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Abstract  

 Type 1 diabetes (T1D) is a chronic autoimmune disease that is characterized by the 

destruction of pancreatic β-cells and therefore, creating an insulin deficiency within the body. A 

deficiency of insulin within the body disrupts homeostatic glucose control leading to 10 

hyperglycemia and therefore, the need for exogenous insulin. Global incidence of T1D has been 

increasing for several decades and if current trajectory trends continue, incidence could double in 

the next year. In addition, diabetes is the seventh leading cause of death in the United States. 

Current therapies for the treatment of T1D include insulin injections, insulin-pump therapy, 

pancreatic transplant, and islet cell transplantation. However, due to these therapies not being 15 

able to replace true pancreatic function, alternative therapies are being researched, particularly 

cellular therapies. Stem-cell therapies, and more specifically, embryonic and human-induced 

pluripotent stem cell therapies are being researched and are touted as the most promising 

therapeutic for T1D patients in the future. However, there are several limitations with cellular 

therapies that need to be addressed before stem-cell therapy can be a mainstay within clinical 20 

therapeutics for T1D.  

 

 

 

Once Sentence Summary: Reviewing the prevalence of T1D, current therapies available, and 25 

future cellular therapeutics in an effort to treat and cure T1D.  

 

 

Abbreviations: TID=type 1 diabetes; glycated hemoglobin=HbA1C; ESCs=embryonic stem 

cells; hiPSC=human induced pluripotent stem cells; ND=non-diabetic; SC=stem cell; 30 

MHC=major histocompatibility complex  
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Overview 

T1D is a chronic condition in which an individual produces little to no insulin. It is 

known to be an auto-immune disease, where the immune system attacks insulin-producing 

pancreatic β cells rendering them incapable of their function. As a result, hyperglycemia occurs 

if no exogenous source of insulin is provided (1). Historically, T1D was also known to be 5 

juvenile diabetes. This is due to the prevalence being largely among children and adolescents. 

However, in recent times, it has been widely accepted that age at symptomatic onset is no longer 

a restricting factor in the diagnosis of T1D (2). In fact, as many as 50% of cases occur in 

adulthood with a substantial number of adult-diagnosed cases being misclassified for type 2 

diabetes rather than the correct diagnosis of T1D (3).   10 

 Although age is no longer a restricting factor in the diagnosis of T1D, it is one of the 

most chronic and common diseases associated with childhood. Children suspected of T1D 

commonly present with symptoms of polyuria, polydipsia, and weight loss; almost a third 

present with diabetic ketoacidosis, a life-threatening condition that must be corrected to ensure 

survival (4). Unlike children who have hallmark symptoms, the onset in adults is variable and 15 

may include symptoms not common to children such as: vision changes, drowsiness, or heavy 

breathing. In addition, the incidence of T1D is greater in boys and men whereas most auto-

immune diseases disproportionately affect women.   

Prevalence 

 Global incidence of T1D has been increasing for several decades. Incidence of T1D 20 

throughout the globe varies quite substantially. A study in 2020 extracted data from 193 articles 

between 1990 and 2019 to determine global incidence. Results showed that the incidence in the 

continental subgroups of Asia, Africa, Europe, and America was the following: 15 per 100,000, 
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8 per 100,000, 15 per 100,000, and 20 per 100,000 (5). Globally, T1D is most common in 

Finland with more than 60 cases per 100,000 people each year. Sardinia has the second highest 

incidence with 40 cases per 100,000 people each year (6). By comparison, T1D is rather rare in 

countries such as India, China, and Venezuela who exhibit around 0.1 cases per 100,000 people 

each year (6). Incidence trends of T1D are interesting in that they present an epidemiological 5 

conundrum due to the wide variations that occur regardless of geographical proximity. For 

example, the incidence in Estonia is one third of that in Finland, even though the two countries 

are separated by a mere 120 km (7). In the United States, the incidence is 20 per 100,000 (8). In 

terms of age, substantial increases have been observed in children younger than five. Not much 

is known about why the incidence rates are increasing; however, if they continue to increase on 10 

their current trajectory, global incidence could double over the next decade (6). Given that 

diabetes is the seventh leading cause of death in the United States and ninth in the world, it is 

important to completely understand this disease. This paper aims to discuss the diagnosis and 

