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A B S T R A C T

A consistent dataset delineating and characterizing changes in urban environments will be valuable for socio-
economic and environmental research and for sustainable urban development. Remotely sensed data have been
long used to map urban extent and infrastructure at various spatial and spectral resolutions. Although many
datasets and approaches have been tried, there is not yet a universal way to map urban extents across the world.
Here we combined a microwave scatterometer (QuikSCAT) dataset at ~1 km posting with percent impervious
surface area (%ISA) data from the National Land Cover Dataset (NLCD) that was generated from Landsat data,
and ambient population data from the LandScan product to characterize and quantify growth in nine major
urban areas in the US Great Plains from 2000 to 2009. Nonparametric Mann-Kendall trend tests on backscatter
time series from urban areas show significant expanding trends in eight of nine urban areas with p-values
ranging 0.032 to 0.001. The sole exception is Houston, which has a substantial non-urban backscatter at the
northeastern edge of the urban core. Strong power law scaling relationships between ambient population and
either urban area or backscatter power (r2 of 0.96 in either model) with sub-linear exponents (β of 0.911 and
0.866, respectively) indicate urban areas become more compact with more vertical built-up structure than
lateral expansion to accommodate the increased population. Increases in backscatter and %ISA datasets between
2001 and 2006 show agreement in both magnitude and direction for all urban areas except Minneapolis-St. Paul
(MSP), likely due to the presence of many lakes and ponds throughout the MSP metropolitan area. We conclude
discussing complexities in the backscatter data caused by large metal structures and rainfall.

1. Introduction

The world's urban population has grown rapidly from 746 million in
1950 to 3.9 billion in 2014, a more than five-fold increase (United
Nations, 2014). As the world continues fast urbanization, about
6.4 billion people are predicted to live in cities by 2050, accounting for
66% of the world's population. The worldwide urbanization has trans-
formed economic, social, political settings (Yusuf et al., 2001; Soh,
2012; Fang et al., 2015) and increasingly exerts impacts on climate and
ecosystems at multiple scales (Zhou et al., 2004; Kaufmann et al., 2007;
Imhoff et al., 2010; Seto et al., 2012; Bounoua et al., 2015). Under-
standing of urban change becomes critical to urban planners and de-
cision-makers responsible for sustainable urban development (Seto
et al., 2014).

For many years, urban extent and infrastructure have been mapped
using multiple sources of remotely sensed data, from moderate to high
spatial and spectral resolutions. Airborne images captured in visible and

infrared spectrum are primary data sources to map urban land uses and
land covers (LULC). Moderate-to-low spatial resolution sensors, such as
Landsat (Masek et al., 2000; Zha et al., 2003; Yuan et al., 2005),
AVHRR (Hansen et al., 2000), MODIS (Schneider et al., 2009, 2010;
Friedl et al., 2010; Huang et al., 2016), ASTER (Chen et al., 2007; Pu
et al., 2008), and SPOT (Zhang et al., 2003; Ferri et al., 2014; Sertel and
Akay, 2015), offer long spans of imagery for the analysis of urban
changes. A major limitation of moderate resolution imagery is that an
image pixel may contain multiple types of land cover that may have
multiple uses. Traditional classification methods that assume only one
LULC type exists in an image pixel may therefore fail to produce ac-
curate results with moderate resolution imagery (Small, 2005). Spectral
Mixture Analysis (SMA) represents the reflectance in each pixel by a
linear combination of spectral endmembers, provided an alternative to
quantify reflectance properties of the urban mosaics (Adams et al.,
1986; Smith et al., 1990). Although the SMA has proved useful for
describing urban composition in subsequent studies (Lu and Weng,
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2004; Pu et al., 2008; Small, 2001; Wu and Murray, 2003), it is usually
designed with spectral endmembers specific to a location or research
problem. High spatial resolution images from airborne and space-borne
platforms are increasingly used for urban mapping to better separate
urban features (Herold et al., 2003; Li and Shao, 2014; Lu et al., 2010;
Myint et al., 2011). However, these very high spatial resolution
(< 2 m) data are typically available only at a high cost over a small
area at infrequent intervals.

