2009 Plant Science Pamphlet No. 41

ANNUAL January 2010 PROGRESS REPORT

Northeast Research Station Watertown, South Dakota

Plant Science Department • South Dakota State University • Brookings SD 57007

Northeast Research Station (Watertown) 2009 Land Use Plans

Table of Contents

Advisory Board	1
Introduction	2
Precipitation Summary	4
Small Grain and Field Pea Variety Trials	6
Soybean Variety Performance Trials	18
Corn Hybrid Performance Trials	26
Oat Breeding	31
Spring Wheat Breeding	33
Alfalfa Production	35
Weed Control-W.E.E.D. Project	
Fertilizer Influence on Soil Test and Spring Wheat yield	65
Influence of Phosphorus Placement and Rate on no-till Corn	67
Spring Wheat Fungicide Trials	69

NORTHEAST RESEARCH STATION ADVISORY BOARD

Paul Leiseth, Chairman Kim McGraw, Secretary

Inel Rychman	1019 1st Ave SE Box 13	Brown	626-7120
Gary Erickson*	Aberdeen, SD 57401	Brown	
Jim Kopriva	Box 10, Clark, SD 57225	Clark	532-5557
Kim McGraw*		Clark	532-3681
Lynn Johnson	Box 996, Watertown, SD 57201	Codington	758-2309
Chuck Langner*		Codington	882-6300
Orrin Korth (Perm Member)		Codington	886-6514
Kelly Johnson	711 W 1st St., Courthouse,	Day	325-3318
Extension office*	Webster, SD 57274	Day	345-9504
Laron Krause	P.O. Box 350, Clear Lake, SD 57226	Deuel	874-2322
Extension office *		Deuel	874-2681
Mark Kriesel	210 E 5th Ave, Milbank, SD 57252	Grant	886-6437
Extension office *		Grant	432-9221
Paul Leiseth	Box 268, Hayti, SD 57241	Hamlin	628-2099
Donald Guthmiller *		Hamlin	783-3656
Darien Kilker	Box 229, Britton, SD 57430	Marshall	448-9904
Extension office *		Marshall	448-5171
Leon Koeppe	Courthouse, Sisseton, SD 57262	Roberts	652-4529
Extension office*		Roberts	698-7627
Hal Clemensen	Box 151, 210 E 7th Ave,	Spink	382-5687
Mark Rosenberg*	Redfield, SD 57469	Spink	472-2023
Allen Heuer (Farm Manager)**	NE Research Farm, 15710 455th Ave., South Shore, SD 57263	Codington	886-8152
Lon Hall (Farm Supervisor)**	Plant Sci Dept. SDSU, Box 2207A	Brookings	688-4758
Sue Blodgett (Dept Head)**	Plant Sci Dept., SDSU, Box 2207A	Brookings	688-5123
Chris Onstad**	Dist Ext Supervisor, SDSU,AgHall 134	Brookings	688-5132
* County Extension Educator			

* County Extension Educator **SDSU Representatives

SDSU – AES-NORTHEAST RESEARCH STATION 2009 REPORT

Lon Hall Supervisor Allen Heuer Farm Manager Lucinda Olson Secretary

MISSION:

The Northeast Research Station is a regional representative site for conducting cultural research, breeding, and testing crops whose traits are adapted for this areas environment.

INFORMATION DISSEMINATION:

- Summer Agronomy Field Tour
- Industry Field ToursFall Agronomy Field Tour
- Annual Northeast Research Station Research Report (Plant Science Website)

HISTORY:

This year marked the 54th Anniversary of the Northeast Station. The Station has grown considerably from the original 30 acre mobile concept to the current 86 acres. The station has also benefited from a number of improvements over the years. Among the most notable was the construction of an office/storage building in 1991. This was a joint effort by the SD Crop Improvement Association and the Agricultural Experiment Station. A 20 year lease will be up for renewal in 2011.

LOCATION:

The Northeast Research Station is located 15 miles north of Watertown at the intersection of old highway 81 and highway 20. This site was chosen to represent the northeast region of South Dakota. This regions size is approximately 12 counties located within a 70-mile radius with the outside of the circle intersecting research stations located near SDSU. This specific site was chosen for its uniform soil type. The research blocks are made up of 97.5 percent Kranzburg-Brookings and/or 2.5 percent Mckranz-Badger silty clay loam soil types with a 0-2 percent slope. The sites latitude and/or longitude affects several variables including crop and variety selection, photoperiods, growing degree units, precipitation, diseases, and insects. In a continental climate, regional environments are similar from year to year; however, environments always deviate from the mean on a yearly basis, occasionally to the extreme. It is these environmental variations that are useful when assessing genetic by environmental interactions for that region. For example, breeding programs test at several locations in order to evaluate yield stability. The locations may not be optimum environments for a given maturity; however, within maturity, comparisons may be made on a relative basis to assess trait stability.

SCIENTIFIC RESEARCH ADVISORY COMMITTEE:

Research Represented:

Representatives:

Dr. Ron Gelderman

Dr. Vance Owens

Chuck Langner

Lon Hall

- Soils Research
- Forage Research
- Extension Educator
- Plant Breeding

FIELD RESEARCH RESOURCES:

- There are 74 tillable acres comprised of 22 research blocks.
- The building is 50' x 100' with 7500 ft^2 of storage and 2500 ft^2 of utility workspace.
- Major Equipment:
 - □ Tractor- Heston- Model 666
 - □ Tractor- NH- Model- 7635
 - □ Loader- 7310- Fits 7635 tractor
 - □ Tractor- NH TC35 Delux-
 - □ Tractor- NH T6050 MFWD
 - □ Planter- JD 7100 4 row 30"
 - Combine- JD 4420- 4 row corn head mod. 443 13ft. bean platform mod. 213
 - □ 2 Demco 35ft. sprayers
 - □ Field cult. With harrow 13ft. Wilrich
 - Gravity boxes 250 bu. each
 - □ Kawaski 610 Mule
 - □ Cub Cadet lawn mower Z-force 60"
 - □ Farm King 7ft. finishing mower
 - □ Ford 15ft. batwing mower

 Table 1. Growing Season Precipitation* (inches) 1956 - 2009

			Crowing	Ocasonin	corpitation	(1101103	J 1330 20	/03	
Year	April	May	June	July	Aug.	Sept.	Oct.	Total	Frost-Free Days
1956	1.80	2.88	6.56	4.02	6.25	0.70	2.44	24.65	125
1957	4.26	5.98	2.85	0.74	5.26	2.12	3.12	24.33	119
1958	1.41	1.49	2.65	2.68	0.57	0.81	0.18	9.79	116
1959	0.58	3.47	1.91	1.66	4.69	1.10	1.95	15.36	110
1960	1.53	3.84	4.05	0.79	1.03	1.30	1.50	14.04	123
1961	2 16	5 75	4 01	4 62	0.62	1 84	1 00	20.00	138
1962	1 30	5 48	3 98	10.36	1.89	1 30	1 11	25.60	143
1063	1.00	3.54	3.00	5 74	2.51	1.00	0.68	20.00	158
1064	2 30	1 07	3.62	2.7 + 2.01	4.22	 0 03	0.00	1/ 28	02
1904	2.08	6.09	3.02	2.01	4.22	1 22	1.04	14.20	92
1905	2.09	0.08	3.00	2.34	2.03	4.00	1.23	23.10	104
1900	1.49	0.77	1.00	2.19	4.09	1.00	1.52	13.97	100
1907	0.92	0.69	4.00	1.05	1.13	1.00	0.35	9.70	129
1968	3.04	2.15	3.18	2.39	1.53	2.50	2.00	16.85	132
1969	1.52	3.44	1.96	4.52	2.48	1.86	2.18	17.96	109
1970	2.00	1.98	1.07	2.29	1.00	1.66	2.01	13.01	148
1971	1.33	1.78	7.61	1.02	2.93	1.46	5.56	21.69	168
1972	1.90	7.73	2.92	6.35	2.57	0.11	1.37	22.95	172
1973	1.14	2.87	1.12	2.05	1.27	3.81	1.39	13.65	183
1974	1.22	3.37	1.45	2.09	3.70	0.22	0.91	12.96	141
1975	4.15	2.18	4.76	1.25	2.89	2.28	1.64	19.15	139
1976	1.10	1.26	1.49	0.51	0.79	1.62	0.57	7.34	144
1977	2.64	2.24	5.78	2.47	2.70	3.67	3.06	22.56	180
1978	3.38	5.15	2.26	2.08	2.43	2.32	0.53	18.15	178
1979	3.14	2.17	5.78	3.10	5.21	0.53	3.50	23.43	162
1980	0.43	3.09	4.97	1.96	3.82	0.72	0.68	15.67	150
1981	0.48	0.99	2.73	2.23	1.20	0.52	1.88	10.03	136
1982	0.35	5.50	1.37	4.05	0.64	2.73	3.11	17.75	175
1983	0 70	1 64	3 43	5 45	3 00	2 86	1 30	18 38	140
1984	2.88	1.66	7 45	1 85	3.09	1 14	4 69	22 76	147
1985	1.93	3.90	2 07	5.21	3.65	3 77	1.59	22.10	167
1986	5 55	4 64	3.62	4 14	3 11	4 19	0.13	25.38	159
1987	0.55	2.03	1 20	4 16	5.64	2 44	0.10	16.47	162
1088	0.00	2.00	0.60	0.86	4 03	2.11	0.40	12 13	144
1080	2 05	1 15	1 7/	2 / 1	4.00	1 56	0.22	1/ 05	144
1000	2.95	2.26	5 13	2.41	2.50	2.16	1 78	19.55	136
1990	1.04	2.20	10.45	2.73	2.30	2.10	0.63	29.01	146
1991	4.01	4.41	7.05	2.09	4.37	1.40	0.03	20.01	140
1992	0.91	1.40	7.95	3.00	0.75	3.17	0.02	17.33	104
1993	1.69	2.53	0.58	6.70	1.40	2.05	0.17	21.12	149
1994	2.48	2.12	6.11	4.65	3.67	2.47	2.11	23.61	162
1995	2.92	3.66	2.89	8.05	6.09	2.45	2.43	28.49	152
1996	0.18	4.20	1.36	3.43	2.92	2.34	2.57	17.00	154
1997	2.20	0.97	0.76	4.77	4.23	1.39	2.25	16.57	152
1998	0.69	4.18	2.96	1.93	3.94	0.02	7.58	21.30	167
1999	1.45	2.57	4.96	1.56	0.49	2.29	0.25	13.57	165
2000	1.20	2.35	3.29	4.29	0.88	1.00	2.45	15.46	157
2001	6.96	2.75	3.94	2.85	0.18	2.35	0.67	19.70	165
2002	1.75	1.67	2.57	2.48	4.44	0.75	1.45	15.11	135
2003	1.78	3.26	1.18	1.94	1.40	1.75	0.67	11.98	160
2004	1.83	5.70	3.34	5.88	1.20	4.77	5.64	28.36	153
2005	1.10	3.43	4.39	1.18	1.67	2.41	1.37	15.55	157
2006	2.53	1.99	0.95	0.92	1.93	5.36	0.24	13.92	168
2007	5.6	3.7	2.07	.85	1.55	3.97	1.91	19.65	192
2008	0.57	2.67	4.48	4.04	1.74	2.25	3.73	19.48	155
2009	1.09	1.73	2.7	3.97	3.6	1.62	6.53	21.24	137
Avg:	1.98	3.00	3.51	3.14	2.72	2.08	1.83	18.29	148
*1960-196	62. 1973-	1976, 1978	and 1979	data obtain	ed from Wate	ertown FA	A station.		

2009 SMALL GRAIN VARIETY PERFORMANCE TRIALS

R. G. Hall, K. K. Kirby, J. Hall, and L. Hall

This is a report of the 2009 NE Research Farm performance trials for spring wheat, oat, barley, field pea performance trials conducted by the South Dakota State University Crop Performance Testing (CPT) program. Plots were seeded by the SDSU Oat Breeding Project and harvested by the CPT program.

Plots measuring 5 X 20 feet for each entry were seeded April 21 using a cone-drill with 7-inch row spacing. Seeding rates per acre were: Spring wheat 1.8 million, oats and barley 1.2 million, and field pea at 300,000 in a loam previously cropped to soybean. *Research funding & support sources:* The SDAES and testing fees obtained from the SD Crop Performance Testing Program.

Measurements of Performance

Yield (bu./a) and bushel weight (lbs.) values are an average of four replicates and are adjusted to 13.5% grain moisture (dry matter basis) and bushel weights of 60 (wheat), 32 (oats), or 48 lbs. (barley). Grain protein values were obtained using 4 replicates and a FOSS TECATOR Model Infratec 1229 grain analyzer. Yield values are reported for year 2009 and for 3-years (2007-09), while bushel weight, grain protein, and lodging score values are reported for 2009.

Table A. Explanation of performance table footnotes.

No.	Explanation of footnotes
[1]	Heading (small grains) – The number of days an entry takes to grow from the emergence stage to the
	heading stage (complete head emergence). This value is determined by comparing the entry with a known
	maturity check variety listed in footnote 1 at the bottom of each performance table. The heading value, if
	known, is listed after each variety name. In oat, HIs indicates the variety is a hulless type variety.
[2]	State top-yield frequency (spring grains) - the frequency (%) of all test sites that an entry was in the top
	performance-group for yield on a statewide basis. A value of 50% or higher is considered good.
[3]	Lodging score: 0= all plants erect, 3= 50% of plants lodged at 45°-angle, 5= all plants flat.
[4]	Least Significant Difference (LSD 0.05) (all crops) – the difference two values within a column must equal
	or exceed to be significantly different from one another at the 0.05 level of probability. If the difference is
	less than the LSD value the difference between the values is nonsignificant (NS).
[5]	TPG-value (all crops) – the minimum value within a column that yield, bushel weight, tall height, and high
	protein must equal or exceed; or the maximum value within a column that short height, lodging scores, and
	low protein must be equal to or less than to qualify for the TPG. TPG- values are indicated in bold type .
[6]	Coefficient of variation (C.V.) - the percent of experimental error associated with a test trial. Ideally, the
	for yield is less than 15%. Values less than 5% tend to be less common while values of 6 to 15% are more
	common. Occasionally, values exceed 15%; this means the trial contained too much experimental error to
	be a valid test; thus, there is no data reported for that trial.

Performance Results

HRS Wheat:

<u>Yields (Tables 1a)</u> – The entries **Traverse, Faller, and Howard at 100%; Select and Briggs at 83%; Steele-ND at 67%; and Brick at 50%** (tables 1.) were to top-yield frequency entries for the past 3-years (2007-09). These entries exhibited good yield stability or the ability to adapt to a wide range of growing conditions by being in the top-performance group at more than 50% of the locations tested for the past three years. The entries Faller at 89%, Traverse at 78%, Albany at 67%, and SD 4023 at 56% were the top-yield frequency entries for 2009.

<u>Grain protein content (Table 1b)</u> – The entries Vantage at 15.8%; Chris at 15.3%; SD 4011, Kelby, and Alsen at 15.1%; and Glenn and SD4076 at 15.0% averaged 15% or higher in grain protein across all six locations. Depending on location, entries had to differ by 0.3 to 0.9% in grain protein to be significantly different from one another.

<u>Bushel weight (Table 1b)</u> - The top bushel weight entries included the entries **Brick at 59.1 lb, Glenn and Select at 59.0 lb, Barlow at 58.7 and Breaker at 58.6 lb.**. Depending on location, varieties had to differ from 1 to 1.5 lb. to be significantly different from one another

Lodging (Table1c) – The entries Kelby, Kuntz, SD 4024, SD 4036, Samson, Brogan, Reeder, Breaker Vantage, and Mott averaged the best in lodging score (1) across all locations compared to the other entries. Entries generally had to in lodging score by 1 to be significantly different from one another.

<u>Height (Table 1c)</u> - The entries **Chris at 38" and SD 3997 at 36" was the tallest** entries while **Kelby and Brennan at 29" were the shortest** entries across all six locations. Depending on location, entries generally had to differ by 2-3" to be significantly different in plant height.

Spring oat:

<u>Yields (Tables 2a)</u> – The entries **Souris, Hi Fi, and Beach at 100%; Stallion at 80%,** and **Colt and Morton at 60%** (tables 2b) were to top-yield frequency entries for the past 3-years (2007-09). The entries **SD 031128-245 at 78%, Souris, Hi Fi, Rockford, and Shelby427 at 56%**; were to top-yield frequency entries for 2009.

<u>Grain protein content (Table 2b)</u> – The entry **SD 051502**, a hulless experimental line, **at 16.9%** and **Hytest at 16.5%** were the entries with the highest grain protein averages across the six locations in table 2c. Depending on location, entries had to differ by **0.7% to 1.9%** in grain protein to be significantly different from one another.

<u>Bushel weight (Table 2b)</u> - The top bushel weight entries across the six location listed in table 2c were the hulless entries **Buff at 43.9, SD 051502 His at 43.7, and Streaker His at 43.4 lbs**. Among the hulled entries, **Hytest at 39.2 lbs** was the highest in bushel weight. The eastern and western bushel weight averages indicate entries had to differ by

1 Ib. to be significantly different. Depending on location, entries had to differ by **1.1 to 1.9 Ibs** to be significantly different from one another.

Lodging (Table 2c) – All the locations listed in table 2d had a lodging score average of 2 or higher. When average across all six locations the entries **SD 031128-245**, **Rockford**, **Shelby427**, **Souris**, **Buff**, **HiFi**, **Morton**, **and Beach** better or lowest lodging scores compared to the other entries.

<u>Height (Table 2c)</u> - The entries **Beach at 45" and Morton at 44"** were the tallest when averaged across the six locations in table 2d, whereas,Don at 33", and Don and Colt at 35" were the shortest entries. Depending on location, entries had to differ **by 3-4**" in plant height to be significantly different from one another.

Spring Barley:

<u>Yields (Tables 3a)</u> - The entries **Pinnacle at 100%; Eslick, Rawson, Rasmusson, and Conlon at 75%**; and **Lacey at 50%** (table 3b.) were to top-yield frequency entries for the past 3-years (2007-09). The entries **Eslick at 88%**; **and Pinnacle and Rawson at 50%** were to top-yield frequency entries for 2009.

<u>Grain protein content (Table 3b)</u> – The top grain protein entries were **Conlon at 12.9%** and **Robust at 12.8%**. The entries **Pinnacle at 11.1% and Rawson at 12.0%** were the lowest in grain protein when average across all six locations. In addition, Pinnacle and Rawson were generally the lowest in grain protein at every location.

<u>Bushel weight (Table 3b)</u> – The five-location average indicated the top bushel weight entries were **Conlon at 48.0 and Eslick at 47.5 lbs**. The varieties Drummond and Stellar-ND tended to be the lowest in bushel weight at most locations.

Lodging (Table 3c) – the entries **Pinnacle**, **Stellar-ND**, **Rawson**, **and Lacey** had the lowest five-location lodging score averages.

<u>Height (Table 3c)</u> – The five-location average indicated **Drummond and Robust at 35**" were the tallest entries; while **Eslick at 28**" was the shortest entry. Depending on location, entries had to differ by 2-3" in plant height to be significantly different from one another.

Field Pea:

<u>Yield (Table 4)</u> – When averaged over the past two years (2008-2009), the top yield group at both South Shore and Selby included the same entries **Spider, Cooper Arcadia, CDC Meadow, CDC Golden, and CDC Striker**. The top entries by location for yield in 2009 were: South Shore – **Cooper, Arcadia, CDC Meadow, CDC Golden, Thunderbird, and Commander**; Wall – **all entries were in the top yield group** because no significant differences in yield could be detected; and at Selby – **Spider, Cooper, Arcadia, CDC Meadow, CDC Golden, CDC Striker, Thunderbird, Commander, and Summit**.

Table sorted by 3-yr then by 2009 state yield average.																
		Location Yield AvgBu/a at 13% moist.											Sta	ate	State	ə [2]
			So	uth									Yield	Avg.	Top-`	Yield
Variety,	Brook	kings	Sh	ore	Mil	ler	Spin	k Co.	Se	lby	Brow	n Co.	bu	/a	Freq	. (%)
Heading [1]	2009	3-Yr	2009	3-Yr	2009	3-Yr	2009	3-Yr	2009	3-Yr	2009	3-Yr	2009	3-Yr	2009	3-Yr
Faller, 6	75	55	82	75	43		76	68	60	52	81	71	61	58	89	100
Traverse, 2	66	52	84	72	49		66	66	57	50	82	70	60	57	78	100
Howard, 6	64	50	78	76	42		62	63	58	47	72	69	55	56	11	100
RB07, 4	58	47	63	70	42		67	61	60	53	73	70	55	56	33	67
Steele-ND, 5	59	49	77	74	43		59	60	55	49	72	68	54	55	11	100
Select, 0	60	49	70	73	44		69	63	51	43	72	67	56	54	44	83
Briggs-Ck, 2	58	49	73	71	41		67	60	54	45	69	65	54	53	11	83
Granger, 2	62	50	69	68	46		53	55	50	45	73	64	54	52	33	33
Brick, 0	56	48	72	69	44		66	59	51	42	64	61	53	52	33	50
Tom, 4	56	46	72	67	42		68	59	55	44	71	68	53	52	0	33
Glenn, 5	60	43	70	67	42		65	58	49	42	71	60	52	50	11	17
Kuntz, 4	53	42	66	64	38		66	57	56	42	74	68	50	50	11	17
Kelby, 3	52	44	63	65	40		66	56	49	40	63	61	48	49	0	17
Reeder, 5	52	42	67	61	40		73	53	51	41	72	64	51	48	0	17
Alsen, 6	57	43	62	61	36		63	55	47	39	68	61	49	48	0	17
Chris, 5	50	37	53	46	27		45	39	45	33	56	50	41	38	0	0
Albany, 6	71		77		40		83		61		83		60		67	
SD 4023	63		81		42		79		59		80		59		56	
Barlow, 3	65		78		45		67		53		74		56		11	
SD 4024	60		69		43		76		55		77		56		33	
SD 4035	60		77		44		73		52		76		55		22	
SD 4073	58		73		37		72		55		78		55		11	
Breaker, 5	60		75		41		68		53		74		55		22	
Sabin, 3	61		71		45		63		61		71		55		44	
Brogan, 5	56		64		41		74		53		76		53		0	
Samson, 4	58		78		38		73		55		70		53		11	
SD 4011, -	60		68		43		65		50		70		53		11	
SD 4036, -	60		74		44		73		54		72		53		11	
SD 4046, -	54		71		40		63		53		72		53		22	
SD 3997, -	62		71		38		67		45		74		51		0	
SD 4076, -	58		71		42		66		45		71		51		0	
Brennan, 4	56		70		40		65		54		66		51		0	
Mott, 6	50		70		27		64		51		68		49		11	
Vantage, 9	54		61		28		58		56		65		47		11	
Testavg.:	59	47	72	67	41		67	58	53	44	72	65	54	52		
High avg.:	75	55	86	76	49		83	68	61	53	83	71	61	58		
Low avg. :	50	37	53	46	27		45	39	45	33	56	50	41	38		
[4] LSD (0.05):	6	6	7	7	5		7	9	5	6	4	6				
[5] TPG-value :	69	49	79	69	44		76	59	56	47	79	65				
[6] C.V. :	7	8	7	7	8		7	7	7	9	4	6				
[1] Heading- day	ls earl	ier or	later (-	or +)	than B	rigas	the ch	lack vs	arioty ((Ck) for	r matu	ritv				

Table 1a. Spring wheat yield results at six South Dakota locations, 2007-2009.

[1] Heading- days earlier or later (- or +) than Briggs, the check variety (Ck) for mature Column values in **bold type** at each location are top-performance group values. Note that additional table footnotes are explained in Table C.

Table	esone	a nign		by all to	cation	grain p	rotein	average	е.					
	Location Protein (Prt) & Bushel weight (BW) averages											All		
	Brook	kinge	South	Shore	N/iil	lor	Spin	k Co	So	lby	Brow	n Co	Loca	tions
Variety,	БІООІ	kings	South	Shore	IVIII	lei	Spin	K CU.	36	юу	BIOW	II C0.	Aver	age
Heading	Prt	BW	Prt	BW	Prt	BW	Prt	BW	Prt	BW	Prt	BW	Prt	BW
[1]	%	lb	%	lb	%	lb	%	lb	%	lb	%	lb	%	lb
Vantage, 9	14.9	56.4	15.9	58.7	16.6	53.4	16.2	59.8	15.7	57.5	15.9	58.7	15.8	57.4
Chris, 5	14.6	54.9	15.1	56.7	15.9	51.6	15.4	58.3	15.5	58.1	15.4	56.3	15.3	56.0
SD 4011, -	14.6	55.8	14.6	56.8	15.5	54.2	15.4	58.7	15.5	57.7	15.3	57.9	15.1	56.9
Kelby, 3	14.7	55.9	15.4	56.5	15.3	54.9	15.0	58.6	15.3	59.2	15.1	58.2	15.1	57.2
Alsen, 6	14.5	56.1	15.5	57.1	15.8	55.4	15.4	58.9	14.7	58.5	14.9	59.2	15.1	57.5
Glenn, 5	14.1	57.5	15.2	60.1	15.3	56.3	14.8	60.3	15.7	60.5	15.3	59.6	15.0	59.0
SD 4076, -	14.5	56.1	14.8	58.7	15.4	56.7	14.8	59.0	15.5	58.9	15.0	59.6	15.0	58.1
RB07, 4	14.2	54.6	15.1	56.6	15.7	52.6	15.0	58.1	14.8	60.0	15.0	58.7	14.9	56.7
Brick, 0	14.8	58.1	15.5	59.5	14.8	57.7	14.8	59.5	14.7	60.2	15.1	59.7	14.9	59.1
Reeder, 5	14.4	54.2	14.7	58.3	15.3	53.0	15.0	59.2	15.0	58.0	15.1	59.4	14.9	57.0
Brennan, 4	14.5	55.6	14.9	57.4	15.4	53.7	14.8	58.1	14.8	59.8	14.9	58.6	14.9	57.2
Sabin, 3	14.5	56.3	14.6	57.8	15.7	52.5	15.1	58.8	14.0	59.5	15.1	59.6	14.8	57.4
SD 3997, -	14.1	56.4	15.1	58.5	15.2	53.4	14.5	58.9	14.9	57.9	15.1	59.1	14.8	57.4
Briggs-Ck, 2	14.3	58.2	14.5	58.6	15.2	54.7	14.9	59.5	14.2	59.1	15.3	58.3	14.7	58.1
Granger, 2	14.3	55.7	14.6	57.6	14.9	54.2	15.0	57.9	14.5	58.2	14.8	58.4	14.7	57.0
Barlow, 3	14.1	57.0	15.1	59.9	15.0	56.6	14.4	60.1	14.4	58.5	14.9	60.3	14.6	58.7
Brogan, 5	14.1	55.1	14.8	57.0	15.4	54.7	14.4	60.2	14.1	58.7	14.8	60.2	14.6	57.6
Select, 0	14.0	58.0	14.6	56.9	15.1	57.5	14.8	60.2	14.2	60.7	15.1	60.6	14.6	59.0
Steele-ND, 5	14.3	55.1	14.2	59.0	14.7	53.9	14.7	60.1	14.7	60.0	15.0	59.2	14.6	57.9
Breaker, 5	13.9	56.0	14.7	59.7	15.0	56.5	14.4	60.1	14.9	59.4	14.5	59.6	14.6	58.6
Howard, 6	13.9	57.0	14.5	59.3	14.8	53.0	14.6	59.9	14.9	59.7	14.7	59.5	14.5	58.1
SD 4036, -	14.0	53.7	14.3	56.1	15.3	53.7	14.2	57.5	14.9	56.6	14.6	59.1	14.5	56.1
Tom, 4	14.1	56.3	14.6	59.0	14.9	54.8	14.2	58.4	14.7	59.2	14.7	58.5	14.5	57.7
Samson, 4	14.2	54.5	14.2	57.8	15.4	53.0	14.4	59.0	14.1	57.8	14.5	58.2	14.5	56.7
Kuntz, 4	14.2	55.9	14.5	58.1	15.1	52.5	14.6	57.9	14.2	58.4	14.2	58.6	14.4	56.9
Mott, 6	13.7	53.6	14.2	56.8	14.8	50.4	14.3	58.3	14.5	58.7	15.0	58.2	14.4	56.0
SD 4035, -	14.3	54.1	14.4	58.5	15.0	54.9	14.1	57.9	14.0	58.5	14.7	59.4	14.4	57.2
Traverse, 2	13.9	54.0	14.2	57.7	14.7	54.0	14.8	56.7	14.2	57.0	14.6	58.8	14.4	56.4
SD 4046, -	13.8	55.5	14.1	59.3	15.1	54.9	14.4	59.4	13.6	58.4	14.4	60.8	14.2	58.0
SD 4023, -	14.0	56.4	14.1	59.8	15.1	53.8	14.2	60.2	14.0	59.9	14.1	59.6	14.2	58.3
Faller, 6	13.3	56.8	13.5	57.7	15.1	53.0	14.5	58.6	14.3	59.3	14.6	59.8	14.2	57.5
SD 4073, -	13.9	52.4	13.8	57.2	15.0	52.9	14.2	58.3	13.9	58.1	14.0	58.4	14.1	56.2
SD 4024, -	13.8	55.2	14.0	58.0	14.9	54.4	14.1	59.8	14.0	59.2	14.0	59.7	14.1	57.7
Albany, 6	12.8	56.6	13.6	57.6	14.8	54.8	13.6	60.1	13.0	59.2	13.9	60.0	13.6	58.0
Test avg.:	14.1	55.7	14.6	58.1	15.2	54.1	14.7	59.0	14.5	58.8	14.8	59.1		
High avg. :	14.9	58.2	15.9	60.1	16.6	57.7	16.2	60.3	15.7	60.7	15.9	60.8		
Low avg. :	12.8	52.4	13.5	56.1	14.4	50.4	13.6	56.7	13.0	56.6	13.9	56.3		
[4] Lsd(.05) :	0.5	1.5	0.6	1.7	0.4	1.4	0.4	1.2	0.9	1.3	0.3	1.0		
[5] TPG-value :	14.4	56.7	15.3	58.4	16.2	56.3	15.8	59.1	14.8	59.4	15.6	59.8		
[6] C.V. :	2	2	3	2	2	2	2	1	5	2	2	1		

Table 1b. HRS wheat grain protein (Prt) and bushel weight (BW) averages at six South Dakota locations. Table sorted high to low by all location grain protein average

[1] Heading- days earlier or later (- or +) than Briggs, the check variety (Ck) for maturity. Column values in **bold type** at each location are top-performance group values. Note that additional table footnotes are explained in Table A.

