time demands
during critical periods. Fortunately, new precision farming imple-
ments, such as light bars, self-guided tractors, yield monitors,
global positioning systems (GPS), remote sensing, computers and
smart phones, and planters and fertilizer applicators with variable
rate capacity are helping producers integrate new innovative
technologies into their operation.

Improved techniques to diagnose yield limiting factors may
also increase yields. The traditional approach to diagnose pro-
blems is based on visual interpretation or the chemical analysis of
soil and plant samples. These technologies can result in large
diagnosis errors, because the techniques don't account for interac-
tions between abiotic and biotic stresses. For example, Hansen et al.
(2013) reported that in response to water stress, maize down-
expressed genes involved in wound recovery and nutrient uptake,
which resulted in maize plants in water stressed areas having
P concentrations that were less (1.9 g kg�1) than the P critical level
(2.2 g kg). The tissue sample suggests that that even though
P fertilizer was applied, yields were limited by P availability.

New molecular biology techniques also provide an opportunity to
improve light, water, and nutrient use efficiency. For example, Clay
et al. (2009) used transcriptome analysis to assess how plant popula-
tion affected light, water, and N utilization. They showed that modern
maize hybrids, in response to increasing population pressure, reduced
the expression of many genes associated with photosynthesis. The net
result was shorter plants with a reduced per plant yield but a greater
yield per hectare. Surprisingly, gene expression changes indicated that
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Fig. 3. Relationship between year of published research and maize precipitation
use efficiency in studies conducted across the US Great Plains. PUE is equal to, grain
yield/during the season rainfall – the change in stored water. Based on Dreibelbis
and Harold (1958); Gard, et al. (1961) only no-irrigated treatments; Holt and Van
Daren (1961); Timmons et al. (1966); Hillel and Guron (1973); Stewart et al. (1975);
Hanks et al. (1978); Musick and Dusek (1980); Stegman (1982); Eck (1984); Unger
(1986); Hattendorf et al. (1988); Howell et al. (1989, 1995, 1998); Steiner et al.
(1991); Scheekloth et al. (1991); Lamm et al. (1995); Tolk et al. (1998); Trooien et al.
(1999); Norwood (1999, years 92–95); Norwood (2000); Al-Kaisi and Yin (2003);
Sharratt and McWilliams (2005); Kim et al. (2008); Payero et al. (2009); Monsanto
Company (2010); Pioneer (2009) and Barbieri et al. (2012). Where possible dryland,
fertilized, and seeded at an appropriate rate were selected for comparisons.
Experiments were only included if they contained adequate measurements.
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these modern maize varieties did not have the classic shade response
(Horvath et al., 2007; Moriles et al., 2012), and suggest that success of
the skip row maize seeding configurations (high population within a
row) under water stress is the result of photosynthesis genes that
were down expressed.

5. Summary

Over the last 30 year agricultural prices have increased and the
U.S. total gross value/total costs ratio for maize, soybeans, and wheat
were 1.24, 1.34, and 1.07, respectively in 2012 (http://www.ers.usda.
gov/data-products/commodity-costs-and-returns.aspx). These eco-
nomic opportunities when combined genetic enhancements and
management improvements are providing the opportunity to con-
vert grasslands to row crop production. However, grassland conver-
sion to row crop production in semi-arid regions contains risk
because there are many fragile areas where extreme climatic events
can provide the tipping point that converts an apparently sustainable
system to a non-sustainable system.

Research also shows that (1) better genetics and management
practices have reduced the risk of crop failure, and (2) that food
production in semi-arid region can be increased by enhancing the
productivity of existing cropped land. However, this statement
does not infer that crop production on all existing cropped lands in
semi-arid regions is sustainable. Worldwide, targeted research
should be conducted to clearly identify local barriers to conserva-
tion practice adoption and identify the long-term ramifications of
land-use changes in semi-arid regions.

Increasing the sustainability in semi-arid regions may require
several paradigm shifts that involve a change in focus from the use
of no-tillage to the use of hedgerows or terraces to reduce runoff
(Stroosnigder, 2009), providing low cost fertilizers and high quality
seeds to increase yields (Sanchez, 2002, 2013), developing mole-
cular assessment techniques that account for the up and down
expression of genes associated with photosynthesis, wounding
recovery, nutrient uptake, and disease resistance in response to
water stress. It is important to consider that each problem is unique
and requires the development of innovative solutions that matches
management to the cultural and biophysical constraints.

Acknowledgments

Funding was provided by South Dakota State University, South
Dakota, USDA-AFRI, and USDA-NRCS-CIG.

References

Aadland, D., 2004. Cattle cycles, heterogeneous expectations, and the age distribu-
tion of capital. J. Econ. Dyn. Control 28, 1977–2002.

Al-Kaisi, M.M., Yin., X., 2003. Effects of nitrogen rate, irrigation rate, and plant
population on corn yield and water use efficiency. Agron. J. 95, 1475–1482.

Barbieri, P., Maggiora, A.D., Sadras, V.O., Echeverria, H., Andrade, F.H., 2012. Maize
evaportranspiration and water use efficiency in response to row spacing. Agron.
J. 104, 939–944.

Baumhardt, R.L., Scanlon, B.R., Schwartz, R.C., 2010. The impact of long-term
conventional and no-tillage management on field hydrology and groundwater
recharge. In: Proceedings of the 32nd Southern Agricultural Systems Con-
ference, July 20–22 2010, Jackson, Tennessee. 〈http://www.ag.auburn.edu/
auxiliary/nsdl/scasc/Proceedings/2010/Baumhardt.pdf〉 (accessed 28.09.10).

Bonnemann, J.J., 1969. 1969 Corn Performance Trials. Plant Science Department.
SDSU, Brookings SD. (57006. January 1970. Circular 198).

Bonnemann, J.J., 1970. 1970 Corn Performance Trials. Plant Science Department.
SDSU, Brookings SD. (57006. January 1971. Circular 201).

Bonnemann, J.J., 1973. 1973 Corn Performance Trials. Plant Science Department.
SDSU, Brookings SD. (57006. February 1974. Circular 209).

Bonnemann, J.J., 1975. 1975 Corn Performance Trials. Plant Science Department.
SDSU, Brookings SD. (57006. February 1976. Circular 215).

Bonnemann, J.J., 1976. 1976 Corn Performance Trials. Plant Science Department.
SDSU, Brookings SD. (57006. January 1977. Circular 217).