In modern societies, urban areas are brightly and densely lit at
night, in contrast to the sparser lighting in surrounding rural areas. The
nighttime lights datasets generated from DMSP-Operational Linescan
System (OLS) and, more recently, the Visible Infrared Imaging
Radiometer Suite (VIIRS) are used widely to map human settlement and
to infer socioeconomic development (Small et al., 2005; Shi et al., 2014;
Zhou et al., 2015). Although the night lights datasets have demon-
strated a great potential for urban studies, they still have several lim-
itations, such as blooming effects and light saturation in urban cores
leading to high commission error, variation in local lighting habit and
technologies, seasonality in usage, and, for the OLS data, limited dy-
namic range (Doll, 2008; Huang et al., 2014; Small et al., 2011; Small
and Elvidge, 2013; Zhang and Seto, 2013). Urban structure can be
characterized using LiDAR systems (Yan et al., 2015) or high-resolution
images processed with photogrammetric methods (Takaku et al., 2014).
Although LiDAR or high-resolution image datasets can have very fine
spatial resolution (≤1 m), they are only available at a high cost for a
few locations and with long return intervals, if any.

While spectral data and night lights imagery only show urban
changes in the 2-D plane, both 2-D and 3-D urban infrastructure could
be characterized using data collected by synthetic aperture radars
(SAR) with encouraging results (Henderson and Xia, 1998; Nghiem
et al., 2001; Gamba et al., 2002; Soergel et al., 2003; Dell'Acqua and
Gamba, 2006; Boehm and Schenkel, 2006; Dell'Acqua, 2009;
Taubenbock et al., 2012; Esch et al., 2013; Zhou et al., 2017). SAR data
can have high resolution ranging from 10 to 100 m; however, SAR data
are noisy with a large sigma-naught equivalent noise floor and fixed
azimuth angle from a side-looking antenna, which cause many con-
founding complications in urban areas (same building can have a very
large difference in backscatter at different azimuth angles). More im-
portantly, a key limitation is that many SAR datasets have been col-
lected piecewise at different times over different areas of the world. The
Shuttle Radar Topography Mission (SRTM) provided an extensive SAR
data collected between 60°S and 60°N in February 2000, which has a
potential use for global infrastructure mapping for year 2000 (Nghiem
et al., 2001). TanDEM-X SAR also has an extensive coverage in recent
years; however, TanDEM-X data are not freely accessible. There has
been no consistent collection of global SAR data consistently at frequent
repeated time intervals until the advent of Sentinel-1A and 1B SAR,
which were launched in 2014 and 2016, respectively.

In June 1999, NASA launched a satellite
scatterometer—QuikSCAT—to fill the gap created by the loss of NSCAT
in 1997. With a comparably high spatial resolution that is sufficient to
address urban scales, studies have demonstrated the capability of
scatterometer data to characterize urban growth and development in
both horizontal and vertical directions (Nghiem et al., 2009). The DSM
concept and formulation rigorously founded on the Rosette Transform
(Nghiem et al., 2009) and its utility has been demonstrated and pub-
lished in the literature where important and useful conclusions were
reported. These include: observation of physical and demographic
characteristics of the urban environment (Nghiem et al., 2014), en-
vironmental impacts of Beijing urbanization (Jacobson et al., 2015),
assessment and projection of groundwater vulnerability to nitrate pol-
lution (Stevenazzi et al., 2015; Stevenazzi et al., 2017), urban change
and impacts in Italy (Masetti et al., 2015), and global mega urbaniza-
tion and formation of urban mega agglomeration (Nghiem, 2015).

Our objective is to characterize changes in urban environments
using high spatial resolution QuikSCAT dataset generated by the Dense

Sampling Method (DSM) (Nghiem et al., 2009). We extend the use of
DSM data to test and demonstrate its capability in monitoring annual
growth of nine major urban areas in the US Great Plains from 2000 to
2009. To examine the validity of the DSM data for urban monitoring,
we coupled it with two other well-known and widely used satellite
products, ambient population distribution from LandScan (Bhaduri
et al., 2002; Dobson et al., 2000) and the percent impervious surface
area (%ISA) from NLCD (Fry et al., 2011; Homer et al., 2007; Xian
et al., 2011), which represent patterns of urbanization from in-
dependent sources. Based on %ISA and LandScan population datasets
both indicating urban development, we hypothesized that there would
be strong correlations between DSM backscatter and impervious surface
area and population data. Intense rainfall can also modify the back-
scatter observed by a scatterometer (Hilburn et al., 2006; Tournadre
and Quilfen, 2003) due to increased soil moisture on land (Nghiem
et al., 2012; Seto and Iguchi, 2007). To have better understanding of
those phenomena, we also examine relationship between QuikSCAT
backscatter and rainfall data from the National Oceanic and Atmo-
spheric Administration (NOAA).

