Southeast Research Farm 29974 University Road Beresford, South Dakota 57004

The purpose of this page is to grab your attention and convince you to join the Southeast Experiment Farm Corporation. The Southeast Farm Corporation consists of people just like you from southeast South Dakota and the surrounding area.

Around 1955, a group of progressive farmers began efforts to create an association that would be concerned with agricultural research in southeast South Dakota. On May 3, 1956, a non-profit organization, the Southeast Experiment Farm Corporation, was formed. The purpose of the corporation was to acquire and disseminate information concerning crop and livestock production.

The business affairs of the corporation are handled by a very active Board of Directors. Members of the board are elected for a two-year term from each participating county. An annual meeting is held each year to allow members to review the activities of the corporation and hear reports on progress of research projects and make suggestions on research that may need to be added to solve upcoming problems. Because the corporation is non-profit, all funds generated by the corporation are used to advance research through improvement of buildings and facilities located at the station.

We are currently working to add more new members to the Southeast Experiment Farm Corporation. Lifetime memberships to the corporation are \$25. You will not be asked for more than that. This is a one-time \$25 membership. These memberships are also transferable, so if you know of someone who has retired from farming and is a member, that membership can be transferred to you or anyone else.

This membership to the corporation is not a large amount, but it helps us in many ways. If you become a member, you will automatically receive our annual report, right off the press, in January; as well as letters during the year to keep you informed of activities at the farm and what dates and times tours will be held. Another important benefit is the more members we have demonstrates strong support and proof that there is a great deal of interest and need for agricultural research throughout southeast South Dakota.

We hope if you are not a member that you will join us. If you decide to join, send a check to the Southeast Farm Corporation for \$25 to the above address. If you have a membership that needs to be transferred, clip this page out on the line and fill out the information needed on the other side. We will be glad to process your certificate and add you to our permanent mailing list. Thanks.

Southeast Experiment Farm Corporation 29974 University Road Beresford, South Dakota 57004 2007

Subject: Transfer of Membership

The Board of Directors would like to see existing memberships, that are not active, transferred to a relative or an interested party participating in agriculture located in the same county, if possible. The reason for this transfer, is that a county must maintain a certain number of voting shares in order to elect a director. The directors look after the business affairs of the research farm, make known the research needs of each county, and participate in management decisions of the farm. It is important that each county maintain their representation in order to participate in these affairs.

If this transfer meets with your approval, please enter the name of the party you wish to transfer the membership to, sign your name in the proper blanks below and send this letter, together with the membership share, if possible, to the address listed above.

If there are no interested relatives, you may wish to use Option # 2, and delegate the responsibility to the Board of Directors to locate any interested party in the same county.

Option #1:

Please transfer membership to: _____

Address: _____

Signature

Address:	
----------	--

Option #2:

I wish to transfer this membership to the Board of Directors, authorizing them to give this voting membership to an interested party within the county.

Signature

Address: _____

This forty-sixth annual report of the research program at the Southeast South Dakota Research Farm has special significance for those engaged in agriculture and the agriculturally related businesses in the ten county area of Southeast South Dakota. The results shown are not necessarily complete or conclusive. Interpretations given are tentative because additional data resulting from continuation of these experiments may result in conclusions different from those based on any one year.

Trade names are used in this publication merely to provide specific information. A trade name quoted here does not constitute a guarantee or warranty and does not signify that the product is approved to the exclusion of other comparable products. Some herbicide treatments may be <u>experimental</u> and not labeled. Read and follow the entire label before using.

South Dakota Agricultural Experiment Station Brookings, SD 57007

Dr. Gary Lemme, Dean

Dr. John Kirby, Director

THE SOUTHEAST SOUTH DAKOTA EXPERIMENT FARM CORPORATION BOARD OF DIRECTORS

BOARD MEMBER

Alvin Novak, Chairman Mark Guthmiller, Vice-Chair John Fahlberg, Treasurer April Borders, Secretary Jay Kokes Gordon Andersen Jed Olbertson Ira Kaul Alfred Miron Dean Knutson Alan Shade Ryan Ronning Craig Jepsen Vacant Vacant

COUNTY

Yankton Hutchinson Lincoln Yankton Charles Mix Clav Lincoln Lincoln Minnehaha Turner Turner Union Yankton Clav Union

ADDRESS

Yankton Menno Beresford Yankton Delmont Centerville Beresford Tea Sioux Falls Centerville Davis Beresford Gayville

THE COOPERATIVE EXTENSION SERVICE

Gregg Carlson, Interim CES Director County Extension Educators of the Southeast Area

COUNTY

Bon Homme **Charles Mix** Clay Douglas Hutchinson Lincoln Minnehaha Turner Union Yankton

EDUCATOR Steve Sutera Tina Dangel Matt Bernau Roger Barrick John Keimig Jeff Lounsbery Craig Rosenburg Connie Strunk Vacant April Borders April Borders, Interim South District Supervisor

EXTENSION

SPECIALTY

Agronomy YD/4-H Agronomy Agronomy Livestock Livestock Agronomy Agronomy Mktg/Farm Mgmt Horticulture

ADDRESS

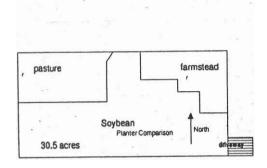
Tyndall Lake Andes Vermillion Armour Olivet Canton Sioux Falls Parker Elk Point Yankton

RESEARCH FARM EMPLOYEES

Robert Berg, Professor/Research Mgr. Bruce Jurgensen, Equipment Mechanic Adam Wiebesiek, Ag Technician Wyatt Lunning, Ag Technician (Summer)

Brad Rops, Research Assistant Ruth Stevens, Statistical Assistant Garold Williamson, Ag Technician Wyatt Petersen, Ag Technician (Summer)

SOUTHEAST SOUTH DAKOTA EXPERIMENT FARM 46th ANNUAL PROGRESS REPORT 2006


TABLE OF CONTENTS

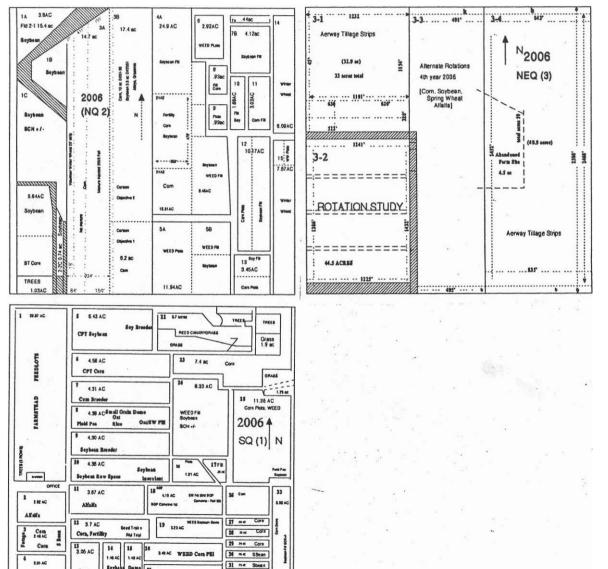

	Land Use Map1 pg
0601	Weather and Climate Summary (Stevens, Berg, Wiebesiek, and Williamson)7 pg
0602	Soybean Inoculation Study <i>(Berg, Wiebesiek, Stevens, Jurgensen, and Williamson)</i>
0603	Seed Technology Effects on Corn Performance and Rootworm Population in a Corn-Soybean Rotation (Berg, Kieckhefer, Catangui, Wiebesiek, Stevens, Jurgensen, and Williamson)pending
0604	Crop Nutrient Management Using Manure from Rations Containing Distillers Grain (Gelderman, Gerwing, Berg, Rops, Bly, and Bortnem)
0605	Nitrogen Rates for Corn (Gelderman, Gerwing, and Bly)5 pg
0606	Nitrogen Application Timing Influence on Soil Nitrate-N and Corn Grain Yield, Beresford, 2006 <i>(Gerwing, Gelderman, Bly, and Berg)</i>
0607	Fertilizer Potassium, Sulfur, Zinc, Phosphorus, Boron and Lime Effects on Corn Yield on High Testing Soil <i>(Gerwing, Gelderman, Bly, and Berg)</i> 4 pg
0608	Nitrogen Management in a Corn Soybean Rotation (Gerwing, Gelderman, Bly, and Berg)4 pg
0609	Poly Urea Influence on Corn Yield, Beresford, Brookings and Aurora, 2006 (Gerwing, Gelderman, Bly, and Berg)2 pg
0610	Soybean Cyst Nematode Studies, 2006 (Smolik)6 pg
0611	Nematode Populations in Alternative Cropping Systems Studies (Smolik)
0612	Insects on transgenic corn at the Southeast Research Farm (Kieckhefer, Catangui, and Berg)5 pg
0613	Soybean Yield Response to Different Soybean Aphid Thresholds (Tilmon)4 pg
0614	Oat Project (<i>Hall, L.</i>)4 pg
0615	2006 Alfalfa Production (Owens, Jeranyama, and Lee)
0616	Forage Grass Variety Performance Trial at Southeast Research Farm (<i>Jeranyama, Owens, and Lee</i>)2 pg

TABLE OF CONTENTS CONTINUED

0617	2006 Soybean Fungicide Sprayer Trials (B. Ruden, Draper, and K. Ruden)5	pg
0618	2006 Soybean Foliar Fungicide Trials (K. Ruden, Draper, B. Ruden, and Thompson)6	pg
0619	Oat and Field Pea – East South Dakota Test Performance Results for 2006. (<i>R. Hall and Kirby</i>) 5	; pg
0620	2006 Soybean Variety Performance Trials Beresford and Geddes (R. Hall and Kirby)1	3 pg
0621	2006 Precision Planted Corn Performance Trials (R. Hall and Kirby)7	pg
0622	Weed Control Demonstrations and Evaluation Tests for 2006 (Moechnig, Deneke, and Vos)4	6 pg
0623	The Effect of Vomitoxin-Contaminated Straw on Grower Pig Performance in a Deep Bedded System – A Demonstration (<i>Thaler and Rops</i>)	b pg
0624	 Swine Research Summaries (<i>Thaler and Rops</i>)	

2006 LAND USE MAP Southeast Research Farm Beresford, South Dakota

21 WEED Cera Pl

4.88 AC

31 MA Plots

Serl Dem

Cora

Com

Soybean PIN

WEATHER AND CLIMATE SUMMARY

R. Stevens, R. Berg, A. Wiebesiek, and G. Williamson

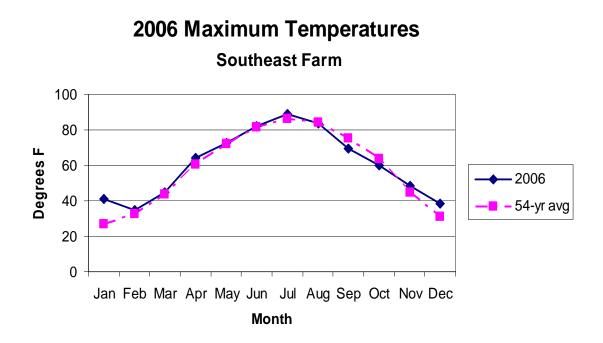
Southeast Farm 0601

Climate for 2006 is summarized in tables and graphs on pages 2 to 7. growing precipitation Annual and season precipitation were slightly above normal this year. We received 25.7 inches of annual precipitation, which is 0.6 inches above our long-term average (102% of normal). Our growing season measured precipitation from April through September was 20.1 inches (107% of normal, +1.3 inches). This was also a year of extremes with July receiving only 0.4 inches (12% of normal, -3.1) while September received 7.8 inches of rainfall (287% of normal, +5.1). Precipitation was normal or above for five months of the year, while the other seven months averaged 1.1 inches below normal (0.1 to 2.8 inches). Our annual snowfall was 23 inches, with 19 inches received the first half of the year and 4 inches during the last half.

The growing season accumulation of heat units was 3,082 units, slightly below the normal (96% of normal). The coldest temperature of the year was recorded on February 18 at -19°F and the hottest temperature recorded was 101°F on July 20, giving a 120-degree temperature range. Our frost-free season was 147 and 169 days on a 32°F and 28°F-basis, respectively. The average annual high temperature was 61°F and our average annual low temperature was 38°F. Evaporation exceeded rainfall during May through August by 4 to 10 inches per month. September rainfall exceeded evaporation by 3.4 inches, an extremely rare occurrence. We lost more than twice as much moisture by open pan evaporation than we gained by rainfall, with a total of nearly 39 inches of water evaporated from May through September while receiving 17 inches of precipitation.

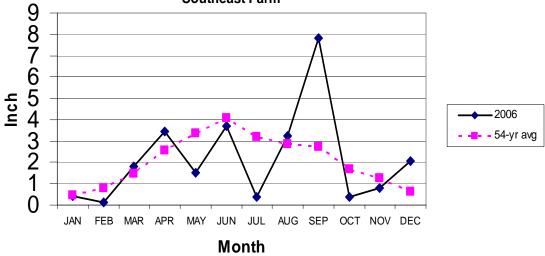
	2006 Average			Average	Departu	re from	
	Air Temp	Air Temps. (°F)		ips. (°F)	54-year Average		
	Maximum	Minimum	Maximum	Minimum	Maximum	Minimum	
January	41.1	24.7	26.6	5.5	+14.5	+19.2	
February	34.6	11.9	32.7	11.4	+1.9	+0.5	
March	45.0	24.7	43.8	22.6	+1.2	+2.1	
April	64.3	41.5	60.4	35.2	+3.9	+6.3	
Мау	72.7	46.9	72.2	47.2	+0.5	-0.3	
June	81.9	58.2	81.6	57.5	+0.3	+0.7	
July	88.8	63.4	86.2	62.0	+2.6	+1.4	
August	83.7	61.2	84.4	59.3	-0.7	+1.9	
September	69.7	47.3	75.5	48.9	-5.8	+1.6	
October	59.9	35.5	63.8	37.6	-3.9	-2.1	
November	48.4	23.7	45.0	23.7	+3.4	0.0	
December	38.5	17.5	31.0	11.6	+7.5	+5.9	
^a Computed from daily observations							

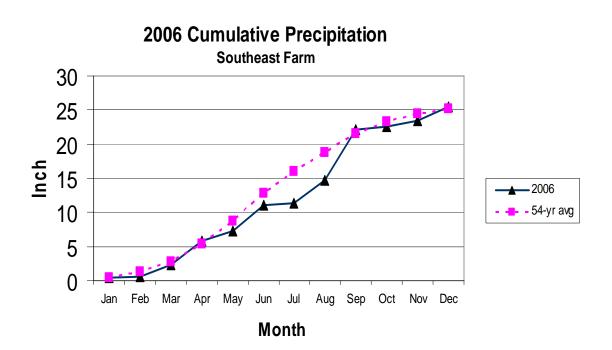
 Table 1. Temperatures^a at the Southeast Research Farm - 2006

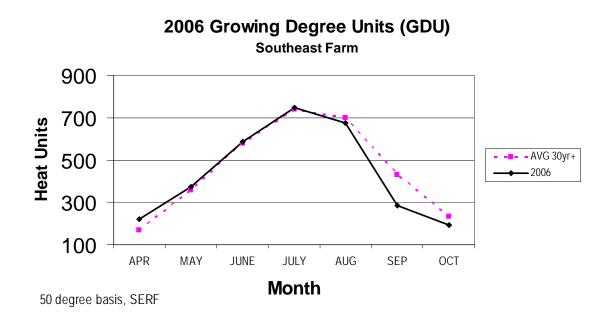

Table 2. Precipitation at the Southeast Research Farm - 2006

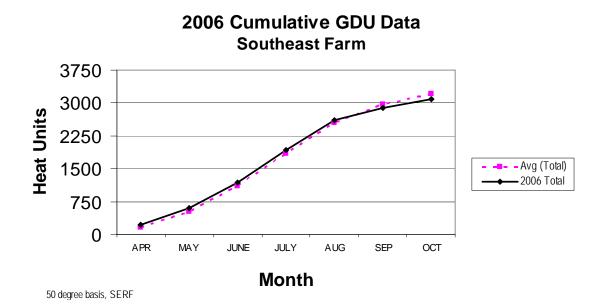

	Precipitation	54-year Average	Departure from
Month	2006 (inches)	(inches)	Avg. (inches)
January	0.42	0.46	-0.04
February	0.12	0.82	-0.70
March	1.81	1.49	+0.33
April	3.44	2.56	+0.88
Мау	1.51	3.36	-1.85
June	3.72	4.08	-0.36
July	0.39	3.19	-2.80
August	3.23	2.88	+0.35
September	7.84	2.73	+5.11
October	0.38	1.70	-1.32
November	0.80	1.25	-0.45
December	2.04	0.62	+1.42
Totals	25.70	25.13	+0.57

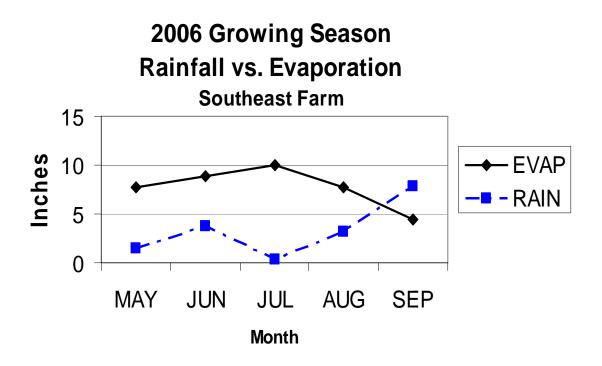
2006 CLIMATE SUMMARY SOUTHEAST RESEARCH FARM

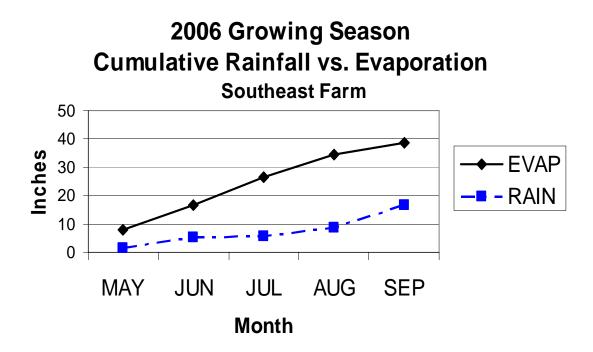

Annual Precipitation (inch)	25.70	102%*
Growing Season Precip (Apr-Sep, inch)	20.13	107%
Jan-Mar	2.35	85%
Apr-Jun	8.67	87%
Jul-Sep	11.46	130%
Oct-Dec	3.22	90%
Annual Snow (inch); (Jan-Jun/Jul-Dec)	23	19 / 4
Growing Degree Units (GDU)	3,082	96%
Minimum / Maximum Air Temp, °F	-19º F, Feb 18	101º F, Jul 20
Last Spring Frost	29º F, Apr 26	29º F, Apr 26
First Fall Frost	31º F, Sep 20	23º F, Oct 12
Frost Free Period (days); 32° / 28° basis	147	169
Average Annual High / Low	61 /38	+2.0 / +3.0
*% of normal	·	


*% of normal






2006 Precipitation Southeast Farm



SOYBEAN INOCULATION STUDY

R. Berg, A. Wiebesiek, R. Stevens, B. Jurgensen, and G. Williamson

Southeast Farm 0602

INTRODUCTION

Relying on legumes to convert atmospheric nitrogen for their own needs and for subsequent crops has played an important role in cropping systems for centuries. However, strategies used to inoculate legumes with beneficial microorganisms have changed dramatically in the past decade.

This experiment evaluated both commercial and experimental microbial inoculant formulations with and without *Bradyrhizobium* and *Bacillus* bacteria in a reduced tillage soybean field at Southeast Research Farm in 2006.

METHODS

Fifteen combinations of microbial inoculants (Table 1) provided by Becker Underwood, Inc. were manually applied as soybean seed treatments according to the manufacturer's recommendations the same day the seed was planted. A representative soil sample was collected at planting for lab analysis.

Four replications of each treatment were established as a completely randomized block design using six-row plots (30-inch row spacing) approximately 15 ft wide by 85 ft long. Pesticides were applied as needed to control weeds and insects.

Plant color was monitored throughout the growing season. Plant counts were taken in late June and again at harvest - along with plant height and lodging in the fall. Grain was harvested from four middle rows (10 ft wide) with a plot combine to determine yield. Grain moisture, test weight, dry matter, protein, and oil were also measured for each plot. A relative yield index was calculated as the grain yield of each plot divided by the corresponding grain yield of the non-inoculated control within each replication.

Net economic return per acre reflects soybean marketed on a fresh weight basis at \$5/bu less the cost of seed and microbial inoculant.

Inferences were based on analysis of variance using the General Linear Model with SAS (Statistical Analysis Software). Differences among treatment means were compared using Least Significant Difference (LSD) at the 90% probability level. Additional management information is summarized in Table 2.

RESULTS AND DISCUSSION

Stand establishment and pest control were very good throughout this study. Insecticide was applied to control soybean aphid and bean leaf beetle during pod fill. We received almost no precipitation in July, but had good rainfall in August.

No plant color differences were noted among the microbial treatments during the growing season. Lodging, shatter, or other problems were not observed. Canopy height averaged 32 inches tall at harvest.

Soybean grain yield was a little below average at 38 bu/ac with relative yields that were 90 to 110% of the noninoculated control. Grain quality was very consistent among all microbial products tested at 38% protein and 22% oil on a dry matter basis. Grain moisture was a little higher and test weight a little lower for one of the SC1 experimental bradyrhizobial treatments because of a border effect observed on the ends of a few plots in the northeast part of the field that matured a little slower than normal.

Applying microbial treatments significantly influenced plant population at harvest, but had very little if any impact on plant density in June - or on grain yield, quality, or any other measured response (Table 3, June population data not shown). Soybean plant population at harvest was generally 10 to 15% higher when the inoculum applied contained both types of bacteria, either as Vault, Integral, or Subtilex versus applying the nonnodulating *Bacillus* bacteria alone. This trend seemed to occur with nearly all of the Becker Underwood bradyrhizobia strains, except the four-way combination treatment.

Plant population was adequate at both sampling dates, but declined nearly 22,000 plants/ac (14%) by harvest. Plant population averaged 156,000 plants/ac in June and 134,000 plants/ac at harvest, which was 94 and 80% of the initial seeding rate, respectively.

Becker Underwood products that contained both bradyrhizobia plus Extender and/or *Bacillus* had slightly better yield and economic return. Experimental SC1 and SC2 products alone (without adding Extender or *Bacillus*) performed a little weaker. Becker Underwood products also performed at least as good as or maybe slightly better than similarly packaged products from Nitragin Inc.

Soybean yield increases of 0.5 to 1 bu/ac should cover the \$3 to 5/ac cost to buy these products and have them applied as seed treatments before planting. Yield responses with microbial products in this field were + 3 to - 4 bu/ac compared to the non inoculated control.

Theoretically, we could expect a net return of nearly \$10/ac with the better yielding treatments compared to the control. Thirty percent of the 14 microbial products applied returned \$5/ac (\$3-6/ac) and 70% of them lost an average of \$12/ac (\$5-23/ac).

SUMMARY

Applying seed treatments with Bradyrhizobium and/or Bacillis bacteria had a minor effect on soybean plant population at harvest. Plant population in general declined an average of 14% from late June until harvest. The microbial products tested did not affect plant population early in the season, but differences were detected at harvest. Either wet or dry Bacillus formulations without commercial bradyrhizobia, had 15,000 to 20,000 fewer plants per acre, but it did not reduce soybean yield.

A corn-soybean rotation has been the primary cropping system used in this field for decades. Competition by native populations of bradyrhizobia already established in the soil, along with high levels of residual soil nitrogen from the previous crop and drought-like conditions in July made it challenging to see dramatic results using microbial inoculants as seed treatments for soybean this year.

Even though using microbial inoculants wasn't feasible for this field, they may still play an important role in cropping systems where soybean is being introduced or grown less frequently and/or have less residual soil nitrogen.

ACKNOWLEDGEMENT

Support for this project was provided by the South Dakota Agricultural Experiment Station, the Southeast South Dakota Experiment Farm Corporation, and Becker Underwood, Inc. Laboratory analyses for grain quality was provided by Kevin Kirby with soil analyses conducted at the Soil and Plant Testing Laboratory in the Plant Science Department, at South Dakota State University in Brookings, SD.

Treatment	Bradyrhizobia	Bacillus ¹	Extender	Source ²
Non inoculated control	3			
Nod+	Nod+			B. U.
Nod+ & Extender 1	Nod+		B. U. 1	B. U.
Nod++ & Vault	Nod++	Integral	B. U. 2	B. U.
SC1 & Vault	SC1	Integral	B. U. 2	B. U.
SC2 & Vault	SC2	Integral	B. U. 2	B. U.
Integral		Integral		B. U.
Nod+ & Integral	Nod+	Integral		B. U.
Subtilex		Subtilex		B. U.
Nod+ & Subtilex	Nod+	Subtilex		B. U.
Optimize & Extender 2 Optimize			Nitragin	Nitragin
SC1	SC1			B. U.
SC2	SC2			B. U.
Optimize Optimize				Nitragin
4-way combination	Nod+/SC1/SC2	Subtilex+		B. U.

Table 1. Microbial inoculation treatments tested on soybean.
 Southeast Research Farm; Beresford, SD; 2006.

¹ Bacterial strain *Bacillus subtilis*, strain MBI 600 (Integral = wet formulation, Subtilex = dry formulation) ² Becker Underwood Inc. (B. U.) and Nitragin Inc. ³ ----- = None applied

Table 2.	Management summary for soybean inoculation study (1-10B).
	Southeast Research Farm, Beresford, SD; 2006.

Previous Crop	Corn			
Variety	Prairie Brand 2141RR			
Seeding Rate	166,400 seeds/ac			
Planting Date	May 26			
Fertilizer	None			
Tillage System	Reduced tillage (Aerway®)			
Herbicide	Roundup, early post & post			
Insecticide	Proaxis			
Harvest Date	October 4			
0-6 inch ¹	Organic matter = 3.2%, Olsen P = 21 ppm,			
	K = 386 ppm, pH = 6.5, salts = 0.5 mmoh/cm			
0-24 inch	NO3-N = 103 lb/ac			

¹ Spring, 2006 soil test

Inoculant ¹	Plant Height	Plant Population ²	Grain Yield ³	Mois- ture	Test Weight	Relative Yield	DM ⁴ Protein	DM ^₄ Oil	Net Return
	inch	plants/ac	bu/ac	%	lb/bu	%	%	%	\$/ac
Check ⁵	32	133,000	38	12.0	54.2	100	38.6	22.1	152
Nod+	32	133,000	38	11.1	57.5	99	38.3	22.0	145
Nod+ & Extender 1	32	128,000	41	11.1	56.2	107	38.6	22.1	158
Nod+ & Vault	33	132,000	41	10.6	57.3	110	38.4	22.1	158
SC1 & Vault	32	141,000	37	13.3	54.8	98	38.2	22.0	143
SC2 & Vault	31	140,000	40	12.3	53.8	106	38.3	22.0	155
Integral	31	124,000	38	11.1	56.3	102	38.2	22.1	147
Nod+ & Integral	31	143,000	39	10.9	57.0	102	38.5	22.2	147
Subtilex	32	130,000	40	11.5	56.2	103	38.4	21.9	156
Nod+ & Subtilex	31	144,000	38	11.3	54.9	101	38.4	22.2	142
Optimize & Extender 2	30	132,000	36	11.5	56.2	94	37.8	22.1	132
SC1	30	139,000	34	14.5	52.3	90	38.5	22.1	131
SC2	31	140,000	35	11.4	56.1	91	38.4	22.1	129
Optimize	31	131,000	38	10.8	57.9	102	38.3	22.1	144
Nod+/SC1/SC2/Subtilex	33	123,000	39	12.5	54.9	105	38.5	22.1	142
Average	32	134,000	38	11.7	55.7	101	38.4	22.1	145
LSD (0.10)	NS ⁶	11,000	NS	NS	NS	NS	NS	NS	NS
CV, %	8.2	6.7	13.0	20.5	7.1	13.4	1.1	0.8	16.6

Table 3. Effect of microbial inoculation on soybean performance. Southeast Research Farm; Beresford, SD; 2006.

¹ Becker Underwood Inc. inoculants, except Optimize (Nitragin Inc.) with four replications per treatment
² Plant population at harvest
³ Grain yield at 13% moisture and 60-lb/bu test weight.
⁴ 100% dry matter basis (avg. dry matter = 90.1%, std. dev. = 0.4%)
⁵ Non-inoculated control
⁶ NS = not significant

CROP NUTRIENT MANAGEMENT USING MANURE FROM RATIONS CONTAINING DISTILLERS GRAIN

R. Gelderman, J. Gerwing, R. Berg, B. Rops, A. Bly, and T. Bortnem

Plant Science 0604

INTRODUCTION

The rapid growth of the ethanol industry in South Dakota has a benefit of producing large amounts of a feedstuff in the form of distillers' grain. Utilization of the wet distillers grain (WDG) may lead to concentrated animal feeding operations (CAFOs) near the ethanol plants. Feeding of dry distillers grain (DDG) could lead to more feeding operations (especially ruminants) through out the state.

Distillers' grain is essentially corn with the starch removed resulting in a higher concentration of phosphorus (P) when compared to the original grain. Research has shown as dietary P increases above the animals P needs, excreted P increases. Therefore, manure from animal diets utilizing distillers' grain may be higher in P.

Manure has been shown to be an excellent source of plant nutrients. However, over application of manure near some CAFOs can lead to ground water (nitrate-N) and surface water (P) contamination. South Dakota has regulated land application of manure from CAFOs for a number of years based on crop nitrogen needs. Since the ratio of N to P in manure is much narrower than in grain, this can lead to over application of P because more P will be applied than is needed by the crop. In December, 2002 the EPA directed states to also consider P management in land application of manure.

There is a need to agronomically evaluate the SD Department of Environment and Natural Resources (DENR) rules (February, 2003) pertaining to manure application rates that are based on nitrogen and phosphorus. The producer needs to be assured that these rates will not limit yields when compared to commercial fertilizer application. In addition, buildup of soil nitrate-N and soil test P needs to be monitored.

<u>Purpose</u>: To agronomically evaluate rates of distiller's grain derived manure based on nitrogen and phosphorus crop needs.

OBJECTIVES

1) To determine if manure rates applied according to rules set by the SD DENR for CAFOs meet crop nutrient needs (grain yield and crop growth) as compared to commercial fertilizer.

2) To compare P buildup rates when manure is applied according to either the N or P needs of the crop.

3) To compare nitrate-N carryover from manure and commercial fertilizer.

METHODS

Two field sites were established to evaluate the study objectives. A site is located on an Egan soil just south of the office building at the Southeast Farm near Beresford on which beef feedlot manure was applied. The other site is located on the east Agronomy Farm at Brookings on Vienna-Lamoure soils (Range D-1) on which daily-scrape solid dairy cow manure was applied.

Beginning soil tests for 2006 can be found in Table 1. The P soil test from the P manure treatment was used to calculate the manure needed for that treatment. If the P soil test is high enough where no P recommendation would be made, the average crop P removal was used to calculate manure P rate. Similarly, the nitrate-N soil test from the N manure treatment was used to calculate the manure needed for that treatment. Both the P and nitrate-N soil tests were used from the fertilizer treatment to make the phosphate and N recommendations for the fertilizer treatment.

The manure was applied on October 28, 2005 and incorporated with a disc three days later at the Beresford site and applied on November 14, 2005 and incorporated in the spring at Brookings. The analysis of the beef feedlot manure and the dairy barn manure are given in Table 2. The treatments established and nutrients applied are listed in Table 3. Treatments were arranged in a randomized complete block design with four replications.

At Beresford, Asgrow 2403RR soybean was planted on May 16 in 30 inch rows. Harvest was completed with a plot combine on October 4. At Brookings, Producers Hybrid 5154 YGCBRR was planted in 30 inch rows on May 23. Harvest was completed with a plot combine on October 17.

RESULTS

Previous manure applications for the N and 2N treatments have increased most soil tests over the other treatments (Tables 1 and 4). Soybean yields at Beresford were somewhat stressed by low rainfall in July. Soybean grain yields from the check were not significantly different from treatment yields although the check was 3 to 6 bu/a lower than yields from treatment plots (Table 3).

Corn grain yields were not significantly different due applied to treatments at the Brookings site (Table 3.). However the yields from check plots were 8 to 23 bu less than treatment yields. High spring soil moisture caused plant growth variability at this site in 2006. The east two replicates were especially affected.

Post-harvest soil tests at both sites indicate increases in soil tests especially with the higher two rates of applied manure (Table 4).

Four Year Summary

The first four years of this experiment has been summarized and results are given here. The total manure and nutrients applied are shown in Table 5. The N values are available N and not total N in the manure. More N is applied for the manure N treatment compared to the fertilizer treatment because the manure treatment is applied each year including for soybean while N is only applied on corn for the fertilizer treatment. vears Phosphorus additions for the fertilizer treatment compared to the manure P treatment are similar at the Beresford site. Because soil test P is low both rates are dependent on P soil test recommendations. Soil test P in 2006 is also similar between these two treatments (Table 4).

At the Brookings site, the manure P treatment has had much more P applied compared to the fertilizer treatment. Here the soil test is high and P is applied in the manure P treatment at crop removal rates.

Four year total yields are significant among treatments even though individual year yields may not be different (Tables 6 & 7). In general higher manure rates gave higher yields than the fertilized treatment.

Phosphorus soil tests have increased over four years with the manure N and manure 2N treatments (Figures 1 and 2). In general the phosphorus applied with manure or fertilizer increased soil test P values similarly.

CONCLUSIONS

Manured treatments produced grain yields similar or better than fertilized treatments.

Soil test P from manure is changing soil test P similarly to fertilizer P.

The study will be continued with one change. A "high fertilizer" treatment will be added to determine if higher yields from manure treatments are because of higher added nutrient levels or some other factor.

ACKNOWLEDGEMENTS

These studies were funded in part by the South Dakota Corn Utilization Council, the South Dakota Ag. Experiment Station and the Southeast South Dakota Research Farm.

Treatment	O.M.	NO ₃ -N	SO ₄ -S	Olsen P	Κ	Zinc	pН	salts
Beresford site								
	%	-lb/ac ir	n 2 feet-		- ppm			mmho/cm
Check	4.0	44	22	4	289	1.17	6.5	0.4
Fert	4.0	184	24	14	260	0.97	5.9	0.4
Р	4.2	100	30	20	416	2.80	6.4	0.4
Ν	4.4	120	40	25	481	2.80	6.7	0.4
2N	4.5	180	80	60	833	3.87	6.8	0.6
				· Brookings	site			
Check	3.1	48	68	19	158	1.31	7.7	0.4
Fert	3.0	56	74	21	153	1.28	7.7	0.4
Р	3.2	36	98	23	170	1.24	7.9	0.5
Ν	3.4	56	76	45	134	2.21	7.9	0.4
2N	3.2	74	90	45	248	2.46	7.8	0.4

Table 1. Soil tests¹ after third year of manure studies, 2006

¹Samples taken fall of 2005.

Table 2. Manure nutrient analysis for manure studies for 2006.

Analysis	units	Manure ¹		
			Dairy (daily scrape with	
		Beef (from apron)	straw bedding)	
Total N	lb/ton	24.7	10.2	
Organic-N	lb/ton	23.3	9.5	
Ammonium-N	lb/ton	1.4	0.7	
Total Available-N	lb/ton	13.1	5.4	
P_2O_5	lb/ton	8.6	6.0	
K ₂ O	lb/ton	37.9	2.8	
Moisture	%	65.0	61.5	

¹ Manure collected and analyzed in November, 2005, as received basis.

			Fertilizer N-	
		Manure N-P ₂ O ₅ -	P_2O_5 - K_2O	Grain
Treatment	Manure applied ¹	K ₂ O applied		Yield
	ton/ac	lb/a	ac	bu/ac
		Beresford site (soybe	ean)	
check	0	0-0-0	0-0-0	44
Fertilizer	0	0-0-0	0-0-0	48
Manure $-P^2$	3.5	38-39-133	0-0-0	47
Manure $-N^3$	17.4	190-197-659	0-0-0	50
Manure - $2N^4$	34.8	380-394-1318	0-0-0	48
LSD				5.0
Pr>F				0.28 (NS)
C.V.%				6.9
	B	brookings site (corn)		
check	0	0-0-0	0-0-0	109
Fertilizer	0	0-0-0	50-12-0	120
Manure $-P^2$	11.3	50-12-76	0-0-0	117
Manure $-N^3$	16.7	90-100-112	0-0-0	125
Manure - $2N^4$	33.3	180-200-224	0-0-0	132
LSD (0.05)				18.1
Pr>F				0.15 (NS)
C.V.%				9.7

Table 3. Treatments, nutrients applied and influence on grain yields, 2006.

¹ Applied fall 2005 ² P manure rate based on P recommendation from soil test or on P removal from crop, which ever is greater.

³ N manure rate is based on N requirement of 1.2 lb/bu for corn or 3.8 lb/bu for beans minus soil test nitrate-N and legume credit.

 4 2N manure rate of twice the N rate above.

* Yields followed by different letters are significantly different at the 0.05 level.

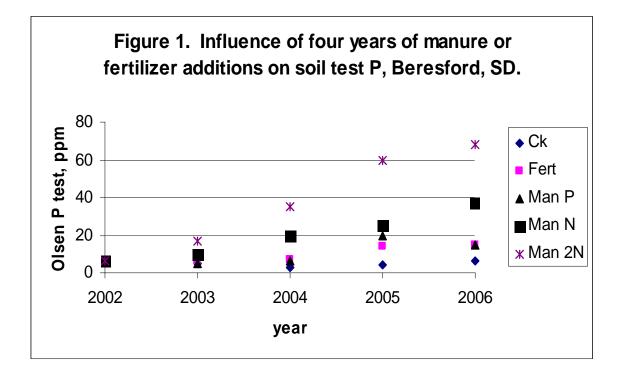
Treatment	O.M.	NO ₃ -N	SO ₄ -S	Olsen P	K	Zinc	pН	salts	
Beresford site									
	%	-lb/ac ir	n 2 feet-		- ppm			mmho/cm	
Check	3.6	28	19	6	249	0.86	6.5	0.4	
Fert	3.7	28	18	15	274	0.81	6.3	0.3	
Р	4.0	44	46	15	433	1.71	6.4	0.3	
Ν	4.0	90	72	37	612	2.62	6.8	0.4	
2N	3.9	232	118	68	968	3.13	7.0	0.5	
				Brookings	site				
Check	3.5	14	117	23	159	0.96	7.6	0.4	
Fert	3.8	14	155	29	162	1.38	7.3	0.4	
Р	3.6	22	180	28	164	1.31	7.5	0.5	
Ν	3.8	22	188	43	208	1.77	7.6	0.5	
2N	3.6	35	204	54	270	2.04	7.4	0.4	

Table 4. Soil tests¹ after fourth year of manure studies, 2006.

¹Samples taken fall 2006.

Treatment		Beres	ford		Brookings			
	manure	Ν	P_2O_5	K_2O	manure	Ν	P_2O_5	K_2O
	ton/ac		lb/ac -		- ton/ac -		lb/ac -	
Fert	0	193	162	0	0	153	12	0
		183				199		
Man P	17	$+59^{1}$	186	339	40	$+44^{1}$	193	268
Man N	50	518	626	908	99	446	454	706
Man 2N	100	1036	1252	1808	176	832	822	1244

Table 5. Manure and nutrients applied, 2003 – 2006.


¹ Fertilizer N added to supplement manure

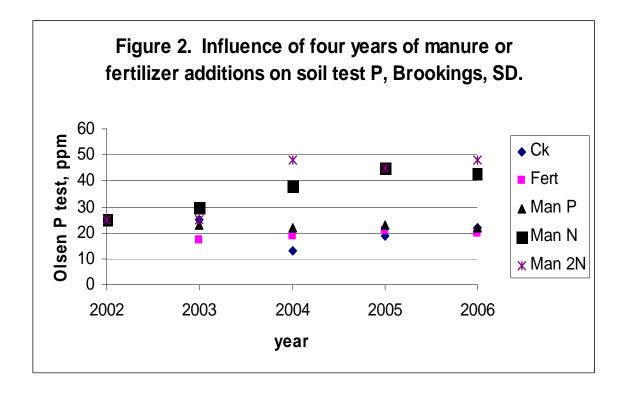

	2003	2004	2005	2006	4 year
Treatment	corn	soybean	corn	soybean	Total
			bu/ac		
Check	143	41	88	44	316
Fert.	139	45	109	48	341
Man. P	151	44	102	47	345
Man. N	152	47	121	50	371
Man. 2N	142	48	105	48	342
Pr>F	0.30 NS	0.14 NS	0.003	0.71 NS	0.03
L.S.D.			12		30

 Table 6. Yields from manure study, Beresford, 2003-2006

Table 7. Yields from manure study, Brookings, 2003-2006

	2003	2004	2005	2006	4 year
Treatment	soybean	corn	soybean	corn	Total
			bu/ac		
Check	32	147	59	109	347
Fert.	30	151	59	120	361
Man. P	33	152	60	117	362
Man. N	32	166	61	125	383
Man. 2N	32	172	61	132	397
Pr>F	0.30 NS	0.04	0.34 NS	0.14 NS	0.03
L.S.D.		18.2			30.5

NITROGEN RATES FOR CORN

R. Gelderman, J. Gerwing, and A. Bly

Plant Science 0605

INTRODUCTION

Nitrogen rates for corn are receiving renewed attention because of high nitrogen fertilizer prices. Environmental concerns with nitrate-N leaching, hypoxia in the Gulf, and the Conservation Security Program (CSP), are also having an impact in renewing questions about nitrogen rates for corn.

Much of the recent work for corn N rates has been on corn following soybean. However, more corn on corn rotations are also being used because of favorable economics with this rotation. Little N calibration work has been done on corn following low residue, non-legume crops such as corn silage or sunflower. In theory, N rate needed for maximum economic corn yield may be less following these crops than following a high residue corn or small grain crop. Less N may be immobilized because of lower residue amounts that contain high C:N ratios.

nitrogen rate for The corn following soybean has always been found to be lower than for corn following corn. This so called 'nitrogen credit' given for soybean is actually а misnomer. It implies that the soybean crop has provided 40 lbs of N in the soil for the corn crop. In reality it just means that corn grown after soybean takes less N for maximum yield than corn following corn or following another high residue crop. The extra N needed for the corn after corn is probably needed for the microbes breaking down the low N residue. In fact, we should probably base our N rates for corn when it follows soybean and add another 40 lbs for corn following a high residue crop. Much like we add another 30 lb N/ac if the tillage system is no-till or strip-till.

Our objectives in this study are:

1) to determine the maximum economic N rate for:

- a) corn following soybean
- b) corn following corn

c) corn following corn (above ground residues removed CC_{rr}).

2) to measure and compare soil nitrate-N, total soil N and total soil carbon after each of the above rotations and N treatments.

METHODS

A tilled site was established on the north quarter of the Southeast Research Farm near Beresford (SERF) in the spring of 2005 to answer the above objectives. The site consists of Egan silty clay loam soils which are deep well drained soils found in glacial till. The slope is from 2-3%. Beginning soil tests are OM % = 3.5, P ppm = 13, K ppm = 301, Zn ppm = 1.4, Sulfate-S Ib/ac in 2 '= 46, pH = 7.2 and salts = 0.8 mmho/cm. All nutrients are high to very high levels. The beginning 2006 soil nitrate-N values after corn or soybean ranged from 30 to 40 lb/ac in 2 feet.

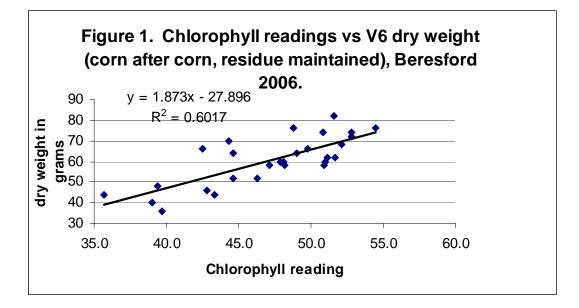
Nitrogen treatments are 0, 30, 60, 90, 120, 150, and 180 lb N/ac as urea. The N rates are over-laid on three rotations; corn on soybean (CS), corn on corn (CC), and corn on corn with above-ground residue removed (CC_{rr)}. The experimental design is a split-strip with four replications. The N rates are the splits within each rotation strip. Plot size is 15 by 50 feet. The urea was broadcast with a Gandy air applicator on April, 27 2006. The field was disked the same day and then field cultivated on April 28 just before planting

Corn (Dekalb DK58-73 RR2/YGPL) was planted at 30,000 seeds/ac on April 28, 2006. Weeds were controlled as needed. SPAD 502 meter readings (indicates greenness of plant tissue) were taken on mid-V6 leaf and whole plant samples were taken at V6 stage on 8 June 2007. Ear leaf samples were taken for N concentration on July 17. Grain was harvested in the four center rows, each 45 foot in length, on 12 Oct with a plot combine. Four soil cores were sampled in 0-12, 12-24, and 24-36 inch increments and composited by depth on Oct. 25. Stalks were chopped, raked and baled on the low residue strips. No fall tillage was done.

RESULTS

Rate of N significantly increased plant greenness at V6 to roughly the 60 lb/ac N rate (Table 1). Rotation also significantly influenced plant greenness. On average the plants on the corn after corn residue were 4 to 5 SPAD meter units less than the other two rotations. Much lower SPAD readings were found on plants in the zero N rate under the CC rotation than under the other two rotations.

Rate, rotation and the interaction also influenced plant growth at V6 (Table 1). The largest weight increase at this growth stage occurred with the first 30 lb N rate. The CC plants were the smallest at V6. There was a much larger increase in plant growth to the 30 lb N/ac rate for the CC plants compared to plants in the other two rotations. Additional nitrogen increased growth for plants under the CC rotation but did not increase plant weights to levels from the other two rotations. There is a relatively good relationship between V6 drv weight and greenness for the CC rotation (Figure 1). This relationship was much poorer for the CS or CC_{rr} rotations. Ear leaf N concentrations are not yet complete.


Grain yield was increased by N rate and influenced by rotation but not by the rate by rotation interaction (Table 2). Partly because of drought stress, there is variability with yield response to N rate. The response to N over all rotations indicates a grain yield increase to 60 lb N/ac, then yields are stable through 120 Ib N/ac and a response is seen again at the 150 lb N rate. This rate is relatively high for a 115 bu/ac yield level. However, this is often seen with plants under stress. There is less N efficiency in such years. Lower N efficiency could be due to less root system and therefore lower uptake of available N or just less effective uptake of N in dry areas of the root zone.

N Rate		Rotation/residu		
	CS ¹	CC^2	CC _{rr} ³	Mean
		SPAD me	eter reading ⁴	
0	47.2	39.4	47.6	44.7
30	50.9	45.6	46.7	47.7
60	53.4	50.7	51.8	52.0
90	49.8	50.5	54.5	51.6
120	52.5	47.1	49.9	49.8
150	54.0	46.7	52.0	50.9
180	53.5	50.3	52.1	52.0
Mean	51.6	47.2	50.7	49.8
Stats	CV=6.0%. Pr>F:	rate=0.001, rot. =	0.02, rate x rot. =	0.10.
		V6 dry we	ight, gm	
0	68.3	41.0	70.5	59.9
30	72.3	62.0	86.5	73.6
60	93.5	65.5	79.0	79.3
90	66.3	62.5	84.5	71.1
120	79.0	59.5	71.8	70.1
150	79.5	67.0	80.0	75.5
180	67.0	65.5	78.5	70.3
Mean	75.1	60.4	78.7	71.4
Stats	CV = 13.6%. Pr>	F: rate = 0.02, rot	. = 0.02, rate x rot.	= 0.04.