Bonnemann, J.J., 1977. 1977 Corn Performance Trials. Plant Science Department.
SDSU, Brookings SD. (57006. January 1978. Circular 221).

Bonnemann, J.J., 1978. 1978 Corn Performance Trials. Plant Science Department.
SDSU, Brookings SD. (57006. January 1979. Circular 227).

Bonneman, J.J., 1979. 1979 Corn Performance Trials. Plant Science Department.
SDSU, Brookings SD. (57006. January 1980. Circular 231).

Bonneman, J.J., 1981. 1981 Corn Performance Trials. Plant Science Department.
SDSU, Brookings SD. (57006. January 1982. Circular 237).

Bonneman, J.J., 1982. 1982 Corn Performance Trials. Plant Science Department.
SDSU, Brookings SD. (57006. January 1983. Circular 241).

Bonneman, J.J., 1983. 1983 Corn Performance Trials. Plant Science Department.
SDSU, Brookings SD. (57006. January 1984. Circular 245).

Bonnemann, J.J., 1984. 1984 Corn Performance Trials. Plant Science Department.
SDSU, Brookings SD. (57006. January 1985. Circular 251).

Bonnemann, J.J., 1985. 1985 Corn Performance Trials. Plant Science Department.
SDSU, Brookings SD. (57006. January 1983. Circular 253).

Bonnemann, J.J., 1986. 1986 Corn Performance Trials. Plant Science Department.
SDSU, Brookings SD. (57006. December 1986. Pamphlet number 98).

Braschler, C., 1983. The changing demand structure for pork and beef in the 1970s:
implications for the 1980s. South. J. Agric. Econ. 15, 105–110.

Broadberry, S.N., Campbell, B.M., Klein, A., Overton, M., van Leeuwein B., 2010.
British economic growth 1290–1870. Available from: 〈http://www.eh.net/eha/
system/files/Broadberry.pdf〉.

Bundy, L.G., Andrask, T.W., Ruark, M.D., Peterson, A.E., 2011. Long-term continuous corn
and nitrogen effects on productivity and soil properties. Agron. J. 103, 1346–1351.

Butzen, S., 2011. Optimizing seeding rates for corn production. Pioneer Agron. Sci.
Crop Insights 21, 1–4.

Cardwell, V.B., 1982. Fifty years of Minnesota corn production: Sources of yield
increase. Agron. J. 74, 984–990.

Chang, J., Clay, D.E., Clay, S.A., Schumacher, T., 2014. Moderate to light water stress
impacts on transgenic drought tolerant corn (Zea mays), MON 87460, when
grown in the US Northern Great Plains. Agron. J. 106, 125–130.

Clay, D.E., Chang, J., Clay, S.A., Stone, J., Gelderman, R., Carlson, C.G., Reitsma, K.,
Jones, M., Janssen, L., Schumacher, T., 2012. Yield increases and no-tillage
adoption impacts on carbon sequestration and associated footprint. Agron. J.
104, 763–770. (Available from:) 〈https://www.agronomy.org/publications/search?
open-access=true&journal%5Baj%5D=aj&start=11〉.

Clay, D.E., Clay, S.A., Jackson, J., Dalsted, K., Reese, C., Liu, Z., Malo, D.D., Carlson, C.G.,
2003. C13 discrimination can be used to evaluate soybean yield variability.
Agron. J. 95, 430–435.

Clay, S.A., Clay, D.E., Horvath, D., Pullis, J., Carlson, C.G., Hansen, S., Reicks., G., 2009.
Corn (Zea mays) responses to competition: growth alteration vs limiting factor.
Agron. J. 101, 1522–1529.

Coupland, R.T., 1979. Grassland Ecosystems of the World: Analysis of Grasslands
and their Uses. Cambridge University Press, Cambridge, UK p. 401.

DeFelice, M.S., Carter, P.R., Mitchell, S.B., 2006. Influence of tillage on maize and
soybean yield in the United States and Canada. Online. Crop Manage. , http://dx.
doi.org/10.1094/CM-2006-0626-01-RS.

Derpsch, R., Friedrich, T., Kassam, H., Hongwen, L., 2010. Current status of adoption
of no-tillage farming the world and some of its main benefits. Int. J. Agric. Biol.
Eng. 3, 1. (Available from:) 〈http://www.ijabe.org〉.

Diamond, J., 2005. Collapse: How societies choose to fail or succeed. Viking Press,
New York, New York, ISBN: 0-14-303655-6.

Dobermann, A., Shapiro, A., 2004. Seting a realistic corn yield goal. University of
Nebraska-Lincoln Extension, Neb Guide p. G481. (Available from:) 〈http://www.
ianrpubs.unl.edu/epublic/archive/g481/build/g481.pdf〉.

Dreibelbis, F.R., Harold, L.L., 1958. Water-use efficiency of corn, wheat, and meadow
crop. Agron. J. 50, 500–503.

Duncan, E.R., 1954. Influence of carrying plant population, soil fertility, and hybrid
on corn yield. Soil Sci. Soc. Proc. 18, 437–440.

Duvick, D.N., Cassman, K.G., 1999. Post green revolution trends in yield potential of
temporate maize grow the north central United States. Crop Sci. 39, 1622–1630.

Eck, H.V., 1984. Irrigated corn yield response to nitrogen and water. Agron. J. 76,
421–428.

Ellis, J., 1992. ILCA0s rangeland research programme in the arid and semi-arid zones.
Rev. Recomm., 39. (International Livestock Centre for Africa, Addis Ababa).

Evrendilek, F., Celik, I., Kilic, S., 2004. Changes in soil organic carbon and other
physical soil properties along adjacent Mediterranean forest, grassland, and
crop ecosystems in Turkey. J. Arid Environ. 59, 743–752.

Fowler, R., Rockstram, J., 2001. Conservation tillage for sustainable agriculture: an
agrarian revolution gathers momentum in Africa. Soil Tillage Res. 61, 93–108.

Frisvold, G., Boor, A., Reeves, J.M., 2007. Simultaneous diffusion of herbicide tolerant
cotton and conservation tillage. In: Proceedings of the 2007 Beltwide Cotton
Conference. National Cotton Council of America. New Orleans, LA.

Gaskell, M.L., Pearce, R.B., 1983. Stomatal frequency of corn hybrids differing in
photosynthetic capacity. Crop Sci. 23, 176–177.