pathophysiology, current therapies, and future cellular therapies in research that could one day be 

a mainstay in the management of T1D.  15 

Diagnosis & Pathophysiology  

As mentioned earlier, a substantial number of individuals are mis-diagnosed with type 2 

diabetes when the correct diagnosis would be T1D or an autoimmune diabetes. As a result, the 

statistical incidence is often underreported. Historically, diagnosis of T1D has included the 

following criteria: fasting blood sugar higher than 126 mg/dL, random blood glucose of 200 20 

mg/dL or higher with symptoms such as polyuria, polydipsia or weight loss, and/or an 2h 

glucose-tolerance >140 mg/dL (9). Within the last decade, the American Diabetes Association 

has modified their diagnosing guidelines to include HbA1C, an average value of glucose over the 
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last three months. An HbA1C higher than 6.4% is considered diabetic (10). Even so, the lack of 

standardization within diagnosing criteria between the two types of diabetes has led to 

improvement efforts as well as finding novel methods to accurately distinguish and diagnose 

cases (11).  

 Pathophysiology regarding T1D can be traced back to 1986 when George Eisenbarth 5 

developed and published a conceptual model for the pathogenesis of T1D. It postulates that 

individuals are born with various degrees of genetic predisposition to T1D. As an individual 

ages, the model shows loss of β cell mass and subsequently loss of function. It ends with no C-

peptide being present, indicative of no insulin production in the human body (12). While this 

model has stood over time, it continues to be modified as it does not address the complete 10 

complexity of the pathogenesis regarding T1D.  

There are a host of new factors that are considered when discussing the pathophysiology 

of this disease. For example, it has been proposed that environmental influences might occur 

from in utero to the first few years of life, affecting β cell autoimmunity. Psychological events in 

relation to immune system development and turnover of β cells may also be implicated in the 15 

pathogenesis (13). Immune system dysregulation, thought to be provoked by genetic 

susceptibility, has also been linked to the early destruction of β cells. Abnormalities within the 

immune system, such as a single autoantibody, does not necessarily indicate T1D (14). Rather, 

seroconversion to two or more autoantibodies has been implicated in early asymptomatic 

disease. Most individuals do not see changes for months to a decade after autoantibodies are 20 

detected as the presence of two or more autoantibodies is associated with an 84% risk of 

clinically diagnosed T1D (15). Symptomatic onset occurs once a critical mass of β cells is lost, 

resulting in hyperglycemia and the need for an exogenous source of insulin to replace the 
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function of the lost β cells. This is in conjunction with the loss of C-peptide, which confirms the 

loss of insulin production by these cells (16). Therefore, Eisenbarth’s original model has been 

updated to include a role for disease heterogeneity, genetics, immunology, and age (Figure 1).  

 

 5 

 

 

 

 

 10 

 

 

 

Figure 1. Visualization of Eisenbarth’s original model, updated to reflect the recent advances in 

understanding the various factors affecting the onset and progression of T1D.  15 

 

With either minimal levels or the loss of C-peptide resulting in loss of insulin production, 

an exogenous source of insulin must be utilized to stabilize glucose levels. The discovery of 

insulin in 1921 was perhaps the most influential therapeutic event in the management of T1D. 

However, simply having exogenous insulin does not necessarily provide the metabolic regulation 20 

that is associated with normal pancreatic function. Metabolic regulation is necessary to avoid 

complications that are associated with diabetes such as: neuropathy, nephropathy, retinopathy, 

cardiovascular disease, and hypoglycemia (17).  

 

 25 
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Current Therapies for T1D 

There are several methods of insulin therapy to control glucose levels in T1D. Perhaps 

the most basic method is multiple daily insulin injections. This method involves two separate 

types of insulin, a rapid-acting version and a long-acting version (this is call basal-bolus 

regimen). The rapid-acting insulin is administered before a meal based on carbohydrate ratios 5 

that are determined on the number of carbohydrates consumed and with the correction of the 

prior blood glucose level of the individual. Long-acting insulin, also known as basal insulin, is 

used to control glucose outside of mealtimes, mainly in the morning or at night, and is taken 

once a day (18). 