	Location Avg - Lodging score (Ldg) & Plant height (Ht)											A	11	
	Eocation Avg Lodging score (Ldg) & Flant height (Ht)										Locations			
Variety,	Brool	kings	South	Shore	Mil	ler	Spin	k Co.	Se	lby	Brow	n Co.	Aver	age
Heading	Ldg	Ht	Ldg	Ht	Ldg	Ht	Ldg	Ht	Ldg	Ht	Ldg	Ht	Ldg	Ht
[1]	score	inch	score	inch	score	inch	score	inch	score	inch	score	inch	score	inch
Kelby, 3	1 [3]	28	2	28	2	26	-	32	1	27	2	31	1	29
Kuntz, 4	1	30	2	29	2	28		35	1	27	2	31	1	30
SD 4024, -	1	28	2	30	2	28	-	35	1	30	1	32	1	30
SD 4036, -	1	29	2	30	2	27	-	35	1	25	1	32	1	30
Samson, 4	1	29	1	30	2	27	-	36	1	26	1	30	1	30
Brogan, 5	1	30	1	32	2	29	-	37	1	30	2	31	1	31
Reeder, 5	1	30	2	31	2	31		37	1	31	1	33	1	32
Breaker, 5	1	30	2	33	2	29		37	1	30	2	33	1	32
Vantage, 9	1	31	1	33	1	29		37	1	32	1	32	1	32
Mott, 6	1	32	1	36	1	33		38	1	37	1	36	1	35
Brennan, 4	1	29	2	29	2	26	•	35	1	27	2	30	2	29
SD 4023, -	3	29	3	31	3	29		36	1	29	3	31	2	31
Albany, 6	2	32	2	30	2	28		36	1	29	3	32	2	31
SD 4076, -	3	30	2	33	3	29		37	1	29	2	31	2	31
RB07, 4	2	30	3	31	2	30	-	35	1	32	2	31	2	31
Sabin, 3	3	31	3	31	2	31		36	1	30	3	32	2	32
SD 4011, -	3	31	2	33	3	30		35	1	31	3	33	2	32
Alsen, 6	1	32	2	33	3	28		36	1	30	2	34	2	32
SD 4035, -	2	30	2	32	2	29	-	36	1	32	1	32	2	32
Select, 0	3	33	3	34	3	31	•	39	1	32	2	33	2	33
Iom, 4	3	32	3	32	2	30	•	37		32	3	34	2	33
Faller, 6	2	32	2	34	2	32	•	37		31	2	33	2	33
SD 4073, -	2	32	2	33	2	30	•	38		32	2	34	2	33
Steele-ND, 5	3	32	3	32	3	31	•	37		34	2	35	3	33
Brick, 0	3	34	3	35	3	31	•	38	2	32	2	35	2	34
Howard, 6	2	32	3	36	3	29		37		34	3	34	2	34
Barlow, 3	2	33	2	33	2	30	•	38		33	2	35	2	34
Glenn, 5	2	33	2	34	3	31		38	1	34	1	34	2	34
Granger, 2	2	34	3	36	3	33		39	2	35	3	35	2	35
Traverse, 2	2	34	3	34	3	32	•	39	2	34	2	36	2	35
SD 3997,-	1	35	2	37	2	33	•	37		36	2	38	2	36
SD 4046, -	3	33	3	35	3	31	•	38	1	34	4	35	3	34
Briggs-Ck, 2	3	33	3	34	3	32	•	37	2	34	3	32	3	34
Chris, 5	3	37	4	39	3	36		43	2	40	4	37	3	38
Testavg.:	2	31	2	33	2	30		37	1	32	2	33		
High avg.:	3	31	4	39	3	36		43		40	4	38		
		28		28		26		32		25		30		
[4] LSO(.05) :	1	2	1	2		2		3		১ন	1	2		
[5] IPG-value :		35		37		34 E		40		31		30		
[6] C.V. :	25	6	22	5	22	5		6	20	6	27	5	_	

Table 1c. HRS wheat lodging (Ldg) score and plant height (Ht) averages at six South Dakota locations.Table sorted low (best) to high by all locations average lodging scores.

[1] Heading- days earlier or later (- or +) than Briggs, the check variety (Ck) for maturity. Column values in **bold type** at each location are top-performance group values. Note that additional table footnotes are explained in Table A.

Table sorted by 3-yr then by 2009 state yield average.																
			Loc	ation	Yield A	wa	Bu/a a	t 13%	moist	ure			Sta	ate	State	e [2]
Variety,						3					-		Yield	Avg.	Top-`	Yield
Heading	Brool	kings	So. S	hore	Bere	sford	Mil	ler	Se	lby	Brow	n Co.	bu	ı/a	Freq	. (%)
[1]	2009	3-Yr	2009	3-Yr	2009	3-Yr	2009	3-Yr	2009	3-Yr	2009	3-Yr	2009	3-Yr	2009	3-Yr
Souris, 7	167	141	207	168	105	125	148		146		165	145	129	131	56	100
HiFi, 8	171	138	192	161	124	124	149		141		157	143	129	128	56	100
Beach, 7	157	139	174	155	126	127	130		132		130	130	121	125	44	100
Stallion, 9	138	132	136	141	97	122	138		133		141	135	113	121	44	80
Morton, 8	112	114	155	148	119	122	136		130		128	123	110	116	11	60
Colt, 0	109	117	140	135	124	129	130		126		127	124	107	116	11	60
Don, 1	119	114	127	127	105	117	125		126		125	124	104	110	0	40
Reeves, 2	108	112	117	125	117	122	130		141		124	116	104	108	11	40
Jerry, 5	102	109	134	131	107	115	129		110		123	114	101	108	11	40
Buff HIs, 3	112	90	130	116	98	95	102		106		110	99	94	93	0	20
Streaker Hls, 3	114	97	110	113	54	78	103	-	94	-	113	105	90	92	0	20
Hytest, 4	103	96	111	107	94	85	94		98	-	112	101	87	90	0	20
Stark Hls, 7	113	78	137	101	92	79	105	-	115	-	132	97	100	82	0	0
SD 031128-245, -	174		177	-	139	-	143	-	152	-	151		130		78	
Rockford, 8	184		195		94		143		134	-	157		129		56	
Shelby427, 2	170		179		139		136		141		148		128		56	
SD 041445-93, -	138		146		133		134		131		150		113		22	
SD 1445-119, -	124		141		141		142		130		144		112		22	-
SD 060966, -	98		133		126		136		137	-	146		112		33	
SD 051502 Hls, -	98		123		99		95		102		109		89		0	
Testavg.:	131	114	148	133	112	111	127		126		135	120	110	109		
High avg. :	184	141	207	168	141	129	149		152	-	165	145	130	131		
Low avg. :	98	78	110	101	54	78	94		94	-	109	97	87	82		
[4] LSD (0.05):	13	24	11	25	19	21	11		12		15	19		-		
[5] TPG-value :	171	117	196	143	122	108	138		140		150	126				
[6] C.V. :	7	7	5	7	12	9	6		7		8	8				
[1] Heading- days	earlier	or lat	er (- or	+) tha	n Don	, the c	heck v	<i>r</i> iety	(Ck) fo	or mat	urity.	HIs =	Hulles	s vari	ety.	
Column values	in bo l	d type	atea	ch loc	ation a	re ton	-nerfo	rmanc	e aroi	ın valı	185					

Table 2a. Spring oat yield results at six South Dakota locations, 2007-2009. Tabla orted by 3-yr then by 2009 state yield

Column values in **bold type** at each location are top-performance group values.

Note that additional table footnotes are explained in Table A.

Variety	Location Protein (Prt) & Bushel weight (BW)											All Locations		
Heading	Broo	kings	South	Shore	Bere	sford	Mi	ller	Se	lby	Brow	'n Co.	Aver	age
[1]	Prt %	BW lb	Prt %	BW lb	Prt %	BW lb	Prt %	BW lb	Prt %	BW lb	Prt %	BW lb	Prt %	BW lb
SD 051502 Hls, -	13.2	39.8	18.4	44.6	18.6	40.8	17.2	44.4	17.7	46.5	16.5	46.2	16.9	43.7
Hytest, 4	14.0	38.1	17.8	40.0	18.2	37.5	15.1	36.1	17.3	40.1	16.6	43.7	16.5	39.2
Streaker Hls, 3	12.9	42.9	17.7	44.1	16.8	35.9	15.9	44.4	16.1	44.7	14.6	48.3	15.7	43.4
Buff HIs, 3	13.0	44.8	16.4	46.2	16.9	41.5	15.3	41.4	14.7	41.1	15.9	48.5	15.4	43.9
Reeves, 2	13.4	37.3	15.9	37.5	15.4	34.3	13.4	36.8	15.1	37.7	15.5	38.4	14.7	37.0
Stark Hls, 7	9.8	40.4	16.4	42.7	15.4	33.8	15.6	42.1	15.1	43.4	15.3	47.3	14.6	41.6
Stallion, 9	12.7	36.2	15.5	37.5	15.6	31.4	14.2	36.7	13.8	38.6	14.6	42.1	14.4	37.1
Jerry, 5	12.3	33.7	15.0	38.4	15.4	33.9	13.4	35.8	13.9	36.3	14.5	40.8	14.1	36.5
Colt, 0	12.3	36.1	15.2	39.8	14.7	35.2	12.4	35.2	14.8	37.3	14.1	38.4	13.9	37.0
Shelby427, 2	12.6	38.6	15.8	39.3	14.4	34.2	11.6	35.9	14.9	37.3	14.0	38.6	13.9	37.3
SD 031128-245, -	14.3	38.9	15.4	38.9	14.2	32.9	12.7	36.1	13.7	37.3	12.9	38.2	13.9	37.0
Morton, 8	13.2	33.3	14.4	36.0	14.7	30.0	12.3	35.7	13.9	37.3	14.1	39.4	13.7	35.3
Don, 1	12.4	34.6	13.9	36.4	14.1	32.4	13.5	35.9	14.0	34.7	14.3	37.1	13.7	35.2
SD 060966, -	12.4	34.8	14.8	39.0	13.5	34.4	13.6	36.6	13.9	38.1	13.6	38.5	13.6	36.9
SD 041445-93, -	10.8	36.2	14.9	37.7	15.5	35.6	11.9	36.1	14.5	38.7	13.8	41.1	13.6	37.5
Rockford, 8	9.7	38.9	15.2	38.1	14.8	28.3	13.6	35.5	14.1	38.5	14.0	40.7	13.5	36.7
HiFi, 8	10.8	37.6	15.3	37.7	14.8	29.5	12.9	34.6	13.8	37.1	13.6	39.5	13.5	36.0
Souris, 7	10.6	36.9	15.2	37.7	14.8	30.7	12.3	34.7	14.4	37.4	13.6	39.8	13.5	36.2
Beach, 7	10.0	37.3	14.5	38.3	14.9	33.3	13.0	36.8	14.0	38.5	13.5	40.6	13.3	37.5
SD 1445-119, -	11.1	36.2	14.2	38.0	14.6	36.0	11.9	36.3	14.1	38.5	13.8	39.9	13.3	37.5
Testavg.:	12.1	37.6	15.6	39.4	15.4	34.1	13.6	37.3	14.7	39.0	14.4	41.4	14.3	38.1
High avg. :	14.3	44.8	18.4	46.2	18.6	41.5	17.2	44.4	17.7	46.5	16.6	48.5	16.9	43.9
Low avg. :	9.7	33.3	13.9	36.0	13.5	28.3	11.6	34.6	13.7	34.7	12.9	37.1	13.3	35.2
[4] Lsd(.05) :	1.9	1.3	0.7	1.5	1.1	1.9	1.4	1.3	0.8	1.1	0.9	1.7		
[5] TPG-value :	12.5	43.6	17.7	44.8	17.5	39.7	15.9	43.2	17.0	45.5	15.8	46.9		
[6] C.V. :	11	2	3	3	5	4	8	3	4	2	5	3		

Table 2b. Spring oat grain protein (Prt) and bushel weight (BW) averages at six South Dakota locations. Sorted high to low by all location grain protein average.

[1] Heading- days earlier or later (- or +) than Don, the check variety (Ck) for maturity. HIs = hulless variety. Column values in **bold type** at each location are top-performance group values. Note that additional table footnotes are explained in Table A.

	Location Lodging score (Ldg) & Plant height (Ht)											A Loca	II tions	
Variety	Brook	kings	South	Shore	Beres	sford	Mil	ler	Se	lby	Brow	n Co.	Aver	age
Heading	Ldg	Ht	Ldg	Ht	Ldg	Ht	Ldg	Ht	Ldg	Ht	Ldg	Ht	Ldg	Ht
[1]	score	inch	score	inch	score	inch	score	inch	score	inch	score	inch	score	inch
SD 031128-245, -	2 [3]	46	2	41	3	41	1	35	1	40	2	41	2	41
Rockford, 8	1	48	2	44	3	43	1	38	1	37	2	41	2	42
Shelby427, 2	2	44	2	41	3	40	1	37	1	39	2	36	2	40
Souris, 7	2	42	2	39	3	39	1	35	2	36	2	37	2	38
Buff HIs, 3	2	38	2	37	4	36	2	33	1	34	2	34	2	35
HiFi, 8	2	47	2	44	3	40	2	39	1	36	3	42	2	41
Morton, 8	3	50	2	49	4	45	2	39	2	40	2	44	2	44
Beach, 7	3	47	3	48	4	45	2	43	1	40	3	45	2	45
Don, 1	4	37	3	34	3	34	1	30	2	33	3	31	3	33
Stark Hls, 7	3	46	3	47	5	42	2	40	2	40	3	44	3	43
Colt, 0	5	39	3	37	4	37	1	31	2	35	2	34	3	35
Hytest, 4	3	45	3	44	5	41	2	40	2	41	3	41	3	42
Jerry, 5	4	44	4	42	4	41	2	36	1	38	3	39	3	40
SD 041445-93, -	4	44	3	40	5	40	2	36	2	41	3	39	3	40
Stallion, 9	4	45	4	44	5	41	2	38	2	39	3	41	3	41
SD 060966, -	5	36	4	36	4	35	1	32	3	33	2	31	3	34
SD 1445-119, -	4	46	4	40	5	41	2	38	2	38	3	39	3	40
Reeves, 2	4	43	4	39	5	40	3	36	2	38	4	39	4	39
Streaker Hls, 3	4	41	4	38	5	39	2	34	3	36	4	40	4	38
SD 051502 Hls, -	4	42	4	37	5	40	3	33	3	39	4	39	4	38
Test avg.:	3	43	3	41	4	40	2	36	2	38	3	39		
High avg. :	5	50	4	49	5	45	3	43	3	41	4	45		
Low avg. :	1	36	2	34	3	34	1	30	1	33	2	31		
[4] Lsd(.05) :	1	3	1	4	1	2	1	4	1	3	1	4		
[5] TPG-value :	1&2	47	2	46	3	43	1	40	1	38	2	42		
[6] C.V. :	21	5	17	6	11	3	22	8	29	5	17	6		

Table 2c. Spring oat lodging (Ldg) score and plant height (Ht) averages at six South Dakota locations. Sorted low (best) to high by all locations average lodging scores.

[1] Heading- days earlier or later (- or +) than Don, the check variety (Ck) for maturity. HIs = Hulless variety. Column values in **bold type** at each location are top-performance group values. Note that additional table footnotes are explained in Table A.

Table So	oned by	3-yr the	en by zu	JU9 stat	e yield a	average								
			Loca	tion Yie	ld Avg. ((Bu/a at	13% m	oist.)			Sta	ate	Sta	ate
Variety,											Yield	Avg.	Top-	Yield
Heading	Broo	kings	South	Shore	Mil	ller	Se	lby	Brow	n Co.	bu	ı/a	Fred	ą. [2]
[1]	2009	3-Yr	2009	3-Yr	2009	3-Yr	2009	3-Yr	2009	3-Yr	2009	3-Yr	2009	3-Yr
Pinnacle, 3	89	74	105	96	95		80	70	107	94	82	84	50	100
Eslick, 3	87	72	124	99	95		89	79	92	81	89	83	88	75
Rawson, 2	86	73	121	101	87		74	66	102	87	83	82	50	75
Rasmusson, 3	84	74	107	89	84		79	72	108	85	79	80	25	75
Lacey, 0	85	73	105	86	83		81	69	106	83	79	78	38	50
Drummond, 2	82	66	100	87	77	-	74	69	103	81	75	76	13	0
Conlon, 0	93	73	118	96	82		80	58	94	78	70	76	38	75
Stellar-ND, 2	89	68	93	81	80		72	66	103	81	75	74	25	0
Robust, 3	74	63	96	79	77		67	59	91	71	69	68	0	0
Testavg.:	85	71	107	90	84		77	68	100	82	77	78		
High avg.:	93	74	124	101	95		89	79	108	94	89	84		
Low avg.:	74	63	93	79	77		67	58	91	71	69	68		
[4] LSD (0.05):	8	7	12	11	9		10	9	8	12				
[5] TPG-value :	85	67	112	90	86		79	70	100	82				
[6] C.V. :	7	8	8	7	8		9	9	6	8				
[1] Heading- days	earlier o	or later	(- or +) t	han La	cey, the	checky	variety (Ck) for r	maturity					

Table 3a. Spring barley yield results at six South Dakota locations, 2007-2009.

[1] Heading- days earlier or later (- or +) than Lacey, the check variety (Ck) for maturity Column values in **bold type** at each location are top-performance group values. Note that additional table footnotes are explained in Table A.

		Location Protein (Prt) & Bushel weight (BW)												
Variety,	Broo	kings	South Shore		Miller		Selby		Brow	n Co.	average			
Heading	Prt	BW	Prt	BW	Prt	BW	Prt	BW	Prt	BW	Prt	BW		
[1]	%	lb	%	lb	%	lb	%	lb	%	lb	%	lb		
Conlon, 0	12.0	47.8	12.5	49.7	13.4	46.0	13.0	48.7	13.6	46.5	12.9	48.0		
Robust, 3	11.4	45.3	12.9	46.4	12.7	42.1	13.2	46.1	13.8	42.6	12.8	45.7		
Drummond, 2	11.8	43.8	12.1	44.8	12.6	41.7	13.2	45.6	13.5	43.8	12.6	45.1		
Stellar-ND, 2	11.8	44.5	12.3	44.3	13.2	41.8	12.5	45.0	13.1	43.3	12.5	44.9		
Rasmusson, 3	11.5	45.0	12.0	46.4	12.8	43.7	12.5	46.5	13.2	44.4	12.4	46.1		
Lacey, 0	11.8	45.3	12.3	47.0	12.6	43.7	12.4	46.1	13.0	44.9	12.4	46.5		
Eslick, 3	11.7	47.9	12.0	48.3	12.6	44.4	11.4	48.0	13.7	44.6	12.3	47.5		
Rawson, 2	11.4	45.3	11.4	47.8	12.2	43.5	12.3	46.2	12.8	45.2	12.0	46.5		
Pinnacle, 3	10.0	45.3	10.9	45.0	11.4	43.0	11.3	45.6	11.8	44.7	11.1	45.9		
Testavg.:	11.5	45.5	12.0	46.5	12.6	43.2	12.4	46.3	13.2	44.3				
High avg. :	12.0	47.9	12.9	49.7	13.4	46.0	13.2	48.7	13.8	46.5				
Low avg. :	10.0	43.8	10.9	44.3	11.4	41.7	11.3	45.0	11.8	42.6				
[4] Lsd(.05) :	0.4	1.0	0.8	1.0	0.4	1.0	0.6	0.9	0.6	1.0				
[5] TPG-value :	11.6	46.9	12.1	48.7	13.0	45.0	12.6	47.8	13.2	45.5				
[6] C.V. :	2	1	5	2	2	2	4	1	3	2				

 Table 3b. Spring barley grain protein (Prt) and bushel weight (BW) averages at five South Dakota

 Sorted high to low by all location grain protein average.

[1] Heading- days earlier or later (- or +) than Lacey, the check variety (Ck) for maturity. Column values in **bold type** at each location are top-performance group values. Note that additional table footnotes are explained in Table A.

14510 0														
		Lo	ocation	Lodgin	gscore	(Ldg) 8	Plant h	eight (H	Ht)		All Locations			
Variety,	Brool	kings	South	Shore	Mil	Miller		Selby		n Co.	Average			
Heading	Ldg	Ht	Ldg	Ht	Ldg	Ht	Ldg	Ht	Ldg	Ht	Ldg	Ht		
[1]	score	inch	score	inch	score	inch	score	inch	score	inch	score	inch		
Pinnacle, 3	1 [3]	32	1	31	1	30	1	32	3	34	1	32		
Stellar-ND, 2	1	34	1	33	1	31	1	33	3	33	1	33		
Rawson, 2	1	36	1	33	1	33	1	32	3	34	1	34		
Lacey, 0	1	35	1	33	1	31	1	35	3	34	1	33		
Drummond, 2	1	38	1	35	1	32	2	33	3	36	2	35		
Rasmusson, 3	1	34	1	33	2	29	1	30	3	32	2	31		
Robust, 3	1	36	1	35	1	33	2	35	3	35	2	35		
Eslick, 3	2	27	1	28	2	27	2	30	4	31	2	28		
Conlon, 0	1	35	1	34	3	30	3	31	4	38	2	33		
Testavg.:	1	34	1	33	2	31	2	32	3	34				
High avg. :	2	38	1	35	3	33	3	35	4	38				
Low avg.:	1	27	1	28	1	27	1	30	3	31				
[4] Lsd(.05) :	1	2	NS	2	1	2	1	3	1	3				
[5] TPG-value :	1	36	1	33	1	31	1	32	3	35				
6	22	4	15	4	37	5	33	6	13	5				

Table 3c. Spring barley lodging (Ldg) score and plant height (Ht) averages at five South Dakota locations. Table sorted low to high by all location lodging score average.

[1] Heading- days earlier or later (- or +) than Lacey, the check variety (Ck) for maturity. Column values in **bold type** at each location are top-performance group values. Note that additional table footnotes are explained in Table A.

10010 301	icu by z y	r uich by z	.000 3 1010	yiciu aven	age.			
		Location		All Locations Yield Avg.				
Variety,	South	Shore	W	all	Se	lby	bu	ı/a
Rel. Mat. [1]	2009	2-Yr	2009	2-Yr	2009	2-Yr	2009	2-Yr
Spider, M	76	75	32	-	95	66	68	71
Cooper, L	81	75	33	-	96	62	70	69
Arcadia, E	84	76	29	•	84	53	66	65
CDC Meadow, E	80	71	31	-	92	59	68	65
CDC Golden, M	79	71	34		85	56	66	64
CDC Striker, M	64	64	34		85	57	61	61
SW Midas, E	72	61	31		81	53	61	57
DS Admiral, E	59	59	32		77	52	56	56
Thunderbird, M	87		30		86		68	
Commander, E	85		33		84		67	
Summit, E	77		30		90		66	
Agassiz, E	74		33		81		63	
Korando, M	58		26		78		54	
Sage, E	70		32		71		58	
DS 98244, VE	-		32	-		-	-	
Testavg.:	75	69	31		85	57	64	64
High avg. :	87	76	34		96	66	70	71
Low avg. :	58	59	26		71	52	54	56
[4] LSD (.05):	9	14	NS		12	10		
[5] TPG-value :	78	62	26		84	56		
[6] C.V. :	8	9	11		10	12		1

Table 4. Field pea yield results at three South Dakota locations, 2008-2009. Table sorted by 2-yr then by 2009 state yield average.

[1] Maturity- relative to other varieties in the trial.

Note that additional table footnotes are explained in Table A.

Column values in **bold type** at each location are top-performance group values.

SOYBEAN VARIETY PERFORMANCE TRIALS – NORTHEAST RESEARCH FARM¹

Robert G. Hall, Extension agronomist – crops Kevin K. Kirby, Agricultural research manager Jesse A. Hall, Agricultural research manager Alan Heuer, NE Farm manager

This reports the 2009 Northeast Research Farm performance trials for both non-Glyphosate-resistant and glyphosate-resistant soybean entries conducted by the South Dakota State University Crop Performance Testing program.

EXPERIMENTAL PROCEDURES

Entries were placed in either a maturity group-0 or group-I test trial according to maturity ratings reported by the seed company. Each company selects the appropriate maturity group trial (0 or I) for their entries at a given location. However, there are no standard regional or national check entries for maturity. Consequently, in some trials, borderline entries with maturity group ratings at or near the assigned break between the late group-0's and early-group-I's may crossover.

Entries were seeded in three plots (replications) with each plot placed in a randomized complete block design and where each plot consisted of four 30-inch rows, 20 feet long. Plots were seeded May 22 and May 21, 2009 at South Shore and Warner, respectively, with a Monosem precision planter calibrated to plant 165,000 seeds per acre. Granular Nitragin brand Soybean Soil Implant metered down a tube was used for soil inoculation. The conventional seedbed at South Shore was a Kranzburg silty clay loam with a 3-6% slope previously cropped to spring wheat; and at Warner the no-till seedbed was a Harmony-Aberdeen silt clay loam with a 0-2% slope, previously cropped to corn. These methods apply to both the non-glyphosate-resistant and the glyphosate-resistant trials.

Chemical weed control in the glyphosate-resistant trials included of one pre-emergence application of Dual II Magnum[™] at South Shore and one post-emergence application of Roundup[™] at both locations. Weed control in the non-glyphosate-resistant trials at South Shore consisted of a pre-emergence application of Dual II Magnum[™] followed by a post-application of Harmony[™]. All herbicides were applied at label rates. At South Shore, Warrior[™] insecticide was aerial applied at the label rate while at Warner Asana[™] was ground applied at the label rate.

Yields (bu/a) are an average of three replications, adjusted to 13% moisture (dry-matter basis) and a bushel weight of 60 pounds. Yield least significant difference (LSD) and minimum top-yield values are rounded off to the nearest whole bushel per acre. Plant height was measured from the ground to the top-most node on the main stem. Lodging scores at harvest are a plot average where plants were: All erect = 1, slightly lodged = 2, stem lodged 45_0 angle = 3, severely lodged = 4 or all flat = 5.

¹Results funded with assistance from the South Dakota Agricultural Experiment Station.

MEASUREMENTS OF PERFORMANCE

Check for the "least significant difference" (LSD) value at the bottom of each data column. An LSD value can be used in two ways. First, it can indicate how much a variable like yield must differ between two entries before there is a significant difference. For example, if the test LSD value equals of 4 bu/a, it can be used to compare the yield average of any two entries. If entry A yields 50 and entry B yields 48 bu/a their yield difference is 2 (50 - 48 = 2). These two entries do not differ in yield because their yield of 2 bu/a is not greater than the LSD value of 4 bu/a. In contrast, if variety C yields 45, the yield difference between entry A and C is 5 bu/a (50-45 = 5). Thus entries A and C differ in yield because their difference of 5 bu/a is more than the LSD value of 4 bu/a, therefore, entry A is significantly higher yield than entry C.