Gard, L.E., McKibben, G.E., Jones Jr., B.A., 1961. Moisture loss and corn yields on a
silt-pan soil as affected by three levels of water supply. Soil Sci. Soc. Am. J. 25,
154–157.

Givens, W.A., Shaw, D.R., Kruger, G.R., Johnson, W.G., Weller, S.C., Young, B.G.,
Wilson, R.G., Owen, M.D.K., Jordan, D., 2009. Survey of tillage practices in
glyphosate resistant crops. Weed Technol. 23, 150–155.

Goldewijk., K.K., 2001. Estimating global land use change over the past 300 years:
The HYDE Database. Glob. Biogeochem. Cycles 15, 17–433.

D.E. Clay et al. / Global Food Security 3 (2014) 22–3028

http://www.ers.usda.gov/data-products/commodity-costs-and-returns.aspx
http://www.ers.usda.gov/data-products/commodity-costs-and-returns.aspx
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref1
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref1
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref2
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref2
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref3
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref3
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref3
http://www.ag.auburn.edu/auxiliary/nsdl/scasc/Proceedings/2010/Baumhardt.pdf
http://www.ag.auburn.edu/auxiliary/nsdl/scasc/Proceedings/2010/Baumhardt.pdf
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref4
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref4
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref5
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref5
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref6
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref6
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref7
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref7
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref8
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref8
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref9
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref9
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref10
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref10
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref11
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref11
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref12
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref12
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref13
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref13
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref14
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref14
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref15
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref15
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref16
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref16
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref17
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref17
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref18
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref18
http://www.eh.net/eha/system/files/Broadberry.pdf
http://www.eh.net/eha/system/files/Broadberry.pdf
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref19
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref19
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref20
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref20
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref21
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref21
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref22
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref22
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref22
https://www.agronomy.org/publications/search?open-access=true&journal%5Baj%5D=aj&start=11
https://www.agronomy.org/publications/search?open-access=true&journal%5Baj%5D=aj&start=11
https://www.agronomy.org/publications/search?open-access=true&journal%5Baj%5D=aj&start=11
https://www.agronomy.org/publications/search?open-access=true&journal%5Baj%5D=aj&start=11
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref24
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref24
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref24
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref25
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref25
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref25
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref26
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref26
http://dx.doi.org/10.1094/CM-2006-0626-01-RS
http://dx.doi.org/10.1094/CM-2006-0626-01-RS
http://dx.doi.org/10.1094/CM-2006-0626-01-RS
http://dx.doi.org/10.1094/CM-2006-0626-01-RS
http://www.ijabe.org
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref29
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref29
http://www.ianrpubs.unl.edu/epublic/archive/g481/build/g481.pdf
http://www.ianrpubs.unl.edu/epublic/archive/g481/build/g481.pdf
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref31
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref31
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref32
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref32
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref33
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref33
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref34
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref34
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref35
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref35
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref35
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref36
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref36
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref36
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref37
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref37
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref38
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref38
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref39
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref39
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref39
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref40
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref40
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref40
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref41
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref41


Guo, S., Zhu, H., Dang, T., Wu, J., Liu, W., Hao, M., Li, Y., Syer, K., 2012. Winter wheat
grainyield associated with precipitation distribution under long-term nitrogen
fertilization in the semiarid loess plateau in China. Geoderma 189, 442–450.

Hall, R., Bonnemann, J.J., Evenson., D.P., 1987. 1987 Corn Performance Trials. SDSU,
Brookings SD. (57006. January 1988. EC 253).

Hall, R., Bonnemann, J.J., D.P. Evenson, D.P., 1988. 1988 Corn Performance Trials.
SDSU, Brookings SD. (57006. January 1988. EC 775).

Hall, R., Bonnemann, J.J., 1989. 1989 Corn Performance Trials. SDSU, Brookings SD.
(57006. January 1988. EC 775).

Hall, R., Bonnemann, J.J., 1990. 1990 Corn performance trials. SDSU, Brookings SD.
(57006. January 1988. EC 775).

Hall, R., Bonnemann, J.J., 1992. 1991 Corn Performance Trials. SDSU, Brookings SD.
(57006. January 1992. EC 775).

Hall, R., 1993. 1993 Corn Performance Trials. Plant Science Department. SDSU,
Brookings SD. (57006. Circular 253).

Hall, R., 1994. 1994 Corn Performance Trials. Plant Science Department. SDSU,
Brookings SD. (57006. Circular 253).

Hall, R., 1995. 1995 Corn Performance Trials. Plant Science Department. SDSU,
Brookings SD. (57006. Circular 253).

Hall, R., 1996. 1996 Corn Performance Trials. Plant Science Department. SDSU,
Brookings SD. (57006. Circular 253).

Hall, R., 1997. 1997 Corn Performance Trials. Plant Science Department. SDSU,
Brookings SD. (57006. Circular 253).

Hall, R., Kirby, K., 1998. 1998 Corn Performance Trials. Plant Science Department.
SDSU, Brookings SD. (57006. Circular 253).

Hall, R., Kirby, K., 1999. 1999 Corn Performance Trials. Plant Science Department.
SDSU, Brookings SD. (57006. Circular 253).

Hall, R., Kirby, K., 2000. 2000 Corn Performance Trials. Plant Science Department.
SDSU, Brookings SD. (57006. Circular 253).

Hall, R., Kirby, K., 2001. 2001 Corn Performance Trials. Plant Science Department.
SDSU, Brookings SD. (57006. Circular 253).

Hall, R., Kirby, K., 2002. 2002 Corn Performance Trials. Plant Science Department.
SDSU, Brookings SD. (57006. Circular 253).

Hall, R., Kirby, K., 2003. 2003 Corn Performance Trials. Plant Science Department.
SDSU, Brookings SD 〈http://www.sdstate.edu/ps/extension/crop-mgmt/cpt/
upload/C253-03.pdf〉. (57006. Circular 253 (accessed 19.03.13)).

Hall, R., Kirby, K., 2004. 2004 Corn performance trials. Plant Science Department.
SDSU, Brookings SD 〈http://www.sdstate.edu/ps/extension/crop-mgmt/cpt/
upload/C253-04.pdf〉. (57006. Circular 253 (accessed 19.03.13)).

