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[1] Instantaneous estimates of the power released by fire (fire radiative power, FRP) are
available with satellite active fire detection products. The temporal integral of FRP provides
an estimate of the fire radiative energy (FRE) that is related linearly to the amount of
biomass burned needed by the atmospheric emissions modeling community. The FRE,
however, is sensitive to satellite temporal and spatial FRP undersampling due to infrequent
satellite overpasses, cloud and smoke obscuration, and failure to detect cool and/or small
fires. Satellite FRPs derived over individual burned areas and fires have been observed
to exhibit power law distributions. This property is exploited to develop a new way to derive
FRE, as the product of the fire duration and the expected FRP value derived from the
FRP power law probability distribution function. The method is demonstrated and validated
by the use of FRP data measured with a dual‐band radiometer over prescribed fires in
the United States and by the use of FRP data retrieved from moderate resolution imaging
spectroradiometer (MODIS) active‐fire detections over Brazilian deforestation and
Australian savanna fires. The biomass burned derived using the conventional FRP temporal
integration and power law FRE estimation methods is compared with biomass burned
measurements (prescribed fires) and available fuel load information reported in the
literature (Australian and Brazilian fires). The results indicate that the FRE power law
derivation method may provide more reliable burned biomass estimates under sparse
satellite FRP sampling conditions and correct for satellite active‐fire detection omission
errors if the FRP power law distribution parameters and the fire duration are known.

Citation: Kumar, S. S., D. P. Roy, L. Boschetti, and R. Kremens (2011), Exploiting the power law distribution properties of
satellite fire radiative power retrievals: A method to estimate fire radiative energy and biomass burned from sparse satellite
observations, J. Geophys. Res., 116, D19303, doi:10.1029/2011JD015676.

1. Introduction

[2] Spatially and temporally explicit mapping of the
amount of biomass burned by fire is needed to estimate
atmospheric emissions of greenhouse gases and aerosols
that have a significant climate‐forcing effect [Crutzen and
Andreae, 1990; Denman et al., 2007]. Satellite data have
been used to monitor fire for more than two decades using
algorithms that detect the location of fires actively burning
at the time of satellite overpass, and in the past few decades
using burned area mapping algorithms that map the spatial
extent of the areas affected by fires [Robinson, 1991;
Fredericksen et al., 1990; Fuller, 2000; Chuvieco and Martin,
1994; Giglio et al., 2003; Roy et al., 2008]. Recently,

researchers have been attempting to use satellite data to
characterize active‐fire properties, including parameters
related to the intensity of the fire [Lentile et al., 2006]. The
instantaneous fire radiative power (FRP) (units: W) is
retrieved at active‐fire detections from mid‐infrared wave-
length remotely sensed data and can be used to estimate the
rate of biomass consumed [Kaufman et al., 1996, 1998].
Temporal integration of continuously sampled FRP over the
duration of the fire provides the fire radiative energy (FRE)
(units: J), which has been shown, with both laboratory and
field measurements, to be linearly related to the total bio-
mass burned (units: g) [Wooster et al., 2005; Freeborn et al.,
2008]. This approach provides the opportunity to map bio-
mass burned from space without the need for fuel load and
combustion completeness information that are not reliably
defined at regional to global scales [Robinson, 1989;
Korontzi et al., 2004; van der Werf et al., 2006; Ellicott
et al., 2009; Vermote et al., 2009]. However, the retrieval
of the FRE, and thus of the biomass burned, is sensitive to
satellite spatial and temporal sampling of FRP [Boschetti
and Roy, 2009; Freeborn et al., 2011]. This paper seeks to
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develop a methodology to derive FRE that is less sensitive to
FRP‐sampling issues.
[3] Recent research indicates that satellite FRP retrievals

over individual burned areas and fires have power law dis-
tributions [Wooster and Zhang, 2004; Roberts et al., 2005;
Roberts and Wooster, 2008]. Power law distributions are
observed across other natural phenomena, including fire
sizes [Malamud et al., 2005; Corral et al., 2008; Lin and
Rinaldi, 2009; Zinck et al., 2010], fire return intervals
[Song et al., 2006], the magnitude of earthquakes and the size
of lunar craters [Newman, 2005], lake sizes [Downing et al.,
2006; Zhang et al., 2009], and cloud sizes [Koren et al.,
2008]. In this paper, the mathematical properties of power
law distributions are used to develop an alternative method
to estimate FRE that we show, under certain conditions, may
be less sensitive to satellite FRP sampling issues compared
with the conventional time integral of FRP. We consider the
power law properties of FRP measurements made with a
dual‐band radiometer for eight prescribed fires in the United
States and use FRP retrieved from the moderate‐resolution
imaging spectroradiometer (MODIS) Terra and Aqua satellites
over Australian savanna fires and Brazilian deforestation
fires that have contrasting fuel loads and burning conditions.
The FRE derived biomass burned estimates for the power
law and conventional FRE estimation methods are compared
with the measured total fuel consumed (U.S. prescribed
fires) and with available fuel load information reported in
the literature (Australian and Brazilian fires).
[4] Using a priori knowledge about the power law dis-

tribution of FRP, we show that we can compensate for the
lack of information on the temporal evolution of FRP
retrieved from polar‐orbiting satellite observations due to
satellite undersampling of FRP and also compensate for
decreased probability of satellite detection of fires with low
FRP. We show that the FRE can be estimated as the product
of the expected FRP derived from three FRP power law
distribution parameters and the fire duration. Sensitivity
analyses with respect to these parameters are reported. If the
FRP power law distribution parameters are reasonably well
constrained, then the uncertainties in FRE estimates are
reduced to the uncertainties in the estimation of the fire
duration only. Under these circumstances, the power
law based FRE estimates are shown to provide more
accurate results than conventional FRP temporal integration
approaches.

2. Theoretical Considerations

2.1. FRP and FRE

[5] The total FRE (units: J) released by a fire is defined, for
the ideal case of continuous measurement of FRP (units: W),
as follows:

FRE ¼
Zt¼d

t¼0

FRP tð Þdt; ð1Þ

where d is the duration (units: s) of the fire. In the case of
discrete measurements of FRP, the FRE can be estimated
using the trapezoid numerical integration method, with the
implicit assumption that there is sufficient temporal FRP

sampling and a linear change of FRP between successive FRP
measurements [Boschetti and Roy, 2009], as follows:

FREnum:int �
Xi¼n

i¼1

tiþ1 � tið Þ FRPiþ1 þ FRPið Þ
2

; ð2Þ

where ti is the time FRPi is measured and n is the number
of FRP measurements over the duration of the fire. If the
discrete measurements are made equally spaced in time, then
equation (2) can be expressed as

FRE � d
Xi¼n

i¼1

FRPi

n
; ð3Þ

where d is the duration of fire, expressed as d = nDt, if Dt is
the time interval between successive FRP measurements. In
the limit of an infinite number of measurements, the sum-
mation term in (3) is the expected/expectation FRP value and
the FRE can be defined as

FRE ¼ d FRPh i; ð4Þ

where hFRPi is the expected FRP value over the fire duration
d (units: s). We note that, for a small number of FRP samples,
the arithmetic mean and the expected FRP values can be quite
different.
[6] It is established that fires have temporal fluctuations in

fire radiant power and so the FRE estimated by numerical
integration of FRP measurements is sensitive to satellite
FRP undersampling [Boschetti and Roy, 2009]. Satellite
data provide the only way to monitor fires over large geo-
graphic areas. However, active‐fire detections from polar‐
orbiting satellites undersample the temporal variability of
fires because of the long intervals between consecutive
satellite overpasses [Giglio, 2007], and they also under-
sample the spatial extent of the area affected by the fire if the
fire progresses rapidly across the landscape [Roy et al.,
2008]. Geostationary satellites provide improved temporal
sampling compared with polar‐orbiting systems, but they
typically have lower spatial resolution that can effect FRP
estimation. For example, Roberts and Wooster [2008]
reported that geostationary SEVIRI data underestimated
regional‐scale total FRP by 40% to 50% compared with
MODIS because of the SEVIRI non‐detection of many low‐
intensity fire pixels (FRP < 50 MW). The retrieval of FRP
from satellite data may also be sensitive to factors including
the subpixel location of the fire and the sensing system point
spread function, the fire background characterization used in
the FRP retrieval algorithm, and the presence of atmospheric
water vapor [Wooster et al., 2005; Calle et al., 2009;
Schroeder et al., 2010]. Furthermore as with all satellite
sensing systems, fires are obscured by clouds, smoke, and
optically thick aerosols [Roy et al., 2008].
[7] If the temporal probability distribution of FRP can be