A second use for the LSD value is to identify the top performance group (TPG) for yield (this year or 2-yr) and lodging scores for this year. For example, if the highest yield is 54 bu/a and the LSD value at the bottom of the table column is 4 bu/a one can determine that the minimum yield value needed for TPG is 50 bu/a (54-4 = 50). Technically, a yield of 50 is not while a yield of 50 bu/a is in the top yield group. However, because the yield averages and LSD values are rounded to the nearest whole number, one can say 50 bu/a, because of the rounding-off, is the minimum value for TPG entries. Therefore, the top yield entries for the yield column are those that are equal or higher than the minimum TPG value. Remember to look for top-yield group varieties in both the 2-yr and current year yield columns. Similarly, the TPG for lodging score (Table 1b) and its LSD value is also rounded-off to the nearest whole number.

An explanation of performance table footnotes is reported in Table A.

No.	Explanation of footnotes
[1]	Days to maturity (DTM) – the number of days to maturity from seeding to 95% brown pod.
[2]	Lodging scores: 0= all plants erect, 3= 50% of plants lodged at 45°-angle, 5= all plants flat.
[3]	Least Significant Difference (LSD 0.05) – the difference two values within a column must equal or exceed
	to be significantly different from one another at the 0.05 level of probability. If the difference is less than
	the LSD value the difference between the values is nonsignificant (NS).
[4]	TPG-avg. – the minimum value within a column that entry yield values must equal or exceed to qualify
	for the top-performance group (TPG).
[5]	TPG-avg. – the maximum value within a column that lodging score values must equal or be less than
	to qualify for the TPG.
[6]	Coefficient of variation (C.V.) - the percent of experimental error associated with a test trial. Ideally, the
	CV value for yield is less than 15%. Values less than 5% tend to be less common while values of 6 to
	15% are more common. Occasionally, values exceed 15%; this means the trial contained too much
	experimental error to be a valid test; thus, the trial is not reported.

Table A.	Explanation	of	performance	table	footnotes.
----------	-------------	----	-------------	-------	------------

SEASONAL PRECIPITATION AND TEMPERATURES

The seasonal precipitation total from April 1 to September 30 was below average (-1.29"). The April through June moisture total was below average at -3.06", while June and July was 1.81" above average, with September near average. The average monthly daily temperature from April through September was below average at more than -3°F. The monthly average daily temperatures were -3.4 in June, -6.4 in July, and -3.9°F in August.

PERFORMANCE TRIAL RESULTS FOR 2008-09

Glyphosate-resistant soybean variety trial results:

South Shore – Conventional tillage, Northeast Research Farm Warner – Minimum-tillage, Allen & Inel Ryckman Farm (Farm cooperators)

South Shore, Group-0 (Table 1): The 2-year and 2009 test-yield averages were 49 and 53 bushels per acre, respectively, and the lodging score average was 1. Varieties had to average 44 and 52 bushels or higher to be in the top-yield group for 2 years and for 2009, respectively. Variety yield differences among the 2-year averages were not significant (NS), while the 2009 variety yield differences had to differ by 7 bushels to be significantly different. Variety lodging score value differences were not significant, so all entries were in the top performance group for lodging score.

<u>Warner, Group-0 (Table 1)</u>: The 2-year and 2009 test-yield averages were **52** and **61** bushels per acre, respectively, and the lodging score average was **1**. Varieties had to average **54** and **65** bushels or higher to be in the top yield group for 2 years and for 2009, respectively. Variety yield averages had to differ by **5** bushels for 2 years and **4** bushels for 2009 to be significantly different. Variety lodging score value differences were not significant, so all entries were in the top performance group for lodging score.

Northern test zone, Group-0 (Tables 1): The 2-year and 2009 test-yield averages were 50 and 57 bushels per acre, respectively, and the lodging score average was 1. In 2009, however, there were significant year-by-location interactions for the 2-year yield and the 2009 yield at both locations; this means variety performance differed by location and year for the 2-year yield and differed by location for the 2009 yield in the Northern zone. Therefore, producers are encouraged to evaluate variety performance differences by using the yield columns listed under each location and to not use the yield columns listed for the Northern zone.

<u>South Shore, Group-I (Table 2)</u>: The 2-year and 2009 test-yield averages were **51** and **56** bushels per acre, respectively, and the lodging score average was **1**. Varieties had to average **52** bushels and **57** bushels or higher to be in the top yield group for 2 years and for 2009, respectively. Variety yield differences among the 2-year averages were not significant (NS), while the 2009 variety yield differences had to differ by **4** bushels to be significantly different. Variety lodging score value differences were not significant, so all entries were in the top performance group for lodging score.

<u>Warner, Group-I (Table 2)</u>: The 2-year and 2009 test-yield averages were **51** and **64** bushels per acre, respectively, and the lodging score average was **1**. Varieties had to average **51** and **66** bushels or higher to be in the top yield group for 2 years and for 2009, respectively. Variety yield averages had to differ by **5** bushels for 2 years and **4** bushels for 2009 to be significantly different. Variety lodging score values had to equal **1** to be in the top performance group for lodging score and had to differ by **1** to be significantly different.

<u>Northern test zone, Group-I (Table 2)</u>: The 2-year and 2009 test-yield averages were **51** and **60** bushels per acre, respectively, and the lodging score average was **1**. Because there were significant year-by-location interactions for the 2-year yield and the 2009 yield at both locations, growers are encouraged to evaluate variety performance differences by using the yield columns listed under each location and to not use the yield columns listed for the Northern zone

Non-glyphosate-resistant soybean variety trial results:

South Shore – Conventional tillage, Northeast Research Farm

South Shore, Group-0 (Table 3): The 2-year and 2009 test-yield averages were 40 and 46 bushels per acre, respectively, and the lodging score average was 1. Varieties had to average 37 bushels or higher for 2 years and 49 bushels or higher for 2009 to be in the top yield group. Variety yield averages had to differ by 6 bushels for 2 years and by 4 bushels for 2009 to be significantly different. Variety lodging score values indicated there was no difference in lodging score in the varieties tested in 2009.

<u>South Shore, Group-I (Table 3)</u>: The 2-year and 2009 test-yield averages were **41** and **43** bushels per acre, respectively, and the lodging score average was **1**. Varieties had to average **35** bushels or higher for 2 years and **43** bushels or higher for 2009 to be in the top yield group. Variety yield averages had to differ by **10** bushels for 2 years and by **4** bushels for 2009 to be significantly different. Variety lodging score values indicated there was no difference in lodging score in the varieties tested in 2009.

Table 1. Glyphosate-resistant maturity group-0 soybean variety yield and lodging averages at South Shore and Warner, 2008-2009, Sorted by 2-Yr then by 2009 zone yield.

Chere and Warner, 2000	-2003.	Solieu	0y Z=11			North and Zara				
			North	ern Avera	ges by l	_ocatior	1	N	orthern	Zone
		S	outh Sh	nore		Warne	er		Average	es
		Yield	-bu/a	2009	Yield	-bu/a	2009	Yield	-bu/a	2009
	DTM			Lodg.			Lodg.			Lodg.
Brand/Variety	[1]	2-Yr	2009	(1-5)	2-Yr	2009	(1-5)	2-Yr	2009	(1-5)
NUTECH/NT-0886	126	51	50	1	59	69	1	55	60	1
NUTECH/NT-0990	127	52	53	1	51	63	1	52	58	1
PRAIRIE BR / PB-0954RR	124	47	52	1	52	60	1	50	56	1
ASGROW/ AG0808	124	46	49	1	53	61	1	50	55	1
HEFTY/EXPO89R	124	48	53	1	49	60	1	<u>4</u> 9	57	1
SODAK GEN / SD1093RR	124	40	49	1	48	60	1	46	55	1
MUSTANG/M-09330	124		57	1	40	65	1	40	61	1
	129	-	56	1	•	65	1	•	61	1
	120	-	50	1	•	62	1	•	60	1
	120	-	57	1	•	62	1	•	50	1
DAIR ILAND/ DSR-0747/R21	123	•	55	1	•	64	1	•	59	1
PRAIRIE BR./ FB-0999RR	120	•	55		•	62	1	•	59	1
	120	•	53 55		•	61	1	•	00 50	1
	124	•	55		•	01	1	•	50	
	130	•	50	1	•	65	1	•	58	1
ASGROW/R 10809	124	-	54	1	-	59	1	•	57	1
	129	-	52	1	•	61	1	•	57	1
G-2 GENETICS/ 6098	124	•	52	1	•	61	1	•	57	1
PRAIRIE BR./ PB-0779RR	122	•	54	1	•	59	1	•	57	1
PRAIRIE BR./ EXP 119	124	•	52	1	•	62	1	•	57	1
ASGROW/RY0819	125		50	1	•	61	1	•	56	1
KRUGER/EXPK2X05A9	124	•	52	1	•	59	1	•	56	1
PRAIRIE BR./ EXP 129	123	-	51	1	•	60	1	•	56	1
WENSMAN/W 2079RR	120	-	53	1	•	59	1	•	56	1
SODAK GEN./ SD2081RR	123	-	49	1	•	60	1	•	55	1
ASGROW/ AG0803	125		50	1		58	1		54	1
KRUGER/EXPK2X06A9	125		50	1		55	1		53	1
HEFTY/ EXP070R	120	•	45	1	•	58	1	•	52	1
MUSTANG/ M-09920	133	-	59	1	•	•	•	•	•	-
PIONEER/90Y50	128	-	52	1					•	
KRUGER/K-042RR	119				49	59	1			
KRUGER/K-072+RR	124	-	-		58	67	1			
KRUGER/K-091RR	133	53	59	1	-	-	•			
KRUGER/K-058RR	118	48	51	1						
GOLD COUNTRY/ 2509RR	131	50	58	1						
G-2 GENETICS/6088	125					66	1			
PROSEED/80-90	129	47	52	1						
Test avg.:	125	49	53	1	52	61	1	50	57	1
High avg. :	133	53	59	1	59	69	1	55	61	1
Low avg. :	118	44	45	1	48	55	1	46	52	1
[3] Test LSD (.05):		NS**	7	NS	5	4	NS	***	***	
[4] Min.TPG-avg		44	52		54	65				
[5] Max TPG-avg				1			1			
[6] Test Coef Var		7	8	0	4	4	0			
No Entrice		10	33	33	8	30	30			
			00							

[1] DTM= days to maturity from seeding dates of May 22 at South Shore and May 21 at Warner.

Note that additional table footnotes are explained in Table F.

* Values in **bold type** within a column are included in the top performance group.

** Indicates differences between values within a column were non-significant (NS).

*** There was a significant variety by location interaction for yield. Therefore, evaluate yield by using the yield columns for each location.

South Shore Warner Averages	110
Sould Shole Wallel Averages	
	2000
	2009
	Loag.
Brand/Variety [1] 2-Yr 2009 (1-5) 2-Yr 2009 (1-5) 2-Yr 2009 (1-5)	(1-5)
WENSMAN/W 2166RR 128 55 61 1 53 67 1 54 64	1
HEFTY/168R 128 53 57 1 54 68 1 54 63	1
STINE/1108-4 126 53 61 1 54 65 1 54 63	1
NUTECH/6156 127 52 55 1 56 68 1 54 62	1
MUSTANG/M-168RR 128 53 59 1 53 67 1 53 63	1
PRAIRIE BR./ PB-1597RR 129 53 59 1 53 67 1 53 63	1
HEFTY/117R 127 51 56 1 55 67 1 53 62	1
STINE/1008-4 128 50 52 1 56 70 1 53 61	1
PRAIRIE BR./ PB-1337RR 128 52 58 1 51 65 1 52 62	1
NUTECH/NT-6205+RR 133 52 56 1 52 66 1 52 61	1
ASGROW/AG1403 130 50 53 1 51 66 1 51 60	1
SEEDS 2000/2120RR 128 49 52 1 52 65 1 51 59	1
HEFTY/EXP159RN 131 49 55 1 50 66 1 50 61	1
ASGROW/AG1102 127 49 56 1 51 63 1 50 60	1
ASGROW/ AG1702 127 51 55 1 49 63 1 50 59	1
PRAIRIE BR./ PB-1918RR 132 50 54 1 49 61 1 50 58	1
PROSEED/81-30 129 49 50 1 59 1 50 55	1
HEFTY/EXP139R 126 50 53 1 48 61 1 49 57	1
KRUGER/K-129RR 126 49 51 1 48 62 1 49 57	1
SODAK GEN./ SD1161RR/SCN 131 47 52 1 48 61 1 48 57	1
KRUGER/K-189RR/SCN 133 45 48 1 46 59 1 46 54	1
ASGROW/RY1719 133 . 61 1 . 68 1 . 65	1
PRAIRIE BR./ EXP 141 130 . 60 1 . 69 1 . 65	1
KRUGER/EXPK2X11B9 126 . 60 1 . 65 2 . 63	2
KRUGER/EXPK2X14A9 129 . 59 1 . 67 1 . 63	1
PRAIRIE BR./ EXP 179 133 . 58 1 . 67 1 . 63	1
MUSTANG/M-159NRR 133 . 60 1 . 63 1 . 62	1
NUTECH/6145 132 . 59 1 . 64 1 . 62	1
KRUGER/EXPK2X10A9 126 . 59 1 . 64 1 . 62	1
DAIRYLAND/DST11-001R2Y 129 . 57 1 . 66 1 . 62	1
PRAIRIE BR./ EXP 158 132 . 59 1 . 65 2 . 62	1
ASGROW/AG1506 132 . 58 1 . 64 1 . 61	1
ASGROW/ AG1703 134 . 57 1 . 64 1 . 61	1
ASGROW/RY1709 132 . 56 1 . 66 1 . 61	1
NUTECH/6166 131 . 55 1 . 66 1 . 61	1
DAIRYLAND/DSR-1100/RR 126 . 57 1 . 65 1 . 61	1
PRAIRIE BR./ EXP 199 129 58 1 . 64 1 . 61	1
CHANNEL BRAND/1651R 133 . 57 1 . 64 1 61	1
PROSEED/ 81-50 132 56 1 65 1 61	1
HEFTY/108 127 . 56 1 . 64 1 . 60	1

Table 2. Glyphosate-resistant maturity group-I soybean variety yield and lodging averages at SouthShore and Warner, 2008-2009. Sorted by 2-Yr then by 2009 zone yield.

	,	South Shore		ore		Warner		Nor	thern Z	one
		Yield	-bu/a	2009	Yield	-bu/a	2009	Yield-bu/a		2009
	DTM			Lodg.			Lodg.			Lodg.
Brand/Variety	[1]	2-Yr	2009	(1-5)	2-Yr	2009	(1-5)	2-Yr	2009	(1-5)
KRUGER/EXPK2X15B9	130		58	1		61	1		60	1
KRUGER/K2-1901	131		57	1		62	1		60	1
KRUGER/EXPK2X19B9	133		57	1		62	1		60	1
WENSMAN/W 2112RR	123		57	1		62	1		60	1
SODAK GEN./ SD2121RR	126		56	1		62	1		59	1
DAIRYLAND/ DSR-1200/R2Y	127		54	1		62	1		58	1
G-2 GENETICS/ 6159	128		54	1		62	1		58	1
NUTECH/ 6193	132		53	1		60	1		57	1
G-2 GENETICS/ 7129	126		49	1		55	1		52	1
MUSTANG/M-13320	137		60	1						
PIONEER/91Y90	130				51	66	2			
KRUGER/K-167RR/SCN	135	51	55	1						
GOLD COUNTRY/2713RR	133	50	53	1						
GOLD COUNTRY/2815RR	132	54	59	1			-		-	
GOLD COUNTRY/ 1915NRR	135	52	61	1						
DAIRYLAND/DSR1423RRSTS	130					57	2		-	
DAIRYLAND/DST14-003R2Y	135					67	2			
REA/ EXP-1054	126					67	1			
REA/ EXP-1056	127					65	1			
REA/ EXP-1059	126	-	-		-	64	1	-	-	
PROSEED/61-00	121				53	65	1			
Testavg.:	129	51	56	1	51	64	1	51	60	1
High avg. :	137	55	61	1	56	70	2	54	65	2
Low avg. :	121	45	48	1	46	55	1	46	52	1
[3] Test LSD (.05):		NS**	4	NS	5	4	1	***	***	
[4] Min.TPG-avg. :		52	57		51	66				
[5] Max.TPG-avg. :				1			1			
[6] Test Coef. Var.:		4	4	0	6	4	10			
No. Entries:		25	54	54	23	56	56			

Table 2. Glyphosate-resistant maturity group-I soybean variety yield and lodging averages at South Shore and Warner, 2008-2009 (continued).

[1] DTM= days to maturity from seeding dates of May 22 at South Shore and May 21 at Warner.

Note that additional table footnotes are explained in Table A.

* Values in **bold type** within a column are included in the top performance group.

** Indicates differences between values within a column were non-significant (NS).

*** There was a significant variety by location interaction for yield. Therefore, evaluate yield by using the yield columns for each location.

			Yield ave	erage (bu/a) by matur	ity group	
			MG-0			MG-I	
		Yield	-bu/a	2009	Yield	-bu/a	2009
				Lodg.			Lodg.
BRAND/VARIETY	DTM [1]	2-yr	2009	(1-5)	2-yr	2009	(1-5)
MUSTANG/ ML-0979	128		53*	1			
PUBLIC/MN0908CN	133		48	1			
PUBLIC/HAMLIN	131	43	47	1			
PUBLIC/SURGE	130	43	47	1			
RICHLAND ORG./ MK0508	130	38	44	1			
PUBLIC/MN0806CN	128		44	1			
PUBLIC/SD05-767	133		44	1			
PUBLIC/SD00-1501	129		42	1			
RICHLAND ORG./ MK0649	123	35	41	1	-	-	-
MUSTANG/ ML-1520	131					47	1
PUBLIC/MN1701CN	133				45	46	1
PUBLIC/DEUEL	129				41	44	1
PUBLIC/MN1410	130				45	42	1
PUBLIC/MN1505SP	131					41	1
RICHLAND ORG./ MK1016	126	-			34	37	1
Test avg.:	130	40	46	1	41	43	1
High avg.:	133	43	53	1	45	47	1
Low avg. :	123	35	41	1	34	37	1
[3] LSD (.05):		6	4	0	10	4	0
[4] Min. TPG avg.:		37	49		35	43	
[5] Max. TPG avg.:				1			1
[6] Coef. Var.:		5	5	0	8	5	0

Table 3. Non-glyphosate-resistant maturity group-0 and -I soybean variety yield and lodging averages at South Shore, 2008-09.

[1] DTM= days to maturity from seeding dates of May 22 at South Shore.

* Values in **bold type** within a column are included in the top-performance group.

Note that additional table footnotes are explained in Table A.

Precision-Planted Glyphosate-Resistant Corn Hybrid Performance Trials

Robert G. Hall, Extension agronomist – crops Kevin K. Kirby, Agricultural research manager Jesse A. Hall, Agricultural research manager Allen W. Heuer, Farm manager South Dakota State University

This reports the 2009 Northeast Research Farm performance trial for the glyphosateresistant corn hybrids conducted by the South Dakota State University Crop Performance Testing (CPT) program.

Experimental Procedures

Entries were placed into either an early or late maturity trial according to ratings reported by a given seed company. The break between the early and late test was 95-day for both hybrid trials. Entries were seeded in three replications with each hybrid randomly located within a replication block. Plots consisted of four 30-inch rows, 20 feet long. Plots were seeded on May 7, 2009 into a conventionally tilled Kranzburg silty clay loam with a 3-6% slope and previously cropped to spring wheat. A Monosem precision row crop planter was used to seed plots. During seeding, a starter fertilizer of 100 pounds/acre of 37-18-00 was applied 2" below and 2" to the side (2x2) of the seed furrow and later fertilized for a yield goal of 180 bushels/acre. The precision planter was calibrated to deliver 28,750 seeds per acre, regardless, of seed quality and germination percentage. Thus, the harvest population is an indication of initial seed quality and the ability of the seed to cope with the production environment. Weed control procedures consisted of a pre-Dual II Magnum application plus one post-Roundup application, both at label rates.

Measurements of Performance

Yield values are an average of three replicates (plots), and are expressed as bushels per acre (bu/a), adjusted to 15.5% moisture on a dry-matter basis and a bushel weight of 56 pounds. Moisture content is expressed as the percentage of moisture in the shelled grain at harvest.

Check for the "least significant difference" (LSD) value at the bottom of each data column. The reported LSD values can be used in two ways. First, the LSD value can indicate how much a variable such as yield must differ between two hybrids before there is a real yield difference. For example, if the 2-year LSD value equals 12 bu/a acre it can be used to compare the yields of any two hybrids. If hybrid A averages 190 bu/a and hybrid B averages 189 bu/a the yield difference is 11 bu/a (190 - 189 = 11). In this case the two hybrids do not differ in yield because their yield difference of 11 bu/a is less than the reported LSD value of 12 bu/a. In contrast, if hybrid C yields 185 bu/a the difference between hybrids A and C is 15 bu/a (190-185 = 15). In this case, the yield difference of 15 bu/a is more than the reported LSD value of 12 bu/a; therefore, hybrid A is significantly higher in yield than hybrid C.

The second use for the LSD value is to identify the top performance group (TPG) for current year and two-year yields, bushel weight, grain moisture at harvest, and lodging (below the ear) percentage for each test trial. In order to determine which hybrids are in the TPG for yield use the LSD value indicated at the bottom of each yield column in any yield table. For example, let's say the column LSD value equals 15 (bu/a) and the highest yield for that column equals 155 bu/a. If you subtract the column LSD value from the highest yield you obtain an intermediate value of 140 bu/a (155–15 = 140). The minimum top yield value has to be greater than this intermediate value of 140 bu. and since the yield values are rounded to the nearest bushel it must be at least 141 bu. Thus, varieties with an average of 141 bu. or higher are included in the top-yield group. Top yield hybrids are those hybrids that are equal or more than the minimum TPG for yield. Likewise, a minimum TPG value is listed for the 2 yr. (2007-08) average. The minimum yield value needed for a hybrid to qualify for the TPG for yield for 2008 or for 2008-09 is listed at the bottom of each yield column. If hybrid yield differences are not significant (NS), then by definition - all hybrids in the test are in the TPG for yield for the stated one- or twoyear yield average.

Similarly, the TPG for bushel weight, grain moisture at harvest, and stalk lodging below the ear percentage can be determined. Note that yield and bushel weight TPG values must exceed a minimum value; while grain moisture and lodging below ear percentage values must be equal to or less than maximum value to qualify for the TPG depending on a given variable.

No	Explanation of footnotes
[1]	Entries listed by Brand/Hybrid- Sorted by 2-yr then 2009 yield average.
[2]	Brand Relative Maturity (Rel. Mat.) – The relative maturity rating as reported by the
	seed company.
[3]	Lodging Percentage – percentage of stalks broken below the ear at harvest.
[4]	Final Stand Percentage – number of standing stalks at harvest as a percent of
	seeded population.
[5]	Least Significant Difference (LSD 0.05) – the difference two values within a column
	exceed to be significantly different (0.05 level of probability). If their difference is
	less than the LSD value the difference is nonsignificant (NS).
[6]	Min. TPG-avg the minimum column value for yield, bushel weight, and final
	stand percentage that a given hybrid must equal or exceed to be in the TPG.
[7]	Max. TPG-avg the maximum column value for grain moisture at harvest, lodging
	percentage that a given hybrid must equal or be less than to be in the TPG.
[8]	Coefficient of variation (C.V.) - the percent of experimental error associated with a
	trial. Ideally, the CV value for yield is less than 15%. Values less than 5% are
	less common, values of 6-15% are more common, and if values exceed 15%; the
	trial contained too much experimental error to be valid; so the trial is not reported.

Table A. Explanation of performance table footnotes.

Seasonal Precipitation and Temperatures

The seasonal precipitation total from April 1 to September 30 was below average (-1.29"). The April through June moisture total was below average at -3.06", while June and July was 1.81" above average, with September near average. The average monthly daily temperature from April through September was below average at slightly more than -3°F. The monthly average daily temperatures were -3.4 in June, -6.4 in July, and -3.9°F in August. Consequently, this lead to growing degree day (GDD) deficits of -65 GDDs in June, -192 in July, and -109 in August; with a total GDD 307 GDDs below average for the April through September period.

Performance Trial Results - 2009

Early maturity trial, Table 1. The test trial yield averages were **187** bu/a for 2 years and **200** bu/a for 2009. The yield differences among those hybrids tested for 2 years were not significant (NS). Hybrids that yielded **205** bu/a or more for 2009 qualified for the TPG for yield. Hybrids had to differ in yield by **11** bu/a in 2009 to be significantly different. In 2009, bushel weights averaged **50** lbs, grain moisture averaged **20%**, lodging averaged **zero percent**, and final stand percentage averaged **96%**. In order for hybrids to be in the TPG for these factors, the hybrid had to average **52** lbs. or more in bushel weight, **18%** or less in grain moisture, **1%** or less in lodging, and **95%** or more in final stand percentage.

Late maturity trial, Table 2. The test trial yield averages were 185 bu/a for 2 years and 192 bu/a for 2009. Hybrids that yielded 171 bu/a or more for 2 years and 204 bu/a or more for 2009 qualified for the TPG for yield. Hybrids had to differ in yield by 28 bu/a for two years and 13 bu/a in 2009 to be significantly different. In 2009, bushel weights averaged 47 lbs, grain moisture averaged 26%, lodging averaged zero percent, and final stand percentage averaged 93%. In order for hybrids to be in the TPG for these factors, the hybrid had to average 49 lbs. or more in bushel weight, 22% or less in grain moisture, and 1% or less in lodging, and 93% or higher in final stand percentage.

Table 1. South Shore early matury glyphosate-resistant corn hybrid test results, 2008-09, Seeded May 7, 2009 at 28,750 seeds per acre.

,,,		Yield Av	/erages	s Other 2009 Averages			
	Rel.				Grain	Lodging	Final
	Mat.	2-Yr	2009	Bu.Wt.	Moisture	Pctg	Stand
Brand/Hybrid & Seed Treatment [1]	[2]	bu/a	bu/a	lb	Pctg	[3]	Pctg [4]
DEKALB/DKC43-27(VT3) + Poncho 250	93	202	212	52	20	0	95
AGSOURCE/3T-995 VT3 + Cruiser 250	95	199	206	49	20	0	96
KRUGER/6093VT3 + Cruiser 250	93	185	201	50	22	0	98
PIONEER/38H08 + Poncho 250	92	184	195	47	18	0	94
SEEDS/ 2000 9501VT3 + Poncho 1250	95	178	204	48	19	0	99
DAIRYLAND/ ST-9594 + Poncho 250	94	176	213	51	16	0	95
DAIRYLAND/ ST-6992 + Poncho 250	92		216	51	20	1	95
KRUGER/6295VT3 + Cruiser 250	95		215	49	19	0	99
DEKALB/ DKC42-72(VT3) + Poncho 250	92		212	51	20	0	96
DAIRYLAND/ ST-9395 + Poncho 250	95		212	49	19	0	95
DAIRYLAND/ ST-9789 + Poncho 250	89		210	51	18	1	99
NUTECH/ 3T-493 VT3 + Poncho 250	93		207	49	17	0	92
NUTECH/ 3T-295 VT3 + Poncho 250	95		207	50	23	0	94
AGSOURCE/3T-294 VT3 + Poncho 250	94		207	51	19	0	93
WENSMAN/W 8180 + Poncho 250	95		206	51	22	0	94
PROSEED/ 894 + Poncho 250	94		205	49	21	1	95
NUTECH/ 3T-894 VT3 + Poncho 250	94		205	49	20	0	96
DEKALB/ DKC40-20(VT3) + Poncho 250	90		204	51	21	0	94
KRUGER/6490VT3 + Cruiser 250	90		203	53	19	0	99
SEEDS/ 2000 9502VT3 + Poncho 1250	95		203	50	20	0	93
DAIRYLAND/ST-7790 + Cruiser 250	90		202	51	21	0	93
WENSMAN/W 7195VT3 + Poncho 250	95		198	49	23	0	95
AGSOURCE/3P-494+RR/YGPL +	94		193	49	22	0	97
AGSOURCE/3T-096 VT3 + Cruiser 250	95		191	50	23	0	92
G2/ GEN. 3P-595 RR/YGPL + Cruiser	95		189	49	23	0	99
PROSEED/ 794 + Poncho 250	94		187	47	20	0	99
G2/ GEN. 5X-594 RR/HXT + Cruiser 250	94		182	45	21	0	95
G2/ GEN. 5X-398 RR/HXT + Cruiser 250	95		173	47	24	0	95
PIONEER/38P43 + Poncho 250	95		171	51	22	0	95
EPLEY/ E1115GT + Not reported	93		159	50	22	0	95
Trial avg.:	94	187	200	50	20	0	96
High avg.:	95	202	216	53	24	1	99
Low avg.:	89	176	159	45	16	0	92
[5] LSD(.05):		NS	11	1	2	NS	4
[6] Min.TPG value:		176	205	52			95
[7] Max.TPG value:		•	•	•	18	1	
[8] Coef. of var.:		6	3	2	5	557	3
No. entries:	30	6	30	30	30	30	30

[1] Entries are listed by Brand/Hybrid and sorted by 2-yr then by 2009 yield average.