Table 1. Influence of N rate, crop rotation and residue removal on SPAD meter readings and dry plant weight at V6 stage, Beresford SD, 2006.

 1 CS = corn after soybean 2 CC = corn after corn

³ CC_{rr} = corn after corn, residue removed ⁴ higher readings = higher measure of greenness or chlorophyll

Average grain yield (over all N rates) is highest after soybean, followed by the rotation with the corn residue removed (Table 2). The CC rotation averages 22% lower in yield than the corn after soybean rotation. This is higher than the 10 to 15% lower yields reported by other studies in good years. The relative decrease is consistent with other studies under a stressed environment. Less extensive roots with the CC rotation is thought to have limited water uptake. The CC_{rr} rotation produced 13% less yield than the CS rotation. Plants under less residue did produce better yields in a corn – corn rotation.

In general, residual soil nitrate-N increased with additional N for all rotations (Table 2). The largest soil nitrate increase occurs from the last 30 Ib N/ac addition. This makes sense in that little yield response was seen from this addition. The effect of rotation was significant at the 0.10 level with regard to carryover nitrate. Even though the CC rotation had significantly less yield, the carryover nitrate-N was lower compared to the other rotations. This effect may suggest that microbial immobilization of N is a factor with this high C:N residue rotation (i.e. the microbes are utilizing the available soil N to breakdown residue). Carryover nitrate-N averaged higher with the CC_{rr} management compared to the CS rotation. Perhaps this is due to lower yields with this rotation compared to CS.

SUMMARY AND CONCLUSIONS

Drought decreased yields for the first year of this long term study. Nitrogen rate increased early plant green color, early growth, grain yield, and carryover soil nitrate-N. The corn after corn rotation with residue produced less early growth and grain yield. Lower N efficiency occurred in this stress year. It is too early in the study to suggest N rate needs for each rotation/residue combination.

ACKNOWLEDGEMENTS:

These studies are funded in part by the South Dakota Ag Experiment Station, and the Southeast Research Farm.

N Rate		- Rotation/residu	e						
	CS ¹	CC^2	CC ³	Mean					
		corn grain yield, bu/ac							
0	96	53	73	74					
30	96	73	96	88					
60	119	93	101	104					
90	122	92	104	106					
120	112	95	105	104					
150	134	108	105	116					
180	128	108	115	117					
Mean	115	89	100	101					
Stats	CV=10.2%. Pr>	F: rate = 0.00001, r	ot. = 0.002, rate x	rot. = 0.28.					
		nitrate-N, lb/a							
0	46	34	49	43					
30	45	44	39	43					
60	65	47	79	64					
90	81	69	84	78					
120	100	84	98	94					
150	99	71	131	100					
180	123	140	165	143					
Mean	80	70	92	81					
Stats			. = 0.10, rate x rot						

Table 2. Influence of N rate, crop rotation and residue removal on corn
grain yields and residual soil nitrate-N, Beresford SD, 2006.

¹ CS = corn after soybean ² CC = corn after corn ³ CC_{rr} = corn after corn, residue removed ⁴ sampled Oct. 25, 2006.

NITROGEN APPLICATION TIMING INFLUENCE ON SOIL NITRATE-N AND CORN GRAIN YIELD, BERESFORD, 2006

J. Gerwing, R. Gelderman, A. Bly, and R. Berg

Plant Science 0606

INTRODUCTION

Many opportunities for application of nitrogen occur during the year. It can be applied from the fall after soybean harvest until side-dress when corn has six leaves. During this time, conditions for N leaching and/or denitrification can occur. These losses reduce Ν availability to corn and may reduce yield potential. A research project was initiated to measure the affect of N application timing on N availability to corn in a corn soybean rotation.

MATERIALS AND METHODS

A site was selected on the Southeast Research Farm near Beresford. South Dakota. Five application timings and a 0 N check were included in a randomized complete block plot design with four replications. N application timings were: 1) soon after soybean harvest (early fall = EF), 2) after soil temps cooled below 50 degrees F (late fall = LF), 3) during March or April (early spring = ES), 4) immediately before planting (late spring = LS), and 5) when the corn was at the six leaf stage (side dress = SD). Application dates for each timing treatment can be found in Table 1. No Tillage was done after the LF and ES urea applications, but all plots were tilled after the EF and LS applications that prevented volatilization losses from those timings. Urea was used for all treatments except the side dress treatment. Ammonium nitrate was used in the side dress treatment to prevent volatilization losses since plots were not cultivated. It was assumed that cool conditions during the LF and ES application times would minimize volatilization losses of N from these treatments. The nitrogen rate for all timings was 140 pounds per acre. The previous crop was soybeans. Corn was harvested with a field plot combine. Soil samples were taken to a depth of 24 inches on June 15, 2006 from the check, EF, LF, ES, and LS treatments Plot replications were (table 2). composited for soil nitrate analysis.

RESULTS AND DISCUSSION

Corn was severely stressed by hot, dry conditions in July (Table 2). Average yield across all treatments was only 88 bushels per acre and was not affected by nitrogen application or timing (Table 1). Since there was no response to nitrogen, any losses of nitrogen or inefficient nitrogen use could not be estimated this year with corn yields.

Soil samples taken on June 15th to a depth of two feet for soil nitrate indicated losses of fertilizer N to volatilization did not occur in the late fall non incorporated treatment since the nitrate in this treatment was higher than the earlier incorporated urea (Table 3). Nitrate levels in the top foot were also highest in the April 4th application (194 lb) even though this treatment was not incorporated for almost a month. The high levels of nitrate found in the fertilized plots compared to the check (24 lb) would indicate leaching did not occur this spring. Leaching losses were

not expected due to dry conditions but volatilization losses were possible with the late fall and early spring surface applied treatment. The more than 2.5 inches of rain in November and nearly 3.5 inches in April apparently moved the Urea N into soil before significant volatilization losses occurred. Subsequent dry conditions prevented leaching losses.

ACKNOWLEDGMENTS

Support for this study came from various sources including the Ag Experiment Station, Plant Science Dept, Extension Service and the SDSU Soil Testing Lab.

N Application Timing	Date	Corn Yield
		bu/ac
Check	None	79
Early Fall (EF)	10/29/05	82
Late Fall (LF)	11/18/05	83
Early Spring (ES)	4/4/06	88
Late Spring (LS)	4/27/06	96
Side-dress (SD)	6/7/06	98
Pr>F		0.25
CV%		14.8
LSD (.05)		NS

Table 1 . N Application Timing Effect on Corn Grain Yield at the
Southeast Research Farm, Beresford, SD in 2006.

Table 2. Precipitation at the SE Experiment Farm, Beresford, Nov. 1, 2005 to Oct. 31, 2006.

Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct
	inchesinchesinchesinches										
2.56	1.23	0.42	0.12	1.81	3.44	1.51	3.72		3.23	7.84	0.38

Table 3. June Soil Nitrate	Levels from Nitroae	n Timina Studv	/. Beresford, SD 2006.

Sample	N Application ¹ Date					
Depth	None	10/29/05	11/18/05	4/4/06	4/27/06	
Inches	Ib NO ₃ -N ²					
0-6	20	110	120	168	100	
6-12	4	30	36	26	10	
12-24	20	48	52	92	24	
Total	44	188	208	286	134	

¹140 lb N

²sampled 6/15/2006

FERTILIZER POTASSIUM, SULFUR, ZINC, PHOSPHORUS, BORON AND LIME EFFECTS ON CORN YIELD ON HIGH TESTING SOIL

J. Gerwing, R. Gelderman, A. Bly, and R. Berg

Plant Science 0607

INTRODUCTION

Some farmers in South Dakota are using phosphorus, potassium, sulfur, zinc, or lime on soils with high soil tests. Research by soil fertility staff at South Dakota State University during the last 30 shown vears has not consistent economical responses to these fertilizer nutrients or lime when soil test levels are high. Therefore, the SDSU Soil Testing Lab does not recommend fertilizer nutrient application unless soil test levels are lower. The studies reported here were established in 1988 and 1990 to determine the effects of each of these commonly used nutrients and lime on corn and soybean yields and soil test levels when applied to high testing soils.

MATERIALS AND METHODS

Two experimental sites were established, one on the SE Experiment Farm near Beresford in 1988 and another on the Agronomy Farm near the SDSU campus in Brookings in 1990. Fertilizer treatments have continued at each location on the same plots since establishment. A corn-soybean rotation was followed at both locations. Corn was the 2006 crop. The soil at the SE Farm site is an Egan silty clay loam. Egan soils are well drained soils formed in silty drift over glacial till. The soil at the Brookings Agronomy Farm is classified as a Vienna loam. Vienna soils are well drained medium textured loam and clay loam soils formed from glacial till. Both soils are typical upland soils for their respective areas in the state. Fertilizer treatments were 50 lbs K₂O, 25 lbs sulfur (as gypsum), 5 lbs zinc (as zinc sulfate) and lime at both locations (Table 1). In addition, the Brookings site had a 40 lb P_2O_5 treatment and the Beresford site a boron treatment (2 lb/ac). The fertilizer treatments were applied each spring since the establishment year (1988 at Beresford and 1990 at Brookings) on the same plots. An exception is the boron treatment at Beresford that was initiated in 1997. Lime was applied only twice (1988 & 2003) at the SE Farm location and twice (1990 & 1992) at Brookings. Nitrogen (140 lbs/ac) was broadcast just prior to tillage and planting in spring. All fertilizer treatments were broadcast and followed by either disking or field cultivation. Herbicides were applied as needed at both locations. A randomized complete block design with four replications was used at both sites. Plot size was 15 by 65 feet at Beresford and 20 by 40 feet at Brookings. Harvest was done with a plot combine at both locations.

RESULTS AND DISCUSSION

Soil test results from soil samples taken before 2006 fertilizer applications are presented in Table 2. Potassium soil tests were in the very high range at Beresford and Brookings. Adding 50 lb/ac of K₂O per year since 1988 at Beresford and 1990 at Brookings raised the K soil test by 175 and 77 ppm, respectively. The sulfur soil test in the check plots was low at Beresford and medium at Brookings. Adding 25 lb/ac sulfur each year had a residual effect at Beresford, raising the soil test 22 lb/ac, but no residual effect at Brookings. The zinc soil test in the check was high at Beresford (0.82 ppm) and Brookings (0.40). Applying 5 lb/ac zinc each year raised the soil test to 14.40 and 15.80 ppm at Beresford and Brookings. respectively. The lime treatments made during this study had residual effect on soil pH. The check pH at Beresford was 5.8 and where lime was applied it was 6.8. At Brookings the check pH was 6.6 and limed treatments 6.7. The phosphorus soil test level at the Brookings site was 8 ppm without the phosphorus applications. The 40 lb/ac annual phosphorus applications raised the Olson soil test level to 35 ppm. There was no phosphorus treatment at Beresford and all plots receive phosphorus as needed. The 2 lb/a boron treatment started at Beresford in 1997 raised the boron soil test from 0.72 ppm to 1.53 ppm. The check soil test was in the high range (>0.50 ppm) and no boron would have been recommended.

Moisture stress adversely affected yields at Beresford and to some extent at Brookings. Corn yields averaged only 93 bushels per acre at Beresford (Table 3). No treatment significantly increased yield over the check. At Brookings corn yields averaged 137 bushels per acre (Table 4) and similar to Beresford, none of the treatments increased yield over the check. Since soil tests were generally high for the nutrients tested at these locations, little or none of the nutrients in question would have been recommended and little or no response was expected.

Yield results and soil test levels from previous years for these two studies can be found in the SE Farm Progress Reports (1988-2005) and in the 1988-2005 SDSU Plant Science Department Soil/Water Science Research annual report, Technical Bulletin Nos. 97 or 99.

ACKNOWLEDGMENTS: Support for these studies came from various sources including the Ag Experiment Station, Plant Science Dept, Extension Service and the SDSU Soil Testing Lab.

	Fertilizer Rates				
Treatment	Beresford ¹	Brookings ²			
	lb/ac				
Check	0	0			
Phosphorus (P ₂ O ₅)	3	40			
Potassium (K ₂ O)	50	50			
Sulfur	25	25			
Zinc	5	5			
Boron	2	³			
Lime	4	5			

Table 1. Fertilizer Treatments, Fertilizer and Lime Study, Beresford and Brookings, 2006.

¹ Applied each spring, 1988 - 2006 except boron applied only since 1997. ² Applied each spring, 1990 - 2006. ³ Not a treatment at this location.

 4 4000 lb and 3800 lb CaCO₃ equivalent applied spring 1988 and 2003, respectively.

⁵2500 lb and 2400 lb CaCO₃ equivalent applied spring 1990 and 1992, respectively.

Table 2. Soil Test Levels, Fertilizer and Lime Study, Beresford and Brookings.

	Soil Test Level			
	Beresford ^{1, 3}		Brookings ²	
Soil Test	Check	Treatment	Check	Treatment
Potassium ppm	231	375	161	238
Sulfur, lb/ac, 0 - 6 in lb/ac, 6 - 24 in	6 12	16 24	6 18	4 18
Zinc, ppm	0.82	14.40	0.90	15.80
pH	5.8	6.8	6.6	6.7
Olson Phosphorus, ppm	19		8	35
Boron	0.72	1.53		
NO ₃ -N, lb/A 2 ft	30		36	
Organic Matter, %	3.1		3.1	
Salts, mmho/cm	0.3		0.4	

¹Sampled 10/26/05

²Sampled 11/2/05

 $^{3}160 \text{ lb } P_{2}O_{5}$ applied 11/19/01 and 4/01/03

Fertilizer Treatment	Yield	
	bu/ac	
Check	92	
Potassium	93	
Sulfur	85	
Zinc	102	
Boron	90	
Lime	95	
Prob of > F	0.07	
C.V. %	7.6	
LSD .05	NS	

 Table 3.
 Fertilizer Effects on Corn Yield, Beresford, 2006.

 Table 4.
 Fertilizer Effects on Corn Yield, Brookings, 2006.

Fertilizer Treatment	Yield	
	bu/ac	
Check	141	
Phosphorus	136	
Potassium	142	
Sulfur	134	
Zinc	133	
Lime	135	
Prob of > F C.V. % LSD .05	0.95 12.0 NS	

NITROGEN MANAGEMENT IN A CORN-SOYBEAN ROTATION

J. Gerwing, R. Gelderman, A. Bly, and R. Berg

Plant Science 0608

INTRODUCTION

There is increasing concern about the effects of nitrogen fertilizer on the environment, especially ground water quality. This concern has been intensified by reports of NO_3 - N of greater than 10 ppm in several locations in eastern South Dakota, especially where aquifers are shallow and soils are very coarse. In some instances, nitrogen fertilizer moving below the root zone has been implicated.

This nitrogen management experiment was established to study the effects of N rates in a corn-soybean rotation on nitrogen movement below the root zone. The typical rooting depth of corn, soybeans and wheat in South Dakota is four to five feet. In most situations in South Dakota, if nitrogen moves below the root zone it stays there and only rarely moves back up. Therefore, once out of reach of crop roots, nitrate has the potential to move the groundwater down to with percolating water during wet periods.

MATERIALS AND METHODS

This nitrogen management experiment was established on the Southeast South Dakota Experiment Farm near Beresford in 1988. It is located on an Egan silty clay loam soil. Egan soils are well drained soils formed in silty drift over glacial till.

Corn was planted on the site in even numbered years since 1988 and soybean was planted in the odd numbered years. The rates and timing

of nitrogen fertilizer applied to the corn in 2006 are listed in Table 1. The treatments included a check (no N), the recommended rate applied in fall, spring or split between spring and 6 leaf stage and 200 and 400 lb rates spring applied regardless of the previous soil test. These treatments were applied to the same plots each year that corn was planted in the rotation. The recommended rate was adjusted according to the NO₃ - N soil test level and for credit given because of the years' soybeans. The previous recommended nitrogen rate was 123, 62, 90, 95, 95, 110, 125, 90, 100 and 110 lb/A respectively for the even numbered vears 1988 through 2006. Nitrogen was broadcast as urea and immediately incorporated by tillage except the fall application was not incorporated until the following spring. The June portion of the split application surface broadcast ammonium was nitrate. Ammonium nitrate was used for this treatment to prevent volatilization losses. Years when soybeans were planted (odd numbered years) no nitrogen fertilizer was applied. Results reported here are from 2006 when corn was the test crop.

Phosphorus, potassium and pH soil test levels at the site are 17 and 247 ppm and 5.7 respectively. One hundred sixty pounds P_2O_5 was broadcast in the fall of 2001 and spring 2003 as 0-46-0 to raise the phosphorus soil test. A randomized complete block design was used on the experiment with four replications. Plot size was 15 feet by 65

feet. Corn was planted in 30 inch rows after tillage with a disc. No fertilizer was applied at planting. Four center rows from each plot were harvested with a plot combine. Soil samples were taken to a depth of six feet in one foot increments on October 20, 2006. Only the 0, spring recommended (110 lb rate), 200 and 400 lb/ac N rates were soil sampled.

RESULTS AND DISCUSSION

Corn yields in 2006 (Table 2) were limited by a relatively hot dry summer. July was particularly hot and dry with only 0.39 inches of precipitation (Table 3). Yields ranged from 52 bushels in the O N check to 99 bushels in the 200 lb N treatment. The spring and split applied treatment ranged from 91 to 99 bu/ac and were not significantly affected by timing or rate. That was expected since the dry condition reduced demand far below the 150 bushel yield goal and prevented any leaching losses. The fall N treatment, applied on November 15, had a yield of 84 bu/ac which was numerically lower than the other fertilizer treatments and statistically lower than the 200 lb/ac N treatment. This fall urea treatment was not incorporated until spring. Past experiments have shown volatilization losses of fall surface applied urea. Losses appeared to be larger in dry

open winters like the winter of 2005-2006. It is likely this treatment trended lower at least in part due to volatilization losses.

Nitrate soil tests taken in the fall to a depth of six feet in the check and spring applied 110, 200, and 400 pound N rates showed nitrate leaching did not occur in 2006 (Table 4). The 400 pound N rate nitrate soil test in the top foot of soil was 192 lb/ac while the 2nd foot had only 40 lb/ac NO₃-N. The lack of leaching in 2006 was expected because of the relatively dry summer.

These plots will be rotated back to soybeans in 2007 and soil samples taken in the fall to a depth of 6 feet to determine carryover N levels and possible losses by leaching. Corn and soybean yields and soil tests from previous years of this study can be found in the Southeast Farm Progress Reports and in the Plant Science Dept Soil/Water Science Research Annual Reports.

ACKNOWLEDGMENTS:

Support for this study came from various sources including the Ag Experiment Station, Plant Science Dept, Extension Service and the SDSU Soil Testing Lab.

	Time of Application					
Treatment	Spring ¹	7 leaf ²	Fall ³			
		lb N/ac				
Check	0					
Spring	110					
Split	30	80				
Fall			110			
Spring	200					
Spring	400					

Table 1. Nitrogen Fertilizer Treatments Applied in 2006, Nitrogen Fertilizer Management Study, Beresford, SD.

¹ April 27, 2006 ² June 15, 2006 ³ November 18, 2005

Table 2. Nitrogen Management Study Corn Yields, SE Experiment Farm, Beresford, SD; 2006

2006 N	itrogen	
Time	Rate	Corn Yield
	lb/ac	bu/ac
Check	0	52 a
Fall ¹	110	84 b
Spring ²	110	91 bc
Split ³	110	95 bc
Spring	200	99 c
Spring	400	91 bc
Pr > F		< 0.01
CV%		10.7
LSD .05		13.7
¹ Fall = 11/	18/05	
2 .		

² Spring = 4/27/06 ³ Split = 30 lb 4/27/06, 80 lb 6/15/06

Table 3. Rainfall at the SE Ex	periment Farm, Bere	esford, SD: Nov, 1	. 2005 to Oct. 31. 2006.

Nov ¹	Dec	Jan	Feb	Mar	I.	May		Jul	Aug	Sept	Oct
					inc	hes					
2.56	1.23	0.42	0.12	1.81	3.44	1.51	3.72	0.39	3.23	7.84	0.38

	Fertilizer N Applied, lb/a, even years, 1988 through 2006							
	(0	Recomn	nended ¹	20	200		00 00
Depth	2005	2006	2005	2006	2005	2006	2005	2006
feet				- Soil NO ₃ ·	\cdot N, lb/ac ²			
0 - 1	26	12	16	12	24	88	32	192
1 - 2	16	12	12	16	16	32	12	40
2 – 3	8	12	8	16	8	40	16	40
3 – 4	8	12	8	16	16	20	48	48
4 – 5	8	16	12	16	28	32	68	84
5 - 6	8	20	16	20	28	40	68	100

Table 4. Fall Nitrate Soil Test Levels, Nitrogen Management Study, Beresford, SD; 2005 - 2006.

¹ Rates applied were 123, 62, 90, 95, 95, 110, 125, 90, 100 and 110 lb N/ac in spring of even years 1988 –2006 respectively, yield goal 1988 – 1996 = 130 bu/ac, 1998 – 2002 = 145, 2004 – 2006 = 150 bu. ² Soil sampling dates: Oct 26, 2005, Oct 20, 2006.

POLY UREA INFLUENCE ON CORN YIELD, BERESFORD, BROOKINGS, AND AURORA, 2006

J. Gerwing, R. Gelderman, A. Bly, and R. Berg

Plant Science 0609

INTRODUCTION

Nitrogen losses by leaching and/or volatilization when nitrogen fertilizer materials are surface applied are always possible in South Dakota. Heavy rains in May and June can leach N applied at planting. Dry condition in May and June can lead to volatilization losses from surface applied non-incorporated urea. It may be possible to minimize both these losses by using a slow release nitrogen source. A relatively new slow release material to the agriculture market is poly coated urea. The function of the poly coating is to prevent moisture from rapidly converting urea to ammonia and ultimately to nitrate. Ammonia can be lost by volatilization under some conditions and nitrate can leach before plants can use it if heavy rains occur early in the season.

MATERIAL AND METHODS

Three experimental sites were established to test the effectiveness of surface applied poly coated urea (PU) compared to regular urea (U). One site was on each of the SDSU Experiment Stations at Beresford, Aurora and Brookings.

The Beresford site had corn as the previous crop and had been fall disked and finished with a field cultivator in spring before planting corn. The Aurora and Brookings sites were long term (6+ years) no-till corn soybean rotations. Soybean was the 2005 crop at these locations and the corn was planted no-till in 2006. These two sites had essentially 100% residue cover except for a 6 to 8 inch band removed over the row with the planter at planting. Nitrogen was surface broadcast on May 25 at all locations when corn was in the 2-3 leaf stage. No tillage was done after N application. Plots were 10 to 15 feet wide and 40 to 55 feet long depending on location with 4 replication of each treatment. Nitrogen rates at all locations were 0, 40 lbs N/ac as urea and poly urea, 80 lbs N/ac as urea and poly urea, and 160 lbs N as urea at Aurora and Brookings. As a measure of the speed of conversion of each material to nitrate, the 0, 80 U, and 80 PU plots were sampled for nitrate to a depth of 2 feet on June 15. All plots were harvested with a field plot combine.

RESULTS AND DISCUSSION

Hot dry condition, especially during July, limited maximum corn yields to about 95 bu/ac at Beresford, 115 bu/ac at Brookings and 125 bu/ac at Aurora (Table 1). Nitrogen rate, however, did significantly increase yield at all locations making it possible to test weather urea or poly urea resulted in more efficient nitrogen use by corn. The 40 lb nitrogen rate increased yield about 13, 17, and 18 bu/ac at the Brookings, Aurora and Beresford sites respectively. The yield increase, however, was not different between the U and PU treatments at any of the locations indicating that if there were volatilization losses from regular urea, poly urea did not reduce the losses. Further evidence of this was the 80 lb rates of both the Aurora and Brookings sites where those rates yielded higher than the 40 lb rates but again there was no significant difference between U and PU. Since there was no ammonia nitrate treatment in these experiments, the extent of urea volatilization, if any, could not be determined.

Soil samples taken three weeks after N application (June 15) in the 80 lb rate plots showed 28 and 20 lb less nitrate N at Beresford and Brookings respectively in the top 6 inches of the PU treatment when compare to the U treatment. That would indicated the poly coating was performing as

it was designed to do, that is slow the conversion of urea to more available form of N. Visual observation further confirmed this slower release of N from PU. Poly urea plots appeared more N deficient (lighter color) early in the season and were visibly shorter at all locations. This slower release of N from the PU, however, did not apparently reduce volatilization losses if there were any since yields were not affected.

Dry conditions in 2006 prevented leaching so it was not a factor in N use efficiency this year. If it had been an issue the slower release of N from the poly urea may have prevented some N losses.

ACKNOWLEDGMENTS: Support for these studies came from various sources including the Ag Experiment Station, Plant Science Dept, Extension Service and the SDSU Soil Testing Lab.

N Rate ¹ /	Corn Yield				
Material	Beresford ³	Aurora	Brookings	Avg	
			bu/ac		
0	77 a	78 a	89 a	81	
40 U ²	94 b	94 b	102 b	97	
40 PU ²	93 b	91 ab	103 b	96	
80 U	96 b	125 c	110 bc	110	
80 PU	98 b	116 c	117 c	110	
160 U		128 c	108 c		
P^>F	.01	< .01	< .01		
CV, %	10.0	9.9	6.4		
LSD .05	11.7	15.7	10.1		

Table 1.	Poly Lirea	Influence	on Corn	Viold	SDSU	2006

¹N applied May 25

 $^{2}U = urea, PU = poly urea$

³Beresford site was tilled, Aurora and Brookings were no-till

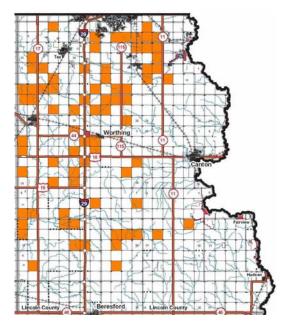
Table 2. Poly	/ Urea	Influence on	Soil Nitrate	SDSU, 2006
	orca			, 0000, 2000

N Rate/	NO₃-N Soil Test ¹				
Material	Depth	Beresford	Aurora	Brookings	
	inches		lb/ac		
0	0-6	20	10	22	
	6-12	6	6	12	
	12-24	16	8	20	
80 U	0-6	72	24	60	
	6-12	14	6	14	
	12-24	32	8	20	
80 PU	0-6	44	20	40	
	6-12	8	6	12	
	12-24	20	8	20	

¹Sampled 6/15/06, N applied 5/25/06

Soybean Cyst Nematode Studies, 2006

James D. Smolik


Plant Science 0610

OBJECTIVES:

- 1) Determine distribution of soybean cyst nematode (SCN) in South Dakota.
- 2) Determine effect of SCN on soybean yields in small plot and field-scale tests.
- 3) Determine crop rotation effects on SCN population densities.
- 4) Measure reproduction of SCN on resistant, susceptible, and experimental soybean lines, and assist SDSU soybean breeder in development of SCN-resistant lines.

RESULTS:

We continued to determine the distribution of SCN through samples received by the SDSU Nematode Testing Service. Approximately 1200 samples were processed for SCN in 2006, and nearly 50% were positive for SCN. This was the highest infestation rate recorded in our surveys over the past 12 years. The number of counties where SCN has been found remains at nineteen. A large number of samples were received from Lincoln County and 68% were positive for SCN. Thus, Lincoln County joins Union, Clay, and Turner as counties with very high levels of SCN-infested fields. The distribution of SCN in Lincoln County based on the 2006 samples is shown in Figure 1.

Figure 1. Map of Lincoln County. Shaded sections contain a field or fields that were positive for SCN in 2006.

A replicated, field-scale strip test was established in a cooperator's irrigated field in Turner County. Yields of the resistant varieties were 15 to 32% higher than the susceptible varieties (Table 1). Population densities of SCN were substantially lower on the resistant varieties at harvest.

Entry	Response to SCN	Yield (Bu/ac)	No. of SCN eggs + J-2 per 100 cm ³ soil at harvest\ ^a
92M91\ ^a	S	40.5 \ ^b	27993
92M70	R	53.5	1583
92M30	R	53.4	1500
92M61	R	52.2	2050
DKB 25-51	S	49.5	13550
DKB 26-52	R	48.3	5100
93M13	R	46.4	4450
		1sd.05 = 4.1	

|--|

^a/Population density of SCN at planting was 500 eggs + J-2 per 100 cm³ soil.

^b/ Average of three replications.^c/ Non-replicated entries.^d/ Based on the replicated entries.

A second strip trial was also established in Turner County. Plots in this trial were severely damaged in a June hail storm and yields were very low (Table 2). All of the resistant varieties suppressed reproduction of SCN, and populations at harvest were substantially reduced from the at-planting levels.

Agn-501v	vice plot, Turner County.		No. of CON second
Entry	Response to SCN	Yield (Bu/A)	No. of SCN eggs + J-2 per 100 cm ³ soil
Liitti y	Response to SCN	Tielu (Du/A)	at harvest a
		1-	1
DKB 25-51	S	5.6 \ ^b	9867
Garst 2721	R	10.5	183
M 286N	R	7.0	483
NK 26-V6	R	16.5 \ ^c	450
Garst 3236	R	14.3	950
PB 2183	R	11.2	350
NK 19-L7	R	10.3	50
PB 2794	R	7.7	475

Table 2. Soybean yields and SCN populations in hail damaged Turkey Ridge

 Agri-Service plot, Turner County.

^a/ Population density of SCN at planting was 2066 eggs + J-2 per 100 cm³ soil.

^b/ Average of three replications. ^c/ Non-replicated entries.

Soybean yields and SCN populations were measured in a strip trial near Burbank. Yields of the resistant varieties were 8 to 27% higher than the susceptible (Table 3). In general, population densities of SCN at harvest were substantially lower on the

resistant varieties. In a nearby second strip trial yields of the resistant varieties were 5-20% above the susceptible (Table 4), and SCN populations at harvest were lower on the resistant varieties.

	is und bert populations		No. of SCN eggs +
Entry	Response to SCN	Yield (Bu/ac)	J-2 per 100 cm ³ soil
			at harvest\ ^a
Pioneer 92M91	S	52.2∖ ^b	17300
DeKalb 25-51	S	53.7	20867
Garst 2721	R	61.1	1717
NIZ 500 LC	D		2450
NK 529-J6	R	66.2\°	3450
Croplan RC 2300	R	65.6	2650
Croplan RC 2754	R	64.3	1800
Stine 2032-4	R	64.0	950
Wensman 2195N	R	62.9	2600
SOI 2642 N	R	61.9	2450
Pioneer 93M13	R	61.4	3750
Wensman W2200	R	60.4	8500
NK S28-G1	R	59.4	8900
Great Lakes GL 2719	R	59.3	650
Asgrow AG 3006	R	59.2	2950
Asgrow AG 2802	R	58.5	7350
Garst 2251 N	R	57.9	4750
Pioneer 92M61	R	57.0	1800
Croplan RC 2964	R	56.3	2700
Asgrow 2403	S	53.9	9850
Stine 2505	S	51.9	14050
Pioneer 92B74	S	50.6	23650
^a /Dopulation density of		$sd.05=3.1/^{d}$	

Table 3. Soybean yiel	elds and SCN	populations in Ray	y Hall plot.	Clay County.
------------------------------	--------------	--------------------	--------------	--------------

^a/ Population density of SCN at planting was 1233 eggs + J-2 per 100 cm³ soil. ^b/ Average of three replications. ^c/ Non replicated entries. ^d/ Based on replicated entries.

Table 4. Soybean yields and SCN populations in Tom Hall strip trial, Clay County.										
Entry	Response to SCN	Yield (Bu/A)	No. of SCN eggs + J-2 per 100 cm ³ soil							
	Response to bery		at harvest ^a							
DeKalb 25-51	S	45.9	16050							
SOI 26-42E	R	55.1	2050							
NK 26V6	R	50.5	3400							
Garst 2921	R	48.0	1800							

Southean wields and SCN nonvestions in Torn Hall strin trial. Clay County

^a/Population density of SCN at planting was $550 \text{ eggs} + J-2 \text{ per } 100 \text{ cm}^3 \text{ soil.}$

We continued to investigate the status of
field pea as a host for SCN in a SE
Research Farm field trial. The trial
measured reproduction of SCN on two
varieties of field pea and on resistant and
susceptible soybean. Population densities
of SCN declined from initial levels on both
field peas, increased slightly on the resistant
soybean and increased nearly 6-fold on the

susceptible soybean variety (Table 5). Yield of the SCN-resistant variety was nearly 50% greater than the susceptible variety. Based on this and previous years field and greenhouse studies it appears that rotating to field peas in SCN-infested fields will not result in increased SCN population densities.

Table 5. Reproduction of SCN on field pea and SCN resistant or susceptible soybean in SE

 Farm field trial.

Entry	No. of SCN eggs + J-2 per 100 cm ³ soil at harvest	Soybean yield (Bu/A)
Asgrow 2106 (S) Asgrow 2107 (R)	32750\ ^a 6750	24 35
Field pea - Salute Field pea - Mozart	2475 3750	

^a/ Average of two replications.

Population density of SCN at planting was $5225 \text{ eggs} + \text{J}-2 \text{ per } 100 \text{ cm}^3 \text{soil.}$

We thank the SE Research Farm personnel for planting, maintaining, and harvesting this research trial.

In cooperation with Dr. Roy Scott, SDSU soybean breeder, population densities of SCN on experimental and commercial soybean lines were measured in a Turner County field. This plot was damaged in a June hail storm and yield data was not obtained, however, the remaining plant stand was sufficient to allow a comparison of SCN populations. Several of the experimental lines in Test I appeared to possess a useful level of SCN resistance (Table 6). In Test II most of the experimental lines allowed substantial increases in population densities of SCN.

Test	Í	Test II			
Entry	# SCN eggs+ J-2/100 cm ³ a	Entry	# SCN eggs+ J- $2/100 \text{ cm}^3$		
AG 1501	1400	AG2403	3900		
SD1111 RR	8300	DKB 20-52	900		
MN 1803 RR	4300	DKB 26-52	450		
DKB 20-52	650	AG 2801	500		
LD03-23480R	11300	SDX00R-046-28	1650		
SDX00R-020-41	800	U03-811125	1550		
SDX00R-026-42	450	U03-813111	3150		
SD03-2452R	450	U03-820043	2300		
SD03-2478R	600	U03-840036	11150		
SD03-3217R	1250	U03-850019	9050		
SD03-3250R	4900	SD04R-4460	2600		
SD03-3266R	2650	SD04R-4437	4250		
SD03-3267R	3900	SD04R-3380	4400		
SD03-3862	8500	SD04R-3264	11500		
SD03-3868	2350	SD04R-2716	1900		
SD03-3872R	350	SD04R-2703	2450		
SD03-3879R	700	SD04R-3345	1050		
U03-820038	6100	SD04R-3330	2250		

Table 6. Population densities of SCN on experimental and commercial soybean lines, Turner County, SD.

^a/ Sampled on 20 September, population density of SCN at planting was 850 eggs+ J-2/100cm³ soil.

The reproduction of SCN on experimental soybean lines was also measured in a greenhouse study. Several of the SD experimentals appeared resistant to SCN (Table 7), and one of the lines (SDX00R-026-42) also performed well in the field study (Table 6).

Enter	# SCN	Enters	# SCN	Fata	# SCN
Entry	eggs	Entry	eggs	Entry	eggs
SDX00R-026-42	$25 \rangle^a$	SD04R 3347	4275	SD04R 4419	450
SD04-CV-517	100	SD04R 3326	900	SD04R 4406	450
SD04-CV-512	125	SD04R 3324	275	SD04R 4392	1325
SD04-CV 511	0	SD04R 3289	1125	SD04R 3407	825
SD04-CV 510	50	SD04R 3264	200	SD04R 3388	4500
SD04-CV 504	1800	SD04R 2722	1100	SD04R 3368	1375
SD04-CV 491	350	SD04R 2721	500	SD04R 3364	1750
SD04-CV 490	175	SD04R 2716	350	SD04R 3357	1700
SD04-CV 506	0	SD04R 2714	975	SD04R 3345	275
SD04-CV 492	1800	SD04R 2703	100	SD04R 3338	1825
SD04-CV 487	950	SD04R 2701	725	SD04R 3330	200
SD04-CV 520	975	SD04R 2700	1200	SD04R 2708	250
SD04-CV 509	800	SD04R 2696	1975	SD04R 2707	1675
SD04-CV 499	850	SD04R 2682	2650	SD04R 2705	625
SD04-CV 498	1300	SD04R 2663	2850	SD04R 2685	2750
SD04-CV 494	2600	SD04R 2590	1450	SD04R 2659	5400
SD04R 4437	300	SD04R 2575	2450	SD04R 2657	625
SD04R 4437	225	SD04R 2573	1075	SD04R 2654	1050
SD04R 4426	450	SD04R 2570	525	SD04R 2577	775
SD04R 4423	950	SD04R 2564	950	SD04R 2569	1275
SD04R 4411	850	SD04R 2551	975	SD04R 2535	2700
SD04R 4401	550	SD04R 2544	500	SD04R 2525	650
SD04R 4394	1800	SD04R 2543	250	PI - 88788	225
SD04R 3381	550	SD04R 2541	800	PI - 90763	25
SD04R 3380	300	SD04R 4452	3575	Surge	1350
SD04R 3361	1825	SD04R 4442	2375	SoDak 1091	1250
SD04R 3360	650	SD04R 4430	925		

Table 7. Reproduction of SCN on experimental soybean lines in 2006 Greenhouse study

^a/ Average of 2 replications.

ACKNOWLEDGEMENT:

This research was supported in part by the South Dakota Soybean Research and Promotion Council.

I also wish to thank Jeff Rippentrop, Brian Jurgens, Paul Peterson, Curt Adrian, Mary, Ray, and Tom Hall, Chuck Wirth, and Jim Reiners for their cooperative efforts over the past several years.

Nematode Populations in Alternative Cropping Systems Studies

J. D. Smolik

Plant Science 0611

Nematode populations were measured in late May and in October following row crop harvest. Soil samples were collected from all crops in replications one and four. Nematodes were extracted from soil bv the Christie-Perrv method. identified, and counted. The first six taxa listed in Table 1 include the plant parasites, the next taxonomic grouping (dorylaims) are primarily predaceous, and the last group (microbial feeders) are associated with decaying organic material. The two latter taxa are generally considered to be beneficial. The predaceous nematodes in aid regulating populations of other soil animals including plant parasitic nematodes. and the microbial feeders aid in the breakdown of crop residue and the recycling of nutrients.

Nematode numbers in five cropping systems were compared over the growing season. Numbers of stunt nematodes were low in all systems (Table 1). The highest population densities of spiral nematodes occurred on corn. Numbers of pin nematode were highest on soybean, which was also observed the previous year. Dagger nematode numbers in excess of 100 per 100 cm³ soil will significantly reduce yield, and it appears that corn and soybean yields were reduced by this nematode in several of the systems. Highest numbers of lesion nematodes occurred on continuous general, the lowest corn. In populations plant feedina of occurred spring nematodes on wheat. Cropping system had little consistent effect on numbers of dorylaims. The lowest population microbial feeding densities of nematodes occurred in continuous sovbean

		Nematode taxa														
System\ ^a	S	tunt	Sp	oiral	P	'in	Tyler	nchinae	Da	gger	Le	sion	Dory	laims		robial ders
continuous	5/23	10/16	5/23	10/16	5/23	10/16	5/23	10/16	5/23	10/16	5/23	10/16	5/23	10/16	5/23	10/16
C-C-C- <u>C</u>	0\ ^b	0	400	275	85	590	133	193	42	235	16	150	35	92	535	735
S-S-S- <u>S</u>	25	0	218	375	485	1785	16	100	143	200	0	16	60	16	150	310
W-W-W- <u>W</u>	0	0	125	110	32	8	350	290	0	50	0	0	224	60	441	225
A-A-A- <u>A</u>	0	0	0	200	343	558	42	160	118	50	0	32	150	108	450	360
modified																
C-C-S- <u>C</u> -C-S	0	116	325	500	185	626	16	93	32	93	16	35	107	100	483	468
Corn-soybean																
C-S-C- <u>S</u>	0	0	143	393	260	801	235	135	68	41	16	16	65	135	550	701
S-C-S- <u>C</u>	0	100	243	935	310	816	65	465	318	410	32	168	132	335	241	550
Wheat-soybean																
W-S-W- <u>S</u>	0	100	660	425	1050	5676	135	126	16	175	16	0	16	85	618	716
S-W-S- <u>W</u>	0	16	575	426	510	285	32	85	167	0	25	0	185	110	367	285
stacked																
C-C-S- <u>S</u> -W-W	16	0	275	565	92	85	200	16	0	150	42	16	16	92	575	533
S-S-W- <u>W</u> -C-C	16	0	260	308	250	135	193	32	58	16	0	0	116	135	408	605
W-W-C- <u>C</u> -S-S	25	0	335	610	110	510	160	133	35	32	116	75	42	185	576	235

Table 1. Nematode Populations in Rotation Study - SE Farm, 2006

^a/ Fourth year of study, C=corn, S=soybean, W=spring wheat, A=alfalfa. ^b/ Average of two replications, number of nematodes per 100 cm³ soil.

INSECTS ON TRANSGENIC CORN AT THE SOUTHEAST RESEARCH FARM

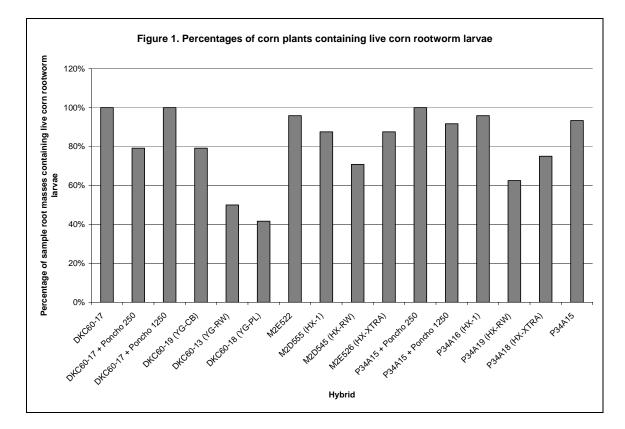
J. Kieckhefer, M. Catangui, and R. Berg

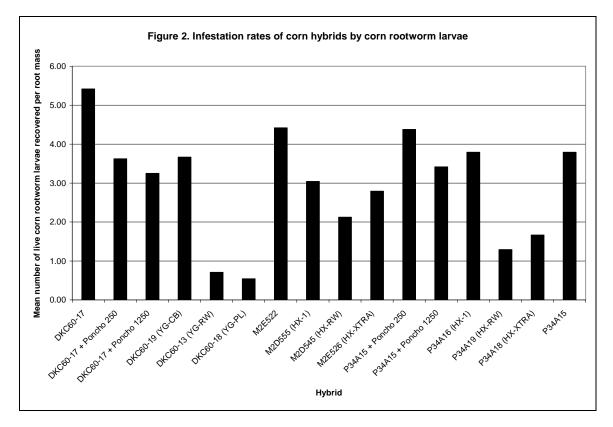
Plant Science 0612

Research continued at South Dakota State University's Southeast Research Farm west of Beresford. South Dakota, in the summer of 2006 to examine the changing ecology of insects associated with transgenic corn. In particular, the projects should help provide information on changing population patterns of insect pests and help identify emerging pest species in transgenic corn, including both insects that have not been recognized as species in corn previously and species that have been present in corn crops for vears without reaching economically damaging levels until the of transgenic corn use became widespread.

CORN ROOTWORMS AND TRANSGENIC CORN

Corn rootworms have earned a reputation as serious pests of corn. In South Dakota, the northern corn rootworm, *Diabrotica barberi* Smith and Lawrence, and the western corn rootworm, *Diabrotica virgifera* LeConte, are the most common species of Chrysomelidae (Coleoptera) that attack corn roots.


Several brands offer corn with transgenic resistance to corn rootworm larvae. These hybrids have been trademarked with designations such as "YG-RW," abbreviated from "YieldGard – Rootworm." Transgenic hybrids are marketed as methods to reduce the damage to corn roots caused by feeding activities of corn rootworm larvae. The larvae tunnel through the reducing the root masses roots. available to support the plants. By incorporating genes from Bacillus thuringiensis, seed corn companies have imparted upon these varieties of corn the ability to produce insecticidal chemicals. The rootworm larvae begin feeding on roots of these transgenic corn plants, and the chemicals produced by the plants kill the feeding larvae.


Theoretically, larger root masses result in greater yields of corn. The damage from the rootworm larvae, then, should reduce yield, and the hybrids with transgenic resistance to rootworms should suffer less yield loss from corn rootworms than conventional hybrids of corn.

an effort to count actual In rootworm larvae, rather than simply rating the damage to the root systems, root systems from individual corn plants were placed in funnels following a design proposed by Fromm et al. (Colorado State University, poster presented at the 1998 annual meeting of the Entomological Society of America). Larvae drop out of drying corn roots through screens into water below the roots. Efforts to recover living rootworm larvae from corn roots

were a continuation in 2006 of work started in 2005.

Funnels were made from 18-ounce, plastic Solo® beverage cups and fiberglass window screen. To produce a funnel, the bottom third of one plastic cup was cut off, and the flat bottom of a second cup was also cut out. The piece consisting of the upper two-thirds of the former cup was inserted into the latter cup with a 20-centimeter square patch of window screen between the two. This combination then sat in the piece consisting of the bottom third of the first cup. To load corn roots into these funnels, the roots of individual plants were excavated from the soil, as much soil as possible was removed from the root systems, and each root mass was supported in a funnel on the piece of window screen. Water in the piece consisting of the bottom third of the first cup trapped larvae dropping out of the root system, and prevented any larvae from drying out before the funnels were checked a few days after collecting the root masses.

Corn roots were collected June 14 and June 30, 2006, from the test plots at the Southeast Research Farm. Larvae were counted and removed from the funnels on June 16 and July 3, 2006, respectively.

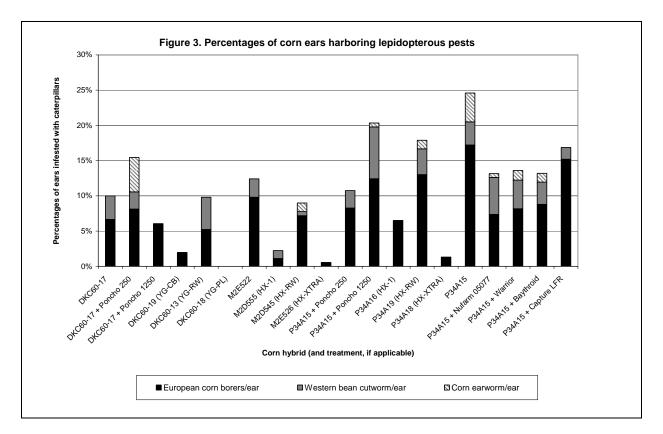
As shown in Figures 1 and 2, corn hybrids with the YieldGard – Rootworm or the YieldGard – Plus transgenic traits were host to considerably fewer corn rootworm larvae than other hybrids of corn, both in terms of average numbers of rootworm larvae per plant and in terms of the percentages of plants infested with rootworm larvae.