characterized, then this information may be used to help
provide more reliable FRE estimates under sparse satellite
FRP‐sampling conditions. Regional to continental scale
satellite studies have shown that the mean FRP extracted
over large geographic areas exhibits a diurnal temporal
variability that has been parameterized using modified
Gaussian functions of FRP against time [Roberts and
Wooster, 2008; Ellicott et al., 2009; Vermote et al., 2009].
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At the scale of individual burned areas and fires, however,
the temporal evolution of FRP does not exhibit a smooth or
Gaussian temporal variability [Wooster et al., 2005; Roberts
and Wooster, 2008]. This is because of local variation in the
prefire fuel load and fire behavior. For example, the FRP of
grassland fires has been observed to change by an order of
magnitude with fluctuations in the wind direction relative to
the unburned fuel bed [Smith and Wooster, 2005]. Recent
research indicates that satellite FRP retrievals over individ-
ual burned areas and fires exhibit power law distributions
[Wooster and Zhang, 2004; Roberts et al., 2005; Roberts
and Wooster, 2008], and so this property may enable reli-
able FRE estimates under sparse satellite FRP temporal
sampling conditions, such as provided by polar‐orbiting
satellites and/or remote sensing under cloudy and thick‐
smoke conditions.

2.2. Exploiting the Power Law Properties of FRP
Temporal Variability

[8] Power law distributions have probability distribution
functions of the following form:

P xð Þ ¼ c x�m; ð5Þ

where P(x) is the probability distribution function of a
continuous real variable x, c is a constant, and m is a scaling
parameter [Newman, 2005]. For power law distributed data
the arithmetic mean of a set of samples provides an unreliable
estimate of the expected value, especially when the set of
samples is small [Newman, 2005].
[9] The expected value of a power law distribution can be

derived analytically. First, the probability distribution is
normalized by evaluating the integral of P(x) over all values
and setting this to one so that the constant c becomes

c ¼ 1� mð Þ 1

x�mþ1

max � x
�mþ1

min

 !
: ð6Þ

[10] The expected value hxi is then defined as follows:

xh i ¼
Zxmax

xmin

P xð Þx dx ¼
Zxmax

xmin

c x�mþ1dx

¼ 1� mð Þ 1

x�mþ1

max � x
�mþ1

min

 !
x

�mþ2ð Þ
max � x

�mþ2ð Þ
min

2� mð Þ

 !
; ð7Þ

where xmin and xmax are the lower and upper limit of the
range of possible x values and m is a scaling parameter
[Newman, 2005].
[11] Assuming that the FRP over the duration of the fire

follows a power law distribution, then the FRE can be
estimated by substituting FRP for x in (7) and combining
with (4), as follows:

FREpwr law ¼ d FRPh i ¼ d 1� mð Þ 1

FRP �mþ1ð Þ
max � FRP

�mþ1ð Þ
min

 !

� FRP
�mþ2ð Þ
max � FRP

�mþ2ð Þ
min

2� mð Þ

 !
; ð8Þ

where d is the duration of the fire, m is the scaling parameter
of the power law distribution, and FRPmin and FRPmax are
the minimum and maximum possible FRP values. This
formulation provides an alternate way to estimate the FRE
from conventional numerical integration methods, such as
(2). We note, however, that (8) is indeterminate or evaluates
to zero depending on specific values of m, FRPmin, and
FRPmax. Specifically, FREpwr.law will evaluate to zero for
m = 1, is indeterminate for m = 2, and will be sensitive to
FRPmin and FRPmax when m < 2. We also note that the
minimum and maximum possible FRP values are unknown;
for this study, we setFRPmin andFRPmax as the minimum and
maximum observed FRP values, respectively. A sensitivity
analysis to the choice of FRPmin and FRPmax is presented in
section 5.3 for the cases when m > 2 and m < 2.

2.3. Fitting a Power Law Distribution to Discrete
Empirical Data

[12] The scaling parameter m can be estimated from dis-
crete measurements by the use of a number of empirical
methods. The three primary methods are the maximum
likelihood estimator (MLE), the linear regression fit to
cumulative‐probability distribution function in log scales
(LR+CDF), and the linear regression fit to probability dis-
tribution function in log scales (LR+PDF) [Goldstein et al.,
2004; Newman, 2005; Clauset et al., 2009]. The LR+PDF
method is the simplest method, requires no a priori assump-
tions, and so is frequently used [Malamud et al., 2005;
Downing et al., 2006; Song et al., 2006; Koren et al., 2008;
Zhang et al., 2009].
[13] In this paper, the LR+PDF method is adapted fol-

lowing suggestions by [Newman, 2005] to address issues
concerning errors that may occur in the regression compu-
tation. The probability distribution function (5) of a discrete
set of measurements of x is defined by the histogram of x
and is linearized by taking the natural logarithm of the
distribution function as follows:

ln P xið Þj j ¼ ln cj j � m ln xij j; ð9Þ

where the range of the variable x is partitioned in n
discrete bins (intervals), xi is the central point of each bin
with i 2 {1 … n}, and P(xi) is the probability of a value x
falling in the ith bin. The coefficient ln|c| and the scaling
parameter m are estimated by a linear regression with ln|P
(xi)| and ln|xi| as the response and predictor variables,
respectively. For power law distributions, the bins that count
the occurrences of large values may have more influence on
the regression owing to their relatively lower counts com-
pared with the counts in smaller‐value bins [Goldstein et al.,
2004; Newman, 2005]. To mitigate for this effect, Newman
[2005] suggested using bins with logarithmically increasing
bin widths and rescaling the counts by the corresponding bin
widths. In this way, we use bin intervals defined as follows:

Intervali ¼ 2i�1 � 1ð Þ
2n � 1ð Þ xmax;

2i � 1ð Þ
2n � 1ð Þ xmax

� �
ð10Þ

and the width of the ith bin is

Widthi ¼ 2i�1ð Þ
2n � 1ð Þ xmax; ð11Þ
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where n is the total number of bins, i 2 {1 … n}, and xmax is
the maximum measured x value. The binning scheme
defined by (10) and (11) requires that x is always positive;
this is always the case with FRP. The probability of x falling
in the ith bin is as follows:

P xið Þ ¼ countsi
q widthi

ð12Þ

where countsi is the number of observations falling in the ith
bin and q is the total number of observations over all the

bins. It follows that
Pn
i¼1

P(xi) widthi = 1.

[14] In this study, the Theil‐Sen nonparametric regression
estimator is applied to (9) to estimate m and ln|c|. The

Theil‐Sen estimator is used because it is robust to outliers
and, unlike ordinary least squares regression estimators,
makes only weak assumptions about the probability distri-
bution of the response and predictor errors [Theil, 1950; Sen,
1968; Fernandes and Leblanc, 2005]. For certain bins, P(xi)
may be zero; these bins are ignored in the application of the
regression. The correlation (r) between the predicted and
observed values is derived as an indicator of the regression
goodness of fit. The scaling parameter m is sensitive to the
number of bins n. However, because there is no analytical
solution for an optimal n, we use an iterative method, where n
is increased monotonically from a starting value of 5, up to a
maximum of 100 (which was adequate to fit a power law for
the data sets used in this study). In each iteration, if at least
5 bins have non‐zero sample counts, the Theil‐Sen regression

Table 1. Physical Characteristics of the Eight U.S. Prescribed Fires

Fire

Prefire
Dry Litter
Fuel Load
(kg m−2)

Prefire
Woody

Fuel Load
(kg m−2)

Prefire
Total Fuel

Load
(kg m−2)

Consumed
Litter

(kg m−2)

Consumed
Woody
(kg m−2)

Total
Biomass
Consumed
(kg m−2)

Number of
FRP

Measurements

Fire
Duration

(s)
FRPmin

(W m−2)
FRPmax

(W m−2)

1 0.64 1.28 1.93 0.31 0.1 0.41 68 670 6.5 12,245
2 0.31 0 0.31 0.31 0 0.31 35 340 7 12,752
3 0.16 0 0.16 0.16 0 0.16 35 340 10.7 3,786
4 0.31 0 0.31 0.31 0 0.31 27 260 30.6 20,029
5 0.92 1.26 2.18 0.84 0.73 1.57 202 2,100 6.8 12,514
6 0.63 2.17 2.8 0.63 1.49 2.12 253 2,520 6.9 10,853
7 0.95 2.2 3.15 0.95 2.2 3.15 243 2,420 13 17,870
8 0.96 2.48 3.43 0.96 2.41 3.36 251 2,500 37 20,887

Figure 1. Temporal evolution of FRP (units: W m−2) measured at 10 s intervals for eight prescribed fires
(Table 1). The start of the fire was defined as the time the FRP increased above the background prefire
temperature and the end of the fire as the time when the measured temperature dropped below the prefire
temperature.
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goodness of fit r and the regression parameters are computed.
Increasing the number of bins, n narrows the bin intervals but
does not necessarily increase the number of bins with nonzero
counts or increase the r value. The binning scheme with the
maximum r is selected as the optimal scheme and the asso-
ciated m and log[c] regression parameters selected. The
FREpwr.law is estimated as (8) using the m value and specified
values of d, FRPmin, and FRPmax.