2. Study area and data

2.1. Study area

Our study region is the US Great Plains, a vast expanse of flatland
dominated by prairie, steppe and grasslands, stretching east to west
from the Missouri River to the Rocky Mountains and north to south
from the coniferous forests of Canada to the Rio Grande. Here we ex-
amined urbanization in the nine largest urban areas of the region by
2010 Census population (Fig. 1), including: Dallas-Fort Worth (TX);
Houston (TX); Minneapolis-St Paul (MN); Kansas City (KS-MO); Okla-
homa City (OK); Tulsa (OK); Omaha (NE) - Council Bluffs (IA); Wichita
(KS); and Des Moines (IA). We chose this study region primarily due to
the small variation in topography over the entire Great Plains, which
minimizes high average backscatter from terrain effects.

2.2. Data

The SeaWinds scatterometer on QuikSCAT satellite collected daily
global data covering 90% of the Earth surface with an original footprint
of approximately 25 km in azimuth and 37 km in range. Here, we used
QuikSCAT data from 2000 to 2009 processed by the Dense Sampling
Method (DSM) (Nghiem et al., 2009). The DSM linearly composes a set
of multi-azimuths, thin-slice beams to obtain the radar backscatter data
posted in a much finer grid with the pixel scale of about 1 km. The DSM
also characterizes backscatter fluctuations of the target in each pixel
that arise due to azimuth asymmetry, human activities and environ-
mental changes using the index of variability (IV). As a trade-off, the
increased spatial resolution results in a reduction in temporal resolu-
tion: the near daily temporal resolution of QuikSCAT is reduced to
generate an annual higher spatial resolution product. A time series of
the annual product is appropriate to identify changes in a growing
urban environment. Moreover, the DSM formulation allows the use of
data at both vertical (VV) and horizontal (HH) polarizations, and their
variability is included in the standard deviation of the product (Nghiem
et al., 2009). While backscatter over ocean can have a significant dif-
ference between VV and HH data (Nghiem et al., 1997) due to the
surface scattering characteristics, VV and HH backscatter data in-
tegrated over all azimuth angles are similar over land because of the
volume scattering from objects above surface (rocks, trees, buildings,
etc.), except in flood inundated areas (Brakenridge et al., 2005). Thus,
we used both the HH polarization from the inner beam and the VV
polarization from the outer beam of QuikSCAT in the data processed by
the DSM for this study.

The Multi-resolution Land Characteristics Consortium (MRLC) has
generated the National Land Cover Database (NLCD) for the
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conterminous United States at 30 m resolution from Landsat data every
5 years since 2001 (Fry et al., 2011; Homer et al., 2007). Two major
layers of the NCLD datasets are land cover and percent developed im-
perviousness (%ISA). In this study, we compared changes in backscatter
and impervious surface area (ISA) between 2001 and 2006. The ISA for
each pixel was calculated as reported %ISA multiplied by the nominal
pixel area of 0.09 ha. The urban area's total impervious surface area is
the simple summation of ISA values from all pixels within the defined
urban area.

LandScan is a fine spatial resolution (30 arc-second) population
distribution database generated by disaggregating census counts at re-
gional and sub-national scale using geospatial data and a multi-variable
dasymetric modeling approach (Rose and Bright, 2014). Because data
availability and quality vary for each region, the LandScan algorithm
was manually corrected to match the regional geographic and demo-
graphic conditions. LandScan data represents the “ambient popula-
tion”, that is, the population averaged over 24 h, which combines
diurnal activities (e.g., work, travel, shopping, etc.) and nocturnal
sleeping locations and, thus, more closely corresponds to the active

urban population than an approach that counts people only where they
sleep (Dobson et al., 2000).

