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Abstract Feedback loops involving soil microorganisms can
regulate plant populations. Here, we hypothesize that micro-
organisms are most likely to play a role in plant–soil feedback
loops when they possess an affinity for a particular plant and
the capacity to consistently affect the growth of that plant for
good or ill. We characterized microbial communities using
whole-community DNA fingerprinting from multiple "home-
and-away" experiments involving giant ragweed (Ambrosia
trifidaL.) and common sunflower (Helianthus annuusL.), and
we looked for affinity–effect relationships in these microbial
communities. Using canonical ordination and partial least
squares regression, we developed indices expressing each

microorganism's affinity for ragweed or sunflower and its
putative effect on plant biomass, and we used linear regression
to analyze the relationship between microbial affinity and
effect. Significant linear affinity–effect relationships were
found in 75 % of cases. Affinity–effect relationships were
stronger for ragweed than for sunflower, and ragweed affini-
ty–effect relationships showed consistent potential for nega-
tive feedback loops. The ragweed feedback relationships in-
dicated the potential involvement of multiple microbial taxa,
resulting in strong, consistent affinity–effect relationships in
spite of large-scale microbial variability between trials. In
contrast, sunflower plant–soil feedback may involve just a
few key players, making it more sensitive to underlying
microbial variation. We propose that affinity–effect relation-
ship can be used to determine key microbial players in plant–
soil feedback against a low "signal-to-noise" background of
complex microbial datasets.

Introduction

Plant–soil feedback (PSF) is a term used to describe an inter-
active loop involving plants and the biological, chemical, and
physical properties of the soil [1]. In its most basic form, PSF
involves a plant whose growth alters some aspect of the soil
system, and this alteration has consequences for future plant
performance in that patch of soil [2]. For example, a plant may
attract root pathogens and parasites, raising the local popula-
tion density of these organisms, and this "negative feedback"
will serve to suppress the future performance of the plant or its
offspring [3]. Soil microorganisms are regarded as important
agents of PSF, and there has been great interest in exploring
microbial capacity to generate PSF in a number of different
systems [4–10].

Bever [11] introduced the framework of microbial PSF in a
two-plant system that included the effects of plant
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competition. He reasoned that each plant must respond to its
own feedback microorganisms and also those of its neigh-
bor(s). Modeling these interactions shows that certain kinds of
PSF can allow for the coexistence of competing plant species,
counteracting the tendency of competitive exclusion [11]. As
is necessary for modeling, Bever's model greatly simplifies
the way that the microbial community is portrayed. Rather
than consisting of a specified, dynamic set of taxa, Bever's
microbial community is represented in the abstract as a fluc-
tuating point moving along an axis that separates each plant's
singular influence on the microbial community to opposite
ends [11]. This mathematical abstraction was integral to the
foundational theoretical work on PSF, but it also makes it
difficult to study the specific interactions that occur between
plants and individual species of the belowground community.

Because PSF is driven by these species-to-species interac-
tions, with all of their attendant phenotypic and phylogenetic
variability, the identity of the particular microbial groups
involved should matter for PSF. To date, much work on PSF
has focused on a handful of microbial groups that are known
to interact strongly with plants: mycorrhizal fungi [6, 8,
12–14], nitrogen-fixing rhizobacteria [15–18], and plant path-
ogens [3, 6, 19, 20]. However, there are additional direct and
indirect channels by which soil microorganisms may impact
plant performance. For example, microorganisms may control
decomposition and thereby influence nutrient availability [21,
22]; they may produce compounds that affect plant growth
and mortality [23–26]; they may be involved in "nutrient
mining" at the root tips of plants [27, 28]; and they may
interact with each other to support or suppress the growth of
other soil microorganisms that benefit or harm plants directly
[29, 30]. Given the vast taxonomic diversity of soil microor-
ganisms [31], it is likely that a number of important microbial
agents of PSF are yet to be discovered, and narrow approaches
based on specific microbial taxa may miss these important but
little-known interactions.

Modern DNA-based approaches to microbial community
ecology can survey whole microbial communities in unprec-
edented detail and thus may facilitate the discovery of impor-
tant new plant–microbe interactions. However, the application
of whole-community approaches to study microbial commu-
nities involved in PSF have thus far provided mixed results.
Bacterial community composition often shows no correlation
— or a very weak correlation — with the plant species
treatments used to set up PSF experiments [32–34], while
fungal community composition sometimes shows a response
[8, 33–35]. These results highlight the shortcomings of whole-
community approaches: they may be too broad in their focus.
Thus, while it is almost certainly useful to look beyond the
small set of functional groups that have thus far received the
most attention, it is not reasonable to assume that every
microorganism in the soil community is participating in a
PSF loop in a meaningful way. Indeed, if a few key species

are involved in the PSF, the remainder of the microbial com-
munity will contribute unrelated variance, leading to
weak/non-significant multivariate responses. Whole-
community approaches open up a new space for discovery,
but they also present a "signal-to-noise" problem when pre-
sented with microbial communities where a majority of taxa
do not participate directly in PSF.