2.4. Biomass Burned Estimation From FRE

[15] The FRE computed conventionally as (2) or with the
power law method as (8), is used to estimate the total bio-
mass burned (units: g) using an established linear relation-
ship between the FRE (J) and the biomass burned as
follows:

Biomass Burned ¼ 0:368� 103 FRE; ð13Þ

where 0.368 is a constant derived from experimental data,
with an uncertainty of ±0.015 defining the 95% confidence
intervals [Wooster et al., 2005]. Literature estimates of
burned biomass (fuel consumed per unit area) are typically
reported in terms of kg m−2. Accordingly, in this paper, the
FRP data retrieved from satellite‐ and field‐based radio-
meters are divided by the surface area sensed by the
instrument detector to give FRP data in terms of W m−2. In

this way, the FRE derived as (2) or (8) is defined in terms of
J m−2 and the biomass burned in terms of kg m−2.

3. Demonstration of FRE Estimation Methods
With Eight U.S. Prescribed Fires

[16] Eight experimental prescribed fires were ignited on 4
m square plots on a prepared bare mineral soil surface at the
USDA Forest Service Vinton Furnace experimental forest
site, Columbus, Ohio. The fuels were varying mixtures of
eastern U.S. hardwood litter and woody types (1 and
10 h fuels) that burned for different lengths of time depending
on the fuel loading and composition (Table 1). A dual band
(long wave infrared and mid wave infrared) radiometer and
downward‐looking video camera developed for wildland
fire monitoring were mounted approximately 4 m above the
center of each plot. The dual‐band radiometer (field of view =
60°) was calibrated for radiance against a standard labora-
tory blackbody source, while the video camera was used to
observe the fire extent. Other synchronized video cameras
were used to measure flame height and fire front location.
Witness targets were placed in the fire to allow measure-
ments to be made of the fire extent relative to the field of
view of the radiometer. The brightness temperature of the
fire was inferred using a laboratory‐derived calibration that
related the ratio of the midwave infrared to long‐wave
infrared radiance to the brightness temperature [Kremens

Figure 2. Power law fit to the FRP (units: Wm−2) data illustrated in Figure 1. The regression coefficients
are shown in each plot. The FRP probability distribution functions, P(FRP), in log‐log scales are illus-
trated with the horizontal bars showing the width of each bin with nonzero P(FRP). For fires 1, 5, 6, and 7
the first bin has a nonzero P(FRP), and so the bin width is illustrated as beginning from the logarithm of
the minimum FRP value rather than zero.
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et al., 2010]. With the use of this method, the fire emissivity
and fire fractional area (areal fraction of radiometer field of
view) product was obtained along with the brightness tem-
perature, from which the emitted radiant power was derived
[Riggan et al., 2004; Kremens et al., 2010; Daniels, 2007].
The fire radiant flux was measured at 10 s intervals for the
duration of each fire, starting before the fire was lit and
lasting until the fire was completely extinguished. The FRP
[W m−2] was computed from these estimates using the
Stefan‐Boltzmann equation [Kaufman et al., 1998]. The
prefire and postfire fuel loads were measured using an
accurate scale, and their difference was used to derive the
total biomass consumed.
[17] Figure 1 shows the FRP (units: W m−2) plotted as a

function of time for the eight fires; the FRP rises sharply
during the initial stages of the fire, peaks, and then decays
slowly. Fire 8 consumed the maximum total fuel (litter and
woody, Table 1) and burned with the highest measured FRP
(20,887 W m−2) compared with the other fires. Fire 4 was
fueled only by dry litter, burned for the shortest duration
(260 s), and burned energetically with a maximum FRP
(20,029 W m−2) comparable to Fire 8. Fire 3 consumed the
least total fuel and burned with the lowest maximum FRP
(3786 W m−2).
[18] Figure 2 shows the power law fit derived using the

method described in the previous section applied to the FRP

measurements for each prescribed fire. Both axes are shown
with logarithm scales. Fire 5 has the lowest correlation (r =
0.91) between the robust regression predicted and observed
FRP probability, and fire 8 has the highest correlation (r =
0.98). These results indicate that the FRP probability dis-
tribution for the eight fires has a power law behavior. For
the eight fires the correlations between the total fuel con-
sumed and the fire duration (d), the maximum FRP, the
slope of the power law fit (m), and the product of d and m is
0.932, 0.518, 0.105, and 0.959, respectively. This is expected
as the total fuel consumed is directly proportional to the FRE
(13), which is a function of the fire duration and the shape of
the FRP probability distribution (8).
[19] Figure 3 illustrates the burned biomass estimates

derived as (13) from FREpwr.law (filled circles) and from
FREnum.int (open circles) plotted against the measured total
biomass consumed (Table 1). The FREnum.int values were
estimated independently for each fire by application of (2).
The FREpwr.law values were estimated independently for
each fire as (8) using the FRPmin, FRPmax, and d values
(Table 1) and the estimated power law slope values (m)
illustrated in Figure 2. The FRE‐derived burned biomass
estimates (y axis) are quite similar to the total biomass
consumed measurements (x axis). For the low fuel load fires
(fires 1–4), the absolute difference between the FRE based
and the measured total biomass consumed is less than 0.16
kg m−2. The largest difference is for fire 5, the fire with the
lowest power law goodness of fit (r = 0.91; Figure 2), with a
difference of 1 kg m−2 and 0.93 kg m−2 for the FREpwr.law

and FREnum.int estimates, respectively. Over all eight fires,
the mean absolute relative percentage difference, computed
as (100 × mean [(FRE estimated biomass burned − total
biomass consumed)/total biomass consumed]) is 19.9% and
25.9% for the FREpwr.law‐ and FREnum.int‐based burned bio-
mass estimates, respectively. Evidently, the new FREpwr.law

estimation method may provide an alternative to the con-
ventional numerical integration method FREnum.int. The
absolute difference between the FRE‐based and the mea-
sured total biomass consumed is greater for the higher
biomass consumption fires; this may be due to insufficient
FRP sampling, inaccuracy in the radiometer FRP retrievals,
or error in the multiplicative factor (0.368) used in (13) to
derive biomass burned from FRE. Simple linear regression
of all the data plotted in Figure 3 indicates that a multipli-
cative factor of 0.313 would provide a better fit of the
estimated and measured biomass consumed. However,
because we have no way of establishing which factor(s) are
causing these differences we, use the 0.368 multiplicative
factor prescribed by Wooster et al. [2005] for this research.
[20] The sensitivity of the FRE estimation methods under

progressively sparser FRP sampling was investigated by
randomly selecting without replacement 90%, 60%, 30%,
and 15% of the FRP measurements for each fire. The FRP
subsample data for each fire were ordered chronologically
and used to independently compute FREnum.int as (2), and to
compute FREpwr.law as (8) using FRPmin, FRPmax, d, and
m values derived from the FRP subsample data. This simu-
lation was repeated 1000 times and each time the biomass
burned was computed as (13) from the FREnum.int and
FREpwr.law estimates. Figure 4 shows the results derived from
the 1000 sparsely sampled FRP subsets; each colored dot
shows the results of one simulation, and each of the eight fires