* Values in **bold type** within a column are included in the top-performance group.

Note that additional table footnotes are explained in table A.

Table 2. South Shore late maturity glyphosate-resistant corn hybrid test results, 2008-09, Seeded May 7, 2009 at 28,750 seeds per acre.

		Yield Av	/erages	s Other 2009 Averages			
	Rel.				Grain	Lodaina	Final
	Mat.	2-Yr	2009	Bu.Wt.	Moisture	Pctq	Stand
Brand/Hybrid & Seed Treatment [1]	[2]	bu/a	bu/a	lb	Pctg	[3]	Pctg [4]
KRUGER/6102VT3 + Cruiser 250	102	199	209	48	25	0	93
DEKALB/ DKC48-37(VT3) + Poncho 250	98	196	209	50	20	0	93
DEKALB/DKC46-60(VT3) + Poncho 250	96	196	200	48	21	0	97
DEKALB/ DKC50-44(VT3) + Poncho 250	100	194	208	47	25	1	92
KRUGER/ 6298VT3 + Cruiser 250	98	190	197	48	24	0	96
SEEDS/ 2000 9901VT3 + Poncho 250	99	187	195	49	24	0	92
KRUGER/ 6097VT3 + Cruiser 250	97	182	215	46	27	0	97
WENSMAN/W 7273VT3 + Poncho 250	98	182	181	47	31	0	94
KRUGER/6401VT3 + Cruiser 250	101	181	195	50	27	0	96
G2/ GEN. 5H-797 RR/HX + Cruiser 250	96	179	196	45	24	0	94
NUTECH/ 3T-098 VT3 + Cruiser 250	98	169	188	46	29	0	96
KRUGER/ 6499VT3 + Cruiser 250	99	164	186	47	29	0	95
G2/ GEN. 5H-999 RR/HX + Cruiser 250	99		217	48	23	1	94
DEKALB/ DKC50-66(VT3) + Poncho 250	100		214	49	22	0	94
KRUGER/ 6200VT3 + Cruiser 250	100		213	49	21	0	94
EPLEY/E1184VT3 + Cruiser 250	96		208	48	21	0	94
G2/ GEN. 5H-501 RR/HX + Cruiser 250	100		203	47	24	0	92
G2/ GEN. 5X-199RR/HXT + Cruiser 250	99		199	47	25	0	91
PROSEED/ 896 + Poncho 250	96		198	49	25	0	91
NUTECH/ 3T-601 VT3 + Poncho 250	100		198	48	24	0	96
PROSEED/ 897 + Poncho 250	97		197	47	26	1	91
G2/ GEN. 5H-199 RR/HX + Cruiser 250	99		197	47	23	0	90
WENSMAN/W7270VT3 + Poncho 250	97		196	47	25	0	95
NUTECH/ 3T-401 VT3 + Cruiser 250	100		193	46	29	0	93
DAIRYLAND/ ST-9597Q + Cruiser 250	97		192	49	24	0	92
DEKALB/DKC51-13(VT3) + Poncho 250	101		189	47	26	0	94
NUTECH/ 3T-300 VT3 + Cruiser 250	100		184	46	31	0	94
AGSOURCE/5B-198 GTCBLL + Poncho	100		182	47	29	0	84
G2/ GEN. 5X-802 RR/HXT + Cruiser 250	100		180	46	26	0	97
NUTECH/ 3T-600 VT3 + Poncho 250	100		179	47	25	1	87
AGSOURCE/3T-799 VT3 + Cruiser 250	99		173	48	29	0	88
NUTECH/ 3T-603 VT3 + Cruiser 250	103		168	48	25	0	87
AGSOURCE/5X-100A RR/HXT + Poncho	100	•	165	48	31	0	94
AGSOURCE/3T-302 VT3 + Cruiser 250	102	•	165	48	35	0	95
EPLEY/EXP1307HXLLRR + Cruiser 250	100		162	46	30	0	91
NUTECH/ 3T-801 VT3 + Poncho 250	100	•	154	45	34	0	91
Trial avg.:	99	185	192	47	26	0	93
High avg.:	103	199	217	50	35	1	97
Low avg.:	96	164	154	45	20	0	92
[5] LSD(.05):		28	13		2	NS	4
[6] Min.TPG value:		171	204	49			93
[/] Max. I PG value:					22	1	
[8] Coet. of var.:	00	5	4	2	5	420	3
No. entries:	36	12	36	36	36	36	36

[1] Entries are listed by Brand/Hybrid and sorted by 2-yr then by 2009 yield average.

* Values in **bold type** within a column are included in the top-performance group.

Note that additional table footnotes are explained in table A.

OAT PROJECT

Lon Hall (web site: <u>http://plantsci.sdstate.edu/oats/index.htm</u>)

The oat program's objective is to develop oat varieties for producers in South Dakota and surrounding states. Multipurpose varieties are being developed to satisfy more than one market. These varieties may be used in double cropping, as a companion crop, forage, and/or harvested for grain. The desired agronomic traits are high grain and/or forage yield potential, high-test weight, disease resistance, straw strength, white hulled or hulless, and maturity adaptation for South Dakota's diverse regional environments.

'Shelby427', a white-hulled spring oat, was developed by the South Dakota Agricultural Experiment Station (SDAES) and approved for release in 2010. Shelby427 was tested as experimental line SD031128-330. SD031128-330 is a F10 derived line developed from the two-parent population SD99674/ND960851. Shelby427, when compared to 'Jerry' and 'Reeves', has superior grain yield, test weight, crown rust, and lodging resistance. Shelby427 has a medium plant height and an early-medium maturity (table 1). It also has a high groat percentage, very good stem rust, and barley yellow dwarf virus resistance.

	8loc	8loc	16loc	16loc	5loc	4loc	16loc	Brookings	16loc
	2008	2009	Avg.	Avg.	Avg Straw	Avg	Avg	Crown	Avg
	Yield	Yield	Yield	Test Wt.	Strength	Heading	Height	Rust	Protein
	Bu/a	Bu/a	Bu/a	Lbs/bu	1-5	>June	inches	%	%
Souris	129	129	129	36.6	1.6	28.5	37.0	4	14.3
HiFi, 8	125	129	127	36.0	2.4	30.1	41.0	4	14.3
Shelby427	120	128	124	38.2	2.3	24.9	40.0	0	14.5
Beach, 6	122	121	121.5	37.8	2.4	28.4	43.5	49	13.9
Stallion, 8	119	113	116	37.6	4.0	28.7	41.0	16	14.8
SD060966	115	112	113.5	38.5	3.3	21.0	34.5	94	14.6
Morton, 7	115	110	112.5	36.2	1.8	29.8	43.0	65	14.4
Colt	112	107	109.5	38.0	2.9	22.6	36.0	89	15.0
Jerry, 5	113	101	107	37.3	2.6	26.4	40.0	79	15.0
Don, 2	107	104	105.5	36.1	2.6	23.8	33.5	80	14.3
Reeves, 2	104	104	104	37.5	4.0	23.9	40.0	76	15.3
Hytest, 4	93	87	90	37.6	3.5	27.1	41.5	51	15.8
Buff Hls, 3	89	94	91.5	44.0	2.0	24.1	35.5	50	16.1
Streaker	90	90	90	43.7	3.8	25.8	38.5	33	16.6
Stark Hls, 6	77	100	88.5	40.3	2.7	32.7	41.5	21	15.6
Mean	108.7	108.6	108.6	38.3	2.8	26.5	39.1	47	14.9

TABLE 1. STANDARD VARIETY OAT PEFORMANCE TRIAL SUMMARY:

1 RATING IS BEST

Program Synopsis:

Parents in the crossing block were selected for specific traits. The desired combination of traits cannot always be acquired in two-way crosses; therefore, some combinations were made specifically for three-way crosses. The 2009 spring crossing block yielded 401 successful unique genetic combinations. Two hundred and thirty five of these were selected for F1 increase in the fall greenhouse cycle. Thirty-six high avenathramide/betaglucan populations were selected for rapid generation advancement. The goal is to develop hulless and hulled varieties for human consumption from these populations. There were a total of 4,692 yield plots grown in the field. Plot locations include Brookings, South Shore, Beresford, Miller, and Brookings Buckthorn. The numbers of unique bulk populations grown were 256 bulk F2s and 120 bulk F3s. There were 1,704 lines derived from F5, F7, F8, and/or F9 generations grown in unreplicated Preliminary Yield Trials (PYT) at the Northeast Farm or the Brookings location. The number of unique lines grown in replicated Advanced Yield Trials (AYT) and regional nurseries were 264 and 143 respectively. Thirty-six lines of SD030888BC1 backcrosses and twelve SD060966 derivatives were yield tested and underwent a simultaneous preliminary increase. SD031128-330 was released as variety and named Shelby427. Fifteen thousand plants consisting of 36 populations were screened for kernel type and crown rust in the fall greenhouse cycle. Approximately 3000 selected single seed descent seeds will be planted in the spring greenhouse cycle of which 1,500 will be harvested for yield trials.

Production Research: For information on fertility and fungicide trials see web site for summarized data.

Contact Lon: Email, <u>LON.HALL@SDSTATE.EDU</u> Phone, 605-690-0681
Spring Wheat Breeding

Karl D. Glover

Our primary objective is to improve the agronomic, milling, and baking characteristics of spring wheat cultivars that are well adapted to South Dakota. Prior to the release of a new cultivar to growers, its advantageous features must be well documented. Characterization of material begins during the second growing season after a cross has been made. Thousands of breeding lines, each representing a potential cultivar, are created yearly and are subject to removal from consideration based on their susceptibility to disease and lack of agronomic promise. Lines chosen for additional testing are more heavily scrutinized with each successive testing year. Therefore, the number of lines included in preliminary and advanced yield tests is relatively few compared to early generation tests. Spring wheat production environments in our state can be dramatically different from year-to-year and even from location-to-location within a year. Unfortunately, this prevents cultivars from being optimally adapted to all production environments. This necessitates that preliminary and advanced yield tests also be conducted in several environments throughout the state. The Northeast Research Station is one of two locations used for testing material in both early- and advanced-selection stages.

Thirty-three experimental lines appearing to hold the most potential for release as a cultivar were included in the 2009 Advanced Yield Trials (AYT) along with twelve released cultivars included for comparative purposes. Not all thirty-three entries will be selected for continued testing in 2010. Table 1 presents statewide agronomic and Fusarium head blight resistance observations collected from twenty-seven entries that were grown in both the 2008 and 2009 AYT, as well as grain yield observations from the Northeast Research Station. Statewide data for each entry are presented as an average over seven AYT locations (Aurora, Brookings, Groton, Miller, Redfield, Selby, and South Shore) from both 2008 and 2009 (14 location-year combinations).

Among the experimental lines presently being considered for release, SD4011 appears most promising as a new cultivar due to its yield potential, test weight, short plant stature, and excellent end-use qualities (data not shown). Breeder seed of SD4011 will be increased in South Dakota during 2010 and may be released to Registered seed producers in 2011.

Efforts carried out, and cultivars released, by this program are made possible primarily with financial support provided by the South Dakota Agricultural Experiment Station, South Dakota Wheat Commission, and South Dakota Crop Improvement Association.

Entry	Northeast	t Researc	h Statio	n	2008 - 20	09 State	wide Av	/erages	S *
		Yield		TW	Heading	Height	Pro	DIS	Yield
		(bu/ac)		(lb/bu	ı) (Day)***	(in)	(%)	(%)***	(bu/ac)
	2008	2009	2yr.						
FALLER	73.6	60.8	67.2	57.6	28.6	34.9	14.2	32.7	62.0
TRAVERSE	71.1	66.6	68.8	55.6	24.9	36.3	13.7	32.3	60.4
SD4073	80.0	46.4	63.2	55.4	27.3	35.4	14.0	35.7	59.3
SD4076	74.1	59.0	66.5	58.9	23.6	33.5	14.3	36.0	58.3
SD4023	66.2	56.2	61.2	57.9	27.8	33.1	13.8	36.3	58.3
KNUDSON	71.8	58.7	65.3	57.7	26.2	33.8	14.4	35.7	57.8
STEELE-ND) 77.3	48.7	63.0	58.1	26.4	35.3	14.8	41.5	57.2
SD4035	68.0	52.6	60.3	56.1	25.4	33.0	14.0	40.3	56.5
SD4112	74.4	54.6	64.5	57.7	23.9	34.5	14.1	36.4	56.1
SELECT	67.5	50.1	58.8	58.6	23.5	35.0	14.2	29.5	56.0
BRICK	65.8	58.9	62.4	58.7	22.8	35.3	14.3	30.4	55.5
SD4024	72.0	40.0	56.0	57.1	28.2	31.6	14.1	41.6	55.5
SD4036	65.3	56.7	61.0	56.2	24.9	30.6	13.8	39.3	55.4
SD3997	66.7	51.5	59.1	58.2	25.4	37.9	14.8	32.9	55.1
BRIGGS	68.8	51.6	60.2	57.1	24.0	34.8	14.4	32.9	54.6
SD4011	69.4	52.4	60.9	56.4	25.3	33.2	14.8	36.3	54.1
SD4046	62.0	52.1	57.1	58.0	25.4	36.8	13.8	33.4	54.1
SD4105	71.0	54.7	62.9	58.4	24.9	35.0	13.8	34.4	53.5
SD4136	62.1	40.7	51.4	55.4	23.3	34.2	13.8	37.6	53.5
RUSS	60.6	46.9	53.7	55.4	26.5	36.6	14.3	41.8	53.1
GRANGER	65.5	45.0	55.3	57.5	25.7	36.9	14.3	41.9	52.6
SD4119	68.1	48.8	58.4	58.7	26.8	35.0	14.1	36.8	52.4
SD4109	71.9	40.2	56.1	56.1	25.9	34.2	13.9	41.3	52.0
OXEN	57.9	48.7	53.3	54.5	25.5	33.2	14.2	38.5	51.6
ALSEN	66.3	48.5	57.4	57.6	26.6	33.8	15.1	30.9	51.1
KELBY	68.4	48.9	58.7	57.2	24.9	30.0	15.0	37.1	50.3
REEDER	54.7	41.1	47.9	55.4	27.1	34.1	14.4	47.0	49.3
MEAN	68.2	51.1	59.6	57.1	25.6	34.4	14.2	36.7	55.0
LSD (0.05)	8.7	9.1	6.2	0.4	1.6	1.6	0.2	8.0	2.7
CV (%)	8.3	13.1	8.3	2.2	5.9	5.3	2.8	11.5	5.6

Table 1. Agronomic and disease resistance performance data of sixteen hard red spring wheat experimental lines evaluated in 2008 and 2009 Advanced Yield Trials.

* Performance based on 14 AYT locations grown in 2008 and 2009.

 ** Heading date expressed as days after 1 June.
 *** DIS (%) calculated as product of average incidence and average severity of entries tested for Fusarium head blight resistance at Brookings nursery in 2008 and 2009.

Northeast Research Farm Annual Report

2009 Alfalfa Production Vance Owens and Chris Lee

Alfalfa cultivars are tested at several South Dakota research stations. Our objective is to provide producers with yield data from currently available alfalfa cultivars to aid them in cultivar selection. Even though our yield trial does not contain all available cultivars, it should be a helpful tool in identifying cultivars suitable for your specific needs.

Materials and Methods

Six replications of each cultivar were planted 1 May 2006 at a rate of 18 lbs pure live seed/acre. Fifty pounds super phosphate (P_2O_5) was applied and incorporated before planting. Later fertilizer application was made when necessary as recommended by the South Dakota State Soil Testing Laboratory. Forage was harvested with a sickletype harvester equipped with a weigh bin for obtaining fresh plot weights. Random subsamples from the fresh herbage were taken to determine percent dry matter. Alfalfa cultivars were evaluated for maturity prior to harvest. Yield differences among cultivars were tested using the LSD at the 0.10 level of probability when significant F-tests were detected by analysis of variance.

Results

Table 1 provides forage production data for 12 alfalfa cultivars planted in 2006 and Table 2 is for 10 cultivars planted in 2008. Two cuttings were obtained from the 2006 trial while three cuttings were taken from the 2008 trial. Cultivars are ranked from highest to lowest based on cumulative production. The least significant difference (LSD) listed at the bottom of each table is used to identify significant differences between the cultivars. If the difference in yield between two cultivars exceeds the given LSD, then they are significantly different.

Acknowledgements

Financial support for this research was provided by marketers of the various alfalfa seed entries and by the South Dakota Agricultural Experiment Station.

	_	2009		2008	2007	3-year			
Entry	12-Jun	15-Jul	Total	Total	Total	Total			
	Acre Tons Dry Matter/Acre								
WL 343	0.96	1.28	2.24	4.38	6.07	12.68			
6443 RR	1.16	1.35	2.51	4.38	5.44	12.32			
Melton	0.90	1.24	2.14	4.24	5.46	11.83			
Genoa	1.07	1.19	2.26	4.09	5.44	11.78			
DKA 41-18RR	1.03	1.14	2.18	4.48	5.11	11.76			
DKA 34-17RR	1.00	1.19	2.18	4.10	5.25	11.52			
53Q30	0.99	1.16	2.15	3.98	5.27	11.41			
54V46	0.90	0.95	1.86	4.07	5.31	11.23			
Shaw	0.85	1.05	1.89	3.99	5.33	11.22			
Mustang 420	0.83	1.11	1.94	4.11	5.14	11.19			
Vernal	0.58	0.93	1.51	3.74	5.54	10.79			
6400 HT	0.72	1.00	1.72	3.51	5.42	10.66			
Average	0.92	1.13	2.05	4.09	5.40	11.53			
Maturity (Kalu & Fick)	5.1	4.4							
LSD (P=0.10)	0.24	0.21	0.41	NS	NS	NS			
CV (%)	26.6	19.5	20.5	14.5	13.0	12.7			
P-value	0.012	0.035	0.013	0.263	0.686	0.485			

Table 1. Forage yield of 12 alfalfa cultivars entered in the South Dakota State University alfalfa testing program. Trial was planted 1 May 2006 at the Northeast Research Farm.

NS = not significant at 0.10 level of probability 50 lbs P2O5/Acre - preplant

Treflan applied preplant

	2009							
Entry	12-Jun	15-Jul	10-Aug	Total				
		Tons Dry Matter/Acre						
Producers A4330	1.76	1.68	1.39	4.84				
Rebound 5.0	1.67	1.67	1.25	4.59				
LegendDairy 5.0	1.55	1.67	1.30	4.51				
54V09	1.64	1.62	1.06	4.31				
Ameristand 407TQ	1.54	1.48	1.21	4.23				
DKA 43-13	1.28	1.55	1.20	4.03				
Garst 6417	1.34	1.42	1.06	3.82				
WL 343HQ	1.23	1.41	1.08	3.71				
55V48	1.29	1.36	1.03	3.68				
Vernal	1.33	1.44	0.72	3.49				
Average	1.46	1.53	1.13	4.12				
Maturity (Kalu & Fick)	4.6	4.8	4.4					
LSD (P=0.10)	0.31	NS	0.20	0.67				
CV (%)	22.2	16.7	18.1	16.8				
P-value	0.050	0.224	< 0.001	0.021				

Table 2. Forage yield of 10 alfalfa cultivars entered in the South Dakota State University alfalfa testing program. Trial was planted 6 May 2008 at the Northeast Research Farm.

NS = not significant at 0.10 level of probability 50 lbs P2O5/Acre - preplant

Weed Control - W.E.E.D. Project

M. Moechnig, D. Deneke, D. Vos, and J. Alms

Introduction

The Northeast Station provides a strategic location to collect weed control data for northeastern South Dakota. Field plots provide side-by-side comparisons and comparative performance data. Plots are evaluated for weed control and crop tolerance. Yields were harvested from selected studies.

2009 Research and Demonstration Projects

- 1. Corn Herbicide Demonstration
- 2. Weed Control Programs with Sharpen and Integrity
- 3. Weed Control in Liberty Link Corn
- 4. Deposition Aids with Laudis and Ignite
- 5. Laudis with Deposition Aids
- 6. Mesotrione Mixes in Corn
- 7. Helm Products in Corn
- 8. Soybean Herbicide Demonstration
- 9. Weed Control w/Ignite in Liberty Link Soybeans
- 10. Authority Products in Liberty Link Soybean
- 11. Valor Weed Programs in Soybean
- 12. Grass Control in Spring Wheat
- 13. Puma & Rimfire Max in Spring Wheat
- 14. Broadleaf Weed Control with Pulsar and Orion
- 15. Wolverine Broadleaf Control in Spring Wheat
- 16. Huskie Broadleaf Control in Spring Wheat
- 17. Broadleaf Control with Vida in Spring Wheat
- 18. Pre-Pare in Spring Wheat
- 19. Sharpen Burndown No-Till Wheat
- 20. Valor Wheat Desiccation
- 21. Glyphoate Tank-Mix Contamination in Conventional Spring Wheat
- 22. Sharpen in Proso Millet

The most common broadleaf weed species included common lambquarters, pigweed species, kochia, wild buckwheat, and wild mustard. Green foxtail was the most common grass weed species.

Additional experiments were also conducted at the Northeast Research Station to evaluate experimental herbicides. Results from these studies may be released at a later time when those products are registered for use in South Dakota. Results from other research stations are printed in the 2009 Weed Control Field Test Data (EMC 678) or on the internet at http://plantsci.sdstate.edu/weeds/. This internet site also contains research results from previous years at the Northeast Experiment Station and other locations across South Dakota.

<u>ACKNOWLEDGEMENT</u>

Local Extension educators assist with identifying research needs, conducting tours, and incorporating research results into crop production recommendations for growers. Funding for this research is provided by:

- 1. South Dakota Soybean and Research and Promotion Council
- 2. South Dakota Wheat Commission
- 3. Consortium for Alternative Crops
- 4. Crop protection industries
- **NOTE:** Data reported in this publication are results from field tests that include labeled product uses, experimental products or experimental rates, combinations, or other unlabeled uses for herbicide products. Refer to the appropriate weed control fact sheets available from county extension offices for herbicide recommendations.

Table 1. Corn Herbicide Demonstration

RCB: 4 reps	Precipitation:				
Variety: Pio 37Y14	PRE:	1 st week	0.20 inches		
Planting Date: 5/6/09		2 nd week	0.21 inches		
PRE: 5/6/09	POST:	1 st week	1.24 inches		
POST: 6/5/09; Corn 3 lf, 2 collar, 4-5 in; Grft 4 lf tillered, 1-4 i	in;	2 nd week	0.91 inches		
Colq 1-3 in; Wibw 3-4 lf, 2-3 in; Rrpw 1-2 in.					
Soil: Clay loam; 4.1% OM; 5.8 pH	Grft=Green foxtail				
	Colq=Common lambsquarter Wibw=Wild buckwheat				
	Rrpw=Redroot pigv	veed			

Comments: The objective of this study was to evaluate weed control in conventional, Roundup Ready, or Liberty Link programs. Only one RR/LL corn variety was used for all herbicide treatments in this study. Weed control in the BreakFree followed by Laudis+atrazine treatment was less than expected because a proper adjuvant was not added. In the RR and LL programs, Roundup alone or one application of Ignite (glufosinate) + atrazine resulted in slightly less weed control than the other tank mix or two pass programs. Despite differences in weed control, corn yield was simiar among most of the herbicide treatments. In summary, results from this study indicated that weed control was generally more consistent in the RR and LL programs than the conventional programs and one application of Roundup or Ignite + atrazine was not adequate to achieve complete weed control.

<u>Treatment</u> Check	<u>Rate/A</u> 	% Grft <u>6/5/09</u> 0 c	% Colq <u>6/5/09</u> 0 c	% Wibw <u>6/5/09</u> 0 c	% Grft <u>7/21/09</u> 0 d	% Wibw <u>7/21/09</u> 0 c	% Rrpw <u>7/21/09</u> 0 e	% Colq <u>7/21/09</u> 0 e	Corn Yield <u>bu/A</u> 40 c
PREEMERGENCE									
Integrity Corvus+atrazine	17 oz 3 oz+1 qt	85 ab 84 ab	97 a 98 a	98 a 96 ab	78 abc 79 abc	83 a 58 b	89 c 96 a	81 d 90 c	108 b 136 ab
PREEMERGENCE & POSTEME	RGENCE								
BreakFree&Laudis+atrazine	1.5 pt&3 oz+1 pt	91 a	93 ab	75 ab	89 ab	55 b	98 a	76 d	124 ab
POSTEMERGENCE									
Status+Option+ MSO+28% N	5 oz+1.5 oz+ 1.5 pt+2 qt	_	_	_	75 abc	95 a	90 bc	93 abc	131 ab
Stout+atrazine+ COC+AMS	0.75 oz+1.5 pt+ 1 5 pt+2 lb	—	—	—	76 abc	93 a	98 a	98 ab	146 ab
Check		—	—	—	0 d	0 c	0 e	0 e	44 c
PREEMERGENCE & POSTEME	RGENCE								
Harness Xtra 6L&	1 qt&							0 7 1	
Roundup WeatherMax+AMS SureStart&Durango+AMS	1.75 pt&22 oz+2.5 lb	90 a 85 ab	95 ab 95 ab	92 ab 96 ab	90 ab 81 abc	92 a 92 a	98 a 94 ab	97 ab 89 c	151 a 146 ab
POSTEMERGENCE									
Roundup WeatherMax+AMS	22 oz+2.5 lb	—		—	69 bc	88 a	71 d	76 d	132 ab
Halex GT+atrazine+AMS Roundup WeatherMax+	3.6 pt+1 pt+2.5 lb	_		—	92 a	93 a	98 a	98 ab	148 ab
atrazine+AMS	1 qt+2.5 lb	—	—	—	76 abc	95 a	98 a	99 a	145 ab
Check		_	_	_	0 d	0 c	0 e	0 e	56 c

<u>Treatment</u>	<u>Rate/A</u>	% Grft <u>6/5/09</u>	% Colq <u>6/5/09</u>	% Wibw <u>6/5/09</u>	% Grft <u>7/21/09</u>	% Wibw <u>7/21/09</u>	%	% Colq <u>7/21/09</u>	Corn Yield <u>bu/A</u>
PREEMERGENCE & POSTEME	RGENCE								
Corvus+atrazine&	2.5 oz+1 pt&								
Ignite 280+AMS	22 oz+2.5 lb	85 ab	89 b	89 ab	88 ab	80 a	96 a	94 abc	147 ab
Balance Flexx+atrazine&	3 oz+1 pt&								
Ignite 280+AMS	22 oz+2.5 lb	78 b	97 a	71 b	82 abc	81 a	96 a	97 ab	153 a
BreakFree&Ignite 280+AMS	1.5 pt&22 oz+2.5 lb	91 a	94 ab	84 ab	90 ab	82 a	97 a	92 bc	147 ab
POSTEMERGENCE									
Ignite 280+atrazine+AMS	22 oz+1 pt+2.5 lb	—	—	—	73 abc	87 a	88 c	95 abc	141 ab
Ignite 280+Laudis+atrazine+	22 0Z+2 0Z+1 pt+ 1 nt+1%+1 5 lb				61 c	94 a	98 a	98 ah	140 ah
0001/100	1 pt11/011.010				010	J+u	50 u	00 00	140 00
LSD (.05)		7	5	17	13	16	4	4	24

Table 1. Corn Herbicide Demonstraton (Continued . . .)