Over the past decade, the use of insulin pumps to continuously infuse insulin has 10 

increased substantially. For context, there were less than 7,000 users in 1990, 100,000 users in 

2000, and there are over 350,000 users today (19). Insulin pump therapy continuously delivers 

rapid-acting insulin through a small cannula which is inserted into subcutaneous tissue and 

secured to the skin with adhesive tape. The infusion set is connected to the pump through small 

tubing through which the insulin is delivered. When an individual is about to eat or has eaten, 15 

they enter the number of carbohydrates and the blood glucose prior to the meal. This allows for 

the pump to determine the amount of insulin needed based on a preset ratio. When a bolus is not 

being delivered, insulin pumps deliver small amounts of the rapid-acting insulin in a basal 

fashion. In addition, if an individual has high glucose, they are able to correct it with a bolus. 

They are also able to alter the basal rate with a temporary basal feature which allows for more or 20 

less basal insulin based on the body’s situational needs, such as illness or exercising. It is clear 

that the general consensus is that insulin pump therapy allows for more flexibility with eating 

patterns as well as maintaining a target HbA1C (18, 19).  
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Recent studies conducted in a randomized controlled trial have found that adults with 

T1D reported a lower HbA1C with pump therapy than injection therapy resulting in a larger 

number of patients reaching their individualized HbA1C levels which are based on factors such 

as age and comorbidities (20). In addition, a meta-analysis has also provided evidence that pump 

therapy lowers HbA1C more than daily injection therapies (21).  5 

So far, insulin pump therapy has been discussed in an open-loop mechanism. Open-loop 

delivery refers to the patient administering insulin to themselves at different times of the day 

based on their needs. Because the patient is administering, there are still variable levels of 

glycemic control as a non-compliant patient may not be benefitting from the advantages pump 

therapy has to offer. Recently, insulin-pumps have begun to operate with sensors in a form 10 

known as sensor-augmented insulin pump therapy (22). Closed-loop systems require minimal 

patient interaction as a continuous glucose monitor monitors glucose in real-time and provides 

feedback to the insulin pump to deliver or suspend insulin delivery based on the body's needs. 

Early studies have reported favorable results with improvement seen in overnight control of 

glucose and a reduced risk of hypoglycemia due to preventative action by the system (23, 24). 15 

However, once again, the system is only as effective as the patient wants it to be as failure to 

bolus after meal times renders the system in a “catch-up” mode where it is not as effective in 

maintaining target glycemic levels.  

In addition to injection and pump therapy, pancreatic transplant can be performed. 

Currently, this is the only therapy that can potentially reverse and cure T1D and is regarded as 20 

the gold standard. Pancreatic transplants are most common in brittle diabetics or those who 

experience recurrent unawareness hypoglycemia and/or hyperglycemia. If successful, it can 

restore normal glycemic levels and can halt, reverse, or prevent the development or progression 
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of diabetic complications that can result from poor glycemic control over an individual’s lifetime 

(25). In order for a pancreas transplant to occur, a viable pancreas must be obtained from a 

deceased donor. Once obtained, it is surgically inserted on the right side of the abdomen and 

connected to a variety of blood vessels. The native pancreas remains in place (26).  

While pancreatic transplants are the gold standard, there are severe limitations associated 5 

with this type of therapy. First, pancreatic transplants on their own only account for 10% of 

transplants (27). Over 70% of pancreatic transplants occur simultaneously with kidney 

transplants. These occur in patients who have had T1D for an extended period of time and have 

developed advanced chronic kidney disease due to diabetic nephropathy. In addition, pancreases 

are not readily available due to a limited number of donors, a growing waitlist, and strict 10 

guidelines regarding viability. Another limitation is that transplant recipients must be immuno-

suppressed which increases susceptibility to pathogens. And, there is always a chance of organ 

rejection, rendering the new pancreas non-functional. Therefore, pancreatic transplants are not a 

therapy readily available or accessible (26, 27).  

Islet cell transplantation is another form of transplant therapy that is less invasive. It was 15 

discovered in 1972 and by the 1980s, autologous islet cell transplantation performed for chronic 

pancreatitis showed long-term effectiveness in maintaining normal glycemic levels. Since then, 

studies have shown significant advances in the isolation, survival, and immune-system tolerance 

of transplanted islet cells. Development of the Edmonton Protocol, a steroid-free 

immunosuppressive regimen, has allowed for further understanding of the role of islet cell 20 

transplantation. For a successful procedure, islets must be derived from the pancreas of a 

deceased donor, purified, and transplanted into the recipient (28). A report by the Collaborative 

Islet Transplant Registry in 2014 showed short-term and long-term improved outcomes in 
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subjects enrolled in a study. Insulin independence was achieved in up to 80% of patients with 

near normalization of glucose levels. However, loss of islet function was observed in the 

majority of patients who initially achieved insulin independence, therefore presenting a 

limitation of this therapy (29).   

