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Common Sunflower Seedling Emergence across the U.S. Midwest

Sharon A. Clay, Adam Davis, Anita Dille, John Lindquist, Analiza H.M. Ramirez, Christy Sprague,
Graig Reicks, and Frank Forcella*

Predictions of weed emergence can be used by practitioners to schedule POST weed management
operations. Common sunflower seed from Kansas was used at six Midwestern U.S. sites to examine
the variability that 16 climates had on common sunflower emergence. Nonlinear mixed effects
models, using a flexible sigmoidal Weibull function that included thermal time, hydrothermal time,
and a modified hydrothermal time (with accumulation starting from January 1 of each year), were
developed to describe the emergence data. An iterative method was used to select an optimal base
temperature (Tb) and base and ceiling soil matric potentials (yb and yc) that resulted in a best-fit
regional model. The most parsimonious model, based on Akaike’s information criterion (AIC),
resulted when Tb 5 4.4 C, and yb 5 220000 kPa. Deviations among model fits for individual site
years indicated a negative relationship (r 5 20.75; P , 0.001) between the duration of seedling
emergence and growing degree days (Tb 5 10 C) from October (fall planting) to March. Thus, seeds
exposed to warmer conditions from fall burial to spring emergence had longer emergence periods.
Nomenclature: Common sunflower, Helianthus annuus L.
Key words: Abiotic influences on seed dormancy, regional environmental variation, seedling
recruitment.

Weed emergence timing from the seed bank
influences weed control decisions and may dictate
it’s competitiveness and seed production potential.
Early germinating plants may be controlled with
preplant weed management however if left untreat-
ed, these plants may be the most competitive with
the crop (Gallandt and Weiner 2007; Sattin et al.
1996) and produce the greatest number of seed
(Clay et al. 2005; Uscanga-Mortera et al. 2007).
Late emerging plants, while not as competitive
(Deines et al. 2004), often escape control and
produce some seed to replenish the soil seed bank
(Clay et al. 2005 Uscanga-Mortera et al. 2007).
Mechanical weed control operations can be opti-
mized when the length of the emergence period is
known (Oriade and Forcella 1999).

Climate variability among years, even within a
site, makes predicting biological events, such as

germination or flower initiation, of any species
tenuous at best (Alan and Wiese 1985; Baskin and
Baskin 1987). Often only a few years of data are
collected and phenological trends are not obvious
(Wolkovich et al. 2012). One of the National
Phenology Network (http://npnweb-dev.npn.arizona.
edu/lilac) projects involves a system of volunteers
throughout the U.S. to report on the annual flowering
time of two cloned ornamental species as a common
garden approach. These and other observations are
being used to explore the influence of climate across
the U.S. on plant phenology and animal behavior and
are serving as a baseline to determine what, if any,
changes occur as long term climate trends are recorded
(Rosemartin et al. 2012). Perennial shrub phenology
has been correlated to some weed species emergence
to provide an easily observed event to link with weed
control timing (Otto et al. 2007).

Growing degree day(GDD)units(thermal time)

GDD~
X

TminzTmaxð Þ{Tb½ �

where Tmin and Tmax are the daily minimum and
maximum temperatures, respectively, and Tb is the
base temperature below which thermal time units are
not accumulated, provide heat accumulation based on
daily air or soil temperatures have been used to predict
weed emergence, crop phenological events, and pest
control timing. Myers et al. (2004) used soil degree
days with a base temperature of 9 C to predict weed
emergence of eight species in the northeastern United
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States. Other weed emergence research has focused on
using other base temperatures (Forcella et al. 2000;
Horak and Loughin 2000) or a combination of
thermal time and soil water availability (hydrothermal
time, HTT) to improve predictions (Bradford 2002;
Davis et al. 2013; Larsen et al. 2004; Leguizamón et
al. 2005; ; Roman et al. 2000; Rowse and Finch-
Savage 2003). The conceptual framework underpin-
ning using HTT, rather than relying on GDD alone,
is that if soil water is not present or too limiting, seeds
will not germinate (Bradford 2002; Davis et al. 2013;
Forcella et al. 2000; Larsen et al. 2004; Leguizamón et
al. 2005; Meyer et al. 2000; Roman et al. 2000;
Rowse and Finch-Savage 2003).