Hall, R., Kirby, K., Piechowski, G., 2005. 2005. Corn Performance Trials. Plant Science
Department. SDSU, Brookings SD 〈http://www.sdstate.edu/ps/extension/
crop-mgmt/cpt/upload/C253-05.pdf〉. (57006. Circular 253 (accessed 19.03.13)).

Hall, R., Kirby, K., 2006. 2006 Corn Performance Trials. Plant Science Department.
SDSU, Brookings SD 〈http://www.sdstate.edu/ps/extension/crop-mgmt/cpt/
upload/C253-06.pdf〉. (57006. Circular 253 (accessed 19.03.13)).

Hall, R., Kirby, K., Hall, J.A., 2007. 2007 Corn Performance Trials. Plant Science
Department. SDSU, Brookings SD 〈http://www.sdstate.edu/ps/extension/
crop-mgmt/cpt/upload/C253-07.pdf〉. (57006. Circular 253 (accessed 19.03.13)).

Hall, R., Kirby, K., Hall, J.A., 2008. 2008 Corn Performance Trials. Plant Science
Department. SDSU, Brookings SD 〈http://www.sdstate.edu/ps/extension/
crop-mgmt/cpt/upload/C253-08.pdf〉. (57006. Circular 253 (accessed 19.03.13)).

Hall, R., Kirby, K., Hall, J.A., 2009. 2009 Corn Performance Trials. Plant Science
Department. SDSU, Brookings SD 〈http://www.sdstate.edu/ps/extension/
crop-mgmt/cpt/upload/C253-09.pdf〉. (57006. Circular 253 (accessed 19.03.13)).

Hall, R., Kirby, K., Hall, J.A., 2010. 2010 Corn Performance Trials. Plant Science
Department. SDSU, Brookings SD 〈http://www.sdstate.edu/ps/extension/
crop-mgmt/cpt/upload/C253-10.pdf〉. (57006. Circular 253 (accessed 19.03.13)).

Hall, R., Kirby, K., Hall, J.A., 2011. 2011 Corn Performance Trials, Bancroft. Plant
Science Department. SDSU, Brookings SD 〈http://igrow.org/up/resources/
03-3025-2012.pdf〉. (57006. Circular 253 (accessed 19.03.13)).

Hall, R., Kirby, K., Hall, J.A., 2012a. 2012 C Corn Performance Trials, Bath. Plant
Science Department. SDSU, Brookings SD 〈http://igrow.org/up/resources/
03-3021-2012.pdf〉. (57006. Circular 253 (accessed 19.03.13)).

Hall, R., Kirby, K., Hall, J.A., 2012b. 2012 Corn Performance Trials, Gladdes. Plant
Science Department. SDSU, Brookings SD 〈http://igrow.org/up/resources/
03-3024-2012.pdf〉. (57006. Circular 253 (accessed 19.03.13)).

Hall, R., Kirby, K., Hall, J.A., 2012c. 2012 Corn Performance Trials, South Shore. Plant
Science Department. SDSU, Brookings SD 〈http://igrow.org/up/resources/
03-3023-2012.pdf〉. (57006. Circular 253 (accessed 19.03.13)).

Hall, R., Kirby, K., Hall, J.A., 2012d. 2012 Corn Performance Trials, Volga. Plant
Science Department. SDSU, Brookings SD 〈http://igrow.org/up/resources/
03-3022-2012.pdf〉. (57006. Circular 253 (accessed 19.03.13)).

Hammer, G.L., Messina, E., Schussler, J., Zinselmeir, C., Paszkiewer, S., Cooper, M.,
2009. Can changes in canopy and/or root system architecture explain historical
corn trends in the U.S. maize belt. Crop Sci. 49, 299–312.

Hanks, R.L., Ashcroft, G.L., Rasmussen, V.P., Wilson, G.D., 1978. Corn production as
influenced by irrigation and salinity. Irrig. Sci. 1, 47–59.

Hannah, L., Lohse, D., Hutchinson, D., Carr, C., Lankerani, A., J.L., 1994. A preliminary
inventory of human disturbance of world ecosystems. Ambio 23, 246–250.

Hansen, S., Clay, S.A., Clay, D.E., Horvath, D., Carlson, C.G., Reicks, G., Jarachi, Y., 2013.
Landscape features impact on soil available water, corn biomass, and gene
expression during the late vegetative stage. Plant Genome 6, 1–6.

Hansen, N., Allen, B., Bauhardt, R.L., Lyon, D., 2012. Research acheivments and
adoption of no-till dry cropping systems in the semi-arid U.S. Great Plains. Field
Crop Res. 132, 196–203.

Hansen, Z.K., Libecap, G.D., 2004. Small farms, externalities, and the dust bowl of
the 1930s. J. Politic. Econ. 112, 665–694.

Hatfield, J.L., Sauer, T.J., Pruger, J.H., 2000. Managing soils to achieve greater water
use efficiency: a review. Agron. J. 93, 271–280.

Hattendorf, M.J., Redfels, M.S., Amos, B., Stone, L.R., Gwin Jr., R.E., 1988. Comparative
water use characteristics of six row crops. Agron. J. 80, 80–85.

Hillel, D., Guron, Y., 1973. Relation between evapotranspiration rate and maize
yield. Water Resour. Res. 9, 743–748.

Holt, R.F., Van Daren, C.A., 1961. Water utilization by field corn in western
Minnesota. Agron. J. 53, 43–45.

Horvath, D.P., Llewellyn, D., Clay., S.A., 2007. Heterologous hybridization of cotton
microarrays with velvetleaf (Abutilon theophrasti) reveals physiological
responses due to maize competition. Weed Sci. 55, 546–557.

Howell, T.A., Yazar, A., Schneider, A.D., Dusek, D.A., Copeland, K.S., 1995. Yield and
water use efficiency of corn in response to LEPA irrigation. Trans. ASAE 38,
1737–1747.

Howell, T.A., Copeland, K.S., Schneider, A.D., Dusek, D.A., 1989. Sprinkler irrigation
management of corn: Southern high plains. Trans. ASAE 32, 14–154.

Howell, T.A., Tolk, J.A., Schneider, A.D., Evert., S.R., 1998. Evaportranspiration yield,
and water use efficiency of corn and hybrid differing in maturity. Agron. J. 90,
3–9.

IPCC, 2008. Climate change and water, Intergovernmental Panel on Climate Change
Technical Report IV. (June 2008).