The nature of feedback loops provides a potential solution
to this signal-to-noise problem. For a system to constitute a
feedback loop, the various components of the system must
respond to each other and also alter each other. For example,
while soil pH can alter plant community composition through
differential fitness impacts on different plant species, a plant–
pH feedback loopwill only exist when the plants also alter soil
pH. Similarly, for a soil microorganism to be engaged in a
feedback loop with plants, it must both provide differential
fitness effects on different plant species, and it must differen-
tially respond to the presence/abundance of different plant
species. Microorganisms that do not asymmetrically associate
with one plant or the other (i.e., express affinity) will not be
able to respond to changes in plant density, and therefore are
not joined in a feedback loop to the plants. Similarly, micro-
organisms that do not consistently harm or benefit the plant
(i.e., produce a characteristic effect) will not provide coherent
feedback as the above- and belowground communities
change. Therefore, we propose that microbial taxa possessing
both of these characteristics have the greatest potential for
regulation of a PSF system.

We propose that the search for specific microorganisms
with the potential to participate in feedback loops (hereafter,
"PSF microorganisms") can be accomplished in a whole-
community context through a quantitative consideration of
two traits that PSF microorganisms in a two-plant interaction
must possess: they must have both (1) an affinity for one plant
over the other and (2) an effect (either positive or negative) on
the growth or fitness of at least one of the plants. Furthermore,
we argue that microbial regulation of the PSF system
will be most effective when there is a relationship
between affinity and effect across the entire microbial
community, such that the microbes with the strongest
affinity for a plant also produce the strongest (positive
or negative) effect on plant growth, and the positive and
negative effects of high-affinity microbes do not tend to
cancel each other out.

Here we use a series of standardized "home-and-away"
trials carried out in multiple locations across the north central
United States to characterize affinity–effect relationships for
soil microorganisms associated with two early successional
plants. We hypothesize that microorganisms participating in
PSF loops will possess both an affinity for a particular plant
and the capacity to strongly affect the growth of that plant,
giving rise to positive or negative PSF dependent on the
direction of the effect.
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Materials and Methods

Home-and-Away Trials

Ten independent "home-and-away" [36] trials were conducted
using two agricultural weeds, common sunflower (Helianthus
annuus L.) and giant ragweed (Ambrosia trifida L.). All trials
used common seed stocks gathered from Manhattan, Kansas
(sunflower) and Urbana, Illinois (ragweed). Trials were con-
ducted independently at agricultural research facilities in
Michigan, Illinois, Kansas, South Dakota, and Oregon using
local soils gathered on site. Two independent trials with stag-
gered start times were run at both Illinois and Kansas; in
Michigan, soils were collected from two different farm fields
(near St. Charles and East Lansing), and each of these soils
were used in two separate trials with staggered start times, for
a total of four Michigan trials. All other sites conducted a
single trial each. We treat each of these trials as (n=10)
independent experimental runs for the purpose of this study.

Specific details about soil properties and management his-
tories of sites have been previously described [36], along with
an analysis of plant biomass response to the "home-and-away"
treatments. Briefly, for each trial, local soil was gathered,
mixed 50:50 with sand, and distributed into 40 pots (30 cm
[diameter] × 30 cm [height]) in a greenhouse. Sunflower seeds
were introduced to 20 of these pots, and ragweed seeds were
introduced to the other 20. Plants were allowed to germinate
and grow for 10 weeks, after which time the entire plant was
harvested. This procedure was repeated, with new sunflower
or ragweed seeds being introduced to their respective pots,
followed by 10 weeks of growth and plant harvesting. Fol-
lowing these two 10-week periods of conditioning by either
sunflower or ragweed, ten pots with sunflower-conditioned
soil were replanted with sunflower seeds (the "home" treat-
ment), and ten pots with sunflower-conditioned soil were
planted with ragweed seeds (the "away" treatment).
Ragweed-conditioned soils were similarly planted with sun-
flower or ragweed seeds to comprise "away" and "home"
treatments. These plants were allowed to grow for 10 weeks
in their "home" or "away" soils, and then plants were harvest-
ed for dry biomass determination (48 h of drying at 60°C).
After harvesting plant shoots and roots, the remaining soil
from each pot was collected into separate Ziploc bags and
stored at −20°C for microbial community analysis.