Models have been developed to predict emer-
gence patterns for several weed species (Davis et al.
2013; Forcella 1998; Grundy and Mead 2000;
Grundy et al. 2003; Hardegree and Winstral 2006;
Oryokot et al. 1997a, 1997b; Roman et al. 2000;
Schutte et al. 2008), often within a limited
geographic region. Moloney et al. (2009) summa-
rized results of 36 common garden experiments
conducted from 1998 to 2008 and reported that
only 14% of these studies (five out of 36) utilized
both native and invasive geographic locations.
Moloney et al. (2009) suggested that emergence
and growth data for a species from a range of
geographic locations are critical because uncon-
trolled factors [such as climate (precipitation and
temperature), soil type, nutrient availability, and
daylength] strongly influence the outcome of the
experiment and hence, the data interpretation.

The NC1191 (formerly NC1026 and NC202)
Regional Research Committee focused on studies
using giant ragweed (Ambrosia trifida L.) and
common sunflower during 2007 to 2009 across the
U.S. Midwest (Davis et al 2013; Wortman et al.
2012). These species were chosen because they
emerge early in the season, can cause major crop
yield reductions even at low densities and, although
native to the midwestern U.S., have differential
abundance across the region (common sunflower in
the west, and giant ragweed in the east). Michigan
State Extension reported that one giant ragweed
plant per m22 has the potential to reduce corn (Zea
mays L.) yield by 55% and soybean [Glycine max
(L.) Merr.] yield by 52% (http://www.msuweeds.
com/worst-weeds/giant-ragweed/). In Kansas, yield
losses due to common sunflower were nearly 50% in
corn when the weed population was 0.25 plant
per m22 (Deines et al. 2004) and about 96% in
soybean at densities of 4 plants per m22 (Geier et al.
1996).

NC1191 regional research results that highlight
giant ragweed emergence (Davis et al. 2013) and
growth and fecundity similarities and differences of
giant ragweed and common sunflower (Wortman
et al. 2012) have been published previously. The
current paper focuses on (1) determining if
common sunflower emergence data from 16 site–
yr across the region can be modeled with a common
set of parameters, (2) defining the parameters that
best fit the data, and (3) examining deviation of
individual site years from the model to determine if
other random effects can help explain the variation.
Because the environments in the North Central
region range from wet (east) to dry (west) and cold
(north) to warm (south), correct interpretation of
these data may enhance our understanding of weed
population dynamics at both the local and regional
scales and helps identify environmental variables
that are responsible for response variation. Knowl-
edge gained through this research may be used to
parameterize and validate weed management deci-
sion support systems that extend basic weed biology
and management information to farmers (Grundy
2003).

Materials and Methods

Seed Accessions and Site Information. Common
sunflower seeds were collected from a Kansas
accession (J.A. Dille, Kansas State University) in
the autumn following seed maturity. These seeds
were cleaned to remove chaff and light seed. Seed
lots were distributed to participants and planted at
field locations at Manhattan, KS (2006 to 2008);
Savoy, IL (2006 to 2008); East Lansing and St.
Charles, MI (2006 to 2008); Ithaca, NE (2007 to
2008); and Aurora, SD (2007 to 2008).

Soil classification, organic matter, and pH,
precipitation and fall/winter spring/summer tem-
peratures and other site information and study
design are presented in Wortman et al. (2012) and
Davis et al. (2013). To allow for overwintering, 100
seeds were sown during the same autumn as
collection (freshly collected seed each year) into
12.5 by 12.5 cm wire baskets that were filled with
the site’s topsoil. Seeds were covered by 2 cm of soil,
and baskets were buried so that their soil surfaces
were level with the surrounding soil surface.
Ambient densities of viable common sunflower
seeds from each site were determined by excavating
a 12.5 by 12.5 cm block of soil to the 5 cm depth,
elutriating seeds, and testing for viability using a
tetrazolium test (Wortman et al. 2012). In the
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spring, weekly destructive seedling sampling oc-
curred to determine emergence timing. Seed
recruitment data were adjusted for ambient density
of native seed, as needed. Monitoring began as early
as possible after January 1, before emergence
occurred at any site, and continued throughout
the summer, long after the bulk of emergence had
occurred, thereby capturing all emergence events.

Soil Microclimate Conditions. Detailed informa-
tion is presented in Davis et al. (2013), with the
same microclimate information used for this
common sunflower study. Briefly, hourly air
temperatures and rainfall were collected within
10 km of each site. The Soil Temperature and
Moisture Model (STM2) (Spokas and Forcella
2009) was used to estimate daily soil temperature
(T) and y, at 1-, 3-, and 5-cm, based on solar
radiation, daily maximum and minimum air
temperatures and precipitation, soil properties
(sand, silt, clay, organic matter contents), longitude,
latitude and site elevation (Wortman et al. 2012).