Monthly rainfall data from 2000 to 2009 for 101 stations located
within or nearby study areas were downloaded from the NOAA's
National Centers for Environmental Information (formerly the National
Climatic Data Center). A list of stations and geographic locations is
provided in Table S1.

3. Approach

3.1. Characterization of urbanization by DSM data

Urban expansions from 2000 to 2009 in the nine urban areas were
characterized by changes in annual backscatter contours. The 5 × 5
Gaussian Kernel Smoothing (with sigma = 1) was applied to reduce
noise in the original DSM scatterometer data. We note that the annual
DSM data is a continuum in space that can represent continuous rural to
urban gradients, while allowing users to define a specific threshold for
each specific investigation. We carried out exploratory analyses of the
latitudinal and longitudinal distributions of backscatter values with
different thresholds across every MSAs, and found that urban pixels
would consistently separate from surrounding environment at −10 dB.
Thus, for each of the nine Great Plains cities, the −10 dB contour
serves as a common basis for evaluating progressive urban expansion in
the 2000s.

We also coupled backscatter contours with changes in impervious
surfaces between 2001 and 2006 to reveal urbanization using two in-
dependent sources. For a better visualization, the backscatter contours
are displayed in the diverging color ramp from indigo (2000) to dark
red (2009) (Figs. 2 & S1–S7). To quantify urbanization over the study
period, we first calculated areas covered by each −10 dB contour.
Linear regression and the nonparametric Mann-Kendall (MK) trend test
were then applied to the time series to examine the urban expansion
associated with each area.

3.2. Comparison between backscatter and population dataset

Many quantitative attributes of cities have been shown to exhibit
power law scaling as a function of population size, with superlinear
exponent values (β > 1) for variables related to social characteristics
and sublinear exponent values (β < 1) for variables related to “infra-
structure display” (Bettencourt et al., 2007; Bettencourt, 2013). Here,
we examined whether DSM backscatter and LandScan ambient popu-
lation also exhibit power law scaling relationships. First, we merged
urban areas captured by 2000–2009 backscatter contours to produce a
single largest possible urban boundary for each MSA. We then esti-
mated the −10 dB area, decadal mean backscatter power (as defined
by Eq. (1)) and total ambient population within the−10 dB extent. The
two power law models were fitted using LandScan population (P) as the
predictor and area (A) or backscatter power (BKS) as the response
variable (Eqs. 2 and 3). Since the magnitude of backscatter signal is
proportional to the amount of total built volume (i.e., larger backscatter
for higher density of larger buildings and other man-made structures
made by heavier materials like steel) (Nghiem et al., 2009; Stevenazzi
et al., 2015; Jacobson et al., 2015), we expect to retrieve β< 1 in both
models.

= ∗BKS 100 10mean
σmean0

10 (1)

=A a P1
β1 (2)

=BKS a P2
β2 (3)

where σmean
0 is decadal mean (2000–2009) normalized backscatter

signals; a1, a2 are normalization constants and β1, β2 are scaling ex-
ponents of the power law models. In Eq. (1), without loss of generality,
we use the number 100 as a proportional coefficient for arbitrary power

Fig. 1. Nine largest urban areas in the US Great Plains observed by QuikSCAT DSM data.
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units in each pixel.

3.3. Comparison between backscatter and impervious surface area

We focused particularly on horizontal expansion occurring near city
boundaries as this expansion front would indicate growth of the built
environment. Initially, differences were captured as the area between
the −10 dB backscatter contours in 2001 and 2006. These rings in the
nine urban areas represent both urban expansion rate (area of the ring)
and major direction of urbanization (maximum distances between two
contours). We then generated a buffer of the rings and used those
buffers as “evaluation zones” to compare the backscatter and ISA da-
tasets. These evaluation zones were used for comparison instead of the
rings for two reasons. First, we used a 5 × 5 smoothing kernel to reduce
noise in the original dataset. Therefore, backscatter values at zone edge
are affected by values within the 2.5-pixel radius. Second, effects in the
DSM backscatter dataset should be considered due to the resultant gain
pattern in the DSM data processing. The buffer should neither too small
(to compensate for smoothing process) or too large (so that pixels at the
edge have weak or no contribution to the backscatter of a central pixel).
Originally, we performed the analysis for multiple buffer thresholds
from 3 to 5 km at 0.5 km step (in between the size of the smoothing
windows and half diameter of the original QuikSCAT footprint). Results
were slightly different for each buffer threshold but major conclusions
remain the same. Therefore, we reported the analysis for 4.5 km buffer,

which showed median values. The same buffer was applied in all cities
for a consistent analysis.