The results of these trials showed that ragweed experienced
consistent negative PSF, while sunflower PSF was negative or
positive, depending on the trial [36]. A bioassay for
potential allelopathic effects [37], conducted using
Lactuca sativa seeds exposed to conditioned soil under
optimum germination conditions for 7 days, did not
support allelopathic suppression as a mechanism behind
this observed PSF. Therefore, we investigated potential
microbial involvement as described below.

Microbial Community Composition

Ziploc bags containing soil from each pot were thawed and
homogenized by shaking. We used a sterile (70 % EtOH)
metal scoop to collect a 0.5-g subsample of soil from each
bag, and Bulk DNA was extracted from these subsamples
using the FastDNA Spin kit for Soil (MP Biomedicals, Solon,
OH) following the manufacturer's instructions. Additional
purification of DNA was accomplished with a 15-min incu-
bation at 65°C with 1 % cetyltrimethylammonium bromide
and 0.7 M NaCl, followed by a 24:1 chloroform/isoamyl
alcohol extraction to remove impurities bound to the
cetyltrimethylammonium bromide in the organic fraction.

Microbial community composition was characterized by
automated ribosomal intergenic spacer analysis (ARISA), a
length heterogeneity polymerase chain reaction (PCR)-based
approach to rapidly generate whole-community "fingerprints"
of bacterial and fungal assemblages [38, 39]. ARISA uses
universal primers to amplify the ITS region of bacterial ribo-
somal RNA operons [38] or the equivalent ITS1-5.8S-ITS2
region in fungi [39]. Because these hypervariable stretches of
"junk DNA" vary in length across taxonomic groups (roughly
the strain, species, or genus level), the collection of ARISA
amplicons produced from a soil sample represents the taxo-
nomic diversity and composition of that sample. Bacterial
ARISA used primers 1406 F and 23SR [38], and fungal
ARISA used primers 2234C and 3216 T [39]; the 5′ ends of
primers 1406 F and 3216 T were labeled with fluorochrome
dyes (6-FAM and HEX, respectively), to permit detection of
ARISA amplicons during capillary gel electrophoresis. Each
50-μl PCR reaction contained 2 ng of template DNA (from
soil samples), 5 mM Tris–HCl (pH 8.3), 0.25 mg/ml bovine
serum albumin, 2.5 mM MgCl2, 0.25 mM of each
deoxynucleoside triphosphate, 0.4 μM of each primer, and
1.25 U of Taq polymerase (Promega, Madison, WI, USA).
PCR cycling conditions included an initial denaturation at
94°C for 2 min, followed by 26 cycles of 94°C for 35 s,
55°C for 45 s, and 72°C for 2 min, with a final 72°C extension
for 2 min. Separation and detection of ARISA amplicons was
performed under denaturing conditions on an ABI 3730XL
Genetic Analyzer (Applied Biosystems, Carlsbad, CA, USA)
with an internal ROX1000 size standard (BioVentures, Inc.,
Murfreesboro, TN, USA).

Taxonomic characterization of microbial communities was
based on ARISA amplicon length (base pairs). Within the
range of 400–1,000 bp for bacteria [38] or 300–1,000 bp for
fungi [39], all ARISA amplicons of the same size, after
accounting for statistical variation in size calling, were taken
to represent a single microbial taxon. Because the taxonomic
resolution of ARISA does not correspond to any single level
of the Linnaean classification scheme, we refrain from talking
about microbial "species", and we hereafter follow the stan-
dard microbial ecology practice of referring to these ARISA-
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defined groups as operational taxonomic units (OTUs). Size
calling and definition of same-size "bins" for bacterial and
fungal OTUs used GeneMarker v. 1.95 (SoftGenetics, LLC,
State College, PA, USA), with manual correction of the
software-defined OTU bins in order to eliminate any overlap-
ping bins. Every ARISA amplicon in each sample was
assigned to an OTU bin, and the signal intensity (peak height)
of each amplicon was taken to reflect the abundance of that
OTU in the sample. Across all samples, the collection of
OTUs and their signal intensities constitute a sample-by-
OTU data table analogous to the sample-by-species tables that
are typical of community ecology studies [40].