Calculating Thermal (hT) and Hydrothermal
(hHT) Times. The GDD equation (eq. 1) was used
calculate hT on a daily basis at depths of 1-, 3-, and
5-cm. Temperatures were similar among depths
(typically within 10%, data not shown) and
therefore the 1-cm depth was used in model
development. Values above the Tb from each day
starting on January 1 of each year (except 2006 in
Kansas where seed was planted on April 13) were
summed to get a running total of hT until the end of
emergence. If the value was less than the Tb, then hT

did not accumulate for the day. Values tested for Tb

included 1, 2, 4.4, and 5 C.
The soil water potentials (y) at the 1-, 3-, and 5-

cm depths and soil temperature calculated on a daily
time-step from STM2 model (Spokas and Forcella
2009) were used to calculate cumulative hydrother-
mal time (hHT) (Bradford 2002; Gardarin et al.
2010; Masin et al. 2010; Roman et al. 2000) for the
season based on:

hHT~
Xn

i~1
hH|hT ½2�

where i 5 day of year at a particular location, n 5
final observation day of year at a particular location,
hH 5 1 when y . yb, or else hH 5 0 when y ,
yb; and hT 5 T 2 Tb when T . Tb, or if T , Tb

than hT 5 0. The yb tested included 220000,
210000, 25000, 22500, 21000, 2100 and
233 kPa. To determine if an upper limit of soil

water potential (i.e., too wet soil conditions for
emergence) should be included in the model, yc 5
240, 233, 210, 21, and 0 kPa were included in
model development. For each site year, January 1
was treated as hHT 5 0 (with the exception of
Kansas 2006 when hHT started on April 13). The
hHT was equivalent to thermal time (unmodified by
soil water) when yb 5 220000 kPa and yc 5 0.

Statistical Modeling. The approach to modeling
common sunflower emergence in response to hHT is
detailed in Davis et al. (2013) for giant ragweed. A
nonlinear mixed effects model was fit to common
sunflower emergence data using maximum likeli-
hood methods (Pinheiro and Bates 2004). The
saturated model containing fixed and random
effects for all parameters of the Weibull equation
was used (Brown and Mayer 1988; Ratkowski 1983;
Weibull 1951). It describes cumulative data series
with a flexible mathematical function such that

y
ie b1izb1ið Þ{ b2izb2ið Þ

|e
{e b3izb3ið Þ
� �

h
HTi

b4izb4ið Þ

� �h i
zei

b
1eN(0,y), e

ieN(0,s2)

y~

s11 0 0 0

0 s22 0 0

0 0 s33 0

0 0 0 s44

2
666664

3
777775

½3�

where i 5 experimental unit; y 5 cumulative
percent emergence at a cumulative hHT value; b1

and b1 represent the fixed and random effects,
respectively, for Asym, the upper horizontal
asymptote (theoretical maximum for Y normalized
to 100%); b2 and b2 represent the fixed and
random effects, respectively, for Drop, the vertical
distance between the upper and lower horizontal
asymptotes; b3 and b3 represent the fixed and
random effects, respectively, for lcr, the natural log
of the rate of increase; b4 and b4 represent the fixed
and random effects, respectively, for pwr, a curve
shape parameter, and ei represents the error term
(Ratkowski 1983). The advantage of a mixed
model is that it contains only eight estimated
parameters whereas a fixed-effects only model
would overparameratize the data with 4 3 16 5
64 parameters. A diagonal covariance structure for
the random error terms was used, as a general
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positive-definite Log-Cholesky covariance structure
did not converge for these data (Pinhero and Bates
2004).

The search for optimal base values for the hHT

model and model simplification were implemented
using a maximum likelihood model selection
approach in the nlme package of the R v.12.13.0
(R Development Core Team 2009). Parsimony of
competing models was evaluated via maximum
likelihood criteria, including AIC and BIC and
through Akaike weights, (the probability that a
given model was the best among the pool of
candidate models) (Burnham and Anderson 2002).
Simple and partial correlations between fitted
random effects for parameters of the best seedling
emergence model using hHT and environmental
variables (soil T, soil10 GDD, soil y, and rainfall)
during overwinter seed burial and during seedling
emergence were implemented in the corpcor package
of R v12.13.0.