In 2005, at least a few corn rootworm larvae were collected from each hybrid, surprisingly. Even more surprising, corn rootworm larvae were captured from each plot in 2006, and not just from each hybrid (each hybrid is grown in at least four plots). These findings suggest some resistance exists in the rootworm population to the toxins produced by transgenic corn that target rootworm larvae.

The corn in this study grew in a field planted annually as corn for vears. In addition. several corn rootworm sampling was conducted from fields grown in rotation with soybean at the Southeast Research Farm. Root masses collected from these other plots also yielded live corn rootworm larvae, although at far lower rates than the field grown as continuous corn. The larvae collected from fields grown in rotation suggest that either female corn rootworm beetles are laying eggs promiscuously, or the eggs remain in an extended diapause (i.e. over winter twice before hatching). This finding appears to be the first instance in South Dakota of corn rootworm larvae found in corn grown in rotation.

Overall, corn rootworm populations were considerably higher at the Southeast Research Farm in 2006 than in 2005. Adult populations appeared to significantly damage yield by clipping silk and by feeding directly on developing kernels.

LEPIDOPTERANS IN CORN EARS


Several species of caterpillars feed directly on corn ears, damaging the kernels primarily or by creating microhabitats favorable for the growth of fungi that damage entire ears of corn. The corn earworm, Helicoverpas zea (Boddie), and the European corn borer, Ostrinia nubilalis (Hübner), as well as the western bean cutworm, Richia albicosta (Smith), can all feed on the kernels of developing or drying ears. Many of these caterpillars show at least some degree of cannibalism, so finding more than one individual or more than one species per ear is unlikely.

The first hybrids of Bt corn released on the market specifically targeted the European corn borer. Larvae tunneling through the stalks or feeding on plant tissues consume the Bt toxins and die. Accordingly, larvae feeding under the husks of corn ears should also succumb on Bt corn. Later transgenic hybrids, such as Herculex-Xtra ("HX-XTRA") and YieldGard – Plus ("YG-PL"), were developed to target corn earworm and western bean cutworm, as well as European corn borers.

То determine the levels of infestation by these three species, all ears in the last, or sixth, row of each plot were examined for caterpillars. Rates of infestation were calculated by dividing the number of ears infested with each species by the total number of ears sampled for each hybrid. Apparently due to climatic conditions, many plants in the plots were "barren," or did not produce ears. Several hybrids produced very few ears across four replications. all These low numbers tend to skew some of the results. For example, hybrid DKC60-18 (YG-PL) harbored no caterpillars in the ears examined, but only 62 plants of the 326 examined produced ears.

most hvbrids In 2005. with transgenic traits targeting European corn borers specifically (YG-CB) or containing the YieldGard - Plus (YG-PL) trait showed no evidence of attack by corn borers. By contrast, only one hybrid in 2006 - DKC60-18 (YG-PL) harbored no European corn borer caterpillars in the ears checked. The transgenic hybrids that target lepidopterous pests seemed to have fewer infested ears, generally (Figure 3).

Light trap collections in 2006 showed two peaks in western bean cutworm flights, seemingly not correlated with weather patterns. This pattern has never been observed in South Dakota previously. At this time, no reason for the second peak in the flight pattern is known.

OTHER INSECTS

Like data from 2005, counts of corn leaf aphids, *Rhopalosiphum maidis,* in 2006 indicated some effects of corn hybrid on populations of aphids on those plants.

Sap beetle (Coleoptera: Nitidulidae) numbers varied among plots, too, and initial analyses seem to suggest some patterns based on hybrid. Sap beetles may be responsible for transferring some fungi among corn ears, and the damage they cause by feeding in the ears may impact yields.

European corn borers primarily tunnel through corn stalks, rather than attacking ears. Adult corn borers collected in the black light trap operating at the Southeast Research Farm in 2006 were fewer than in "average" years. Data from splitting corn stalks and counting larvae revealed fewer corn borers than in 2005. Numbers of corn borer caterpillars found in corn ears were higher than in 2005, though.

ACKNOWLEDGEMENTS

Support for this work was provided by the South Dakota Corn Utilization Council. Summer assistants Paul Wilson, Hans Gildemeister, and the crew from the Southeast Research Farm (Wyatt Lunning and Wyatt Petersen) deserve recognition for their help digging and preparing corn roots, and splitting corn stalks.

SOYBEAN YIELD RESPONSE TO DIFFERENT SOYBEAN APHID THRESHOLDS

Kelley J. Tilmon, Ph.D.

Plant Science 0613

INTRODUCTION

Economic thresholds are a critical integrated component of the pest management of deleterious insect. Thresholds should ideally be based on insect population growth rates under realistic field conditions and should incorporate the yield response of the crop to different pest densities. Yieldloss experiments that manipulate pest density under open-plot field conditions and measure the resulting impact on vield can provide the biological information used in combination with determine economic variables to appropriate economic thresholds.

The soybean aphid, Aphis glycines, has emerged in recent years as the most important new insect pest of Midwestern soybeans. This Asian aphid was first detected in North America in 2000, and by 2001 it was considered an outbreak pest through much of the Midwest. By 2005, entomologists in six states (IA, MI, MN, NE, ND, and WI) had performed 19 vield-loss experiments over a three year period, encompassing wide range of environmental а conditions and geographic locations. The result of this large-scale cooperative project was a common threshold recommendation now in effect through most of the Midwest. However, as of 2005, such open-plot yield loss experiments had not been conducted in South Dakota.

The purpose of this study at the Southeast Research Farm was to test a range of different potential soybean aphid thresholds to evaluate their impact on crop yield. This experiment is part of a larger effort to devise economic thresholds for the soybean aphid in South Dakota.

METHODS

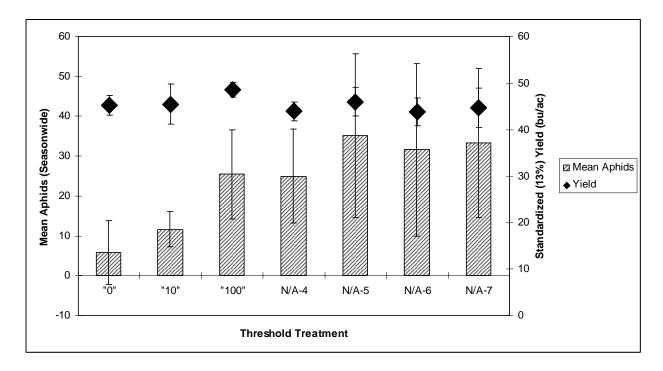
The idea behind this experiment was to manipulate the amount of aphid pressure experienced bv different treatments (different "test thresholds") and to measure the resulting yield. Aphid pressure was manipulated by the timing of insecticide application rather than by attempting to artificially create different infestation levels (logistically difficult under realistic field conditions). We intended for there to be seven threshold treatments replicated four times in a randomized complete block design, with each treatment receiving insecticide application when it reached a given threshold level. The intended thresholds were: (1) "0" aphids per plant (with aphid numbers kept as low as logistically possible); (2) 10 aphids per plant; (3) 100; (4) 250; (5) 500; (6)1000; (7) maximum aphid growth with no treatment. In practice, natural aphid populations failed to build up to levels to permit treatments (4) through (7). Thus, the test thresholds were "0", "10", and "100" aphids per plant, and the

remaining treatments served as noinsecticide controls. Plots were 100 feet long by four 30" rows wide, separated from each other by bare-soil borders.

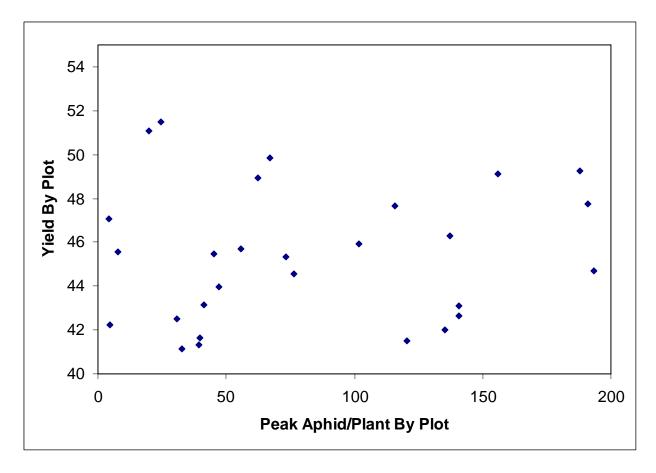
We counted all soybean aphids on 20 arbitrarily selected plants per plot each week from July 12 through When the September 6. 80-plant soybean aphid average for a given treatment (20 plants per plot x 4 replications) reached a given test threshold we treated all four plots with Warrior (3.2 oz/acre) within a few days of the aphid count. If aphid numbers later built up in a given treatment to its threshold point we applied insecticide again in order to maintain aphid densities below the test threshold. At the end of the season soybean plots were harvested and yield measured. Yields reported in this paper are adjusted to 13% moisture.

RESULTS

Aphid Density


The peak average number of aphids/plant for the different treatments (i.e., the average number of aphids per plant during the *one week* in the season when a given treatment reached its maximum aphid peak for the season) ranged from 30 to 116 aphids per plant. On an individual plot-by-plot basis (as opposed to a treatment basis), the aphid peak points ranged from 4 to 193 average aphids/plant. 12 plots had aphid peak points of 50 aphids/plant or less, 5 plots had peaks between 50-100 aphids/plant, 7 plots had peaks between 100-150, and 4 plots had peaks between 150-200. Thus, the majority of plots (17/28) had aphid peaks during the season of 100 aphids/plant or fewer.

Season-wide (i.e., across the eight weeks of sampling) aphid/plant averages for the different test threshold treatments are presented in Figure 1. On an individual plot-by-plot basis (as opposed to treatments), the seasonwide aphid/plant averages ranged from 2 to 60.


A general linear models analysis of variance of aphid numbers by treatment showed a significant treatment effects on aphid number (p<0.03). This is expected, as we manipulated aphid numbers with insecticide as part of the experiment.

Yield

Average treatment yields ranged from 43.9 to 48.6 bu/ac (Figure 1). General linear model analysis of showed significant variance no treatment effects on vield. Tukey HSD multiple comparison vields by of treatment showed no significant differences among any treatments. A linear regression, by individual plot, of the peak aphid density experienced by that plot vs. the yield for that plot showed no significant relationship (R^2 = 0.09; Figure 2).

Figure 1. Season-wide aphids/plant and yield by threshold treatment, +/- standard deviation. Aphid numbers (left Y-axis) are represented by striped bars and yield (right Y-axis) by diamonds. Low aphid number only permitted three test treatments to be initiated ("0", "10", and "100" aphids/plant). Other treatments were kept as no-insecticide controls and are labeled N/A-4 through N/A-7.

Figure 2. Peak average aphids/plant by plot (i.e., the aphid "high point" for the season) vs. plot yield.

DISCUSSION

Aphid numbers in our field at the Southeast Research Farm were too low to test the full range of test thresholds planned for this experiment. However, among the test thresholds we could test (treatment at "0", "10", and "100" aphids/plant) there was no significant difference in yield among treatments. This suggests that at relatively low aphid densities (i.e., less than 100 aphids per plant) there is no yield loss, and that thresholds can be safely set above this level. How much above will depend on economic variables, as well as an assessment of yield response at higher aphid densities.

ACKNOWLEDGMENTS

I wish to thank Ana Micijevic and my summer research crew for data collection, Brad and Kay Ruden for help with insecticide treatment, and the staff of the Southeast Research Farm for their help with planting, cultivation, and harvest. This work was supported by the South Dakota Soybean Research and Promotion Council and the North Central Soybean Research Program.

OAT PROJECT

Lon Hall

Plant Science 0614

My objective is to develop oat varieties for producers in South Dakota and surrounding Multipurpose states. varieties are being developed to satisfy more than one market. These varieties may be used in double cropping, as a companion crop, forage, and/or harvested for grain. The desired agronomic traits are a high grain and/or forage yield potential, high-test weight, disease resistance, straw strength, and maturity adaptation for different regional environments. Desired seed traits for hulled oats include a white hull, high groat percentage, and large seeds; the hulless seed traits include a light color seed, few trichomes (hairless), and large seed. The quality traits desired by the millers are low oil, high protein, and beta-glucan grain. The horse feed community want a white hull and high protein grain, and the livestock feeders want high Relative Feed Value forage, high oil, and high protein grain.

Parents in the crossing block were selected for specific traits. The desired combination of traits cannot always be acquired in two-way crosses; therefore, some combinations were made specifically for three-way crosses. The 2006 spring crossing block yielded 321 successful unique genetic combinations. Two hundred and fifty one of these were selected for F1 increase in the fall greenhouse cycle. Fifteen crosses were selected, based on pedigree, for single

seed descent generation advancement. These crosses theoretically possess exceptional gene combinations, hence, the effort to advance three generations a year. There were a total of 4432 yield plots grown in the field. The numbers of unique bulk populations grown were 192 bulk F2s and 96 bulk F3s. There were 2016 lines derived from F5, F7, F8, and/or F9 generations grown in unreplicated Preliminary Yield Trials (PYT) at the Northeast Farm or the Brookings location. The number of unique lines grown in replicated Advanced Yield Trials (AYT) and regional nurseries were 304 and 120 respectively. Forty five preliminary seed increases were grown at the Brookings or Northeast Farm locations. Twenty thousand plants consisting of 87 populations and three backcrosses consisting of 144 single backcross single seed descent subpopulations were screened for kernel type and crown rust in the fall greenhouse cycle. Approximately 6,000 selected single seed descent seeds will be planted in the spring greenhouse cycle. They will be inoculated with crown rust, and the susceptible plants will be discarded. Two thousand and forty single seed descent plants, as well as 384 single plant increases in the fall greenhouse cycle will be yield tested in 2007 PYT.

Stallion', a white hulled spring oat, was developed by the South Dakota

Agricultural Experiment Station (SDAES) and released in 2006. Stallion was tested as experimental line SD000366-36.

SD89507/Settler//SD93068 is the threeparent pedigree. The complete pedigree Settler/4/Nodaway70 is /Dal//MN73231/3/Dumont/5/Settler/6/ND 750432/Moore//II75-3402/4/MN72-3/72-29//Dal/Nodaway70/3/Spear/Kelsey//No daway70/MN72-3. Stallion. when compared to 'Jerry', has superior grain vield, test weight, groat percentage, and crown rust resistance. Stem rust, Barley Yellow Dwarf Virus, and smut resistance are similar to Jerry's and on average Stallion is 1.4 inches taller and heads 3.4 days later.

SD020301-20 and SD030883's derivatives have undergone a preliminary increase and are the two most advanced lines. SD030301-20, a hulless line, has excellent forage quality and agronomic traits. This line is a multi-purpose oat that may be harvested

for forage, straw, and/or arain. SD020883's very early maturity makes it double an option for cropping. companion crop, or harvested for grain. SD020883-29, SD020883-109, SD020883-171, and SD030883-187 are derivatives out of SD020883. Upon approval, one of the SD020883 siblings and SD030301-20 will be scheduled for release in 2009.

In the following tables the highlighted lines are the most advanced and are currently being purified. South Dakota's most recent releases 'Buff', 'Reeves', and Stallion are also high lighted for comparison. The lines selected for purification possess disease resistance in addition to superior agronomic traits.

ACKNOWLEDGEMENTS:

This work is supported by the SD Agricultural Experiment Station, Foundation Seed Stocks, and the Crop Improvement Association.

	2005 yld	2006yld	2006 tw	2006 mat.	2006 ht	2006 protein
	bu/a	bu/a	lbs/bu	head days	inches	percent
	7lo c	7loc	7loc	relat.to Don	7loc	7loc
SD 011315-15	106	106	37	8	32	15.5
SD 030324		106	36	5	34	16.3
Souris		104	37	6	29	15.9
SD 021021	108	101	36	4	30	17.6
SD 020701	106	101	37	4	33	16.5
SD 030888		101	38	4	27	15.9
HiFi	102	100	36	8	33	15.6
SD 020536	102	100	38	8	30	16.2
Stallion	98	100	39	8	34	17.2
Baker		98	35	4	32	15.9
Beach	95	97	39	6	34	15.5
Morton	96	94	37	7	34	16.5
Loyal	95	94	38	8	34	17.8
SD 031128		91	37	2	32	16.3
Maida		88	36	7	34	17.4
Jerry	96	80	37	5	32	16.6
SD 020883	104	79*	38	-1	31	17.2
Don	97	79	36	1	28	15.6
Reeves	90	74	36	2	33	16.1
Hytest	77	73	39	4	36	19.5
GG-304		69	30	8	21	16.1
Buff, Hls	73	64	44	3	29	18.2
Paul, Hls	62	63	42	9	33	18.2
Stark, Hls	63	54	40	9	34	17.8
mean	92	88	37	5	32	17

South Dakota Standard Variety Oat Trials

*severe bird damage at Warner, considerable damage at Brookings and possibly other locations caused a significant yield loss. Birds select the first lines to reach the milk stage.

BROOKINGS FORAGE TRIAL AND HULLESS AYT (Focus on the AYT)

Cultivar	Dry Matter	СР	NDF	ADF	RFV	
	tons/a	%	%	%	%	
	Yield					
Everleaf 126	4.36	11.5	48.2	28.3	133	
AC Pinnacle	4.27	10.8	59.2	32.9	103	
Loyal	4.22	9.8	62.9	37.4	91	
Everleaf 114	4.21	11.9	52.3	30.6	119	
SD-030301(hulless)	4.11	10	59.7	34.9	100	
Stallion	4.1	10	60.2	34.6	99	
SD-127	3.92		58.9	34.3	102	
Paul	3.88	10.8	57.8	33.2	104	
Morton	3.87	10.6	59.8	34.6	100	
Magnum	3.68	10.4	61.3	36	95	
Jerry	3.19	10.2	60.1	33.5	101	
Buff (hulless)	3.11	11	57.3	32.1	107	
Stark (hulless)	2.8	11.8	53.7	30	117	
LSD (5%)	0.38	1	2.7	1.7	6.7	
CV, %	6.98	4.1	2.8	3	3.8	
ADVANCED	Dry Matter	СР	NDF	ADF	RFV	
YIELD	tons/a	%	%	%	%	
TRIALS	Yield	3loc	3loc	3loc	3loc	
SD020301-20 (hulless)	NA	12	54	33	114	
BUFF (hulless)	NA	13	58	33	106	
	X7: 11	Destain		Cara	CD	
AYT Grain	Yield	Protein %	TW	Snap O-5	CR %	
and Plant	bu/a 4loc		lbs/bu 4loc			
Traits SD020301-20 (hulless)	410c 70	3loc 21.0	41oc 46	4loc 3	lloc 9	
BUFF (hulless)	66	18.6	44	2	73	

CP=Crude protein

ADF=Acid detergent fiber, lower number is better NDF=Neutral detergent fiber, lower number is better

RFD=Relative Feed Value, higher number is better

2006 ALFALFA PRODUCTION

V. Owens, P. Jeranyama, and C. Lee

Plant Science 0615

Alfalfa cultivars are tested at several South Dakota research stations. Our objective is to provide producers with yield data from currently available alfalfa cultivars to aid them in their selection process. Even though our yield trial does not contain all available cultivars, it should be a helpful tool in identifying those suitable for the area.

Data from two separate trials were gathered in 2006. Table 1 provides forage production data for 25 alfalfa cultivars planted in 2003. Tons of dry matter yield are shown for three cuttings in 2006, total production in 2005, 2004, 2003, and a cumulative total for 2003-06. Table 2 contains data from 15 alfalfa cultivars planted in new а trial established in 2005. This trial was also harvested three times in 2006. Cultivars are ranked from highest to lowest based on the cumulative yield. The least significant difference (LSD) listed at the bottom of Tables 1 and 2 is used to identify significant differences between the cultivars. If the difference in yield between two cultivars exceeds the given LSD, then they are significantly different.

Six replications of each cultivar were planted at 18 lbs pure live seed/acre. Fifty pounds of super phosphate (P_2O_5) was applied and incorporated before planting each trial. Later fertilizer application was made when necessary as recommended by the South Dakota State Soil Testing Laboratory.

Forage was harvested with a sickle-type harvester equipped with a weigh bin for obtaining fresh plot weights. Random subsamples from the fresh herbage were taken to determine percent dry matter. Alfalfa cultivars were evaluated for maturity prior to harvest. Yield differences among cultivars were tested using the LSD at the 0.10 level of probability when significant F-tests were detected by analysis of variance (Table 1 and 2).

ACKNOWLEDGEMENTS:

Financial support for this research was provided by the South Dakota Agricultural Experiment Station and by marketers of the various alfalfa seed entries.

April 2003 Into plots an	rangeu in a	2006			2005	2004	2003	4-year
Entry	18-May	17-Jun	12-Jul	Total	Total	Total	Total	Total
v	Tons DM/acre							
FSG 406	2.12	1.59	0.52	4.22	5.53	6.75	2.37	18.88
6420	2.27	1.45	0.51	4.23	5.34	6.55	2.64	18.76
Alfastar II	1.99	1.33	0.47	3.80	5.29	7.12	2.53	18.73
54V46	2.29	1.40	0.44	4.13	5.52	6.25	2.50	18.40
Abundance	2.47	1.09	0.33	3.89	5.80	6.33	2.18	18.20
Somerset	2.12	1.28	0.41	3.80	5.45	6.53	2.34	18.13
Extreme	2.20	1.13	0.40	3.73	5.69	6.32	2.37	18.12
Evermore	2.17	1.03	0.26	3.46	5.21	6.71	2.51	17.90
Rebel	2.13	1.29	0.40	3.83	5.47	6.08	2.49	17.87
FSG 351	2.19	1.30	0.40	3.90	5.06	6.32	2.33	17.60
WL 319HQ	2.32	0.86	0.20	3.38	5.73	6.15	2.32	17.58
54Q25	2.08	1.10	0.34	3.53	5.05	6.41	2.45	17.43
A 30-06	2.07	1.09	0.24	3.40	5.14	6.40	2.47	17.41
Husky Supreme	2.20	1.02	0.26	3.48	5.27	6.11	2.48	17.34
WL 357HQ	2.16	0.98	0.27	3.41	5.39	6.16	2.33	17.29
Gold Rush 747	2.13	1.05	0.25	3.43	4.93	6.47	2.44	17.27
420	2.06	1.26	0.35	3.67	4.75	6.46	2.35	17.23
FSG 505	2.11	1.19	0.31	3.60	5.07	6.20	2.28	17.15
Hybriforce-420/Wet	2.19	1.11	0.30	3.60	5.09	5.90	2.50	17.09
Rugged	1.98	1.17	0.37	3.52	4.72	6.02	2.60	16.87
Journey 204 Hyb. Alf.	2.11	0.98	0.30	3.39	4.93	6.11	2.42	16.84
Bullseye	1.95	0.89	0.22	3.06	4.63	6.27	2.71	16.66
Notice II	2.23	1.01	0.25	3.49	4.79	6.07	2.20	16.55
4500	1.90	1.01	0.29	3.19	4.92	5.99	2.23	16.33
Vernal	1.90	0.92	0.18	3.00	4.54	6.32	2.44	16.30
Average	2.13	1.14	0.33	3.61	5.17	6.32	2.42	17.52
Maturity (Kalu & Fick)								
LSD (P=0.10)	0.22	0.33	NS	0.57	NS	NS	NS	NS
CV (%)	10.9	30.1	60.8	16.5	15.9	11.8	12.3	11.1
P-value	0.010	0.033	0.163	0.028	0.368	0.714	0.285	0.648

Table 1. Forage yield of 25 alfalfa cultivars entered in the South Dakota State University alfalfa testing program. Trial is located at the Southeast Research Station near Beresford, SD. Alfalfa was planted 29 April 2003 into plots arranged in a randomized complete block design with six replications.

NS = not significant at 0.10 level of probability

Treflan applied before planting

50 lbs P2O5/Acre - preplant

		2006			2005	2-year	
Entry	18-May	17-Jun	12-Jul	Total	Total	Total	
	Tons DM/acre						
4S419	2.59	1.82	0.95	5.36	1.51	6.87	
6400 HT	2.43	1.71	0.93	5.08	1.61	6.68	
Genoa	2.38	1.78	1.00	5.16	1.34	6.51	
54V46	2.31	1.73	0.95	5.00	1.49	6.49	
Meadowlark	2.43	1.71	0.88	5.02	1.41	6.43	
FSG 408DP	2.38	1.73	0.82	4.93	1.43	6.36	
Marvel	2.31	1.78	0.91	5.01	1.29	6.29	
Integrity	2.35	1.78	0.86	4.99	1.29	6.28	
WL 357HQ	2.32	1.63	0.95	4.91	1.32	6.23	
6415	2.24	1.68	0.88	4.80	1.36	6.16	
4A421	2.35	1.68	0.92	4.94	1.09	6.03	
Escalade	2.29	1.58	0.85	4.71	1.31	6.02	
Vernal	2.45	1.49	0.76	4.70	1.31	6.00	
361 HY	2.43	1.60	0.83	4.87	1.11	5.98	
54H91	2.47	1.42	0.70	4.58	1.38	5.97	
Average Maturity (Kalu &	2.38	1.67	0.88	4.94	1.35	6.29	
Fick)	3.4	4.2	4.4				
LSD (P=0.10)	NS	0.21	0.13	NS	0.25	NS	
CV (%)	8.4	13.1	14.9	9.2	19.3	10.4	
P-value	0.332	0.097	0.013	0.376	0.098	0.414	

Table 2. Forage yield of 15 alfalfa cultivars entered in the South Dakota State University alfalfa testing program. Trial is located at the Southeast Research Station near Beresford, SD. Alfalfa was planted 2 May 2005 into plots arranged in a randomized complete block design with six replications.

NS = not significant at 0.10 level of probability

Treflan applied before planting

50 lbs P2O5/Acre - preplant

FORAGE GRASS VARIETY PERFORMANCE TRIAL AT SOUTHEAST RESEARCH FARM

P. Jeranyama, V. N. Owens, and C. Lee

Plant Science 0616

ESTABLISHMENT AND MANAGEMENT

On 2 May 2005 several cool-season grass species (Table 1) and varieties were planted at the Southeast Research Farm. Plots were 3 feet and 20 feet long and planted with a plot planter with a cone seeder (Carter Manufacturing, Brookston, IN). Each plot comprised 5 rows with 6-inch spacing in а randomized complete block design replicated four times.

Winter injury was scored for each plot on 9 May 2006 at the onset of spring growth and was based on a visual assessment with a ranking of 1= no injury; 6 = completely dead plants. A sickle-bar harvester (Swift Machine) was used to harvest all plots on 6 June 2006. Fresh grass samples were obtained randomly from each species during harvest. The wet weight of samples was measured and samples were oven dried to determine yield on a dry matter basis. Herbicides and insecticides were used as needed to successfully establish and manage grass pests. Soil fertility was maintained throughout the trial at levels recommended by the SDSU soil testing laboratory.

Table 1. Grass Common Name and Seeding Rates in the Grass Forage Performance

 Trial at the Northeast Research Farm.

Grass Common Name	Seeding Rate (Ib PLS/ Acre)			
Meadow bromegrass	12			
Orchardgrass	8			
Perennial ryegrass	20			
Reed canarygrass	8			
Tall fescue	10			
Timothy	8			

2006 RESULTS

Winter injury score and forage yields (tons dry matter per acre) are reported in Tables 2 and 3. Released and

experimental (when present) names of each cultivar were reported as provided by the Seed Company at the time of entry. There was noticeable winter injury in perennial ryegrass varieties that in turn affected forage yield. Because of the drought of 2006, grass species did not produce sufficient forage mass to justify a second cutting.

Table 2. Grass Forage Dry Matter Yield and Winter Injury Score at SoutheastResearch Farm, Beresford in 2006

Cultivar	Winter injury*	6 June
		DM tons/ acre
Tall fescue		
Tuscany II	2.4	1.85
PST-5NF	3.1	1.61
Seine	2.5	1.75
Fawn	2.0	1.60
Bromegrass		
Montana	2.8	1.59
Orchardgrass		
Pauite 2	2.0	1.48
Potomoc	1.5	1.59
Timothy		
Winnetou	1.9	1.76
Perennial ryegrass		
Aubisque	1.6	0.35
Linn	1.5	0.85
Reed canarygrass		
Chiefton	4.1	3.37
Creeping		
bentgrass		
PSTORAF	2.9	1.29
LSD 0.05 tall fescue	0.7	NS
LSD 0.05 orchardgrass	NS	NS
LSD 0.05 perennial	NS	NS
ryegrass		
LSD 0.05 ALL	0.7	0.4
<u>CV %</u>	20	17

NS = non-significant;

* Winter injury; 1= no injury; 6=dead; evaluated on 9 May 2006

2006 Soybean Fungicide Sprayer Trials

B. E. Ruden, M. A. Draper, and K. R. Ruden

Plant Science 0617

INTRODUCTION

Soybeans can be damaged by a number of foliar diseases throughout the season. Diseases such as frogeve leaf spot, target spot and recently, soybean rust have increased interest from soybean producers to consider fungicides for disease control. Soybean rust, a relatively new fungal pathogen of soybeans in the United States, has caused significant losses in the southeastern states. During the 2006 season the disease was reported in 236 counties across the United States, reaching as far north as central Indiana. This represents а dramatic increase as compared to 2005, when soybean rust was reported in 132 counties. Foliar fungicide applications have proven to be effective at controlling this organism and protecting vield in the presence of soybean rust. Although soybean rust has not been detected in South Dakota, the risk of infection remains possible and producers must be prepared to effectively apply a fungicide to soybeans, if needed.

The lower and mid- soybean canopy is a challenging target for fungicide application. Foliar disease development usually begins at the lower levels of the crop canopy. Fungicides have widely variable systemic properties within a soybean plant, depending on the product chosen. However, foliar fungicides, at best, will only show movement upward and outward from the lowest point at which they are applied to the plant. Given this fact, droplet penetration and distribution to points low in the crop canopy may be significant issues for

producers. There will likely also be an interaction with specific products. For example, immobile products or products with lesser systemic/in-plant movement capabilities would be better paired with application technologies that optimize coverage canopy penetration. and Conversely, products that move broadly and quickly in the plant may be more forgiving and not require such extensive coverage. Nonetheless, the movement of products with water flow in the plant creates special challenges that differ from common practices used for glyphosate application.

These studies were initiated to try to address concerns about droplet/product penetration into the soybean canopy and to compare the performance of several droplet sizes and commonly used nozzles.

MATERIALS AND METHODS

Over the past three seasons, seven different studies have been performed at the Southeast Research Farm (SERF) for the purpose investigating spray parameters for effective fungicide application in sovbeans. A large block of soybeans (30 inch rows) planted using standard field practices was chosen for the studies each vear. Alleyways were mowed to create field plots of 12 rows (30 ft) wide by 50 ft long, allowing access for the tractor-mounted spraver with 30 ft boom that was used in all studies. Plots were treated at approximately R3 (with 75% canopy) and again at approximately R5 (with 90-100%) canopy) with Quadris (azoxystrobin) at 6.4 fl oz/a (467.5 ml/ha) plus crop oil (1% v/v)

mixed with 96 fl oz/100 gallons Vision Pink foam marker dye (GarrCo, Inc.). Various spray nozzles, nozzle configurations and application volumes were used, depending on the study.

Surface spray coverage was measured on 2×3 inch (5.08 x 7.62 cm) white glossy paper cards (Kromecoat S2S Cards were cardstock). clipped to aluminum trays and placed among the leaves at the widest portion of the crop canopy, which occurred at approximately 2/3 of the plant height. Spray coverage, Volume Median Diameter (VMD), and number of droplets per card were analyzed DropletScan digitally using software (Devore Systems). Statistical design was a randomized complete block with four replications at each location and treatment date. Statistical analysis was completed ARM Software using (Gylling Data Management, Brookings, SD).

South Dakota participated in two regional sprayer trials, sponsored through the North Central Soybean Research Project (NCSRP) from 2004 to 2006, developed two sprayer trials in cooperation with the University of Nebraska, Lincoln, each focusing on limited sprayer variables (2005 and 2006) and developed three additional small studies to investigate nozzle angle, droplet size and nozzle orientation in twin nozzle configurations. South Dakota data from these cooperative studies is shown.

In Study One, applications were made at 10 GPA (93.5 I/ha) carrier volume.

Six different single orifice nozzles were used (Table 2) oriented straight down. The Turbo TeeJet nozzle has a spray pattern being slanted 15° forward, due to nozzle design. Two application pressures- 50 psi (345 kPa) and 75 psi (517 kPa) were used for each nozzle tested. Application speed was varied to adjust application to 10 gpa (93.5 l/ha).

In Study Two, applications were made at 20 gpa (187 l/ha) carrier volume. Three single orifice and nine dual-orifice or dual nozzle configurations were tested (Table 3). All treatments were run at 50 psi (345 kPa), with the exception of the Hypro ULD 120 treatments, which were run at 80 psi (552 kPa). Application speed was again adjusted to maintain the desired application rate.

RESULTS AND DISCUSSION

Nozzles performed in the expected range for the listed nozzle VMD at each pressure. Nozzles used in the studies provided fine, medium or coarse droplet patterns as defined by the American Society of Agricultural Engineers standards. Air induction nozzles, as expected, returned the highest VMD values in Study One, especially when the pressure was at the lower level of 50 psi. At the higher pressure range (75 psi), the air induction nozzles produced finer droplets, but these droplets were larger, on average, than the droplets produced by other (non-air induction) nozzles.

		Fan		Nozzle Fan Orientation	Angle between
Treatment	Nozzle	Angle	Nozzle Body	°forward/°backward	fans
TT11001	Turbo TeeJet	110	Straight	0/0	
(and alike)				(15° built into nozzle)	
AI110015	Air Induction	110	Straight	0/0	
(and alike)	TeeJet				
HYPR-2-	Turbo TeeJet	110	Hypro TwinCap	15/15	30
TT110015			(60° between		
(and alike)			nozzles)		
TJ60 11003	TwinJet	110	Straight	30/30	60
DUO-2-	Turbo TeeJet	110	TeeJet Duo (90°	30/30	60
TT110015			between nozzles)		
TTI110015	Turbo TeeJet	110	Straight	0/0	
	Air Induction			(15° built into nozzle)	
DUO-2-	Turbo TeeJet	110	TeeJet Duo (90°	30/30	60
TTI110015	Air Induction		between nozzles)		
HYPRO	Hypro Ultra	120	Straight	0/0	
ULD120-15	Low Drift Air				
	Induction				
HYPRO-2-	Hypro Ultra	120	Hypro TwinCap	30/30	60
ULD 120-15	Low Drift Air		(60° between		
	Induction		nozzles)		

 Table 1. Nozzle Configurations Used in Soybean Fungicide Application Studies

,					
		AVE %	AVE %	TOTAL #	TOTAL # DROPS
First Date	Second Date	First Date	Second Date	First Date	Second Date
345.53 cd	313.83 ab	4.96 bcd	1.37 ab	14683.75 a	4301.00 ab
310.53 d	251.03 b	3.18 b-e	0.36 b	11339.00 a	2425.00 ab
339.14 cd	312.69 ab	4.45 bcd	0.32 b	14153.00 a	1583.50 ab
296.25 d	252.61 b	2.38 cde	0.13 b	10830.50 a	791.25 b
371.08 bc	331.89 ab	6.22 ab	0.77 b	11957.00 a	3033.50 ab
297.14 d	319.31 ab	1.93 de	0.45 b	7903.00 a	1949.25 ab
382.14 bc	345.11 ab	5.26 bc	1.46 ab	12997.75 a	4786.50 ab
311.89 d	333.31 ab	3.62 b-e	1.88 ab	11668.25 a	5653.25 a
465.58 a	457.69 a	9.01 a	3.55 a	8827.00 a	4221.25 ab
403.03 b	303.50 b	6.46 ab	2.19 ab	11416.50 a	5796.25 a
457.86 a	455.08 a	8.61 a	3.60 a	9853.50 a	4667.00 ab
310.14 d	385.28 ab	1.26 e	2.48 ab	3658.75 b	6120.50 a
32.97	92.88	2.14	1.45	4103.17	2899.69
357.53	338.44	4.78	1.54	10774.00	3777.35
	310.53 d 339.14 cd 296.25 d 371.08 bc 297.14 d 382.14 bc 311.89 d 465.58 a 403.03 b 457.86 a 310.14 d 32.97	First Date Second Date 345.53 cd 313.83 ab 310.53 d 251.03 b 339.14 cd 312.69 ab 296.25 d 252.61 b 371.08 bc 331.89 ab 297.14 d 319.31 ab 382.14 bc 345.11 ab 311.89 d 333.31 ab 465.58 a 457.69 a 403.03 b 303.50 b 457.86 a 455.08 a 310.14 d 385.28 ab 32.97 92.88	VMD ¹ VMD COVERAGE ² First Date First Date Second Date First Date 345.53 cd 313.83 ab 4.96 bcd 310.53 d 251.03 b 3.18 b-e 339.14 cd 312.69 ab 4.45 bcd 296.25 d 252.61 b 2.38 cde 371.08 bc 331.89 ab 6.22 ab 297.14 d 319.31 ab 1.93 de 382.14 bc 345.11 ab 5.26 bc 311.89 d 333.31 ab 3.62 b-e 465.58 a 457.69 a 9.01 a 403.03 b 303.50 b 6.46 ab 457.86 a 455.08 a 8.61 a 310.14 d 385.28 ab 1.26 e 32.97 92.88 2.14	VMD ¹ VMD COVERAGE ² COVERAGE First Date Second Date First Date Second Date 345.53 cd 313.83 ab 4.96 bcd 1.37 ab 310.53 d 251.03 b 3.18 b-e 0.36 b 339.14 cd 312.69 ab 4.45 bcd 0.32 b 296.25 d 252.61 b 2.38 cde 0.13 b 371.08 bc 331.89 ab 6.22 ab 0.77 b 297.14 d 319.31 ab 1.93 de 0.45 b 382.14 bc 345.11 ab 5.26 bc 1.46 ab 311.89 d 333.31 ab 3.62 b-e 1.88 ab 465.58 a 457.69 a 9.01 a 3.55 a 403.03 b 303.50 b 6.46 ab 2.19 ab 457.86 a 455.08 a 8.61 a 3.60 a 310.14 d 385.28 ab 1.26 e 2.48 ab 32.97 92.88 2.14 1.45	VMD ¹ VMD COVERAGE ² First Date COVERAGE COVERAGE DROPS ³ First Date 345.53 cd 313.83 ab 4.96 bcd 1.37 ab 14683.75 a 310.53 d 251.03 b 3.18 b-e 0.36 b 11339.00 a 339.14 cd 312.69 ab 4.45 bcd 0.32 b 14153.00 a 296.25 d 252.61 b 2.38 cde 0.13 b 10830.50 a 371.08 bc 331.89 ab 6.22 ab 0.77 b 11957.00 a 297.14 d 319.31 ab 1.93 de 0.45 b 7903.00 a 382.14 bc 345.11 ab 5.26 bc 1.46 ab 12997.75 a 311.89 d 333.31 ab 3.62 b-e 1.88 ab 11668.25 a 465.58 a 457.69 a 9.01 a 3.55 a 8827.00 a 403.03 b 303.50 b 6.46 ab 2.19 ab 11416.50 a 310.14 d 385.28 ab 1.26 e 2.48 ab 3658.75 b 32.97 92.88 2.14 1.45 4103.17

Table 2. Spray Parameters, Study One- 10 Gallon Per Acre Application Rate

¹VMD= Volume Median Diameter. The droplet diameter where 50% of the spray volume is in droplets larger/smaller than the diameter. ²Coverage= Average percent coverage on the nine cards placed per plot.

³Total Drops= Total number of drops counted in the measured area of each card. A relative measure comparing nozzle to nozzle.

⁴Treatment Names: Number in parentheses indicates application pressure.

	ameter lication Date	VMD ¹ First Date	VMD Second Date	AVE % COVERAGE First Date	AVE % COVERAGE Second Date	TOTAL # DROPS ³ First Date	TOTAL # DROPS Second Date
Trt	Treatment Name ⁴	T IISt Date	Second Date	T list Date	Second Date	T list Date	Second Date
1	TT110015 (50)	378.56 bcd	325.11 bc	7.68 cd	2.43 c	16732.75 abc	6075.75 cd
2	TT11002 (50)	381.86 bcd	451.44 ab	6.01 d	3.69 bc	12917.00 bc	8847.50 a-d
3	HYPR-2-TT110015 (50)	400.47 bcd	262.72 c	11.99 bcd	2.33 c	20888.75 ab	6723.00 bcd
4	HYPR-2-TT11002 (50)	439.03 ab	388.89 bc	16.62 bc	3.77 bc	24143.25 a	7682.25 a-d
5	TJ60 11003 (50)	387.97 bcd	386.39 bc	11.89 bcd	6.93 abc	17799.50 abc	10059.00 abc
6	TJ60 11004 (50)	428.28 bc	410.72 b	11.82 bcd	7.59 abc	16021.25 abc	11991.00 ab
7	DUO-2-TT110015 (50)	362.61 cd	363.39 bc	10.05 cd	4.55 bc	21142.25 ab	10463.50 abc
8	DUO-2-TT11002 (50)	397.28 bcd	390.17 bc	6.96 cd	4.32 bc	12547.75 bc	10775.75 abc
9	TTI110015 (50)	305.83 e	556.44 a	3.39 d	8.45 ab	10431.75 c	4147.00 d
10	DUO-2-TTI110015 (50)	336.19 de	556.61 a	5.78 d	9.00 ab	14080.00 bc	4189.75 d
11	HYPR ULD120-15 (80)	485.28 a	455.42 ab	20.05 ab	12.04 a	18086.00 abc	12012.00 ab
12	HYPR-2-ULD 120-15 (80)	485.08 a	427.94 b	25.30 a	11.81 a	17870.50 abc	13207.75 a
LSD	(P=.05)	40.36	80.25	5.80	3.36	5574.55	3209.85
Grar	nd Mean	399.04	414.60	11.46	6.41	16888.40	8847.86

Table 3. Spray Parameters, Study Two- 20 Gallon Per Acre Application Rate

¹VMD= Volume Median Diameter. The droplet diameter where 50% of the spray volume is in droplets larger/smaller than the diameter.

²Coverage= Average percent coverage on the nine cards placed per plot.

³Total Drops= Total number of drops counted in the measured area of each card. A relative measure comparing nozzle to nozzle.

⁴Treatment Names: Number in parentheses indicates application pressure.

Coarse spray droplets (Trt. 9 through 12, Study Two), which provide excellent drift reduction and appear to provide adequate, even superior coverage percentages, may not provide the thorough canopy coverage needed for a relatively immobile fungicide to provide adequate control of a plant disease. The distance between droplets may be too far for the fungicide to completely protect the entire leaf. If these nozzles are chosen, a mobile fungicide may be needed to provide adequate product throughout entire volume of leaves in the canopy. While these nozzles may perform well for glyphosate, they would not provide coverage as well matched to a fungicide.

Fine spray droplets (Trt. 2-6, Study One, Date 2) appear to not be able to penetrate a heavy crop canopy to a great extent. This should be expected, as previous studies (data not shown) clearly show the finer spray droplets are largely held in the upper canopy. Under South Dakota application conditions, significant spray volume is lost due to drift when nozzles produce fine quality spray droplets.

Clearly, canopy at later season/later crop development spray dates can dramatically affect coverage (Study One, comparing Date 1 and Date 2). This difference is particularly due to the loss of fine droplets which are caught in the upper canopy (data not shown), which again supports the premise that a medium quality droplet offers the best trade off between drift reduction and coverage.

As canopy volume increases, increased gallonages may provide superior coverage. The results of these studies do not indicate what the ideal volume of application may be. However, the 20 GPA treatments improved coverage (percentage) as compared to 10 GPA treatments at both application dates, with the largest increase at the later application date.

The previous results lead to the conclusion that a medium spray droplet may provide the best compromise of adequate spray coverage and canopy penetration. Medium spray droplets can be produced by single nozzles at acceptable application pressures and somewhat lower application speeds. However, as application speed increases, twin orifice nozzles or twin nozzle configurations may provide a means to maintain droplet size while also allowing adequate carrier volume to be applied. When paired orifices or twin nozzles are used, data indicates that maintaining a medium droplet with angles of canopy penetration that are near vertical will provide the best combination of coverage and canopy penetration.

Overall the recommendation based on these studies would be to optimize coverage by using any nozzle that produces a medium droplet at the desired speed and pressure. The same would hold true when paired nozzles or orifices are used. Droplet class is the most important factor to provide the best coverage and canopy penetration.

ACKNOWLEDGEMENT

Support for this project was received through the North Central Soybean Research Program, as part of a multi-state grant administered by the University of Illinois at Urbana-Champaign.

2006 SOYBEAN FOLIAR FUNGICIDE TRIALS

K. R. Ruden, M. A. Draper, B. E. Ruden, and S. M. Thompson

Plant Science 0618

INTRODUCTION

Soybeans can be damaged by several foliar diseases throughout the growing season. Major foliar diseases in the United States cause significant yield losses each year throughout soybean production areas and fungicide applications for the control of these diseases are required. Although South Dakota has, to date, been free of the major yield robbing foliar diseases present in the southern United States, such as soybean rust (Phakopsora pachyrhiza), frogeye leafspot (Cercospora sojina) and target spot (Corynespora cassiicola), yield losses from foliar diseases occur. but mav still are largely undocumented. Foliar diseases were of minor importance in 2006. Septoria brown spot (Septoria glycines), a common disease in SD was fairly minor and generally not observed until August when the crop was in the R4 to R6 growth stage. Late in the season, Septoria brown spot become more common, but remained low in the canopy at insignificant levels. Bacterial blight (Pseudomonas syringae glycinea) was common, but at a very low incidence and severity. Bacterial pustule (Xanthomonas campestris pv glycinea) was identified at a few locations at low severity. Brown spot and occasionally bacterial blight can cause economic yield loss if environmental are favorable for disease conditions development.

Brown spot is the most commonly observed fungal foliar disease of soybean and therefore presumably the most important. Wet, humid conditions and heavy crop canopies tend to favor foliar disease

development. Brown spot occurs in South Dakota every year in every field at varying severities. The brown spot pathogen survives in crop residues. The pathogen can be dispersed from the infected residues to soybean plants by splashing rain. The brown spot pathogen normally infects older leaves, but soybeans weakened by other diseases or environmental conditions become susceptible to this disease. Normally, no significant yield losses results brown unless from spot premature defoliation occurs in the mid and upper Fungicide application, canopy. if environmental conditions favor development of the disease, may be an effective management strategy. However, fungicides vary in their activity against this pathogen. Fungicide application for the purpose of increasing plant health, even in the absence of obvious disease, is also receiving significant producer interest and is being investigated.

MATERIALS AND METHODS

Asgrow AG1903RR was planted at 150,000 seeds/acre at the Southeast Research Farm (SERF) near Beresford, SD and at the SDSU Experiment Farm at Brookings.