Figure 3. Comparison of burned biomass (units: kg m−2)
estimated using FRE computed by (filled circles) FREpwr.law

and (open circles) FREnum.int with the measured total bio-
mass consumed (Table 1) for the eight prescribed fires
illustrated in Figure 1. The solid line shows the 1:1 line for
reference. The FRE values were computed independently
for each fire, i.e., the eight FREpwr.law values were derived
using the power law fit approach as (8), with FRPmin,
FRPmax, fire duration d, and the m regression parameter
estimated from the FRP measurements for each fire, and the
eight FREnum.int values were derived by summing the FRP
measurements for each fire as (2).
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is represented by a unique color. The scatter in the colored
dots is the least for the 90% subsample and the greatest for the
15% subsample, reflecting the sensitivity of FRE computa-
tion by both methods to decreasing the number of FRP
measurements. The spread of the colored dots illustrated in
Figure 4 implies that, while both methods of FRE estimation
have significant uncertainty with smaller subsample sizes,
FREnum.int is less sensitive than FREpwr.law. The colored
diamonds in Figure 4 show the total biomass consumed
measurements for each fire (Table 1) and are offset from the
colored dots in the same way as the results computed without
FRP subsampling illustrated in Figure 3.
[21] Figure 5 shows the results of a new simulation. The

FREpwr.law biomass burned values were computed with the
fire duration derived independently as Figure 4 from the FRP
subsample data, but with the fixed FRP power law para-
meters (m, FRPmin, and FRPmax) derived from all of each
fire’s FRP data. Thus, the FREpwr.law biomass burned va-
lues will only vary with the fire duration estimates. The
FREnum.int biomass burned valueswere derived as for Figure 4.
In Figure 5 the FREpwr.law and FREnum.int biomass burned
estimates are similar for the 90% and 60% subsampling.
However, the scatter in the FREpwr.law biomass burned esti-
mates is smaller than the scatter in the FREnum.int estimates for
the sparser 30% and 15% subsampling. This is in contrast
with the results plotted in Figure 4, and implies that if the
power law parameters (m, FRPmin, FRPmax) can be charac-
terized reliably a priori, then FREpwr.law is less sensitive to
FRP undersampling than the conventional FREnum.int

numerical integration method. Figure 6 confirms this, show-
ing summary statistics of the relative percentage differences
between the burned biomass estimated using all of the FRP
data (illustrated in Figure 3) and the burned biomass estimated
from the undersampled FRP data (illustrated in Figure 5). For
progressively more severe FRP undersampling, the mean and
standard deviation of the FREpwr.law biomass burned differ-
ences generally become smaller than the corresponding
FREnum.int differences. The mean differences do not change
much for fires 5–8, for either FRE estimation method, per-
haps because, for these fires, the FRP data captured the FRP
temporal variability (>200 observations every 10 s) more
completely than for fires 1–4 (<70 observations every 10 s)
that burned for much shorter durations (Table 1).

4. Development of FRE Estimation Methods
With MODIS Data

4.1. MODIS Active‐fire and FRP Data

[22] The MODIS sensor is onboard the polar‐orbiting
Terra (10.30AM Equatorial overpass time) and Aqua
(1.30PM Equatorial overpass time) satellites providing up to
four day and nighttime active‐fire detections and corre-
sponding FRP estimates for a pixel at the Equator [Giglio
et al., 2003]. The MODIS is a whiskbroom sensor, such
that the ground area sensed by each detector increases with
scan angle; for example, a 1 km detector senses an area of
approximately 1.0 by 1.0 km at nadir, but, at the edge of the
scan, senses an area of approximately 2.01 by 4.83 km in the

Figure 4. Comparison of burned biomass (units: kg m−2) estimated from FREpwr.law and FREnum.int for
the 8 prescribed fires under simulated sparse FRP sampling conditions (90%, 60%, 30%, and 15% FRP
subsampling). The undersampled FRP data for each fire were used to independently compute FREnum.int

and FREpwr.law for 1000 simulations (circular colored dots) for fires 1–8 (dark blue, red, green, light blue,
orange, brown, gray, and cyan, respectively). The colored diamonds show the measured total biomass
consumed (same values plotted in the Figure 3 x axis).
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along‐track and along‐scan directions, respectively [Wolfe
et al., 1998]. The Collection 5 MODIS Terra and Aqua
Level 2 active‐fire products used in this study are defined
with this geometry, and define for each 1 km (at nadir)
observation whether an active fire was detected, the confi-
dence level of the detection, and the FRP in MW. The
MODIS FRP is estimated using an empirical relationship
between the FRP and brightness temperature retrieved in the
midinfrared and is not expected to saturate over hot and/or
large vegetation fires [Kaufman et al., 1998; Ichoku et al.,
2008]. If no MODIS active fire was detected then the sur-
face status (land, water, cloud, or unknown) is defined.
[23] For most of the analyses in this study, the MODIS

Level 2 FRP data were converted to (MW km−2) by dividing
the FRP (units: MW) by the sensed ground area (units: km2)
[Ichoku and Kaufman, 2005]. In addition, for certain anal-
yses, the Level 2 FRP data were reprojected to the gridded
1 km Level 3 MODIS sinusoidal equal area projection
[Wolfe et al., 1998]. In the reprojection process, the FRP
(MW) of each Level 2 active‐fire observation was divided
by the number of Level 3 pixels it encompassed such that
the total FRP in each Level 3 gridded data set was equal to
the total FRP in the original Level 2 data [Boschetti and
Roy, 2009]. The Level 3 FRP were defined in MW km−2.

4.2. Australian and Brazilian Study Areas

[24] Two study areas with contrasting prefire fuel loads
and fire behavior were selected, one over Australian tropical
savanna and the other over Brazilian deforestation. Over the
Australian study area, 3660 MODIS Level 2 active fires
were detected from 27 September to 7 November 2002
(1884 Aqua and 1776 Terra), with MODIS FRP values for
individual fire pixels ranging from 5.754 to 1937.893 MW.
Over the Brazilian study area, 409 MODIS Level 2 active
fires were detected from 6 January to 20 December 2003,
withMODISFRPvalues ranging from8.074 to 7230.168MW.
Figure 7 plots the spatially explicit Level 2 detections over
each study area.
[25] The Australian study area is defined by a MODIS

mapped burned area that burned approximately 14,675 km2

and is located between 131°–133°E, 16°–18°S at the border
of the Sturt Plateau and the Ord‐Victoria Plains in the
Northern Territories [Boschetti and Roy, 2009]. The vege-
tation is predominantly spinifex grasses with sparse (<10%
cover) trees with an average fuel load of 0.78 kg m−2 (Sturt
Plateau) and 0.81 kg m−2 (Ord Victoria Plains) [Russell‐
Smith et al., 2003]. In this region the burning efficiency,
defined as the product of the combustion completeness and
the proportion of the satellite pixel that effectively burned is
reported to be 0.72 [Russell‐Smith et al., 2003]. The product

Figure 5. Comparison of burned biomass (units: kg m−2) estimated from FREpwr.law and FREnum.int for the
eight prescribed fires under simulated sparse FRP sampling conditions (90%, 60%, 30%, and 15% FRP sub-
sampling). The undersampled FRP data for each fire were used to independently compute FREnum.int and
FREpwr.law for 1000 simulations (circular colored dots) for fires 1–8 (dark blue, red, green, light blue,
orange, brown, gray, and cyan, respectively). The FREnum.int biomass results are the same as in Figure 4;
the FREpwr.law‐derived biomass burned values were computed keeping m, FRPmin, and FRPmax fixed and
defined from all the FRP measurements of the fire and with only the fire duration defined from the
undersampled FRP. The colored diamonds show the measured total biomass consumed (same values
plotted in the Figure 3 x axis).
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of the average of the two fuel load estimates and burning
efficiency provides a comparison biomass burned estimate
of 0.57 kg m−2 [Boschetti and Roy, 2009].
[26] The Brazilian study area is a 0.12° × 0.12° region

centered at 13.1°S, 56.57°W close to the “arc of deforesta-
tion” in the state of Mato Grosso with a high density of

MODIS active‐fire detections. Visual inspection of multi-
date Landsat acquisitions indicated large areas of defores-
tation and subsequent burning between January and
December 2003. There is no definitive fuel load or consump-
tion information available for the study area. A 1 km spatially
explicit biomass classification data set with a reported 70%

Figure 6. Summary statistics of the relative percentage difference between the burned biomass values
estimated from the undersampled FRP data (illustrated in Figure 5) and the burned biomass estimated
using all of the FRP data without undersampling (illustrated in Figure 3). The percentage difference for
each simulation (colored dot in Figure 5) is estimated as | Burned biomassunder sampled − burned bio-
masswithout undersampling | / burned biomasswithout under sampling. The mean of the percentage differences
(circles) and the standard deviation around the mean (horizontal and vertical lines) is shown for the
FREpwr.law (y axis) and FREnum.int (x axis) methods for fires 1–8. Fires 1–4 are labeled, fires 5–8 are
clustered near the plot origin and are not labeled.