In addition to loss of function, there are other challenges facing clinical implementation 5 

of islet cell transplantation as a therapy for T1D. First, it is difficult to procure enough islets for 

transplantation. To do so, more than one pancreas is often required to isolate enough islets so that 

insulin independence can be achieved. Isolation techniques are also of the utmost importance as 

improper isolation and purification of the islets can render them non-functional. Finally, the 

portal vein is the only location where islets can be transplanted currently. As a result, they 10 

ultimately lodge in the liver. Due to the cross-exposure between islets and portal blood, an 

instant blood-mediated inflammatory reaction occurs and causes the destruction of a significant 

number of transplanted islets, resulting in decreased insulin independence (30). Due to these 

reasons, islet cell transplantation is one of the lesser-used therapies in the management of this 

disease. 15 

Therapies for the Future 

As a result of the current limitations presented by all therapies, novel therapies and 

strategies are being developed. Currently, stem cell therapy is at the forefront of T1D research 

due to the potential limitless supply as well as discontinuation of immunosuppressants used to 

control rejection in transplant recipients. There appear to be multiple sources of stem cells 20 

capable of differentiating into insulin-releasing β-cells, including the pancreas, spleen, bone 

marrow, liver, embryonic stem cells, and human induced pluripotent stem cells. Within the last 
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decade, undifferentiated cells from these sources have been researched to further understand 

their capabilities of differentiation in hopes of regenerating functional β-cells (30).  

Recently, ESCs and hiPSCs have been at the forefront of investigations in the field of 

T1D. Embryonic stem cells are pluripotent cells that are isolated and derived from the inner cell 

mass of a blastocyte, also known as the early mammalian embryo which is implanted in the 5 

uterus during development. In contrast, hiPSCs are isolated and derived from adult somatic cells 

that are subsequently reprogrammed to an embryonic-like state using Yamanaka factors. Both 

ESCs and hiPSCs are currently considered at the forefront of T1D research due to their infinite 

proliferative capacity and their ability to differentiate into a variety of adult cell types in vitro 

and potentially, in vivo.  10 

Originally, generation of insulin producing mature β cells from ESCs and hiPSCs was 

based on imitation of the embryonic pancreas development in vivo. Embryonic pancreatic 

development is reliant on a host of sequential stages that are manipulated with the addition of 

diverse cytokines and signaling modulators at each stage to regulate the activation or inhibition 

of signaling pathways that contribute to the generation of mature β cells. Stages of embryonic 15 

pancreatic development include the development of the definitive endoderm, primitive gut tube, 

posterior foregut, pancreatic endoderm, pancreatic endocrine precursor, immature β cells, and β 

cells (31). A schematic of this original concept can be seen in Figure 2.  

 

 20 
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Figure 2. A schematic representation of the original differentiation protocol for the generation of 10 

insulin-producing mature β-cells from ESCs and hiPSCs by mimicking embryonic development 

of the pancreas.  

 

 Since the original concept, several differentiation protocols have been developed for both 

ESCs and hiPSCs with varying levels of success. D’Amour et al. was the first group to develop a 15 

stepwise protocol that converted ESCs to endocrine cells capable of synthesizing pancreatic 

hormones including insulin, glucagon, somatostatin, ghrelin, and pancreatic polypeptide. While 

the protocol was successful in synthesizing, it was not effective regarding quantity. At the final 

stage of the protocol, the average percentage of insulin-producing cells from the differentiated 

cells was 7.3%. In addition, these cells were not able to respond to a high-glucose stimulus, thus 20 

proving ineffective (31).  