Results and Discussion

The most southerly location, Manhattan, KS,
had the highest yearly mean low (6.5 C) and high
(19 C) temperatures. Savoy, IL, was the wettest site
with the mean monthly precipitation of 87 mm.
The East Lansing and St. Charles, MI, sites were
cooler and drier than both Manhattan and Savoy.
Aurora, SD, the most northerly location, had the
lowest mean average low (20.1C) and high (12.4 C)
temperatures, and was the driest site with a mean
monthly precipitation of 48 mm. Other detailed site
characteristics were presented in Wortman et al.
(2012)

Base Values for hHT Model. Emergence by
calendar days differed greatly across the region
and between years (Figure 1). Iteratively fitting
emergence data to the Weibull hydrothermal time
model identified clear optimum values for Tb and

Figure 1. Common sunflower cumulative emergence during
16 site–yr–. Site–yr abbreviations: 1 to 3 5 Savoy, IL, 2006 to
2008; 4 to 6 5 Manhattan, KS, 2006 to 2008; 7 to 9 5 East
Lansing, MI, 2006 to 2008; 10 to 12 5 St. Charles, MI, 2006 to
2008; 13 to 14 5 Ithaca, NE, 2007 to 2008; 15 to 16 5
Brookings, SD, 2007 to 2008.

Table 1. Maximum likelihood selection among best nonlinear mixed effects models of common sunflower cumulative seedling
emergence following a Weibull response function to hydrothermal time (Tb: 4.4 C, yb 5 220000 kPa).

Model Fixed effectsa Random effects d.f.b AIC BIC LL wi

1 Asym+Drop+lrc+pwr,1 Asym + Drop + lrc +pwr ,1 9 1436 1466 2709 2.8 3 1025

2 Asym+Drop+lrc+pwr,1 Lrc ,1 6 1445 1465 2717 3.1 3 10212

3 Asym+Drop+lrc+pwr,1 Drop +lrc ,1 8 1449 1475 2716 4.7 3 1025

4 Asym+Drop+lrc+pwr,1 Lrc + pwr ,1 8 1387 1413 2686 0.62

a Weibull function parameters treated as fixed effects: Asym 5 upper horizontal asymptote, Drop 5 vertical difference between upper
and lower horizontal asymptotes, lrc 5 ln(rate constant), pwr 5 shape parameter. The symbol ,1 indicates that fixed effects refer to
model intercepts only.

b Model selection criteria abbreviations: d.f. 5 degrees of freedom, AIC 5 Akaike’s Information Criterion, BIC 5 Bayesian
Information Criterion, LL 5 log likelihood, wi 5 Akaike weights. For AIC and BIC, smaller values indicate more parsimonious
models, whereas for LL, larger values indicate more parsimonious models. Akaike weights range from 0 to 1, sum to 1 for a group of
candidate models, and indicate the probability that a given model represents the most parsimonious model (shown in bold) within the
group.

Figure 2. Results of interactive search for optimal base values
for common sunflower hydrothermal time and modified
Hydrothermal time. For HTT: Tb 5 4.4 and yb 5
220000 kPa. For mHTT, Tb5 4.4, yb 5 220000 kPa and
yu 5 210 kPa.
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yb. Of the base temperatures and water potentials
used to develop the model, the lowest AIC value
(i.e., best fit) occurred when Tb 5 4.4 C and yb 5
220000 kPa (Table 1 and Figure 2a). Including a
factor that represented ceiling water potential (i.e.,

soil too wet) did not improve the model fit at any
tested temperature and, therefore, this term was not
used further in model development (Figure 2b).
Four potential models showing how the selection of
fixed and random effects influenced AIC, Bayesian

Table 2. Summary of random and fixed effects for the most parsimonious nonlinear mixed effects model of common sunflower
cumulative seedling emergence following a Weibull response function to hydrothermal time (Tb: 4.4 C, yb 5 220000 kPa).

Fixed effectsa Coefficient s.e. d.f. t-value P-value Random effects s.d.

Asym 98 0.5 184 209 0.0001 lrc 9.9
Drop 102 1.5 184 28.1 0.0001 pwr 1.8
lrc 219 2.7 184 7 0.0001
pwr 3.5 0.5 184 7 0.0001

a Explanation of fixed effects parameters: Asym 5 upper horizontal asymptote, Drop 5 vertical difference between upper and lower
horizontal asymptotes, lrc 5 ln(rate constant), pwr 5 shape parameter. The parameters Asym, Drop, lrc and pwr are modeled as
intercepts.