The experiment was planted in randomized complete blocks (RCBD) with four replications of each treatment. The plots were planted, rated and harvested on the dates listed in Table 1. Plants were rated for fungal foliar diseases and yield. While Asian soybean rust was being scouted for, it did not occur in SD in 2006, so only brown spot was rated. Treatments in this study were compared to an untreated check.

RESULTS AND DISCUSSION

No significant differences were observed among treatments for brown spot and yield at the Brookings location. At the SE Farm, there were significant differences among treatments for brown spot although those differences did not translate to differences in yield. At the SERF location, there was considerable variation across the trial for brown spot development, as is reflected in the differences across the three untreated entries (Table 3 bold). As such, while there were identifiable differences statistically, under the level of disease observed under the dry conditions of 2006, no specific recommendations can be made for which fungicides best control brown spot. Nonetheless it can be inferred that under the conditions of 2006, when brown spot remains in the lower canopy, it is not causing any significant impact on yield.

ACKNOWLEDGEMENT

This study was supported in part by a grant from the SD Soybean Research and Promotion Council.

Table 1. Dates of planting, plot evaluations, and harvest at study locations.

Activity	Date of activity by location						
Activity	SE Research Farm	Brookings AES					
Planting	May 23,2006	May 31,2006					
Disease Rating	September 7, 2006	September 11, 2006					
Harvest	October 3, 2006	October 24, 2006					

			Growth
Product	Rate	e	Stage
Untreated			
Headline	4.4	fl oz/A	R3
Caramba	7.7	fl oz/A	R3
Headline	3.6	fl oz/A	R3
Caramba	6.1	fl oz/A	R3
Headline	6	fl oz/A	R3
Induce NIS	0.25	% V/V	R3
Headline	6	fl oz/A	R3
Induce NIS	0.25	% V/V	R3
Caramba	8	fl oz/A	21days after
Headline	6	fl oz/A	R3
Induce NIS	0.25	% V/V	R3
Headline	3.6	fl oz/A	21days after
Caramba	6.1	fl oz/A	21days after
Headline	4.7	fl oz/A	R3
Folicur	3.2	fl oz/A	R3
Headline	3.6	fl oz/A	R3
Folicur	2.4	fl oz/A	R3
Untreated			
Folicur	4	fl oz/A	R3
Absolute 500 SC	5	fl oz/A	R3
Stratego	10	fl oz/A	R3
Induce NIS	0.125	% V/V	R3
Untreated			
Topguard	7	fl oz/A	R1-R2
Topguard	14	fl oz/A	R1-R2
Topguard	7	fl oz/A	R1-R2
Topguard	7	fl oz/A	R3-R4
Topguard	7	fl oz/A	R1-R2
Induce NIS	0.25	% V/V	R1-R2
Topguard	7	fl oz/A	R1-R2
Headline	6	fl oz/A	R1-R2
Spectra	4	fl oz/A	R1-R2
Untreated			
Laredo	7	fl oz/A	R1-R3
Induce NIS	0.125	% V/V	R1-R3
Headline	6	fl oz/A	21days after
Induce NIS	0.125	% V/V	21days after
Enable	7	fl oz/A	R1-R3
Prime Oil COC	1	% V/V	R1-R3
Enable	5	fl oz/A	21days after
Headline	6	fl oz/A	21days after
Prime Oil COC	1	% V/V	21days after

Table 2. Products, rates and growth stages of fungicides applied as foliar treatments in 2006.

			Growth
Product	Rate		Stage
Dithane	2.5	lb/A	R5
Induce NIS	0.125	% V/V	R5
Laredo	7	fl oz/A	R1-R3
Induce NIS	0.125	% V/V	R1-R3
Laredo	5	fl oz/A	21days after
Dithane	2.5	lb/A	21days after
Induce NIS	0.125	% V/V	21days after
Dithane	2.5	lb/A	R1-R3
Induce NIS	0.125	% V/V	R1-R3
Dithane	2.5	lb/A	R5
Induce NIS	0.125	% V/V	R5
Untreated			
Punch	4	fl oz/A	R3
Punch	4	fl oz/A	21days after
Punch	3	fl oz/A	R3
Headline	4.5	fl oz/A	R3
Punch	3	fl oz/A	21days after
Headline	4.5	fl oz/A	21days after
Uppercut	4	fl oz/A	R3
Uppercut	4	fl oz/A	21days after
Headline	6.2	fl oz/A	R3
Headline	6.2	fl oz/A	21days after
Untreated			
Quadris	5.5	fl oz/A	R3
Experimental A	4	fl oz/A	R3
Induce NIS	0.25	% V/V	R3
Quadris	5.5	fl oz/A	R3 + 21 days after
Experimental A	4	fl oz/A	R3 + 21 days after
Induce NIS	0.25	% V/V	R3 + 21 days after
Quilt	14	fl oz/A	R3 + 21 days after
Prime Oil COC	1	% V/V	R3 + 21 days after
Quadris	6	fl oz/A	R3 + 21 days after
Prime Oil COC	1	% V/V	R3 + 21 days after
Domark 230 ME	4	fl oz/A	R3
Orthene 97	0.75	lb/A	R3
Domark 230 ME	4	fl oz/A	R3
Orthene 97	0.75	lb/A	R3
Domark 230 ME	4	fl oz/A	R3
Quadris	4	fl oz/A	R3
Orthene 97	0.75	Ib/A	R3
Domark 230 ME	4	fl oz/A	R3
Quadris	4	fl oz/A	R3

Table 2 cont'd. Products, rates and growth stages of fungicides applied as foliar treatments in 2006.

Foliar Treatment		n Spot Rating	Y	ield	
		%	(bu/ac)		
	SE Farm	Brookings	SE Farm	Brookings	
Untreated	2.75	0.75	56.48	47.27	
Headline	0.25	2.25	61.35	57.47	
Caramba					
Headline	0.50	0.75	56.76	60.38	
Caramba	0.05	4.05	00 50	50.45	
Headline Induce NIS	0.25	1.25	66.59	52.45	
Headline	0.25	1.00	55.07	56.75	
Induce NIS Caramba	0.23	1.00	55.07	50.75	
Headline	0.25	1.75	52.48	55.64	
Induce NIS					
Headline					
Caramba					
Headline	0.00	1.00	61.51	56.28	
Folicur	0.00	0.50	CO 47	50.00	
Headline	0.00	0.50	60.47	56.23	
Folicur	4.00	0.75	E4 00	F7 00	
Untreated	4.00	0.75	51.89	57.02	
Folicur	3.50	2.25	55.89	53.24	
Absolute 500 SC	0.25	1.50	69.06	59.65	
Stratego Induce NIS	0.75	0.00	55.45	54.85	
Untreated	1.50	0.50	64.16	58.99	
Topguard	1.25	0.75	65.90	59.63	
Topguard	0.75	1.00	65.87	58.44	
Topguard	1.75	0.75	60.25	54.94	
Topguard			00.20	0.001	
Topguard	1.00	1.75	63.02	56.72	
Induce NIS				L	
Topguard	0.75	0.25	56.25	55.22	
Headline					
Spectra	3.75	1.25	49.51	61.64	
Untreated	3.25	2.00	58.16	54.25	
Laredo	2.00	3.00	51.78	54.19	
Induce NIS			-	-	
Headline					
Induce NIS					
Enable	1.00	2.00	48.62	55.90	
Prime Oil COC					
Enable					
Headline					
Prime Oil COC					
F-LSD(P=0.05)	2.09	NS	NS	NS	
ĊV	96.38	137.90	17.66	10.26	

Table 3. Soybean Foliar Fungicide Study: Disease rating and yield associated with various foliar treatments at Beresford and Brookings, SD.

	Brow	/n Spot				
Foliar Treatment	Diseas	e Rating	Yield			
		%	(bu/ac)			
	SE Farm	Brookings	SE Farm			
Dithane	2.50	1.00	60.10	57.28		
Induce NIS						
Laredo	2.00	0.50	50.22	55.54		
Induce NIS						
Laredo						
Dithane Induce NIS						
Dithane	1.25	1.25	51.97	55.30		
Induce NIS	1.25	1.25	51.97	55.50		
Dithane						
Induce NIS						
Untreated	4.50	0.75	43.35	59.63		
Punch	2.75	0.75	46.23	54.62		
Punch						
Punch	0.50	0.50	53.56	56.67		
Headline						
Punch						
Headline						
Uppercut	1.75	1.75	58.80	55.38		
Uppercut						
Headline	0.25	0.50	56.26	55.35		
Headline						
Untreated	5.25	0.50	54.01	56.22		
Quadris	1.25	0.75	57.52	59.88		
Experimental A						
Induce NIS						
Quadris	0.25	1.50	60.41	58.89		
Experimental A						
Induce NIS						
Quilt	0.25	0.75	55.69	53.56		
Prime Oil COC						
Quadris	0.50	0.50	56.91	57.29		
Prime Oil COC						
Domark 230 ME	2.25	0.25	58.28	56.23		
Orthene 97	3.25	0.00	57.90	55.54		
Domark 230 ME	1.75	2.75	57.27	55.73		
Orthene 97						
Domark 230 ME	1.00	0.75	51.79	56.82		
Quadris						
Orthene 97	4.00	0.05				
Domark 230 ME	1.00	0.25	53.74	56.68		
Quadris	0.00	NO		NO		
F-LSD(P=0.05)	2.09	NS	NS	NS		
CV	96.38	137.90	17.66	10.26		

 Table 3 con't.
 Soybean Foliar Fungicide Study: Disease rating and yield associated with various foliar treatments at Beresford and Brookings, SD.

Oat and Field Pea - Eastern South Dakota Test Performance Results for 2006

Robert G. Hall¹ and Kevin K. Kirby²

Plant Science 0619

TRIAL METHODS

A random complete block design is used in all trials. Plots were 5 feet wide and either 12 or 14 feet long and harvested with a small plot combine. Yield means were generated from four variety replications per location per year. Oat plots were fertilized with 60 lb. per acre of 18-46-0 (10.8 pounds of N and 27.6 pounds of phosphorous per acre) down the seed tube at seeding. In addition, a post-emergence application of Bronate (1.0 pint) was applied for weed control. Oat plots were seeded at 28 pure live seeds per square foot to obtain a density of about 25 seedlings per square foot. Field peas were seeded at 7 pure live seeds per square foot and inoculated seed. Field pea weed control included preemergence Spartan (6 oz) and Dual (1.5 pt) and post-emergence Raptor 4L (4 oz) per acre.

PERFORMANCE TRIAL RESULTS

<u>Oat (Tables 1a-b)</u> - The top performing entries for yield for the past 3-years (2004-06) by variety and top yield frequency included **HiFi**, **Morton**, **Loyal**, **and Stallion at 100%**; and **Jerry at 60%** (table 1a.). These varieties exhibited very good yield stability or the ability to adapt to a wide range of production environments by being in the top-performance group for yield at more than 60% of the test locations for the past three years. The top-performing entries for yield in 2006 were the experimental lines SD 011315-15 at 83%; SD 020701 and SD 030888 at 67%; and Baker, Beach, Souris, SD 030324, and SD 021021 at 50% of the test locations. In 2006, on a state basis, the hull-less entries Buff, Paul, and Stark at 44, 42, and 40 pounds, respectively, had the best bushel or test weight average across all locations (table 1b). Among the standard hulled entries the varieties Hytest, Beach, and Stallion at 39 pounds followed by Loyal, SD 020883, SD 020536, SD 030888 at 38 pounds were the highest in bushel weight. In contrast, the entry **GG-304 at 30 Ibs** was the lowest state bushel weight among the standard hulled varieties. Among the entries tested Hytest at 36 inches was the tallest and GG-304 at 21 inches was the shortest in height in 2006. In 2006, there was little if any lodging across the state. The standard variety Hytest at 19.5% and the hull-less varieties Buff and Paul at 18.2% exhibited the highest grain protein levels for 2006.

Field Pea (Tables 2a-b) - The top entries for yield for 2006 were the varieties **Polstead, Cooper, Stratus, Tudor and CDC Mozart**. The entries **Aragon at 65, WS Midas at 63, SW Salute and Topeka at 62, Tudor at 61; and Carneval, CDC Mozart, DS-Admiral, Eclipse, and SW Capri at 60 pounds per bushel** were the top test weight varieties for 2006. Protein levels were not determined for 2006. The

¹ Extension agronomist – crops, SDSU

² Agricultural research manager, SDSU

common field pea traits for the various entries tested in 2006 are listed in table 2b.

The efforts of the following people are gratefully acknowledged:

L. Hall, SDSU Oat Breeding Project, Brookings, SD; K. Glover and S. Hawks, SDSU Spring Wheat Breeding Project, Brookings, SD; and J. Smolik and A. Heuer, Northeast Research Farm, South Shore, SD.

T 11 4	0 1 1 1		D' 1 '	2004 2006
Table Ia.	Oat vield results -	 South Dakota East 	t River locations.	. 2004-2006.

Variety (Hdg.)* -	lesun		tion Yield Avg. (Bu/A at 13% moist.)					20012	1	Yield	State Yield		
sorted by 3-yr then	Broo	kings	So. S	hore	Bere	sford	Brow	n Co.	Avg. (Avg. (Bu/A)		. ** (%)	
2006 state average	2006	3-Yr	2006	3-Yr	2006	3-Yr	2006	3-Yr	2006	3-Yr	2006	3-Yr	
HiFi (8)	129	143+	112	143+	137	131+	112+	128+	100	119	17	100	
Stallion (8)	136+	132+	120	131 +	139	139+	96	118 +	100	115	17	100	
Morton (7)	117	130 +	112	138 +	132	127 +	97	115 +	94	113	0	100	
Loyal (8)	124	133+	112	127 +	130	125 +	99	108 +	94	109	0	100	
Jerry (5)	111	120	114	118	103	121 +	50	100 +	80	103	0	60	
Don (1)	105	115	110	116	103	113	53	98	79	99	17	0	
Reeves (2)	101	110	106	113	99	111	48	96	74	95	0	20	
Hytest (4)	91	102	100	107	85	86	71	95	73	88	0	20	
Buff, Hls (3)	88	96	91	102	79	92	48	73	64	81	0	0	
Stark, Hls (6)	76	86	70	95	48	79	70	80	54	74	0	0	
Paul, Hls (7)	78	83	77	92	75	70	77	83	63	72	0	0	
SD 011315-15	142 +		130+		137		103 +		106		83		
SD 030324	140 +		123		151 +		116+		106		50		
SD 020701	125		125 +		144 +		92		101		67		
SD 021021	124	•	124+	•	137	•	103 +	•	101		50		
SD 030888	140 +	•	132+		144+		75		101		67		
SD 020536	123		115		146+		102 +		100		50		
Baker (4)	125		118		131		98		98		33		
Beach (6)	127		118		123		100 +		97		50		
SD 031128	118		128+		125		62		91		34		
Maida (7)	114		110		124		78		88		17		
SD 020883	93		112		117		49		79		17		
GG-304	94		96		63		69		69		0		
Test avg.:	115	114	112	117	117	109	83	99					
High avg. :	142	143	132	143	151	139	118	128					
Low avg. :	76	83	70	92	48	70	48	73					
# Lsd(.05) :	9	20	8	16	11	24	18	29					
## TPG-value :	133	123	124	127	140	115	100	99					
### C.V. :	5	8	5	7	7	12	15	10					

* Heading, the relative days to heading, compared to the variety - Don.

Lsd, the amount two values in a column must differ to be significantly different.

TPG-value, the minimum value required for the top-performance group (TPG) for yield.

A plus sign (+) indicates values within a column that qualify for the TPG.

Coef. of variation, a measure of trial experimental error, 15% or less is best.

** Frequency or percent of all test locations that a variety was in the TPG for yield.

	Location Avg BW, HT, LDG											State Avg BW, HT,				
Variety (Hdg.)* -	Br	ookiı	ngs	Sou	th Sh	ore	Be	eresfo	ord	Br	own (Co.	LDG, PRT			
sorted by state BW	BW	нт	LDG	BW	НТ	LDG	BW	HT	LDG	BW	нт	LDG	BW	НТ	LDG	PRT
avg.	lb	in	**	lb	in	**	lb	in	**	lb	in	**	lb	in	**	%
Buff, Hls (3)	45+	35	1+	42+	33	1+	46+	35	1+	44+	27	1+	44	29	1	18.2
Paul, Hls (7)	42	42	2+	41+	37	1+	42	38	1+	46+	32	1+	42	33	1	18.2
Stark, Hls (6)	41	42	1+	41+	37	1+	40	38	1+	42	32	1+	40	34	1	17.8
Hytest (4)	39	42	3	41+	40	3	41	40	1+	39	36	1+	39	36	1	19.5
Beach (6)	38	42	2+	43+	39	2+	40	40	1+	39	33	1+	39	34	1	15.5
Stallion (8)	39	42	2+	40	37	2+	41	40	1+	39	33	1+	39	34	1	17.2
SD 030888	40	33	2+	38	31	1+	40	32	1+	38	27	1+	38	27	1	15.9
SD 020536	38	39	2+	37	33	3	40	34	1+	39	29	1+	38	30	1	16.2
SD 020883	39	37	2+	38	35	2+	38	34	1+	36	29	1+	38	31	1	17.2
Loyal (8)	38	41	2+	40	38	3	40	38	1+	38	34	1+	38	34	1	17.8
SD 031128	38	39	1+	38	37	1+	39	36	1+	35	29	1+	37	32	1	16.3
SD 020701	36	40	2+	39	36	3	39	37	1+	37	33	1+	37	33	1	16.5
SD 011315-15	36	41	2+	36	36	2+	39	37	1+	39	30	1+	37	32	1	15.5
Jerry (5)	38	40	2+	36	38	2+	39	37	1+	34	31	1+	37	32	1	16.6
Morton (7)	38	43	1+	38	37	1+	38	40	1+	37	35	1+	37	34	1	16.5
Reeves (2)	37	39	2+	38	37	3	38	38	1+	33	32	1+	36	33	1	16.1
SD 030324	34	42	2+	38	38	3	40	38	1+	38	33	1+	36	34	1	16.3
Maida (7)	36	42	2+	38	37	2+	36	40	1+	37	32	1+	36	34	1	17.4
SD 021021	37	37	1+	37	34	1+	38	35	1+	38	30	1+	36	30	1	17.6
HiFi (8)	36	42	1+	36	36	1+	38	37	1+	36	32	1+	36	33	1	15.6
Don (1)	36	32	2+	36	32	1+	37	32	1+	34	26	1+	36	28	1	15.6
Baker (4)	34	38	1+	36	35	1+	38	36	1+	35	31	1+	35	32	1	15.9
GG-304	29	25	1+	28	23	1+	31	24	1+	34	20	1+	30	21	1	16.1
Test avg. :	37	39	2	38	35	2	39	36	1	38	30	1				
High avg. :	45	43	3	43	40	3	46	40	1	46	36	1				
Low avg. :	29	25	1	28	23	1	31	24	1	33	20	1				
# Lsd(.05) :	2	2	1	2	2	1	2	2	NS^	3	3	NS^				
## TPG-value :	43		2	41		2	44		1	43		1				
### C.V. :	4	3	35	4	3	26	4	3	0	5	7	0				

Table 1b. HRS wheat averages for bushel weight (BW), Height (HT), lodging (LDG) by location along with stage average for grain protein (PRT) in 2006.

* Heading, the relative days to heading, compared to the variety - Don.

** Lodging score: 0= all plants erect, 3= 50% of plants lodged at 45°-angle, 5= all plants flat.

Lsd, the amount two values in a column must differ to be significantly different.

TPG-value, the minimum or maximum value required for the top-performance group (TPG). A plus sign (+) indicates values within a column that qualify for the TPG.

Coef. of variation, a measure of trial experimental error.

^ Variable differences within a column are non-significant (NS) at the .05 level of probability.

Variety (Mat.)*- sorted by yield13% moist.IbPolstead (M)79+60Cooper (L)76+59Stratus (M)77+58Tudor (M)74+61+CDC Mozart (M)72+60+SW Salute (E)7062+SW Midas (E)6863+SW Marquee (E)6859Topeka (E)6762+Eclipse (M)6760+SW Capri (E)6660+Fusion (M)6458CEB 1093 (M)6460SW Cabot (E)6457Tamora (L)6356Aragorn (M)6058Grande (M)6059CDC Striker (M)5959Cruiser (M)5460+Integra (E)5456K2 (M)4558Majoret (E)3956	Southeast Research Sta	tion, Berestord, SD - 2006.					
Polstead (M) 79+ 60 Cooper (L) 76+ 59 Stratus (M) 77+ 58 Tudor (M) 74+ 61+ CDC Mozart (M) 72+ 60+ SW Salute (E) 70 62+ SW Midas (E) 68 63+ SW Marquee (E) 68 59 Topeka (E) 67 62+ Eclipse (M) 67 60+ SW Capri (E) 66 60+ Fusion (M) 66 59 Camry (M) 64 58 CEB 1093 (M) 64 60 SW Cabot (E) 63 56 Aragorn (M) 62 65+ DS-Admiral (E) 62 60+ AP-18 (M) 60 58 Grande (M) 59 59 Cruiser (M) 54 60+ Integra (E) 54 56 Kagorne (E) 39 56	Variety (Mat.)*- sorted by vield		Bushel Wt. lb				
Cooper (L) $76+$ 59 Stratus (M) $77+$ 58 Tudor (M) $74+$ $61+$ CDC Mozart (M) $72+$ $60+$ SW Salute (E) 70 $62+$ SW Midas (E) 68 $63+$ SW Marquee (E) 68 59 Topeka (E) 67 $62+$ Eclipse (M) 67 $60+$ SW Capri (E) 66 $60+$ Fusion (M) 66 59 Camry (M) 64 58 CEB 1093 (M) 64 60 SW Cabot (E) 64 57 Tamora (L) 63 56 Aragorn (M) 62 $65+$ DS-Admiral (E) 62 $60+$ AP-18 (M) 60 58 Grande (M) 56 59 Carneval (M) 54 $60+$ Integra (E) 54 56 K2 (M) 45 58 Majoret (E) 39 56		79_	60				
Stratus (M) 77+ 58 Tudor (M) 74+ 61+ CDC Mozart (M) 72+ 60+ SW Salute (E) 70 62+ SW Midas (E) 68 63+ SW Marquee (E) 68 59 Topeka (E) 67 62+ Eclipse (M) 67 60+ SW Capri (E) 66 60+ Fusion (M) 66 59 Camry (M) 64 58 CEB 1093 (M) 64 60 SW Cabot (E) 64 57 Tamora (L) 63 56 Aragorn (M) 62 65+ DS-Admiral (E) 62 60+ AP-18 (M) 60 58 Grande (M) 59 59 Cruiser (M) 56 59 Carneval (M) 54 60+ Integra (E) 54 56 K2 (M) 45 58 Majoret (E) 39 56							
Tudor (M) $74+$ $61+$ CDC Mozart (M) $72+$ $60+$ SW Salute (E) 70 $62+$ SW Midas (E) 68 $63+$ SW Marquee (E) 68 59 Topeka (E) 67 $62+$ Eclipse (M) 67 $60+$ SW Capri (E) 66 $60+$ Fusion (M) 66 59 Camry (M) 64 58 CEB 1093 (M) 64 60 SW Cabot (E) 64 57 Tamora (L) 63 56 Aragorn (M) 62 $65+$ DS-Admiral (E) 62 $60+$ AP-18 (M) 60 59 Cruiser (M) 56 59 Carneval (M) 54 $60+$ Integra (E) 54 56 K2 (M) 45 58 Majoret (E) 39 56	• • •						
CDC Mozart (M)72+60+SW Salute (E)7062+SW Midas (E)6863+SW Marquee (E)6859Topeka (E)6762+Eclipse (M)6760+SW Capri (E)6660+Fusion (M)6659Camry (M)6458CEB 1093 (M)6460SW Cabot (E)6457Tamora (L)6356Aragorn (M)6265+DS-Admiral (E)6260+AP-18 (M)6059CDC Striker (M)5959Cruiser (M)5460+Integra (E)5456K2 (M)4558Majoret (E)3956							
SW Salute (E) 70 $62+$ SW Midas (E) 68 $63+$ SW Marquee (E) 68 59 Topeka (E) 67 $62+$ Eclipse (M) 67 $60+$ SW Capri (E) 66 $60+$ Fusion (M) 66 59 Camry (M) 64 58 CEB 1093 (M) 64 60 SW Cabot (E) 64 57 Tamora (L) 63 56 Aragorn (M) 62 $65+$ DS-Admiral (E) 60 59 CDC Striker (M) 59 59 Cruiser (M) 56 59 Carneval (M) 54 $60+$ Integra (E) 54 56 Majoret (E) 39 56							
SW Midas (E) 68 $63+$ SW Marquee (E) 68 59 Topeka (E) 67 $62+$ Eclipse (M) 67 $60+$ SW Capri (E) 66 $60+$ Fusion (M) 66 59 Camry (M) 64 58 CEB 1093 (M) 64 60 SW Cabot (E) 64 57 Tamora (L) 63 56 Aragorn (M) 62 $65+$ DS-Admiral (E) 62 $60+$ AP-18 (M) 60 59 CDC Striker (M) 59 59 Cruiser (M) 56 59 Carneval (M) 54 $60+$ Integra (E) 54 56 Majoret (E) 39 56	. ,						
SW Marquee (E) 68 59 Topeka (E) 67 62+ Eclipse (M) 67 60+ SW Capri (E) 66 60+ Fusion (M) 66 59 Camry (M) 64 58 CEB 1093 (M) 64 60 SW Cabot (E) 64 57 Tamora (L) 63 56 Aragorn (M) 62 65+ DS-Admiral (E) 62 60+ AP-18 (M) 60 58 Grande (M) 59 59 Cruiser (M) 54 60+ Integra (E) 54 56 K2 (M) 45 58							
Topeka (E)6762+Eclipse (M)6760+SW Capri (E)6660+Fusion (M)6659Camry (M)6458CEB 1093 (M)6460SW Cabot (E)6457Tamora (L)6356Aragorn (M)6265+DS-Admiral (E)6260+AP-18 (M)6058Grande (M)5059CDC Striker (M)5659Carneval (M)5460+Integra (E)5456K2 (M)3956							
Eclipse (M)6760+SW Capri (E)6660+Fusion (M)6659Camry (M)6458CEB 1093 (M)6460SW Cabot (E)6457Tamora (L)6356Aragorn (M)6265+DS-Admiral (E)6260+AP-18 (M)6058Grande (M)5959CDC Striker (M)5959Cruiser (M)5460+Integra (E)5456K2 (M)4558Majoret (E)3956	· · · · · ·						
SW Capri (E) 66 60+ Fusion (M) 66 59 Camry (M) 64 58 CEB 1093 (M) 64 60 SW Cabot (E) 64 57 Tamora (L) 63 56 Aragorn (M) 62 65+ DS-Admiral (E) 62 60+ AP-18 (M) 60 58 Grande (M) 60 59 CDC Striker (M) 59 59 Cruiser (M) 54 60+ Integra (E) 54 56 K2 (M) 45 58	▲ · · /						
Fusion (M)6659Camry (M)6458CEB 1093 (M)6460SW Cabot (E)6457Tamora (L)6356Aragorn (M)6265+DS-Admiral (E)6260+AP-18 (M)6058Grande (M)6059CDC Striker (M)5959Cruiser (M)5659Carneval (M)5460+Integra (E)5456K2 (M)4558Majoret (E)3956	1 ()						
Camry (M)6458CEB 1093 (M)6460SW Cabot (E)6457Tamora (L)6356Aragorn (M)6265+DS-Admiral (E)6260+AP-18 (M)6058Grande (M)6059CDC Striker (M)5959Cruiser (M)5659Carneval (M)5460+Integra (E)5456K2 (M)4558Majoret (E)3956	÷ · · ·						
CEB 1093 (M)6460SW Cabot (E)6457Tamora (L)6356Aragorn (M)6265+DS-Admiral (E)6260+AP-18 (M)6058Grande (M)6059CDC Striker (M)5959Cruiser (M)5659Carneval (M)5460+Integra (E)5456K2 (M)4558Majoret (E)3956							
SW Cabot (E)6457Tamora (L)6356Aragorn (M)6265+DS-Admiral (E)6260+AP-18 (M)6058Grande (M)6059CDC Striker (M)5959Cruiser (M)5659Carneval (M)5460+Integra (E)5456K2 (M)4558Majoret (E)3956	•						
Tamora (L)6356Aragorn (M)6265+DS-Admiral (E)6260+AP-18 (M)6058Grande (M)6059CDC Striker (M)5959Cruiser (M)5659Carneval (M)5460+Integra (E)5456K2 (M)4558Majoret (E)3956	· · ·						
Aragorn (M)6265+DS-Admiral (E)6260+AP-18 (M)6058Grande (M)6059CDC Striker (M)5959Cruiser (M)5659Carneval (M)5460+Integra (E)5456K2 (M)4558Majoret (E)3956	. ,						
DS-Admiral (E) 62 60+ AP-18 (M) 60 58 Grande (M) 60 59 CDC Striker (M) 59 59 Cruiser (M) 56 59 Carneval (M) 54 60+ Integra (E) 54 56 K2 (M) 45 58 Majoret (E) 39 56							
AP-18 (M)6058Grande (M)6059CDC Striker (M)5959Cruiser (M)5659Carneval (M)5460+Integra (E)5456K2 (M)4558Majoret (E)3956	U ()						
Grande (M)6059CDC Striker (M)5959Cruiser (M)5659Carneval (M)5460+Integra (E)5456K2 (M)4558Majoret (E)3956	· /						
CDC Striker (M)5959Cruiser (M)5659Carneval (M)5460+Integra (E)5456K2 (M)4558Majoret (E)3956							
Cruiser (M) 56 59 Carneval (M) 54 60+ Integra (E) 54 56 K2 (M) 45 58 Majoret (E) 39 56	· · ·						
Carneval (M)5460+Integra (E)5456K2 (M)4558Majoret (E)3956	· · ·						
Integra (E) 54 56 K2 (M) 45 58 Majoret (E) 39 56	Cruiser (M)	56	59				
K2 (M) 45 58 Majoret (E) 39 56	Carneval (M)	54	60+				
Majoret (E) 39 56	Integra (E)	54	56				
	K2 (M)	45	58				
Test avg \cdot 64 50	Majoret (E)	39	56				
1031 avg 04 37	Test avg. :	64	59				
High avg. : 79 65	High avg. :	79	65				
Low avg. : 39 56	Low avg. :	39	56				
# Lsd (.05) : 7 5	# Lsd (.05) :	7	5				
## TPG-value : 72 60	## TPG-value :	72	60				
### C.V. : 8 6	### C.V. :	8	6				

Table 2a. Field pea yield and bushel weight averages at theSoutheast Research Station, Beresford, SD - 2006.

* Early- E, medium- M, or late- L maturity.

Lsd, the amount two values in a column must differ to be significantly different.

TPG-value, the minimum value required for the top-performance group (TPG) for yield.

A plus sign (+) indicates values within a column that qualify for the TPG. ### Coef. of variation, a measure of trial experimental error.

_	1									PVP\$
							Mycos-			or
	Rel.*	Seed	Leaf#	Ht.##	Lodging	Powdery	phaerella	Fusarium	Seeds	PBR
Variety	mat.	color	type	(inch)	(0-10)~	mildew@	blight@	Wilt@	per lb	Status
DS-Admiral	Е	Yellow	SL	25	1	VG	F	F	2000	Yes
Aragorn	Μ	Green	SL	•				•	2200	
AP-18	Μ	Green	SL	22	1		•		2100	•
SW Cabot	E	Yellow	SL	•		Р	Р	Р	1900	
Camry	Μ	Green	SL	19	1	VG	F	F	2000	Yes
CEB 1093	Μ	Green	SL	•	•		•	•	1700	
SW Capri	Е	Yellow	SL			Р	F	Р	2200	
Carneval	Μ	Yellow	SL	22	0	F	F	Р	2100	Yes
Cooper	L	Green	SL	26	0	VG	F	F	1700	Yes
Cruiser	Μ	Green	SL	24	3	Р	F	Р	2200	
Eclipse	Μ	Yellow	SL	23	1	VG	F	F	1900	Yes
Fusion	Μ	Yellow	SL						2000	
Grande	Μ	Yellow	Ν	28	6	Р	F	Р	2300	Yes
Integra	Е	Yellow	SL	25	1	Р	Р	F	1900	
K2	Μ	Green	SL						2200	
Majoret	Е	Green	SL	24	1	Р	F	Р	2100	Yes
SW Marquee	Е	Yellow	SL	26	0			•	2300	•
SW Midas	Е	Yellow	SL	24	0	VG	F	F	2200	Yes
CDC Mozart	Μ	Yellow	SL	22	4	VG	Р	F	2100	
Polstead	Μ	Yellow	SL					•	1900	•
SW Salute	Е	Yellow	SL	26	3	VG	F	Р	2000	Yes
Stratus	Μ	Green	SL	21	5	VG	F	Р	1900	Yes
CDC Striker	М	Green	SL			F	F	G	1900	
Tamora	L	Green	SL	•					1700	
Topeka	Е	Yellow	SL	21	6	VG	F	Р	2100	Yes
Tudor	М	Yellow	SL	27	0	VG	Р	F	1700	Yes

Table 2b. Origin, traits, and disease reactions for field pea entries tested in 2006.

\$ Plant variety protection (PVP, US) or Plant breeders rights (PBR, CAN) application is pending or anticipated.

* Early- E, medium- M, or late- L maturity.

Normal- N or semi-leafless- SL leaf type.

~ 1 =all plants erect, 3 = 50% lodged at450 angle, 5 =all flat.

** Very good- VG, good- G, fair- F, poor- P disease resistance.

2006 SOYBEAN VARIETY PERFORMANCE TRIALS - BERESFORD AND GEDDES

Robert G. Hall¹ and Kevin K. Kirby²

Plant Science 0620

GENERAL TEST PROCEDURES

Test trials consisted of 4-row plots, 20 feet long, and with three replications. A row spacing of 30 inches and seeding rate of 165.000 seeds per acre was used in all plots. The seed furrow was inoculated with Nitragin brand Soybean Soil Implant down the seed tube using label rates at planting. Seedina was accomplished using а Monosem precision row crop planter. In the Roundup Ready[™] plots weed control consisted of one post application of Roundup at both Beresford and Geddes. Weed control in the Non-Roundup Ready[™] plots at Beresford consisted of a pre application of a Dual-Python tank mix at label rates. The center two rows of each 4row plot were harvested with Massey Ferguson 8XP small plot combine.

<u>Yield</u>: Plots were harvested at 15% seed moisture or less. Yields were calculated on a 13% moisture content basis and expressed in bushels per acre.

<u>Variety maturity</u>: Maturity is reported as "Days to maturity" (DTM); obtained by averaging the number of days from seeding to maturity (95% of pods brown) for two replicates. If the DTM value is missing the entry did not reach maturity before the first killing frost. <u>Lodging Score</u>: Scores at maturity are based on average erectness of the main stem of plants within each variety. 1 = allplants erect, 2 = slight lodging, 3 = lodgingat a 45 degree angle, 4 = severe lodging, and 5 = all plants flat.

<u>Protein and Oil Content</u>: A sub-sample from each replication (3 in total) of each variety was combined, mixed, re-sampled, and tested for protein and oil. The analysis was done using a FOSS TECATOR Model Infratec 1229 grain analyzer. Samples of known protein and oil previously tested by the SDSU Agricultural Experiment Station Biochemistry Laboratory were then used to calibrate the analyzer. Protein and oil values were adjusted to 13% moisture.

ACKNOWLEDGEMENTS

The efforts of Robert Berg and staff of the Southeast Research Station, Beresford, SD; and Curtis Sybesma (cooperator), Geddes, SD, in conducting these trials are gratefully acknowledged.

¹ Extension agronomist – crops/Manager – crop testing; SDSU

² Agricultural research manager – crop testing; SDSU

Roundup Ready[™] Soybean Variety Performance Results – Beresford & Geddes

Note: Yields are reported as 2006 averages or 2-yr averages (2005-06).

Beresford, Group-I varieties (Tables 1a &

1b): The 2006 and two-year yield averages were **61** and **56** bushels per acre, respectively (Table 1a). Varieties averaging 62 bushels or higher were in the top yield group. There were no significant yield differences among varieties for two years so all varieties were in the top yield group. Yield averages had to differ by 5 bushels in 2006 to be significantly different from one another. The 2006 protein, oil, and lodging score test averages were **36.6%**, **19.7%**, and **2**, respectively (Table 1b). Lodging was evident and entries scoring 2 or less were in the top performance group for resistance to lodging.

Geddes, Group-I varieties (Tables 1a &

1b): The 2006 and two-year yield averages were **46** and **36** bushels per acre, respectively (Table 1a). Varieties that averaged at least 48 bushels in 2006 or 35 bushels for two years were in a top yield group. Yield averages had to differ by 4 bushels in 2006 and 6 bushels for two years to be significantly different. The 2006 protein, oil, and lodging score test averages were **36.9%**, **19.7%**, and **1**, respectively (Table 1b). A lodging score average of 1 and LSD value of 0 indicated lodging did not occur.

Southern test zone, Group-I varieties

(Tables 1a & 1b): The 2006 and two-year yield averages in the Southern zone were 53 and 46 bushels per acre, respectively (Table 1a). Varieties had to average 57 bushels or higher in 2006 to be in the top yield group; while there were no significant yield differences among varieties for two years. Yield averages had to differ by 3 bushels in 2006 to be significantly different. In contrast, for the two-year period a high CV indicated there was too much experimental error associated with the data over locations to make valid determinations of yield differences among entries. The 2006 protein, oil, and lodging score test averages were **36.8%**, **19.7%**, **and 1**, respectively over locations (Table 1b). A lodging score average of 1 and LSD value of 0.4 (less than 1) indicated some lodging occurred and entries scoring 1 were in the top performance group for lodging resistance.

Beresford, Group-II varieties (Tables 2a

& 2b): The 2006 and two-year yield averages were **63 and 59** bushels per acre, respectively (Table 2a). Varieties that averaged at least 69 bushels in 2006 or 60 bushels for two years were in a top yield group. Yield averages had to differ by 7 bushels in 2006 and 6 bushels for two years to be significantly different. The 2006 protein, oil, and lodging score test averages were **36.4%**, **19.3%**, and **2**, respectively (Table 2b). A top performance group value of 2 indicates varieties scoring 2 or less were in the top group for lodging resistance.

Geddes, Group-II varieties (Tables 2a & 2b): The 2006 and two-year yield averages were 45 and 36 bushels per acre, respectively (Table 2a). Varieties averaged at least 46 bushels in 2006 or 36 bushels for two years were in a top yield group. Yield averages had to differ by 4 bushels in both 2006 and for two years to be significantly different. The 2006 protein, oil, and lodging score test averages were 36.5%, 19.5%, and 1, respectively (Table 2b). A lodging score average of 1 and LSD value of 0 indicated lodging did not occur.

Southern test zone, Group-II varieties (Tables 2a & 2b): The 2006 and two-year yield averages in the Southern zone were 54 and 48 bushels per acre, respectively (Table 2a). Varieties that averaged 58 bushels or higher in 2006 were in the top yield group. Yield averages had to differ by 4 bushels in 2006 to be significantly different. Valid yield differences for the twoyear period over locations could not be determined. The high CV of 19% indicated too much experimental error was associated with this trial to make valid yield determinations. Therefore, growers are encouraged to look at both the 2006 and the two-year yield averages at each location separately to evaluate average yield trends at each location. The 2006 protein, oil, and lodging score test averages were **36.4%**, **19.4%**, and **1**, respectively over locations (Table 2b). A lodging score average of 1 and LSD value of 0.4 (less than 1) indicated lodging occurred and entries scoring 1 were in the top performance group for lodging resistance.

Non-Roundup Ready[™] Soybean Variety Performance Results – Beresford

Note: Yields are reported as 2006 averages or 2-yr averages (2005-06).

Beresford, Group-I varieties (Tables 3a & 3b): The 2006 and two-year yield averages were 55 and 52 bushels per acre,

respectively (Table 3a). Varieties that averaged at least 55 bushels in 2006 or 52 bushels for two years were in the top performance group for yield. Yield averages had to differ by 5 bushels in 2006 to be significantly different, while there were no significant differences among entries tested two years. The 2006 protein, oil, and lodging score test averages were **36.4%**, **19.8%**, and **3**, respectively (Table 3b). A top performance group value of 2 indicates varieties scoring 2 or less were in the top group for lodging resistance.

Beresford, Group-II varieties (Tables 3a & 3b): The 2006 and two-year yield averages were 61 and 52 bushels per acre, respectively (Table 3a). Varieties had to average 62 bushels or higher in 2006 and 50 bushels or higher for two years to be in the top performance group for yield group. Yield averages had to differ by 6 bushels in 2006 to be significantly different; while there were no significant differences among varieties tested two years. The 2006 protein, oil, and lodging score test averages were 36.6%, 19.3%, and 2, respectively (Table 3b). A top performance group value of 2 indicates varieties scoring 2 or less were in the top group for lodging resistance.

2005-06.		1						
		Yie	ld Average	es by Loca	tion	Southern Zone		
		Bere	sford	Geo	ldes	Av	erages	
Brand/Variety		Bu/Acre	Bu/Acre	Bu/Acre	Bu/Acre	Bu/Acre	Bu/Acre 2-	
(By 2-yr then 2006 zone yield)	DTM*	2006	2-Yr	2006	2-Yr	2006	Yr	
THOMPSON/ T-7205+RR	124	64	59	48	38	56	49	
ASGROW/ AG1903	120	60	56	50	41	55	49	
NORTHSTAR/ NS 1809RR	122	65	57	47	38	56	48	
KRUGER/ K-195+RR/SCN	121	64	59	48	35	56	47	
NUTECH/ NT-1909RR	123	57	57	48	37	53	47	
KRUGER/ K-177RR	118	63	58	46	33	55	46	
PRAIRIE BRAND/ PB-1954RR	122	59	56	48	36	54	46	
PUBLIC/ SDX00R-026-42N	123	61	57	44	34	53	46	
KRUGER/ K-156RR	117	57	56	39	32	48	44	
PUBLIC/ SD01-3219R	123	56	51	44	33	50	42	
SODAK GENET./ SD1111RR	113	47	49	38	30	43	40	
PRAIRIE BRAND/ PB-1956RR	125	67		52		60		
ASGROW/ AG1702	118	61		50	39	56		
HEFTY/ 195RR	124	64		47	•	56		
KRUGER/ K-188RR/SCN	121	67		45	•	56		
PRAIRIE BRAND/ PB-1916RR	125	65		47		56		
WENSMAN/ W 2195NRR	124	61		50		56		
NUTECH/NT-1991RR	123	61		49		55		
KRUGER/ K-194RR	123	61		49		55		
SANDS/ SOI 1874NRR	120	60		48	•	54		
PRAIRIE BRAND/ PB-1885NR	122	62		45		54		
WENSMAN/ W 2172NRR	121	62		46		54		
WENSMAN/ W 2163RR	119	61		45		53		
NORTHSTAR/ NS 1521NRR	116	60		43		52		
WENSMAN/ W 2168NRR	118	55		43		49		
KRUGER/ K-140RR	116	54		42		48		
COYOTE/ 4719RR	128			51	38			
MUSTANG/ M-194NRR	123	63						
WECO/ EXP 6 1.5RR	123			48				
G. COUNTRY SEED/2717NR	117	62						
STINE/ 1918-4	118	62	58		•			
Test avg. :	121	61	56	46	36	53	46	
# Lsd (.05) :		5	NS	4	6	3	•	
## TPG-avg. :		62	49	48	35	57	•	
@ Coef. Var. :		5	6	6	8	5	20+	
	·						•	

Table 1a.Roundup Ready maturity group-I soybean variety yield averages - Southern locations,2005-06.

* DTM= average days from seeding (Beresford- May 17, Delmont- May 25, 2006) to maturity; a missing value indicates the site received a hard frost before the variety reached maturity.

Lsd,(.05)= amount values in a column must differ to be significantly different, if differences

are not significant (NS), NS is indicated.

TPG-avg. = minimum value to qualify for top performance group.

@ Coef. Var. = a measure of trial experimental error, 15% or less is best.

+ Lsd and TPG-avg. values are not reported because the Coef. of Variation exceeds 20%.

averages, 2006	1	1						l		
			Averages by Location			4	outhern Zone			
		E	Beresfo	ord		Gedde	S	A	Averag	es
Brand/Variety		Protein	Oil	Lodging	Protein	Oil	Lodging	Protein	Oil	Lodging
(By 2006 zone protein)	DTM*	(%)	(%)	(1-5)*	(%)	(%)	(1-5)*	(%)	(%)	(1-5)*
KRUGER/ K-156RR	117	36.9	19.6	1	38.3	19.2	1	37.6	19.4	1
WENSMAN/ W 2168NRR	118	37.1	19.7	2	37.9	19.7	1	37.5	19.7	2
WENSMAN/ W 2163RR	119	37.3	19.3	2	37.3	19.6	1	37.3	19.5	1
NORTHSTAR/ NS 1521NRR	116	37.0	19.8	2	37.5	19.8	1	37.3	19.8	2
PUBLIC/ SDX00R-026-42N	123	37.0	19.4	2	37.5	19.4	1	37.3	19.4	2
KRUGER/ K-140RR	116	36.3	19.8	2	37.6	19.4	1	37.0	19.6	1
SODAK GENET./ SD1111RR	113	36.4	20.0	3	37.5	19.7	1	37.0	19.9	2
WENSMAN/ W 2195NRR	124	36.7	19.7	2	37.1	19.9	1	36.9	19.8	1
ASGROW/ AG1903	120	36.8	19.3	1	37.0	19.5	1	36.9	19.4	1
ASGROW/ AG1702	118	36.5	19.8	2	37.2	19.6	1	36.9	19.7	2
KRUGER/ K-195+RR/SCN	121	36.6	19.8	2	37.1	20.0	1	36.9	19.9	2
NUTECH/ NT-1909RR	123	36.8	19.6	2	36.9	19.7	1	36.9	19.7	1
HEFTY/ 195RR	124	36.8	19.6	2	36.9	19.8	1	36.9	19.7	2
PUBLIC/ SD01-3219R	123	36.5	19.5	2	37.0	19.5	1	36.8	19.5	2
WENSMAN/ W 2172NRR	121	36.5	19.8	2	36.8	19.8	1	36.7	19.8	1
SANDS/ SOI 1874NRR	120	36.5	20.0	2	36.7	19.9	1	36.6	20.0	1
THOMPSON/ T-7205+RR	124	36.7	19.5	2	36.5	19.8	1	36.6	19.7	1
KRUGER/ K-188RR/SCN	121	36.4	19.9	2	36.7	20.1	1	36.6	20.0	2
PRAIRIE BRAND/PB-1954RR	122	36.4	19.5	2	36.7	19.7	1	36.6	19.6	2
KRUGER/ K-177RR	118	36.4	19.6	2	36.6	19.5	1	36.5	19.6	2
KRUGER/ K-194RR	123	36.8	19.3	2	36.2	19.9	1	36.5	19.6	1
PRAIRIE BRAND/PB-1916RR	125	36.6	19.4	2	36.4	19.7	1	36.5	19.6	1
PRAIRIE BRAND/PB-1885NR	122	36.2	19.9	2	36.6	19.9	1	36.4	19.9	1
NORTHSTAR/ NS 1809RR	122	36.6	19.4	2	36.2	19.6	1	36.4	19.5	2
NUTECH/ NT-1991RR	123	36.5	19.5	2	36.2	19.7	1	36.4	19.6	1
PRAIRIE BRAND/PB-1956RR	125	35.9	19.7	3	35.7	19.9	1	35.8	19.8	2
COYOTE/ 4719RR	128				36.5	19.7	1			
MUSTANG/ M-194NRR	123	36.5	19.8	2						
WECO/ EXP 6 1.5RR	123				36.8	20.0	1			
G. COUNTRY SEED/2717NR	117	36.4	20.0	2						
STINE/ 1918-4	118	36.8	19.7	2		•			•	•
Test avg. :	121	36.6	19.7	2	36.9	19.7	1	36.8	19.7	1
* Lsd(.05) :	:			1			0			0.4
## TPG-avg. :				2			1			1
@ Coef. Var. :	:			22			0			22
	·		· · · · · · · · · · · · · · · · · · ·	l			1 .			<u>ا</u>

 Table 1b. Roundup Ready maturity group-I soybean variety protein, oil, and lodging score Southern averages, 2006

* DTM= average days from seeding (Beresford- May 17, Geddes- May 25, 2006) to maturity; a missing

value indicates a site received a hard frost before the variety reached maturity.