 Previous studies had demonstrated that fetal human pancreatic tissues were able to 

develop functionally after transplantation. Therefore, Kroon et al. further expanded on D’Amour 

et al. to determine whether immature β cells differentiated from ESCs would be able to mature 

into insulin-producing mature β cells in an in vivo environment. Using a differentiation protocol, 25 

they generated immature β cells and transplanted them into immunodeficient mice, the standard 

model organism for T1D research. Results indicated that the transplanted cells successfully 

became mature β cells and were able to respond to glucose challenges as well as maintain 

glucose homeostasis for up to three months (32).   
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 Similar to ESCs, generation of insulin-producing mature β cells from hiPSCs were also 

studied for their effectiveness. Tateishi et al. was the first group to demonstrate the production of 

islet-like clusters in vitro from skin fibroblast-derived hiPSCs using a differentiation protocol 

that mimicked in vivo pancreatic development. However, when testing the differentiated islet-

like clusters, results demonstrated only 0.3 ng/μg of C-peptide secreted. Despite the low amounts 5 

of C-peptide expression, Tateishi et al. provided evidence of insulin-secreting cells from skin 

fibroblasts hiPSCs, hence raising the possibility that hiPSCs from patients could provide an 

avenue of treatment for diabetes in the future with more refinement and investigations (33).   

 Thus far, the aforementioned studies have confirmed the potential use of ESCs and 

hiPSCs as a therapy for T1D through their ability to differentiate into insulin-producing mature β 10 

cells. However, the various differentiation protocols have led to various levels of hormonal 

secretion, gene expression, and cell efficiency. Therefore, further research is warranted. 

 In 2014, a study published by Rezania et al. was considered a breakthrough as it 

illustrated a more detailed differentiation protocol and generated mature and functional insulin-

producing β cells that were comparable to human β cells. There were seven sequential stages in 15 

this protocol, including definitive endoderm, primitive gut tube, posterior foregut, pancreatic 

endoderm, pancreatic endocrine precursors, immature β cells, and mature β cells. Analysis 

showed that the obtained cells displayed key markers indicative of mature β cells including INS, 

PDX1/NKX6.1, and MAFA. When transplanted into mice, these cells showed functional 

similarity to human islets as they were able to reverse hyperglycemia by secreting C-peptide and 20 

insulin. However, after further single-cell imaging and dynamic glucose stimulation, it was 

determined that the stage seven cells, also known as the mature β cells, were not equivalent to 

mature human β cells due to their differences in response to dynamic high glucose stimulation 
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(34). Despite these differences, the ability of these cells to respond to glucose challenges via 

insulin secretion at a rate of four times faster than pancreatic progenitors or cadaveric islets 

continued to display the ability of pluripotent stem cells as a future cellular therapy for T1D (34).  

 In the studies mentioned so far, the ESCs and hiPSCs generated from skin fibroblasts 

have been from non-diabetic patients and undergone reprogramming and differentiation via a 5 

protocol to generate insulin-producing β cells. As discussed, many of these cells are able to 

display some level of C-peptide expression and insulin secretion. However, their utility is limited 

due to a variety of reasons such as: lack of function in vitro and in vivo, mis-expression of β-cell 

genes, lack of correct granular structure, and in general, not resembling bona-fide β-cells. 

Therefore, within the field of ESCs and hiPSCs, patient-derived hiPSCs have generated great 10 

interest of recent. Patient-derived hiPSCs, particularly from T1D patients, are unique in that they 

can overcome traditional obstacles such as immune mismatch and rejection given their 

autologous nature and potentially have more defining features of β-cells.   

Maehr et al. was the first to successfully generate hiPSCs from skin-fibroblasts of T1D 

patients. These patient-derived hiPSCs were described to resemble ESCs in the global gene 15 

expression profile and thus able to differentiate into insulin-producing β-like cells. As observed 

with other studies, these β-like cells were glucose responsive but once again, not comparable to 

human β cells. However, this study was a breakthrough as it paved the path for generating T1D 

patient-derived hiPSC β cells and presented an autologous method of stem cell transplantation 

(35).  20 

 Due to the aforementioned benefits regarding T1D patient-derived hiPSCs and their 

ability to differentiate into β cells, Millman et al. used this relatively novel technology to 

generate T1D SC- β cells and ND SC- β-cells and assess both in vitro and in vivo. To generate 
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both T1D and ND SC- β-cells, hiPSCs were derived using the skin fibroblasts of T1D and ND 

patients and underwent a differentiation protocol to produce SC β-cells (Fig. 3a,3b,3c). It was 

known that both the T1D and ND hiPSCs were capable of differentiating and thus, were able to 

co-express C-peptide/NKX6.1 and C-peptide/PDX1+ (Fig. 3d). In addition, some cells were 

found to express α-cell hormone glucagon (Fig. 3d). Quantification using flow cytometry found 5 

that, on average, 24±2% and 27±2% of cells co-expressed C-peptide+/NKX6-1+ for T1D and 

ND cells (Fig 3e) (36). Further analysis using electron microscopy confirmed that both the T1D 

and ND SC- β-cells contained both developing and mature insulin granules which were 

comparable to human β-cell granules.  