Figure 7. Locations of MODIS Aqua and Terra day and nighttime active‐fire detections over the (left)
Australian and (right) Brazilian study areas. A total of 3,660 Level 2 active fires were detected from
27 September to 7 November 2002 over the Australian study area (1884 Aqua and 1776 Terra), with
FRP ranging from 5.754 MW to 1937.893 MW. A total of 409 Level 2 active fires were detected over
the Brazilian study area (220 Aqua and 189 Terra) from 6 January to 20 December 2003, with FRP rang-
ing from 8.074 MW to 7230.168 MW.
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accuracy [Saatchi et al., 2007] was analyzed and provides a
mean study area above a ground biomass of 10.77 kg m−2. In
the Brazilian state of Mato Grosso, deforestation fires burn
with a combustion completeness ranging from 0.2 to 0.6 with
a typical value of 0.5 [Carvalho et al., 2001; van der Werf
et al., 2008; Soares Neto et al., 2009]. The product of the
typical combustion completeness and the mean above‐
ground biomass provides a comparison biomass burned
estimate of 5.38 kg m−2, about ten times greater than for the
Australian study area. Similarly, research undertaken at a
Mato Grosso site approximately 500 km away from the study
area measured burned biomass from 1.5 to 4.45 kg m−2 with a
standard error of approximately 50% [Balch et al., 2008].

4.3. Brazilian MODIS Active‐Fire Commission
Error Reduction

[27] The Collection 5 MODIS active‐fire product has an
estimated 3% commission error over the entire Legal
Amazon with more than 35% detected over areas with a mix
of high and low percentage tree cover [Schroeder et al.,
2008]. A worst case scenario is illustrated in Figure 8,
which shows the FRP of 15 active fires detected in the study
area at the same 1 km location occurring over an implau-
sibly long 167 day period. Typically, the maximum duration
of deforestation fires is 15 days [Morton et al., 2008]. In an
attempt to reduce the impact of this commission error, the
Aqua and Terra FRP values were temporally filtered and
only collocated FRP values occurring within a temporal
duration of n days (4, 6, 8, or 10 days) from each other, and
that included the active‐fire detection with the maximum
FRP over the year, were considered. This filtering was
implemented during the Level 2 to Level 3 reprojection and
gridding process (section 4.1), so that, for each filtered

Level 3 FRP value, its filtered parent Level 2 FRP value was
retained. The circles and crosses in Figure 8 show the active‐
fire detection Level 2 FRP values retained by the use of a
temporal duration threshold of 4 and 10 days, respectively.
Evidently, a longer duration threshold allows more active
detections to be retained. We have no reliable way of vali-
dating this method, and so analyses of the estimated FRE and
biomass burned with respect to different temporal duration
thresholds is described in section 5.2.2.

4.4. MODIS FRPmin, FRPmax and Fire Duration
Estimation

[28] The, FRPmin, FRPmax, and fire duration are needed
to determine FREpwr.law (8). These values may either be
prescribed, for example, from available field studies or
observations, or can be estimated from the MODIS Terra
and Aqua data. The FRPmin and FRPmax were set as the
minimum and maximum observed Level 2 MODIS Terra
and Aqua FRP for each study area. Sensitivity of FREpwr.law

to the choice of FRPmin and FRPmax for each study area is
presented in section 5.3.
[29] The fire duration was estimated from the MODIS

active‐fire detections by comparison of the dates and time of
the MODIS Terra and Aqua detections (up to four per 24 h)
[Loboda and Csiszar, 2007; Boschetti and Roy, 2009].
Spatially explicit fire durations (units: s) were computed for
each Level 3 pixel as the temporal difference between the
times of the MODIS observations with no active‐fire
detection that preceded and followed the first and last
active‐fire detection(s), respectively. Pixels identified as
clouds in the MOD14 product were assumed to have not
burned to avoid overestimation of the fire duration
[Boschetti and Roy, 2009]. We recognize that the Level 2 to

Figure 8. The Level 2 FRP (units: MW) of all the MODIS Terra and Aqua day and nighttime detections
within the same 1 km location (13.17083°S, 56.63563°W) in the Brazilian study area plotted against day
of year in 2003 (black dots). The vertical lines show days when there were either no MODIS observations
of the surface or when all the MODIS observations were cloudy. The absence of vertical lines indicates at
least one nonfire MODIS observation for a given day. The circles and cross symbols show the commis-
sion error reduction algorithm results generated using a temporal threshold of 4 and 10 days, respectively.
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Level 3 reprojection process will “artificially” increase the
number of times a Level 3 pixel will have a fire detected
within it. This may increase the number of shorter‐duration
fires or inflate the duration. Despite these limitations, this
method has been shown to be useful [Loboda and Csiszar,
2007; Boschetti and Roy, 2009].

4.5. Adaptation of the FRE Power Law Fit Method
to Correct for MODIS FRP Omission Errors

[30] The FRP is defined for each MODIS active‐fire
detection. However, the MODIS active‐fire product can
only detect fires that are sufficiently hot and/or large
depending on the areal proportions and temperatures of the
nonburning and the smoldering and flaming fire components
[Kaufman et al., 1998; Giglio and Justice, 2003]. This sen-
sitivity is known to cause a systematic detection omission of
cool and/or small fires [Giglio et al., 2003], particularly those
with low FRP [Schroeder et al., 2008; Freeborn et al., 2009].
Underestimation of FRP may also occur depending on the
suppixel location of the active fire with respect to the central
pixel location [Calle et al., 2009; Schroeder et al., 2010].
In addition, at increasingly higher MODIS scan angles,
where the sensed ground area is larger, only larger and/or
hotter fires tend to be detected [Giglio et al., 1999; Mottram
et al., 2005; Freeborn et al., 2011]. The resulting underes-
timation of the number of active fires detected with low FRP
at high scan angles is evident in Figure 9, which shows the
MODIS Level 2 FRP values and the corresponding sensed
ground areas for the Australian and Brazilian study areas.
Roberts et al. [2005] and Roberts and Wooster [2008]
observed similar FRP omission errors in African geosta-
tionary (SEVIRI) FRP data. Roberts et al. [2005] suggested,
and illustrated qualitatively, that fitting a reciprocal expo-
nential distribution function to the SEVIRI FRP histogram

may provide a way to extrapolate the FRP distribution to
lower values to correct for satellite FRP omission effects.
[31] We adopted a approach similar to that suggested by

Roberts et al. [2005] to correct for MODIS low FRP
omission errors. The FRP power law fit methodology
(section 2.3) was applied to the Level 2 FRP data (MW
km−2) after ignoring all the lower value FRP bins with P
(FRP) smaller than the bin with max[P(FRP)]. In this way,
we extrapolate the regression fit to the lowest observed FRP
to compensate for any low FRP omission effects.