** Lodging, 1= all plants erect, 5= all plant flat.

Lsd,(.05)= amount values in a column must differ to be significantly different, if differences are not,

significant (NS), NS is indicated.

TPG-avg. = minimum value to qualify for top performance group.

@Coef. Var. = a measure of trial experimental error, 20% or less is best.

 Table 2a.
 Roundup Ready maturity group-II soybean variety yield averages- Southern locations, 2005-06.

	locations, 2003-06.	Vield Averages by Location Southern Zone										
Brand/Variety (By 2-yr then 2006 zone yield) DTM* Bu/Acre 2006 Bu/Acre 2-Yr Bu/Acre 2006 2-Yr 2006 2-Yr 2007 2-Yr 2007			Yie	ld Average	es by Loca	tion	Souther	rn Zone				
(By 2-yr then 2006 zone yield) DTM* 2006 2-Yr 2006 2-Yr 2006 2-Yr DEKALB' DKB25-51 127 76 66 48 40 62 53 SANDS' SOL 2448R 127 67 63 47 38 57 51 KRUGER' K-233+RR 126 68 62 46 37 57 49 PRAIRE BRAND/ PB-2141RR 125 69 62 43 36 56 49 PRAIRE BRAND/ PB-241RR 125 69 62 43 33 55 48 ASGROW/AG2403 124 66 62 47 38 56 47 PRAIRE BRAND/ PB-243RR 130 65 59 44 37 55 48 OCYOTE // S24RR 129 65 57 47 37 56 47 ANDS/SOL 2673RR 129 61 57 44 35 54 47 SANDS'SOL 2844RR 120			Bere	sford	Geo	ldes	Aver	ages				
(By 2-yr then 2006 zone yield) DTM* 2006 2-Yr 2006 2-Yr 2006 2-Yr DEKALB' DKB25-51 127 76 66 48 40 62 53 SANDS' SOL 2448R 127 67 63 47 38 57 51 KRUGER' K-233+RR 126 68 62 46 37 57 49 PRAIRE BRAND/ PB-2141RR 125 69 62 43 36 56 49 PRAIRE BRAND/ PB-241RR 125 69 62 43 33 55 48 ASGROW/AG2403 124 66 62 47 38 56 47 PRAIRE BRAND/ PB-243RR 130 65 59 44 37 55 48 OCYOTE // S24RR 129 65 57 47 37 56 47 ANDS/SOL 2673RR 129 61 57 44 35 54 47 SANDS'SOL 2844RR 120	Brand/Variety		Bu/Acre	Bu/Acre	Bu/Acre	Bu/Acre	Bu/Acre	Bu/Acre				
DEKALB/DKB25-51 127 76 66 48 40 62 53 SANDS/ SOI 2448RR 127 67 63 47 38 57 51 KRUGER/K-289+RR 131 66 61 46 39 56 50 SANDS/SOI 2754RR 131 66 61 46 39 57 49 PRAIRIE BRAND/PB-2421RR 126 68 61 44 36 56 49 PRAIRIE BRAND/PB-2421RR 126 68 61 44 36 56 49 PRAIRIE BRAND/PB-2421RR 126 66 59 44 37 55 48 COYOTE/9524RR 127 61 59 45 36 53 48 DAIRYLAND/DSR2500RSTS 128 63 57 47 37 56 47 SANDS/S01 2673RR 126 66 60 42 34 54 47 SANDS/S01 2884RR 129 61 <td>•</td> <td>DTM*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	•	DTM*										
SANDS/ SOI 2448RR 127 67 63 47 38 57 51 KRUGER/ K-233+RR 126 68 62 46 37 57 50 SANDS/ SOI 2754RR 131 64 58 49 39 57 49 PRAIRE BRAND/ PB-2141RR 125 69 62 43 36 56 49 PRAIRE BRAND/ PB-243RR 126 68 61 44 36 56 49 PRAIRE BRAND/ PB-2643RR 130 65 58 47 38 56 48 ASGROW/ AG2403 124 66 62 43 33 55 48 COYOTE 9524RR 127 61 59 44 37 56 47 SANDS / SOI 2633R 129 65 57 47 37 56 47 SANDS / SOI 2673RR 126 66 60 42 34 54 47 SANDS / SOI 284RR 130 64 58 44 35 54 47 SANDS / SOI 2673RR 12			76									
KRUGER/K-233+RR 126 68 62 46 37 57 50 KRUGER/K-239+RR 131 66 61 46 39 57 49 PRAIRE BRAND/PB-2141RR 125 69 62 43 36 56 49 PRAIRE BRAND/PB-2421RR 126 68 61 444 36 56 49 PRAIRE BRAND/PB-243RR 130 65 58 47 38 55 48 MUSTANG/M-264RR 130 65 59 44 37 55 48 COYOTE'9524RR 127 61 59 45 36 57 48 37 56 47 DAIRYLAND/DSR2500RSTS 128 63 57 48 37 56 47 SANDS/SOI 2834R 126 66 60 42 34 54 47 NUTECH/NT-2390R 129 61 57 44 37 53 46 DAIRYLAN												
KRUGER/ K-289+RR 131 66 61 46 39 56 50 SANDS/ SOI 2754RR 131 64 58 49 39 57 49 PRAIRE BRAND/ PB-2421RR 125 69 62 43 36 56 49 PRAIRE BRAND/ PB-2421RR 126 68 61 44 36 56 48 ASGROW/ AG2403 124 66 62 43 33 55 48 COYOTE/ 9524RR 127 61 59 44 37 56 47 SANDS/ SOI 2633R 129 65 57 47 37 56 47 SANDS/ SOI 2673RR 126 66 60 42 34 54 47 SANDS/ SOI 2673RR 129 61 57 44 34 52 47 SANDS/ SOI 2884R 130 64 58 44 35 54 47 PRAIRIE BRAND/ PB-2243RR 125 64												
SANDS/ SOI 2754RR 131 64 58 49 39 57 49 PRAIRLE BRAND/ PB-2141RR 125 69 62 43 36 56 49 PRAIRLE BRAND/ PB-243RR 126 68 61 44 36 56 48 ASGROW/ AG2403 124 66 62 43 33 55 48 MUSTANG/ M-264RR 130 65 59 44 37 56 47 COYOTE / 9524RR 129 65 57 47 37 56 47 SANDS/ SOI 2673RR 126 66 60 42 34 54 47 SANDS/ SOI 284RR 130 64 58 44 35 54 47 NUTECH/ NT-2890RR 129 61 57 44 37 53 46 DAIRYLAND/ DSR-234/RR 124 62 56 45 36 54 46 DAIRYLAND/ DSR-2300/RR 129 63												
PRAIRIE BRAND/ PB-2141RR 125 69 62 43 36 56 49 PRAIRIE BRAND/ PB-2421RR 126 68 61 44 36 55 49 PRAIRIE BRAND/ PB-243RR 130 65 58 47 38 56 48 ASGROW/ AG2403 124 66 62 43 33 55 48 MUSTANG/ M-264RR 130 65 59 44 37 55 48 COYOTE / 9524RR 129 61 57 47 37 56 47 DAIRYLAND/ DSR2500RSTS 128 63 57 48 37 54 47 SANDS/ SOI 2673RR 125 64 59 44 34 54 47 NUTECH/ NT-2890R 129 60 59 44 34 52 47 DAIRYLAND/ DSR-234/RR 124 62 56 45 36 53 46 DAIRYLAND/ DSR-2500/RR 129												
PRAIRIE BRAND/ PB-2421RR 126 68 61 44 36 56 49 PRAIRIE BRAND/ PB-2643RR 130 65 58 47 38 55 48 ASGROW/ AG2403 124 66 62 43 33 55 48 COYOTE/ 9524RR 127 61 59 44 37 55 48 COYOTE/ 9524RR 126 66 60 42 34 54 47 SANDS/ SOI 2673RR 126 66 60 44 35 54 47 SANDS/ SOI 2673RR 126 64 59 44 34 54 47 SANDS/ SOI 2884RR 130 64 58 44 35 54 47 NUTECH/ NT-2890RR 129 61 57 44 34 52 47 DAIRYLAND/ DSR-234/RR 129 63 56 42 35 53 46 NUTECH/ NT-2770RR/SCN 129 57 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
PRAIRIE BRAND/ PB-2643RR 130 65 58 47 38 56 48 ASGROW/ AG2403 124 66 62 43 33 55 48 MUSTANG/M-264RR 130 65 59 44 37 55 48 COYOTE/ 9524RR 127 61 59 45 36 53 48 LATHAM/L2635R 129 65 57 47 37 56 47 SANDS/SOI 2673RR 126 66 60 42 34 54 47 SANDS/SOI 2884R 130 64 58 44 35 54 47 NUTECH/NT-2890RR 129 61 57 44 37 53 47 RENK/RS265RR 129 60 59 44 34 52 47 DAIRYLAND/DSR-234/RR 124 62 56 45 35 55 45 KRUGER/K-255RR 127 64 54												
ASGROW/ AG2403 124 66 62 43 33 55 48 MUSTANG/ M-264RR 130 65 59 44 37 55 48 COYOTE/ 9524RR 127 61 59 45 36 53 48 LATHAM/ L2635R 129 65 57 47 37 56 47 DAIRYLAND/ DSR2500RSTS 128 63 57 48 37 56 47 SANDS/ SOI 2673RR 126 66 60 42 34 54 47 SANDS/ SOI 2884RR 130 64 58 44 35 54 47 PRAIRIE BRAND/ PB-2243RR 125 64 59 44 34 52 47 NUTECH/ NT-2890R 129 60 59 44 34 52 47 DAIRYLAND/ DSR-234/RR 124 62 56 45 36 53 46 DAIRYLAND/ DSR-2600/RR 129 57 55 48 37 53 46 PRAIRIE BRAND/ PB-2565RR												
MUSTANG/M-264RR 130 65 59 44 37 55 48 COYOTE/9524RR 127 61 59 45 36 53 48 LATHAM/L263SR 129 65 57 47 37 56 47 DAIRYLAND/DSR2500RSTS 128 63 57 48 37 56 47 SANDS/SOI 2673RR 126 66 60 42 34 54 47 SANDS/SOI 2884R 130 64 58 444 35 54 47 PRAIRIE BRAND/PB-2243RR 129 60 59 44 34 52 47 DAIRYLAND/DSR-234/RR 129 60 59 44 34 52 47 DAIRYLAND/DSR-234/RR 124 62 56 45 36 53 46 DAIRYLAND/DSR-260/0R 129 57 55 47 36 53 46 DAIRYLAND/DSR-230/0R 126 68												
COYOTE/9524RR 127 61 59 45 36 53 48 LATHAM/ L2635R 129 65 57 47 37 56 47 DAIRYLAND/ DSR2500RSTS 128 63 57 48 37 56 47 SANDS/ SOI 2673RR 126 66 60 42 34 54 47 SANDS/ SOI 2884RR 130 64 58 44 35 54 47 RENK/ RS265RR 129 61 57 44 37 53 47 DAIRYLAND/ DSR-234/RR 129 60 59 44 34 52 47 DAIRYLAND/ DSR-2600/RR 129 57 55 48 37 53 46 DAIRYLAND/ DSR-2600/RR 129 53 56 42 35 53 46 RUGER/ K-225RR 127 64 54 45 56 13 42 51 ASGROW/ AG2605 127												
LATHAM/ L2635R 129 65 57 47 37 56 47 DAIRYLAND/ DSR2500RSTS 128 63 57 48 37 56 47 SANDS/ SOI 2673RR 126 66 60 42 34 54 47 SANDS/ SOI 2884RR 130 64 58 44 35 54 47 PRAIRE BRAND/ PB-2243RR 129 61 57 44 34 52 47 NUTECH/ NT-2890R 129 60 59 44 34 52 47 DAIRYLAND/ DSR-234/RR 124 62 56 45 36 54 46 NUTECH/ NT-2770RR/SCN 129 57 55 48 37 53 46 DAIRYLAND/ DSR-2600/R 129 53 56 47 36 53 46 PRAIRIE BRAND/ PB-2565R 131 59 55 47 36 53 46 DAIRYLAND/DSR-200/RR 126 68 . 49 . 59 . HOMPSON/ T-2220ARR <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
DAIRYLAND/ DSR2500RRSTS 128 63 57 48 37 56 47 SANDS/ SOI 2673RR 126 66 60 42 34 54 47 SANDS/ SOI 2673RR 120 64 58 44 35 54 47 PRAIRIE BRAND/ PB-2243RR 125 64 59 44 34 53 47 RENK/ RS265RR 129 60 59 44 34 52 47 DAIRYLAND/ DSR-234/RR 124 62 56 45 36 54 46 NUTECH/ NT-2770RX/SCN 129 57 55 48 37 53 46 DAIRYLAND/ DSR-260/RR 129 63 56 42 35 53 46 RENG/ R-255RR 131 55 54 35 55 47 36 53 46 KRUGER/ K-223+RR 126 68 . 49 . 59 . HOMSON/ T-2220ARR <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
SANDS/ SOI 2673RR 126 66 60 42 34 54 47 SANDS/ SOI 2884RR 130 64 58 44 35 54 47 PRAIRIE BRAND/ PB-2243RR 125 64 59 44 34 54 47 NUTECH/ NT-2890RR 129 61 57 44 37 53 47 RENK/ RS265RR 129 60 59 44 34 52 47 DAIRYLAND/ DSR-234/RR 124 62 56 45 36 54 46 NUTECH/ NT-2770RR/SCN 129 57 55 48 37 53 46 PRAIRIE BRAND/ PB-2565RR 131 59 55 47 36 53 46 VAUGER/ K-255RR 127 64 54 45 35 55 45 KRUGER/ K-259RR 126 68 . 49 . 58 . DAIRYLAND/ DSR-2300/RR 126 68 . 49 . 58 . KRUGER/ K-259RR 13												
SANDS/ SOI 2884RR 130 64 58 44 35 54 47 PRAIRIE BRAND/ PB-2243RR 125 64 59 44 34 54 47 NUTECH/ NT-2890RR 129 61 57 44 37 53 47 RENK/ RS265RR 129 60 59 44 34 52 47 DAIRYLAND/ DSR-234/RR 124 62 56 45 36 54 46 NUTECH/ NT-270RR/SCN 129 57 55 48 37 53 46 PRAIRIE BRAND/ PB-2565RR 131 59 55 47 36 53 46 KRUGER/ K-255RR 127 64 54 45 35 55 45 KRUGER/ K-234RR 126 68 . 49 . 59 . THOMPSON/ T-2220ARR 126 68 . 46 . 58 . ASGROW/ AG2605 127 70								47				
PRAIRIE BRAND/ PB-2243RR 125 64 59 44 34 54 47 NUTECH/ NT-2890RR 129 61 57 44 37 53 47 RENK/ RS265RR 129 60 59 44 34 52 47 DAIRYLAND/ DSR-234/RR 124 62 56 45 36 54 46 NUTECH/ NT-2770RR/SCN 129 57 55 48 37 53 46 DAIRYLAND/ DSR-2600/RR 129 63 56 42 35 53 46 KRUGER/ K-255RR 131 59 55 47 36 53 46 KRUGER/ K-255RR 127 64 54 45 35 55 45 KRUGER/ K-253RR 127 70 68 . 49 . 59 . THOMPSON/ T-220ARR 126 68 . 48 . 58 . MUSTANG/ M-207RR 124 67 . 48 . 58 . LATHAM/ EXP-E2810R								47				
RENK/ RS265RR 129 60 59 44 34 52 47 DAIRYLAND/ DSR-234/RR 124 62 56 45 36 54 46 NUTECH/ NT-2770RR/SCN 129 57 55 48 37 53 46 DAIRYLAND/ DSR-2600/RR 129 63 56 42 35 53 46 PRAIRIE BRAND/ PB-2565R 131 59 55 47 36 53 46 KRUGER/ K-255RR 127 64 54 45 35 55 45 KRUGER/ K-223+RR 124 61 56 41 32 51 44 DAIRYLAND/ DSR-2300/RR 126 68 . 50 . 59 . THOMPSON/ T-220ARR 126 68 . 50 . 58 . MUSTANG/ M-207RR 124 67 . 48 . 58 . LATHAM/ ESP-E2810R 131 66	PRAIRIE BRAND/ PB-2243RR		64	59	44		54	47				
DAIRYLAND/ DSR-234/RR 124 62 56 45 36 54 46 NUTECH/ NT-2770R/SCN 129 57 55 48 37 53 46 DAIRYLAND/ DSR-2600/RR 129 63 56 42 35 53 46 PRAIRIE BRAND/ PB-2565RR 131 59 55 47 36 53 46 KRUGER/ K-255RR 127 64 54 45 35 55 45 KRUGER/ K-255RR 127 64 56 41 32 51 44 DAIRYLAND/ DSR-2300/RR 126 68 . 49 . 59 . THOMPSON/T-2220ARR 127 70 . 46 . 58 . MUSTANG/ M-207RR 124 67 . 48 . 58 . LATHAM/ EXP-E2810R 131 66 . 49 . 58 . LATHAM/ L2500R 126 68					44							
DAIRYLAND/ DSR-234/RR 124 62 56 45 36 54 46 NUTECH/ NT-2770R/SCN 129 57 55 48 37 53 46 DAIRYLAND/ DSR-2600/RR 129 63 56 42 35 53 46 PRAIRIE BRAND/ PB-2565RR 131 59 55 47 36 53 46 KRUGER/ K-255RR 127 64 54 45 35 55 45 KRUGER/ K-255RR 127 64 56 41 32 51 44 DAIRYLAND/ DSR-2300/RR 126 68 . 49 . 59 . THOMPSON/T-2220ARR 126 68 . 50 . 58 . MUSTANG/ M-207RR 124 67 . 48 . 58 . LATHAM/ EXP-E2810R 131 66 . 49 . 58 . LATHAM/ L2646R 128 67			60		44			47				
NUTECH/NT-2770RR/SCN 129 57 55 48 37 53 46 DAIRYLAND/DSR-2600/RR 129 63 56 42 35 53 46 PRAIRIE BRAND/PB-2565RR 131 59 55 47 36 53 46 KRUGER/K-255RR 127 64 54 45 35 55 45 KRUGER/K-23+RR 124 61 56 41 32 51 44 DAIRYLAND/DSR-2300/RR 126 68 . 49 . 59 . THOMPSON/T-2220ARR 126 68 . 50 . 58 . MUSTANG/M-207RR 126 68 . 46 . 58 . LATHAM/EXP-E2810R 131 66 . 49 . 58 . LATHAM/L2500R 126 68 . 46 . 57 . LATHAM/L2646R 128 67 .		124			45	36		46				
DAIRYLAND/ DSR-2600/RR 129 63 56 42 35 53 46 PRAIRIE BRAND/ PB-2565RR 131 59 55 47 36 53 46 KRUGER/ K-255RR 127 64 54 45 35 55 45 KRUGER/ K-223+RR 124 61 56 41 32 51 44 DAIRYLAND/ DSR-2300/RR 126 68 . 49 . 59 . THOMPSON/ T-2220ARR 126 68 . 50 . 59 . ASGROW/ AG2605 127 70 . 46 . 58 . MUSTANG/ M-207RR 124 67 . 48 . 58 . LATHAM/ EXP-E2810R 131 66 . 49 . 58 . LATHAM/ L2500R 126 68 . 46 . 57 . LATHAM/ L2646R 128 67 . 46 . 57 . SANDS/ SOI 2609RR 131 66		129					53	46				
KRUGER/ K-255RR 127 64 54 45 35 55 45 KRUGER/ K-223+RR 124 61 56 41 32 51 44 DAIRYLAND/ DSR-2300/RR 126 68 . 49 . 59 . THOMPSON/ T-2220ARR 126 68 . 50 . 59 . ASGROW/ AG2605 127 70 . 46 . 58 . MUSTANG/ M-207RR 124 67 . 48 . 58 . LATHAM/ EXP-5280R 131 66 . 49 . 58 . DAIRYLAND/ DSR-2200/RR 127 68 . 48 . 58 . LATHAM/ L2500R 126 68 . 46 . 57 . LATHAM/ L2646R 128 67 . 46 . 57 . SANDS/ SOI 2609RR 131 66 . 47 . 56 . DAIRYLAND/ DSR-2511/RR 133 64 <td< td=""><td></td><td>129</td><td>63</td><td>56</td><td>42</td><td>35</td><td>53</td><td>46</td></td<>		129	63	56	42	35	53	46				
KRUGER/ K-223+RR 124 61 56 41 32 51 44 DAIRYLAND/ DSR-2300/RR 126 68 . 49 . 59 . THOMPSON/ T-2220ARR 126 68 . 50 . 59 . ASGROW/ AG2605 127 70 . 46 . 58 . MUSTANG/ M-207RR 124 67 . 48 . 58 . KRUGER/ K-259RR 131 66 . 49 . 58 . LATHAM/ EXP-E2810R 131 66 . 49 . 58 . DAIRYLAND/ DSR-2200/RR 127 68 . 48 . 58 . LATHAM/ L2500R 126 68 . 46 . 57 . LATHAM/ L2646R 128 67 . 44 . 57 . SANDS/ SOI 2609RR 131 66 . 47 . 56 . MIDWEST SEED/ GR2731 131 65 . </td <td></td> <td>131</td> <td>59</td> <td>55</td> <td>47</td> <td>36</td> <td>53</td> <td>46</td>		131	59	55	47	36	53	46				
DAIRYLAND/ DSR-2300/RR 126 68 . 49 . 59 . THOMPSON/ T-2220ARR 126 68 . 50 . 59 . ASGROW/ AG2605 127 70 . 46 . 58 . MUSTANG/ M-207RR 124 67 . 48 . 58 . KRUGER/ K-259RR 131 66 . 49 . 58 . LATHAM/ EXP-E2810R 131 66 . 49 . 58 . DAIRYLAND/ DSR-2200/RR 127 68 . 48 . 58 . LATHAM/ L2500R 126 68 . 46 . 57 . LATHAM/ L2646R 128 67 . 46 . 57 . PRAIRIE BRAND/ PB-2645RR 130 70 . 44 . 57 . SANDS/ SOI 2609RR 131 66 . 47 . 56 . DAIRYLAND/ DSR-2511/RR 133 64	KRUGER/ K-255RR	127	64	54	45	35	55	45				
THOMPSON/T-2220ARR 126 68 . 50 . 59 . ASGROW/AG2605 127 70 . 46 . 58 . MUSTANG/M-207RR 124 67 . 48 . 58 . KRUGER/K-259RR 131 66 . 49 . 58 . LATHAM/EXP-E2810R 131 66 . 49 . 58 . DAIRYLAND/DSR-2200/RR 127 68 . 46 . 57 . LATHAM/L2500R 126 68 . 46 . 57 . LATHAM/L2646R 128 67 . 46 . 57 . RAIRIE BRAND/PB-2645RR 130 70 . 444 . 57 . SANDS/SOI 2609RR 131 66 . 47 . 56 . DAIRYLAND/ DSR-2511/RR 133 64 . 47 . 56 . MIDWEST SEED/ GR2731 131 65 .	KRUGER/ K-223+RR	124	61	56	41	32	51	44				
ASGROW/ AG2605 127 70 . 46 . 58 . MUSTANG/ M-207RR 124 67 . 48 . 58 . KRUGER/ K-259RR 131 66 . 49 . 58 . LATHAM/ EXP-E2810R 131 66 . 49 . 58 . DAIRYLAND/ DSR-2200/RR 127 68 . 46 . 57 . LATHAM/ L2500R 126 68 . 46 . 57 . LATHAM/ L2646R 128 67 . 46 . 57 . PRAIRIE BRAND/ PB-2645RR 130 70 . 444 . 57 . SANDS/ SOI 2609R 131 66 . 47 . 56 . DAIRYLAND/ DSR-2511/RR 133 64 . 47 . 56 . MIDWEST SEED/ GR2731 131 65 . 46 . 56 . THOMPSON/ T-2213ARR 127 66 <t< td=""><td>DAIRYLAND/ DSR-2300/RR</td><td>126</td><td>68</td><td></td><td>49</td><td></td><td>59</td><td></td></t<>	DAIRYLAND/ DSR-2300/RR	126	68		49		59					
MUSTANG/ M-207RR 124 67 . 48 . 58 . KRUGER/ K-259RR 131 66 . 49 . 58 . LATHAM/ EXP-E2810R 131 66 . 49 . 58 . DAIRYLAND/ DSR-2200/RR 127 68 . 48 . 58 . LATHAM/ L2500R 126 68 . 46 . 57 . LATHAM/ L2646R 128 67 . 46 . 57 . PRAIRIE BRAND/ PB-2645RR 130 70 . 444 . 57 . CROW'S/ C2917R 133 66 . 47 . 56 . SANDS/ SOI 2609RR 131 66 . 45 . 56 . MIDWEST SEED/ GR2731 131 65 . 46 . 56 . THOMPSON/ T-2666RR 129 68 . 44 . 56 . FARM ADVANTAGE/ 7224 126 66	THOMPSON/ T-2220ARR	126	68	•	50		59					
KRUGER/K-259RR 131 66 . 49 . 58 . LATHAM/EXP-E2810R 131 66 . 49 . 58 . DAIRYLAND/DSR-2200/RR 127 68 . 48 . 58 . LATHAM/L2500R 126 68 . 46 . 57 . LATHAM/L2646R 128 67 . 46 . 57 . PRAIRIE BRAND/PB-2645RR 130 70 . 444 . 57 . CROW'S/C2917R 133 66 . 47 . 56 . SANDS/SOI 2609RR 131 66 . 45 . 56 . MIDWEST SEED/ GR2731 131 65 . 46 . 56 . THOMPSON/T-2213ARR 127 66 . 45 . 56 . FARM ADVANTAGE/7224 126 66 . 444 . 55 . NUTECH/NT-2890+RR 130 64 .	ASGROW/ AG2605	127	70		46		58					
LATHAM/ EXP-E2810R 131 66 . 49 . 58 . DAIRYLAND/ DSR-2200/RR 127 68 . 48 . 58 . LATHAM/ L2500R 126 68 . 46 . 57 . LATHAM/ L2646R 128 67 . 46 . 57 . PRAIRIE BRAND/ PB-2645RR 130 70 . 444 . 57 . CROW'S/ C2917R 133 66 . 47 . 56 . SANDS/ SOI 2609RR 131 66 . 47 . 56 . MIDWEST SEED/ GR2731 131 65 . 46 . 56 . THOMPSON/ T-2213ARR 127 66 . 45 . 56 . FARM ADVANTAGE/ 7224 126 66 . 444 . 55 . NUTECH/ NT-2777RR/SCN 132 60 . 49 . 55 . NUTECH/ NT-2890+RR 130 64	MUSTANG/ M-207RR	124	67		48	•	58					
DAIRYLAND/ DSR-2200/RR 127 68 . 48 . 58 . LATHAM/ L2500R 126 68 . 46 . 57 . LATHAM/ L2646R 128 67 . 46 . 57 . PRAIRIE BRAND/ PB-2645RR 130 70 . 444 . 57 . CROW'S/ C2917R 133 66 . 47 . 57 . SANDS/ SOI 2609RR 131 66 . 47 . 56 . DAIRYLAND/ DSR-2511/RR 133 64 . 47 . 56 . MIDWEST SEED/ GR2731 131 65 . 46 . 56 . THOMPSON/ T-2213ARR 127 66 . 444 . 56 . FARM ADVANTAGE/ 7224 126 66 . 444 . 55 . NUTECH/ NT-2777RR/SCN 132 60 . 449 . 55 . NUTECH/ NT-2890+RR 130 64	KRUGER/ K-259RR	131	66		49	•	58					
LATHAM/L2500R 126 68 . 46 . 57 . LATHAM/L2646R 128 67 . 46 . 57 . PRAIRIE BRAND/PB-2645RR 130 70 . 44 . 57 . CROW'S/C2917R 133 66 . 47 . 57 . SANDS/SOI 2609RR 131 66 . 45 . 56 . DAIRYLAND/DSR-2511/RR 133 64 . 47 . 56 . MIDWEST SEED/GR2731 131 65 . 46 . 56 . THOMPSON/T-2213ARR 127 66 . 44 . 56 . FARM ADVANTAGE/7224 126 66 . 44 . 55 . NUTECH/NT-2777RR/SCN 132 60 . 49 . 55 . NUTECH/NT-2890+RR 130 64 . 45 . 55 .	LATHAM/ EXP-E2810R	131	66		49	•	58					
LATHAM/ L2646R12867.46.57.PRAIRIE BRAND/ PB-2645RR13070.44.57.CROW'S/ C2917R13366.47.57.SANDS/ SOI 2609RR13166.45.56.DAIRYLAND/ DSR-2511/RR13364.47.56.MIDWEST SEED/ GR273113165.46.56.THOMPSON/ T-2213ARR12766.44.56.FARM ADVANTAGE/ 722412666.44.55.NUTECH/ NT-2777RR/SCN13260.49.55.NUTECH/ NT-2890+RR13064.45.55.	DAIRYLAND/ DSR-2200/RR	127	68		48		58					
PRAIRIE BRAND/ PB-2645RR 130 70 . 44 . 57 . CROW'S/ C2917R 133 66 . 47 . 57 . SANDS/ SOI 2609RR 131 66 . 45 . 56 . DAIRYLAND/ DSR-2511/RR 133 64 . 47 . 56 . MIDWEST SEED/ GR2731 131 65 . 46 . 56 . THOMPSON/ T-2213ARR 127 66 . 44 . 56 . FARM ADVANTAGE/ 7224 126 66 . 44 . 55 . NUTECH/ NT-2777RR/SCN 132 60 . 49 . 55 . NUTECH/ NT-2890+RR 130 64 . 45 . 55 .	LATHAM/ L2500R	126	68		46		57					
CROW'S/ C2917R 133 66 . 47 . 57 . SANDS/ SOI 2609RR 131 66 . 45 . 56 . DAIRYLAND/ DSR-2511/RR 133 64 . 47 . 56 . MIDWEST SEED/ GR2731 131 65 . 46 . 56 . THOMPSON/ T-2213ARR 127 66 . 45 . 56 . FARM ADVANTAGE/ 7224 126 66 . 44 . 55 . NUTECH/ NT-2777RR/SCN 132 60 . 49 . 55 . NUTECH/ NT-2890+RR 130 64 . 45 . 55 .	LATHAM/ L2646R	128	67		46		57					
SANDS/ SOI 2609RR 131 66 . 45 . 56 . DAIRYLAND/ DSR-2511/RR 133 64 . 47 . 56 . MIDWEST SEED/ GR2731 131 65 . 46 . 56 . THOMPSON/ T-2213ARR 127 66 . 45 . 56 . THOMPSON/ T-2666RR 129 68 . 44 . 56 . FARM ADVANTAGE/ 7224 126 66 . 44 . 55 . NUTECH/ NT-2777RR/SCN 132 60 . 49 . 55 . NUTECH/ NT-2890+RR 130 64 . 45 . 55 .	PRAIRIE BRAND/ PB-2645RR	130	70		44		57	•				
DAIRYLAND/ DSR-2511/RR 133 64 . 47 . 56 . MIDWEST SEED/ GR2731 131 65 . 46 . 56 . THOMPSON/ T-2213ARR 127 66 . 45 . 56 . THOMPSON/ T-2666RR 129 68 . 44 . 56 . FARM ADVANTAGE/ 7224 126 66 . 444 . 55 . NUTECH/ NT-2777RR/SCN 132 60 . 49 . 55 . NUTECH/ NT-2890+RR 130 64 . 45 . 55 .	CROW'S/ C2917R	133	66	•	47		57					
MIDWEST SEED/ GR2731 131 65 . 46 . 56 . THOMPSON/ T-2213ARR 127 66 . 45 . 56 . THOMPSON/ T-2213ARR 127 66 . 45 . 56 . THOMPSON/ T-2666RR 129 68 . 44 . 56 . FARM ADVANTAGE/ 7224 126 66 . 44 . 55 . NUTECH/ NT-2777RR/SCN 132 60 . 49 . 55 . NUTECH/ NT-2890+RR 130 64 . 45 . 55 .	SANDS/ SOI 2609RR	131	66		45		56					
THOMPSON/ T-2213ARR 127 66 . 45 . 56 . THOMPSON/ T-2666RR 129 68 . 44 . 56 . FARM ADVANTAGE/ 7224 126 66 . 44 . 55 . NUTECH/ NT-2777RR/SCN 132 60 . 49 . 55 . NUTECH/ NT-2890+RR 130 64 . 45 . 55 .	DAIRYLAND/ DSR-2511/RR	133	64		47		56					
THOMPSON/ T-2666RR12968.44.56.FARM ADVANTAGE/ 722412666.44.55.NUTECH/ NT-2777RR/SCN13260.49.55.NUTECH/ NT-2890+RR13064.45.55.	MIDWEST SEED/ GR2731	131	65	•	46		56					
FARM ADVANTAGE/ 722412666.44.55.NUTECH/ NT-2777RR/SCN13260.49.55.NUTECH/ NT-2890+RR13064.45.55.	THOMPSON/ T-2213ARR	127	66		45		56					
NUTECH/ NT-2777RR/SCN 132 60 . 49 . 55 . NUTECH/ NT-2890+RR 130 64 . 45 . 55 .	THOMPSON/ T-2666RR	129	68		44		56					
NUTECH/NT-2890+RR 130 64 . 45 . 55 .	FARM ADVANTAGE/ 7224	126	66	•	44	•	55					
	NUTECH/ NT-2777RR/SCN	132	60	•	49		55					
	NUTECH/ NT-2890+RR	130	64	•	45		55					
	KRUGER/ K-234RR	126	64	•	45		55					
LATHAM/L2775R 129 63 . 47 . 55 .	LATHAM/ L2775R	129	63		47		55	•				

Table 2a. (continued) Roundup	Ready								
		Yie	ld Average	es by Loca	tion				
		Bere	sford	Geo	ldes	Aver	rages		
Brand/Variety		Bu/Acre	Bu/Acre	Bu/Acre	Bu/Acre	Bu/Acre	Bu/Acre		
(By 2-yr then 2006 zone yield)	DTM*	2006	2-Yr	2006	2-Yr	2006	2-Yr		
DAIRYLAND/ DSR2000RRSTS	123	66		44		55			
DAIRYLAND/ DSR-2820/RR	125	67		43		55			
WENSMAN/ W 2253RR	129	62		47		55			
WENSMAN/ W 2200NRR	123	66		43		55			
WENSMAN/ W 2226RR	127	63		46		55			
THOMPSON/ T-2300RR	127	63		47		55			
CROW'S/ C2618R	128	62		47		55			
FARM ADVANTAGE/ 7253	129	60		47		54			
NUTECH/ NT-2333RR	123	64		43		54			
NUTECH/ NT-2220RR	125	62		45		54			
WECO/ EXP 6 2.0RR	125	67		40		54			
WECO/ EXP 6 2.8RR-SCN	135	64		44		54			
DAIRYLAND/ DSR2702RRSTS	129	62		46		54			
PRAIRIE BRAND/ PB-2456RR	127	59		48		54			
PRAIRIE BRAND/ PB-2536RR	129	62		46		54			
THOMPSON/ T-2707RR	131	59		49		54			
THOMPSON/ T-2999RR	131	65	•	42	•	54			
PUBLIC/ SD02R-48	122	61	•	46	•	54	·		
MUSTANG/ M-227RR	126	65	•	41	•	53	·		
MUSTANG/ M-237RR	125	61	•	45	•	53	·		
DEKALB/ DKB27-53	131	59	•	47	•	53	•		
NUTECH/ NT-2213RR	126	60	•	45	•	53	•		
WECO/ EXP 6 2.5RR-STS	120	60	•	46	•	53	•		
PRAIRIE BRAND/ PB-2216RR	125	61	•	45	•	53	•		
MIDWEST SEED/ GR2037	120	63	•	43	•	53	•		
MIDWEST SEED/ GR2651	121	60	•	45	•	53	•		
THOMPSON/ T-2626RR	126	59	•	47	•	53	·		
ASGROW/ AG2802	132	57	•	47	•	52	·		
MUSTANG/ M-257RR	129	61	•	43	•	52	·		
NUTECH/ NT-2232RR	130	62	•	42	•	52	·		
HEFTY/ 226RR	123	60	•	44	•	52	•		
HEFTY/ 266RR	130	59	•	45	•	52	•		
KRUGER/ K-235RR/SCN	125	59	•	45	•	52	•		
PRAIRIE BRAND/ PB-2636NR	130	59	•	44	•	52	•		
RENK/ RS246NRR	124	57	•	46	·	52	•		
MUSTANG/ M-246NRR	124	59	•	42	•	51	•		
WECO/ EXP 6 2.6RR-SCN	123	57	•	45	·	51	·		
KRUGER/ K-211+RR	125	61	•	40	·	51	·		
PUBLIC/ SD02R-5	123	60	•	40	•	51	·		
PUBLIC/ SD02R-51	123	61	•	41	•	51	·		
SANDS/ SOI 2675NRR	124	60	•	41	•	50	•		
KRUGER/ K-287RR/SCN	120	56	•	40	•	50	•		
LATHAM/ EXP-E2976R	131	56	•	43 44	•	50	•		
DAIRYLAND/ DST22-003/RR	132	57	•	44	•	50	•		
MUSTANG/ M-247NRR	124	57	•	43 41	•	50 49	•		
WIUSTAINU/ WI-24/INKK	127	51	•	41	•	49	•		

 Table 2a. (continued) Roundup Ready maturity group-II soybean variety yield averages.

			ld Average		Southern Zone		
		Bere	sford	Geo	ldes	Aver	rages
Brand/Variety		Bu/Acre	Bu/Acre	Bu/Acre	Bu/Acre	Bu/Acre	Bu/Acre
(By 2-yr then 2006 zone yield)	DTM*	2006	2-Yr	2006	2-Yr	2006	2-Yr
SANDS/ SOI 2511NRR	128	56		42		49	
THOMPSON/ T-2444RR/SCN	126	56		40		48	
COYOTE/ 4523RR	127			43			
COYOTE/ 4527RR	132	64	59				
COYOTE/ EXP 622RR	127			46			
COYOTE/ EXP 625NRR	125	54					
COYOTE/ EXP 626RR	133	66					
MUSTANG/ M-203RR	122	66	61				
DEKALB/ DKB22-52	123	66	61	•			
DEKALB/ DKB26-53	126	64	59				
SANDS/ SOI 2151NRR	125			46	36		
KALTENBERG/ KB256RR	128	62	58				
KALTENBERG/ KB276RR	131	69	62				
KALTENBERG/ KB258RR	126	64					
KALTENBERG/ KB266RR	129	64	•		•	•	
ZILLER/ BT 7227NR	121	60	•		•	•	
Test avg. :	128	63	59	45	36	54	48
# Lsd (.05) :		7	6	4	4	4	
## TPG-avg. :		69	60	46	36	58	
@ Coef. Var. :		7	6	6	7	7	19+

Table 2a. (continued) Roundup Ready maturity group-II soybean variety yield averages.

* DTM= average days from seeding (Beresford- May 17, Geddes- May 25, 2006) to maturity; a missing value indicates the site received a hard frost before the variety reached maturity.

Lsd,(.05)= amount values in a column must differ to be significantly different, if differences are not significant (NS), NS is indicated.

TPG-avg. = minimum value to qualify for top performance group.

@ Coef. Var. = a measure of trial experimental error, 15% or less is best.

+ Lsd and TPG-avg. values are not reported because the Coef. of Variation exceeds 15%.

averages, 2000.				G	<u><u>G</u></u>						
				verages b	-			•	uthern Zone		
			eresfo	r		Gedde			verag		
Brand/Variety		Protein	Oil	Lodging	Protein	Oil	Lodging	Protein	Oil	Lodging	
(By 2006 zone protein)	DTM*	(%)	(%)	(1-5)*	(%)	(%)	(1-5)*	(%)	(%)	(1-5)*	
DAIRYLAND/DSR2000RRSTS	123	37.6	19.3	2	37.1	19.5	1	37.4	19.4	1	
MUSTANG/ M-227RR	126	36.9	19.5	2	37.3	19.5	1	37.1	19.5	2	
NUTECH/ NT-2770RR/SCN	129	36.8	18.9	2	37.4	19.2	1	37.1	19.1	2	
THOMPSON/ T-2707RR	131	36.8	19.2	3	37.3	19.2	1	37.1	19.2	2	
LATHAM/ L2500R	126	37.0	19.3	2	37.0	19.5	1	37.0	19.4	2	
WENSMAN/ W 2226RR	127	37.1	19.4	2	36.9	19.5	1	37.0	19.5	2	
NUTECH/ NT-2213RR	126	36.8	19.4	2	37.1	19.4	1	37.0	19.4	2	
DAIRYLAND/ DSR-2200/RR	127	36.9	19.4	2	37.0	19.5	1	37.0	19.5	1	
PRAIRIE BRAND/PB-2565RR	131	36.9	19.0	2	37.0	19.4	1	37.0	19.2	2	
THOMPSON/ T-2213ARR	127	36.8	19.5	2	37.1	19.7	1	37.0	19.6	2	
FARM ADVANTAGE/ 7224	126	36.9	19.4	2	36.9	19.7	1	36.9	19.6	2	
CROW'S/ C2618R	128	37.0	19.2	2	36.8	19.4	1	36.9	19.3	2	
MIDWEST SEED/ GR2651	128	36.7	19.2	2	37.0	19.4	1	36.9	19.3	1	
FARM ADVANTAGE/ 7253	129	36.8	19.1	2	36.9	19.4	1	36.9	19.3	2	
WECO/ EXP 6 2.5RR-STS	129	36.9	19.2	3	36.8	19.4	1	36.9	19.3	2	
KRUGER/ K-255RR	127	36.9	19.2	2	36.8	19.5	1	36.9	19.4	2	
PRAIRIE BRAND/PB-2216RR	126	36.6	19.6	2	37.0	19.6	1	36.8	19.6	2	
WENSMAN/ W 2253RR	129	36.7	19.2	2	36.9	19.4	1	36.8	19.3	2	
WECO/ EXP 6 2.6RR-SCN	128	36.8	19.4	2	36.7	19.6	1	36.8	19.5	2	
LATHAM/ L2635R	129	36.6	19.4	2	36.9	19.4	1	36.8	19.4	2	
DAIRYLAND/DSR2702RRSTS	129	36.7	19.3	2	36.8	19.3	1	36.8	19.3	1	
THOMPSON/T-2444RR/SCN	126	36.8	18.8	3	36.7	19.4	1	36.8	19.1	2	
RENK/ RS265RR	129	36.7	19.1	2	36.8	19.5	1	36.8	19.3	2	
MUSTANG/ M-247NRR	127	36.7	19.0	3	36.7	19.2	1	36.7	19.1	2	
MUSTANG/ M-257RR	129	36.6	19.1	2	36.8	19.4	1	36.7	19.3	2	
KRUGER/ K-223+RR	124	36.7	19.2	1	36.7	19.4	1	36.7	19.3	1	
LATHAM/ EXP-E2976R	132	36.5	19.1	3	36.9	19.3	1	36.7	19.2	2	
DAIRYLAND/ DST22-003/RR	124	36.6	19.4	2	36.8	19.4	1	36.7	19.4	2	
THOMPSON/ T-2626RR	126	36.6	19.5	1	36.8	19.5	1	36.7	19.5	1	
SANDS/ SOI 2511NRR	128	36.6	18.9	3	36.7	19.2	1	36.7	19.1	2	
PRAIRIE BRAND/PB-2141RR	125	36.6	19.6	1	36.7	19.6	1	36.7	19.6	1	
DAIRYLAND/ DSR-234/RR	124	36.5	19.4	1	36.8	19.4	1	36.7	19.4	1	
DAIRYLAND/DSR2500RRSTS	128	36.6	19.2	2	36.6	19.5	1	36.6	19.4	2	
WENSMAN/W 2200NRR	123	36.7	19.6	1	36.5	19.6	1	36.6	19.6	1	
KRUGER/ K-287RR/SCN	131	36.3	19.1	3	36.9	19.3	1	36.6	19.2	2	
MUSTANG/ M-246NRR	125	36.1	19.5	2	37.0	19.4	1	36.6	19.5	2	
HEFTY/266RR	130	36.6	19.2	1	36.5	19.3	1	36.6	19.3	1	
PRAIRIE BRAND/PB-2243RR	125	36.6	19.5	1	36.5	19.6	1	36.6	19.6	1	
RENK/RS246NRR	124	36.5	19.3	1	36.6	19.4	1	36.6	19.4	1	
CROW'S/ C2917R	133	36.5	19.2	3	36.6	19.6	1	36.6	19.4	2	
HEFTY/226RR	123	36.7	19.5	1	36.3	19.6	1	36.5	19.6	1	
KRUGER/ K-233+RR	126	36.5	19.5	1	36.5	19.6	1	36.5	19.6	1	
KRUGER/ K-235RR/SCN	125	36.5	19.4	1	36.5	19.7	1	36.5	19.6	1	
PRAIRIE BRAND/PB-2456RR	127	36.5	19.5	2	36.5	19.3	1	36.5	19.4	2	
MIDWEST SEED/ GR2037	124	36.7	19.6	1	36.3	19.7	1	36.5	19.7	1	

 Table 2b.
 Roundup Ready maturity group-II soybean variety protein, oil, and lodging score Southern averages, 2006.

averages.		Averages by Location Southern Zone								
				•						
		В	eresfo	ord		Gedde	s	A	verag	es
Brand/Variety		Protein	Oil	Lodging	Protein	Oil	Lodging	Protein	Oil	Lodging
(By 2006 zone protein)	DTM*	(%)	(%)	(1-5)*	(%)	(%)	(1-5)*	(%)	(%)	(1-5)*
THOMPSON/ T-2220ARR	126	36.3	19.1	2	36.7	19.4	1	36.5	19.3	1
ASGROW/ AG2403	124	36.3	19.6	1	36.6	19.6	1	36.5	19.6	1
ASGROW/ AG2605	127	36.4	19.4	2	36.5	19.4	1	36.5	19.4	2
MUSTANG/ M-207RR	124	36.4	19.4	1	36.5	19.6	1	36.5	19.5	1
MUSTANG/ M-237RR	125	36.5	19.4	2	36.4	19.4	1	36.5	19.4	1
LATHAM/ EXP-E2810R	131	36.3	19.0	2	36.6	19.4	1	36.5	19.2	2
PRAIRIE BRAND/PB-2643RR	130	36.5	19.2	2	36.3	19.6	1	36.4	19.4	2
PUBLIC/ SD02R-5	123	36.4	19.5	1	36.4	19.7	1	36.4	19.6	1
KRUGER/ K-289+RR	131	36.6	19.2	2	36.1	19.7	1	36.4	19.5	2
SANDS/ SOI 2754RR	131	36.3	19.2	2	36.4	19.4	1	36.4	19.3	1
KRUGER/ K-211+RR	125	36.3	19.5	1	36.4	19.7	1	36.4	19.6	1
LATHAM/ L2775R	129	36.4	19.3	1	36.3	19.6	1	36.4	19.5	1
ASGROW/ AG2802	132	35.8	19.4	3	36.8	19.3	1	36.3	19.4	2
SANDS/ SOI 2675NRR	126	36.2	19.7	2	36.4	19.6	1	36.3	19.7	1
NUTECH/ NT-2220RR	125	36.2	19.2	1	36.4	19.3	1	36.3	19.3	1
THOMPSON/ T-2300RR	127	36.3	19.4	2	36.3	19.6	1	36.3	19.5	2
NUTECH/ NT-2333RR	123	36.3	19.4	2	36.2	19.6	1	36.3	19.5	2
WECO/ EXP 6 2.0RR	125	36.6	19.3	1	35.9	19.8	1	36.3	19.6	1
KRUGER/ K-234RR	126	36.3	19.4	2	36.2	19.6	1	36.3	19.5	1
LATHAM/ L2646R	128	36.3	19.1	2	36.2	19.3	1	36.3	19.2	2
DAIRYLAND/ DSR-2300/RR	126	36.2	19.4	2	36.3	19.6	1	36.3	19.5	1
DAIRYLAND/ DSR-2820/RR	125	36.3	19.1	1	36.2	19.5	1	36.3	19.3	1
DAIRYLAND/ DSR-2511/RR	133	36.1	19.3	2	36.4	19.6	1	36.3	19.5	2
PRAIRIE BRAND/PB-2421RR	126	36.2	19.4	1	36.3	19.4	1	36.3	19.4	1
PRAIRIE BRAND/PB-2536RR	129	36.4	19.2	2	36.1	19.4	1	36.3	19.3	1
MUSTANG/ M-264RR	130	36.5	19.1	3	35.9	19.5	1	36.2	19.3	2
KRUGER/ K-259RR	131	36.5	19.3	2	35.9	19.6	1	36.2	19.5	2
SANDS/ SOI 2884RR	130	35.7	19.6	2	36.5	19.5	1	36.1	19.6	2
MIDWEST SEED/ GR2731	131	36.1	19.4	3	36.1	19.6	1	36.1	19.5	2
PUBLIC/ SD02R-48	122	36.2	19.5	1	36.0	19.7	1	36.1	19.6	1
NUTECH/ NT-2777RR/SCN	132	35.9	19.5	2	36.3	19.5	1	36.1	19.5	2
NUTECH/ NT-2890RR	129	36.2	19.1	2	35.9	19.6	1	36.1	19.4	1
NUTECH/ NT-2890+RR	130	36.2	19.2	1	35.9	19.7	1	36.1	19.5	1
PRAIRIE BRAND/PB-2645RR	130	36.2	19.2	2	35.9	19.7	1	36.1	19.5	2
SANDS/ SOI 2448RR	127	36.1	19.5	2	35.9	19.9	1	36.0	19.7	1
WECO/ EXP 6 2.8RR-SCN	135	35.4	19.3	3	36.6	19.3	1	36.0	19.3	2
PRAIRIE BRAND/PB-2636NR	130	35.7	19.5	3	36.3	19.4	1	36.0	19.5	2
DAIRYLAND/ DSR-2600/RR	129	36.2	19.0	2	35.7	19.4	1	36.0	19.2	2
PUBLIC/ SD02R-51	124	36.0	19.5	1	35.8	19.7	1	35.9	19.6	1
NUTECH/ NT-2232RR	130	36.0	19.5	2	35.7	19.9	1	35.9	19.7	2
DEKALB/ DKB27-53	131	35.8	19.4	3	35.9	19.8	1	35.9	19.6	2
SANDS/ SOI 2609RR	131	35.9	19.5	2	35.7	19.7	1	35.8	19.6	2
DEKALB/ DKB25-51	127	35.8	19.7	2	35.6	19.9	1	35.7	19.8	2
THOMPSON/ T-2666RR	129	35.6	19.8	1	35.7	19.8	1	35.7	19.8	1
COYOTE/ 9524RR	127	35.4	19.6	1	35.6	19.9	1	35.5	19.8	1
201012/ <i>//2</i> htt	141	55.1	17.0	-	55.0	1)./	_	55.5	17.0	<u> </u>

Table 2b. (cont.) Roundup Ready maturity group-II soybean variety protein, oil, and lodging score averages.