Kharel, T.P., Clay, D.E., Beck, D., Reese, C., Carlson, C.G., Park., H., 2011. Nitrogen and
water rate effect on winter wheat yield, N and water use efficiency and dough
quality. Agron. J. 103, 1389–1396.

Kim, Ki-In, Clay, D.E., Carlson, C.G., Clay, S.A., Trooien, T., 2008. Do synergistic
relationships between nitrogen and water influence the ability of corn to use
nitrogen derived from fertilizer and soil? Agron. J. 100, 551–556.

Kitchen, N.R., Sudduth, K.A., Drummond, S.T., Scharf, P.C., Palm, H., Roberts, D.F.,
Vories., E.D., 2010. Groundbased canopy reflectance sensing for variable-rate
nitrogen corn fertilization. Agron. J. 102, 71–84.

Klocke, N.L., Currie, R.S., Dumier, T.J., 2009. Water savings from crop residue
management. In: Proceedings for the 21st Annual Central Plains Irrigation
Conference. Colby Kansas, February 24–25 2009. Available from: 〈http://www.
ksre.ksu.edu/irrigate/OOW/P06/Klocke06E.pdf〉.

Knox, E.L.S. 2004. History of Western Civilization. Boise State University. Available
from: 〈http://europeanhistory.boisestate.edu/westciv/medsoc/〉.

Lamm, F.R., Manges, H.L., Stone, L.R., Khan, A.H., Rogers, D.H., 1995. Water
requirements of subsurface drip-drip irrigation maize in north-west Kansas.
Trans. ASAE 38, 441–448.

Lee, E.A., Tollenaar., M., 2007. Physiological basis for successful breeding strategies
for corn grain yield. Crop Sci. 47, S202–S215.

Lindstrom, M., Schumacher, J., Congo, T.E., Blecha, N.P., 1994. Management
consideration for returning CRP land to crop production. J. Soil Water Conserv.
49, 420–425.

Lorenz, A.J., Gustafson, T.J., Coors, J.G., de Leon, N., 2010. Breeding maize for a
bioeconomy: A literature survey examining harvest index and stover yields and
their relationship to grain yield. Crop Sci. 50, 1–11.

Maitima, J.M., Mugatha, S.M., Reid, R.S., Gachimbi, L.N., Majule, A., Lyaruu, H.,
Pomery, D., Mathai, S., Mugisha, S., 2009. The linkages between land use
change, land degradation and biodiversity across East Africa. Afr. J. Environ. Sci.
Technol. 3, 310–325.

Mamani-Pati, F., Clay, D.E., Smeltekop, H., 2011. Geospatial management of Andean
technologies by the Inca Empire. In: Clay, D.E., Shanahan, J. (Eds.), GIS in Agriculture:
Nutrient Management for Improved Energy Efficiency. CRC Press, New York, USA,
pp. 255–276 〈http://www.crcpress.com/product/isbn/0849375266〉. (Available
from).

Marsh, J.M., 2003. Impacts of declining U.S. retain beef demand on farm-level beef
prices and production. Am. J. Agric. Econ. 85, 902–913.

Merz, S.K., Rowley, T., Powell., J., 2006. Evaluation of salinity outcomes of regional
investment. Report to the Department of the Environment and Heritage and
Department of Agriculture, Fisheries and Forestry April 2006. Available from:
〈http://nrmonline.nrm.gov.au/downloads/mql:452/PDF〉.

Midwest Cover Crops Council. 2012. Midwest Cover Crops Field Guide 〈www.mccc.
msu.edu〉 (accessed 3.06.13).

Mitchell, J.P., Singh, P.N., Wallender, W.W., Munk, D.S., Wrobe, J.F., Horvath, W.R.,
Hogen, P., Ray, R., Hanson., B.R., 2012. No-tillage and high residue practices
reduce soil water evaporation. Calif. Agri. 66, 55–61.

Monsanto Company, 2010. Corn and soybean water use efficiency in dryland and
irrigation. Learning Center at Gothenburg Nebraska Demonstration Report.
Available from: 〈http://www.monsanto.com/products/Pages/gothenburg-lear
ning-center-research.aspx〉 (accessed 15.05.13).

Monsanto Company. 2011. Water efficiency in era hybrids. Learning Center at
Gothenburg Nebraska Demonstration Report. Available from: 〈http://www.
monsanto.com/products/Pages/gothenburg-learning-center-research.aspx〉.
(accessed 15.05.13).

Moriles, J., Hansen, S., Horvath, D.P., Reicks, G., Clay, D.E., Clay, S.A., 2012. Microarray
and growth analyses identify differences and similarities of early corn response
to weeds, shade, and nitrogen stress. Weed Sci. 60, 158–166.

Molles, M.C., Dalm, C.N., Croker, M.T., 1992. Climate variability and streams and
river ins semi-arid regions. In: R.D., Robert, M.D., Bothwell (Eds.), Aquitic
Ecosystem in Semiarid Regions: Implications for Resource Management,
Proceedings of the NHRI Sympsoium Series 1. Enviroment Canada, Saskatoon.
pp. 197–202. Available from: 〈http://sev.lternet.edu/sites/default/files/sev014_
molles_etal_aquatic_1992_0.pdf〉.