4.6. MODIS FRE and Biomass Burned Estimation

[32] Conventional numerical integration and power law
based FRE estimates and corresponding biomass burned
estimates were derived for the study areas. The Brazilian
estimates were computed with FRP data sets filtered using 4,
6, 8, and 10 day temporal duration thresholds to examine the
sensitivity of the estimates to the commission error reduc-
tion approach (section 4.3). Both spatially explicit (different
estimate for each active fire detection pixel) and spatially
nonexplicit (a single estimate for the study area) estimates
were made in the same way as reported by Boschetti and
Roy [2009] and are described in detail below.
[33] Spatially non‐explicit FRE values were computed

assuming that the multiple FRP values retrieved over the
study area were from a single fire event that burned pro-
gressively between the first and last active‐fire detection; i.e.,
fires propagating from a single or multiple simultaneous
ignitions scattered throughout the study area [Boschetti and
Roy, 2009]. In this way, a single FREnum.int value was
computed by numerical integration of all the Level 2 FRP
values (MW km−2) over the study area and period. The FRP
values were ordered chronologically and summed as (2); if
more than one active fire was detected on the same day and

Figure 9. MODIS Level 2 FRP (units: MW) plotted against the sensed surface area (units: km2). The
FRP values are plotted in natural logarithmic scales for visual clarity. The plot includes all the detections
shown in Figure 6 for each study area. Note that MODIS observations have a larger sensed surface area at
a greater scan angle further from the nadir.
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at the same time, then they were summed and treated as a
single FRP value. A single FREpwr.law estimate was com-
puted as (8) using power law characteristics (m, FRPmin, and
FRPmax) derived from all the Level 2 FRP values and with a
single fire duration derived by the difference in time
between the last and the first FRP retrieval. All the FRP data
were used to derive m, FRPmin, and FRPmax, because this
provides FREpwr.law estimates that are less sensitive to
sparse FRP sampling for the prescribed fire data (Figures 5
and 6) and assumes that the FRP distribution characteristics,
i.e., the fuels, conditions, and fire behavior, are the same for
all the fires in the study area.
[34] Spatially explicit FRE values were computed for each

Level 3 pixel location where there were FRP values
retrieved over the study period. The spatially explicit
FREnum.int was computed at each Level 3 pixel by sum-
mation as (2) considering the Level 3 FRP value(s) (MW
km−2) and their time of detection. The spatially explicit
FREpwr.law was computed as (8) using the spatially explicit
fire duration estimates (section 4.4) and using power law
characteristics (m, FRPmin, and FRPmax) derived from all the
Level 2 FRP data (MW km−2) over the study area.

5. MODIS Results

5.1. MODIS FRP Power Law Fitting

[35] Figure 10 shows the power law fits of the Australian
(Figure 10, left) and Brazilian (Figure 10, right) MODIS
Level 2 FRP data. The points show the probability distri-
bution of the FRP values, and the horizontal line segments
show the probability distribution bin widths. The Brazilian
FRP data set was filtered with a 4 day temporal duration
threshold. The power law fits (lines) are shown computed
for both Aqua and Terra FRP data. The power law fits were
adapted for the MODIS omission errors by ignoring all the

lower value FRP bins with P(FRP) smaller than the bin with
max[P(FRP)] and extrapolating the fits to the lowest
observed FRP values. As expected, the FRP probability
distributions deviate from a linear behavior for the low‐
value FRP bins.
[36] For both study areas, a high correlation is found

between the predicted and observed FRP probability values,
0.9874 and 0.9983 for Australia and Brazil, respectively,
indicating that the MODIS FRP data exhibit a power law
behavior. The scaling parameters (m), i.e., the slopes of the
linear power law fits illustrated in Figure 10, are 2.14 and
1.53 for the Australian and Brazilian data, respectively. This
implies that the Australian fires have a relatively greater
proportion of lower value FRP values than higher values in
comparison with the Brazilian study area fires. This is
expected as the vegetation at the Australian study area is
predominantly spinifex grass which should burn less ener-
getically than the Brazilian deforestation fires which have a
higher fuel load and perhaps larger actively flaming fire
fronts.

5.2. MODIS FRE and Burned Biomass Estimation

5.2.1. Australian Study Area Results
[37] The Australian nonspatially explicit FREnum.int and

FREpwr.law estimated values were 1.2594 and 1.2565 ×
106 MJ km−2, respectively, providing burned biomass esti-
mates of 0.4634 and 0.4624 kg m−2, respectively, that are
comparable (about 81%) to the study area 0.57 kg m−2

comparison burned biomass estimate described in section 4.2.
The similarity of these results indicates that the MODIS FRP
sampling was perhaps sufficient to capture the fire FRP var-
iability when considered in a non‐spatially explicit manner.
[38] Australian spatially explicit FREnum.int and FREpwr.law

values were derived at each of 6539 Level 3 pixels where
one or more MODIS Terra or Aqua FRP values were

Figure 10. Power law fit of the (left) Australian and (right) Brazilian study area Aqua and Terra MODIS
Level 2 FRP (units: MW km−2) data. The slope (scaling parameter m) of the power law fit for the Aus-
tralian FRP data is 2.1446 and for the Brazilian FRP data is 1.5345. The Brazilian study area power law
fits are shown for 177 FRP Level 2 detections (92 Aqua and 85 Terra) selected from the 409 original
values using a 4 day commission error reduction threshold as an example.
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detected. Figure 11 shows histograms of the Australian spa-
tially explicit biomass burned results. The FREnum.int‐based
biomass estimates (Figure 11, left) are more widely scattered
than the FREpwr.law‐based estimates (Figure 11, right). The
medians of the spatially explicit FREnum.int‐ and FREpwr.law‐
based biomass burned estimates are 0.2149 and 0.3393 kgm−2,
respectively, corresponding to 38% (FREnum.int‐based) and
60% (FREpwr.law‐based) of the study area 0.57 kg m−2

comparison biomass burned value. The power law based
median is closer to the comparison estimate. This pattern is
similar to that found for the prescribed fire FRP subsampling
results illustrated in Figure 5 and is most likely because the
spatially explicit FREpwr.law estimates were computed using
the power law characteristics (m, FRPmin, and FRPmax)
derived from all the Australian FRP data. For both the
conventional and power law methods, there were some
unrealistically high biomass estimates, 10% of the FREnum.int

and 6% of the FREpwr.law pixels had burned biomass values
greater than 0.81 kg m−2 (the highest available fuel load
reported in the literature). These high values may be due to
isolated energetic burning of eucalyptus trees in the study

area and/or due to insufficient FRP sampling at those pixel
locations [Boschetti and Roy, 2009].
5.2.2. Brazilian Study Area Results
[39] The Brazilian nonspatially explicit FREnum.int and

FREpwr.law values and biomass burned estimates computed
using FRP data sets filtered with 4, 6, 8, and 10 day tem-
poral duration thresholds are summarized in Table 2. In all
cases, for both the conventional and power law methods and
for all duration thresholds, the FRE‐derived burned biomass
estimates are significantly greater by factors of about 3
(FREnum.int) and 4.5 (FREpwr.law) than the study area com-
parison 5.38 kg m−2 estimate. These poor Brazilian results
are likely because the fires were not from the same pro-
gressively burning fire event, which is an implicit assump-
tion of the nonspatially explicit FRE computation [Boschetti
and Roy, 2009]. The Brazilian fires clearly occurred in
different localities (Figure 7, right) and over a 348 day
period.
[40] Figure 12 shows histograms of the spatially explicit

Brazilian biomass burned results generated from the 4 day
temporal‐threshold‐filtered FRP data. The histograms have
very similar distributions for the 6, 8, and 10 day thresholded

Figure 11. Histograms of the Australian study area MODIS Terra and Aqua spatially explicit FRE‐
derived biomass burned estimates (units: kg m−2) derived from (left) FREnum.int and (right) FREpwr.law.
The histograms are shown log‐transformed for illustrative clarity. The results were derived at the
same 6539 Level 3 1 km pixel locations. The vertical dashed lines show the study area 0.57 kg m−2 com-
parison burned biomass estimate. A total of 6539 Level 3 FRP data values (MW km−2) were used to derive
FREnum.int and the fire durations required to estimate FREpwr.law. A total of 3660 Level 2 FRP (MW km−2)
values were used to infer the power law scaling parameters m, FRPmin, and FRPmax.