To compare between backscatter and impervious area, we first di-
vided the evaluation zones into eight sectors, and then estimated total
%ISA and backscatter power increases between 2001 and 2006 within
each sector. Next, changes in backscatter power (ΔBKS) were calculated
by Eq. (4). The results were plotted and examined by several correlation
tests to describe the relationship between ISA and backscatter increases
over the nine urban areas.

⎜ ⎟∆ = − = ⎛
⎝

− ⎞
⎠

∗

BKS BKS BKS 10 10 10006 01
σ σ06

0

10
01
0

10
(4)

with σ010,σ060 being the 2001 and 2006 normalized backscatter signals,
respectively.

3.4. Impact of rainfall on backscatter signal

To demonstrate impact of rainfall on backscatter in each study area,
we first averaged the monthly rainfall from all available stations (to
minimize missing data) and accumulated to the total annual amount.
We then used four correlation tests to examine relationship between the
total annual rainfall and de-trended area time series, calculated as
differences between areas captured by the −10 dB contours and their
fitted linear model values from Section 3.1.

Fig. 2. The−10 dB backscatter contours in Dallas-Fort Worth, TX. The earlier year contours, from 2000 to 2004, are displayed in cooler colors while the later year contours, from 2005 to
2009, are shown in warmer colors. The 2001%ISA layer, shaded in black-white scale, provides background that aids interpretation of backscatter contours. The open lands with no
impervious surfaces (%ISA = 0) and water bodies are shaded in black. Urban (built-up) areas with higher %ISA values are shaded in grey to white colors as the transition from suburban
to the urban core. The 2001–2006%ISA changes layer give an idea of where and how quickly urbanization occurs.
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4. Results

4.1. Urbanization by DSM backscatter data

Fig. 2 demonstrates the capability of the DSM scatterometer dataset
to delineate urban extents: the −10 dB contours generally correspond
to the limits of built-up areas shown by the 2001%ISA layer. Although
contour lines may cross each other, the earlier year contours (displayed
in cooler colors) were generally superseded by later year contours
(displayed in warmer colors), which represents outward urban expan-
sion through time. This spatial pattern was consistently observed
throughout all studied areas (Figs. 2 and S1–S7). Backscatter contours
were also able to show urban expansion in both magnitude and direc-
tion. In Dallas-Fort Worth, urbanization occurred mostly in the
northern half, indicated by the larger distance between 2000 (blue) and
2009 (red) contours. We also observed more ISA changes between 2001
and 2006 in the northern parts of both urban areas.

Temporal trends of urban areas covered by the 2000–2009 contours
were assessed using linear regression and the nonparametric Mann-
Kendall (MK) trend test (Table 1). The MK tests indicated statistically
significant growth of every study city, except Houston. Coefficients of
determination (Fig. 3 & Table 1) varied among areas from 0.24 to 0.84
indicating strong variation in 10 years of urban growth in some urban
areas. Although the Minneapolis-St Paul model was significant
(p < 0.05), it exhibited a markedly lower coefficient of determination
(r2 = 0.36).

4.2. Comparison between DSM backscatter and LandScan data

The strong positive relationships between ambient population and
area or backscatter power are evident (Figs. 4, 5). Although the quan-
tities for area and backscatter power were both derived from the DSM
data, they are not quite the same. While urban area only demonstrates

lateral limit of the city, the amount of backscatter power in each city is
a function of both urban extent and structural characteristics (e.g.,
building height, density, and construction materials) (Nghiem et al.,
2009; Stevenazzi et al., 2015; Jacobson et al., 2015). Scaling exponents
(β) in both models were sub-linear (β < 1), and the backscatter-po-
pulation relationship (Fig. 5) has slightly lower β value than the area-
population relationship (Fig. 4) (0.866 vs. 0.911). This pattern suggests
that as population increases, urban areas become more compact (more
vertical than lateral expansion to accommodate the increased popula-
tion).