Analyzing the Affinity–Effect Relationship

Multivariate data analyses were used to assign three indices to
every ARISA OTU. The first index was intended to represent
the affinity of each microbial OTU for either ragweed or
sunflower. The second and third indices were used to repre-
sent the effects of each OTU on ragweed and sunflower,
respectively. These indices were created based on OTU-
specific patterns of (relative) abundance and distribution
across different combinations of pots from the "home-and-
away" trials. Bacterial and fungal indices were assigned sep-
arately, and index assignment was conducted separately for
each trial (in Oregon, South Dakota, etc.). That is, ten sets of
indices were assigned to the bacterial OTUs encountered in
the different trials, and ten separate sets of indices were
assigned to the fungal OTUs. For all data analyses, the raw
ARISA OTU data were subject to the Hellinger transforma-
tion [41] to eliminate run-to-run variability from the Genetic
Analyzer; thus, the intensity of ARISA peaks represents "rel-
ative abundance" of each OTU in a single pot soil sample.

The affinity index was created using data from the ragweed
"home" and sunflower "home" pots, because soil microbial
communities in these pots had undergone three successive
rounds of selection by these plant species. The Hellinger-
transformed ARISA data were used to create pot-by-pot
Bray–Curtis dissimilarity matrices for each trial, and these
matrices were used for community ordinations by Canonical
Analysis of Principal Coordinates (CAP) [42], using the plant
species identity as the constraining variable. Thus, the first
(and only) canonical axis placed ragweed-associated commu-
nities on one side of the axis and sunflower-associated com-
munities on the other. For consistency of data presentation, we
placed ragweed on the left (negative) side of the first CAP axis
and sunflower on the right (positive) side, and we therefore
multiplied some of the eigenvectors by −1 in order to achieve
this arrangement. We then fit the OTUs onto this axis using
weighted averages of their community CAP axis score and
their relative abundance in the sample-by-OTU table [43]. We
used these fitted OTU scores on the first CAP axis as the index
of affinity for eachOTU. Thus, OTUswith negative values for

this index were highly associated with ragweed, and those
with positive scores were highly associated with sunflower.
CAP and weighted averaging were performed in the R statis-
tical environment using the "capscale" function of package
"vegan" [43].

The ragweed and sunflower effect indices were created
using data from "home" and "away" pots for ragweed or the
"home" and "away" pots for sunflower. To create these axes,
we modeled plant biomass as a function of microbial commu-
nity composition using Projection to Latent Structure Regres-
sion (PLSR; also commonly known as partial least squares
regression [44]). Conceptually, PLSR is similar to using a
Principal Components Analysis ordination of (multivariate)
community data in order to construct a set of orthogonal
"latent variables" representing variation in community com-
position; these latent variables are then used as independent
variables in regressions against a response variable. However,
rather than constructing latent variables that explain the max-
imum variance in the community data (as in Principal Coor-
dinates Analysis), the ordination in PLSR creates latent vari-
ables that maximize the covariance between the community
data and the response variable [44]. We used the Hellinger-
transformed ARISA data to create the latent variables, and the
total dry biomass of the ragweed (or sunflower) plants in the
pots were used as response variables. Thus, the first latent
variable in the PLSR expressed microbial community turn-
over that was most associated with variation in plant biomass.
We used the loadings of OTUs along the first PLSR latent
variable as the index of effect. Thus, OTUs with high values
for this index for ragweed tended to be found in pots with
large ragweed biomass, and those with low values were found
associated with smaller ragweed plants. PLSR was performed
in R using function plsr() in the package "pls" [45].

Every bacterial and fungal OTU in each trial received an
index of affinity, an index of effect on ragweed, and an index
of effect on sunflower. We conducted separate linear regres-
sions of effect versus affinity for each trial using the R func-
tion glm(). In addition, we identified potentially important
OTUs for PSF using the distribution of affinity and effect
scores within each trial. We considered an OTU to be poten-
tially important for PSF if it was in the upper or lower 2.5 %
tails of both the affinity and effect indices for a given trial.
Thus, we determined which OTUs diplayed both the strongest
affinity and the largest beneficial or harmful effect. We
summed the number of potentially important OTUs for rag-
weed and sunflower in each trial, and then we used a paired
t-test to determine if similar numbers of OTUswere associated
with each plant.

Generalized Microbial Community Responses

To explore overall patterns in microbial community composi-
tion, we used Nonmetric Multidimensional Scaling. We also
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tested for significant shifts in microbial community composi-
tion across different trials and in response to "home" and
"away" treatments using Permutational Multivariate Analysis
of Variance (perMANOVA) [46]. For each of these analyses,
we considered each pot (n=40 pots per trial) to be an indepen-
dent experimental unit, and thus we were able to statistically
assess the impact of trial (ten levels), plant species in the initial
"training" phase, plant species in the final phase, and all two-
and three-way interactions using a three-way perMANOVA
design with 400 total observations. These analyses both used
the Bray–Curtis dissimilarity matrix of Hellinger-transformed
ARISA data, with statistical significance assessed through
1,000 permutations of the ARISA data, using functions
metaMDS() and adonis() from package "vegan" in R [43].