D.E. Clay et al. / Global Food Security 3 (2014) 22–30 29

http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref42
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref42
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref42
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref43
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref43
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref44
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref44
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref45
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref45
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref46
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref46
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref47
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref47
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref48
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref48
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref49
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref49
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref50
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref50
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref51
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref51
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref52
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref52
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref53
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref53
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref54
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref54
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref55
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref55
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref56
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref56
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref57
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref57
http://www.sdstate.edu/ps/extension/crop-mgmt/cpt/upload/C253-03.pdf
http://www.sdstate.edu/ps/extension/crop-mgmt/cpt/upload/C253-03.pdf
http://www.sdstate.edu/ps/extension/crop-mgmt/cpt/upload/C253-04.pdf
http://www.sdstate.edu/ps/extension/crop-mgmt/cpt/upload/C253-04.pdf
http://www.sdstate.edu/ps/extension/crop-mgmt/cpt/upload/C253-05.pdf
http://www.sdstate.edu/ps/extension/crop-mgmt/cpt/upload/C253-05.pdf
http://www.sdstate.edu/ps/extension/crop-mgmt/cpt/upload/C253-06.pdf
http://www.sdstate.edu/ps/extension/crop-mgmt/cpt/upload/C253-06.pdf
http://www.sdstate.edu/ps/extension/crop-mgmt/cpt/upload/C253-07.pdf
http://www.sdstate.edu/ps/extension/crop-mgmt/cpt/upload/C253-07.pdf
http://www.sdstate.edu/ps/extension/crop-mgmt/cpt/upload/C253-08.pdf
http://www.sdstate.edu/ps/extension/crop-mgmt/cpt/upload/C253-08.pdf
http://www.sdstate.edu/ps/extension/crop-mgmt/cpt/upload/C253-09.pdf
http://www.sdstate.edu/ps/extension/crop-mgmt/cpt/upload/C253-09.pdf
http://www.sdstate.edu/ps/extension/crop-mgmt/cpt/upload/C253-10.pdf
http://www.sdstate.edu/ps/extension/crop-mgmt/cpt/upload/C253-10.pdf
http://igrow.org/up/resources/03-3025-2012.pdf
http://igrow.org/up/resources/03-3025-2012.pdf
http://igrow.org/up/resources/03-3021-2012.pdf
http://igrow.org/up/resources/03-3021-2012.pdf
http://igrow.org/up/resources/03-3024-2012.pdf
http://igrow.org/up/resources/03-3024-2012.pdf
http://igrow.org/up/resources/03-3023-2012.pdf
http://igrow.org/up/resources/03-3023-2012.pdf
http://igrow.org/up/resources/03-3022-2012.pdf
http://igrow.org/up/resources/03-3022-2012.pdf
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref71
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref71
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref71
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref72
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref72
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref73
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref73
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref74
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref74
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref74
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref75
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref75
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref75
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref76
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref76
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref77
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref77
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref78
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref78
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref79
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref79
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref80
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref80
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref81
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref81
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref81
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref82
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref82
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref82
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref83
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref83
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref84
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref84
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref84
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref85
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref85
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref86
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref86
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref86
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref87
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref87
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref87
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref88
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref88
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref88
http://www.ksre.ksu.edu/irrigate/OOW/P06/Klocke06E.pdf
http://www.ksre.ksu.edu/irrigate/OOW/P06/Klocke06E.pdf
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref89
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref89
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref89
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref90
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref90
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref91
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref91
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref91
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref92
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref92
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref92
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref93
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref93
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref93
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref93
http://www.crcpress.com/product/isbn/0849375266
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref95
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref95
http://nrmonline.nrm.gov.au/downloads/mql:452/PDF
www.mccc.msu.edu
www.mccc.msu.edu
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref96
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref96
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref96
http://www.monsanto.com/products/Pages/gothenburg-learning-center-research.aspx
http://www.monsanto.com/products/Pages/gothenburg-learning-center-research.aspx
http://www.monsanto.com/products/Pages/gothenburg-learning-center-research.aspx
http://www.monsanto.com/products/Pages/gothenburg-learning-center-research.aspx
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref97
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref97
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref97
http://sev.lternet.edu/sites/default/files/sev014_molles_etal_aquatic_1992_0.pdf
http://sev.lternet.edu/sites/default/files/sev014_molles_etal_aquatic_1992_0.pdf


Munodowafa, A., 2012. The effect of rainfall characteristics and tillage sheet erosion,
and managing grain yield in semiarid conditions and granitic sandy soils in
Zimbabwa. Applied Environ. Soil Sci. , http://dx.doi.org/10.1155/2012/243815.

Musick, J.T., Dusek., D.A., 1980. Irrigated corn yield response to water. Trans. ASAE
23, 92–98.

National Agricultural Statistics Service (NASS), 1995. South Dakota agriculture, #54.
South Dakota Agriculture Statistics Services Sioux Falls SD. pp. 28–30. Available
from: 〈http://www.nass.usda.gov/sd〉.

National Agricultural Statistics Service (NASS), 2013. U.S. cattle inventory January 1,
1873–2013. Available from: 〈http://www.nass.usda.gov/Charts_and_Maps/Cat
tle/inv.asp〉.

National Agricultural Statistics Service (NASS), 1996. South Dakota Agriculture, #55.
South Dakota Agriculture Statistics Services Sioux Falls SD. Available from:
〈http://www.nass.usda.gov/sd〉.

National Agricultural Statistics Service (NASS), 1997. South Dakota, #56. South
Dakota Agriculture Statistics Services Sioux Falls SD. pp. 31–33. Available from:
〈http://www.nass.usda.gov/sd〉.

National Agricultural Statistics Service (NASS), 1998a. South Dakota 1998, #57.
South Dakota Agriculture Statistics Services Sioux Falls SD. pp. 32–34. Available
from: 〈http://www.nass.usda.gov/sd〉.

National Agricultural Statistics Service (NASS), 1998b. South Dakota 1998, #58.
South Dakota Agriculture Statistics Services Sioux Falls SD. pp. 31–33. Available
from: 〈http://www.nass.usda.gov/sd〉.

National Agricultural Statistics Service (NASS), 1999. South Dakota 1999, #59. South
Dakota Agriculture Statistics Services Sioux Falls SD. pp. 29–31. Available from:
〈http://www.nass.usda.gov/sd〉.

National Agricultural Statistics Service (NASS), 2000a. South Dakota 2000, #60.
South Dakota Agriculture Statistics Services Sioux Falls SD. pp. 31–33. Available
from: 〈http://www.nass.usda.gov/sd〉.

National Agricultural Statistics Service (NASS), 2001. South Dakota 2001 #61. South
Dakota Agriculture Statistics Services Sioux Falls SD. pp. 30–33. Available from:
〈http://www.nass.usda.gov/sd〉.

National Agricultural Statistics Service (NASS), 2002. South Dakota 2002, #62.
South Dakota Agriculture Statistics Services Sioux Falls SD. pp. 31–34. Available
from: 〈http://www.nass.usda.gov/sd〉.

National Agricultural Statistics Service (NASS), 2003. South Dakota 2003, #63.
South Dakota Agriculture Statistics Services Sioux Falls SD. pp. 29–31. Available
from: 〈http://www.nass.usda.gov/sd〉.

National Agricultural Statistics Service (NASS), 2004. South Dakota 2004 #64. South
Dakota Agriculture Statistics Services Sioux Falls SD. pp. 31–34. Available at
〈http://www.nass.usda.gov/sd〉.