Table 2.	Weed Control	Programs with	Sharpen an	d Integrity
			•	a

RCB; 4 reps Variety: DKC 43-27	Precipitation: PRE:	1 st week	0.20 inches
Planting date: 5/6/09		2 nd week	0.21 inches
PRE: 5/6/09	POST:	1 st week	0.46 inches
POST: 6/11/09; Corn 3-4 lf; Rrpw 2-5 in; Wibw 1-4 in;		2 nd week	0.78 inches
Yeft 1-5 in.			
Soil: Clay loam; 4.1% OM; 5.8 pH	Rrpw=Redroot p Wibw=Wild buck	oigweed wheat	

Yeft=Yellow foxtail

~

Comments: The objective of this study was to evaluate herbicide programs that include Sharpen (saflufenacil) or Integrity (saflufenacil + dimethenamid) in corn. Ratings on June 11 indicated weed control associated with the pre-emergence applications. Several of the pre-emergence treatments resulted in very good weed control. Both Integrity and SureStart (acetochlor + flumetsulam +clopyralid) are non-atrazine products, but Integrity at 17 oz/A resulted in greater wild buckwheat control. Adding Sharpen at 1 oz/A to Corvus (thiencarbazone + isoxaflutole) resulted in less than 90% wild buckwheat control suggesting that either a higher rate was needed or atrazine could be a better tank mix partner. On June 27, weed escapes became apparent in the one pass pre-emergence treatments but all treatments with post-emergence applications of Roundup resulted in excellent weed control. Weed escapes in the Harness Xtra (acetochlor + atrazine) treatments reduced corn yield, but yield was statistically similar among the other treatments. In summary, results from this study indicated that the saflufenacil herbicides may be effective components of weed management in RR corn.

<u>Treatment</u>	Rate/A	% Rrpw <u>6/11/09</u>	% Wibw <u>6/11/09</u>	% Yeft <u>6/11/09</u>	% Yeft <u>6/27/09</u>	% Rrpw <u>6/27/09</u>	% Wibw <u>6/27/09</u>	% Yeft <u>9/29/09</u>	% Rrpw <u>9/29/09</u>	Yield <u>bu/A</u>
Check		0 d	0 e	0 c	0 c	0 d	0 d	0 d	0 e	66 c
PREEMERGENCE										
Lumax	96 oz	99 ab	92 abc	96 a	81 b	94 b	85 b	82 bc	90 b	191 ab
Harness Xtra 6L	32 oz	97 ab	83 cd	94 a	81 b	78 c	73 c	81 bc	45 d	159 b
Integrity	25 oz	98 ab	93 abc	91 a	79 b	92 b	94 a	75 c	85 c	181 ab
Corvus+atrazine	5.6 oz+32 oz	99 a	93 abc	93 a	92 a	93 b	84 b	90 ab	94 ab	197 a
PREEMERGENCE & POS	TEMERGENCE									
Integrity&	17 oz&									
Roundup PowerMax+	22 oz+									
NIS+AMS	0.25%+3.4 lb	96 bc	96 a	91 a	99 a	99 a	99 a	96 a	98 a	199 a
Harness Xtra&	32 oz&									
Roundup PowerMax+	22 oz+									
NIS+AMS	0.25%+3.4 lb	94 c	78 d	90 a	99 a	99 a	97 a	96 a	99 a	205 a
Sharpen+Harness Xtra&	3 oz+32 oz&									
Roundup PowerMax+	22 oz+									
NIS+AMS	0.25%+3.4 lb	99 a	95 ab	88 a	99 a	99 a	99 a	96 a	99 a	199 a
SureStart&	32 oz&									
Roundup PowerMax+	22 oz+									
NIS+AMS	0.25%+3.4 lb	97 ab	78 d	90 a	99 a	99 a	98 a	95 a	97 a	209 a
Integrity&	17 oz&									
Roundup PowerMax+	22 oz+									
Status+	2.5 oz+									
NIS+AMS	0.25%+3.4 lb	98 ab	92 abc	86 a	99 a	99 a	99 a	96 a	99 a	204 a
PREEMERGENCE										
Corvus+Sharpen	3.3 oz+1 oz	98 ab	84 bcd	77 b	75 b	95 ab	75 c	85 abc	84 c	172 ab
LSD (.05)		2	7	7	8	3	7	8	4	25

Table 3. Weed Control in Liberty Link Cor

RCB: 4 reps	Precipitation:		
Variety: Pio 37Y14	PRE:	1 st week	0.20 inches
Planting Date: 5/6/09		2 nd week	0.21 inches
PRE: 5/6/09	EPOST:	1 st week	1.24 inches
EPOST: 6/4/09; Corn 2-3 lf; Grft 4 lf, 1-4 in; Rrpw 1-2 in;		2 nd week	0.46 inches
Wibw 1-2 in; Colq 1-3 in.	MIDPOST:	1 st week	0.46 inches
MIDPOST: 6/11/09; Corn 4-5 lf; Grft 1-6 in; Rrpw 2-5 in;		2 nd week	0.78 inches
Wibw 1-4 in; Colq 2-6 in.			
Soil: Clay loam; 4.1% OM; 5.8 pH	Grft=Green foxtail		
	Rrow=Redroot pic	weed	

Rrpw=Redroot pigweed Wibw=Wild buckwheat Colq=Common lambsquarters

<u>Comments</u>: The objective of this study was to evaluate weed control associated with conventional or Liberty Link weed control programs that include Laudis (tembotrione), Corvus (isoxaflutole + thiencarbazone), and Capreno (tembotrione + thiencarbazone). Several of the single pass EPOST and PRE followed by POST treatments resulted in nearly complete weed control.

Treatment	Rate/A	% Grft <u>6/4/09</u>	% Rrpw <u>6/4/09</u>	% Grft <u>7/2/09</u>	% Wibw <u>7/2/09</u>	% Rrpw <u>7/2/09</u>	% Grft <u>9/16/09</u>	% Rrpw <u>9/16/09</u>	% Colq <u>9/16/09</u>
Corvus+atrazine	5.6.07+2.pt	93 a	98 a	82 ah	86 ab	92 a	84 h	92 h	92 h
Balance Flexx+atrazine	6 oz+2 pt	95 a	98 a	78 b	78 b	85 b	87 ab	88 c	93 b
EARLY POSTEMERGENCE									
Corvus+atrazine+NIS	5.6 oz+2 pt+0.25%	_	_	96 a	99 a	99 a	93 ab	99 a	99 a
Balance Flexx+atrazine+NIS	6 oz+2 pt+0.25%	_		93 a	99 a	99 a	95 ab	99 a	99 a
Capreno+atrazine+COC+AMS	3 oz+2 pt+1%+1.5 lt	o —	—	96 a	99 a	99 a	91 ab	99 a	99 a
Impact+atrazine+Outlook+	0.5 oz+1 pt+10 oz+								
MSO+28% N	1%+1.5 qt	—	—	95 a	99 a	99 a	91 ab	99 a	99 a
PREEMERGENCE & MID-POST	EMERGENCE								
Corvus&Laudis+atrazine+	3 oz&3 oz+2 pt+								
MSO+AMS	1%+1.5 lb	81 b	95 a	96 a	99 a	99 a	92 ab	99 a	99 a
Balance Flexx&Laudis+	3 oz&3 oz+								
Atrazine+MSO+AMS	2 pt+1 %+1.5 lb	85 ab	96 a	97 a	99 a	99 a	95 ab	99 a	99 a
Corvus&Ignite 280+Laudis+	3 oz&22 oz+2 oz+								
MSO+AMS	1%+1.5 lb	86 ab	98 a	95 a	98 a	99 a	93 ab	99 a	99 a
Balance Flexx&Ignite 280+	3 oz&22 oz+								
Laudis+MSO+AMS	2 oz+1%+1.5 lb	87 ab	97 a	96 a	95 a	99 a	93 ab	99 a	99 a
Corvus&Capreno+atrazine+	3 oz&3 oz+2 pt+					~~			~~
COC+AMS	1%+1.5 lb	87 ab	97 a	97 a	99 a	99 a	97 a	99 a	99 a
Balance Flexx&Capreno+	3 0Z&3 0Z+		~~			~~			~~
Atrazine+COC+AMS	2 pt+1%+1.5 lb	81 b	96 a	95 a	99 a	99 a	91 ab	99 a	99 a
Check		—	—	0 c	0 c	0 c	0 c	0 d	0 c
LSD (.05)		7	3	10	10	6	7	3	2

RCB; 4 reps Variety: Pio 37Y14 Planting Date: 5/6/09 POST: 6/4/09;Corn 2-3 lf, 1-2 collar; Rrpw 1-2 in; Wibw 1-2 in; Wimu 1-3 in; Yeft 1-4 in; Bygr 1-4 in.	Precipitation: POST:	1 st week 2 nd week	1.24 inches 0.46 inches
Soil: Clay loam; 4.1% OM; 5.8 pH	Rrpw=Redroot pigw Wibw=Wild buckwhe Wimu=Wild mustard Yeft=Yellow foxtail Bygr=Barnyardgrass	eed eat I	

Table 4. Deposition Aids with Laudis and Ignite

Comments: The objective of this study was to evaluate the effect of drift reduction agents on weed control associated with Laudis (tembotrione) + Ignite (glufosinate) mixes. Laudis resulted in slightly greater weed control than Ignite. The drift reduction agents did not significantly reduce weed control indicating that the Laudis + Ignite mix was compatible with many different drift reducing products.

	% Yeft	% Rrpw	% Wibw	% Wimu	% Yeft	% Bygr	% Rrpw
<u>Rate/A</u>	<u>7/2/09</u>	<u>7/2/09</u>	<u>7/2/09</u>	<u>7/2/09</u>	<u>9/29/09</u>	<u>9/29/09</u>	<u>9/29/09</u>
	0 C	0 0	0 0	00	0 0	0 0	0 e
22 oz+1.5 lb	58 b	53 b	92 a	92 b	61 b	63 b	71 d
2 oz+1 pt+1.5 lb	80 a	89 a	68 b	99 a	79 a	85 a	92 ab
22 oz+2 oz+1.5 lb	81 a	90 a	91 a	99 a	80 a	81 a	91 ab
22 oz+2 oz+							
2 qt/100 gal	84 a	91 a	88 a	99 a	84 a	86 a	91 ab
22 oz+2 oz+9 lb/100 gal	85 a	86 a	88 a	97 a	82 a	83 a	86 bc
22 oz+2 oz+							
5 qt/100 gal+4 oz	87 a	91 a	92 a	99 a	83 a	83 a	93 a
22 oz+2 oz+							
2.5 gal/100 gal	76 a	87 a	85 a	99 a	78 a	80 a	92 ab
22 oz+2 oz+							
2 pt/100 gal+1 gal/100 gal	82 a	89 a	86 a	99 a	78 a	83 a	92 ab
22 oz+2 oz+							
2.5 gal/100 gal	84 a	85 a	87 a	99 a	86 a	88 a	90 ab
22 oz+2 oz+							
2.5 gal/100 gal	82 a	86 a	89 a	99 a	81 a	83 a	91 ab
22 oz+2 oz+							
2 qt/100 gal	84 a	88 a	86 a	98 a	78 a	80 a	83 c
22 oz+2 oz+							
2 qt/100 gal+1 gal/100 gal	86 a	90 a	88 a	99 a	86 a	89 a	92 ab
	7	4	6	2	8	6	4
	Rate/A 22 oz+1.5 lb 2 oz+1 pt+1.5 lb 22 oz+2 oz+1.5 lb 2.5 gal/100 gal 22 oz+2 oz+1.5 gal/100 gal 22 oz+2 oz+1.2.5 gal/100 gal	Rate/A $\frac{7/2/09}{0 c}$ 22 oz+1.5 lb58 b2 oz+1 pt+1.5 lb80 a22 oz+2 oz+1.5 lb81 a22 oz+2 oz+2 oz+1.5 lb84 a22 oz+2 oz+2 oz+9 lb/100 gal85 a22 oz+2 oz+2 oz+5 qt/100 gal+4 oz87 a22 oz+2 oz+2 oz+2 oz+2 oz+2 oz+2 oz+2 oz	Rate/A% Yeft $7/2/09$ 0 c% Rrpw $7/2/09$ 0 c22 oz+1558 b 80 a 81 a53 b 80 a 90 a22 oz+2 oz+1580 a 81 a89 a 90 a22 oz+2 oz+2 2 qt/100 gal 22 oz+2 oz+4 5 qt/100 gal+4 oz84 a 85 a 85 a 86 a91 a 85 a 86 a22 oz+2 oz+2 5 qt/100 gal+4 oz87 a 87 a91 a 91 a22 oz+2 oz+4 2 qt/100 gal84 a 84 a 88 a 88 a 22 oz+2 oz+4 2 qt/100 gal+1 gal/100 gal 86 a 90 a	Rate/A $7/2/09$ 0 c2 $0 c + 1 p + 1.5 lb$ $58 b$ $53 b$ $92 a$ $80 a$ $89 a$ $68 b$ 22 $0z + 2 oz + 1.5 lb$ $81 a$ $90 a$ $91 a$ $91 a$ $92 a$ 22 $0z + 2 oz +$	Rate/A $7/2/09$ $7/2/09$ $7/2/09$ $7/2/09$ $7/2/09$ $7/2/09$ $7/2/09$ $7/2/09$ $7/2/09$ $7/2/09$ $7/2/09$ $7/2/09$ $7/2/09$ $7/2/09$ $7/2/09$ $7/2/09$ $0 c$ $2 0 2 + 1 pt + 1.5 lb$ $80 a$ $89 a$ $68 b$ $99 a$ $81 a$ $90 a$ $91 a$ $99 a$ $22 0z + 2 $	$\begin{array}{c} & \mbox{Yeft} & \mbox{Rrpw} & \mbox{Wibw} & \mbox{Wimu} & \mbox{Yeft} \\ \hline \hline Price & \mbox{T/2/09} & \mbox{O} & \m$	Rate/A% Yeft% Rrpw% Wibw % Winu% Yeft% Bygr $7/2/09$ $7/2/09$ $7/2/09$ $7/2/09$ $9/29/09$ $9/29/09$ $9/29/09$ 0 c0 c0 c0 c0 c0 c0 c22 oz+1 pt+1.5 lb58 b53 b92 a92 b61 b63 b22 oz+2 oz+2 oz+1.5 lb81 a90 a91 a99 a80 a81 a22 oz+2 oz+2 oz+2 oz+2 oz+2 oz+2 oz+3 bl/100 gal84 a91 a88 a99 a84 a86 a22 oz+2 oz+2 oz+2 oz+2 oz+2 oz+2 oz+2 oz

Laudis with Deposition Aids Table 5.

RCB; 4 reps Variety: DKC 43-27 Planting Date: 5/6/09	Precipitation: EPOST:	1 st week 2 nd week	1.24 inches 0.46 inches				
EPOST: 6/4/09; Com 2-3 II, 1-2 collar; Grit 4 II, 1-4 II;							
Rrpw 1-2 in; Wibw 1-2 in; Wimu 1-5 in.	Grft=Green foxtai						
Soil: Clay loam; 4.1% OM; 5.8 pH	Rrpw=Redroot pigweed						
	Wibw=Wild buckwheat						
	Wimu=Wild musta	ard					

The objective of this study was to evaluate the effect of deposition aids on Laudis (tembotrione) Comments: activity. Deposition aids or drift reduction agents can change droplet sizes which can affect Laudis and Capreno (tembotrione + thiencarbazone) resulted in very good herbicide activity. broadleaf weed control, but Capreno resulted in better foxtail control. None of the deposition aids significantly reduced weed control from Laudis in this study.

<u>Treatment</u> Check	<u>Rate/A</u>	% Grft <u>6/27/09</u> 0 d	% Rrpw <u>6/27/09</u> 0 c	% Wibw <u>6/27/09</u> 0 b	% Wimu <u>6/27/09</u> 0 b	% Grft <u>9/30/09</u> 0 d	% Rrpw <u>9/30/09</u> 0 b
EARLY POSTEMERGENCE							
Laudis+atrazine+MSO+AMS Impact+atrazine+MSO+AMS	3 oz+1 pt+1%+1.7 lb 0.75 oz+1 pt+1%+1.7 lb	89 ab 81 c	98 a 89 b	98 a 99 a	99 a 99 a	88 abc 80 c	97 a 96 a
Capreno+atrazine+MSO+AMS	3 oz+1 pt+0.5%+1.7 lb	97 a	99 a	99 a	99 a	96 a	99 a
Laudis+atrazine+	3 oz+1 pt+						
MSO+AMS+Compadre	1%+1.7 lb+1 pt/100 gal 3 oz+1 pt+	92 ab	98 a	99 a	99 a	90 ab	97 a
MSO+AMS+Interlock	1%+1.7 lb+4 oz	90 ab	99 a	99 a	99 a	88 abc	98 a
Laudis+atrazine+ MSO+AMS+Grounded	3 oz+1 pt+ 1%+1 7 lb+1 gal/100 gal	88 h	98 a	99 a	99 a	85 hc	95 a
	17011.7 Ib 11 gai/ 100 gai	00.0	50 u	55 U	55 u	00 00	50 U
Laudis+atrazine+	3 oz+1 pt+	01 ab	00 -	00 -	00 -	00 ab	07.5
Laudis+atrazine+	3 oz+1pt+	91 ab	98 a	98 a	99 a	90 ab	97 a
MSO+AMS+Gardian	1%+1.7 lb+2 qt/100 gal	90 ab	99 a	99 a	99 a	90 ab	98 a
Laudis+atrazine+ MSO+AMS+Affect GC	3 oz+1 pt+ 1%+1.7 lb+4 oz/100 gal	85 bc	95 a	99 a	99 a	83 bc	95 a
Laudis+atrazine+	3 oz+1 pt+						
MSO+AMS+Border EG	1%+1.7 lb+10 oz/100 gal	88 b	99 a	99 a	99 a	85 bc	96 a
In-Place+MSO+AMS	1.1875 oz+1%+1.7 lb	91 ab	99 a	99 a	99 a	87 bc	98 a
LSD (.05)		5	3	1	0	6	4

Table 6. Mesotrione Mixes in Corn

RCB; 4 reps Variety: DKC 43-27 Planting Date: 5/6/09 POST: 6/4/09; Corn 2-3 lf, 1-2 collar; Rrpw 1-2 in; Wibw 3-4 lf, 2-3 in; Wimu 1-5 in; Yeft 1-4 in.	Precipitation: POST:	1 st week 2 nd week	1.24 inches 0.46 inches
Soil: Clay loam; 4.1% OM; 5.8 pH	Rrpw=Redroot pig Wibw=Wild buckv Wimu=Wild musta Yeft=Yellow foxta	gweed vheat ard il	

Comments: The objective of this study was to evaluate herbicide mixes with mesotrione (e.g. Callisto) in corn. To get adequate wild buckwheat control, it was necessary to tank mix Roundup, Ignite, or atrazine. Tank mixing mesotrione + Resolve with Ignite resulted in incomplete pigweed control. The greatest overall weed control occurred in the treatments that contained atrazine. In summary, results from this study indicated several tank mixes with mesotrione may be effective, but continuing to add atrazine in the mix may still be important to optimize control.

Treatment	Rato/A	% Yeft	%	% Wibw	% Wimu 6/27/09	% Yeft 0/20/00	%	Corn Yield bu/A
POSTEMERGENCE	<u>Nate/A</u>	0/21/03	0/21/03	0/21/03	0/21/03	<u>3/23/03</u>	3/23/03	<u>bu/A</u>
Resolve+Mesotrione+	1.2 oz+2.5 oz+							
COC+AMS	1%+2 lb	91 abc	92 bc	85 c	99 a	88 bc	93 abc	190 a
Cinch ATZ+Resolve+	1 qt+1.2 oz+							
Mesotrione+COC+AMS	2.5 oz+1%+2 lb	97 ab	99 a	99 a	99 a	97 a	99 a	194 a
Resolve+Mesotrione+	1.2 oz+2.5 oz+							
Roundup PowerMax+AMS	22 oz+2 lb	97 a	95 ab	99 a	99 a	89 bc	91 bc	189 a
Resolve+Mesotrione+	1.2 oz+2.5 oz+							
Ignite 280+AMS	22 oz+2 lb	87 c	89 c	94 ab	99 a	71 e	82 e	
Resolve+Mesotrione+	1.2 oz+2.5 oz+							
Atrazine+COC+AMS	1 pt+1%+2 lb	91 abc	97 a	99 a	99 a	93 ab	97 a	191 a
Resolve+Harmony 50SG+	1 oz+0.1 oz+							
Mesotrione+COC+AMS	2.5 oz+1%+2 lb	93 abc	97 a	91 b	99 a	86 c	96 ab	187 a
Accent+Mesotrione+	0.67 oz+2.5 oz+							
COC+AMS	1%+2 lb	91 bc	89 c	83 c	99 a	80 d	85 de	182 a
Steadfast+Mesotrione+	0.75 oz+2.5 oz+							
COC+AMS	1%+2 lb	97 a	95 ab	81 c	99 a	86 c	90 cd	192 a
Check		0 d	0 d	0 d	0 b	0 f	0 f	38 c
LSD (.05)		4	4	4	0	5	5	11

Table 7.Helm Products in Corn

RCB; 4 reps Variety: DKC 43-27 Planting Date: 5/6/09 POST: 6/11/09: Corn 2-3 lf. 3-5 in: Colg 1-4 in:	Precipitation: POST:	1 st week 2 nd week	0.46 inches 0.78 inches
Wibw 1-4 in; Rrpw 2-3 in. Soil: Clay loam; 3.2% OM; 6.3 pH	Colq=Common la Wibw=Wild buckv Rrpw=Redroot pig	mbsquarters vheat gweed	

Comments: The objective of this study was to evaluate some Helm herbicides in corn. The Helm glyphosate products, Helosate Plus and Helm 70, resulted in similar weed control as Roundup PowerMax. Fluroxypyr was most effective at higher rate, but adding fluroxypyr to glyphosate did not seem to increase weed control relative to glyphosate alone. Atrazine alone or Callisto (mesotione) + Atrazine resulted in nearly complete weed control. In summary, results from this study indicated that weed control was similar between the Helm products and similar chemistries.

<u>Treatment</u>	<u>Rate/A</u>	% Colq <u>7/8/09</u>	% Wibw <u>7/8/09</u>	% Rrpw <u>7/8/09</u>
Check		0 e	0 c	0 f
POSTEMERGENCE				
Helm fluroxypyr	8 oz	0 e	93 a	94 abc
Helm fluroxypyr	11 oz	43 c	91 a	92 bcd
Starane Ultra	5.9 oz	0 e	91 a	92 bcd
Helm BW Glyphosate	20 oz	94 a	85 a	88 cde
Helosate Plus	32 oz	92 a	86 a	83 e
Helm 70	20 oz	93 a	87 a	86 de
Roundup PowerMax	22 oz	94 a	88 a	86 de
Helosate Plus+Helm Fluroxypyr	32 oz+8 oz	93 a	88 a	84 e
Helosate Plus+Helm Fluroxypyr	32 oz+11 oz	92 a	90 a	86 de
WideMatch	16 oz	65 b	95 a	95 ab
Atrazine+COC	1 at+1%	99 a	99 a	99 a
Steadfast	0.75 oz	21 d	30 b	97 ab
Callisto+atrazine+COC	3 oz+1 qt+1%	99 a	98 a	99 a
LSD (.05)		12	10	4

|--|

RCB; 4 reps	Precipitation:		
Variety: Conventional - Deuel	PRE:	1 st week	1.17 inches
RR - Asgrow 1403		2 nd week	0.36 inches
LL - 80137	POST:	1 st week	0.22 inches
Planting Date: 5/21/09		2 nd week	2.45 inches
PRE: 5/21/09			
POST: 6/25/09; Soybean 2 tri; Yeft 4-6 in; Rrpw 3-5 in;	VCRR=Visual Cr	op Response R	ating
Colq 4-6 in; KOCZ 2-5 in.	(0=	=no injury; 100=	complete kill)
Soil: Clay loam; 4.1% OM; 5.8 pH	Yeft=Yellow foxta	ail	
	Rrpw=Redroot p	igweed	
	Colg=Common la	ambsquarter	
	KOCZ=Kochia	•	

Comments: The objective of the study was to demonstrate weed control efficacy and soybean yield associated with herbicide programs in conventional, Roundup Ready (RR), and Liberty Link (LL) soybeans. Ratings on June 26 reflect the efficacy of the pre-emergence herbicides at the time of post- emergence applications. Valor at 3 oz/A resulted in greater broadleaf weed control than at 2 oz/A. Weed control was also very good after applications of Authority Assist (sulfentrazone + imazethapyr), or Authority First (sulfentrazone + cloransulam). The OpTill (saflufenacil + imazethapyr) treatment resulted in the least kochia control. Several of the conventional herbicide programs resulted in good to very good weed control, but some soybean stunting was noticed in some treatments containing Harmony (thifensulfuron) which may have been partially due to the addition of COC or MSO adjuvants. Several of the RR programs resulted in slightly greater pigweed control than the LL programs. Preemergence applications of Valor or Authority Assist improved pigweed control in the Ignite programs. Yield was similar among the RR and LL treatments, but these treatments generally resulted in greater yield than the conventional treatments which was likely due to the soybean variety (Deuel) rather than a lack of weed control. In summary, results from this research indicated that there are several effective herbicide programs for conventional, RR, or LL soybeans, but each has strengths or weaknesses that can be partially fixed with effective pre-emergence herbicide applications.

								% VCRR		Soybean
<u>Treatment</u>	Rate/A	% Yeft <u>6/26/09</u>	% Rrpw <u>6/26/09</u>	% Colq <u>6/26/09</u>	% Yeft <u>7/21/09</u>	% Colq <u>7/21/09</u>	% Rrpw <u>7/21/09</u>	Stunting <u>7/21/09</u>	% KOCZ <u>7/21/09</u>	Yield <u>bu/A</u>
Check (Conventional)		0 e	0 e	0 e	0 e	0 d	0 d	0 d	0 c	9 fg
PREEMERGENCE & POS	STEMERGENCE									
Prowl H ₂ O&Raptor+	2.25 pt&4 oz+									
Resource+	4 oz+									
MSO+28% N	1 qt+1 qt	93 a	80 b	69 d	95 ab	86 c	96 a	6 c	97 a	34 cde
Boundary&Resource+	2 pt&4 oz+									
Harmony 50SG+	0.125 oz+									
Assure II+	7 oz+									
COC+28% N	1%+2 qt/100 gal	97 a	92 a	93 a	97 ab	96 ab	98 a	14 b	99 a	33 de
Valor+FirstRate&	3 oz+0.3 oz&									
Harmony 50SG+	0.125 oz+									
Select Max+COC	12 oz+1 qt	88 a	96 a	97 a	97 ab	97 ab	99 a	25 a	96 a	32 e
Authority Assist&	10 oz&									
FirstRate+Fusion+	0.3 oz+6 oz+									
NIS+AMS	0.5%+2 lb	94 a	98 a	98 a	95 ab	97 ab	97 a	0 d	99 a	37 b-e
OpTill&	2 oz&									
Harmony 50SG+	0.125 oz+									
Poast Plus	0.75 oz	93 a	94 a	98 a	96 ab	98 a	96 a	8 c	84 b	33 de

								% VCRR		Soybean
Treatment	Dete/A	% Yeft	% Rrpw	% Colq	% Yeft	% Colq	% Rrpw	Stunting	% KOCZ	Yield
<u>Treatment</u> Check (Roundup Read	<u>Rate/A</u> lv)	0/20/09	<u>0/20/09</u>	<u>0/20/09</u>	<u>//21/09</u>	<u>0 d</u>	0d	<u>//21/09</u>	<u>//21/09</u>	<u>00/A</u> 12 f
Chook (noundup noud	J /	00	00	00	00	υü	0u			121
PREEMERGENCE & POS	STEMERGENCE									
Valor&	2 oz&									
Rdup WeatherMax+	22 oz+		70.1		05 1		~~			40 1
AMS	2.5 lb	55 CO	79 b	80 C	95 ab	98 a	99 a			42 ab
Authority First&	3 02&									
	22 02+ 2 5 lb	59 od	05.0	04 0	04 ab	00.0	00.0			12 ob
Prowl H ₂ O&	2.0 ID 2 25 nt&	50 CU	90 a	94 a	94 au	99 a	99 a	_		45 au
Rdup WeatherMax+	22.20 ptd 22.07+									
AMS	2.5 lb	78 ab	73 c	77 c	98 a	97 ab	99 a	_	_	43 ab
POSTEMERGENCE										
Rdup WeatherMax+	22 oz+									
AMS	2.5 lb	—	—	—	96 ab	97 ab	98 a	—	—	41 abc
Extreme+	1.5 qt+									
NIS+AMS	0.25%+2.5 lb	_	_	_	98 a	97 ab	99 a	_		41 abc
Check (Liberty Link)		0 e	0 e	0 e	0 e	0 d	0 d	_	_	6 q
										0
PREEMERGENCE & POS	STEMERGENCE									
Valor&Ignite 280+AMS	2 oz&22 oz+2.5 lb	50 d	84 b	86 b	81 c	96 ab	89 b	—		41 abc
Authority Assist&	5 oz&				~ /					
Ignite 280+AMS	22 0z+2.5 lb	70 bc	98 a	98 a	84 C	97 ab	97 a	_	_	45 a
Prowi H ₂ U&	2.25 pt&	70 ha	60 4	75 0	01 ch	02 h	70 0			10 ah
Ignite 200+AMS	22 02+2.5 10	12 00	66 U	75 C	91 80	93 D	100	_	_	42 ab
POSTEMERGENCE										
Ignite 280+AMS	22 oz+2.5 lb	_	_	_	74 d	96 ab	79 c	_	_	36 b-e
Ignite 280+	1.5 qt+									
Pursuit 2L+	3 oz+									
NIS+AMS	1 qt+3.4 lb	—	—	_	90 b	95 ab	88 b	—	_	39 a-d
LSD (05)		13	4	5	5	3	4	5	4	4
202 (.00)		10	•	0	0	0	•	0	•	•

Table 8. Soybean Herbicide Demonstration (Continued . . .)

