Reducing Feedlot Mud Problems

Steve Pohl
South Dakota State University

Follow this and additional works at: http://openprairie.sdstate.edu/extension_extra

Recommended Citation
http://openprairie.sdstate.edu/extension_extra/20
Reducing Feedlot Mud Problems

by Steve Pohl, Extension ag engineer

Muddy conditions decrease feed intake, slow average daily gain of cattle, increase problems with foot rot, and negatively affect feed efficiency. A feedlot with 4 to 8 inches of mud can decrease feed intake by 8 to 15%, slow daily gains by 14%, and reduce feed efficiency by 13%. Severe conditions, such as belly-deep mud, can reduce feed intake up to 30% and drop daily gain and reduce feed efficiency by up to 25%.

These extreme wet conditions, however, do provide a benchmark to evaluate your present feedlot situation and to identify improvements that should be made. Recommended practices include runoff diversion of surface water, good drainage of the lot, well-designed mounds, and adequate space for the animals.

DIVERSION

The first step in reducing mud in feedlots is to prevent outside surface water from entering the lot. Where runoff from higher ground flows across the area, build a diversion terrace to divert the run off water around the lot. If water is coming off building roofs, use gutters to collect the rainfall and divert the water away from the lots. Keep these gutters in good repair.

DRAINAGE

The feedlot surface needs to have adequate drainage. Shape the lot surface to provide the shortest route for runoff water to get to a drainage channel. A definite drain from each pen is desirable, and proper grading will prevent ponded water.

A lot that is sloped 2 to 4% will provide for good drainage with minimum erosion. If your feedlot surface is relatively flat and has no possibility of unproved drainage, even with additional earth work, you may need to consider a new site or concrete floors.

MOUNDS

Mounds can be used to reduce mud problems. Mounds provide a comfortable resting place for cattle and sheep at reasonable cost during long periods of wet weather. During muddy conditions, particularly in the winter, cattle and sheep will lie or stand on mounds that are properly designed. Mounds that are too steep, too narrow, or too small will not be used effectively and in some cases will do more harm than good by blocking drainage. An example of a feedlot mound with given design criteria is illustrated on page 2 of this publication.

SPACE REQUIREMENTS

Lot space requirements for finishing cattle (800–1200 lb.) range from 250–500 square feet per animal. More space is required per animal where lot surface slopes are flatter. A lot with a 2 to 4% slope typically requires 300 to 400 square feet of space per finishing head.

Additional information on square footage per head (cattle, dairy, and sheep) and feedlot planning can be obtained through the Midwest Plan Service Housing and through equipment and beef production handbooks that are available at your county Extension offices.
Feedlot Mound Design.

NOTES:
1. BUILD THE MOUND ROUGHLY PARALLEL TO LOT DRAINAGE.
2. PROVIDE ADEQUATE DRAINAGE AWAY FROM THE MOUND, 3-4% SLOPE.
3. LENGTHWISE ORIENTATION OF THE MOUND SHOULD PROVIDE PROTECTION FROM THE PREVAILING WINDS, IDEALLY NORTH TO SOUTH, SECOND CHOICE IS NORTH TO SOUTH.
4. BUILD THE MOUNDS PRIMARILY OF SOIL, PREFERABLY CLAY. LIMESTONE CAN BE MIXED WITH SOIL TO REDUCE WATER ABSORPTION.
5. PACK THE MATERIAL IN 8" TO 12" LAYERS USING HEAVY EQUIPMENT.
6. CROWN THE TOP OF THE MOUND FOR GOOD DRAINAGE.
7. COVERING THE MOUND WITH BEDDING, CORN COBS, AND STRAW MAY TEMPORARILY HELP PROTECT THE MOUND SURFACE AND INSULATE THE ANIMAL'S BODY, FROM THE FROZEN GROUND, BUT IT ALSO HOLDS MOISTURE. BEDDING IS USUALLY UNNECESSARY AND UNDESIRABLE. OLD BEDDING SHOULD BE REMOVED IN THE SPRING.