Results

The composition of bacterial and fungal communities was
broadly different across the different states performing the
"home-and-away" trials (Fig. 1). In states performing multiple
trials (Illinois, Kansas, Michigan), community composition

also tended to vary from trial to trial, particularly for soil fungi
(Fig. 1b). In support of these observations, "trial" explained
the largest component of bacterial and fungal community
composition according to perMANOVA (Table 1). Across
the entire dataset, plant identity in the soil training phase and
in the final experimental phase were found to have statistically
significant but very weak influences on microbial community
composition (Table 1). Thus, plants were exposed to different
communities of microorganisms in the different "home-and-
away" trials, and they selected for different microorganisms
from these different starting species pools.

The dynamics of a minority of the soil microbial taxa were
often sufficient to capture a significant portion of variation in
plant performance (Table 2). Indices of affinity from the indi-
vidual "home-and-away" trials explained from 9 % to 37 % of
variation in microbial community composition (Table 2), and
although there was much variation in the strength of microbial
affinity for ragweed or sunflower across the trials, most of the
indices of affinity accounted for less than 20 % of total micro-
bial community variability. In line with this result, indices of
effect were driven by a small proportion of microbial commu-
nity variability (Table 2); these numbers ranged from 5 % to
25 %, but most of them captured less than 10 % of the total
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Fig. 1 Nonmetric multidimensional scaling plots for microbial commu-
nities in "home-and-away" trials. Bacterial (a) and fungal (b) community
composition was assessed from pots in the final stage of the ten "home-
and-away" trials (i.e., after exposure to three different generations of
plants). Final two-dimensional stress is 0.21 and 0.20 for panels a and
b, respectively

Table 1 Permutational MANOVA shows the treatment effects on soil
microbial community composition in the "home-and-away" trials

df Fa R2 pb

Response: bacterial communities

Trialc 9 28.88 0.373 0.001***

Training plantd 1 3.03 0.005 0.001***

Final plante 1 4.04 0.006 0.001***

Trial:Training plant 9 3.05 0.039 0.001***

Trial:Final plant 9 2.84 0.037 0.001***

Training plant:Final plant 1 2.43 0.003 0.003**

Trial:Training plant:Final plant 9 2.25 0.030 0.001***

Response: fungal communities

Trialc 9 35.5 0.412 0.001***

Training plantd 1 5.74 0.007 0.001***

Final plante 1 4.04 0.005 0.001***

Trial:Training plant 9 4.21 0.049 0.001***

Trial:Final plant 9 2.93 0.034 0.001***

Training plant:Final plant 1 2.70 0.003 0.005**

Trial:Training plant:Final plant 9 2.55 0.030 0.001***

a This is actually a "pseudo F" based on decomposition of the response
and residual matrices (McArdle and Anderson 2001)
b Significance codes: ***alpha <0.001: **alpha <0.01
c Accounts for variation between the ten "home-and-away" trials
d Accounts for variation due to the plant species (ragweed or sunflower)
in the initial soil training stages of the "home-and-away" trials
e Accounts for variation due to the plant species (ragweed or sunflower) in
the final stage of the "home-and-away" trials
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microbial variability in a trial. However, the indices of effect
were strongly related to variation in plant biomass (Table 2),
with most of them capturing over 70 % of the variation in plant
performance.

We found a significant linear relationship between affinity
and effect in 75 % of the trials, but the direction and strength

of this relationship varied among the different trials and the
different plants (Fig. 2, Table 3; Figs. S1, S2, S3, S4, S5, S6,
S7 and S8). In some cases, the linear relationship provided a
good fit to the data, e.g., ragweed in trial KS-2 (Fig. 2a,b,
Table 3; Figs. S1, S4, S7 and S8), while some relationships
generated a much lower R2, indicating poor fit of the linear

Table 2 Variance in microbial
community composition and
plant biomass attributable to indi-
ces of affinitya and effectb

a Affinity index and percent vari-
ance is derived from canonical
analysis of principal coordinates.
The affinity variance percentage
expresses the turnover of micro-
bial communities due to affinity
for either ragweed or sunflower
b Effect index and percent vari-
ance derived from the first axis
of partial least squares regression
c Expresses the covariation of mi-
crobial communities with plant
biomass, as a percentage of total
microbial variance
d Expresses the plant biomass var-
iance explained by covariation
with microbial community
composition