Table 9. Weed Control w/Ignite in Liberty Link Soybeans

RCB; 4 reps	Precipitation:				
Variety: SO80137 LL	PRE:	1 st week	1.17 inches		
Planting Date: 5/21/09		2 nd week	0.36 inches		
PRE: 5/21/09	EPOST:	1 st week	0.22 inches		
EPOST: 6/25/09; Soybean 2 tri; Yeft 4-6 in;		2 nd week	2.45 inches		
Rrpw 3-5 in; Grft 3-6 in; Colq 4-6 in.	POST:	1 st week	2.44 inches		
POST: 7/1/09; Soybean 3-4 tri; Yeft 5-7 in;		2 nd week	1.05 inches		
Rrpw 4-6 in; Grft 4-7 in; Colq 5-7 in.	LPOST:	1 st week	0.17 inches		
LPOST: 7/20/09; Soybean 12-15 in.		2 nd week	0.31 inches		
Soil: Clay loam; 4.1% OM; 5.8 pH					
	Yeft=Yellow foxt	tail			
	Rrpw=Redroot pigweed				
	Grft=Green foxt	ail			

<u>Comments</u>: The objective of this study was to evaluate weed control programs that include Ignite

(glufosinate)

Colq=Common lambsquarters

in Liberty Link soybeans. The low yield in the untreated check indicates high weed competition. Ratings on June 26 indicate weed control associated with the preemergence herbicide applications. Among the preemergence treatments, Authority Assist (sulfentrazone + imazethapyr), Enlite (flumioxazin + chlorimuron + thifensulfuron), Prefix (s-metolachlor + fomesafen), and Optill (saflufenacil + imazethapyr) resulted in the greatest weed control. Sharpen (saflufenacil) did not provide noticeable weed control. By the end of the season, one application of Ignite or Sharpen followed by Ignite were the only two treatments that did not result in nearlyl complete weed control and consequently soybean yield was slightly reduced in these treatments. In summary, results from this study indicated that two applications of Ignite or a preemergence herbicide followed by Ignite is necessary to obtain satisfactory weed control in Liberty Link soybeans.

								:	Soybean
Treatment	Rate/A	% Yeft 6/26/09	% Rrpw 6/26/09	% Yeft 7/16/09	% Rrpw 7/16/09	% Grft 10/27/09	% Rrpw 10/27/09	% Colq 10/27/09	Yield bu/A
Check		0 d	0 d	0 g	0 e	0 c	0 c	0 e	11 c
PREEMERGENCE & POSTE	MERGENCE & LATE P	OSTEME	RGENCE	Ī					
Valor&Ignite 280+AMS&	2 oz&22 oz+1.7 lb&			-					
Ignite 280+AMS	11 oz+1.7 lb	55 c	61 c	74 e	72 d	98 a	99 a	99 a	38 a
Authority First&	4 oz&								
Ignite 280+AMS&	22 oz+1.7 lb&								
Ignite 280+AMS	22 oz+1.7 lb	60 c	81 b	78 de	89 abc	99 a	99 a	99 a	38 a
PREEMERGENCE & POSTE	<u>MERGENCE</u>								
Valor&Ignite 280+AMS	2 oz&36 oz+1.7 lb	63 c	60 c	85 bcd	84 c	96 a	97 a	96 ab	37 a
Authority First&	4 oz&								
Ignite 280+AMS	36 oz+1.7 lb	78 b	89 ab	88 abc	97 ab	99 a	99 a	99 a	38 a
Authority Assist&	5 oz&								
Ignite 280+AMS	22 oz+1.7 lb	87 ab	97 a	93 ab	98 a	99 a	99 a	99 a	37 a
Enlite&Ignite 280+AMS	2.8 oz&22 oz+1.7 lb	81 ab	94 a	89 abc	97 ab	98 a	99 a	98 a	38 a
Prefix&Ignite 280+AMS	2 pt&22 oz+1.7 lb	93 a	86 ab	93 ab	89 bc	99 a	98 a	99 a	37 a
Intrro&Ignite 280+AMS	1.5 qt&22 oz+1.7 lb	92 a	78 b	93 ab	82 c	99 a	95 a	94 b	36 a
Sharpen&lgnite 280+AMS	1 oz&22 oz+1.7 lb	0 d	0 d	67 f	68 d	80 b	86 b	88 c	30 b
Optill&Ignite 280+AMS	2 oz&22 oz+1.7 lb	95 a	96 a	96 a	97 ab	99 a	99 a	99 a	38 a

<u>Treatment</u> POSTEMERGENCE	Rate/A	% Yeft <u>6/26/09</u>	% Rrpw <u>6/26/09</u>	% Yeft <u>7/16/09</u>	% Rrpw <u>7/16/09</u>	% Grft 10/27/09	%	% Colq <u>10/27/09</u>	Soybean Yield <u>bu/A</u>
Ignite 280+AMS	36 oz+1.7 lb	—	—	83 cd	75 d	83 b	86 b	84 d	31 b
	<u>R POSTEMERGENCE</u>								
Ignite 280+AMS& Ignite 280+AMS	22 oz+1.7 lb& 22 oz+1.7 lb	—	—	97 a	96 ab	99 a	99 a	99 a	37 a
LSD (.05)		11	8	6	6	5	3	3	3

 Table 9.
 Weed Control w/Ignite in LL Soybeans (Continued . . .)

Table 10.	Authority	Products	in Libert	y Link So	ybean
-----------	-----------	----------	-----------	-----------	-------

RCB; 4 reps	Precipitation:		
Variety: SO80137 LL	PRE:	1 st week	1.17 inches
Planting Date: 5/21/09		2 nd week	0.36 inches
PRE: 5/21/09	EPOST:	1 st week	0.22 inches
EPOST: 6/25/09; Soybean 2 tri; Yeft 4-6 in;		2 nd week	2.45 inches
Rrpw 3-5 in; Colq 4-6 in.	LPOST:	1 st week	2.44 inches
LPOST: 7/1/09; Soybean 3-4 tri.		2 nd week	1.05 inches
Soil: Clay loam; 4.1% OM; 5.8 pH			
Yeft=Yellow foxtail			

Rrpw=Redroot pigweed Colq=Common lambsquarter

Comments: The objective of this study was to evaluate Authority First (sulfentrazone + cloransulam) and Authority Assist (sulfentrazone + imazethapyr) in Liberty Link soybeans. Authority Assist resulted in greater yellow foxtail control than Authority First. Weed control with Authority Assist followed by Ignite (glufosinate) was similar to Ignite followed by Ignite + Cadet (fluthiacet). In summary, results from this study indicated that Authority Assist was a good option for pre-emergence applications in LL soybeans where assistance with grass control is needed. Ignite does not translocate to growing points as well as glyphosate, so occasionally grasses can escape Ignite applications, particularly when conditions are dry.

									Suynean
		% Yeft	% Rrpw	% Yeft	% Rrpw	% Yeft	% Rrpw	% Colq	Yield
<u>Treatment</u>	Rate/A	<u>6/26/09</u>	<u>6/26/09</u>	<u>7/16/09</u>	<u>7/16/09</u>	<u>10/27/09</u>	<u>10/27/09</u>	<u>10/27/09</u>	bu/A
PREEMERGENCE & EARLY POSTEMERGENCE									
Authority First&Ignite 280	3.2 oz&22 oz	83 b	95 a	87 c	93 b	99 a	98a	98 a	39 a
Authority Assist&Ignite 280	5 oz&22 oz	90 a	98 a	94 b	98 a	99 a	99 a	99 a	39 a
Authority Assist&Ignite 280	6 oz&22 oz	92 a	98 a	95 b	97 a	99 a	99 a	99 a	39 a
EARLY POSTEMERGENCE	EARLY POSTEMERGENCE & LATE POSTEMERGENCE								
Ignite 280&	22 oz&								
Ignite 280+Cadet	22 oz+0.5	oz		98 a	97 a	99 a	98 a	99 a	38 a
Check		0 c	0 b	0 d	0 c	0 b	0 b	0 b	10 b
LSD (.05)		3	3	2	2	0	2	2	4

Table 11. Valor Weed Programs in Soybean

RCB; 4 reps	Precipitation:		
Variety: Asgrow 1403	PRE:	1 st week	1.17 inches
Planting Date: 5/21/09		2 nd week	0.36 inches
PRE: 5/21/09	EPOST:	1 st week	0.22 inches
EPOST: 6/25/09; Soybean 2 tri; Yeft 4-6 in;		2 nd week	2.45 inches
Rrpw 3-5 in.	LPOST:	1 st week	2.44 inches
LPOST: 7/1/09; Soybean 3-4 tri; Yeft 5-7 in;		2 nd week	1.05 inches
Rrpw 4-6 in.			
Soil: Clay loam; 4.1% OM; 5.8 pH	Yeft=Yellow foxta	ail	
	Rrpw=Redroot pi	gweed	

Comments: The objective of this study was to evaluate V-10233, an experimental premix of flumioxazin (Valor) + pyroxasulfone (KIH-485) for weed control in soybeans. Ratings on June 26 indicate weed control associated with the preemergence herbicides. Valor + Intrro (alachlor), Authoirty Assist (sulfentrazone + imazethapyr), and V-10233 resulted in the greatest weed control among the preemergence treatments. All treatments resulted in nearly complete weed control by August and soybean yield was similar among all treatments. In summary, results from this indicated that V-10233 was an effective premix for residual grass and broadleaf control in soybeans.

<u>Treatment</u> Check	<u>Rate/A</u>	% Yeft <u>6/26/09</u> 0 d	% Rrpw <u>6/26/09</u> 0 c	% Yeft <u>7/16/09</u> 0 c	% Rrpw <u>7/16/09</u> 0 b	% Yeft <u>9/29/09</u> 0 b	% Rrpw <u>9/29/09</u> 0 b	Soybean Yield <u>bu/A</u> 19 b
EARLY POSTEMERGENCE & LA	ATE POSTEMERGEI	NCE						
Roundup Original Max&	22 oz&							
Roundup Original Max	22 oz	—	_	99 a	99 a	99 a	99 a	45 a
PREEMERGENCE & EARLY PO	STEMERGENCE							
Valor&	2 oz&							
Roundup Original Max+AMS	22 oz+2.5 lb	58 c	79 b	97 b	99 a	99 a	99 a	48 a
Gangster FR+Gangster V&	0.4 oz+2 oz&							
Roundup Original Max+AMS	22 oz+2.5 lb	63 bc	95 a	95 b	99 a	99 a	99 a	45 a
V-10233&	3 oz&							
Roundup Original Max+AMS	22 oz_2.5 lb	82 a	93 a	97 b	99 a	99 a	99 a	47 a
Valor+Intrro&	2 oz+16 oz&							
Roundup Original Max+AMS	22 oz+2.5 lb	74 ab	92 a	96 b	99 a	99 a	99 a	45 a
Valor+Intrro&	2 oz+32 oz&							
Roundup Original Max+AMS	22 oz+2.5 lb	86 a	95 a	96 b	99 a	99 a	99 a	47 a
Sonic&	3.2 oz&							
Roundup Original Max+AMS	22 oz+2.5 lb	65 bc	93 a	96 b	99 a	99 a	99 a	48 a
Authority Assist&	5 oz&							
Roundup Original Max+AMS	22 oz+2.5 lb	86 a	96 a	97 b	99 a	99 a	99 a	45 a
LSD (.05)		10	4	2	0	1	0	4

Table 12. Grass Control in Spring Wheat

RCB; 4 reps	Precipitation:					
Variety: Traverse	POST:	1 st week	0.00 inches			
Planting Date: 4/24/09		2 nd week	1.24 inches			
POST: 5/29/09; SpWht 4 lf, 4 in, tillered; Grft 2-3 lf, 0.5-2 in;						
Wibw 2-3 lf, 1-2 in; Yeft	Grft=Green foxtai	l				
Soil: Clay loam; 3.2% OM; 6.3 pH	Wibw=Wild buckwheat					
	Colg=Common lambsguarters					
	Yeft=Yellow foxta	il .				

Comments: The objective of this study was to evaluate weed control with Axial (pinoxaden) and Axial TBC (pinoxaden + florasulam). Relative to Axial alone, green foxtail control was slightly less with Huskie (pyrasulfotole + bromoxynil) or WideMatch (fluroxypyr + clopyralid) and yellow foxtail control was slightly less with each tank mix partner. Although we have seen slight grass control antagonism with Axial + bromoxynil products in past research, we would not expect to typically see antagonism with WideMatch. Wild buckwheat and common lambsquarters control was very good among all treatments. Results from this study suggest there is a risk of slightly grass control antagonism when mixing some broadleaf herbicides with Axial.

<u>Treatment</u>	Rate/A	% Grft <u>6/17/09</u>	% Wibw <u>6/17/09</u>	% Colq <u>6/17/09</u>	% Yeft <u>7/30/09</u>	% Wibw <u>7/30/09</u>	% Colq <u>7/30/09</u>	SpWht Yield <u>bu/A</u>
<u>POSTEMERGENCE</u>								
Axial XL+Bronate Adv	16.4 oz+0.8 pt	94 a	96 b	97 a	89 b	99 a	99 a	70 ab
Axial	16.4 oz	95 a	0 c	0 c	96 a	0 b	0 b	68 b
Axial XL+WideMatch+	16.4 oz+1 pt+							
MCPA ester	8 oz	96 a	97 ab	98 a	90 b	99 a	99 a	72 a
Axial XL+Huskie	16.4 oz+11 oz	83 b	98 a	98 a	87 b	99 a	99 a	70 ab
Axial TBC+Adigor+	8.85 oz+9.6 oz+	00 I	~~	001	001	~~	~~	70 1
WideMatch	10 oz	82 b	98 a	93 b	90 b	99 a	99 a	70 ab
Check		0 c	0 c	0 c	0 c	0 b	0 b	64 c
LSD (.05)		7	1	2	3	0	0	2

RCB; 4 reps	Precipitation:					
Variety: Traverse	POST:	1 st week	0.00 inches			
Planting Date: 4/24/09		2 nd week	1.24 inches			
POST: 5/29/09; SpWht 4 If, 4 in, tiller;						
Grft 2-3 lf, 0.5-2 in; Wibw 2-3 lf, 1-2 in;	VCRR=Visual Crop Response Rating					
Colq 4 lf, 1.5 in		(0=no injury; '	100=complete kill)			
Soil: Clay loam; 3.6% OM; 6.3 pH	Grft=Green foxtail					
	Wibw=Wild bud	ckwheat				
	Colq=Common	Colg=Common lambsguarters				

Table 13. Puma & Rimfire Max in Spring Wheat

Comments: The objective of this study was to evaluate weed control with Rimfire Max (propoxycarbazone + metsulfuron), a new formuation of Rimfire that contains a lower ratio of propoxycarbazone, the same active ingredient in Olympus. Puma (fenoxaprop) resulted in greater green foxtail control than Rimfire Max. Huskie (pyrasulfotole + bromoxynil) appeared to slightly antagonize green foxtail control from Puma in the Puma+Huskie tank mix of the Wolverine (fenoxaprop + Huskie) premix. Foxtail control was slightly greater when Rimfire Max + Huskie was mixed with Quad 7 (alcohol ethoxylate + ammonium nitrate) than with MSO suggesting that adjuvants can influence potential interactions between Rimfire, a grass herbicide, and Huskie, a broadleaf herbicide. Among the Rimfire treatments, moderate wheat chlorosis (yellowing) was noticed.

Troofmont	Data /A	% VCRR Chlorosis	% Grft	% Wibw	% Colq	SpWht Yield
Chock	Rale/A	0/5/09	<u>//30/09</u>	1/30/09	<u>1/30/09</u>	62 h
Check		00	06	00	0.0	03.0
POSTEMERGENCE						
Puma	0.66 pt	0 c	96 a	0 c	0 b	66 b
Puma+Huskie	0.66 pt+11 oz	0 c	86 c	99 a	99 a	70 a
Wolverine	27.4 oz	0 c	91 b	99 a	99 a	73 a
Rimfire+MSO	3 oz+1.5 pt	13 b	83 c	50 b	99 a	65 b
Rimfire Max+Huskie+MSO	3 oz+11 oz+1.5 pt	20 a	72 d	99 a	99 a	65 b
Rimfire Max+Huskie+Quad 7	3 oz+11 oz+0.8 pt	20 a	82 c	97 a	99 a	64 b
LSD (.05)		2	4	7	0	4

Table 14. Broadleaf Weed Control with Pulsar and Orion

RCB; 4 reps	Precipitation:		
Variety: Traverse	POST:	1 st week	0.00 inches
Planting Date: 4/24/09		2 nd week	1.24 inches
POST: 5/29/09; SpWht 4 lf, 4 in, tiller; Colq 4 lf, 1.5 in;			
Wibw 2-3 lf, 1-2 in	Wibw=Wild buckw	heat	
Soil: Clay loam; 3.6% OM; 6.3 pH	Colq=Common lar	nbsquarters	

<u>Comments</u>: The objective of this study was to evaluate weed control with Pulsar, a new premix of dicamba and fluroxypyr, and Axial TBC (pinoxaden + florasulam). Most of the treatments resulted in very good control of wild buckwheat and common lambsquarters.

POSTEMERGENCE Pulsar+NIS 8.3 oz+0.25% 92 c 93 b 99 a 99 a 71 Pulsar+NIS 12.5 oz+0.25% 95 b 96 a 99 a 99 a 68 Pulsar+MCPA ester+NIS 8.3 oz+0.54 pt+0.25% 93 c 99 a 99 a 99 a 70 Pulsar+MCPA ester+NIS 12.5 oz+0.54 pt+0.25% 97 a 97 a 99 a 99 a 68 Amber+Pulsar+NIS 0.28 oz+8.3 oz+0.25% 98 a 98 a 99 a 99 a 72 Peak+Pulsar+NIS 0.28 oz+12.5 oz+0.25% 97 ab 97 a 99 a 99 a 70 Peak+Pulsar+NIS 0.25 oz+8.3 oz+0.25% 97 ab 97 a 99 a 99 a 70 Peak+Pulsar+NIS 0.25 oz+12.5 oz+0.25% 97 ab 97 a 99 a 99 a 70 Harmony 50SG+Express 50SG+ 0.48 oz+0.12 oz+ 8.3 oz+0.25% 99 a 99 a 99 a 70 Harmony 50SG+Express 50SG+ 0.48 oz+0.12 oz+ 12.5 oz+0.25% 99 a 99 a 99 a 99 a <th><u>eatment</u> Check</th> <th><u>Rate/A</u> </th> <th>% Wibw <u>6/18/09</u> 0 d</th> <th>% Colq <u>6/18/09</u> 0 c</th> <th>% Wibw <u>7/27/09</u> 0 b</th> <th>% Colq <u>7/27/09</u> 0 c</th> <th>SpWht Yield <u>bu/A</u> 62 b</th>	<u>eatment</u> Check	<u>Rate/A</u> 	% Wibw <u>6/18/09</u> 0 d	% Colq <u>6/18/09</u> 0 c	% Wibw <u>7/27/09</u> 0 b	% Colq <u>7/27/09</u> 0 c	SpWht Yield <u>bu/A</u> 62 b
Pulsar+NIS 8.3 oz+0.25% 92 c 93 b 99 a 99 a 97 a Pulsar+NIS 12.5 oz+0.25% 95 b 96 a 99 a 99 a 68 Pulsar+MCPA ester+NIS 12.5 oz+0.25% 93 c 99 a 99 a 99 a 99 a 68 Pulsar+MCPA ester+NIS 12.5 oz+0.54 pt+0.25% 97 a 97 a 99 a 99 a 68 Amber+Pulsar+MCPA ester+NIS 0.28 oz+8.3 oz+0.25% 98 a 98 a 99 a 99 a 68 Amber+Pulsar+NIS 0.28 oz+12.5 oz+0.25% 98 a 98 a 99 a 99 a 70 Peak+Pulsar+NIS 0.25 oz+8.3 oz+0.25% 97 ab 97 a 99 a 99 a 70 Peak+Pulsar+NIS 0.25 oz+12.5 oz+0.25% 98 a 98 a 99 a 99 a 70 Harmony 50SG+Express 50SG+ 0.48 oz+0.12 oz+ 8.3 oz+0.25% 99 a 99 a 99 a 99 a 99 a 99 a 70 Harmony 50SG+Express 50SG+ 0.48 oz+0.12 oz+ 12.5 oz+0.25%+1 pt 99 a 99	OSTEMERGENCE						
Pulsar+NIS 12.5 oz+0.25% 95 b 96 a 99 a 99 a 68 Pulsar+MCPA ester+NIS 8.3 oz+0.54 pt+0.25% 93 c 99 a	Pulsar+NIS	8.3 oz+0.25%	92 c	93 b	99 a	99 a	71 a
Puisar+MCPA ester+NIS 8.3 oz+0.54 pt+0.25% 93 c 99 a 99 a 99 a 99 a 70 Pulsar+MCPA ester+NIS 12.5 oz+0.54 pt+0.25% 97 a 97 a 97 a 99 a 99 a 68 Amber+Pulsar+NIS 0.28 oz+8.3 oz+0.25% 98 a 98 a 99 a 99 a 99 a 69 Amber+Pulsar+NIS 0.28 oz+12.5 oz+0.25% 99 a 98 a 99 a 99 a 99 a 72 Peak+Pulsar+NIS 0.25 oz+8.3 oz+0.25% 97 ab 97 a 99 a 99 a 99 a 70 Peak+Pulsar+NIS 0.25 oz+12.5 oz+0.25% 97 ab 97 a 99 a 99 a 99 a 70 Harmony 50SG+Express 50SG+ 0.48 oz+0.12 oz+ 12.5 oz+0.25% 99 a 70 Harmony 50SG+Express 50SG+ 0.48 oz+0.12 oz+ 12.5 oz+0.25% 99 a 99 a 99 a 99 a 99 a 70 Usar+NIS+WideMatch 12.5 oz+0.25%+1 pt 99 a 99 a 99 a 99 a 68 Orion 17 oz 97 a<	Pulsar+NIS	12.5 oz+0.25%	95 b	96 a	99 a	99 a	68 ab
Pulsar+MCPA ester+NIS 12.5 oz+0.54 pt+0.25% 97 a 97 a 99 a 99 a 99 a 68 Amber+Pulsar+NIS 0.28 oz+8.3 oz+0.25% 98 a 98 a 99 a 99 a 69 a Amber+Pulsar+NIS 0.28 oz+12.5 oz+0.25% 97 ab 97 a 99 a 99 a 99 a 72 Peak+Pulsar+NIS 0.25 oz+8.3 oz+0.25% 97 ab 97 a 99 a 99 a 70 Peak+Pulsar+NIS 0.25 oz+12.5 oz+0.25% 98 a 98 a 99 a 99 a 70 Harmony 50SG+Express 50SG+ 0.48 oz+0.12 oz+ 8.3 oz+0.25% 99 a 70 Harmony 50SG+Express 50SG+ 0.48 oz+0.12 oz+ 8.3 oz+0.25% 99 a 70 Harmony 50SG+Express 50SG+ 0.48 oz+0.12 oz+ 12.5 oz+0.25% 99 a 99 a 99 a 99 a 99 a 70 Pulsar+NIS+WideMatch 12.5 oz+0.25%+1 pt 99 a 99 a 99 a 99 a 68 WideMatch+Orion 1 pt	Pulsar+MCPA ester+NIS	8.3 oz+0.54 pt+0.25%	93 c	99 a	99 a	99 a	70 a
Amber+Pulsar+NIS $0.28 \text{ oz}+8.3 \text{ oz}+0.25\%$ 98 a 98 a $99 a$	Pulsar+MCPA ester+NIS	12.5 oz+0.54 pt+0.25%	97 a	97 a	99 a	99 a	68 ab
Amber+Pulsar+NIS 0.28 oz+12.5 oz+0.25% 99 a 98 a 99 a 99 a 72 Peak+Pulsar+NIS 0.25 oz+8.3 oz+0.25% 97 ab 97 a 99 a 99 a 70 Peak+Pulsar+NIS 0.25 oz+12.5 oz+0.25% 98 a 98 a 98 a 99 a 99 a 70 Harmony 50SG+Express 50SG+ 0.48 oz+0.12 oz+ 8.3 oz+0.25% 99 a 99 a 99 a 99 a 70 Harmony 50SG+Express 50SG+ 0.48 oz+0.12 oz+ 8.3 oz+0.25% 99 a 70 Harmony 50SG+Express 50SG+ 0.48 oz+0.12 oz+ 12.5 oz+0.25% 99 a 68 Harmony 50SG+Express 50SG+ 0.48 oz+0.12 oz+ 12.5 oz+0.25%+1 pt 99 a 68 Harmony 50SG+Express 50SG+ 0.48 oz+0.12 oz+ 12.5 oz+0.25%+1 pt 99 a 99 a 99 a 68 Orion 17 oz 97 a 96 a 99 a 99 a	Amber+Pulsar+NIS	0.28 oz+8.3 oz+0.25%	98 a	98 a	99 a	99 a	69 a
Peak+Pulsar+NIS $0.25 \text{ oz+8.3 oz+} 0.25\%$ 97 ab 97 ab $99 ab$	Amber+Pulsar+NIS	0.28 oz+12.5 oz+0.25%	99 a	98 a	99 a	99 a	72 a
Peak+Pulsar+NIS 0.25 oz+12.5 oz+0.25% 98 a 98 a 99 a 90 a 99 a 99 a 99 a 68 a Orion 17 oz 97 a 96 a 99 a 99 a </td <td>Peak+Pulsar+NIS</td> <td>0.25 oz+8.3 oz+0.25%</td> <td>97 ab</td> <td>97 a</td> <td>99 a</td> <td>99 a</td> <td>70 a</td>	Peak+Pulsar+NIS	0.25 oz+8.3 oz+0.25%	97 ab	97 a	99 a	99 a	70 a
Harmony 50SG+Express 50SG+ 0.48 oz+0.12 oz+ 8.3 oz+0.25% 99 a 68 0.48 oz+0.12 oz+ 12.5 oz+0.25%+1 pt 99 a 99 a 99 a 99 a 68 99 a 99 a 99 a 68 0.60 oz 99 a 99 a 68 68 0rion+Starane 17 oz+0.33 pt 98 a 99 a 99 a 68 <t< td=""><td>Peak+Pulsar+NIS</td><td>0.25 oz+12.5 oz+0.25%</td><td>98 a</td><td>98 a</td><td>99 a</td><td>99 a</td><td>70 a</td></t<>	Peak+Pulsar+NIS	0.25 oz+12.5 oz+0.25%	98 a	98 a	99 a	99 a	70 a
Pulsar+NIS 8.3 oz+0.25% 99 a 68 Harmony 50SG+Express 50SG+ Pulsar+NIS+WideMatch 17 oz 97 a 96 a 99 a 99 a 68 68 Orion 17 oz 97 a 96 a 99 a 99 a 68 68 0rion+Starane 17 oz+0.33 pt 98 a 98 a 99 a 99 a 66	Harmony 50SG+Express 50S0	3+ 0.48 oz+0.12 oz+					
Harmony 50SG+Express 50SG+ 0.48 oz+0.12 oz+ Pulsar+NIS 12.5 oz+0.25% 99 a 99 a 99 a 99 a 99 a 68 Harmony 50SG+Express 50SG+ 0.48 oz+0.12 oz+ 12.5 oz+0.25%+1 pt 99 a 70 Orion 17 oz 97 a 96 a 99 a 99 a 99 a 99 a 68 WideMatch+Orion 1 pt+17 oz 98 a 98 a 99 a 99 a 99 a 68 Orion+Starane 17 oz+0.33 pt 98 a 98 a 99 a 99 a 99 a 66 Bronate Adv 0.8 pt 96 ab 98 a 99 a 99 a 68 Huskie+NIS+AMS 11 oz+0.25%_1 lb 98 a 98 a 99 a 99 a 68 Axial TBC+Adigor+(Starane+Sword) 8.85 oz+0.6 pt+12 oz 98 a 99 a 99 a 68	Pulsar+NIS	8.3 oz+0.25%	99 a	99 a	99 a	99 a	70 a
Pulsar+NIS 12.5 oz+0.25% 99 a 68 Orion 17 oz 97 a 96 a 99 a 99 a 99 a 68 Orion+Starane 17 oz+0.33 pt 98 a 98 a 99 a 99 a 66 Bronate Adv 0.8 pt 96 ab 98 a 99 a 99 a 68 Huskie+NIS+AMS	Harmony 50SG+Express 50SG-	- 0.48 oz+0.12 oz+					
Harmony 50SG+Express 50SG+ 0.48 oz+0.12 oz+ Pulsar+NIS+WideMatch 12.5 oz+0.25%+1 pt 99 a 99 a 99 a 99 a 99 a 70 Orion 17 oz 97 a 96 a 99 a 99 a 99 a 68 WideMatch+Orion 1 pt+17 oz 98 a 98 a 99 a 99 a 68 Orion+Starane 17 oz+0.33 pt 98 a 98 a 99 a 99 a 66 Orion+Buctril 17 oz+1 pt 98 a 98 a 99 a 99 a 66 Bronate Adv 0.8 pt 96 ab 98 a 99 a 99 a 68 Huskie+NIS+AMS 11 oz+0.25%_1 lb 98 a 98 a 99 a 99 a 68 Axial TBC+Adigor+(Starane+Sword) 8.85 oz+0.6 pt+12 oz 98 a 99 a 99 a 67	Pulsar+NIS	12.5 oz+0.25%	99 a	99 a	99 a	99 a	68 ab
Pulsar+NIS+WideMatch 12.5 oz+0.25%+1 pt 99 a 68 a 99 a 99 a 99 a 66 a Orion+Buctril 17 oz+1 pt 98 a 98 a 99 a 99 a 68 a Bronate Adv 0.8 pt 96 ab 98 a 99 a 99 a 68 a Huskie+NIS+AMS 11 oz+0.25%_1 lb 98 a 98 a 99 a 99 a 68 a Axial TBC+Adigor+(Starane+Sword) 8.85 oz+0.6 pt+12 oz 98 a 99 a 99 a <t< td=""><td>Harmony 50SG+Express 50SG-</td><td>- 0.48 oz+0.12 oz+</td><td></td><td></td><td></td><td></td><td></td></t<>	Harmony 50SG+Express 50SG-	- 0.48 oz+0.12 oz+					
Orion 17 oz 97 a 96 a 99 a 99 a 68 WideMatch+Orion 1 pt+17 oz 98 a 98 a 99 a 99 a 68 Orion+Starane 17 oz+0.33 pt 98 a 98 a 99 a 99 a 66 Orion+Buctril 17 oz+1 pt 98 a 98 a 99 a 99 a 66 Bronate Adv 0.8 pt 96 ab 98 a 99 a 99 a 66 Huskie+NIS+AMS 11 oz+0.25%_1 lb 98 a 98 a 99 a 99 a 68 Axial TBC+Adigor+(Starane+Sword) 8.85 oz+0.6 pt+12 oz 98 a 98 a 99 a 99 a 67	Pulsar+NIS+WideMatch	12.5 oz+0.25%+1 pt	99 a	99 a	99 a	99 a	70 a
WideMatch+Orion 1 pt+17 oz 98 a 98 a 99 a 99 a 68 Orion+Starane 17 oz+0.33 pt 98 a 98 a 99 a 99 a 66 Orion+Buctril 17 oz+1 pt 98 a 98 a 99 a 99 a 66 Bronate Adv 0.8 pt 96 ab 98 a 99 a 99 a 68 Huskie+NIS+AMS 11 oz+0.25%_1 lb 98 a 98 a 99 a 99 a 68 Axial TBC+Adigor+(Starane+Sword) 8.85 oz+0.6 pt+12 oz 98 a 98 a 99 a 99 a 67	Orion	17 oz	97 a	96 a	99 a	99 a	68 ab
Orion+Starane 17 oz+0.33 pt Orion+Buctril 98 a 17 oz+1 pt 98 a 98 a 99 a 99 a 99 a 99 a 66 66 Bronate Adv 0.8 pt Huskie+NIS+AMS 96 ab 11 oz+0.25%_1 lb 96 ab 98 a 99 a 99 a 99 a 68 66 Axial TBC+Adigor+(Starane+Sword) 8.85 oz+0.6 pt+12 oz 98 a 98 a 99 a 99 a 99 a 67	WideMatch+Orion	1 pt+17 oz	98 a	98 a	99 a	99 a	68 ab
Orion+Buctril 17 oz+1 pt 98 a 98 a 99 a 99 a 66 Bronate Adv 0.8 pt 96 ab 98 a 99 a 99 a 68 Huskie+NIS+AMS 11 oz+0.25%_1 lb 98 a 98 a 99 a 99 a 68 Axial TBC+Adigor+(Starane+Sword) 8.85 oz+0.6 pt+12 oz 98 a 98 a 99 a 99 a 67	Orion+Starane	17 oz+0.33 pt	98 a	98 a	99 a	99 a	66 ab
Bronate Adv0.8 pt96 ab98 a99 a99 a68Huskie+NIS+AMS11 oz+0.25%_1 lb98 a98 a99 a99 a68Axial TBC+Adigor+(Starane+Sword)8.85 oz+0.6 pt+12 oz98 a98 a99 a99 a67	Orion+Buctril	17 oz+1 pt	98 a	98 a	99 a	99 a	66 ab
Huskie+NIS+AMS 11 oz+0.25%_1 lb 98 a 98 a 99 a 99 a 68 Axial TBC+Adigor+(Starane+Sword) 8.85 oz+0.6 pt+12 oz 98 a 98 a 99 a 99 a 67	Bronate Adv	0.8 pt	96 ab	98 a	99 a	99 a	68 ab
Axial TBC+Adigor+(Starane+Sword) 8.85 oz+0.6 pt+12 oz 98 a 98 a 99 a 99 a 67	Huskie+NIS+AMS	11 oz+0.25% 1 lb	98 a	98 a	99 a	99 a	68 ab
	Axial TBC+Adigor+(Starane+Sw	ord) 8.85 oz+0.6 pt+12 oz	98 a	98 a	99 a	99 a	67 ab
Axial TBC+Adigor+WideMatch 8.85 oz+0.6 pt+16 oz 98 a 97 a 99 a 98 b 69	Axial TBC+Adigor+WideMatch	8.85 oz+0.6 pt+16 oz	98 a	97 a	99 a	98 b	69 ab
Axial TBC+Adigor+Bronate Adv 8.85 oz+0.6 pt+0.8 pt 99 a 98 a 99 a 99 a 69	Axial TBC+Adigor+Bronate Adv	8.85 oz+0.6 pt+0.8 pt	99 a	98 a	99 a	99 a	69 ab
LSD (.05) 2 2 0 1 4	LSD (.05)		2	2	0	1	4