			A	Averages by Location						Zone Averages	
		E	Beresfo	rd		Gedde	s	Southern	Zone	Averages	
Brand/Variety		Protein	Oil	Lodging	Protein	Oil	Lodging	Protein	Oil	Lodging	
(By 2006 zone protein)	DTM*	(%)	(%)	(1-5)*	(%)	(%)	(1-5)*	(%)	(%)	(1-5)*	
THOMPSON/ T-2999RR	132	35.4	19.8	3	35.5	19.6	1	35.5	19.7	2	
SANDS/ SOI 2673RR	126	35.6	19.5	2	34.8	19.2	1	35.2	19.4	1	
COYOTE/ 4523RR	127				36.2	19.5	1				
COYOTE/ 4527RR	132	36.3	19.3	1							
COYOTE/ EXP 622RR	127				37.1	19.6	1				
COYOTE/ EXP 625NRR	125	36.9	19.0	2							
COYOTE/ EXP 626RR	133	36.5	19.0	2							
MUSTANG/ M-203RR	122	36.8	19.4	1						•	
DEKALB/ DKB22-52	123	36.8	19.6	1							
DEKALB/ DKB26-53	126	37.0	19.4	2							
SANDS/ SOI 2151NRR	125				36.1	20.1	1			•	
KALTENBERG/ KB256RR	128	36.4	19.3	1							
KALTENBERG/ KB276RR	131	36.1	19.3	2							
KALTENBERG/ KB258RR	126	36.7	19.4	2							
KALTENBERG/ KB266RR	129	36.8	19.0	3							
ZILLER/ BT 7227NR	121	37.0	19.4	1	•	•	•	•			
Test avg. :	128	36.4	19.3	2	36.5	19.5	1	36.4	19.4	1	
* Lsd(.05) :				1			0			0.4	
## TPG-avg. :				2			1			1	
@ Coef. Var. :				28		•	0			26	

Table 2b. (cont.) Roundup Ready maturity group-II soybean variety protein, oil, and lodging score averages.

* DTM= average days from seeding (Beresford- May 17, Geddes- May 25, 2006) to maturity; a missing value

indicates the site received a hard frost before the variety reached maturity.

** Lodging, 1= all plants erect, 5= all plant flat.

Lsd,(.05)= amount values in a column must differ to be significantly different, if differences are not significant (NS), NS is indicated.

TPG-avg. = minimum value to qualify for top performance group.

@ Coef. Var.= a measure of trial experimental error.

Averages - Berestord, S	<u>5D, 200.</u>	5-00.								
		Av	Averages by Maturity Group							
		M	G-I	M	G-II					
Brand/Variety		Bu/Acre	Bu/Acre 2-	Bu/Acre	Bu/Acre 2-					
(By maturity group & 2006 yield)	DTM*	2006	Yr	2006	Yr					
PUBLIC/ SD03-1607	117	60		•						
PUBLIC/ SD00-632	120	57	52							
PUBLIC/ SD02-906	117	57	52							
PUBLIC/ SD03-1899	114	53								
PUBLIC/ SD00-266	112	52								
PUBLIC/ SD02-1138	112	51								
SANDS/ EXP2879N	132			68						
SANDS/ SOI 239N	123			66						
PUBLIC/ SD02-22	122			64	56					
COYOTE/ 5525	132			63	53					
DAIRYLAND/ DSR-22/STSUL	122			62						
PUBLIC/ SD00-732	122			61	50					
PUBLIC/ SD02-195	122			60						
PUBLIC/ SD02-26	125			57	50					
PUBLIC/ SD02-96	123			57						
PUBLIC/ SD00-1587	115			51						
Test avg. :	120	55	52	61	52					
# Lsd (.05) :		5	NS	6	NS					
## TPG-avg. :		55	52	62	50					
@ Coef. Var. :		5	5	5	6					

Table 3a. Non-Roundup Ready maturity group-I & -II soybean variety yieldAverages - Beresford, SD, 2005-06.

* DTM= average days from seeding on May 17, 2006 to maturity; a missing value indicates the site received a hard frost before the variety reached maturity.

Lsd,(.05)= amount values in a column must differ to be significantly different, if differences are not significant (NS), NS is indicated.

TPG-avg. = minimum value to qualify for top performance group.

@ Coef. Var. = a measure of trial experimental error, 15% or less is best.

		2006 Averages by Maturity Group							
			MG-I	[MG-II			
Brand/Variety		Protein	Oil	Lodging*	Protein	Oil	Lodging		
(By maturity group & protein)	DTM*	%	%	(1-5)	%	%	* (1-5)		
PUBLIC/ SD00-632	120	37.0	19.4	3					
PUBLIC/ SD02-906	117	36.8	19.7	2					
PUBLIC/ SD03-1607	117	36.5	19.7	2					
PUBLIC/ SD00-266	112	36.4	20.1	2					
PUBLIC/ SD03-1899	114	36.4	19.7	3	•	•	•		
PUBLIC/ SD02-1138	112	35.5	20.3	4					
PUBLIC/ SD02-96	123	•			37.1	19.4	1		
PUBLIC/ SD00-1587	115	•			37.1	19.4	1		
SANDS/ SOI 239N	123	•			37.0	19.0	2		
PUBLIC/ SD00-732	122	•			36.6	19.3	1		
PUBLIC/ SD02-195	122				36.6	19.7	1		
DAIRYLAND/ DSR-22/STSUL	122	•			36.5	19.2	2		
PUBLIC/ SD02-22	122	•			36.5	19.1	2		
PUBLIC/ SD02-26	125				36.5	19.0	2		
SANDS/ EXP2879N	132				36.2	19.3	5		
COYOTE/ 5525	132	•			35.6	19.2	4		
Test avg. :	120	36.4	19.8	3	36.6	19.3	2		
* Lsd(.05) :				1			1		
## TPG-avg. :				2			2		
@ Coef. Var. :			•	18			30		

Table 3b. Non-Roundup Ready maturity group-I & -II soybean variety protein, oil, andlodging score averages - Beresford, SD, 2006.

* DTM= average days from seeding on May 17, 2006 to maturity; a missing value

indicates the site received a hard frost before the variety reached maturity.

** Lodging, 1= all plants erect, 5= all plant flat.

Lsd,(.05)= amount values in a column must differ to be significantly different, if

differences are not significant (NS), NS is indicated.

TPG-avg. = minimum value to qualify for top performance group.

@ Coef. Var. = a measure of trial experimental error.

2006 PRECISION-PLANTED CORN PERFORMANCE TRIALS

Robert G. Hall¹ and Kevin K. Kirby²

Plant Science 0621

TEST PROCEDURES

General Procedures: Entries were seeded in three replications with each replicate randomly located within each trial. Plots consisted of four 30-inch rows and measuring 20 feet long. A Monosem precision row crop planter was used for seeding plots. In 2006, the planter was calibrated and delivered 27,878 seeds per acre, regardless, of seed quality and germination percentage. No seeding rate adjustment was made for low germination. Therefore, percent stand is an indication of initial seed quality and the ability of the seed to cope with the production environment. Seedbed preparation was good at planting. A starter fertilizer of 100 pounds/acre of 37-18-00 was applied 2" below and 2" to the side (2 x 2) of the seed row. Force insecticide was applied in-furrow at label rates for corn rootworm control. Weed control in the non-Roundup Ready[™] plots consisted of a pre Dual-Python application at label rates. In the Roundup Ready™ hybrid corn trials weed control included a pre Dual-Python application and one post application of Roundup™ at label rates. The center two rows of each 4-row plot were

harvested with a Massey Ferguson 8XP small plot combine.

<u>Yield:</u> Yields are an average of three replications, and are expressed as bushels per acre, adjusted to 15.5% moisture on a dry-matter basis and a bushel weight of 56 pounds. The CV value in a given test trial is a measure of experimental error associated with the test trial. Ideally, this value should not exceed 20%. In cases where the CV value exceeds 20% it is recommended that the test data be used with caution in making hybrid selection decisions.

<u>Grain moisture content:</u> Moisture content is expressed as the percentage of moisture in the shelled corn at harvest. During harvest, random moisture values was determined by the on-board moisture meter on the combine and was checked with a Dickey-John GAC II to verify that the onboard moisture meter was within calibration limits

¹ Extension Agronomist; Project Leader, Crop Performance Testing; SDSU

² Agricultural Research Manager, Crop Performance Testing; SDSU

Performance Trial Results - for two years (2005-06) and one year (2006).

Early - Non-Roundup Ready[™] hybrids, Table 1a. The test trial yield average was 159 bu/ac in 2006 and 184 bu/ac for two years. Hybrids that yielded at least 167 bu/ac in 2006 or 166 bu/ac for two years qualified for the top yield group. Hybrids had to differ in yield by 23 bu/ac in 2006 to be significantly different from one another. There was no difference in yield averages among the five hybrids tested two years. In 2006, bushel weights averaged 60 lbs, grain moisture averaged 17%, lodging averaged 11% and the final percent stand averaged 98%. In order for a hybrid to be in the top performance group for these factors it had to equal 60 lbs. or more in bushel weight, 16% or less in grain moisture, 12% or less in stalk lodging, and 97% or more for percent stand.

Late - Non-Roundup Ready[™] hybrids, Table 1b. The test trial yield average was 188 bu/ac in 2006 and 192 bu/ac for two years. Hybrids that yielded at least 184 bu/ac in 2006 or 174 bu/ac for two years qualified for the top yield group. Hybrids had to differ in yield by 26 bu/ac in 2006 to be significantly different from one another. There was no difference in yield averages among the ten hybrids tested two years. In 2006, bushel weights averaged 59 lbs, grain moisture averaged 19%, lodging averaged 18% and the final percent stand averaged 96%. In order for a hybrid to be in the top performance group for these factors it had to equal 58 lbs. or more in bushel weight, 17% or less in grain moisture, 17% or less in stalk lodging, and 96% or more for percent stand.

Early - Roundup Ready[™] hybrids, Table 2a. The test trial yield average was 171 bu/ac in 2006 and 181 bu/ac for two years. Hybrids that yielded at least 170 bu/ac in 2006 and 172 bu/ac for two years gualified for the top yield group. Hybrids had to differ in yield by 33 bu/ac in 2006 to be significantly different from one another. There was no difference in yield averages among the nine hybrids tested two years. In 2006, bushel weights averaged 60 lbs, grain moisture averaged 17%, lodging averaged 15% and the final percent stand averaged 97%. In order for a hybrid to be in the top performance group for these factors it had to equal 61 lbs. or more in bushel weight, 16% or less in grain moisture, 19% or less in stalk lodging, and 91% or more for percent stand.

Late - Roundup Ready[™] hybrids, Table **2b.** The test trial yield average was 188 bu/ac in 2006 and 195 bu/ac for two years. Hybrids that yielded at least 192 bu/ac in 2006 and 179 bu/ac for two years qualified for the top yield group. Hybrids had to differ in yield by 21 bu/ac in 2006 to be significantly different from one another. There was no difference in yield average among the five hybrids tested two years. In 2006, bushel weights averaged 60 lbs, grain moisture averaged 19%, lodging averaged 9% and the final percent stand averaged 96%. In order for a hybrid to be in the top performance group for these factors it had to equal 60 lbs, or more in bushel weight. 17% or less in grain moisture, 8% or less in stalk lodging, and 93% or more for percent stand.

5441011, 2003-00.		Hybrid performance variable at harvest								
	Brand	2-yr	'06	'06	'06	'06	'06			
Brand/Hybrid	Rel.	Yield	Yield	Bu Wt	Grain	Lodging	Pct.*			
(By 2-year then '06 yields)	Mat.	bu/ac	bu/ac	lb	Moist %	%	Stand			
TWO-YEAR ENTRIES:										
HEINE/ H818YGCB	109	206	190	59	17	30	99			
KRUGER/ EXP0610	110	185	155	61	16	14	98			
KRUGER/0508	109	183	172	60	15	3	98			
HEINE/ H820YGCB	109	179	154	61	18	20	97			
KRUGER/ 8609HX	109	166	129	60	16	7	100			
ONE-YEAR ENTRIES:										
KRUGER/ EXP8508HX	108	•	171	60	17	1	98			
KRUGER/ EXP5310YGCB	110	•	168	59	18	12	97			
MYCOGEN/ 2G677	109		168	58	18	1	96			
MYCOGEN/ 2R570	104		166	59	16	9	100			
KRUGER/ EXP0309	109		165	58	15	2	98			
DEKALB/ DKC55-12 (YGCB)	105		164	59	15	11	98			
HEINE/ H824YGCB	110	•	164	60	19	2	94			
KRUGER/0409	109		163	59	16	3	99			
KRUGER/ 5109YGCB	109		162	60	18	17	100			
KRUGER/9310YG+	110	•	159	61	16	2	100			
DAIRYLAND/ STEALTH-1806	106	•	155	60	16	2	96			
FARM ADVANTAGE/ 5406	106	•	143	61	16	18	100			
KRUGER/ 5509YGCB	107	•	139	62	17	55	99			
FARM ADVANTAGE/ 1065	105	•	136	59	15	5	96			
Trial avg.:	108	184	159	60	17	11	98			
** Lsd (.05):		NS	23	2	1	12	3			
# Min. TPG-value:		166	167	60	-	-	97			
## Max. TPG-value:		-	-	-	16	12	-			
+ Coef. of var.:		6	9	2	3	62	2			

 Table 1a. Early maturity Non-Roundup Ready corn hybrid test trial results, Southeast Experiment Station, 2005-06.

** Lsd= the amount values in a column must differ to be significantly different.

If Lsd = NS then differences among values in a column are non-significant (NS).

Min. TPG-value= minimum value required for the top performance group.

Max. TPG-value= maximum value required for the top performance group.

Station, 2003-00.							
		Hybrid performance variable at harvest					
	Brand	2-yr	'06	'06	'06	06	'06
Brand/Hybrid	Rel.	Yield	Yield	BuWt	Grain	Lodging	Pct.*
(By 2-year then '05 yields)	Mat.	bu/ac	bu/ac	lb	Moist %	%	Stand
TWO-YEAR ENTRIES:							
KRUGER/ 8616HX	116	203	194	59	20	34	99
KRUGER/ 8414HX	114	199	207	58	20	76	100
KRUGER/ 9115YGCB	115	197	194	60	20	2	97
DEKALB/ DKC62-31	112	197	187	60	20	1	98
(YGCB)							
KRUGER/ 5416YGCB	115	196	197	60	20	9	97
KRUGER/ 9111YGCB	111	195	190	60	16	2	97
KRUGER/ 9313YGCB	113	193	195	59	19	11	98
KRUGER/ 9212YGCB	112	185	189	59	18	17	95
HEINE/ H851YGCB	112	182	177	60	20	4	97
KRUGER/ 5517YGCB	116	174	170	58	22	40	98
ONE-YEAR ENTRIES:							
MYCOGEN/ 2C727	112	•	210	59	19	24	96
HEINE/ H822	111	•	193	60	17	9	88
RENK/ RK888YGCB	112	•	191	59	19	1	93
KRUGER/7613YG+	113	•	188	60	16	20	96
KRUGER/0612	112		187	61	17	15	95
RENK/ RK789YGPL	111	•	185	61	16	5	97
MYCOGEN/ 2T780	114		180	59	20	56	96
MYCOGEN/ 2K717	113		174	59	19	9	94
HEINE/ H856YGCB	113		173	59	20	10	96
Trial avg.:	113	192	188	59	19	18	96
** Lsd (.05):		NS	26	NS	1	17	4
# Min. TPG-value:		174	184	58	-	-	96
## Max. TPG-value:		-	-	-	17	17	-
+ Coef. of var.:		8	8	2	5	58	3

Table 1b. Late maturity Non-Roundup Ready corn hybrid test trial results, Southeast Experiment Station, 2005-06.

** Lsd= the amount values in a column must differ to be significantly different.

If Lsd = NS then differences among values in a column are non-significant (NS).

Min. TPG-value= minimum value required for the top performance group.

Max. TPG-value= maximum value required for the top performance group.

Table 2a. Early maturity Rou	undup Ready corn hybrid t	test trial results, Southeast Experim	ent Station, 2005-06.
------------------------------	---------------------------	---------------------------------------	-----------------------

		Test trial variable at harvest					
	Brand	2-yr	'06		'06	'06	'06
Brand/Hybrid	Rel.	Yield	Yield	'06	Grain	Lodging	Pct.*
(By 2-year then '06 yields)	Mat.	bu/ac	bu/ac	BuWt lb		%	Stand
TWO-YEAR ENTRIES:							
DEKALB/DKC52-47RR2YGCB	102	198	188	58	15	1	98
WENSMAN/W 6318BTRR	103	189	196	60	17	1	99
NUTECH/NT-5507 RR/YGCB	105	188	172	59	16	17	97
DEKALB/DKC60-19RR2YGCB	110	187	170	60	18	8	98
DAIRYLAND/STEALTH-1606	107	182	172	59	16	12	98
HEINE/H750RR/YGCB	105	182	166	60	17	3	99
KALTENBERG/K6744RRBT	108	173	160	58	15	7	97
WENSMAN/W 6422BTRR	107	173	152	61	18	7	98
WENSMAN/W 6315BTRR	101	172	153	58	15	1	95
KRUGER/ 2506RR/YGCB	106	171	152	60	19	5	98
ONE-YEAR ENTRIES:							
WENSMAN/ W7439BTRWRR	110		203	59	17	1	95
KRUGER/ 6607TS	107		193	59	15	1	96
CROWS/ 4843X	110		191	60	18	6	91
HEINE/ H785RR	107		191	61	17	10	98
NUTECH/ 5210 RR/YGCB	110		190	59	17	2	95
MIDWEST/ 77124X	110		187	59	18	5	95
NUTECH/ 9410 RR/YGPL	110		185	61	19	30	99
HEINE/ H818RR	109		184	60	17	31	99
FARM ADVANTAGE/ 6504	104		183	61	16	5	99
KRUGER/ 1606RR	106		181	58	16	6	98
LEGEND/ LR9708RRYG+	108		180	61	16	58	95
WENSMAN/ W 7316BTRWRR	101		180	59	15	5	98
NUTECH/ 7808 RR/YGRW	108		179	60	16	8	97
KALTENBERG/ K5685RRBT	105		179	62	16	0	96
HEINE/ H766RRYGPL	106		178	60	16	45	97
NUTECH/ 9006 RR/YGPL	105		176	60	16	52	97
NUTECH/ 7110 RR/YGRW	110		176	59	18	36	97
INTEGRA/ INT 6710RRYG	110		175	59	17	40	96
KRUGER/ 9310TS	110		173	60	17	2	97
DEKALB/DKC58-19 (RR2)	108		172	61	16	14	99
GOLD COUNTRY/ 106-02CBR	106		172	60	16	1	99
WENSMAN/ W 7423BTRWRR	107		171	60	16	2	95
NUTECH/ 5006A RR/YGCB	105		168	60	16	55	98
NUTECH/ 9908 RR/YGPL	108		168	60	16	3	96
DAIRYLAND/ STEALTH-4006	106		167	58	16	5	99
NUTECH/ 9507 RR/YGPL	105		167	59	16	1	99
ASGROW/ RX674RR2	109		165	59	17	10	98
INTEGRA/ INT 6609RRYG	106		165	61	16	44	98
NUTECH/ 9013 RR/YGCB	110		163	63	18	14	98
WILBUR ELLIS/ HB9601RB	110	•	162	60	18	29	99

		Test trial variable at harvest					
	Brand	2-yr	'06		'06	'06	'06
Brand/Hybrid	Rel.	Yield	Yield	'06	Grain	Lodging	Pct.*
(By 2-year then '06 yields)	Mat.	bu/ac	bu/ac	BuWt lb	Moist %	%	Stand
KRUGER/ 9407TS	107	•	161	61	16	2	94
HEINE/ H796RR	108		161	61	17	10	98
HEINE/ H724RR/YGCB	102		159	59	15	3	98
WILBUR ELLIS/ HB9531RB	103	•	157	62	16	4	97
WENSMAN/ W 6374BTRR	105	•	156	59	15	2	97
HEINE/ H749RR/YGCB	104		147	60	16	29	98
KRUGER/ 2509RR/YGCB	107		140	61	16	68	97
LEGEND/ LR9510RR	110	•	128	59	19	28	98
Trial avg.:	107	181	171	60	17	15	97
** Lsd (.05):		NS	33	2	1	19	NS
# Min. TPG-value:		172	170	61	-	-	91
## Max. TPG-value:		-	-	-	16	19	_
+ Coef. of var.:		7	12	2	3	79	3

Table 2a. (cont) Early maturity Roundup Ready corn hybrid test trial results, Southeast Experiment Station.

** Lsd= the amount values in a column must differ to be significantly different.

If Lsd = NS then differences among values in a column are non-significant (NS).

Min. TPG-value= minimum value required for the top performance group.

Max. TPG-value= maximum value required for the top performance group.

		Test trial variable at harvest						
	Brand	2-yr	'06	'06	'06	'06	'06	
Brand/Hybrid	Rel.	Yield	Yield	BuWt	Grain	Lodging	Pct.*	
(By 2-year then '06 yields)	Mat.	bu/ac	bu/ac	lb	Moist %	%	Stand	
TWO-YEAR ENTRIES:								
ASGROW/RX715RR2YGCB	111	211	186	60	20	1	94	
HEINE/H851RR/YGCB	113	203	192	58	21	11	98	
DEKALB/DKC61-72 (RR2)	111	199	182	59	18	3	96	
KRUGER/9313RR/YGCB	113	184	195	59	19	4	99	
KRUGER/2517RR/YGCB	116	179	176	59	22	34	98	
ONE-YEAR ENTRIES:								
MIDWEST/ 77323T	111		213	60	20	9	99	
FONTANELLE/7K733	111		203	60	19	15	97	
KRUGER/ 9212TS	112		200	60	18	11	98	
KRUGER/ EXP6611TS	111		199	61	18	36	99	
RENK/ RK870RRYGPL	112		195	60	18	13	99	
CROWS/ 4982X	112		193	61	19	1	95	
CROWS/ 4940T	111	•	190	60	19	7	98	
HEINE/ H851RRYGPL	112	•	190	60	21	2	93	
KRUGER/ EXP2511RR/YGCB	111	•	189	60	18	1	94	
MIDWEST/ 78133X	112	•	188	61	19	2	97	
KRUGER/ EXP6612TS	112		185	61	18	2	94	
FONTANELLE/ 8K389	112	•	183	59	18	18	93	
KRUGER/ 9115TS	115	•	179	60	21	4	98	
DEKALB/ DKC61-22 (RR2)	111	•	174	60	20	4	98	
KRUGER/ EXP2414RR/YGCB	114	•	172	60	19	5	98	
KRUGER/ 2613RR/YGCB	113	•	155	59	16	4	93	
Trial avg.:	112	195	188	60	19	9	96	
** Lsd (.05):		NS	21	1	1	8	NS	
# Min. TPG-value:		179	192	60	-	-	93	
## Max. TPG-value:		-	-	-	17	8	-	
+ Coef. of var.:		5	7	1	3	56	3	

Table 2b. Late maturity Roundup Ready corn hybrid test trial results, Southeast Experiment Station, 2005-06.

** Lsd= the amount values in a column must differ to be significantly different.

If Lsd = NS then differences among values in a column are non-significant (NS).

Min. TPG-value= minimum value required for the top performance group.

Max. TPG-value= maximum value required for the top performance group.

WEED CONTROL DEMONSTRATIONS and EVALUATION TEST for 2006

M. J. Moechnig, D. L. Deneke, and D. A. Vos

PLANT SCIENCE 0622

INTRODUCTION:

Conducting weed control research at the Southeast Experiment Farm provides an opportunity to evaluate weed control techniques in an environment that reflects the climate and weed species spectrum of the region. Corn and soybean cropping systems are the primary focus for weed control evaluation. Primary weed species present often include common waterhemp, velvetleaf, cocklebur, common lambsquarters, and foxtail.

SITE CONDITIONS for 2006:

Early season precipitation was adequate for good crop establishment and activation of pre-emergence herbicides, but subsequent dry weather suppressed later weed flushes. Therefore, weed control was likely greater than would be expected in a year with precipitation that is closer to the long-term average. Crop yields were relatively high for such a dry growing season.

Several studies were established at the Southeast Experiment Station to evaluate new and experimental herbicide products, weed control techniques, and herbicide programs. Studies generally focused on corn and soybean production in conventional tillage and no-till systems. There were also studies conducted to evaluate pre- and post-emergence herbicide options in camelina, an alternative oil-seed crop, and weed seed bank evaluations in the large cropping systems study conducted by Bob Berg. In corn and soybeans, weed control was generally similar among herbicide programs that included pre-emergence, pre- followed by postemergence, post-emergence, or late post-emergence applications. This may be partially due to the dry weather that suppressed late season weed flushes.

A series of studies were sponsored by the SD Soybean Research and Promotion Council to evaluate the benefits of adding additional herbicides into Roundup Ready programs. Previous research suggests that soybean yield loss may occur from weeds when Roundup is applied after the third trifoliate. Studies were established to evaluate yield loss associated with late Roundup applications, but weed pressure was too low to achieve a competition response. Studies were also established to evaluate weed control associated with several rates of soil residual herbicides to determine adequate rates for weed suppression in fields that will receive a post-emergence application of glyphosate. These dose response curves will be analyzed in a spread sheet program to determine optimum tank-mix ratios for suppression of grass and broadleaf weeds. Herbicide recommendations resulting from this analysis will be evaluated with continued field research in 2007. **<u>NOTE</u>**: Data reported in this publication are results from field tests that include product uses, experimental products or experimental rates, combinations or other unlabeled uses for herbicide products. Tradenames of products used are listed; there frequently are other brand products available in the market. Users are responsible for applying herbicide according to label directions. Refer to the appropriate weed control fact sheet available from county extension offices for herbicide recommendations.

Studies listed below are summarized in the following tables. Information for each study is included as part of the summary.

- 1. Corn Herbicide Demonstration
- 2. Corn Herbicide Demonstration in Resistant Corn
- 3. Early Postemergence Program in RR Corn
- 4. Tank-Mixes to Enhance Weed Control with Glyphosate
- 5. Glyphosate Programs in Corn
- 6. Sequential and Total Postemergence Programs with Glyphosate in Corn
- 7. Comparison of Weed Control Programs in RR Corn
- 8. Weed Control Programs in Corn
- 9. Program Approaches for Weed Control in Corn
- 10. Pre Followed by Post Weed Control in GT Corn
- 11. Weed Control in Corn with Pre- and Post-Emergence Combinations
- 12. Weed Control in Corn with Stout Tank-Mixtures
- 13. Postemergence Broadleaf Control in RR Corn
- 14. Postemergence Broadleaf Control in Corn
- 15. Evaluation of Impact for Weed Control in Corn
- 16. Impact Combinations with Glyphosate
- 17. Weed Control in Corn with Laudis
- 18. Evaluation of Glyphosate Adjuvants in Corn
- 19. Evaluation of Adjuvants in Corn
- 20. Reduced Rates of Preemergence Herbicides Study 1
- 21. Reduced Rates of Preemergence Herbicides Study 2
- 22. Evaluation of RR Corn Control with Gramoxone Tank-Mix Partners
- 23. Evaluation of RR Corn Control with Select Max
- 24. Soybean Herbicide Demonstration
- 25. Herbicide Resistant Soybean Demonstration
- 26. No-Till Soybean Demonstration
- 27. Evaluation of Oil Adjuvants for Volunteer Corn Control
- 28. Annual Weed Control in RR Soybeans
- 29. Weed Control in Soybean with Glyphosate Plus 2,4-DB
- 30. Water Quality and AMS Replacements
- 31. Reduced Pre-Emergence Herbicide Rates in Soybean Study 1
- 32. Reduced Pre-Emergence Herbicide Rates in Soybean Study 2
- 33. Camelina Postemergence Herbicide Tolerance

The most relevant results are presented in this publication. Additional research trials were also conducted at this station to evaluate experimental herbicides or additives.

- 1. Effects of Glyphosate Application Timing in RR Corn
- 2. Weed Control in Corn with Glufosinate (Liberty) Formulations
- 3. Weed Control in Corn with Liberty Plus Adjuvants
- 4. Evaluation of Oil Adjuvants in Corn
- 5. Cocklebur Control in Corn with Experimental Preemergence Herbicide
- 6. Corn Response to Select Max Applied Preemergence
- 7. Evaluation of Glyphosate Programs in Soybeans
- 8. Effects of Glyphosate Application Timing in RR Soybean
- 9. Volunteer GT Corn Control in Soybeans
- 10. Control if Volunteer GT Corn in Soybean with Targa
- 11. Camelina Preemergence Herbicide Tolerance

ACKNOWLEDGEMENTS:

We greatly appreciate the cooperation and assistance provided by the station personnel. Due to the distance from the SDSU campus, assistance with field preparation and daily oversight of the fields is critical to the success of the weed control research. We also appreciate the participation of extension educators who provide assistance with tours and use the research results for their recommendations to growers. In addition to the Southeast Farm Report, research results will be published in the annual Weed Control Field Test Data Book (EMC 678), weed control fact sheets updated annually for major South Dakota commodities, and on the internet at http://plantsci.sdstate.edu/weeds/.

Program support was provided by the South Dakota Soybean Research and Promotion Council and crop protection industries.

Table 1. Corn Herbicide Demonstration

Demonstration	Precipitation:		
Variety: DKC 58-73	PRE:	1 st week	0.10 inches
Planting Date: 5/11/06		2 nd week	0.50 inches
PRE: 5/12/06	EPOST:	1 st week	1.20 inches
EPOST: 6/1/06; Corn V2, 4lf; Grft 1-4 lf; Cowh 1-3 in;		2 nd week	0.22 inches
Colq 1-3 in; Pesw 2-4 in.	POST:	1 st week	0.04 inches
POST: 6/7/06; Corn V3-4; Grft 2-5 lf, 2-4 in;		2 nd week	1.62 inches
Cowh 2-5 in; Colq 2-5 in; Pesw 4-6 in.			
Soil: Silty clay loam; 3.2% OM; 5.9 pH	Grft=Green foxtail		
	Cowh=Common wat		
	Colq=Common lambsquarters		
	Pesw=Pennsylvania	smartweed	

Comments: Pre-emergence: Several pre-emergence herbicides resulted in very good grass and broadleaf weed control. The low rate of Harness (1.5 pt/A) resulted in similar weed control as the higher rate (2.3 pt/A). Green foxtail control was slightly greater with Dual II Magnum (S-metolachlor) than with Stalwart C (metolachlor), otherwise broadleaf weed control was similar between these herbicides. Weed control was similar between Epic and Radius, which both contain slightly different ratios of flufenacet (e.g. Define) and isoxaflutole (e.g. Balance). Several other pre-emergence applications resulted in very good control of grasses, broadleaf weeds, or both. Weed control was generally very good due in part because rainfall after the herbicide application was adequate to incorporate these herbicides in the soil and subsequent dry conditions minimized later weed emergence.

Pre-emergence followed by post-emergence: Many treatments resulted in nearly complete weed control. Green foxtail control was slightly greater when Balance Pro (isoxaflutole) was followed by a grass herbicide (Option or Stout) than a broadleaf herbicide (Callisto). Green foxtail control was similar between treatments with Option and Stout. Stout is a new pre-mix of nicosulfuron (e.g. Accent) and thifensulfuron (e.g. Harmony). Green foxtail control was slightly better with a higher rate of Balance Pro (isoxaflutole) at 2.25 oz/A than a reduced rate of Balance + Resolve (1.75 oz/A + 1 oz/A).

Early post-emergence: All treatments resulted in nearly complete control of grass and broadleaf weed species. When tank-mixed with Option (foramsulfuron), Callisto (mesotrione) at 2 oz/A or atrazine at 1.5 pt/A resulted in very good broadleaf weed control. Adding a low rate of Define (flufenacet) for residual grass control with Option was not necessary in this environment.

<u>Treatment</u> Check	<u>Rate/A</u>	% Grft <u>10/2/06</u> 0	% Cowh <u>10/2/06</u> 0	% Colq <u>10/2/06</u> 0	% Pesw <u>10/2/06</u> 0
PREEMERGENCE					
Harness	1.5 pt	94	98	98	70
Harness	2.3 pt	98	98	98	70
Surpass	2.5 pt	98	98	98	75
Dual II Magnum	2 pt	95	98	98	75
Stalwart C	2 pt	88	95	98	78

2006 Corn Herbicide Demonstration Southeast Research Farm Page 2

Treatment	Rate/A	% Grft <u>10/2/06</u>	% Cowh <u>10/2/06</u>	% Colq <u>10/2/06</u>	% Pesw <u>10/2/06</u>
PREEMERGENCE	21	06	07	00	70
Outlook	21 oz	96 97	97	98 60	73 78
Degree	4.25 pt 21 oz		98		
Define SC	21 02 2.25 oz	97	98	70	85
Balance Pro		88	98	92	92
Epic	14.5 oz	98	98	96	98
Radius	18 oz	94	98	98	98
Lumax	3 qt	88	98	98	96
Bicep II Magnum	2 qt	97	97	92	97
Stalwart Xtra	2.1 qt	80	98	96	95
G-Max Lite	3.5 pt	90	98	90	92
Harness Xtra 6L	2.1 qt	93	98	85	95
Keystone LA	2.2 qt	96	98	96	93
Balance Pro+Define SC+atrazine	2.25 oz+12 oz+.75 qt	97	98	98	95
Python+Surpass	1.25 oz+2.5 pt	98	98	95	93
PREEMERGENCE & POSTEMERG	ENCE				
Dual II Magnum&Callisto+	1.67 pt& 3 oz+				
COC+28% N	1%+2 qt	90	99	99	99
Balance Pro&Callisto+	2.25 oz&3 oz+				
COC+28% N	1%+2 qt	87	99	99	98
Balance Pro&Option+	2 oz&1.5 oz+				
MSO+28% N	1.5 pt+2 qt	98	99	99	85
Balance Pro&Stout+	2 oz&.75 oz+				
COC+AMS	1%+2 lb	98	98	99	99
Balance Pro&Buctril+atrazine	2.25.0781 nt 1 nt	95	99	99	99
Balance Pro+Resolve&	2.25 oz&1 pt+1 pt 1.75 oz+1 oz&	95	99	99	99
Buctril+atrazine	1 pt+1 pt	86	99	99	96
Outlook&Distinct+	21 oz&6 oz+	80	99	99	90
NIS+28% N	.25%+2 qt	98	99	99	99
Outlook&Marksman+		90	99	99	99
NIS+28% N	21 oz&2 pt+	98	99	99	99
NI3+20% N	.125%+2 qt	90	99	99	99
Surpass&2,4-D amine	2.5 pt&1 pt	98	99	99	99
Surpass&Aim+atrazine+	2.5 pt&.5 oz+2 pt+				
COC+28% N	1%+2 qt	99	99	99	99
Surpass&WideMatch	2.5 pt&1.33 pt	99	99	97	99
Keystone LA&Hornet WDG+	2 qt&3 oz+				
Clarity+NIS+AMS	4 oz+.25%+2.5 lb	99	99	99	99
Surpass&Accent+atrazine+	1.25 pt&.67 oz+1.5 pt+				
COC+28% N	1%+2 qt	99	99	99	99
Surpass&Stout+atrazine+	1.25 pt&.5 oz+1.5 pt+				
COC+28% N	1%+2 qt	99	99	95	99
	•				

2006 Corn Herbicide Demonstration Southeast Research Farm Page 3

_		% Grft	% Cowh	% Colq	% Pesw
<u>Treatment</u>	Rate/A	<u>10/2/06</u>	<u>10/2/06</u>	<u>10/2/06</u>	<u>10/2/06</u>
PREEMERGENCE & POSTEMEREI					
Dual II Magnum&Northstar+	1.67 pt&5 oz+				
NIS+28% N	.25%+2 qt	99	99	98	99
Cinch&Steadfast+Callisto+	.67 pt&.75 oz+2 oz+				
Atrazine+COC+AMS	1 pt+1%+2.5 lb	99	99	99	99
Cinch&Steadfast+Marksman+	1 pt&.75 oz+1 pt+				
COC+28% N	1%+2 qt	99	99	99	97
Define SC&Buctril+atrazine	21.7 oz&1 pt+1 pt	96	99	99	99
Define SC&Buctril+	12 oz&1 pt+				
Atrazine+Callisto	1 pt+1 oz	96	99	99	99
EARLY POSTEMERGENCE					
Option+atrazine+MSO+28% N	1.5 oz+1.5 pt+1.5 pt+2 qt	94	98	98	96
Option+Callisto+MSO+28% N	1.5 oz+2 oz+1.5 pt+1.5 pt+1.5 qt	• •	98 99	98 99	90 99
•	12 oz+1.5 oz+1 oz+	95	99	99	99
Define SC+Option+Callisto+		00	00	00	07
MSO+28% N	1.5 pt+2 qt	98	99	99	97
Define SC+Option+Distinct+	12 oz+1.5 oz+4 oz+	00		00	00
MSO+28% N	1.5 pt+2 qt	99	99	99	99
Option+Distinct+MSO+28% N	1.5 oz+4 oz+1.5 pt+2 qt	97	99	97	99
Option+Northstar+MSO+28% N	1.5 oz+3 oz+1.5 pt+2 qt	93	95	99	97
Steadfast+atrazine+COC+28% N	.75 oz+1.5 pt+1%+2 qt	98	98	96	95
Steadfast+Starane+atrazine+	.75 oz+.5 pt+2 pt+				
COC+28% N	1%+2 qt	96	96	98	98
Cinch ATZ Lite+Steadfast+	2 pt+.75 oz+	00	00	00	50
Callisto+NIS+28% N	2 oz+.25%+2.5 lb	98	99	99	99
Lumax+Steadfast+COC+AMS		98 99	99 99	99 99	99 97
	1.5 qt+.75 oz+1%+2.5 lb	33	33	33	91
Steadfast+atrazine+Callisto+	.75 oz+3 pt+2 oz+	00	00	00	00
COC+AMS	1%+2.5 lb	98	99	99	99

Table 2. Corn Herbicide Demonstration in Resistant Corn

Demonstration	Precipitation:		
Variety: Pio 38H69 RR/LL	PRE:	1 st week	0.10 inches
Planting Date: 5/11/06		2 nd week	0.50 inches
PRE: 5/12/06	EPOST:	1 st week	1.20 inches
EPOST: 6/1/06; Corn V2-4 lf; Grft 1-4 lf;		2 nd week	0.22 inches
Colq 1-3 in; Cowh 1-3 in; Pesw 1-3 in.	POST:	1 st week	0.04 inches
POST: 6/7/06; Corn V3-4; Grft 2-5 lf, 2-4 in;		2 nd week	1.62 inches
Colq 2-5 in; Cowh 2-5 in; Pesw 4-6 in.			
Soil: Silty clay loam; 3.2% OM; 5.9 pH	Grft=Green f	oxtail	
	Cowh=Comn	non waterhemp)
	Colq=Comm	on lambsquarte	er
	Pesw=Penns	sylvania smartw	veed

Comments: These plots were established to demonstrate the efficacy of various herbicide programs in Liberty Link or Roundup Ready corn.

Liberty Link Corn:

Green foxtail and Pennsylvania smartweed control was slightly less in the early postemergence treatments than the post-emergence treatments. Tank mix options in the post-emergence treatments were established to demonstrate different options to improve control of lambsquarters. Each treatment resulted in nearly complete lambsquarters control with each tank mix partner costing approximately \$6/A or less. Split applications of Liberty and pre- followed by post-emergence programs also resulted in very good weed control.

Roundup Ready Corn:

Early Post-Emergence: A single early post-emergence application of Roundup or Touchdown resulted in nearly complete weed control. Tank mix partners with residual weed control were also added, but these treatments were not necessary this year as the relatively dry spring conditions did not induce late weed emergence.

Post-Emergence: A single application of Roundup resulted in nearly complete weed control. Tank mix partners were added to demonstrate control of weeds that may be less susceptible to Roundup due to their large size at the post-emergence timing. However, the relatively dry spring conditions suppressed weed emergence, which may have partially minimized the ability for the weeds to reach advanced growth stages by the post-emergence timing. Therefore, a single application of Roundup alone was adequate to achieve nearly complete weed control.

Pre- Followed by Post-Emergence: All treatments resulted in nearly complete weed control. Pre-emergence applications are often beneficial as they minimize early-season weed competition which can result in significant corn yield loss at the end of the season.