Table 2. Nonspatially Explicit FRE and Biomass Burned Estimates for the Brazilian Study Area Derived Using the Numerical Integration
(FREnum.int) and Power Law (FREpwr.law) Estimation Methods for Different Temporal Duration Thresholdsa

Temporal
Duration
Threshold
(day)

Number of
Duration

Filtered FRP
Values Used

FREnum.int

Estimate
(106 MJ km−2)

FREpwr.law

Estimate
(106 MJ km−2)

FREnum.int

Biomass Burned
Estimate
(kg m−2)

FREpwr.law

Biomass Burned
Estimate
(kg m−2)

4 177 64.3393 72.2679 23.6769 26.5946
6 186 44.2131 65.2294 16.2704 24.0044
8 192 44.5406 80.3759 16.3909 29.5783
10 194 44.3262 80.3759 16.312 29.5783

aThe comparison burned biomass estimate for the study area is 5.38 kg m−2. Level 3 FRP data (MW km−2) were used to derive FREnum.int and the fire
durations required to estimate FREpwr.law. The power law scaling parameters m, FRPmin, FRPmax were derived from Level 2 FRP (MW km−2) values.
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data. The FRPmin and FRPmax values did not change for
the different temporal duration thresholds, even though a
large proportion of the 409 MODIS Level 2 active fires
were removed by the filtering process (there were 177 and
194 filtered Level 2 FRP data for the 4 day and 10 day
thresholds, respectively). Similarly, the power law scaling
parameter values (m) did not change significantly, from
1.535 (4 day threshold) to 1.583 (10 day threshold). For all
duration thresholds, there were 245 Level 3 pixels with one
or more MODIS Terra or Aqua FRP values and at each of
these pixels a single FRE and biomass burned estimate was
computed. The FREnum.int biomass estimates (Figure 12,
left) are more widely scattered than the FREpwr.law biomass
estimates (Figure 12, right) similar to that observed for the
Australian spatially explicit results (Figure 11) and for the
prescribed fire FRP results illustrated in Figure 5. This is
again most likely, because the spatially explicit FREpwr.law

estimates were computed using power law characteristics
(m, FRPmin, and FRPmax) derived from all the filtered FRP
data.
[41] Table 3 summarizes the minimum, median, and

maximum of the spatially explicit biomass burned estimates
for the different temporal thresholds. For both FRE esti-
mation methods, the maximum biomass burned values are
unrealistically high, which may be due to insufficient FRP
sampling and isolated burning of high biomass at those pixel
locations, about 2% of the FREnum.int and 4% of the
FREpwr.law pixels had biomass burned values greater than
10.77 kgm−2 (the estimated study area above ground biomass).
The minimum and the median of the Brazilian spatially
explicit biomass burned FREpwr.law estimates are, for all
temporal duration thresholds, closer (underestimated by a
factor between 3 and 4) to the study area comparison estimate
than the FREnum.int estimates (underestimated by a factor

between 13 and 100). Interestingly, the median FREpwr.law

biomass burned estimates are progressively more similar to
the comparison estimate with decreasing duration threshold
values, indicating again that the power law method is rela-
tively insensitive to sparse FRP sampling. In contrast, the
median FREnum.int biomass burned estimates are progres-
sively less similar to the study area comparison estimate with
decreasing temporal duration threshold values, most likely
because of the sensitivity of the FREnum.int method to
decreased FRP sampling. We note, however, that the range of
the median biomass burned estimates over the different
temporal duration thresholds is relatively small: 0.3791 to
0.4173 kg m−2 for the FREnum.int‐based estimates, corre-
sponding to 7% to 8% of the study area 5.38 kg m−2 com-
parison biomass burned value, and 1.5535 to 1.7223 kg m−2

for the FREpwr.law‐based estimates, corresponding to 29% to
32% of the study area comparison value. Similar to the
Australian results, the Brazilian power law based median
biomass burned estimates are closer to the comparison
estimate than the conventional temporal integration based
estimates.

5.3. MODIS FREpwr.law Estimation Sensitivity Analysis
With Respect to FRPmin and FRPmax

[42] Reliable FREpwr.law estimation depends on suitable
selection of FRPmin, FRPmax, and fire duration values.
Because the FREpwr.law is linearly dependent on the fire
duration (8), we do not investigate the sensitivity of the
study area FREpwr.law biomass burned estimates to the fire
duration. Instead, the sensitivity to FRPmin and FRPmax is
examined. These values were estimated from the study area
MODIS Terra and Aqua FRP and active‐fire detection date
and timing data. The FRPmin (Australia, 5.254 MW km−2;
Brazil, 7.390 MW km−2) and FRPmax (Australia, 641.599

Figure 12. Histograms of the Brazilian study area MODIS Terra and Aqua spatially explicit FRE‐
derived biomass burned estimates (units: kg m−2) derived from (left) FREnum.int and (right) FREpwr.law.
The histograms are shown log‐transformed for illustrative clarity. The results were derived for the same
245 Level 3 pixel locations. The FRP data set was filtered using a temporal duration threshold of 4 days.
The vertical dashed lines show the study area 5.38 kg m−2 comparison burned biomass estimate. A total of
245 Level 3 FRP data values (MW km−2) were used to derive FREnum.int and the fire durations required to
estimate FREpwr.law. A total of 177 Level 2 FRP (MW km−2) values were used to infer the power law
scaling parameters m, FRPmin, and FRPmax.
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MW km−2; Brazil, 1633.533 MW km−2) values were varied
systematically by ∼2% steps over ±100% ranges, ignoring
zero FRPmin and FRPmax values. For each set of FRPmin and
FRPmax values, the study area spatially explicit FREpwr.law

values were computed as described in section 4.6 and the
medians of the 6539 Australia and the 245 Brazilian
FREpwr.law biomass burned estimates were derived. In this
way, a total of 10,000 median FREpwr.law and associated
biomass burned estimates were obtained for each study area.
The Brazilian sensitivity analysis was applied to the 4 day
temporal duration thresholded FRP data as this threshold
provided a median FREpwr.law biomass burned estimate
closest to the study area comparison (Table 3).
[43] Figure 13 shows the sensitivity analysis results for

the Australian (Figure 13, left) and Brazilian (Figure 13,
right) median FREpwr biomass burned estimates to the
choice of FRPmin and FRPmax. The study area median
FREpwr.law biomass burned estimates are clearly sensitive to
changes in FRPmin and FRPmax. The sensitivity is greatest

where the contours are most dense, occurring particularly
when FRPmin is large and FRPmax is small. The Australian
site is relatively less sensitive to FRPmax than FRPmin, which
is always the case for m > 2. This can be inferred analyti-
cally from equation (8) as

lim
FRPmax!∞

FREpwr:law ¼ d
m� 1ð Þ
m� 2ð ÞFRPmin

when m > 2. In contrast for m < 2, as is the case for the
Brazilian site, then FREpwr will depend on both FRPmin and
FRPmax values.
[44] The Australian median biomass burned is less sen-

sitive to changes in FRPmax than FRPmin; the median bio-
mass burned estimate changes by less than ±20% and up to
±40% when FRPmax and FRPmin are varied by ±50%,
respectively. The Brazilian median biomass burned estimate
is about equally sensitive to changes in FRPmin and FRPmax,
the median biomass burned estimate changes by slightly

Table 3. Summary Statistics of the Brazilian Study Area Spatially Explicit Biomass Burned Estimates Derived Using the Numerical
Integration (FREnum.int) and Power Law (FREpwr.law) Estimation Methods for Different Temporal Duration Thresholdsa

Temporal
Duration
Threshold
(days)

FREnum.int Biomass Burned Estimate (kg m−2) FREpwr.law Biomass Burned Estimate (kg m−2)

Minimum Median Maximum Minimum Median Maximum

4 0.0415 0.3791 32.1199 1.5230 1.7223 28.5984
6 0.0415 0.3840 32.1199 1.4511 1.6409 98.1063
8 0.0415 0.3840 32.1199 1.3737 1.5535 92.8779
10 0.0415 0.4173 32.1199 1.3737 1.5535 92.8779

aThe summary statistics were computed over 245 Level 3 pixel locations where there were one or more MODIS Terra or Aqua FRP values. The
comparison burned biomass estimate for the study area is 5.38 kg m−2. Level 3 FRP data (MW km−2) were used to derive FREnum.int and the fire
durations required to estimate FREpwr.law. The power law scaling parameters m, FRPmin, FRPmax were derived from Level 2 FRP (MW km−2) values.

Figure 13. Sensitivity of the (left) Australian and (right) Brazilian median FREpwr biomass burned esti-
mates to the choice of FRPmin and FRPmax. The contours show the relative percentage difference between
the median biomass burned estimated using the observed study area FRPmin and FRPmax with respect to the
median biomass burned estimated using simulated FRPmin and FRPmax values. The simulated FRPmin and
FRPmax values were varied around the observed study area FRPmin and FRPmax values in 2% increments
over a ±100% range.
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more than ±20% when FRPmax or FRPmin are varied by
±50%. These levels of biomass burned estimation sensitivity
are relatively low or comparable to the likely errors found in
landscape fuel load and combustion completeness informa-
tion [Robinson, 1989; Ellicott et al., 2009; Vermote et al.,
2009].