4.3. Sectoral analysis

Fig. 6 displays backscatter and impervious areal increases between
2001 and 2006 in Dallas-Fort Worth. There is a strong correlation
evident between the two datasets. In areas with larger ISA increases (in
shades of red or dark red), we observed larger increases in backscatter
power (in shades of green to dark green). Fig. 6 suggests that urban
expansion has occurred mostly in the northern half of Dallas-Fort
Worth. Fig. 7 demonstrates a strong positive correlation between di-
rectional BKS and ISA increases in Dallas-Fort Worth, except for the
NW-N direction. Comparisons of increases in backscatter and im-
pervious surface area for eight other studied areas are presented in
Supplemental Information (Figs. S8–S15, S16). Table 2 summarizes
correlations between 2001 and 2006 sectoral backscatter power and
impervious surface area in the nine studied areas. Major urban areas in
the Great Plain (other than Minneapolis-St. Paul) show moderate to
strong correlation between impervious surface area and backscatter
power with the coefficients of determination (r2) ranging from 0.62 to
0.88, the Pearson correlation coefficients (cor) ranging from 0.79 to
0.94, the Spearman rank correlation coefficients (rho) ranging from
0.52 to 0.98, and the Kendall rank correlation coefficients (tau) ranging
from 0.43 to 0.93 (Table 2).

Table 1
Linear models (r2) and Mann-Kendall trend tests (Tau) for urban areas captured by
−10 dB contours. Indication of significance: *, **, and *** for p-values< 0.05, 0.01, and
0.001, respectively.

Urban area r2 Tau

Dallas-Ft. Worth 0.83⁎⁎⁎ 0.87⁎⁎⁎

Houston 0.24 0.24
Minneapolis-St. Paul 0.36 0.56⁎

Kansas City 0.72⁎⁎ 0.64⁎

Oklahoma City 0.65⁎⁎ 0.60⁎

Tulsa 0.70⁎⁎ 0.73⁎⁎

Omaha 0.84⁎⁎⁎ 0.78⁎⁎

Wichita 0.67⁎⁎ 0.73⁎⁎

Des Moines 0.83⁎⁎⁎ 0.87⁎⁎⁎

y = 155.61x - 307663
R² = 0.827

3,000

3,500

4,000

4,500

5,000

5,500

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

A
re

a 
(k

m
2)

Fig. 3. Urbanization in Dallas-Fort Worth between 2000 and 2009 captured by −10 dB
backscatter contours.
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Fig. 4. The relationship between areas captured by decadal mean backscatter and
LandScan ambient population for nine largest urban areas in the US Great Plains.
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Fig. 5. The relationship between decadal mean backscatter power and LandScan ambient
population for the nine largest urban areas in the US Great Plains.
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4.4. Impacts of rainfall on backscatter signal

A relationship between rainfall and variability in areal fluctuations
was evident and consistent throughout the four correlation measure-
ments (Table 3). For example, in Dallas–Fort Worth, the years with
higher rainfall (viz., 2004, 2007, 2009) also have larger areas in the
−10 dB contour compared to expectation from a linear model (Fig. 8).
On the other hand, the −10 dB contour areas are smaller in years with
lower rainfall amount (viz., 2005, 2006, 2008). Similar situations were
observed in other urban areas (Fig. S19). Areas with larger urban extent
tend to show higher correlation between detrended areas and total
annual rainfall (Table 3).

Fig. 6. A comparison of backscatter power (BKS) and increases in percent impervious surface area (%ISA) between 2001 and 2006 in Dallas-Fort Worth.

Fig. 7. Sectoral comparison between increased backscatter power (BKS) and increased
impervious surface area (ISA) from 2001 to 2006 for Dallas-Fort Worth, TX. ISA and BKS
were normalized to aid comparison.

Table 2
Correlations between directional BKS and ISA increases for the 9 urban areas.