2006 Corn Herbicide Demonstration in Resistant Corn Southeast Research Farm Page 2

<u>Treatment</u> Liberty Link Check	<u>Rate/A</u>	% Grft <u>10/2/06</u> 0	% Cowh <u>10/2/06</u> 0	% Colq <u>10/2/06</u> 0	% Pesw <u>10/2/06</u> 0
EARLY POSTEMERGENCE Liberty+atrazine+AMS	32 oz+1 pt+3 lb	85	97	97	88
<u>POSTEMERGENCE</u> Liberty+atrazine+AMS Liberty+Resolve+AMS Liberty+Callisto+AMS	32 oz+1 pt+3 lb 32 oz+1 oz+3 lb 32 oz+1.5 oz+3 lb	95 95 96	98 98 98	98 98 95	93 95 95
EARLY POSTEMERGENCE & POSTE Liberty+AMS&Liberty+AMS	MERGENCE 24 oz+3 lb&24 oz+3 lb	95	98	90	97
PREEMERGENCE & POSTEMERGEN Define SC&Liberty+atrazine+AMS Balance Pro+atrazine&	12 oz&32 oz+1 pt+3 lb 1.5 oz+1.5 pt&	97	98	96	98
Liberty+AMS Dual II Magnum&Liberty+ atrazine+AMS	32 oz+3 lb 1.67 pt&32 oz+ 1 pt+3 lb	99 99	99 99	97 99	99 99
Roundy Ready Check		0	0	0	0
EARLY POSTEMERGENCE Roundup WeatherMax+AMS Touchdown Total+AMS Touchdown Total+Lumax+AMS	22 oz+2.5 lb 32 oz+2.5 lb 24 oz+1.5 qt+2.5 lb	96 93 99	98 98 99	92 96 99	97 98 99
Roundup WeatherMax+ Resolve+AMS Roundup WeatherMax+Resolve+ atrazine+AMS	22 oz+ 1 oz+2.5 lb 22 oz+1 oz+ 2 pt+2.5 lb	98 99	99 99	98 99	98 99
Roundup WeatherMax+ atrazine+AMS	22 oz+ 2 pt+2.5 lb	99	99	99	99
Roundup WeatherMax+ Harness+AMS Roundup WeatherMax+	22 oz+ 1 pt+2.5 lb 22 oz+	99	99	99	99
Stalwart C+AMS Roundup WeatherMax+ Outlook+AMS	1 pt+2.5 lb 22 oz+ .75 pt+2.5 lb	99 99	99 99	99 99	99 99
Roundup WeatherMax+ Prowl H ₂ O+AMS	22 oz+ 2.5 pt+2.5 lb	99	99	99	99

2006 Corn Herbicide Demonstration in Resistant Corn Southeast Research Farm Page 3

Treatment	Rate/A	% Grft <u>10/2/06</u>	% Cowh <u>10/2/06</u>	% Colq <u>10/2/06</u>	% Pesw <u>10/2/06</u>
POSTEMERGENCE					
Roundup WeatherMax+AMS	22 oz+2.5 lb	98	99	99	99
Roundup WeatherMax+Resource+AMS	22 oz+4 oz+2.5 lb	97	99	99	99
Roundup WeatherMax+Callisto+AMS	22 oz+1.5 oz+2.5 lb	99	99	99	99
Roundup WeatherMax+	22 oz+				
2,4-D amine+AMS	8 oz+2.5 lb	99	99	99	99
Roundup WeatherMax+Clarity+AMS	22 oz+8 oz+2.5 lb	88	99	99	99
Roundup WeatherMax+Aim+AMS	22 oz+.5 oz+2.5 lb	94	97	98	99
Roundup WeatherMax+Priority+	22 oz+1 oz+				
NIS+AMS	.25%+2.5 lb	99	99	99	99
EARLY POSTEMERGENCE & POSTEMER	RGENCE				
Roundup WeatherMax+AMS&	22 oz+2.5 lb&				
Roundup WeatherMax+AMS	22 oz+2.5 lb	94	99	99	99
PREEMERGENCE & POSTEMERGENCE					
Atrazine&Roundup WeatherMax+AMS	2 pt&22 oz+2.5 lb	97	99	99	99
Harness&Roundup WeatherMax+AMS	2 pt&22 oz+2.5 lb	99	99	99	99
Harness&Roundup WeatherMax+AMS	1 pt&22 oz+2.5 lb	99	99	99	99
Micro-Tech&Roundup WeatherMax+AMS		99	99	99	99
Dual II Magnum&	1.67 pt&				
Roundup WeatherMax+AMS	22 oz+2.5 lb	99	99	99	99
Keystone LA&	1.1 qt&				
Roundup WeatherMax+AMS	22 oz+2.5 lb	99	99	99	99
Outlook&Roundup WeatherMax+AMS	12 oz&22 oz+2.5 lb	99	99	99	99
Outlook&Roundup WeatherMax+	12 02&22 02+2.0 lb	00	00	00	00
Clarity+NIS+AMS	8 oz+.25%+2.5 lb	99	99	99	99
Lumax&Touchdown Total+AMS	1.5 qt&24 oz+2.5 lb	99	99	99	99
	1.0 902- 02-2.0 10	00	00	00	00

Table 3. Early Postemergence Program in RR-Corn

RCB; 4 reps Variety: DKC 5873RR Planting Date: 5/9/06 EPOST: 6/1/06; Corn V2, 4 lf; Colq 1-4 in; Cowh 1-4 in.	Precipitation: EPOST:	1 st week 2 nd week	1.20 inches 0.22 inches
Soil: Clay; 3.8% OM; 7.4 pH	Colq=Common lambsquarter Cowh=Common waterhemp		

Comments: Herbicide tank mix partners were evaluated for residual weed control after an early postemergence application. Dry spring conditions may have suppressed weed emergence relative to years with more precipitation. Consequently, few treatment differences were observed. All tank mix partners increased control of common lambsquarters relative to Roundup alone.

<u>Treatment</u> Check	<u>Rate/A</u>	% Colq <u>9/29/06</u> 0	% Cowh <u>9/29/06</u> 0
EARLY POSTEMERGENCE			
Roundup WeatherMax+AMS	22 oz+2.5 lb	88	97
Roundup WeatherMax+Resolve+AMS	22 oz+1 oz+2.5 lb	93	99
Roundup WeatherMax+Resolve+atrazine+AMS	22 oz+1 oz+1 pt+2.5 lb	99	99
Roundup WeatherMax+Prowl H ₂ O+AMS	22 oz+2.5 pt+2.5 lb	92	99
Roundup WeatherMax+Lumax+AMS	22 oz+1 qt+2.5 lb	99	99
Roundup WeatherMax+Define SC+AMS	22 oz+12 oz+2.5 lb	96	99
Roundup WeatherMax+Outlook+AMS	22 oz+10 oz+2.5 lb	97	99
Roundup WeatherMax+Harness+AMS	22 oz+1.5 pt+2.5 lb	98	99
Roundup WeatherMax+Cinch ATZ+AMS	22 oz+1 qt+2.5 lb	98	99
Roundup WeatherMax+Stalwart Xtra+AMS	22 oz+1.6 qt+2.5 lb	99	99
Roundup WeatherMax+Stalwart Xtra+AMS	22 oz+1 qt+2.5 lb	98	98
LSD (.05)		3	1

Table 4. Tank-Mixes to Enhance Weed Control with Glyphosate

RCB: 4 reps	Precipitation:		
Variety: DKC 58-73RR	POST:	1 st week	0.04 inches
Planting Date: 5/9/06		2 nd week	1.62 inches
POST: 6/7/06; Corn V4, 8-11 in; Cowh 2-5 in;			
Colq 2-5 in; Vele 2-4 If	Cowh=Common v	waterhemp	
Soil: Clay; 3.8% OM; 7.4 pH	Colq=Common la	mbsquarter	
	Vele=Velvetleaf	-	

Comments: This study was established to evaluate the benefit of adding AMS or low herbicide rates to Roundup. Velvetleaf densities were low and difficult to evaluate for control. Common lambquarters and common waterhemp control declined at the lowest rate of Roundup applied alone. Adding AMS did not result in greater control of common lambsquarters at the lowest application rate. The addition of Aim (0.5 oz/A) or Callisto (1 oz/A) increased common lambsquarters control at the lowest Roundup rate. The addition of Impact (topramezone) or Buctril (bromoxynil) resulted in greater lambsquarters control compared to 10 oz/A Roundup + AMS, but not 20 oz/A Roundup + AMS.

<u>Treatment</u> Check	<u>Rate/A</u>	% Cowh <u>8/30/06</u> 0	% Colq <u>8/30/06</u> 0	% Vele <u>8/30/06</u> 0
POSTEMERGENCE				
Roundup WeatherMax	30 oz	98	94	94
Roundup WeatherMax	20 oz	97	93	92
Roundup WeatherMax	10 oz	95	91	93
Roundup WeatherMax	5 oz	88	63	93
Roundup WeatherMax+AMS	30 oz+2.5 lb	99	97	95
Roundup WeatherMax+AMS	20 oz+2.5 lb	98	94	94
Roundup WeatherMax+AMS	10 oz+2.5 lb	98	76	94
Roundup WeatherMax+AMS	5 oz+2.5 lb	95	69	92
Roundup WeatherMax+Aim+AMS	30 oz+.5 oz+2.5 lb	97	94	95
Roundup WeatherMax+Aim+AMS	20 oz+.5 oz+2.5 lb	96	93	95
Roundup WeatherMax+Aim+AMS	10 oz+.5 oz+2.5 lb	91	90	95
Roundup WeatherMax+Aim+AMS	5 oz+.5 oz+2.5 lb	90	83	94
Roundup WeatherMax+Callisto+AMS	30 oz+1 oz+2.5 lb	99	97	97
Roundup WeatherMax+Callisto+AMS	20 oz+1 oz+2.5 lb	99	99	98
Roundup WeatherMax+Callisto+AMS	10 oz+1 oz+2.5 lb	97	93	97
Roundup WeatherMax+Callisto+AMS	5 oz+1 oz+2.5 lb	95	85	95
Roundup WeatherMax+Impact+AMS	20 oz+.25 oz+2.5 lb	96	90	94
Roundup WeatherMax+Impact+AMS	10 oz+.25 oz+2.5 lb	97	84	92
Roundup WeatherMax+Buctril+AMS	20 oz+5 oz+2.5 lb	96	86	88
Roundup WeatherMax+Buctril+AMS	10 oz+5 oz+2.5 lb	98	89	91
LSD (.05)		3	7	4

Table 5. Glyphosate Programs in Corn

RCB; 4 reps	Precipitation:		
Variety: DKC 58-73; RR 2YG Plus	PRE:	1 st week	0.18 inches
Planting Date: 5/9/06		2 nd week	0.00 inches
PRE: 5/9/06	EPOST:	1 st week	1.20 inches
EPOST: 6/1/06; Corn V2, 4 lf; Cowh 1-4 in; Colq 1-4 in	า.	2 nd week	0.22 inches
POST: 6/7/06; Corn V4, 8-11 in; Cowh 2-5 in; Colq 2-5 ir		1 st week	0.04 inches
Soil: Clay; 3.8% OM; 7.4 pH		2 nd week	1.62 inches

Cowh=Common waterhemp Colq=Common lambsquarter

Comments: Herbicide programs were established to measure potential yield loss associated with early-season weed competition. Nearly complete weed control resulted from each treatment.

<u>Treatment</u> Check	<u>Rate/A</u>	% Cowh <u>9/25/06</u> 0	% Colq <u>9/25/06</u> 0	Yield <u>bu/A</u> 107
EARLY POSTEMERGENCE Roundup WeatherMax+AMS	22 oz+2.5 lb	99	97	118
POSTEMERGENCE Roundup WeatherMax+AMS	22 oz+2.5 lb	99	98	120
EARLY POSTEMERGENCE & POSTEM Roundup WeatherMax+AMS& Roundup WeatherMax+AMS	<u>MERGENCE</u> 22 oz+2.5 lb& 22 oz+2.5 lb	99	97	121
PREEMERGENCE & POSTEMERGEN				
Harness Xtra 6L& Roundup WeatherMax+AMS Harness Xtra 6L&	3 pt& 22 oz+2.5 lb 1.5 pt&	99	98	128
Roundup WeatherMax+AMS	22 oz+2.5 lb	99	99	128
LSD (.05)		0	1	15

Table 6. Sequential and Total Postemergence Programs with Glyphosate in Corn

RCB; 4 reps	Precipitation:		
Variety: DKC 58-73	PRE:	1 st week	0.08 inches
Planting Date: 5/5/06		2 nd week	0.10 inches
PRE: 5/5/06	POST:	1 st week	0.04 inches
POST: 6/7/06; Corn V4, 10-12 in; Cowh 2-8 in;		2 nd week	1.62 inches
Colq 2-7 in; Pesw 5-10 in.	POST2:	1 st week	1.70 inches
POST2: 6/15/06; Corn 12-16 in; Cowh 2-8 in;		2 nd week	0.24 inches
Colq 4-8 in; Pesw 8-12 in.			
Soil: Silty clay; 4.2% OM; 7.3 pH	Colq=Common la	mbsquarter	

Colq=Common lambsquarter Cowh=Common waterhemp Pesw=Pennsylvania smartweed

Comments: Status (dicamba + diflufenzopyr + isoxidifen) was evaluated with other programs in Roundup Ready corn for enhanced broadleaf weed control. All treatments, including Roundup alone, provided nearly complete weed control.

<u>Treatment</u> Check	<u>Rate/A</u>	% Colq <u>7/11/06</u> 0	% Cowh <u>7/11/06</u> 0	% Pesw <u>7/11/06</u> 0	% Colq <u>9/29/06</u> 0	% Cowh <u>9/29/06</u> 0	% Pesw <u>9/29/06</u> 0	Yield <u>bu/A</u> 124
POSTEMERGENCE								
Roundup WeatherMax+AMS	22 oz+3 lb	98	99	98	97	98	99	190
POSTEMERGENCE 2								
Roundup WeatherMax+AMS	22 oz+3 lb	98	98	95	97	99	97	183
<u>POSTEMERGENCE</u>								
Glyphosate Plus 3L+	24 oz+							
Status+AMS	2.5 oz+3 lb	99	99	98	97	99	99	186
Glyphosate Plus 3L+	24 oz+							
Prowl H ₂ O+AMS	2.5 pt+3 lb	96	99	99	97	99	99	186
Glyphosate Plus 3L+	24 oz+							
Outlook+Clarity+AMS	12 oz+8 oz+3 lb	99	99	99	98	99	99	177
PREEMERGENCE & POSTEM	RGENCE							
Outlook&	12 oz&							
Glyphosate Plus 3L+AMS	24 oz+3 lb	98	99	95	96	99	98	185
Outlook&	12 oz&	30	33	30	30	33	30	100
Glyphosate Plus 3L+	24 oz+							
Status+AMS	2.5 oz+3 lb	99	99	99	97	99	99	186
Status+Amo	2.0 02+0 10	33	33	33	31	33	33	100
LSD (.05)		1	1	3	1	1	1	13

Table 7. Comparison of Weed Control Programs in RR Corn

RCB; 4 reps	Precipitation:		
Variety: DKC 58-73	PRE:	1 st week	0.08 inches
Planting Date: 5/5/06		2 nd week	0.10 inches
PRE: 5/5/06	EPOST:	1 st week	1.20 inches
EPOST: 6/1/06; Corn V3, 4-5 lf; Grft 1-4 lf; Colq1-4 in;		2 nd week	0.22 inches
Cowh 1-3 in; Pesw 3-6 in.	POST:	1 st week	0.04 inches
POST: 6/7/06; Corn V4, 10-12 in; Grft 2-5 in, 2-5 lf;		2 nd week	1.62 inches
Colq 2-7 in; Cowh 2-6 in; Pesw 5-9 in.			
Soil: Silty clay; 4.2% OM; 7.3 pH	Grft=Green foxtail		
		and the second second	

Colq=Common lambsquarter Cowh=Common waterhemp Pesw=Pennsylvania smartweed

Comments: Pre- and post-emergence weed control programs were evaluated in Roundup Ready corn. The pre-emergence herbicides, Lumax and Radius, each provided nearly complete weed control. Soil residual herbicides applied early post-emergence with Roundup or Touchdown also resulted in nearly complete weed control.

Treatment	Rate/A	% Grft 7/11/06	•	% Cowh <u>7/11/06</u>			% Colq <u>9/29/06</u>		% Pesw 9/29/06	Yield bu/A
Check		0	0	0	0	0	0	0	0	0
PREEMERGENCE										
Lumax	2.5 qt	96	99	99	99	93	99	99	99	93
Radius	18 oz	97	99	98	97	93	99	99	98	93
PREEMERGENCE & POS	TEMERGEN	CE								
Harness Xtra 6L&	2.4 pt&									
Roundup Original Max	21.3 oz	99	99	99	97	99	99	99	99	99
Atrazine&	2 qt&									
Roundup Original Max	21.3 oz	98	99	99	98	97	99	99	99	99
EARLY POSTEMERGENO	: <u>E</u>									
Harness Xtra 6L+	2.4 pt+									
Roundup Original Max	21.3 oz	99	99	99	98	99	99	99	98	98
Degree Xtra+	2 qt+									
Roundup Original Max	21.3 oz	99	97	99	96	98	96	99	98	99
Lumax+	2 qt+									
Touchdown Total	24 oz	99	99	99	99	99	99	99	99	97
LSD (.05)		3	1	1	3	7	1	1	2	7

Table 8. Weed Control Programs in Corn

RCB; 4 reps	Precipitation:		
Variety: Pioneer 38H69 RR/LL	PRE:	1 st week	0.08 inches
Planting Date: 5/5/06		2 nd week	0.10 inches
PRE: 5/5/06	EPOST:	1 st week	1.20 inches
EPOST: 6/1/06; Corn V3, 4-5 lf; Cowh 1-3 in.		2 nd week	0.22 inches
POST: 6/7/06; Corn V4, 6-12 in; Cowh 2-7 in.	POST:	1 st week	0.04 inches
Soil: Silty clay; 3.9% OM; 7.0 pH		2 nd week	1.62 inches

Cowh=Common waterhemp

Comments: Weed management programs were evaluated for conventional, Roundup Ready, and Liberty systems. All treatments resulted in nearly complete weed control.

<u>Treatment</u> Check	<u>Rate/A</u>	% Cowh <u>6/30/06</u> 0	% Cowh <u>9/25/06</u> 0	Yield <u>bu/A</u> 138
PREEMERGENCE				
Lumax	3 qt	100	99	167
PREEMERGENCE & EARLY POSTEMERG	<u>ENCE</u>			
Lumax&Lumax+NIS	2 qt&1 qt+.25%	99	99	171
PREEMERGENCE & POSTEMERGENCE				
Dual II Magnum&Callisto+atrazine+	1.67 pt&3 oz+1 pt+			
COC+AMS	1%+15 lb/100 gal	100	99	170
Surpass&Hornet WDG+atrazine+	2.5 pt&3 oz+1 pt+	~~		400
COC+AMS	1%+15 lb/100 gal	99	99	168
Outlook&Distinct+atrazine+ NIS+AMS	18 oz&4 oz+1 pt+ .25%+15 lb/100 gal	99	99	171
Lumax&Liberty+AMS	1.5 qt&24 oz+15 lb/100 gal	100	99 99	167
Lunaxdelberty+Amo	1.5 qlaz4 024 15 lb/ 100 gai	100	33	107
EARLY POSTEMERGENCE				
Lumax+Liberty+AMS	1.5 qt+24 oz+15 lb/100 gal	100	99	172
PREEMERGENCE & POSTEMERGENCE				
Define&Liberty+atrazine+AMS	13 oz&32 oz+1 pt+15 lb/100 gal	99	99	162
Radius&Liberty+atrazine+AMS	13 oz&32 oz+1 pt+15 lb/100 gal		99	164
Dual II Magnum&Touchdown Total+AMS	1.33 pt&24 oz+15 lb/100 gal	98	98	178
Dual II Magnum&Touchdown Total+	1.33 pt&24 oz+			
Callisto+AMS	3 oz+15 lb/100 gal	100	99	168
Lumax&Touchdown Total+AMS	1.5 qt&24 oz+15 lb/100 gal	100	99	170
POSTEMERGENCE				
Touchdown Total+AMS	24 oz+15 lb/100 gal	97	95	164

2006 Weed Control Programs in Corn Southeast Research Farm Page 2

Page 2		% Cowh	% Cowh	Yield
Treatment	Rate/A		<u>9/25/06</u>	bu/A
EARLY POSTEMERGENCE				
Touchdown Total+AMS	24 oz+15 lb/100 gal	96	95	168
Lumax+Touchdown Total+AMS	1.5 pt+24 oz+15 lb/100 gal	99	98	157
Camix+Touchdown Total+AMS	1.5 pt+24 oz+15 lb/100 gal	99	99	165
Resolve+atrazine+	1 oz+1 pt+			
Touchdown Total+AMS	24 oz+15 lb/100 gal	97	97	176
Lumax+Touchdown Total+AMS	1.5 qt+24 oz+15 lb/100 gal	100	99	175
PREEMERGENCE & POSTEMERGENCE	4			
Harness Xtra 6L&	1 qt&	100	00	475
Roundup WeatherMax+AMS	22 oz+15 lb/100 gal	100	99	175
POSTEMERGENCE				
Roundup WeatherMax+AMS	22 oz+15 lb/100 gal	96	96	165
	22 02 10 10, 100 gai	00	00	100
EARLY POSTEMERGENCE & POSTEMER	GENCE			
Roundup WeatherMax+AMS&	22 oz+15 lb/100 gal&			
Roundup WeatherMax+AMS	22 oz+15 lb/100 gal	98	98	165
	-			
<u>POSTEMERGENCE</u>				
Roundup WeatherMax+Resolve+AMS	22 oz+1 oz+15 lb/100 gal	98	99	164
PREEMERGENCE & POSTEMERGENCE				
Outlook&Roundup WeatherMax+	12 oz&11 oz+			
Distinct+AMS	4 oz+15 lb/100 gal	98	98	169
		2	4	40
LSD (.05)		2	1	13

Table 9. Program Approaches for Weed Control in Corn

RCB; 4 reps	Precipitation:		
Variety: Pioneer 38H69 RR/LL	PRE:	1 st week	0.08 inches
Planting Date: 5/5/06		2 nd week	0.10 inches
PRE: 5/5/06	EPOST:	1 st week	1.20 inches
EPOST: 6/1/06; Corn V3, 4-5 lf; Cowh 1-3 in.		2 nd week	0.22 inches
POST: 6/7/06; Corn V4, 6-12 in; Cowh 2-7 in.	POST:	1 st week	0.04 inches
Soil: Silty clay; 3.9% OM; 7.0 pH		2 nd week	1.62 inches

Cowh=Common waterhemp

Comments: Weed management programs were evaluated for conventional, Roundup Ready, and Liberty systems. All treatments resulted in nearly complete weed control.

<u>Treatment</u> Check	<u>Rate/A</u>	% Cowh <u>6/30/06</u> 0	% Cowh <u>9/25/06</u> 0	Yield <u>bu/A</u> 138
PREEMERGENCE Lumax	3 qt	100	99	167
PREEMERGENCE & EARLY POSTEMERG Lumax&Lumax+NIS	<u>ENCE</u> 2 qt&1 qt+.25%	99	99	171
PREEMERGENCE & POSTEMERGENCE Dual II Magnum&Callisto+atrazine+ COC+AMS	1.67 pt&3 oz+1 pt+ 1%+15 lb/100 gal	100	99	170
Surpass&Hornet WDG+atrazine+ COC+AMS Outlook&Distinct+atrazine+ NIS+AMS	2.5 pt&3 oz+1 pt+ 1%+15 lb/100 gal 18 oz&4 oz+1 pt+ .25%+15 lb/100 gal	99 99	99 99	168 171
Lumax&Liberty+AMS	1.5 qt&24 oz+15 lb/100 gal	100	99 99	167
Lumax+Liberty+AMS	1.5 qt+24 oz+15 lb/100 gal	100	99	172
PREEMERGENCE & POSTEMERGENCE Define&Liberty+atrazine+AMS Radius&Liberty+atrazine+AMS Dual II Magnum&Touchdown Total+AMS Dual II Magnum&Touchdown Total+	13 oz&32 oz+1 pt+15 lb/100 gal 13 oz&32 oz+1 pt+15 lb/100 gal 1.33 pt&24 oz+15 lb/100 gal 1.33 pt&24 oz+		99 99 98	162 164 178
Callisto+AMS Lumax&Touchdown Total+AMS	3 oz+15 lb/100 gal 1.5 qt&24 oz+15 lb/100 gal	100 100	99 99	168 170
POSTEMERGENCE Touchdown Total+AMS	24 oz+15 lb/100 gal	97	95	164

2006 Weed Control Programs in Corn Southeast Research Farm Page 2

Page 2		% Cowh	% Cowh	Yield
Treatment	Rate/A		<u>9/25/06</u>	bu/A
EARLY POSTEMERGENCE				
Touchdown Total+AMS	24 oz+15 lb/100 gal	96	95	168
Lumax+Touchdown Total+AMS	1.5 pt+24 oz+15 lb/100 gal	99	98	157
Camix+Touchdown Total+AMS	1.5 pt+24 oz+15 lb/100 gal	99	99	165
Resolve+atrazine+	1 oz+1 pt+			
Touchdown Total+AMS	24 oz+15 lb/100 gal	97	97	176
Lumax+Touchdown Total+AMS	1.5 qt+24 oz+15 lb/100 gal	100	99	175
PREEMERGENCE & POSTEMERGENCE	4			
Harness Xtra 6L&	1 qt&	100	00	475
Roundup WeatherMax+AMS	22 oz+15 lb/100 gal	100	99	175
POSTEMERGENCE				
Roundup WeatherMax+AMS	22 oz+15 lb/100 gal	96	96	165
	22 02 · 10 is, 100 gai	00	00	100
EARLY POSTEMERGENCE & POSTEMER	GENCE			
Roundup WeatherMax+AMS&	22 oz+15 lb/100 gal&			
Roundup WeatherMax+AMS	22 oz+15 lb/100 gal	98	98	165
	-			
<u>POSTEMERGENCE</u>				
Roundup WeatherMax+Resolve+AMS	22 oz+1 oz+15 lb/100 gal	98	99	164
PREEMERGENCE & POSTEMERGENCE				
Outlook&Roundup WeatherMax+	12 oz&11 oz+			
Distinct+AMS	4 oz+15 lb/100 gal	98	98	169
		2	4	40
LSD (.05)		2	1	13

Table 10. Pre Followed by Post Weed Control in GT-Corn

RCB; 4 reps	Precipitation:		
Variety: DKC 58-73	PRE:	1 st week	0.08 inches
Planting Date: 5/5/06		2 nd week	0.10 inches
PRE: 5/5/06	EPOST:	1 st week	1.20 inches
EPOST: 6/1/06; Corn V3, 4-5 lf; Cowh 1-3 in;		2 nd week	0.22 inches
Colq 1-4 in; Pesw 3-6 in.	POST:	1 st week	0.04 inches
POST: 6/7/06; Corn V9, 10-12 in; Cowh 2-6 in;		2 nd week	1.62 inches
Colq 2-7 in; Pesw 5-9 in.			

Soil: Silty clay; 4.2% OM; 7.3 pH

Colq=Common lambsquarter Cowh=Common waterhemp Pesw=Pennsylvania smartweed

Comments: Low rates of Epic (flufenacet + isoxaflutole) and atrazine were evaluated in programs with Buccaneer (glyphosate). All treatments resulted in nearly complete weed control, including the lowest rates of Epic. However, the spring was relatively dry which may have suppressed weed emergence.

-						% Cowh		Yield
<u>Treatment</u> PREEMERGENCE & POSTE	<u>Rate/A</u>	<u>7/11/06</u>	<u>7/11/06</u>	<u>7/11/06</u>	<u>9/29/06</u>	<u>9/29/06</u>	<u>9/29/06</u>	<u>bu/A</u>
Epic+atrazine&	5 oz+1 qt&							
Buccaneer Plus+Array	32 oz+9 lb/100 gal	99	99	99	99	99	99	187
Epic+atrazine&	6 oz+1 qt&	33	33	33	33	33	33	107
Buccaneer Plus+Array	32 oz+9 lb/100 gal	99	99	98	99	99	98	192
Epic+atrazine&	7 oz+1 qt&	33	33	90	33	33	90	192
Buccaneer Plus+Array	32 oz+9 lb/100 gal	99	99	99	98	99	99	193
Epic+atrazine&	8 oz+1 qt&	33	33	33	30	33	33	135
Buccaneer Plus+Array	32 oz+9 lb/100 gal	99	99	99	99	99	99	185
Duccaneer FlustAnay	52 02+3 15/ 100 gai	33	33	33	33	33	33	105
Epic+Volley ATZ&	5 oz+1.8 qt&							
Buccaneer Plus+Array	32 oz+9 lb/100 gal	99	99	99	99	99	99	186
Volley ATZ&	1.8 qt&							
Buccaneer Plus+Array	32 oz+9 lb/100 gal	99	99	98	98	99	99	194
Propel ATZ&	2.67 pt&							
Buccaneer Plus+Array	32 oz+9 lb/100 gal	99	99	98	98	99	98	196
Atrazine&	1 qt&							
Buccaneer Plus+Array	32 oz+9 lb/100 gal	98	99	98	99	99	98	190
-	-							
EARLY POSTEMERGENCE								
Volley ATZ+atrazine+	1.8 qt+1 qt+							
Buccaneer Plus+Array	32 oz+9 lb/100 gal	99	99	99	98	99	99	161
EARLY POSTEMERGENCE								
Buccaneer Plus+Array&	32 oz+9 lb/100 gal&							
Buccaneer Plus+Array	32 oz+9 lb/100 gal	94	98	99	92	99	99	186
Check		0	0	0	0	0	0	160
Olieck		0	0	0	0	0	U	100
LSD (.05)		2	0	1	1	0	1	16
		-	Ũ		•	Ŭ	•	

Table 11. Weed Control in Corn with Pre and Postemergence Combinations

RCB; 4 reps	Precipitation:		
Variety: Pioneer 38H69 RR/LL	PRE:	1 st week	0.08 inches
Planting Date: 5/5/06		2 nd week	0.10 inches
PRE: 5/5/06	EPOST:	1 st week	1.20 inches
EPOST: 6/4/06; Corn V3, 4-5 lf; Cowh 1-3 in;		2 nd week	0.22 inches
Colq 1-4 in.	POST:	1 st week	0.04 inches
POST: 6/7/06; Corn V4, 10-12 in; Cowh 2-7 in;		2 nd week	1.62 inches
Colq 2-7 in.			
Soil: Silty clay; 3.9% OM; 7.0 pH	Cowh=Common	waterhemp	

Colq=Common lambsquarter

Comments: Various weed control programs in conventional and Liberty programs. All treatments resulted in nearly complete weed control.

<u>Treatment</u> Check	Rate/A	% Cowh <u>6/30/06</u> 0	% Colq <u>6/30/06</u> 0	% Cowh <u>9/25/06</u>	% Colq <u>9/25/06</u> 0
Offeck		0	0	0	0
PREEMERGENCE					
Radius	18 oz	98	99	97	99
Radius+atrazine	18 oz+2 pt	100	99	99	98
Balance Pro+atrazine	2.5 oz+2 pt	99	100	98	99
PREEMERGENCE & POSTEMER	<u>GENCE</u>				
Balance Pro&Liberty+	1.5 oz&32 oz+				
atrazine+AMS	1 pt+3 lb	100	100	99	99
Balance Pro&Option+	1.5 oz&1.5 oz+				
MSO+28% N	1.5 pt+1.5 qt	92	100	92	99
Define&Liberty+atrazine+AMS	12 oz&32 oz+1 pt+3 lb	100	100	98	98
EARLY POSTEMERGENCE					
Liberty+atrazine+AMS	32 oz+1 pt+3 lb	98	99	98	96
PREEMERGENCE & POSTEMER	GENCE				
Define&Liberty+Callisto+AMS	12 oz&32 oz+1.5 oz+3 lb	99	100	98	98
EARLY POSTEMERGENCE					
Liberty+Define+atrazine+AMS	32 oz+10 oz+1 pt+3 lb	99	97	99	96
POSTEMERGENCE					
Define+Option+Distinct+	12 oz+1.5 oz+4 oz+				
MSO+28% N	1.5 pt+1.5 qt	96	100	99	97
Option+Distinct+MSO+28% N	1.5 oz+4 oz+1.5 pt+1.5 qt	96	100	98	96
LSD (.05)		2	1	1	2

Table 12. Weed Control in Corn with Stout Tank-Mixtures

RCB; 4 reps	Precipitation:		
Variety: DKC 58-73	POST:	1 st week	0.04 inches
Planting Date: 5/5/06		2 nd week	1.62 inches
POST: 6/7/06; Corn V4, 10-12 in; Grft 2-5 lf, 2-5 in.;			
Cowh 2-7 in.	Grft=Green foxtail		
Soil: Silty clay loam; 3.7% OM; 6.8 pH	Cowh=Common wa	terhemp	

Comments: Weed control programs with Stout were evaluated. Stout is a new herbicide premix of nicosulfuron (e.g. Accent) and thifensulfuron (e.g. Harmony) which is primarily intended for grass control. However, Stout alone resulted in nearly 90% control of common waterhemp on the July evaluation date. Common waterhemp was nearly completely controlled when low rates of broadleaf herbicides, such as Callisto or atrazine, were applied with Stout.

Treatment	Rate/A		% Cowh <u>7/20/06</u>			Yield <u>bu/A</u>
Check		0	0	0	0	167
POSTEMERGENCE		•	-	-	•	
Stout+COC+AMS	.5 oz+1%+2 lb	94	88	97	94	186
Stout+COC+AMS	.75 oz+1%+2 lb	97	92	99	95	179
Stout+Callisto+COC+AMS	.5 oz+1.5 oz+1%+2 lb	96	99	97	99	186
Stout+Callisto+COC+AMS	.75 oz+1.5 oz+1%+2 lb	96	99	96	99	179
Stout+Callisto+Atrazine 90DF+	.5 oz+1.5 oz+.56 lb+					
COC+AMS	1%+2 lb	95	99	96	99	189
Stout+Callisto+Atrazine 90DF+	.75 oz+1.5 oz+.56 lb+					
COC+AMS	1%+2 lb	95	99	96	99	191
Stout+Atrazine 90DF+COC+AMS	.5 oz+.56 lb+1%+2 lb	93	97	92	98	186
Stout+Atrazine 90DF+COC+AMS	.75 oz+.56 lb+1%+2 lb	96	98	96	99	191
Stout+Impact+COC+AMS	.5 oz+.75 oz+1%+2 lb	98	99	98	99	187
Stout+Impact+COC+AMS	.75 oz+.75 oz+1%+2 lb	98	99	99	99	187
Stout+Impact+Atrazine 90DF+	.5 oz+.75 oz+.56 lb+					
COC+AMS	1%+2 lb	98	99	98	99	183
Stout+Impact+Atrazine 90DF+	.75 oz+.75 oz+.56 lb+					
COC+AMS	1%+2 lb	98	99	98	99	194
Steadfast+Callisto+Atrazine 90DF+						
COC+AMS	1%+2 lb	97	99	96	99	192
Stout+Clarity+COC+AMS	.5 oz+4 oz+1%+2 lb	97	97	95	98	177
Stout+Clarity+COC+AMS	.75 oz+4 oz+1%+2 lb	96	96	96	98	180
Stout+Lumax+NIS+AMS	.5 oz+2 pt+.25%+2 lb	97	99	97	99	182
Stout+Lumax+NIS+AMS	.75 oz+2 pt+.25%+2 lb	97	99	97	99	183
Stout+Lexar+NIS+AMS	.5 oz+2.3 pt+.25%+2 lb	96	99	97	99	175
Stout+Lexar+NIS+AMS	.75 oz+2.3 pt+.25%+2 lb	97	99	98	99	186
Stout+Distinct+COC+AMS	.5 oz+2 oz+1%+2 lb	95	98	95	99	189
Stout+Distinct+COC+AMS	.75 oz+2 oz+1%+2 lb	98	99	99	99	181
LSD (.05)		3	1	4	2	13

Table 13. Postemergence Broadleaf Control in RR-Corn

RCB; 4 reps	Precipitation:		
Variety: DKC-5873	PRE:	1 st week	0.08 inches
Planting Date: 5/5/06		2 nd week	0.10 inches
PRE: 5/5/06	EPOST:	1 st week	1.20 inches
EPOST: 6/1/06; Corn V3, 4-5 lf; Vema 1-3 in;		2 nd week	0.22 inches
Colq 1-4 in; Cowh 1-3 in.			
Soil: Silty clay; 4.2% OM; 7.3 pH	Vema=Venice ma	allow	
	Colq=Common la	mbsquarter	

Cowh=Common waterhemp

Comments: This study was established to evaluate herbicide programs with low rates of Permit and Dual in Roundup Ready corn. A single application of Roundup resulted in nearly complete weed control. The low rate of Dual II Magnum also provided nearly complete control of common waterhemp and about 80% control of common lambsquarters. The pre- and early post-emergence programs all resulted in nearly complete weed control.

Treatment	Rate/A	% Vema <u>7/11/06</u>	% Colq <u>7/11/06</u>	% Cowh 7/11/06	% Colq <u>9/29/06</u>	% Cowh 9/29/06	Yield <u>bu/A</u>
Check		0	0	0	0	0	154
PREEMERGENCE & EARLY POSTEMERGENCE							
Dual II Magnum&	.8 pt&	_					
GWN-3039+	4 oz+	00	00	00	00	00	474
Roundup WeatherMax+NIS	22 oz+.125%	99	99	99	99	99	171
Dual II Magnum&	.8 pt&						
Permit+	.5 oz+						
Roundup WeatherMax+NIS	22 oz+.125%	99	99	99	99	99	181
Dual II Magnum&	.8 pt&						
Permit+	.66 oz+						
Roundup WeatherMax+NIS	22 oz+.125%	99	99	99	98	99	172
EARLY POSTEMERGENCE							
Roundup WeatherMax+NIS	22 oz+.125%	96	99	99	98	99	181
PREEMERGENCE	0						
Dual II Magnum	.8 pt	96	81	91	84	98	171
LSD (.05)		3	5	1	2	1	21

Table 14. Postemergence Broadleaf Control in Corn

RCB; 4 reps Variety: DKC 58-73	Precipitation: PRE:	1 st week	0.08 inches
Planting Date: 5/5/06		2 nd week	0.10 inches
PRE: 5/5/06	EPOST:	1 st week	0.04 inches
EPOST: 6/7/06; Corn V4, 10-12 in; Grft 2-5 in, 2-5 lf;		2 nd week	1.62 inches
Colq 2–7 in; Cowh 2-7 in; Pesw 5-10 in.			
Soil: Silty clay loam; 3.7% OM; 6.8 pH	Grft=Green foxtail		
	Colq=Common lamb	squarter	
	Cowh=Common wate	erhemp	

Comments: Broadleaf weed control programs were evaluated for conventional corn. The reduced rate of Dual II Magnum resulted in 73-87% green foxtail control. All treatments resulted in nearly complete control of the broadleaf weed species. The most economical broadleaf treatment may have been Aim+atrazine, which may cost about \$6/A.

Pesw=Pennsylvania smartweed

<u>Treatment</u> Check	<u>Rate/A</u>	% Grft <u>7/11/06</u> 0	% Colq <u>7/11/06</u> 0	% Cowh <u>7/11/06</u> 0	% Pesw <u>7/11/06</u> 0	% Grft <u>9/29/06</u> 0	% Colq <u>9/29/06</u> 0	% Cowh <u>9/29/06</u> 0	% Pesw <u>9/29/06</u> 0
PREEMERGENCE & E Dual II Magnum& Permit+atrazine+ COC+AMS	ARLY POSTEMERGENCE 1 pt& .66 oz+1 pt+ 1%+8.5 lb/100 gal	79	97	98	94	79	98	99	96
Dual II Magnum& Permit+Callisto+ COC+AMS	1 pt& .66 oz+1 oz+ 1%+8.5 lb/100 gal	73	99	98	97	75	99	99	97
Dual II Magnum& Permit+Impact+ COC+AMS	1 pt& .66 oz+.5 oz+ 1%+8.5 lb/100 gal	86	97	97	96	86	98	99	98
Dual II Magnum& Callisto+atrazine+ COC+AMS	1 pt& 3 oz+.66 pt+ 1%+8.5 lb/100 gal	77	99	99	97	79	99	99	99
Dual II Magnum& Hornet WDG+ MSO+28% N	1 pt& 3 oz+ 1%+2.5%	87	99	95	97	85	99	98	99
Dual II Magnum& Aim+atrazine+ COC+28% N	1 pt& .5 oz+2 pt+ 1%+2 qt	78	98	98	97	75	98	99	99
LSD (.05)		12	2	4	4	15	2	1	3

Table 15. Evaluation of Impact for Weed Control in Corn

RCB; 4 reps	Precipitation:		
Variety: DKC 58-73	EPOST:	1 st week	1.20 inches
Planting Date: 5/9/06		2 nd week	0.22 inches
EPOST: 6/1/06; Corn V2, 4 lf; Vele 2-3 lf; Colq 1-4 in;	POST:	1 st week	0.04 inches
Cowh 1-4 in; Pesw 2-5 in.		2 nd week	1.62 inches
POST: 6/7/06; Corn V4, 8-11 in; Vele 2-4 lf; Colq 2-5 in;			
Cowh 2-5 in; Pesw 4-8 in.			
Soil: Clay; 3.8% OM; 7.4 pH	Vele=Velvetleaf		
	Colq=Common la	mbsquarter	
	Cowh=Common v	vaterhemp	

Cowh=Common waterhemp Pesw=Pennsylvania smartweed

Comments: Herbicide programs in conventional corn with Impact (topramezone) were evaluated for weed control. Impact was applied at 0.5 oz/A, but recommended rates range from 0.5-0.75 oz/A. All treatments applied early post- or post-emergence resulted in nearly complete weed control.

		% Vele	% Colq	% Cowh			% Colq
<u>Treatment</u>	<u>Rate/A</u>	<u>7/11/06</u>	<u>7/11/06</u>	<u>7/11/06</u>	<u>7/11/06</u>	<u>9/25/06</u>	<u>9/25/06</u>
Check		0	0	0	0	0	0
EARLY POSTEMERGENCE							
Impact+Outlook+atrazine+	.5 oz+14 oz+1 qt+						
NIS+28% N	.25%+2.5%	99	99	99	98	99	99
Impact+Prowl H ₂ O+atrazine+	.5 oz+48 oz+1 qt+						
MSO+28% N	1%+2.5%	99	99	99	98	99	99
Lumax+atrazine+NIS	2 qt+1 pt+.25%	99	99	99	99	99	99
POSTEMERGENCE							
Steadfast+atrazine+	.75 oz+1 pt+						
MSO+28% N	1%+2.5%	99	98	97	98	98	98
Impact+Steadfast+atrazine+	.5 oz+.75 oz+1 pt+	-					
MSO+28% N	1%+2.5%	99	99	99	97	99	99
Callisto+Steadfast+atrazine+	2 oz+.75 oz+.5 pt+	-					
COC+28% N	1%+2.5%	98	99	99	98	99	99
Impact+Accent+atrazine+	.5 oz+.66 oz+1 pt+	-					
MSO+28% N	1%+2.5%	99	99	99	98	99	99
LSD (.05)		1	1	1	2	1	1

Table 16. Impact Combinations with Glyphosate

LSD (.05)

	5/9/06 Corn V4, 8-11 in; Vele 2-4 lf; Pesw 4-8 in.	Colq 2-5 in;	Vele Cole Cov	vh=Com	leaf non lamb mon wat	1 st wee 2 nd wee 1 st wee 2 nd wee psquarter terhemp	ek ek ek r	0.18 incl 0.00 incl 0.04 incl 1.62 incl	hes hes
Comments:	Two pass programs with Im provides broadleaf weed co crabgrass. Low rates of Imp treatment.	ntrol, but also pact were ap	o has so plied. N	me activ early coi	ity on fo mplete w	xtails, ba veed con	arnyardg itrol resu	rass, and ilted from	d n each
Treatment	Rate/A	% Vele 7/11/06	-			% Cowh 9/25/06	•	% Vele 9/25/06	Yield bu/A
Check	<u></u>	0	0	0	0	<u>9/23/00</u> 0	<u>9/25/00</u> 0	<u>9/25/00</u> 0	126
Harness& Roundup V AMS Harnessℑ	NCE & POSTEMERGENCE 1.25 pt& VeatherMax+ 22 oz+ 8.5 lb/100 gal pact+ 1.25 pt&.5 oz+ VeatherMax+ 22 oz+ 8.5 lb/100 gal		99 98	99 99	98 99	99 98	98 98	98 98	146 155
Harnessℑ Roundup V atrazine+A	pact+ 1.25 pt&.5 oz+ VeatherMax+ 22 oz+		99	99	98	99	97	98	157

Table 17. Weed Control in Corn with Laudis

RCB; 4 reps	Precipitation:		
Variety: Pioneer 38H69 RR/LL	PRE:	1 st week	0.08 inches
Planting Date: 5/5/06		2 nd week	0.10 inches
PRE: 5/5/06	EPOST:	1 st week	1.20 inches
EPOST: 6/1/06; Corn V3, 4-5 lf; Cowh 1-3 in; Colq 1-4 i	n.	2 nd week	0.22 inches
POST: 6/7/06; Corn V4, 10-12 in; Cowh 2-7 in;	POST:	1 st week	0.04 inches
Colq 2-7 in.		2 nd week	1.62 inches

Soil: Silty clay; 3.9% OM; 7.0 pH

Cowh=Common waterhemp Colq=Common lambsquarters

Comments: Laudis (tembotrione) is a new herbicide chemistry for control of broadleaf weeds and some grass weed species in corn. Laudis is an HPPD-inhibiting herbicide with a similar site of action as Callisto (mesotrione) or Impact (topramezone). In this study, Laudis was evaluated for broadleaf weed control in conventional, Roundup Ready, and Liberty Link corn weed control programs. Most treatments resulted in nearly complete broadleaf weed control.

Treatment	Rate/A	% Cowh <u>6/30/06</u>	% Colq <u>6/30/06</u>	% Cowh <u>9/25/06</u>	% Colq <u>9/25/06</u>
Check	<u></u>	0	0	<u>9/29/00</u> 0	0
PREEMERGENCE & POSTEMERG	GENCE				
Radius&Laudis+COC+28% N	18 oz&3 oz+1%+1.5 qt	100	100	99	99
Radius&Laudis+atrazine+	8 oz&3 oz+1 pt+				
MSO+28% N	1%+1.5 qt	100	100	99	99
Balance Pro&Laudis+atrazine+	1.5 oz&3 oz+1 qt+				
MSO+28% N	1%+1.5 qt	100	100	99	99
Balance Pro+atrazine&	1.5 oz+1 pt&				
Laudis+MSO+28% N	3 oz+1%+1.5 qt	100	100	99	99
Define&Laudis+atrazine+	21 oz&3 oz+1 pt+				
COC+28% N	1%+1.5 qt	100	100	99	98
DOSTEMEDOENCE					
<u>POSTEMERGENCE</u> Liberty+Laudis+AMS	32 oz+1 oz+17 lb/100 gal	99	93	99	88
Liberty+atrazine+AMS	32 oz+1 pt+17 lb/100 gal	99 99	93 97	99 99	94
Liberty+Laudis+	32 0z+1 0z+	33	31	33	34
atrazine+AMS	1 pt+17 lb/100 gal	100	99	99	97
Laudis+	1 oz+	100	00	00	57
Roundup WeatherMax+AMS	22 oz+8.5 lb/100 gal	99	95	99	93
	22 02 010 12, 100 gai	00	00	00	00
Roundup WeatherMax+	22 oz+				
atrazine+AMS	1 pt+8.5 lb/100 gal	99	97	99	97
Roundup WeatherMax+	22 oz+				
Laudis+atrazine+AMS	1 oz+1 pt+8.5 lb/100 gal	100	99	99	98

2006 Weed Control in Corn with AE-747 Southeast Research Farm Page 2

Treedment	Dete/A	% Cowh	% Colq	% Cowh	% Colq
<u>Treatment</u>	<u>Rate/A</u>	<u>6/30/06</u>	<u>6/30/06</u>	<u>9/25/06</u>	<u>9/25/06</u>
<u>EARLY POSTEMERGENCE</u>					
Laudis+Option+MSO+28% N	3 oz+1.5 oz+1%+1.5 qt	100	100	98	97
Laudis+Accent+MSO+28% N	3 oz+.25 oz+1%+1.5 qt	99	99	99	96
Laudis+Stout+MSO+28% N	3 oz+.5 oz+1%+1.5 qt	100	99	99	97
Laudis+atrazine+Resolve+	3 oz+1 pt+1 oz+				
MSO+28% N	1%+1.5 qt	100	99	99	99
PREEMERGENCE & EARLY POS	TEMERGENCE				
Dual II Magnum&Laudis+	1 pt&3 oz+				
Atrazine+MSO+28% N	1 pt+1%+1.5 qt	100	100	99	98
LSD (.05)		1	2	1	3

Table 18. Evaluation of Glyphosate Adjuvants in Corn

RCB; 4 reps	Precipitation:		
Variety: DKC 58-73 RR	POST:	1 st week	0.04 inches
Planting Date: 5/5/06		2 nd week	1.62 inches
POST: 6/7/06; Corn V4, 10-12 in; Cowh 2-7 in;			
Colq 2-7 in; Pesw 5-10 in.	Cowh=Common	waterhemp	
Soil: Silty clay; 4.2% OM; 7.3 pH	Colq=Common la	ambsquarter	
	Pesw=Pennsylva	ania smartweed	

Comments: Various herbicide adjuvants were evaluated for effects on weed control. Touchdown Total alone provided nearly complete weed control at 24 oz/A, so the benefits of adjuvants were not measurable for the weeds present in this study.