Trial Microbial group Affinity variance (%)a Plant Effect variance (%)b

Microbial communityc Plant biomassd

IL-1 Bacteria 13.3 Ragweed 8.6 58.6

Sunflower 6.8 85.5

Fungi 9.2 Ragweed 10.5 66.4

Sunflower 12.7 62.6

IL-2 Bacteria 12.6 Ragweed 12.6 60.7

Sunflower 9.5 58.5

Fungi 9.3 Ragweed 16.4 84.7

Sunflower 10.5 59.0

KS-1 Bacteria 18.7 Ragweed 8.1 77.9

Sunflower 8.4 78.0

Fungi 22.5 Ragweed 12.1 64.7

Sunflower 10.0 74.4

KS-2 Bacteria 22.8 Ragweed 19.0 51.0

Sunflower 6.4 84

Fungi 20.9 Ragweed 20.7 44.3

Sunflower 23.5 41.3

MI-1 Bacteria 15.2 Ragweed 16.5 58.3

Sunflower 7.7 80.6

Fungi 18.8 Ragweed 13.4 63.0

Sunflower 8.2 87.2

MI-2 Bacteria 13.4 Ragweed 10.7 76.3

Sunflower 10.0 72.6

Fungi 20.7 Ragweed 15.2 68.5

Sunflower 7.3 81.4

MI-3 Bacteria 10.4 Ragweed 9.7 80.2

Sunflower 6.1 83.7

Fungi 14.8 Ragweed 9.0 79.4

Sunflower 5.7 79.3

MI-4 Bacteria 15.0 Ragweed 8.0 81.0

Sunflower 9.6 73.6

Fungi 12.7 Ragweed 12.9 70.5

Sunflower 17 48.8

OR Bacteria 18.7 Ragweed 11.4 84.2

Sunflower 12.8 69.3

Fungi 37.3 Ragweed 10.7 68.8

Sunflower 8.0 77.9

SD Bacteria 9.4 Ragweed 8.8 67.9

Sunflower 5.8 90.7

Fungi 22.6 Ragweed 10.0 65.0

Sunflower 9.1 84.6
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model for a majority of the microbial OTUs (Table 3). In the
latter cases, poor model fit was sometimes due to a few highly
influential OTUs at the extremes of the two indices (Fig. 2c,d;
Figs. S2 and S3), and sometimes it was the result of a weak
overall relationship (Fig. 2e,f; Fig. S5).

In spite of this variability, a number of general patterns
emerged. The affinity–effect relationship was more likely to
be deemed significant and more likely to produce a better fit
for ragweed than for sunflower (Table 3, Fig. 2). With the
exception of the MI trials, most of the ragweed affinity–effect
relationships showed a positive slope (Table 3), meaning that
microbes with a high affinity for ragweed had the highest
potential to harm its performance (and microbes with a low
ragweed affinity potentially improved its performance). This
is consistent with our earlier observation of widespread neg-
ative PSF with ragweed [36]. In contrast, the affinity–effect
relationships for sunflower tended to have poor fit to the data
and to produce positive and negative slopes in roughly equal
measure (Fig. 2, Table 3). There were also more potentially
important PSFOTUs for ragweed than for sunflower (Table 3).
Across all trials, ragweed had an average of 2.6 more impor-
tant bacterial OTUs (p=0.039; t=2.414, df=9) and 1.7 more

important fungal OTUs (p=0.049; t=2.278, df=9) than
sunflower.

Discussion

In this study, we screened over 2,000 bacterial and 1,900
fungal OTUs for their potential to participate in PSF loops
by assigning them indices of affinity and effect based on their
occurrence in ten independent "home-and-away" trials. Be-
cause soil microbial communities are hyper-diverse [31], and
because they respond to many different sources of environ-
mental and biological selection [47, 48], it is often challenging
to ascribe large portions of microbial community variability to
simple gradients [48], such as plant-specific associations. We
found that the largest source ofmicrobial community variation
in our study related to differences between the "home-and-
away" trials (Fig. 1; Table 1), which we interpret as
representing broad differences in the source pool of soil mi-
croorganisms available to participate in PSF. In light of this
large variation in microbial source pools, it is not surprising
that plants in this study were not able to consistently select for
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from representative trials. The
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Refer to Table 3 for slopes,
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universal "ragweed" or "sunflower" microbial communities
across all ten trials (Table 1). In this respect, our dataset is
typical of many previous microbial ecology studies, where
large-scale variability in community composition tends to
dwarf any plant-related variation found across sites [49–52].

In addition to this background of source community vari-
ability, we encountered smaller-scale "noise" in the form of
pot-to-pot variation in soil microbial community structure.
Against this noise, we found that plant species identity was
generally related to less than 20 % of the overall microbial
community variability, as expressed in a single canonical axis
(Table 2). This indicates that only a minority of microbial taxa
expressed a detectable "affinity" for ragweed or sunflower.
However, the indices of effect from this same minority of
microbial taxa were able to account for over 70 % of the
variability in plant biomass by partial least squares regression
(Table 2). Thus, understanding the dynamics of this minor
fraction of the microbial community may be sufficient to
account for nearly all of the PSF potential in a plant–microbe
system.