6. Discussion and Conclusions

[45] This paper has presented the theory and application
of a new method to derive the fire radiative energy (FRE),
and thus the biomass burned, from satellite fire radiative
power (FRP) retrievals.
[46] The power law based FRE is derived as the product

of the fire duration and the expected FRP. The latter is
parameterized by the minimum and maximum FRP (FRPmin

and FRPmax) and a scaling parameter (m) that is computed
from the measured FRP data using a linear regression fit to
probability distribution function in log scales methodology
[Goldstein et al., 2004; Newman, 2005; Clauset et al.,
2009]. The sensitivity of the power law based FRE esti-
mation method and the conventional temporal‐integration‐
based FRE estimation method to FRP sampling was first
quantified using FRP data retrieved from radiometer
measurements of eight U.S. prescribed fires. The power
law (FREpwr.law) and conventional temporal integration
(FREnum.int) FRE estimates were converted to total biomass
burned using an established linear relationship [Wooster
et al., 2005] and compared with the biomass burned mea-
sured independently as the difference in the prefire and
postfire fuel loads. The FREpwr.law‐ and conventional
FREnum.int‐derived biomass burned estimates were on
average within 19.9% and 25.9%, respectively, of the eight
measured estimates. The radiometer FRP data were then
undersampled by randomly selecting without replacement
90%, 60%, 30%, and 15% of the FRP values for each fire.
Both FRE estimation methods were sensitive to under-
sampling. If the power law parameters (m, FRPmin, FRPmax)
were characterized a priori, from the original un‐resampled
FRP data, then the FREpwr.law‐derived biomass burned esti-
mates were generally less sensitive to FRP undersampling
than the conventional FREnum.int numerical integration
method.
[47] One of the potential advantages of the new power law

FRE estimation method is its inherent ability to compensate
for (i) satellite FRP omission errors, due to undersampling
caused by infrequent satellite overpasses and fire obscura-
tion by clouds, smoke, and optically thick aerosols [Giglio,
2007; Roy et al., 2008]; and (ii) the decreased probability of
satellite detection of fires with low FRP, due to factors
including the changing size of the surface area sensed by the
sensor detector, the variable relationship between fire front
subpixel locations and the sensing system point spread
function, the fire background characterization used by the
FRP retrieval algorithm, and the presence of atmospheric
water vapor [Wooster et al., 2005; Calle et al., 2009;
Schroeder et al., 2010]. In this study, the FRP power law fit
methodology was applied to MODIS FRP data by the use of
a simple method to ignore low FRP values during the power
law fit. The resulting power law fit was then applied to all
FRP values to compensate for these effects.

[48] The conventional and power law based FRE esti-
mation methodologies were applied to regional MODIS
FRP data selected for Australian savanna and Brazilian
forest study areas because they have contrasting fuel loads
and burning conditions. The power law scaling parameter
values (m) derived from the MODIS Terra and Aqua FRP
data for the Australian and Brazilian fires had relative values
that followed an expected pattern. A low m implies a greater
proportion of high FRP fires, while a larger m implies a
greater proportion of low FRP fires. The Brazilian m value
(1.53) was lower than the Australian m value (2.14), which
was expected because the Australian study area vegetation is
predominantly spinifex grass that should burn less energet-
ically than the Brazilian study area deforestation fires that
have a higher fuel load and perhaps larger actively flaming
fire fronts.
[49] For both the Australian and Brazilian study areas,

MODIS FRE estimates were derived in a non‐spatially
explicit (a single estimate for the study area) and spa-
tially explicit (different estimate for each active‐fire detec-
tion pixel) manner [Boschetti and Roy, 2009]. The power
law (FREpwr.law) and conventional temporal integration
(FREnum.int) FRE estimates were converted to total biomass
burned estimates [Wooster et al., 2005] and compared with
literature estimates. The Australian nonspatially explicit
FREnum.int‐ and FREpwr.law‐based biomass burned results
were comparable, about 81%, to the study area literature
biomass burned value. The medians of the spatially explicit
biomass burned estimates were 38% (FREnum.int based) and
60% (FREpwr.law based) of the literature values. The Brazi-
lian study area results were less comparable with the liter-
ature values. The Brazilian nonspatially explicit biomass
estimates for either FRE estimation method yielded rela-
tively poor results, most likely because the fires were not
from the same progressively burning fire event that is
implicitly assumed in the nonspatially explicit FRE com-
putation [Boschetti and Roy, 2009]. The medians of the
spatially explicit Brazilian burned biomass estimates were
about 8% (FREnum.int‐based) and 30% (FREpwr.law‐based) of
the literature values, whereas the nonspatially explicit based
biomass burned results were greater by a factor of about 3
(FREnum.int) and 4.5 (FREpwr.law). We note, however, that
the Brazilian study area literature burned biomass estimate
we used may not be accurate, with reported standard errors
of about 50% reported at a similar site [Balch et al., 2008].
[50] The power law method requires that the parameters of

the FRP power law distribution (m, FRPmin, FRPmax) can be
derived reliably from the FRP retrievals or that the parameters
are known a priori. In the case of satellite FRP observations
over large areas, it is reasonable to assume that the FRP
probability distribution characteristics can be parameterized
reliably a priori from fires over similar vegetation and with
similar fire behavior [Freeborn et al., 2009]. Sensitivity
analysis of the Australian and Brazilian MODIS FRP data
indicate that the power law based FRE is sensitive to the
selection of the FRPmin andFRPmax values in a nonlinear way
that depends on the FRP distribution. However, a ±50%
change in the FRPmin or FRPmax resulted in no more than a
±40% change in the burned biomass estimates. This level of
sensitivity is relatively low or comparable to the errors found
in traditional “bottom‐up” biomass burned estimates based
on fuel load and combustion completeness information
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[Robinson, 1989; Ellicott et al., 2009; Vermote et al., 2009].
Over limited geographic areas it is likely that FRPmin and
FRPmax derived from satellite FRP retrievals will not ade-
quately capture the appropriate range of FRP. This funda-
mental issue requires further research and is complex because
(i) the minimum and themaximum FRP detected by a satellite
depends on the sensor characteristics, the active‐fire detec-
tion algorithm, and the areal proportions and temperatures of
the smoldering and flaming fire and nonburning components
[Robinson, 1991; Giglio et al., 1999; Giglio and Justice,
2003; Ichoku et al., 2008], and (ii) the satellite overpass
time should coincide with when the fire has minimum (e.g.,
started, or about to extinguish) and maximum (e.g., highest
rate of combustion and maximum subpixel fire size) FRP.
[51] The power law FRE estimation method also requires

fire duration information that can be derived by satellite
active‐fire detections through time, as implicitly assumed by
conventional FRE estimation methods, or could be defined
from other satellite products such as the MODIS burned area
product that defines the approximate day of burning
[Boschetti et al., 2010]. We recognize that, for the results
reported in this study, the fire durations estimated from the
MODIS active‐fire detections may be biased by the neces-
sary reprojection of MODIS swath (Level 2) to gridded
(Level 3) data. This may increase the number of shorter
duration fires or inflate the estimated durations that will
have complex effects most notably on the spatially explicit
(i.e., per pixel) FRE estimates.
[52] A rigorous validation of the results of this study

would require the availability of FRE and biomass con-
sumed over large areas, which are presently unavailable.
The results and observations in this paper suggest, however,
that the power law method of FRE estimation, exploiting the
mathematical properties of probability distributions, opens a
promising avenue for future research. Future research will
be devoted to investigate whether the integration of multiple
sources of data, for instance, polar‐orbiting and geosta-
tionary FRP retrievals [Freeborn et al., 2009], could provide
a regional depiction of the FRP power law distribution
parameters. Future research will also investigate whether
there is an explicit relationship between the scaling param-
eter m and the fire characteristics at regional scale, which
would effectively allow the use of m to characterize fire
behavior that is of interest to the ecological and the emis-
sions modeling community but is difficult to determine over
large areas using ground‐based and satellite‐based techni-
ques [Wooster and Zhang, 2004; Roberts et al., 2009].
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