National Agricultural Statistics Service (NASS), 2005. South Dakota 2005, #65.
South Dakota Agriculture Statistics Services Sioux Falls SD. pp. 33–36. Available
from: 〈http://www.nass.usda.gov/sd〉.

National Agricultural Statistics Service (NASS), 2006. South Dakota 2006, #66.
South Dakota Agriculture Statistics Services Sioux Falls SD. pp. 30–34. Available
from: 〈http://www.nass.usda.gov/sd〉.

National Agricultural Statistics Service (NASS), 2007. South Dakota 2007, #67. South
Dakota Agriculture Statistics Services Sioux Falls SD. pp. 30–33. Available from:
〈http://www.nass.usda.gov/sd〉.

National Agricultural Statistics Service (NASS), 2008. South Dakota 2008, #68.
South Dakota Agriculture Statistics Services Sioux Falls SD. pp. 30–32. Available
from: 〈http://www.nass.usda.gov/sd〉.

National Agricultural Statistics Service (NASS), 2009. South Dakota 2009, #69.
South Dakota Agriculture Statistics Services Sioux Falls SD. pp. 33–36. Available
from: 〈http://www.nass.usda.gov/sd〉.

National Agricultural Statistics Service (NASS), 2010. South Dakota 2010, #70. South
Dakota Agriculture Statistics Services Sioux Falls SD. pp. 31–34. Available from:
〈http://www.nass.usda.gov/sd〉.

National Agricultural Statistics Service (NASS), 2011. South Dakota 2011, #71. South
Dakota Agriculture Statistics Services Sioux Falls SD. pp. 30–33. Available from:
〈http://www.nass.usda.gov/sd〉.

National Agricultural Statistics Service (NASS), 2012. South Dakota 2012, #72. South
Dakota Agriculture Statistics Services Sioux Falls SD. pp. 32–36. Available from:
〈http://www.nass.usda.gov/sd〉.

National Agricultural Statistics Service (NASS), 2000b. 100 Years of South Dakota
Agriculture 1900–1999.

Nissanka, S.P., Dixon, M.A., Tollenaar., M., 1997. Canopy gas exchange response to
moisture stress in old and new maize hybrids. Crop Sci. 37, 172–181.

Norwood, C.A., 1999. Water use of dryland row crops as affected by tillage. Agron.
J. 91, 108–115.

Norwood, C.A., 2000. Water use and yield of limited irrigated and dryland corn. Soil
Sci. Soc. Am. J. 64, 365–370.

NRCS, 2007. Summary Report 2007 National Resource Inventory. USDA NRCS, Iowa
State University, Center for Survey Statistics and Methodology. Available from:
〈http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1041379.pdf〉.

O0Neill, P.M., Shanahan, J.F., Schepers, J.S., 2006. Use of chlorophyll florescence
assessments to differential corn hybrid response to variable water conditions.
Crop Sci. 46, 681–687.

O0Neill, P.M., Shanahan, J.F., Schepers, J.S., Caldwell, B., 2004. Agronomic responses
of corn hybrids from different eras to deficit and adequate levels of water and
nitrogen. Agron. J. 96, 1660–1667.

Payero, J.O., Tarkalson, D.D., Irmak, S., Davison, D., Petersen, J.L., 2009. Effect of
timing of a deficit-irrigation allocation on corn evapotranspiration, yield, water
use efficiency and dry mass. Agric. Water Manage. 96, 1387–1397.

Pioneer. 2009. Maize drought stress tolerance. Pioneer Crop Focus. Available from::
〈http://www.pioneer.com/CMRoot/Pioneer/US/agronomy/cropfocus/pdf/maize_
drought_stress_tolerance.pdf〉.

Pryor, R., 2006. Switching to no-till can save irrigation water. Univ. Nebraska-
Lincoln Ext Pub EC196-3.

Salado-Navarro, L.R., Sinclair, T.R., 2009. Crop rotations in Argentina: Analysis of
water balance and yield using crop models. Agric. Syst. 102, 11–16.

Samson, F., Knopf, F., 1994. Prairie conservation in North America. BioScience 44,
418–421.

Sanchez, P.A., 2002. Soil fertility and hunger in Africa. Science 295, 2019–2020.
Sanchez, P.A., 2013. Can the world feed itself? Some agronomic innovations. ASA

Plenary Address, York Lecture. American Society of Agronomy National Meet-
ing, Tampa Fl November, 3–6.

Schneekloth, J.P., Klocke, N.L., Hergert, G.W., Martin, D.L., Clark., R.T., 1991. Crop
rotations with full and limited irrigation and dryland management. Trans. ASAE
34, 2372–2380.

Schwabe, K.A., Conner, J.D., 2012. Drought Issues in Semi-Arid and Arid Environ-
ments. Available from: 〈http://www.choicesmagazine.org/choices-magazine/
theme-articles/what-happens-when-the-well-goes-dry-and-other-agricultur
al-disasters/drought-issues-in-semi-arid-and-arid-environments〉.

Sharratt, B.S., McWilliams, D.A., 2005. Microclimate and rooting characteristics of
narrow row verses conventional-row maize. Agron. J. 97, 1129–1135.

Smika, D.E., 1983. Soil water change as related to position of straw much on the soil
surface. Soil Sci. Soc. Am. J. 47, 988–991.

Stegman, E.C., 1982. Corn grain yield as influenced by timing of evapotranspiration
deficits. Irrig. Sci. 3, 75–87.

Steiner, J.L., Howell, T.A., Tolk, J.A., Schneider, A.D., 1991. Evaportranspiration and
growth predictions of CERES maize, sorghum, and wheat in the Southern High
Plains. In proceedings of the ASCE Irrigation and Drainage Conference 1991.
ASCE, New Yorkp, pp. 297–303.

Stewart, W.M., Dibb, D.W., Johnson, A.E., Smyth, T.J., 2005. The contribution of
commercial fertilizer nutrients to food production. Agron. J. 97, 1–6.

Stewart, J.L., Misra, R.D., Pruitt, W.O., Hagen, R.M., 1975. Irrigating corn and
sorghum with a deficit water supply. Trans. ASAE 18, 270–280.

Stroosnigder, L., 2009. Modifying land management in order to improve efficiency
of rainfall use in the African highlands. Soil Till Res. 103, 247–256.