Urban area r2 cor rho tau

Dallas-Ft. Worth 0.70⁎⁎ 0.84⁎⁎ 0.52 0.43
Houston 0.83⁎⁎ 0.91⁎⁎ 0.90⁎⁎ 0.79⁎⁎

Minneapolis-St. Paul 0.38 0.62 0.40 0.36
Kansas City 0.87⁎⁎⁎ 0.94⁎⁎⁎ 0.98⁎⁎⁎ 0.93⁎⁎⁎

Oklahoma City 0.87⁎⁎⁎ 0.93⁎⁎⁎ 0.88⁎⁎ 0.71⁎

Tulsa 0.62⁎ 0.79⁎ 0.67 0.50
Omaha 0.68⁎ 0.82⁎ 0.88⁎⁎ 0.71⁎

Wichita 0.79⁎⁎ 0.89⁎⁎ 0.76⁎ 0.57
Des Moines 0.88⁎⁎⁎ 0.94⁎⁎⁎ 0.95⁎⁎ 0.86⁎⁎

r2: coefficient of determination in linear model, cor: Pearson product-moment correlation
coefficient, rho: Spearman rank correlation coefficient, tau: Kendall rank correlation
coefficient. Indication of significance: ⁎, ⁎⁎, and ⁎⁎⁎ for p-values< 0.05, 0.01, and 0.001,
respectively.
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5. Discussion

The contours of backscatter power could illustrate urban growth
both in rate and direction. For noise reduction in the DSM backscatter
data, we smoothed data before generating contours to enhance visual
interpretation. Differences between backscatter of built-up and non-
built-up pixels were less significant after smoothing: backscatter from
built-up areas reduced while backscatter from non-built-up pixels in-
creased. The tradeoff for better visualization is increased spatial de-
pendence in the dataset, which affected the sectoral analysis. For ex-
ample, in Figs. 6 and 7, the NW-N portion had low ISA value but large
backscatter power. The smoothing process partially included the high
backscatter values from the N-NE and W-NW portions. Across the nine
urban areas, we can see instances where the −10 dB contours may run
through areas shaded in dark grey that have very little or no impervious
surfaces (Figs. 2, 9, S1–S7).

Although the DSM data show the overall capability to study urban
and suburban environments, it is necessary to examine limitations of
DSM signatures in addition to relatively coarse spatial resolution.
Backscatter can be strongly affected by some special structures, espe-
cially large structures made of metal. Strong scattering back from a
single structure, such as an electrical power transmission tower or a
metal-roofed warehouse, can potentially dominate an entire 1 km pixel.
Even in high spatial resolution optical imagery, it can be very difficult
to distinguish a transmission tower from background objects. In the
original backscatter images, we found several areas across the nine
urban areas that did not seem to have many structures, but still re-
turned strong backscatter. One large building (e.g., factory, warehouse,
distribution center, megastore, etc.), rather than the total number of
small residential houses, may dominate the backscatter in the given
pixel. Considered as a built-up pocket of urbanization, such a case has

also been observed in Florence, Italy, where a new dominant building
may be permitted for construction in an isolated vacant land lot in the
historical city (Masetti et al., 2015). A sample of original average
backscatter is provided in Fig. S17.

In addition, the occurrence of numerous open water surfaces within
the urban area was found to complicate the backscatter signature. For
example, lake water surfaces can exhibit a large range of backscatter
depending on wind speed and wind direction (Nghiem et al., 2004).
Many open water bodies are distributed across the Minneapolis-St. Paul
area (Fig. S18), and complex interactions between weather, water
bodies, and the radar responses may result in the high interannual
variation in backscatter observed for MSP (Table 1). Furthermore, if
water surfaces are located nearby solid subjects such as stands of trees
or buildings, a double-bounce interaction can occur, resulting in high
backscatter (Rykhus and Lu, 2007). Such effects may have occurred
near Liberty, TX (Fig. 9) as the Trinity River crosses the middle of this
area. In addition, Trinity River may also spread across the floodplain
during the rainy season. During a flood, the water surface may be mixed
with trees and buildings, thus potentially enhancing the backscatter
through double-bounce interactions.

Our analysis supported previous findings that intense rainfall can
alter the backscatter (Hilburn et al., 2006; Tournadre and Quilfen,
2003). Table 3 indicated a stronger effect in larger cities where rain-
water caught over a large area is more consistent than that over a small
city extent where precipitation data suffer significantly from incon-
sistencies due to anomalous propagation, point measurement, and local
virga (Nghiem et al., 2012). We may be able to take advantage of the
detrended areal fluctuations of the DSM results to quantify inter-annual
rainfall variation in urban areas where decadal rainfall data may not be
available or accessible.