RCB; 4 reps Variety: Traverse	Precipitation: POST:	1 st week	0.00 inches
Planting Date: 4/24/09		2 nd week	1.24 inches
POST: 5/29/09; SpWht 4 lf, 4 in, tillered;			
Wibw 2-3 lf, 1-2 in; Grft 2-3 lf, 0.5-2 in; Corw 1-2 in;	VCRR=Visual C	rop Response	Rating
Colq 4 lf, 1.5 in.	(0=no	injury; 100=cor	nplete kill)
Soil: Clay loam; 3.2% OM; 6.3 pH	Wibw=Wild buckwheat		
	Grft=Green foxta	ail	
	Corw=Common	ragweed	
	Colq=Common I	lambsquarters	

Table 15. Wolverine - Broadleaf Con	trol in Spring Wheat
-------------------------------------	----------------------

Comments: The objective of this research was to evaluate grass and broadleaf weed control with premix products such as Wolverine (fenoxapropr + pyrasulfotole + bromoxynil), GoldSky (florasulam + fluroxypyr + pyroxsulam), and Axial TBC (pinoxaden + florasulam). Green foxtail control was slightly greater with Axial TBC and GoldSky than Wolverine. All the grass/broadleaf premix products resulted in very good wild buckwheat control, but common ragweed control was greatest with Wolverine and only Axial TBC resulted in less than 98% common lambquarters control. These results indicated that the grass/broadleaf premix products provided good control of grass and broadleaf weeds, but there were some different strengths and weaknesses among these products.

<u>Treatment</u> Check	<u>Rate/A</u>	% VCRR Stunting <u>6/5/09</u> 0 b	% Wibw <u>6/15/09</u> 0 c	% Grft <u>6/15/09</u> 0 c	% Corw <u>6/15/09</u> 0 d	% Colq <u>6/15/09</u> 0 c	SpWht Yield <u>bu/A</u> 58 b
POSTEMERGENCE							
Wolverine	27.4 oz	0 b	95 a	94 b	97 a	98 a	71 a
WideMatch+MCPA ester	0.75 pt+0.5 pt	0 b	86 b	0 c	93 a	98 a	67 a
Orion	17 oz	0 b	96 a	0 c	76 c	98 a	67 a
Goldsky+NIS	16 oz+0.25%	6 a	95 a	97 a	82 b	98 a	66 a
Axial TBC+Adigor	8.85 oz+0.6 pt	0 b	97 a	98 a	85 b	53 b	71 a
LSD (.05)		2	4	2	6	3	6

RCB; 4 reps	Precipitation:		
Variety: Traverse	POST:	1 st week	0.00 inches
Planting Date:		2 nd week	1.24 inches
POST: 5/29/09; SpWht 3-4 lf, 3-5 in; Wibw 1-3 in;			
Colq 1-3 in	Wibw=Wild buc	kwheat	
Soil: Clay loam; 3.0% OM; 6.1 pH	Colq=Common	lambsquarter	

Comments: The objective of this research was to evaluate weed control with Huskie (pyrasulfotole + bromoxynil) at different rates and with different adjuvants. Huskie rates greater than 11 oz/A slightly increased wild buckwheat control at the latter evaluation date. Otherwise, weed control was similar among the Huskie rates or by adding AMS or AMS + NIS. Wheat yield was not statistically different among the treatments. This indicates that there was no detectable crop response from the high Huskie rates or by adding NIS.

<u>Treatment</u> Check	<u>Rate/A</u>	% Wibw <u>6/17/09</u> 0 b	% Colq <u>6/17/09</u> 0 b	% Wibw <u>8/18/09</u> 0 c	% Colq <u>8/18/09</u> 0 b	SpWht Yield <u>bu/A</u> 44 b
POSTEMERGENCE						
Huskie+AMS	11 oz+0.5 lb	95 a	98 a	90 b	98 a	63 a
Huskie+AMS	13.5 oz+0.5 lb	97 a	98 a	98 a	98 a	63 a
Huskie+AMS	15 oz+0.5 lb	98 a	98 a	98 a	98 a	54 a
Huskie+AMS+NIS	13.5 oz+0.5 lb+0.25%	98 a	98 a	95 a	98 a	58 a
WideMatch+MCPA ester	1 pt+0.5 pt	97 a	98 a	98 a	98 a	63 a
Affinity TM+Starane+NIS	0.6 oz+0.33 pt+0.25%	98 a	98 a	98 a	98 a	62 a
LSD (.05)		2	1	4	0	7

Table 17. Broadleaf Control with Vida in Spring Wheat

RCB: 4 reps	Precipitation:		
Variety: Traverse	EPOST:	1 st week	0.00 inches
Planting Date: 4/27/09		2 nd week	1.24 inches
EPOST: 5/29/09; SpWht 3-4 lf, 3-5 in.			
Wibu 1-3 in; Pesw 2-3 If	Wibu=Wild buckw	/heat	
Soil: Clay loam; 3.0% OM; 6.1 pH	Pesw=Pennsylva	nia smartweed	

Comments: The objective of this study was to evaluate broadleaf weed control with Vida (pyraflufen) in spring wheat. Pyraflufen, a PPO inhibiting herbicide with a similar mode of action as Aim (carfentrazone), was previously sold at ET. Rage-D-Tech (carfentrazone + 2,4-D) was used as a comparison treatment. Vida resulted in poor (25-28%) control of wild buckwheat and Pennsylvania smartweed in June, but control of these weeds seemed fair (77-81%) in August. The other treatments resulted in very good control of these weed species. Despite the reduced weed control associated with the Vida treatment, wheat yield was similar among the herbicide treatments. Results from this study indicate that Vida may be a good tank mix product but may not provide adequate control by itself in fields with high weed densities.

		04 D	0/ 14/1	04 D	\/:-!-!	SpWht
Treatment EARLY POSTEMERGENCE	% WIDW <u>Rate/A</u>	% Pesw <u>6/17/09</u>	% WIDW <u>6/17/09</u>	% Pesw <u>8/18/09</u>	91e1d <u>8/18/09</u>	<u>bu/A</u>
Check		0 c	0 c	0 d	0 c	46 b
Vida+NIS+28% N Rage-D-Tech+NIS Huskie+AMS	0.75 oz+0.25%+1% 0.75 pt+0.25% 11 oz+0.5 lb	25 b 98 a 96 a	28 b 96 a 97 a	81 c 98 a 90 b	77 b 93 a 98 a	63 a 65 a 73 a
WideMatch	1 pt	96 a	97 a	98 a	95 a	67 a
LSD (.05)		3	6	3	8	10

Table 18. Pre-Pare in Spring Wheat

RCB: 4 reps	Precipitation:		
Variety: Traverse	PRE:	1 st week	0.62 inches
Planting Date: 4/24/09		2 nd week	0.09 inches
PRE: 4/28/09	POST:	1 st week	0.00 inches
POST: 5/29/09; SpWht 4 If, 4 in - tillered;		2 nd week	1.24 inches
Grft 2-3 If, 0.5-2 in; Wibw 2-3 If, 1-2 in; Corw 1-2 in.			
Soil: Clay loam; 3.2% OM; 6.3 pH	Grft=Green foxtail Wibw=Wild buckwheat		
	Corw=Common ragweed		

Comments: The objective of this study was to evaluate weed control associated with pre-emergence herbicide applications in spring wheat. PrePare (flucarbazone) provides residual control of grasses and mustard species whereas Sharpen (saflufenacil) and Valor (flumioxazin) provide residual broadleaf control. The PrePare treatments resulted in good (80-90%) grass control. The Sharpen and Valor treatments resulted in similar wild buckwheat and common ragweed control which appeared to be good at the end of May but were poor (less than 62%) later in the season. Wheat yields were variable and did not differ among many treatments. Results from this study suggested that pre-emergence applications of PrePare were adequate for season-long grass control by Sharpen and Valor did not provide satisfactory broadleaf control.

								SpWht
		% Grft	% Wibw	% Corw	% Grft	% Wibw	% Corw	Yield
Treatment	<u>Rate/A</u>	<u>6/17/09</u>	<u>6/17/09</u>	<u>6/17/09</u>	<u>7/30/09</u>	<u>7/30/09</u>	<u>7/30/09</u>	<u>bu/A</u>
Check		0 c	0 d	0 e	0 d	0 c	0 d	57 abc
PREEMERGENCE								
Pre-Pare	0.306 oz	82 ab	13 cd	20 de	86 ab	0 c	0 d	50 c
Pre-Pare+Sharpen+	0.3 oz+1 oz+							
MSO+AMS	1%+17 lb/100 gal	83 ab	54 b	62 b	70 c	40 b	43 bc	57 abc
Pre-Pare+Valor+	0.3 oz+1.5 oz+							
MSO+AMS	1%+17 lb/100 gal	78 b	30 bc	50 bc	90 ab	28 b	35 bc	60 ab
PREEMERGENCE & POSTEMERG	ENCE							
Pre-Pare&Everest+Quad 7	0.306 oz&0.306 oz+1%	95 a	95 a	18 de	93 a	98 a	0 d	51 c
POSTEMERGENCE								
Everest+Ouad 7	0.61+1%	94 a	95 a	50 bc	93 a	98 a	28 c	57 abc
Rimfire+Quad 7	1 75 07+1%	01 a	33 hc	54 hc	91 ah	35 h	200 53 h	63 a
Rinnie+Quad /	1.75 02+176	314	00 00	54 50	31 85	55.6	55.5	05 a
LSD (.05)		9	18	19	10	21	13	6

Table 19. Sharpen Burndown - No-Till Wheat

RCB; 4 reps	Precipitation:			
Variety: Traverse	PRE:	1 st week	0.62 inches	
Planting Date: 4/24/09		2 nd week	0.09 inches	
PRE: 4/28/09				
Soil: Clay loam; 3.2% OM; 6.3 pH	Colq=Common	lambsquarters		
	Corw=Common ragweed			
	Wibu=Wild buckwheat			

Comments: The objective of this study was to evaluate weed control associated with Sharpen (saflufenacil) applied prior to wheat emergence. Relative to Sharpen at 1 oz/A, Sharpen at 1.5 oz/A resulted in greater common ragweed and common lambsquarters control. Adding dicamba to Sharpen at 1 oz/A increased common ragweed control to a level similar to Sharpen at 1.5 oz/A. None of the pre-emergence herbicide applications reduced wheat yield. Results from this study suggest that Sharpen applied pre-emergence could provide fair - good weed control without injuring wheat.

<u>Treatment</u> Check	<u>Rate/A</u> 	% Colq <u>6/5/09</u> 0 d	% Corw <u>6/5/09</u> 0 c	% Wibw <u>6/5/09</u> 0 c	% Wibw <u>7/30/09</u> 0 b	% Corw <u>7/30/09</u> 0 c	SpWht Yield <u>bu/A</u> 62 a
PREEMERGENCE							
Sharpen	1 oz	55 c	40 b	45 b	86 a	80 b	64 a
Sharpen	1.5 oz	83 ab	73 a	50 b	86 a	88 a	67 a
Sharpen+Clarity	1 oz+2 oz	68 bc	60 a	38 b	87 a	88a	63 a
LSD (.05)		18	17	21	4	3	8

Table 20.Valor Wheat Desiccation

RCB; 3 reps Variety: Traverse Planting Date: 4/27/09 POST: 8/4/09; Colq 24-30 in; Cath 24-36 in; Grft 10-18 in; KOCZ 20-30 in;	Precipitation: POST:	1 st week 2 nd week	0.66 inches 1.87 inches
Rrpw 2-4 in; Bygr 12-20 in. Soil: Clay loam; 3.0% OM; 6.1 pH	Colq=Common Cath=Canada t Grft=Green fox KOCZ=Kochia Rrpw=Redroot Bygr=Barnyard	lambsquarter thistle tail pigweed grass	

Comments: The objective of this study was to evaluate the efficacy of Valor (flumioxazin) and Sharpen (saflufenacil) as pre-harvest weed desiccants in spring wheat. Valor and Sharpen are contact herbicides that have similar modes of action (PPO inhibitors). Treatment differences were difficult to distinguish at the time of harvest on August 4, which was 14 days after herbicide application. However, on September 14 it became apparent that the treatments with Roundup resulted in greater broadleaf and grass weed control than Valor or Sharpen alone. Weed control evaluations will continue to next spring to determine if the residual activity of Valor or Sharpen reduce weed densities the spring after application.

									SpWht
Trootmont	Pato/A	% Colq	% Cath	% Grft 8/18/00	% Colq	% KOCZ	% Rrpw	% Bygr	Yield
Chock	<u>Nale/A</u>	0/10/03	0/10/03	0/10/03	<u>3/14/03</u>	<u>3/14/03</u>	<u>3/14/03</u>	<u>3/14/03</u>	27 0
Check		00	00	υu	00	00	00	0.0	51 a
POSTEMERGENCE									
Roundup PowerMax+AMS	21.3 oz+2.5 lb	87 ab	78 ab	99 a	92 a	96 a	95 a	99 a	33 a
Roundup PowerMax+	21.3 oz+								
Valor+AMS	0.99 oz+2.5 lb	90 ab	78 ab	99 a	91 a	98 a	98 a	95 a	34 a
Roundup PowerMax+	21.3 oz+								
Valor+AMS	1.5 oz+2.5 lb	88 ab	79 ab	99 a	91 a	95 a	95 a	95 a	33 a
Roundup PowerMax+	21.3 oz+								
Valor+AMS	2.02 oz+2.5 lb	92 ab	79 ab	99 a	98 a	99 a	99 a	99 a	35 a
Roundup PowerMax+	21.3 oz+								
Valor+AMS+MSO	2.02 oz+2.5 lb+1 gt	94 a	81 ab	99 a	96 a	99 a	99 a	99 a	33 a
Valor+AMS+MSO	2.02 oz+2.5 lb+1 qt	84 b	62 b	89 b	43 b	43 b	43 b	0 b	36 a
Valor+2,4-D amine+NIS	2 oz+1 pt+0.25%	83 b	83 ab	75 c	45 b	45 b	45 b	0 b	33 a
Sharpen+MSO	1 oz+1%	85 ab	88 a	0 d	40 b	37 b	40 b	0 b	38 a
Sharpen	2 oz	83 b	89 a	0 d	55 b	48 b	52 b	0 b	35 a
LSD (.05)		6	12	3	14	11	14	4	8

Table 21. Glyphosate Tank-Mix Contamination in Conventional Spring Wheat

RCB; 4 reps	Precipitation:		
Variety: Traverse	POST:	1 st week	0.00 inches
Planting Date: 4/24/09		2 nd week	1.24 inches
POST: 5/29/09; SpWht 4 If, 4 in, tillered			
Soil: Clay loam; 3.6% OM; 6.3 pH	VCRR=Visual C	Crop Response	Rating
	(0:	=no injury; 100=	complete kill)

Comments: The objective of this study was to determine if a glyphosate tank contamination would cause greater injury to wheat if it was contaminating ALS inhibiting herbicides like Harmony (thifensulfuron), Express (tribenuron), or Silverado (mesosulfuron) than if glyphosate was not mixed with these products. No wheat stunting or chlorosis (yellowing) was observed when Roundup was applied at 0.25 or 0.75 oz/A alone, but injury was observed in the treatments where glyphosate was mixed with other herbicides. Chlorosis and stunting was similar among most treatments on June 5 and only differed slightly among some treatments on June 17. Wheat yield was similar among the treatments. Results from this study suggested that glyphosate was applied alone. This study was also conducted in 2008, but those results indicated that glyphosate tank contaminations cause much greater wheat injury.

		% VCRR Chlorosis	% VCRR Stunting	% VCRR Stunting	SpWht Yield
<u>Treatment</u>	<u>Rate/A</u>	<u>6/5/09</u>	<u>6/5/09</u>	<u>6/17/09</u>	<u>bu/A</u>
<u>POSTEMERGENCE</u>					
WideMatch+MCPA ester+	1 pt+12 oz+				
Silverado+MSO	1.78 oz+1.5 pt	10 ab	10 ab	0 b	58 a
Roundup WeatherMax+	0.25 oz+				
Silverado+MSO	1.78 oz+1.5 pt	8 a	1 c	0 b	54 a
Roundup WeatherMax+	0.25 oz+				
Express XP+NIS	0.33 oz+0.25%	8 a	4 bc	0 b	58 a
Roundup WeatherMax+	0.25 oz+				
Harmony 50SG+NIS	0.9 oz+0.25%	6 a	4 bc	0 b	57 a
Roundup WeatherMax+	0.75 oz+				
Silverado+MSO	1.78 oz+1.5 pt	8 a	5 abc	0 b	53 a
Roundup WeatherMax+	0.75 oz+				
Express XP+NIS	0.33 oz+0.25%	10 a	5 abc	6 a	56 a
Roundup WeatherMax+	0.75 oz+				
Harmony 50SG+NIS	0.9 oz+0.25%	11 a	11 a	6 a	51 a
Roundup WeatherMax	0.25 oz	0 b	0 c	0 b	48 a
Roundup WeatherMax	0.75 oz	0 b	0 c	0 b	51 a
LSD (.05)		4	5	3	7

Table 22.Sharpen in Proso Millet

RCB; 4 reps Variety: Sun-Up Planting Date: 6/4/09 PRE: 6/4/09	Precipitation: PRE: 1 st week 1.24 inches 2 nd week 0.46 inches			
Soil: Silty clay loam; 3.2% OM; 6.3 pH	VCRR=Visual Crop Response Rating (0=no injury; 100=complete kill) Rrpw=Redroot pigweed Wimu=Wild mustard			

Comments: The objective of this study was to evaluate millet tolerance to Sharpen (saflufenacil). At higher rates, Sharpen caused some visible stand reduction and stunting but did not cause forage yield loss. KIH-485 (pyroxasulfone), an experimental herbicide similar to Dual (s-metolachlor), caused significant millet injury. Impact (topramezone) did not cause millet injury or forage reduction, but did not greatly improve weed control relative to Sharpen alone at 1.44 oz/A. In summary, results from this study demonstrated that millet may tolerate low rates of Sharpen. In addition, these results suggest that millet may tolerate Sharpen residue in the soil which would allow re-planting to millet in case of a crop failure where Sharpen had been applied.

		Millet % VCRR Stand Reduction	Millet % VCRR Stunting	% Rrpw	% Wimu	Weed Weight	Millet Yield (Whole Plant)	Maturity Delay (days)
<u>Treatment</u>	<u>Rate/A</u>	<u>6/26/09</u>	<u>7/16/09</u>	<u>7/16/09</u>	<u>7/16/09</u>	<u>Ibs/A</u>	<u>Ibs/A</u>	<u>9/16/09</u>
Check		0 c	0 c	0 c	0 c	6692 a	2282 a	0 d
PREEMERGENCE								
Sharpen	1.44 oz	1 c	1 c	85 b	93 b	0 b	3023 a	0 d
Sharpen	2 oz	5 c	5 c	89 b	96 a	0 b	2905 a	0 d
Sharpen	4 oz	13 c	13 b	98 a	99 a	0 b	2420 a	0 d
Sharpen+KIH-485	1 oz+3 oz	94 a	96 a	99 a	99 a	_	_	13 b
Sharpen+Impact	1 oz+0.75 oz	5 c	1 c	85 b	94 b	0 b	2820 a	0 d
LSD (.05)		10	6	4	2	920	717	2

Fertilizer Application Influence on Nutrient Soil Tests and Corn Grain Yield and Moisture at the NE Research Farm in 2009. (25509)

A. Bly, R. Gelderman and Allen Heuer

Introduction

Soil testing research has shown that knowledge of soil test levels can improve the profitability of fertilizer use. Profits increase if more fertilizer is used when soil test levels are low and less or no fertilizer is used when test levels are high. It is still a common practice, however, to apply fertilizer without a current soil test. Frequently all the major nutrients (N P K) and sometimes zinc are used. This experiment was initiated to demonstrate the effects of applying P, K and Zn regardless of soil test. The objective is to demonstrate soil testing's ability to predict crop response to fertilizer and fertilizer influence on soil tests.

Materials and Methods

Treatments listed in Table 1 are applied as below. These treatments have been applied since 1996.

Item:		Description:
Rotation		Soybean, Wheat, Corn (since 1996)
Hybrid		Dekalb (DKC 43-27 VT3)
Fertilizer*	Ν	Rate = 120 lbs/a (urea) applied according to EC-750 and a high yield goal
		for corn.
	Ρ	40 lbs P ₂ O ₅ /a/yr broadcast (Triple Super Phosphate, 0-46-0)
	K	40 lbs K ₂ O/a/yr broadcast (potash, 0-0-60)
	Zn	5 lbs/a/yr (zinc sulfate)
		* no fertilizer applied for 2007 soybean crop
Tillage		conventional, incorporate fertilizer treatments
Plot size		15 x 60 ft
reps		4 (randomize complete block)

Results and Discussion

Soil testing clearly shows the influence of annual fertilizer nutrient application as measured from treatment plots with and without each nutrient (Table 1). The P check (No-P) had 1 ppm Olsen P compared to a range of 11 to 19 ppm P when fertilizer P was applied. The K check (No-K) had 116 extractable K compared to 136 to 170 ppm K when fertilizer K was applied. The Zn check (No-Zn) had 1.1 ppm Zn compared to 7.5 to 9.5 when Zn was applied. The large soil test differences between treatment 1 and the nutrient check treatments can be used to determine if these lower tests are limiting grain yields.