We were able to detect significant affinity–effect relation-
ships in 75% of the "home-and-away" trials (Table 3) in spite of
the "signal-to-noise" challenges presented by large- and small-

scale variation in microbial communities (Tables 1 and 2). We
believe that this result provides good support for our hypothesis
that an affinity-effect relationship exists for microorganisms
with the potential to participate in PSF. Relatively low R2 values
in our models can be expected given that many of the microbes
found in our "whole community" approach likely do not partic-
ipate in PSF at all. In some cases, such as ragweed bacteria in
MI-1, models had low R2 but several potentially important PSF
bacteria were identified (Table 4). These taxa could be the
targets of future cultivation efforts in order to characterize their
ecology and perform controlled tests of their plant fitness
effects.

The affinity–effect models performed better for ragweed
than for sunflower, both in terms of the number of significant
linear relationships (Table 3) and in the overall fit of the data
(Fig. 2a,b, Table 3). We also found higher numbers of poten-
tially important PSF OTUs for ragweed than for sunflower
(Table 4). Furthermore, nearly every affinity–effect relation-
ship for ragweed consistently indicated the potential for neg-
ative PSF. Bacteria and fungi with the highest affinity for
ragweed were scored as being detrimental to ragweed bio-
mass, and microbes with a high affinity for sunflower showed
the potential to improve ragweed performance (Fig. 2,
Table 3). Previous work with congeneric Ambrosia
artemisiifolia (common ragweed) found that serial inoculations
of ragweed-exposed soils results in a gradual decline in rag-
weed growth [53], suggesting the accumulation of soil patho-
gens in ragweed-dominated soils. Because giant ragweed is a
common agricultural weed throughout the North Central region
[54], it is possible that ragweed-specific soil pathogens have
also been accumulating in the agricultural soils used in our
trials, which may explain the consistent relationship between
high-affinity, negative-effect ragweedmicrobes observed in our
study (Table 3). As an alternative, the consistency of negative

Table 4 Potentially importanta OTUs in ragweed and sunflower plant–
soil feedback

Bacterial OTUs Fungal OTUs

Trial Ragweed Sunflower Ragweed Sunflower

IL-1 6 5 5 2

IL-2 3 1 1 3

KS-1 5 4 5 2

KS-2 13 2 7 4

MI-1 9 4 6 2

MI-2 6 6 5 3

MI-3 4 4 3 4

MI-4 3 3 2 1

OR 6 2 7 2

SD 5 3 2 3

aAn OTU was deemed important if it was in the upper or lower 2.5 %
tails of both affinity and effect indices for a given trial

Table 3 Performance of affinity–effect models for ragweed and
sunflower

Ragweed Sunflower

Trial Microbial group Slopea R2 Slopea R2

IL-1 Bacteria 1.31*** 0.30 0.40** 0.03

Fungi 1.35*** 0.24 0.78** 0.08

IL-2 Bacteria 1.59*** 0.49 −0.97*** 0.17

Fungi 1.36*** 0.30 1.33*** 0.27

KS-1 Bacteria −0.31 ns 0.01 0.23 ns 0.01

Fungi 1.00*** 0.08 0.70** 0.04

KS-2 Bacteria 3.26*** 0.67 0.47* 0.02

Fungi 4.14*** 0.79 0.25 ns 0.00

MI-1 Bacteria −1.04*** 0.14 −0.23 ns 0.01

Fungi −1.94*** 0.42 0.35 ns 0.02

MI-2 Bacteria 1.10*** 0.14 −1.00*** 0.10

Fungi 2.11*** 0.46 −0.40 ns 0.02

MI-3 Bacteria 1.66*** 0.29 −0.17 ns 0.00

Fungi 1.56*** 0.30 −0.78** 0.08

MI-4 Bacteria −0.43* 0.01 −0.67** 0.03

Fungi 0.26 ns 0.00 −0.49* 0.01

OR Bacteria 2.04*** 0.43 −0.70*** 0.04

Fungi 2.20*** 0.31 −0.38 ns 0.01

SD Bacteria 1.58*** 0.17 0.80*** 0.07

Fungi 0.44 ns 0.01 0.26 ns 0.01

a Significance codes: ***alpha <0.001; **alpha <0.01; *alpha <0.05; ns:
alpha >0.05
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microbial feedback potential to ragweed across so many differ-
ent source communities (Fig. 1) may indicate that ragweed is
simply poorly defended against many forms of microbial attack
and thus has a tendency to suffer frommicrobial interactions, in
general. Negative PSF may be more common than positive
feedback for a majority of plant species [55, 56], and it is
considered to be a major driver of plant species coexistence
and diversity [9, 19, 20]. If this is the case, then many plant
species may be expected to generate the sorts of affinity–effect
relationships in microbial community structure observed here
for ragweed.