6. Conclusion

A better understanding of urban change is critical to enable sus-
tainable growth and management of urban areas. Here we have de-
monstrated how microwave scatterometer data processed with the
Dense Sampling Method can be used to study urban change in nine
major cities in the Great Plains of the United States of America from
2000 and 2009. Active microwave signatures from QuikSCAT enable
consistent observations over areas with pervasive or persistent cloud
cover and at night in every season. Our results indicate that DSM data
can characterize urban expansion both in area and in lateral direction.
Between 2000 and 2010, many counties in the US Great Plains were
losing population; however, the overall population in the Great Plains
increased due to the growth of major urban areas, especially in Dallas-
Fort Worth and Houston, where population gains were among the
highest in the nation (23.4% and 26.1%, respectively) with 1.2 million
more people in urban areas in 2010 than 2000 (Mackun and Wilson,
2011). Using the DSM data, we also observed significant expansion in
eight of nine major urban areas, with the sole exception of Houston,
likely due to the backscatter anomaly near Liberty, TX. In Dallas-Fort
Worth and Houston, the two largest urban areas in the Great Plains,
with 2010 population of 6.4 and 6.0 million, respectively (Mackun and
Wilson, 2011), urban expansion occurred more in the northern half of
each metropolitan area with 68% and 56% increases in backscatter
power between 2000 and 2009 for Dallas-Fort Worth and Houston,
respectively.

We also encountered complexities in the DSM data. First, interac-
tions between extensive water surface and buildings or other structures
can impact backscatter signals over an area (e.g., Houston and
Minneapolis-St. Paul). Second, rainfall may increase backscatter to
enlarge the area in the −10 dB reference contour. These complexities
indicate that using DSM backscatter alone as a single parameter can
incur uncertainties in delineating urban extent.

Past research has shown that DSM data have strong relationships
with both nighttime lights and census data (Nghiem et al., 2009). This

Table 3
Correlations between detrended area time series and annual rainfall.

Urban Area r2 cor rho tau

Dallas-Ft. Worth 0.71⁎⁎ 0.84⁎⁎ 0.84⁎⁎ 0.69⁎⁎

Houston 0.67⁎⁎ 0.82⁎⁎ 0.83⁎⁎ 0.60⁎

Minneapolis-St. Paul 0.00 0.07 −0.13 −0.11
Kansas City 0.51⁎ 0.72⁎ 0.68⁎ 0.47
Oklahoma City 0.58⁎ 0.76⁎ 0.66⁎ 0.47
Tulsa 0.26 0.51 0.54 0.42
Omaha 0.14 0.38 0.49 0.38
Wichita 0.32 0.56 0.55 0.38
Des Moines 0.09 0.30 0.38 0.33

r2: coefficient of determination in linear model, cor: Pearson product-moment correlation
coefficient, rho: Spearman rank correlation coefficient, tau: Kendall rank correlation
coefficient. Indication of significance: ⁎, ⁎⁎, and ⁎⁎⁎ for p-values< 0.05, 0.01, and 0.001,
respectively.
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Fig. 8. Total annual rainfall and detrended area time series in Dallas-Fort Worth, TX.

L.H. Nguyen et al. Remote Sensing of Environment 204 (2018) 524–533

530



study demonstrates strong relationships between the DSM backscatter
data and both impervious surface area and ambient population dis-
tribution. DSM backscatter data can be, therefore, complementary to
other datasets, such as visible to near-infrared spectral data (Small and
Nghiem, 2016) or the DSM Index of Variability (IV) metric (Nghiem
et al., 2009; Jacobson et al., 2015), to better characterize areas of urban
change.

Abbreviations

DSM Dense Sampling Method
IV Index of Variability (derived with DSM)
NSCAT NASA Scatterometer
QuikSCAT Quick Scatterometer
BKS Backscatter Power
MRLC Multi-Resolution Land Characteristics Consortium
NLCD National Land Cover Database
ISA Impervious Surface Areas
NOAA National Oceanic and Atmospheric Administration
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