Due to their roles within this field, it is important to characterize PDX1+ and NKX6.1. 10 

PDX1+ is the pancreatic and duodenal homeobox 1 transcription factor while NKX6.1 is the 

NK6 homeobox transcription factor-related locus 1. Both PDX1+ and NKX6.1 are considered to 

be hallmark regulatory factors responsible for differentiation of the definitive endoderm into 

pancreatic progenitors. It has been well-documented that high co-expression of PDX1+ and 

NKX6.1 in pancreatic progenitors is essential for the generation of mature and functional β-cells 15 

and therefore, insulin secretion.  

 In addition to quantifying C-peptide expression and examining physical structure, 

Millman et al. tested the generated cells in vitro with a glucose-stimulated insulin secretion assay 

for functionality purposes. It was found that both the T1D and ND SC- β-cells responded to 

glucose challenges by secreting 2.0±0.4 and 1.9±0.3 μIU of human insulin per 10^3 cells in 20 

response to 20 mM of glucose stimulation (Fig. 3f) (36). In addition, it was found that the T1D 

and ND SC- β-cells, on average, responded to 88% and 78% of the glucose challenges presented 

with insulin content being similar between the two cell types (36). With patient-derived hiPSCs 
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being touted as the future, Millman et al. conducted a proof-of-concept experiment where both 

T1D and ND SC- β-cells were treated with three anti-diabetic compounds that affect insulin 

secretion, namely, tolbutamide, liraglutide, and LY2608204. It was determined that treatment 

with each of the compounds increased insulin secretion by a factor of 2.0 on average in response 

to low and high glucose stimulation (Fig. 3g) (36).  5 

 In addition to testing the cells in vitro, Millman et al. assessed their function in vivo in an 

effort to evaluate their potential use in cellular therapy for diabetes. T1D and ND SC- β-cells 

were transplanted into non-diabetic immunocompromised mice (Fig. 4a). At two weeks, serum 

human insulin levels were measured before and thirty minutes after a glucose injection (Fig. 4b). 

Interestingly, insulin was detected, and the cells were glucose responsive in most, but not all, 10 

mice with 81% and 77% secreting more human insulin after glucose injection for T1D and ND 

SC- β-cells, respectively. The ratio of insulin secretion after glucose injection averaged 1.4 for 

the T1D SC- β-cells and 1.5 for the ND SC β-cells, indicating no major differences between the 

two cell types (36). In addition, immunostaining of the transplanted cells revealed C-peptide 

expression with some glucagon expression as well (Fig 4c) (36).  15 

In order to assess their function over a period of time, the effects of the transplanted cells 

were measured over a period of several months with the cells continuing to respond to glucose 

injections via insulin secretion and displaying C-peptide expression (Fig. 4d, 4e). In addition, at 

this time interval, Millman et al. evaluated the ability of T1D and ND SC- β-cells to maintain 

normal glucose levels in the blood. A subset of mice were treated with alloxan which 20 

subsequently killed mouse β-cells but retained the transplanted human SC- β-cells. Results 

indicated that both the transplanted T1D and ND SC- β-cells maintained a glucose average of 
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less than 200 (Fig 4f), continued to secrete human insulin in response to glucose (Fig 4g), and 

cleared glucose after a glucose injection in a rapid and effective manner (Fig 4h, 4i).  
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Figure 3. T1D SC- β-cells express β-cell factors and secrete insulin in response to glucose 

stimulation and anti-diabetic treatments in vitro. (a) Illustration displaying derivation of hiPSC 20 

from T1D patients. (b) Table showing cell lines used, age at the time of biopsy, and age at 

diagnosis, if diagnosed. (c) Illustration displaying the differentiation protocol used to generate 