Su, Z, Zhang, J., Wu, W., Cai, D., Lv, J., Jiang, G., Huang, J., Gao, J., Hartmann, R.,
Gabriels, D., 2007. Effect of conservation tillage practices on winter wheat
water use efficiency and crop yield on the loess plateau. China. Agric. Water
Manage. 87, 307–314.

Tilman, D., Valzer, C., Hill, J., Befact, B.L., 2011. Global food demand and the
sustainability of the intensification of agriculture. PNAS, USA, http://dx.doi.org/
10.1073/PSAS.1116437108.

Timmons, D.R., Holt, R.F., Moraghan, J.T., 1966. Effect of maize population on yield,
evaporation and water use efficiency in northwestern maize belt. Agron. J. 58,
429–432.

Tolk, J.A., Howell, T.A., Evett, S.R., 1998. Evaporation and yield of maize grown on
three high plains soils. Agron. J. 90, 447–454.

Tollenaar, M., Wu, J., 1999. Yield improvements in temperate maize in attributed to
greater stress tolerance. Crop Sci. 39, 1597–1604.

Tremblay, N., Bouroubi, M.Y., Bélec, C., Mullen, R., Kitchen, N., Thomason, W.,
Ebelhar, S., Mengel, D., Raun, B., Francis, D., Vories, E.D., Ortiz-Monasterio., I.,
2012. Corn Response to nitrogen is influenced by soil texture and weather.
Agron. J. 104, 1658–1671.

Triplett, G.B., Dick, W.A., 2008. No-tillage crop production: a revolution in
agriculture. Agron. J. 100, 153–165.

Trooien, T.P., Buchman, L.L., Sloderbeck, P., Dhuyvetter, K.C., Sourgeon, W.E, 1999.
Water use efficiency of different corn hybrids and grain sorghum in the central
Great Plains. J. Prod. Agric. 12, 377–382.

Unger, P.W., 1986. Wheat residue effects on soil water storage and corn production.
Soil Sci. Soc. Am. J. 50, 764–770.

Vega, E., Baldi, G., Jobbagy, E.G., Parvelo, J., 2009. Landuse change patterns in the Rio
de la Plata grassland: the influence of phytogeographic and political bound-
aries. Agri. Ecosys. Environ. 134, 287–292.

Wright, C.K., Wimberly, M.C., 2013. Recent land use change in the western corn belt
threatens grassland and wetlands. Proc. Natl. Acad. Sci. USA 110, 4134–4139.

D.E. Clay et al. / Global Food Security 3 (2014) 22–3030

View publication statsView publication stats

http://dx.doi.org/10.1155/2012/243815
http://dx.doi.org/10.1155/2012/243815
http://dx.doi.org/10.1155/2012/243815
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref99
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref99
http://www.nass.usda.gov/sd
http://www.nass.usda.gov/Charts_and_Maps/Cattle/inv.asp
http://www.nass.usda.gov/Charts_and_Maps/Cattle/inv.asp
http://www.nass.usda.gov/sd
http://www.nass.usda.gov/sd
http://www.nass.usda.gov/sd
http://www.nass.usda.gov/sd
http://www.nass.usda.gov/sd
http://www.nass.usda.gov/sd
http://www.nass.usda.gov/sd
http://www.nass.usda.gov/sd
http://www.nass.usda.gov/sd
http://www.nass.usda.gov/sd
http://www.nass.usda.gov/sd
http://www.nass.usda.gov/sd
http://www.nass.usda.gov/sd
http://www.nass.usda.gov/sd
http://www.nass.usda.gov/sd
http://www.nass.usda.gov/sd
http://www.nass.usda.gov/sd
http://www.nass.usda.gov/sd
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref100
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref100
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref101
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref101
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref102
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref102
http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1041379.pdf
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref103
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref103
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref103
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref103
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref104
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref104
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref104
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref104
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref105
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref105
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref105
http://www.pioneer.com/CMRoot/Pioneer/US/agronomy/cropfocus/pdf/maize_drought_stress_tolerance.pdf
http://www.pioneer.com/CMRoot/Pioneer/US/agronomy/cropfocus/pdf/maize_drought_stress_tolerance.pdf
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref106
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref106
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref107
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref107
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref108
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref109
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref109
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref109
http://www.choicesmagazine.org/choices-magazine/theme-articles/what-happens-when-the-well-goes-dry-and-other-agricultural-disasters/drought-issues-in-semi-arid-and-arid-environments
http://www.choicesmagazine.org/choices-magazine/theme-articles/what-happens-when-the-well-goes-dry-and-other-agricultural-disasters/drought-issues-in-semi-arid-and-arid-environments
http://www.choicesmagazine.org/choices-magazine/theme-articles/what-happens-when-the-well-goes-dry-and-other-agricultural-disasters/drought-issues-in-semi-arid-and-arid-environments
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref110
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref110
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref111
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref111
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref112
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref112
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref113
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref113
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref114
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref114
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref115
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref115
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref116
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref116
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref116
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref116
http://dx.doi.org/10.1073/PSAS.1116437108
http://dx.doi.org/10.1073/PSAS.1116437108
http://dx.doi.org/10.1073/PSAS.1116437108
http://dx.doi.org/10.1073/PSAS.1116437108
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref118
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref118
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref118
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref119
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref119
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref120
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref120
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref121
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref121
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref121
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref121
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref122
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref122
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref123
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref123
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref123
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref124
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref124
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref125
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref125
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref125
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref126
http://refhub.elsevier.com/S2211-9124(13)00056-4/sbref126
https://www.researchgate.net/publication/259992420

	South Dakota State University
	Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange
	2-2014

	Does the Conversion of Grasslands to Row Crop Production in Semi-aridareas Threaten Global Food Supplies
	David E. Clay
	Sharon A. Clay
	Kurtis D. Reitsma
	Barry H. Dunn
	Alexander J. Smart
	See next page for additional authors
	Recommended Citation
	Authors


	Does the conversion of grasslands to row crop production in semi-arid areas threaten global food supplies?
	Introduction
	The importance of considering long-term sustainability
	Increasing yields on semi-arid croplands and reducing erosion
	Extreme climatic events impact on productivity
	Increasing extreme climatic events in semi-arid regions

	Improved ability to manage abiotic and biotic stresses
	Summary
	Acknowledgments
	References