<u>Treatment</u> Check	<u>Rate/A</u> 	% Cowh <u>6/6/06</u> 0	% Colq <u>6/6/06</u> 0	% Pesw <u>6/6/06</u> 0	% Cowh <u>9/29/06</u> 0	% Colq <u>9/29/06</u> 0	% Pesw <u>9/29/06</u> 0	Yield <u>bu/A</u> 162
POSTEMERGENCE								
Touchdown Total	24 oz	99	99	95	99	96	99	190
Touchdown Total+	24 oz+							
Premium AMS	8.5 lb/100 gal	100	100	99	99	96	99	194
Touchdown Total+	24 oz+	400	00	07	00	0.4	00	405
Cornbelt N -Tense	2 qt/100 gal	100	99	97	99	94	99	195
Touchdown Total+ Establish+ Cornbelt N-Tense	24 oz+ 10 oz+ 2 qt/100 gal	100	100	99	99	97	99	199
Touchdown Total+	24 oz+							
Atrazine+	2 pt+	100	00	00	00	00	00	107
Cornbelt N -Tense	2 qt/100 gal	100	99	99	99	99	99	197
LSD (.05)		1	2	2	2	0	1	17

Table 19. Evaluation of Adjuvants in Corn

RCB: 4 reps Variety: Pro 38H69 RR/LL Planting Date: 5/5/06 POST: 6/7/06; Corn V4, 10-12 in; Col Cowh 2-7 in. Cowh=Common wate Soil: Silty clay; 3.9% OM; 7.0 pH	q 2-7 in; erhemp		cipitation: POST: q=Commo	1 [°] 2 ⁿ			inches inches
Comments: The effect of herbicide adjuvants on weed control was evaluated in Liberty and conventional weed control programs with Steadfast and Callisto. Each adjuvant added to Liberty increased control of lambsquarters. Programs with Steadfast and Callisto resulted in nearly complete weed control.							
Treatment	<u>Rate/A</u>		% Cowh <u>6/30/06</u>	% Colq <u>6/30/06</u>	% Cowh <u>9/25/06</u>	% Colq <u>9/25/06</u>	Yield <u>bu/A</u>
POSTEMERGENCE							
Liberty	20 oz		88	76	99	66	142
Liberty+Premium AMS	20 oz+3 lb		97	88	97	83	141
Liberty+Cornbelt N-Tense	20 oz+.75%		97	91	99	83	150
Liberty+Premium AMS	32 oz+3 lb		99	90	99	85	133
Liberty+Cornbelt N-Tense	32 oz+.75%		98	92	99	86	148
Steadfast+Callisto+	.5 oz+2 oz+						
Premium COC+Premium AMS	1%+8.5 lb/100 g	jal	96	100	97	98	146
Steadfast+Callisto+	.5 oz+2 oz+						
Premium COC+Cornbelt N-Tense	9 1%+.5%		96	99	97	99	143
Steadfast+Callisto+	.5 oz+2 oz+						
Trophy Gold+Premium AMS	.25%+8.5 lb/100) gal	95	99	95	99	153
Steadfast+Callisto+	.5 oz+2 oz+						
Trophy Gold+Cornbelt N-Tense	.25%+.5%		94	99	98	99	156
Steadfast+Callisto+ Base+Cornbelt N-Tense	.5 oz+2 oz+ 1%+.5%		95	100	97	99	150
Dase+Combeit IV-Tense	1707.370		30	100	51	33	150
Check			0	0	0	0	98
LSD (.05)			3	7	2	5	14

Table 20. Reduced Rates of Preemergence Herbicides - Study 1

RCB; 4 reps	Precipitation:	
Variety: Heine 750RR	PRE: 1 st week	0.18 inches
Planting Date: 5/8/06	2 nd week	0.00 inches
PRE: 5/9/06		
Soil: Silty clay; 3.4% OM; 6.4 pH	Cowh=Common waterhemp	
	Grft=Green foxtail	

Comments: This study was established to evaluate weed control with reduced rates of pre-emergence herbicides in pre- followed by post-emergence programs where complete weed control with the preemergence herbicide may not be necessary. Recommended rates are 1.5-2.5 gt/A for Lumax, 8-20 oz/A for Epic, 1.8-2.3 qt/A for Harness Xtra, and 7-28 oz/A for Radius. Rates often vary for different soil types or weed species. Except for Harness Xtra, green foxtail control declined more rapidly with decreasing rates than common waterhemp. Green foxtail control was greater at low rates of Epic than at low rates of Radius. Both Epic and Radius contain flufenacet (e.g. Define) and isoxaflutole (e.g. Balance), but Radius contains a lower proportion of flufenacet which is an herbicide generally intended for grass control. Green foxtail control did not differ between Epic and Radius at the higher application rates. Common waterhemp control was approximately equivalent to or greater than 80% at rates of 0.5 qt/A of Lumax (about \$6/A), 2 oz/A of Epic (about \$5/A), 6 oz/A of Radius (about \$8/A), or 1 pt/A or Harness Xtra (about \$6/A). These results suggest that reduced rates of pre-emergence herbicides may provide adequate weed suppression in prefollowed by post-emergence programs. However, these results may vary among years and locations as weed control is typically less consistent when using herbicide rates less than label recommendations.

		% Cowh	% Grft
Treatment	Rate/A	<u>8/30/06</u>	<u>8/30/06</u>
Check		0	0
<u>PREEMERGENCE</u>			
Lumax	2.5 qt	97	92
Lumax	1.5 qt	93	89
Lumax	1 qt	90	81
Lumax	.5 qt	87	49
Epic	15 oz	98	99
Epic	10 oz	94	94
Epic	5 oz	92	87
Epic	2 oz	82	68
Radius	18 oz	92	93
Radius	12 oz	92	91
Radius	6 oz	78	65
Radius	3 oz	70	35
Harness Xtra 6L	2 qt	93	95
Harness Xtra 6L	1 qt	89	89
Harness Xtra 6L	1 pt	82	78
Harness Xtra 6L	.5 pt	52	56
LSD (.05)		5	6

Table 21. Reduced Rates of Preemergence Herbicides - Study 2

RCB; 4 reps	Precipitation:
Variety: Heine 750RR	PRE: 1 st week 0.18 inches
Planting Date: 5/8/06	2 nd week 0.00 inches
PRE: 5/9/06	
Soil: Silty clay; 3.4% OM; 6.4 pH	Cowh=Common waterhemp Grft=Green foxtail

Comments: This study was established to evaluate weed control with reduced rates of pre-emergence herbicides in pre-followed by post-emergence programs where complete weed control with the preemergence herbicide may not be necessary. Recommended rates are 1-2 pt/A for Dual II Magnum, 1.6-2 gt/A for atrazine (4L), 1.25-3 pt/A for Harness, 1.5-4.5 oz/A for Balance, and 15-25 oz/A for Define. Dual and Define primarily provided grass control. Green foxtail control with Dual was less than 70% at rates less than 1 pt/A (about \$14/A) and control with Define was less than 80% at rates less than 1 qt/A (1 lb a.i., about \$3/A) or at rates of Balance less than 1.25 oz/A (about \$9/A). Green foxtail at this Balance rate was also nearly 60%. Control of common waterhemp and green foxtail with Harness was less than 70% at rates lower than 1 pt/A (about \$10/A). These results suggest that atrazine was the most economical option for suppressing common waterhemp. If suppression of green foxtail is also desired, herbicides that also result in suppression of common waterhemp (i.e. Harness or Balance) were nearly just as economical as the grass herbicides (Outlook or Dual).

Treatment	Rate/A	% Cowh <u>8/30/06</u>	% Grft <u>8/30/06</u>
Check		0	0
PREEMERGENCE			
Dual II Magnum	2 pt	52	75
Dual II Magnum	1 pt	50	74
Dual II Magnum	.5 pt	43	39
Dual II Magnum	.25 pt	19	15
Atrazine	2 qt	83	33
Atrazine	1 qt	80	38
Atrazine	1 pt	60	3
Atrazine	.5 pt	20	4
Harness	3 pt	90	95
Harness	2 pt	87	95
Harness	1 pt	74	73
Harness	.5 pt	57	14
Balance Pro	2.25 oz	92	85
Balance Pro	1.75 oz	87	85
Balance Pro	1.25 oz	76	58
Balance Pro	.75 oz	62	23
Define SC	20 oz	43	87
Define SC	10 oz	46	85
Define SC	5 oz	39	55
Define SC	2 oz	6	17
LSD (.05)		10	7

Table 22. Evaluation of RR-Corn Control with Gramoxone Tankmix Partners

RCB; 4 reps	Precipitation:		
Variety: DKC 58-73	EPOST:	1 st week	1.20 inches
Planting Date: 5/12/06		2 nd week	0.04 inches
EPOST: 5/29/06; Corn 1 collar; 3-4 in, 2-2.5 If	POST:	1 st week	0.04 inches
POST: 6/7/06; Corn		2 nd week	1.62 inches
Soil: Silty clay; 3.5% OM; 6.7 pH			

Comments: Treatments were established to evaluate herbicide options to remove Roundup Ready corn if it had been severely damaged in a no-till field. However, the corn was not damaged prior to herbicide application in this study. Photosynthesis inhibiting herbicides, Sencor and Lorox, were added to Gramoxone to determine if these tank mix partners increased corn control. Corn control was greater for the post- than early post-emergence treatments for the Gramoxone treatments, but not the Gramoxone treatments with either Sencor or Lorox as these treatments increased corn control at the early post-emergence timing. Corn control was greater than 90% for all the post-emergence applications except for the low rate (12 oz/A) of Gramoxone applied without a tank-mix partner. The low Gramoxone rate resulted in similar control as the higher rates at the post-emergence timing. Therefore, the addition of Sencor or Lorox improved corn control at the early post-emergence timing, but not at the post-emergence timing.

		% Corn % Corn
<u>Treatment</u>	<u>Rate/A</u>	<u>6/30/06</u> <u>9/6/06</u>
Check		50 51
EARLY POSTEMERGENCE		75 70
Liberty+AMS	32 oz+3 lb	75 72
Gramoxone Max+COC	24 oz+1%	74 70
Gramoxone Max+COC	12 oz+1%	64 64
Gramoxone Max+COC+Sencor DF	12 oz+1%+3 oz	87 88
Gramoxone Max+COC+Sencor DF	24 oz+1%+3 oz	97 96
Gramoxone Max+COC+Lorox DF	12 oz+1%+16 oz	85 81
Gramoxone Max+COC+Lorox DF	24 oz+1%+16 oz	96 95
POSTEMERGENCE		
Liberty+AMS	32 oz+3 lb	99 97
Gramoxone Max+COC	27 oz+1%	100 98
Gramoxone Max+COC	12 oz+1%	89 86
Gramoxone Max+COC+Sencor DF	12 oz+1%+3 oz	95 95
Gramoxone Max+COC+Sencor DF	27 07+1%+3 07	100 99
Gramoxone Max+COC+Lorox DF	12 oz+1%+16 oz	96 98
Gramoxone Max+COC+Lorox DF	27 oz+1%+16 oz	100 98
LSD (.05)		13 13

Table 23. Evaluation of RR-Corn Control with Select Max

RCB; 4 reps	Precipitation:		
Variety: DKC 58-73	EPOST:	1 st week	1.20 inches
Planting Date: 5/12/06		2 nd week	0.04 inches
EPOST: 5/29/06; Corn 1-collar, 3-4 in, 2-2.5 If	POST:	1 st week	0.04 inches
POST: 6/7/06; Corn V4, 8-10 in.		2 nd week	1.62 inches
Soil: Silty clay; 3.5% OM; 6.7 pH			

Comments: Treatments were established to evaluate corn control with Select Max applied at different rates and application times. Nearly complete corn control was obtained with 2 oz/A of Select Max at the early post-emergence timing but with 4 oz/A at the post-emergence. Results demonstrated that Select Max may provide excellent corn control but labeled guidelines must be followed for increasing rates as corn plants mature.

<u>Treatment</u>	Rate/A	% Corn <u>6/30/06</u>	% Corn <u>9/6/06</u>
EARLY POSTEMERGENCE Select Max+COC	2 oz+1 qt	97	97
Select Max+COC	4 oz+1 qt	99	98
Select Max+COC	6 oz+1 qt	99	99
POSTEMERGENCE			
Select Max+COC	2 oz+1 qt	87	84
Select Max+COC	4 oz+1 qt	99	98
Select Max+COC	6 oz+1 qt	100	99
LSD (.05)		5	4

Table 24. Soybean Herbicide Demonstration

Demonstration	Precipitation:		
Variety: Asgrow 2403	PRE:	1 st wook	0.50 inches
Planting Date: 5/17/06	TIXE.		0.03 inches
•	FROOT		
PRE: 5/17/06	EPOST:		1.70 inches
EPOST: 6/15/06; Soybean 2 tri; Grft 1-3 in;		2 ^{na} week	0.24 inches
Cowh 1-4 in; Colq 1-4 in.	POST:		0.24 inches
POST: 6/22/06; Soybean 3 tri; Grft 4-7 in;		2 nd week	0.00 inches
Cowh 3-8 in; Colq 3-7 in.			
Soil: Silty clay loam; 3.75 OM; 7.2 pH			
	Grft=Green foxtail		
	Cowh=Common water	rhemp	

Colg=Common lambsquarter

COMMENTS: <u>Pre-Emergence</u>: All treatments resulted in good to very good green foxtail control. Tank mix applications of Outlook + Valor + Python and Intrro + Blanket also resulted in good control of common waterhemp and common lambsquarters. Intrro application resulted in good control of waterhemp, but not lambquarters. Pursuit Plus resulted in good control of lambsquarters but not waterhemp.

<u>Pre-Followed by Post-Emergence</u>: Treatments that resulted in more than 90% control of grass and broadleaf weeds included Prowl H_2O + Pursuit + Flexstar, Valor + Poast Plus, and Valor + Python + Select. Valor applied at 3 oz/A resulted in greater control of lambsquarters than the 2 oz/A rate. Results demonstrated that broadleaf weed control with pre-emergence herbicides alone was generally not adequate without a post-emergence herbicide that also provided broadleaf weed control.

<u>Early Post- and Post-Emergence</u>: Only Poast Plus followed by Flexstar resulted in greater than 90% control of all three weed species evaluated. The PPO-inhibiting herbicides (Ultra Blazer, Phoenix, or Flexstar) generally resulted in greater control of waterhemp than lambsquarters. The ALS-inhibiting herbicides (FirstRate or Harmony) were generally more effective on lambsquarters than waterhemp.

<u>*Post-Emergence:*</u> All treatments resulted in excellent grass control. Raptor, an ALSinhibiting herbicide, resulted in poor waterhemp control whereas Flexstar or Flexstar + FirstRate resulted in less than 90% lambsquarters control.

<u>Treatment</u> Check	<u>Rate/A</u>	% Grft <u>10/2/06</u> 0	% Cowh <u>10/2/06</u> 0	% Colq <u>10/2/06</u> 0
PREEMERGENCE				
Prowl H ₂ O	2.75 pt	90	40	50
Boundary	2.5 pt	88	80	70
Pursuit Plus	2.5 pt	98	60	95
Outlook+Valor+Python	16 oz+2 oz+1 oz	98	95	90
Intrro+Blanket	1.5 qt+4 oz	93	92	95
Intrro	2 qt	98	95	40

2006 Soybean Herbicide Demonstration Southeast Research Farm Page 2

Treatment	Rate/A	% Grft <u>10/2/06</u>	% Cowh <u>10/2/06</u>	% Colq <u>10/2/06</u>
PREEMERGENCE & POSTEMERGENCE				
Prowl H ₂ O&Pursuit DG+Flexstar+	2.25 pt&.72 oz+10 oz+			
MSO+28% N	1 qt+1 qt	96	96	92
Boundary&Poast Plus+COC	2.5 pt&1.5 pt+1 qt	99	78	70
Valor&Poast Plus+COC	2 oz&1.5 pt+1 qt	99	93	80
Valor&Poast Plus+COC	3 oz&1.5 pt+1 qt	99	90	94
Python&Select+COC	1.33 oz&7 oz+1 qt	99	83	85
Valor+Python&Select+COC	2 oz+1 oz&7 oz+1 qt	99	93	95
Valor+FirstRate&Select+COC	2 oz+.3 oz&7 oz+1 qt	99	94	88
Blanket&Assure II+COC	3.5 oz&7 oz+1 qt	99	82	97
Intrro&Raptor+MSO+28% N	2 qt&4 oz+1 qt+1 qt	99	75	98
Intrro&FirstRate+MSO+28% N	2 qt&.3 oz+1 qt+1 qt	90	93	88
EARLY POSTEMERGENCE & POSTEMER	<u>GENCE</u>			
Poast Plus+COC&Ultra Blazer+NIS	1.5 pt+1 qt&1.5 pt+.25%	99	97	84
Poast Plus+COC&Phoenix+COC	1.5 pt+1 qt&.8 pt+.25%	99	96	82
Poast Plus+COC&Flexstar+	1.5 pt+1 qt&16 oz+			
MSO+28% N	1 qt+1 qt	99	97	93
Poast Plus+COC&FirstRate+	1.5 pt+1 qt&.3 oz+			
MSO+28% N	1 qt+1 qt	99	70	78
Poast Plus+COC&	1.5 pt+1 qt&			
Harmony GT 75WG+NIS	.083 oz+.25%	99	81	96
POSTEMERGENCE				
FirstRate+Flexstar+Select+	.3 oz+10 oz+6 oz+			
MSO+28% N	1 qt+1 qt	99	97	77
Flexstar+Select+MSO+28% N	15 oz+6 oz+1 qt+1 qt	99	93	86
Raptor+MSO+28% N	5 oz+1 qt+1 qt	98	60	97

Table 25. Herbicide Resistant Soybean Demonstration

Demonstration	Precipitation:		
Variety: Asgrow 2403	PRE:	1 st week	0.50 inches
Planting Date: 5/17/06		2 nd week	0.03 inches
PRE: 5/17/06	EPOST:	1 st week	1.70 inches
EPOST: 6/15/06; Soybean 2 tri; Grft 1-3 in;		2 nd week	0.24 inches
Cowh 1-4 in; Colq 1-4 in.	POST:	1 st week	0.24 inches
POST: 6/22/06; Soybean 3 tri; Grft 3-8 in;		2 nd week	0.00 inches
Cowh 3-8 in; Colq 3-7 in.	POST2:	1 st week	0.00 inches
POST2: 6/29/06; Soybean 8-10 in; Grft 6-10 in;		2 nd week	0.00 inches
Cowh 10-20 in; Colq 5-10 in.			
Soil: Silty clay loam; 3.7% OM; 7.2 pH	Grft=Green foxtail		
	Cowh=Common wa	terhemp	
	Colq=Common lam	bsquarters	

Comments: These treatments were established to demonstrate different weed management programs and strategies in Roundup Ready systems. Residual herbicides were evaluated in pre-emergence and early post-emergence applications. Post- and late post-emergence treatments included herbicides that may increase control of weeds that may be less sensitive to Roundup. All treatments resulted in greater than 93% control of grass and broadleaf weed species. Good weed control was obtained with single post-emergence applications of Roundup in part because the relatively dry spring conditions minimized emergence of late weed flushes.

.

.

		% Grft	% Cowh	% Colq
<u>Treatment</u>	<u>Rate/A</u>	<u>10/2/06</u>	<u>10/2/06</u>	<u>10/2/06</u>
Check		0	0	0
PREEMERGENCE & POSTEMERGENCE				
Prowl H ₂ O&Extreme+NIS+AMS	2.25 pt&1.5 qt+.25%+2.5 lb	99	99	99
Python&Roundup WeatherMax+AMS	1 oz&22 oz+2.5 lb	99	99	99
Valor&Roundup WeatherMax+AMS	2 oz&22 oz+2.5 lb	99	99	99
Valor+Python&	1.5 oz+1 oz&			
Roundup WeatherMax+AMS	22 oz+2.5 lb	99	99	99
Valor+FirstRate&	1.5 oz+.3 oz&			
Roundup WeatherMax+AMS	22 oz+2.5 lb	99	99	99
Spartan 4F&	3 oz&	00	00	00
Roundup WeatherMax+AMS	22 oz+2.5 lb	99	99	99
		00	00	00
Axiom&Roundup WeatherMax+AMS	10 oz&22 oz+2.5 lb	99	99	99
Domain&Roundup WeatherMax+AMS	10 oz&22 oz+2.5 lb	99	99	99
Sencor DF&	8 oz&			
Roundup WeatherMax+AMS	22 oz+2.5 lb	99	99	99
Boundary&	1.5 pt&			
Roundup WeatherMax+AMS	22 oz+2.5 lb	99	99	99

2006 Herbicide Resistant Soybean Demonstration Southeast Research Farm Page 2

Fage 2		% Grft	% Cowh	% Colq
Treatment	Rate/A	10/2/06	10/2/06	10/2/06
EARLY POSTEMERGENCE				
Roundup WeatherMax+AMS	22 oz+2.5 lb	95	95	95
Extreme+NIS+AMS	1.5 qt+.25%+2.5 lb	99	93	99
Roundup WeatherMax+	22 oz+			
Dual II Magnum+AMS	1.5 pt+2.5 lb	99	96	99
Roundup WeatherMax+Intrro+AMS	22 oz+1.5 qt+2.5 lb	99	97	99
Roundup WeatherMax+FirstRate+AMS	22 oz+.3 oz+2.5 lb	99	99	99
POSTEMERGENCE				
Roundup WeatherMax+AMS	22 oz+2.5 lb	99	99	99
Roundup WeatherMax+	11 oz+			
Harmony GT 75WG+AMS	.083 oz+2.5 lb	99	99	99
Roundup WeatherMax+Aim+AMS	11 oz+.25 oz+2.5 lb	99	97	99
Roundup WeatherMax+	11 oz+			
Resource+AMS	4 oz+2.5 lb	99	98	99
Roundup WeatherMax+Flexstar+AMS	11 oz+8 oz+2.5 lb	99	98	99
POSTEMERGENCE 2				
Roundup WeatherMax+AMS	22 oz+2.5 lb	99	99	99
Roundup WeatherMax+AMS	44 oz+2.5 lb	99	99	99
Roundup WeatherMax+	22 oz+			
Harmony GT 75WG+AMS	.083 oz+2.5 lb	99	99	99
Roundup WeatherMax+Aim+AMS	22 oz+.25 oz+2.5 lb	99	99	99
Roundup WeatherMax+	22 oz+			
Resource+AMS	4 oz+2.5 lb	99	99	97
Roundup WeatherMax+	22 oz+			-
Flexstar+AMS	8 oz+2.5 lb	99	99	99
Roundup WeatherMax+	22 oz+			
FirstRate+AMS	.3 oz+2.5 lb	99	99	99

Table 26. No-Till Soybean Demonstration

Demonstration	Precipitation:		
Variety: PB 2141	PRE:	1 st week	0.50 inches
Planting Date: 5/18/06		2 nd week	0.03 inches
PRE: 5/17/06	EPOST:	1 st week	1.70 inches
EPOST: 6/15/06; Soybean 2 tri; Cowh 1-3 in; Grft 1-3 in		2 nd week	0.24 inches
POST: 6/22/06; Soybean 3 tri; Cowh 3-8 in; Grft 3-7 in.	POST:	1 st week	0.24 inches
POST2: 6/29/06; Soybean 8-10 in; Cowh 6-10 in;		2 nd week	0.00 inches
Grft 6-10 in.	POST2:	1 st week	0.00 inches
Soil: Silty clay loam; 3.2% OM; 6.6 pH		2 nd week	0.00 inches

Cowh=Common waterhemp Grft=Green foxtail

Comments: Plots were established to demonstrate no-till soybean herbicide programs that include soil residual herbicides with pre- or early-post emergence applications and tank-mix herbicides to improve control of weeds that are less susceptible to Roundup (glyphosate). Roundup alone provided nearly complete weed control, which marginalized the benefits of preemergence herbicide application or herbicide tank mix partners. Under many circumstances, one application of Roundup may not be sufficient for complete weed control as later weed flushes may not be controlled, late herbicide applications may result in incomplete weed control as larger weeds may be less susceptible to glyphosate, or late applications (after the fourth soybean trifoliate) may result in yield loss due to early-season competition. However, the relatively dry spring conditions delayed weed emergence and did not induce late weed flushes, which likely contributed to the excellent weed control obtained with just one application of Roundup.

<u>Treatment</u> Check	<u>Rate/A</u> 	% Cowh <u>8/30/06</u> 0	% Grft <u>8/30/06</u> 0
PREEMERGENCE & POSTEMERGENCE			
Prowl H ₂ O&Extreme+NIS+AMS	2.25 pt&1.5 qt+.25%+2.5 lb	99	99
Python&Roundup WeatherMax+AMS	1 oz&22 oz+2.5 lb	99	99
Valor&Roundup WeatherMax+AMS	1.5 oz&22 oz+2.5 lb	99	99
Valor+Python&Roundup WeatherMax+AMS	1.5 oz+1 oz&22 oz+2.5 lb	99	99
Valor+FirstRate&Roundup WeatherMax+AMS	1.5 oz+.3 oz&22 oz+2.5 lb	99	99
Intrro&Roundup WeatherMax+AMS	1.5 qt&22 oz+2.5 lb	99	99
Spartan 4F&Roundup WeatherMax+AMS	3 oz&22 oz+2.5 lb	99	99
Axiom&Roundup WeatherMax+AMS	10 oz&22 oz+2.5 lb	99	99
Domain&Roundup WeatherMax+AMS	10 oz&22 oz+2.5 lb	99	99
Sencor DF&Roundup WeatherMax+AMS	8 oz&22 oz+2.5 lb	99	99
Boundary&Roundup WeatherMax+AMS	1.5 pt&22 oz+2.5 lb	99	99
EARLY POSTEMERGENCE			
Roundup WeatherMax+AMS	22 oz+2.5 lb	99	99
Extreme+NIS+AMS	1.5 qt+.25%+2.5 lb	99	99
Roundup WeatherMax+Dual II Magnum+AMS	22 oz+1.5 pt+2.5 lb	99	99
Roundup WeatherMax+Intrro+AMS	22 oz+1.5 qt+2.5 lb	99	99
Roundup WeatherMax+FirstRate+AMS	22 oz+.3 oz+2.5 lb	99	99

2006 No-Till Soybean Demonstration Southeast Research Farm Page 2

Treatment	<u>Rate/A</u>	% Cowh <u>8/30/06</u>	% Grft <u>8/30/06</u>
<u>POSTEMERGENCE</u>			
Roundup WeatherMax+AMS	22 oz+2.5 lb	99	99
Roundup WeatherMax+	22 oz+		
Harmony GT 75WG+AMS	.083 oz+2.5 lb	99	99
Roundup WeatherMax+Aim+AMS	22 oz+.25 oz+2.5 lb	99	99
Roundup WeatherMax+Resource+AMS	22 oz+4 oz+2.5 lb	99	99
Roundup WeatherMax+Flexstar+AMS	22 oz+8 oz+2.5 lb	99	99
POSTEMERGENCE 2			
Roundup WeatherMax+AMS	22 oz+2.5 lb	99	99
Roundup WeatherMax+AMS	44 oz+2.5 lb	99	99
Roundup WeatherMax+	22 oz+		
Harmony GT 75WG+AMS	.083 oz+2.5 lb	99	99
Roundup WeatherMax+Aim+AMS	22 oz+.25 oz+2.5 lb	99	99
Roundup WeatherMax+Resource+AMS	22 oz+4 oz+2.5 lb	99	99
Roundup WeatherMax+Flexstar+AMS	22 oz+8 oz+2.5 lb	99	99
Roundup WeatherMax+FirstRate+AMS	22 oz+.3 oz+2.5 lb	99	99

Table 27. Evaluation of Oil Adjuvants for Volunteer Corn Control

		Precipitation: POST: Voco=Volunteer c	2 nd week).24 inches).00 inches
Comments: Study established to evaluate volunteer RR corn control in soybean associated with different adjuvants used with the grass herbicide, Select. The addition of adjuvants improved volunteer corn control. Volunteer corn control was slightly less with N Pak AMS or Class Act relative to many of the other treatments.				uvants
			% Voco	% Voco
<u>Treatment</u>		Rate/A	<u>7/7/06</u>	<u>9/6/06</u>
Check			0	0
POSTEMERG	ENCE			
Roundup We	eatherMax+Select	11 oz+2 oz	72	69
	eatherMax+Select+N Pak AMS Liquid	11 oz+2 oz+2.5%	88	85
	eatherMax+Select+Class Act NG	11 oz+2 oz+2.5%	91	94
Roundup We	eatherMax+Select+	11 oz+2 oz+		
Preference	e+N Pak AMS Liquid	.25%+2.5%	94	97
	eatherMax+Select+	11 oz+2 oz+		
	C+N Pak AMS Liquid	.5%+2.5%	95	98
	eatherMax+Select+	11 oz+2 oz+		
Superb HC		.5%+1.25%	96	99
LSD (.0	05)		2	2

Table 28. Annual Weed Control in RR Soybeans

Precipitation:		
PRE:	1 st week	0.50 inches
	2 nd week	0.03 inches
POST:	1 st week	0.24 inches
		0.00 inches
POST2:		0.00 inches
	2 nd week	0.00 inches
Grft=Green foxtail		
	POST: POST2: Grft=Green foxtail	PRE: 1 st week 2 nd week POST: 1 st week 2 nd week POST2: 1 st week 2 nd week

Cowh=Common waterhemp Colq=Common lambsquarter

Comments: Treatments were established to evaluate weed control with pre-emergence herbicides followed by Glyphomax (glyphosate) or split applications of Glyphomax. All treatmetns resulted in nearly complete weed control.

		% Grft	% Cowh	% Colq
<u>Treatment</u>	Rate/A	<u>10/2/06</u>	<u>10/2/06</u>	<u>10/2/06</u>
PREEMERGENCE & POSTEMERGEN	CE			
Python&Glyphomax-XRT+AMS	.5 oz&24 oz+2.5 lb	99	99	99
Python&Glyphomax-XRT+AMS	.8 oz&24 oz+2.5 lb	99	99	99
FirstRate&Glyphomax-XRT+AMS	.3 oz&24 oz+2.5 lb	99	99	99
POSTEMERGENCE & POSTEMERGEI	NCE 2			
GF-1280+AMS&GF-1280+AMS	24 oz+2.5 lb&24 oz+2.5 lb	99	99	99
LSD (.05)		0	0	0

Table 29. Weed Control in Soybean with Glyphosate Plus 2,4-DB

RCB; 4 reps Variety: Asgrow 2403 Planting Date: 5/12/06	Precipitation: EPOST:	1 st week 2 nd week	0.24 inches 0.00 inches
EPOST: 6/22/06; Soybean 3 tri; Cowh 3-8 in. POST: 6/29/06; Soybean 8-10 in; Cowh 10-20 in. Soil: Silty clay loam; 3.7% OM; 7.2 pH	POST:	1 st week 2 nd week	0.00 inches 0.00 inches

Cowh=Common waterhemp

Comments: This study was established to evaluate the weed control associated with tank mixes of 2,4-DB with Roundup. Nearly complete weed control resulted from an application of Roundup alone at the early post- or post-emergence timing. Greater weed control resulted from the 0.72 oz/A rate than the 0.48 oz/A rate of 2,4-DB. Since nearly complete weed control resulted from Roundup alone, increased weed control with tank mixes of 2,4-DB and Roundup were not observed.

<u>Treatment</u> Check	<u>Rate/A</u>	% Cowh <u>10/2/06</u> 0
EARLY POSTEMERGENCE Roundup WeatherMax+AMS 2,4-DB Roundup WeatherMax+ 2,4-DB+AMS	22 oz+17 lb/100 gal .48 oz 22 oz+ .48 oz+17 lb/100 gal	98 39 99
2,4-DB Roundup WeatherMax+ 2,4-DB+AMS	.72 oz 22 oz+ .72 oz+17 lb/100 gal	53 99
POSTEMERGENCE Roundup WeatherMax+AMS 2,4-DB Roundup WeatherMax+ 2,4-DB+AMS	22 oz+17 lb/100 gal .48 oz 22 oz+ .48 oz+17 lb/100 gal	98 35 98
2,4-DB Roundup WeatherMax+ 2,4-DB+AMS	.72 oz 22 oz+ .72 oz+17 lb/100 gal	49 97
LSD (.05)		9

Table 30. Water Quality and AMS Replacements

RCB; 4 reps	Precipitation:	st	0.04 in the s
Variety: Asgrow 2403	POST:	1 st week	0.24 inches
Planting Date: 5/17/06		2 nd week	0.00 inches
POST: 6/22/06; Soybean 3 tri, 8-10 in;			
Cowh 3-7 in; Colq 3-7 in.	Cowh=Common	waterhemp	
Soil: Clay loam; 2.7% OM; 6.6 pH	Colq=Common la	mbsquarter	

Comments: Study established to evaluate weed control associated with different Roundup adjuvants. Roundup WeatherMax rates were reduced by half to better observe the effects of herbicide adjuvants. The treatment differences were greatest on the July evaluation, but treatment differences were minimal. Weed control was greater with Class Act and Interlock than N Pak AMS or Powerhouse.

		% Cowh	% Cowh	% Colq
<u>Treatment</u>	Rate/A	<u>7/11/06</u>	<u>9/29/06</u>	<u>9/29/06</u>
Check		0	0	0
POSTEMERGENCE				
Roundup WeatherMax	11 oz	88	99	97
Roundup WeatherMax+N Pak AMS Liquid	11 oz+.5%	91	99	97
Roundup WeatherMax+Class Act NG	11 oz+1.25%	98	99	98
Roundup WeatherMax+Class Act NG	11 oz+.75%	99	99	99
Roundup WeatherMax+Alliance+Interlock Roundup WeatherMax+	11 oz+1.25%+4 oz 11 oz+	98	99	96
Class Act NG+Interlock	2.5%+4 oz	99	99	99
	2.5%+4 02 11 oz+1.25%	99 90	99 99	99 96
Roundup WeatherMax+Powerhouse	11 02+1.25%	90	99	90
LSD (.05)		4	1	3

Table 31. Reduced Pre-Emergence Herbicide Rates in Soybean - Study 1

RCB; 4 reps Variety: Asgrow 2403 Planting Date: 5/17/06 PRE: 5/17/06	Precipitation: PRE:	1 st week 2 nd week	0.50 inches 0.03 inches
Soil: Silty clay; 3.4% OM; 6.4 pH	Cowh=Common w Grft=Green foxtail Colq=Common lar		

Comments: This study was established to evaluate the potential for reducing pre-emergence herbicide rates in pre- followed by post-emergence programs. The labeled rate range is 2-3 qt/A for Intrro, 1.5-3 oz/A for Valor, 10-21 oz/A for Outlook, 5-10 oz/A for Sencor DF, and 1-2 pt/A for Dual II Magnum. Recommended rates may vary for soil types or specific weed infestations.

For grass control, herbicides such as Intrro, Outlook, or Dual may be considered. Applications of Intrro and Dual also resulted in approximately 80% control of common waterhemp at the high rates, but the cost of Intrro is approximately 1/3 that of Dual at these high rates. At the rates applied, green foxtail control was not less than 50% with Intrro, but was less than 50% for Outlook at rates less than 10 oz/A or Dual at rates less than 1 pt/A. These results suggest that Intrro may provide the best opportunity to reduce weed control costs by reducing rates for grass suppression.

For broadleaf weed control, Valor or Sencor may be considered. If only suppression is desired, Valor applied at 1 oz/A may be adequate as broadleaf weed control was approximately 60%. Sencor applied at 4 oz/A resulted in 73% control of common waterhemp and 30% control of common lambquarters. Therefore, Sencor at 4 oz/A may provide less control of common lambsquarters than Valor at 1 oz/A. Each of these applications may cost around \$5/A.

~ ~

a. **a**

~ ~ .

		% Cowh	% Grft	% Colq
<u>Treatment</u>	<u>Rate/A</u>	<u>8/30/06</u>	<u>8/30/06</u>	<u>8/30/06</u>
Check		0	0	0
PREEMERGENCE				
Intrro	2 qt	80	90	41
Intrro	1.5 qt	57	89	29
Intrro	1 qt	18	75	31
Intrro	1 pt	10	64	5
Valor	3 oz	88	0	68
Valor	2 oz	83	0	63
Valor	1 oz	57	0	60
Valor	.5 oz	11	0	24
Outlook	20 oz	35	98	17
Outlook	15 oz	39	95	21
Outlook	10 oz	9	83	7
Outlook	5 oz	9	17	6
Sencor DF	16 oz	90	0	79
Sencor DF	12 oz	89	0	75
Sencor DF	8 oz	74	0	44
Sencor DF	4 oz	73	0	30
Dual II Magnum	2 pt	79	88	49
Dual II Magnum	1.5 pt	60	80	19
Dual II Magnum	1 pt	9	60	13
Dual II Magnum	.5 pt	3	28	3
LSD (.05)		12	8	27

Table 32. Reduced Pre-Emergence Herbicide Rates in Soybean - Study 2

RCB; 4 reps	Precipitation:		
Variety: Asgrow 2403	PRE:	1 st week	0.50 inches
Planting Date: 5/17/06		2 nd week	0.03 inches
PRE: 5/17/06			
Soil: Silty clay; 3.4% OM; 6.4 pH	Cowh=Common w	aterhemp	
	Grft=Green foxtail		

Comments: This study was established to evaluate weed control with reduced rates of Boundary (metolachlor + metribuzin) and Axiom (flufenacet + metribuzin) applied pre-emergence. It is often beneficial to apply pre-emergence herbicides in Roundup Ready programs to minimize early-season weed competition, but reduced rates of pre-emergence herbicides may be adequate if Roundup will be applied post-emergence. The labeled rate of Boundary is 1 - 2.5 pt/A and Axiom is 7 - 13 oz/A, with rates varying for different soil types. Applications of Boundary at 0.5 pt/A or Axiom at 4 oz/A resulted in more than 80% control of common waterhemp and green foxtail in soybean. The approximate cost of these low rates may be approximately \$5/A for Boundary or Axiom. However, it should be noted that weed control is typically less consistent when the applied herbicide rate is less than that recommended on the herbicide label.

<u>Treatment</u> Check	<u>Rate/A</u>	% Cowh <u>8/30/06</u> 0	% Grft <u>8/30/06</u> 0
PREEMERGENCE			
Boundary	2.5 pt	96	95
Boundary	1.5 pt	96	95
Boundary	1 pt	90	88
Boundary	.5 pt	87	83
Axiom	13 oz	96	86
Axiom	10 oz	89	86
Axiom	7 oz	86	84
Axiom	4 oz	84	81
LSD (.05)		3	3

Table 33. Camelina Postemergence Herbicide Tolerance

RCB; 4 reps	Precipitation:		
Variety: Penza	POST:	1 st week	0.50 inches
Planting Date: 3/10/06		2 nd week	0.03 inches
POST: 5/17/06; Camelina 8 in; Howe 8-12 in.			
Soil: Silty clay; 3.7% OM; 5.8 pH	VCRR=Visual Cro (0=no ir	op Response Ra njury; 100=comp	0
		ijary, roo comp	

Howe=Horseweed

Comments: Post-emergence herbicides were evaluated for weed control in camelina. Horseweed was the dominant weed species present. Few grasses were competitive with the camelina. Stinger application resulted in the greatest horseweed control with minimal camelina injury observed. The Clarity application at 8 oz/A also resulted in very good horseweed control, but also caused significant injury to the camelina. Lower Clarity rates (4 oz/A) caused less crop injury, but also resulted in less weed control.

<u>Treatment</u>	Rate/A	% Howe % VCRR <u>7/8/06</u> <u>7/8/06</u>
POSTEMERGENCE Stinger MCPA amine	.33 pt 8 oz	94 0 3 14
Clarity Clarity	8 oz 4 oz	94 57 74 8
Select+COC	6 oz+1%	0 4
LSD (.05)		8 5

THE EFFECT OF VOMITOXIN-CONTAMINATED STRAW ON GROWER PIG PERFORMANCE IN A DEEP BEDDED SYSTEM – A DEMONSTRATION

Robert C. Thaler¹ and Bradley D. Rops²

Animal Science 0623

INTRODUCTION

Deep bedded housing systems provide an alternative to confinement housing for pigs, and are popular in "natural/organic" systems, as well as intensivelv less managed in production systems. A typical hoopbarn will finish 180 head of market hogs and requires approximately 26 tons of straw. During recent years, weather conditions have resulted in vomitoxin (DON) problems in small grains in SD. While it has been established that feedina diets containing over 1 PPM DON will reduce growth performance in pigs, there has been no work to determine if DON contaminated straw has any effect on pig performance.

MATERIAL AND METHODS

The hoop barn located at the Southeast Research Farm (30 x 85 ft) was split in half lengthwise with cattle panels, and was bedded with clean straw (0 ppm DON) on one side and vomitoxin contaminated straw (98 ppm DON) on the other side. Two trials, one in the winter and one in the summer, were conducted. Trial two was terminated early due to an outbreak of circovirus. One hundred eighty (180) barrows of Babcock genetics

² Livestock Manager, Southeast Research Farm

weighing approximately 57 lbs were divided into two groups based on body weight, and 90 pigs were placed on each side of the hoop barn in each trial. Each side had its own waterer and self feeder. Pigs on both treatments received the same corn-SBM based diet (Table 1). А 2-phase grower feeding program was utilized containing the following total lysine levels: 1.00% from 57 to 90 lbs BW, and 85% from 91 to 120 lbs BW. Pigs were weighed at the initiation and termination of the trial. Phase changes were made at the desired weight breaks utilizing a standard feed budget. Since there was only one observation / treatment / season, the data could not be statistically analyzed and the values presented are simply raw means, and care should be taken when interpreting the data.

RESULTS AND DISCUSSION

The growth performance from each trial is shown in Table 2. As can be seen from the table, performance of the summer trial is significantly lower than that of the winter trial, again due to the outbreak of circovirus. Therefore, this section will focus on the results of the winter trial. In the winter trial, pigs housed on DON-

¹ Head, Dept. of Animal & Range Sciences, SDSU

contaminated straw grew 11% slower and consumed less feed than pigs housed on clean straw. Also, pigs on DON straw were less efficient than pigs housed in clean straw. Deathloss was similar between the two treatments in the winter trial (3.3-3.4%) but was 45% higher for the DON treatment in the summer trial.

Since the pigs were not consuming DON-contaminated feed. the question becomes "By what mode of does DON-contaminated action inhibit pig performance?". straw Since DON is produced by a mold, one possibility is that the mycotoxin could have become airborne and was inhaled by the pig, thereby causing the reduction in performance. An interesting

observation is that DON did not affect deathloss in healthy pigs, but in diseased-challenged pigs, DON exposure resulted in a 45% higher deathloss. Since some mycotoxins inhibit the immune system that may be one explanation why pigs housed on DON straw were less able to resist a disease challenge.

IMPLICATIONS

This demonstration is the first trial to show that DON-contaminated straw adverselv affect growth may performance in normal pigs, and may leave pigs immunocompromised. Therefore, care when taken to needs to be purchasing straw for deep-bedded systems for swine.

	(,,,)	
	Phase 1	Phase 2
Ingredient		
Corn	72.28	78.70
SBM, 46.5%	24.00	17.75
Dical Phosphate	1.47	1.40
Limestone	.79	.69
Salt	.34	.31
L-lysine HCI	.12	.15
Vit-Min Premix	1.00	1.00
Calc Analysis		
Lysine, %	1.00	.85
Ca, %	.70	.63
P, %	.61	.57

1. Dietary Composition (%)

Item	<u>Winter</u> Clean	<u>Winter</u> DON	Summer Clean	Summer DON
Initial weight, lbs	59.4	58.9	53.9	54.8
Final weight, lbs	127.3	120.0	93.1	96.0
Avg daily gain, lbs	1.69	1.51	1.00	1.01
Avg daily feed intake, lbs	4.51	4.42	2.84	2.84
Feed/Gain	2.67	2.92	2.84	2.81
Deathloss, %	3.3	3.4	5.6	8.1
Avg of 2 trials	Clean	DON		
Initial weight, lbs	56.7	56.9		
Final weight, lbs	110.2	108		
Avg daily gain, lbs	1.35	1.26		
Avg daily feed intake, lbs	3.68	3.63		
Feed/Gain	2.76	2.87		
Deathloss, %	4.45	5.75		

Table 2. Growth performance and carcass characteristics

SWINE RESEARCH SUMMARIES

Robert C. Thaler and Bradley D. Rops

Animal Sciences 0624

1. Effect of Reduced Nocturnal Temperature (RNT) During the Nursery Phase on Nursery and Overall Growth Performance.

As energy costs have dramatically risen the past year, pork producers are looking for ways to reduce utility costs. Since the highest temperatures are maintained in the nursery, it makes sense that this would be the first place to lower temperature. Work done in the 1980's has shown that nocturnal temperature can be reduced without hurting pig performance. However, this was done with pigs weaned at 28 days of age. Today pigs are weaned at 17 days of age or less, and they are a totally different animal physiologically than one weaned at 28 days of age. Therefore, research needs to be conducted to determine if nocturnal temperatures for early-weaned pigs can be reduced without affecting growth performance or disease susceptibility. The two treatments will be either normal nursery temperatures (CON) or Reduced Nocturnal Temperature (RNT) beginning on day 7 post weaning, with target temperature lowered 10 degrees F from 1900 to 0700 from CON.

Preliminary results indicate that there is no difference on nursery or overall performance when nursery temperatures are reduced during the night. This can result in significant energy savings for pork producers.

2. Efficacy of Paylean in Alleviating Heat Stress in Finishing Pigs

Summer heat stress results in reduced feed intake, and subsequently, reduced growth performance in market hogs. Since most producers have very few extra days worked into the pigflow, producers have to empty barns at lighter weights in the summer to get ready for the next group. This results in lost profitability. There appears to be an added benefit of feeding the beta agonist Paylean in the summer as compared to more thermal-neutral times like spring and fall. However, this involves different pigs at different seasons, so there are several confounding factors. In order to remove those factors, trials are being run at the Confinement Barn with one room (10 pens) at normal temperatures and the other room (10 pens) at a higher temperature. At 6 weeks prior to harvest, half of the pigs in each group were fed diets containing Paylean.

Preliminary results indicate that Paylean does support normal growth during times of heat stress. This now allows producers to strategically use Paylean during summer heat stress to maintain performance and profitability.