SC β-cells. (d) Immunostaining of T1D and ND SC β-cells showing NKX6.1, PDX1, and GCG 

expression. (e) Quantification of C-peptide expression using flow cytometry. (f) Amount of 

human insulin detected in serum from both T1D and ND SC β-cells. (g) Amount of human 25 

insulin detected after treatment from three anti-diabetic drugs (36). 
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Figure 4. Analysis of T1D and ND SC β-cells after transplantation in vivo. (a) Illustration of in 

vivo transplantation. (b) Quantification of human insulin detected in the serum two weeks after 

transplantation. (c) Immunostaining of the transplanted cells showing C-peptide and some 

glucagon expression at a two-week time interval. (d) Quantification of human insulin detected in 

the serum after a period of several months post-transplantation. (e) Immunostaining of the 25 

transplanted cells showing C-peptide expression after several months of transplantation. (f) 
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Measurement of fasting blood glucose after alloxan injection. (g) Quantification of human 

insulin detected before and thirty minutes after glucose injection in mice treated with alloxan. (h) 

Measurement of blood glucose levels after glucose injection twenty-nine days after alloxan 

treatment. (i) Measurement of blood glucose levels after glucose injection eighty days after 

alloxan treatment (36).  5 

 

Overall, Millman at al. demonstrated the ability of functional SC- β-cells to be generated 

from patient-derived hiPSCs. T1D SC- β-cells were shown to be functional in vitro and in vivo, 

responding to glucose challenges via insulin secretion as well as maintaining euglycemia. It was 

determined that there were no major differences between the T1D and ND SC - β-cells generated 10 

from hiPSCs and both were very similar to adult, human - β-cells. The similarity of these cells to 

the original, functional phenotype indicates great promise as a treatment option for patients with 

T1D.  

Limitations 

It is important to note the limitations of the studies presented with ESCs and hiPSCs. 15 

Because diabetes generally develops over a period of time, as indicated by the Eisenbarth Model 

(Fig. 1), the effects of ageing need to be tested. It is important to analyze the effectiveness of 

these cells over time longer periods of time and what defects or differences might occur. In 

addition, studies have shown that the TAP1 gene, a peptide transporter associated with the major 

histocompatibility complex (MHC) has been implicated in the development and diagnosis of 20 

T1D (37). Therefore, investigating the interaction of the generated T1D SC- β-cells with the 

immune system would be very informative and help prevent potential setbacks. Another aspect 

to account for is the diversities that exist among patients globally with T1D. Finally, while 

various differentiation protocols exist with varying levels of diverse cytokines, signaling 

modulators, and transcription factors, further research is warranted to determine the perfect 25 

combination in an effort to generate efficient and lasting insulin-producing mature β-cells.  
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Conclusion & Future Work  

 With the global prevalence of T1D, pathogenesis of the disease, limitations of the current 

therapies available, and the promise of future cellular therapies, it is clear that research will 

continue to advance the potential therapeutic options available for patients. As focused on 

heavily, stem cell-based therapy offers a promising therapeutic option for patients with T1D. 5 

Within the purview of stem-cell based therapy, patient derived ESCs and hiPSCs offer the most 

promising therapeutic as it allows for patients to be their own donor and therefore, eliminates the 

obstacle of immune mismatch or rejection. In addition, it offers a potentially unlimited number 

of cells, overcoming an obstacle seen with other stem-cell types as well as cadaveric islets. 

Major advances, particularly by Millman et al., have provided insight and improved the chance 10 

of re-establishing glucose-responsive insulin secretion in patients with T1D. However, as 

mentioned, there are several limitations to the studies presented and obstacles to overcome 

before these cellular therapeutics can be a mainstay in the clinical treatment of T1D. Further 

work in the field of stem-cell based therapy should focus on generating more mature, functional 

β-cells that are structurally similar to adult human β-cells. In addition, differentiation protocols 15 

should continue to be researched to improve all aspects of efficiency of insulin producing cells 

generated from ESCs and hiPSCs. It is also important to develop larger and more specific cell 

types that account for the large number of diversity within T1D patients. Finally, a protocol 

should be developed to generate sufficient amounts of the desired cell types, especially for the 

purposes of clinical transplantation. If the field of T1D research is able to overcome the 20 

presented obstacles and obtain the information needed, the application of cellular therapies could 

represent the greatest advancement in treating and, potentially curing T1D.  
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