In contrast to those of ragweed, sunflower affinity–effect
relationships were just as likely to indicate positive microbial
feedback potential as negative, indicated by the changing
signs of the slopes in Table 3. This may mean that sunflower
PSF is highly dependent on the composition of the microbial
source community (Fig. 1). However, this interpretation
should be viewed with caution. Most of the regression coef-
ficients for the sunflower affinity–effect relationships were
very low, and so slopes that fluctuate around zero might also
conservatively be interpreted as indicating no overall affinity–
effect relationship for sunflower across the trials as a whole.
Because we are using each of these trials as separate indepen-
dent replicates, any differences between trials should be
regarded as sampling error across the larger inference space
of the North Central region. We do not want to try to diagnose
trial-to-trial variability in this study any more than we would
try to explain away pot-to-pot variation within a single trial.
Nevertheless, the strength and direction of PSFmay vary from
location to location [57]. For example, non-native plants may
experience positive or neutral PSF in their introduced ranges,
while experiencing negative feedback in their native ranges
[6, 10], and this pattern is sometimes explained by invoking
differences in soil community composition between the native
and introduced ranges, as per the enemy release hypothesis
[58], and sometimes it is attributed to a lack of "familiarity"
between plants and microbes in the new location [14]. Under-
standing how plant–microbe relationships vary across space to
generate differential patterns of PSF is a promising area for
future research, and our microbe-focused affinity–effect anal-
ysis could be fruitfully employed to identify the key microbial
players in different locations.

While sunflower microbes did not show consistent affini-
ty–effect relationships in regards to sunflower feedback po-
tential, sunflower-associated microbes were generally classi-
fied by our analysis as potentially beneficial to ragweed
(Fig. 2). The positive effect index of sunflower-affinity mi-
crobes was often just as high (or higher) for ragweed as it was
for sunflower (Fig. 2a and b). This may indicate that sunflower
is good at attracting generally beneficial soil microbes. Sun-
flower is thought to be a strong host for arbuscular mycorrhi-
zal fungi [13], and it may be that sunflower improved the
microbial condition for ragweed by enhancing mycorrhizal

growth. We also found that ragweed often responded positive-
ly to sunflower-affinity bacteria (Fig. 2a), which would mean
that sunflower may also condition the soil for plant growth-
promoting rhizobacteria. We do not know the precise mecha-
nism for sunflower-affinity microorganisms to positively af-
fect ragweed, and controlled laboratory trials with specific
isolates would be necessary to provide conclusive data, but
our data supports Bever's idea that multiple plant species can
interact through microbial PSF [11], leading to the mainte-
nance or loss of plant species diversity. It is easy to envision
that ragweed's consistent generation of negative PSF (Table 3)
would tend to exclude ragweed from the system over time, but
positive feedback from sunflower-affinity microbes might
help overcome this tendency, contributing to coexistence of
these two plants. The ultimate outcome of this multi-species
interaction would depend on the relative effects of sunflower-
and ragweed-affinity microbes on each plant.

Conclusions

Feedback loops are of particular interest in community ecol-
ogy because they allow a system to self-regulate. Negative
feedback loops can lead to "homeostatic" stabilization, as
exemplified by Bever's [11] PSF-mediated coexistence of
plant competitors, and positive feedback loops can amplify
small asymmetries resulting in dominance or exclusion of
species. The results from our work showed that microorgan-
isms are most likely to play a role in PSF loops when they
possess an affinity for a particular plant and the capacity to
strongly affect the growth of that plant. By examining the
affinity–effect relationship against a background of diverse
starting source communities, we were able to show broad
support for this proposed relationship operating in microor-
ganisms associated with ragweed and sunflower. The ragweed
PSF system appears to enlist a broad subset of soil bacteria
and fungi to produce consistently negative feedback, while the
sunflower PSF may be contingent on interactions with a few
key microorganisms. Our method provides a way to pinpoint
keymicrobial players in PSFwhen confronted with the signal-
to-noise challenge when searching for an unknown set of key
microorganisms in communities that possess high alpha and
beta diversity. While the ARISA method employed here does
not provide specific information on the taxonomic identity of
microbial OTUs, the use of our affinity–effect relationship
with high-throughput DNA sequencing of microbial commu-
nities should help identify these potential key PSF microor-
ganisms in future studies.
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