Figure 3. Best HTT model (Tb 5 4.4, yb 5 220000 kPa,). Site year abbreviations: 1 to 3 5 Savoy, IL, 2006 to 2008; 4 to 6 5
Manhattan, KS, 2006 to 2008; 7 to 9 5 East Lansing, MI, 2006 to 2008; 10 to 12 5 St. Charles, MI, 2006 to 2008; 13 to 14 5
Ithaca, NE, 2007 to 2008; 15 to 16 5 Aurora, SD, 2007 to 2008. Circles indicate observed emergence for the site––yr. Solid lines
represent only fixed effects and dashed lines represent when random effects of the mixed model were used.
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Information Criterion (BIC), log likelihood (LL),
and wi (Akaike weights) are presented in Table 1,
with coefficients for the fixed and random effects for
the best fit model reported in Table 2.

The optimum value for Tb of 4.4 C (Figure 2a)
for seedling emergence is lower than the base
temperature ranges of 6.7 to 10 C reported for
growth and development of sunflower (Archer et al.
2006; Bazin et al. 2011; North Dakota Ag Weather
Network; Sadras and Hall 1988). Since different
physiological processes govern seedling emergence,
seed dormancy alleviation, and plant growth,
differing base temperatures are not unexpected.
Indeed, seedling emergence from the soil described
in this study, seed dormancy alleviation (8 C, Bazin
et al. 2011), and plant growth (6.7 C, ND Ag
Weather Network; 8.5 C, Sadras and Hall 1988)
have different optimal base temperatures.

The unexpectedly low yb value (220000 kPa)
reported here is much lower than the generally
accepted permanent wilting point of 21500 kPa,
which helps define the amount of available water
for plant growth in a soil. This does not mean that
common sunflower can germinate and emerge in
the absence of water, rather that emergence is not
completely halted by intermittent dry periods.
McDonough (1975) reported that imbibition
occurred at relatively high water potentials [ranging
from 2400 kPa (slender wheatgrass [Elymus

trachycaulus (Link) Gould ex Shinners] ) to
21700 kPa, (downy brome (Bromus tectorum L.)].
However, after imbibition and germination, but
prior to seedling emergence at the soil surface, the
downward growing radical may precede the dehy-
dration front permeating from the soil surface.
Thus, seedlings may have access to available water
deeper in the soil profile, facilitating emergence
despite very low surface water potentials. In
addition, large-seeded plants, like common sun-
flower and giant ragweed, have the reserves to
support radicle growth under unfavorable condi-
tions, more so than small-seeded species like
common lambsquarters (Chenopodium album L.)
and pigweed (Amaranthus spp.). This may partially
explain why the base y value for emergence is
seemingly low.

Examining the nlme model vs. all site years of data
(Figure 3) indicates that the fixed effects (solid lines)
predicted emergence very well except for site–yr3
(Savoy, IL, 2008) and 13 and 14 (Ithaca, NE, 2007
and 2008), in which the random effects (dotted lines)
of the mixed model became more important for
capturing observed germination patterns. Therefore,
the relationship between fitted and random effects
for model parameters and environmental variables
(air temperature, GDD1, GDD4.4, GDD10 and
precipitation) from fall burial (generally October)
to March, when seedlings began to emerge, were
examined. Random departures from the fixed model
for lcr [ln(rate constant)] were strongly negatively
associated (r 5 20.75; P , 0.001) with GDD10

during the seed burial period (Figure 4). These data
suggest that seeds exposed to warmer winter
temperatures were less likely to emerge quickly than
those exposed to colder temperatures. Indeed,
sunflower seeds need an after-ripening period to
alleviate dormancy (Finch-Savage and Leubner-
Metzger, 2006) and warmer temperatures may not
have provided the chilling needed to fully alleviate
seed dormancy. The negative association between
warm fall and winter conditions and seedling
emergence also has been reported for giant ragweed
(Davis et al. 2013), although giant ragweed emer-
gence also was negatively influenced by fall/winter
precipitation. Although we did not see a relationship
with fall/winter precipitation in this study, Bazin
et al. (2011) reported that the optimal temperature of
domestic sunflower seed germination differed with
seed moisture content with drier seed germinating at
lower temperatures.

These findings suggest that common sunflower
spring emergence is promoted by low temperatures

Figure 4. Random effects of ln(rate constant) for best
hydrothermal time model of common sunflower seedling
emergence were negatively correlated (r5 20.75; P , 0.001)
with GDD10 from fall burial (October) to spring emergence
(March).
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after fall burial and can occur under drier soil
conditions than giant ragweed emergence (yb 5
22500 kPa, Davis et al. 2013). These data may help
explain why common sunflower is more problematic
in the drier western regions of Kansas and less
problematic in the warmer eastern regions of Illinois
and Michigan. This information can be incorporated
into process models to help predict emergence based
on soil conditions. It is important to note that the
environment during the fall and winter may be as
important as spring conditions when predicting
common sunflower seedling emergence.
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