During 2009, the N and P check plots limited corn yield (Table 1). Corn grain yield was approximately 39 and 92 bu/a less with low soil test P levels and no applied N, respectively. The corn did not respond to higher K or Zn soil test levels. Grain moisture was significantly lower from the N check plots (trt 2) probably because this treatment already N stressed did not reach physiologic maturity due to much below growing degree days.

Fertilizer						
Nutrients	Oct	. 2009 Soi	I Test	2009 Corn Grain		
Applied	Р	K	Zn	Moisture	Yield	
		ppm 0-6		%	bu/a	
1- all - NPKZN	11	136	9.2	19.2 b	153.0 a	
2 - No N - PKZn	19	139	7.5	27.7 a	61.5 c	
3 - No P - NKZn	1	159	9.5	18.6 b	114.3 b	
4 - No K - PKZn	11	116	9.1	18.4 b	169.3 a	
5 - No Zn - NPK	13	170	1.1	18.9 b	157.7 a	
Pr>F				0.001	0.001	
CV				9.4	10.5	
LSD(.05)				3.0	21.3	

Table 1. Corn grain yield and moisture response to long term N, P, K and Zn application at NE farm in 2009.

Site in corn/soybean/spring wheat rotation since 1996.

Nutrients applied = N for high yield goal = 120 lbs/a, $P_2O_5 = 40$ lbs/a/yr, $K_2O = 50$ lbs/a/yr, Zn = 5 lbs/a/yr

Influence of phosphorus placement and rate on no-till corn, NE Farm 2009. (43709)

R. Gelderman, A. Bly and A. Heuer

Introduction

Recent data is indicating for no-till cropping systems that broadcast P applications are as effective as band or seed placement. Therefore, a research project was initiated at the NE farm to measure the influence of P placement on no-till corn yield.

Materials and Methods

Item:	Description:
Rotation	corn/soybeans
Hybrid	Dekalb (DKC 43-27 VT3)
Planting Date	May 7, 2009
N rate (lbs N/a) applied to all plots	163 as broadcast urea and AMS
P2O5 rates applied as 11-52-0 (MAP)	0, 20, 40
K2O rate (lbs/a) applied to all plots as potash	60
S rate (lbs/a) applied to all plots as AMS	15
Zn rate (lbs/a) applied to all plot as zinc sulfate	5
P2O5 applications methods	Seed furrow and broadcast
Tillage	No-till
Plot Size	10' x 30'
Replications	4

Results and Discussion

Soil test Olsen P at this site was 10 ppm (Medium). Therefore a 40-60% probability of a response to added P was expected. Corn grain yield was not significantly influenced by P rate (Table 1). However a trend for increased yield existed for the means of P application methods across P rates. P placement was significant (Pr>F 0.08), with the seed placed mean 5 bu/a greater than broadcast P. The rate and placement interaction was not significant. This study will be conducted in 2010.

	ent Method					
P ₂ O ₅ Rate	Seed Furrow	Broadcast	Mean			
lbs/a	bu	ı/a				
0	15	53	153			
20	162	150	156			
40	158	157	158			
Mean	158	153				
Statistics	Pr>F					
P Rate (rate)	0.62					
P Placement	0.08					
(place)						
Rate x place	0.20					
Soil Test P = 10 ppm (Medium)						

Table 1. Influence of phosphorus placement and rate on no-till corn, NE Farm 2009. (43709)
2009 Spring Wheat Foliar Fungicide Trials

Lawrence E. Osborne, Extension Plant Pathologist Kay R. Ruden, Research Associate Karl D. Glover, Spring Wheat Breeder Jon Kleinjan, Research Associate

Introduction:

Spring wheat in northeast South Dakota is subject to several fungal diseases that can limit grain yield, quality and test weight. These diseases include leaf rust (*Puccinia triticina*) and stripe rust (*Puccinia striiformis* f. sp. *tritici*) as well as the residue-borne diseases tan spot (*Pyrenophora tritici-repentis*) and Septoria complex (*Septoria tritici*, *S. avenae*, and *Stagonospora nodorum*). Management of these diseases requires integrating varietal resistance, cultural practices, risk assessment and foliar fungicides. Early applications of some fungicides (applied at Feekes 2-3), often with post-emergence herbicides, have been shown to be effective at slowing disease development and increasing grain yield in wheat, especially in high residue and continuous cropping systems. Typically, however fungicides in wheat are applied at a stage to protect the flag leaf soon after it is fully emerged (Feekes 9), targeting leaf rust, tan spot, and the Septoria complex.

Fusarium head blight (scab or FHB) has also been a recurring problem in winter and spring wheat, durum, and barley grown in South Dakota. Scab outbreaks have been periodic and localized since the early 1990's. A small and localized outbreak occurred in the NE South Dakota in 2004 and a more widespread epidemic developed in 2005 causing extensive damage to winter wheat in the southeastern and south central counties of SD. Damage from FHB is twofold: yield and test-weight losses are common, but quality losses due to mycotoxin contamination may be even more economically damaging. The fungus which causes FHB, Fusarium graminearum, produces potent mycotoxins such as deoxynivalenol (DON, vomitoxin) which contaminate the grain. Scab management also requires an integrated approach including the use of resistant varieties, good rotation and residue management, disease forecasting and foliar fungicides when necessary. Fungicides alone have provided only moderate suppression of FHB, however when combined with other management components, the disease can be effectively minimized. Proper timing of fungicides for FHB management is essential to achieving the greatest efficacy. Fungicides should be applied at or very near the flowering stage (Feekes 10.51) to be most effective on FHB as the host is at the peak of susceptibility to the pathogen. This timing also has some effect on flag-leaf diseases mentioned above.

Materials and Methods:

Hard red spring wheat study areas were established at three South Dakota locations in 2009; the Northeast Research Station, (NE Farm) near South Shore, the Plant Science Research Farm, at Brookings, SD. and in a cooperator's field near Groton, SD. Three types of studies were carried out: 1) a Feekes 2 (2-3 leaf stage) foliar fungicide efficacy trial for management of early season leaf diseases (NE Farm and Brookings); 2) a Feekes 8-9 (flag leaf) foliar fungicide efficacy trial for management of leaf rust and foliar blights; and 3) a fungicide efficacy trial for management of FHB and DON (all three locations). All studies were conducted using two red hard spring wheat cultivars: 'Briggs' a variety resistant to leaf rust and other foliar blights, and moderately resistant to FHB; and 'Reeder', a variety with susceptibility to most major fungal diseases including leaf rust and FHB. Trials were planted in a factorial, randomized complete block design incorporating wheat variety*fungicide treatment as the principle experimental unit (plot). Foliar disease studies utilized four replications, while FHB studies used six replications in a study area. Fungicide treatments were applied at various

growth stages from Feekes 2 (three to five leaf stage, early tillering) to five days after Feekes 10.51 (initiation of flowering). Brookings FHB plots were misted at regular intervals from 6:00pm to 8:00am for ten days following anthesis to enhance the environment for FHB development. The Brookings FHB site was also inoculated with *Fusarium graminearum*-colonized corn grain to enhance inoculum levels in the study area.

At the soft dough stage of crop development, plots were evaluated for leaf diseases, FHB incidence, FHB head severity, and FHB field severity. After harvest, Fusarium damaged kernels (FDK), deoxynivalenol (DON), grain yield, test weight, and protein data were collected. Leaf area assessments were used to estimate the percentage of the flag leaf that was necrotic due to either foliar blights or leaf rust. Specific information on dates of planting, treatment, assessment and harvest are outlined in Table 1.

	Crop Stage		Date/Location								
Activity	Descriptive	Feekes		(2009)							
			Brookings	Groton	NE Farm						
			(Foliar/FHB)	(Foliar/FHB)	(Foliar/FHB)						
Planting	-	-	5/4	5/2	5/4						
Fungicide Appl.	Early/Tillering	2-3	6/4	6/3	6/3						
"	Flag leaf	8-9	6/23	6/22	6/23						
"	Boots just swollen	10	6/26	6/25	6/25						
"	Fully Headed	10.5	6/30	6/30	6/30						
"	Flowering	10.51	7/1	7/2	7/1						
"	5 days after flowering	-	7/6	7/8	7/6						
Disease											
Ratings	Soft Dough	11.2	7/23	7/28	7/29						
Grain Harvest	Mature	11.4	8/31	8/24	8/25						

Table 1: Dates of planting, fungicide applications, plot rating, and harvest for wheat fungicide and FHB trials in northeastern South Dakota in 2009.

Results and Discussion:

In general, foliar disease pressure was low in 2009, due in large part to the dry weather late in the season. Early season leaf disease development was limited due to cool temperatures and limited inoculum development. Leaf rust did not develop until very late in the season and was generally found at very low severity. Based on data reported in Table 2, early application of foliar fungicides at both locations (Brookings and NE Farm) had no significant effects on either disease ratings or yields for either variety. Furthermore, none of the Feekes 8-9 (flag-leaf) fungicide applications (Table 3) had effects on disease ratings or yields, however two treatments containing insecticides were slightly better than the untreated in either yield or test weight. This is reflective of the low disease pressure, and we would not expect to see differences in the absence of leaf diseases.

There was disease pressure in 2009 in the form of Fusarium head blight (FHB). FHB developed to a greater level in 2009 than in recent years, in large part due to the longer dew periods and more optimal temperatures at heading and flowering (60-80°F). Tables 4-6 summarize the results of FHB integrated management studies at three locations (Brookings, NE Farm and Groton). The FHB trials this year examined various timings of application including

'early' treatment at Feekes 10.5 (fully headed, pre-flowering), 'ideal' timing at Feekes 10.51 (full flowering), and 'late' timing at 5 days after flowering. The timing study was intended to quantify any differences in control as well as to measure the influence of fungicide timing on DON development.

Severity of FHB at Brookings was the greatest at around 25-30% in untreated checks. Brookings location is irrigated to enhance disease development. At Brookings, as in the other locations, Caramba and Prosaro provided the best disease suppression, as expected as these products have been shown in numerous studies to be slightly better at FHB management than most other available products. Timing of application did prove to be important. Early applications of either Prosaro or Caramba resulted in slightly lower rates of control than did a properly timed spray at flowering, or even the late application. DON data at the Brookings location indicated that timing was not as critical for management of toxin accumulation, however other studies around the region have shown conflicting data and care should be taken when interpreting a single location. As expected, the strobilurin-containing product Headline resulted in elevated DON levels nearly 33% greater than untreated checks at Brookings when applied to booted or headed wheat. This is not a recommended practice and should be avoided for this reason.

A principle conclusion reached based on the results of these and many related studies conducted over years and locations are that resistant varieties are a critical component to a sound plant disease management system. By selecting varieties with susceptibility to some of our common diseases, managing those diseases becomes more challenging. Fungicides can be used in many situations; however, some of the current need for these inputs can be mediated through the use of good rotations and selection of resistant varieties.

Acknowledgements:

This research was supported in part by grants from the SD Wheat Commission and the US Wheat and Barley Scab Initiative. We gratefully acknowledge the support of the Cooperative Extension Service and The SD Agricultural Experiment Station as well.

 Table 2: Feekes 2 foliar fungicide efficacy on two HRSW varieties at two locations in SD.

			BRIGGS- Resistant ¹ NE Farm			REED	ER- Sus NE Farı	ceptible m	BRIGGS- Resistant Brookings			REEDER- Susceptible Brookings			
	Rate	Crop Stage	Leaf Rust	Yield	Test Weight	Leaf Rust	Yield	Test Weight	Leaf Rus	Yield	Test Weight	Leaf Rust	Yield	Test Weight	
Treatment	fl oz/A	Feekes	% ²	bu/A	lb/bu	% ²	bu/A	lb/bu	% ²	bu/A	lb/bu	% ²	bu/A	lb/bu	
Untreated			0.00	51.34	57.17	0.10	43.36	55.21	0.50	58.41	52.44	5.75	50.35	52.71	
Stratego	5	2	0.00	54.24	56.70	0.15	44.40	55.90	0.00	60.93	54.55	5.25	55.72	51.95	
Experimental A	1.5	2	0.00	51.67	57.07	0.20	44.77	55.56	0.25	60.20	53.93	6.75	51.44	53.51	
Experimental B + Induce NIS	2	2	0.00	53.50	57.04	0.00	45.05	55.66	0.50	60.73	54.06	3.75	50.53	53.65	
Tilt + Warrior (1.28 fl oz/A)	2	2	0.00	57.49	57.28	0.10	51.89	56.10	0.00	61.58	53.55	4.00	57.64	54.00	
Experimental C	7	2	0.00	50.61	57.04	0.15	41.15	54.07	0.00	61.07	54.64	5.25	52.46	53.87	
Quilt	7	2	0.00	54.49	57.25	0.05	42.28	55.76	0.25	64.29	54.59	6.50	52.13	54.85	
Quilt + Warrior (1.28 fl oz/A)	7	2	0.00	56.49	57.04	0.00	49.47	56.84	1.50	64.73	54.14	4.75	60.41	53.32	
Warrior II	1.28	2	0.00	55.92	57.87	0.10	49.11	55.85	0.00	62.19	55.05	4.75	57.37	54.16	
Tilt	2	2	0.00	52.23	56.87	0.00	45.84	55.51	0.25	60.35	53.62	6.75	53.63	53.00	
Headline + Induce NIS	3	2	0.00	54.40	56.85	0.15	47.60	55.89	0.50	64.72	55.37	9.25	56.00	53.81	
TwinLine + Induce NIS	7	2	0.00	52.34	57.37	0.05	44.23	54.67	0.50	60.47	53.83	14.25	52.95	52.12	
Prosaro + Induce NIS Experimental D + Induce	6.5	2	0.00	50.60	56.79	0.05	45.06	56.51	0.50	63.01	54.22	7.50	53.61	53.44	
NIS	3	2	0.00	52.74	57.34	0.05	46.45	55.23	1.00	62.55	53.56	3.75	53.57	53.15	
	F-LSD	(P=0.05)	NS ³	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	

¹ 'Briggs is generally more resistant to leaf diseases than 'Reeder'.

² Percentage of the flag leaf affected by leaf rust.
³ NS indicates no significant differences among values within columns.

Table 3: Feekes 8-9 foliar fungicide efficacy on two HRSW varieties at three locations in SD.

			BRIG	GGS- Resistant ¹ NE Farm		REEDER- Susceptible NE Farm			BRIGGS- Resistant Brookings			REEDER- Susceptible Brookings			
Treatment	Rate	Crop Stage Feekes	Leaf Rust % ²	Yield	Test Weight	Leaf Rust %2	Yield	Test Weight	Leaf Rust % ²	Yield	Test Weigh t	Leaf Rust % ²	Yield	Test Weight	
Untreated	11 02/11	T CCRC3	0.00	58.64	54 55	0.00	/0.65	50.87	0.05	61 30	53 10	0 90	/0.61	53 77	
Stratego	10	8-9	0.00	55 16	53 16	0.00	48.31	52.07	0.00	60.13	54 13	0.00	51 61	52 57	
Experimental A + Induce NIS	4	8-9	0.00	58.26	53.86	0.00	48 77	51.68	0.00	61 72	53.89	0.65	54 52	51 55	
Prosaro + Induce NIS	65	8-9	0.00	65 42	52 82	0.00	53 73	48.37	0.10	64 22	53.02	0.00	55.96	52 85	
Experimental B + Crop Oil	14	8-9	0.00	60.17	53.38	0.05	54.51	49.24	0.20	58.91	53.50	1.10	52.41	52.73	
Experimental C + Crop Oil	10.5	8-9	0.00	56.05	52.23	0.00	45.96	49.72	0.05	66.70	50.81	0.25	54.20	52.10	
Experimental C + Crop Oil	14	8-9	0.00	58.03	52.95	0.00	45.57	50.07	0.05	62.34	54.64	0.30	52.72	52.45	
Alto + Crop Oil	4	8-9	0.00	60.17	52.44	0.00	49.07	48.95	0.05	63.45	53.61	0.45	53.85	52.48	
Experimental D + Crop Oil	5	8-9	0.00	55.66	53.43	0.00	45.67	49.18	0.25	56.93	54.67	0.25	49.72	51.00	
TwinLine + Induce NIS	7	8-9	0.00	63.36	52.90	0.00	51.40	49.30	0.00	58.32	54.45	0.45	56.72	53.78	
Experimental B + Crop Oil	14	8-9	0.00	59.18	53.64	0.10	48.06	50.51	0.10	56.54	54.05	1.05	53.93	52.30	
TwinLine + Induce NIS	9	8-9	0.00	57.09	54.17	0.00	47.53	51.88	0.05	64.35	53.32	0.10	57.77	53.96	
Quilt	14	8-9	0.00	60.41	53.17	0.00	44.69	50.61	0.05	60.25	53.61	0.85	52.46	52.98	
Experimental E	10	8-9	0.00	60.16	51.39	0.00	49.50	51.91	0.05	62.16	54.10	0.55	56.19	52.81	
Headline + Induce NIS	6	8-9	0.00	60.43	53.62	0.00	52.54	50.64	0.05	59.22	54.40	0.80	60.07	53.97	
Experimental F + Induce NIS	6	8-9	0.00	59.37	52.86	0.00	52.42	50.05	0.10	66.80	53.78	0.95	55.83	52.98	
Experimental G + Induce NIS	6	8-9	0.00	56.83	53.73	0.00	45.76	50.71	0.07	64.35	51.09	0.66	51.71	53.80	
Experimental G + Induce NIS	9	8-9	0.00	63.72	51.99	0.00	49.97	51.22	0.05	64.22	53.54	1.10	55.83	51.62	
Experimental H	12	8-9	0.05	57.39	52.36	0.00	54.33	51.13	0.15	58.13	52.87	0.70	54.01	53.08	
Experimental H	24	8-9	0.00	58.86	54.17	0.00	54.19	50.97	0.05	59.79	52.19	0.55	47.65	53.12	
Tilt + Quilt	2	8-9	0.00	61.67	53.42	0.00	50.22	48.49	0.35	56.29	52.30	0.45	54.47	54.20	
Quilt + Warrior II (1.28 fl oz/A)	14	8-9	0.00	62.03	52.11	0.00	55.08	50.31	0.05	63.68	55.69	0.80	60.07	53.97	
Warrior II	1.28	8-9	0.00	62.85	54.65	0.05	57.30	50.38	0.25	61.96	55.44	0.95	57.44	53.88	
	F-LSD	(P=0.05)	NS ³	NS	NS	NS	6.99	2.03	NS	NS	2.31	NS	NS	NS	

¹ 'Briggs is generally more resistant to leaf diseases than 'Reeder'.

² Percentage of the flag leaf affected by leaf rust.
 ³ NS indicates no significant differences among values within columns.

 Table 4:
 Foliar fungicide efficacy on two HRSW Varieties for management of Fusarium Head Blight at NE Farm.

			BRIGGS- Resistant							REEDER- Susceptible						
	Rate	Crop Stage	Leaf Blights	Leaf Rust	FHB Dis- ease⁴ Index	Yield	Test Weight	DON⁵	Leaf Blights	Leaf Rust	FHB Disease⁴ Index	Yield	Test Weight	DON⁵		
Treatment	fl oz/A	Feekes ¹	% ²	% ³	%	bu/A	lb/bu	ppm	% ²	% ³	%	bu/A	lb/bu	ppm		
Untreated			25.17	0.00	6.35	60.11	52.60		20.83	0.50	6.43	53.70	48.86			
Proline +Caramba	3 + 7	10.51	20.67	0.00	1.98	66.19	55.89		17.67	0.00	3.99	59.53	50.62			
Prosaro	6.5	10.5	20.33	0.00	2.87	64.58	54.80		17.83	0.00	4.23	56.38	50.52			
Prosaro	6.5	10.51	19.17	0.00	1.38	68.09	54.88		18.33	0.00	4.30	58.08	51.96			
Prosaro	6.5	5 days after 10.51	13.87	0.03	2.89	65.64	55.89		19.83	0.13	3.77	59.47	52.51			
Caramba	13.5	10.5	14.93	0.00	2.67	67.41	54.64		19.40	0.00	6.21	56.08	50.17			
Caramba	13.5	10.51	28.33	0.00	2.62	66.23	55.51		16.83	0.03	3.93	54.57	51.50			
Caramba	13.5	5 days after 10.51	17.33	0.00	2.49	67.51	55.13		18.33	0.13	3.05	61.38	52.23			
Headline	6	10	18.00	0.00	6.33	61.28	51.73		21.33	0.07	7.26	51.01	49.90			
Headline	6	10.5	19.83	0.00	3.65	66.63	52.43		13.83	0.17	6.52	59.53	48.41			
Headline	6	9	19.83	0.00	4.40	62.25	52.64		18.17	0.17	8.73	55.70	48.27			
Folicur	4	10.51	21.60	0.00	2.34	64.26	54.81		21.33	0.00	3.49	57.22	49.15			
Prosaro	8.2	10.51	16.83	0.00	1.59	64.52	55.10		17.00	0.00	3.23	59.76	52.26			
Stratego	5	2	23.43	0.00	1.36	63.03	55.21		20.67	0.00	4.56	63.49	50.72			
Prosaro	6.5	10.51														
Experimental A	1.5	2	15.00	0.00	1.33	70.36	56.15		12.83	0.00	4.39	61.81	51.76			
Prosaro	6.5	10.51														
Experimental B	2	2	16.50	0.00	2.08	67.10	56.89		25.67	0.00	3.22	59.59	51.69			
Prosaro	6.5	10.51														
		F-LSD (P=0.10)	NS	NS	1.59	4.56	1.53		NS	0.16	2.38	5.72	1.72			

Briggs is generally more resistant to FHB than Reeder.

¹ The recommended timing is Feekes 10.51; alternative times were tested for efficacy and influence on DON levels.

² Percentage of the flag leaf affected by leaf blights (tan spot, Septoria complex, leaf rust).

³ Percentage of the flag leaf affected by leaf rust.

⁴ Index represents overall amounts of disease (Incidence x Severity of Diseased Heads).

⁵ Data not available at time of publication.

Table 5:	Foliar fungicide efficacy on two	HRSW Varieties for management of Fusarium	h Head Blight at Brookings .
			J

			BRIGGS- Resistant							REEDER- Susceptible						
Treatment	Rate fl oz/A	Crop Stage Feekes ¹	Leaf Blights % ²	Leaf Rust % ³	FHB Dis- ease ⁴ Index %	Yield bu/A	Test Weight Ib/bu	DON	Leaf Blights % ²	Leaf Rust % ³	FHB Disease ⁴ Index %	Yield bu/A	Test Weight Ib/bu			
Untreated			10.80	0.20	31.25	1/ 31	5/ 32	9.60	46.20	1 50	25.10	20.17	55 10	10.58		
Proline +Caramba	3 ⊥7	10 51	49.00	0.20	24 30	57 73	56 13	9.00 6 10	40.20	0.43	20.19	29.17 AA 30	55 51	13.00		
Prosaro	65	10.51	55 73	0.17	24.33	56 61	56 38	5 70	30.00	0.43	16 64	40.46	55 33	14 52		
Prosaro	6.5	10.5	44 70	0.07	20.17	54 81	55.87	6.42	36.93	0.17	18 97	41 73	54 62	15.05		
Prosaro	6.5	5 days after 10 51	40.87	0.07	20.73	54.42	56.08	6.90	37 77	0.33	18.84	41.96	55 21	15.33		
Caramba	13.5	10.5	43.60	0.03	27.39	58.56	55.98	6.52	27.00	0.37	28 47	36.28	54 48	16.77		
Caramba	13.5	10.51	47 70	0.17	27.07	57.65	56.61	5.47	30.67	0.37	14.19	38.93	54.37	14.82		
Caramba	13.5	5 days after 10.51	37.23	0.07	24.68	52.53	55.91	7.53	41.67	0.60	19.19	41.22	54.12	13.95		
Headline	6	10	34.17	0.17	30.23	46.23	54.45	12.78	43.23	0.63	25.46	27.09	53.71	18.95		
Headline	6	10.5	49.90	0.13	30.98	52.64	54.96	11.47	28.00	0.70	25.52	30.95	52.51	21.98		
Headline	6	9	44.10	0.43	29.70	44.45	54.56	8.60	37.67	1.93	25.91	27.86	54.15	17.48		
Folicur	4	10.51	47.23	0.03	25.74	51.16	55.37	8.75	31.33	0.47	23.62	36.52	54.20	18.33		
Prosaro	8.2	10.51	45.13	0.00	27.20	58.86	56.86	6.87	42.70	0.20	22.58	48.32	55.42	14.28		
Stratego	5	2	50.71	0.13	27.73	58.62	56.63	6.60	31.56	0.38	22.44	39.08	55.06	16.20		
Prosaro	6.5	10.51														
Experimental A	1.5	2	50.23	0.03	19.43	57.53	56.15	6.33	29.67	0.37	19.53	39.44	55.21	13.13		
Prosaro	6.5	10.51														
Experimental B	2	2	50.77	0.00	21.68	60.11	56.37	6.13	38.63	0.43	18.75	41.41	55.00	13.60		
Prosaro	6.5	10.51														
		F-LSD (P=0.10)	NS	0.17	5.97	5.88	1.06	1.83	NS	0.54	5.58	4.39	NS	2.47		

Briggs is generally more resistant to FHB than Reeder.

¹ The recommended timing is Feekes 10.51; alternative times were tested for efficacy and influence on DON levels.

² Percentage of the flag leaf affected by leaf blights (tan spot, Septoria complex, leaf rust).

³ Percentage of the flag leaf affected by leaf rust.

⁴ Index represents overall amounts of disease (Incidence x Severity of Diseased Heads).

 Table 6:
 Foliar fungicide efficacy on two HRSW Varieties for management of Fusarium Head Blight at Groton.

			BRIGGS- Resistant							REEDER- Susceptible					
		Crop	Leaf	Leaf	FHB Dis- ease ⁴		Test	5	Leaf	Leaf	FHB Disease ⁴		Test	DO	
	Rate	Stage	Blights	Rust	Index	Yield	Weight	DON ³	Blights	Rust	Index	Yield	Weight	N	
Treatment	fl oz/A	Feekes ¹	% ²	% ³	%	bu/A	lb/bu	ppm	% ²	% ³	%	bu/A	lb/bu	ppm	
Untreated			41.77	0.27	3.86	56.98	56.73		52.73	2.40	2.73	46.55	55.78		
Proline +Caramba	3 +7	10.51	48.57	0.03	2.61	54.29	57.76		48.10	0.30	3.21	48.50	56.69		
Prosaro	6.5	10.5	42.60	0.00	3.14	55.39	57.66		41.07	0.13	3.68	50.93	54.53		
Prosaro	6.5	10.51	38.60	0.00	1.29	56.13	57.52		42.67	0.07	3.34	49.49	56.73		
Prosaro	6.5	5 days after 10.51	44.90	0.00	1.85	56.90	57.65		30.51	0.03	2.53	52.73	57.21		
Caramba	13.5	10.5	59.07	0.03	3.13	53.97	56.81		50.47	0.33	4.02	47.51	56.38		
Caramba	13.5	10.51	53.60	0.00	2.64	56.94	57.00		51.03	0.00	3.40	46.60	56.04		
Caramba	13.5	5 days after 10.51	40.93	0.03	1.60	57.84	57.28		38.77	0.00	1.88	48.54	55.79		
Headline	6	10	36.13	0.40	6.02	58.46	57.35		35.00	1.13	5.25	53.28	54.59		
Headline	6	10.5	42.47	0.07	3.91	53.62	56.54		54.63	0.80	3.93	47.79	55.15		
Headline	6	9	34.60	0.27	5.20	53.22	57.89		47.40	0.87	3.78	48.59	55.04		
Folicur	4	10.51	38.77	0.00	3.45	54.95	57.89		47.50	0.33	2.67	49.53	55.15		
Prosaro	8.2	10.51	43.77	0.00	1.15	58.73	57.80		33.17	0.00	3.70	50.56	56.70		
Stratego	5	2	44.33	0.03	2.15	57.59	57.73		50.53	0.03	2.80	48.94	55.14		
Prosaro	6.5	10.51													
Experimental A	1.5	2	51.23	0.00	1.81	53.83	57.82		45.57	0.03	2.44	47.79	55.42		
Prosaro	6.5	10.51													
Experimental B	2	2	47.03	0.03	2.24	53.08	57.08		33.93	0.00	2.35	46.93	55.89		
Prosaro	6.5	10.51													
		F-LSD (P=0.10)	NS	0.13	1.67	NS	NS		NS	0.43	1.35	NS	1.42		

Briggs is generally more resistant to FHB than Reeder.

¹ The recommended timing is Feekes 10.51; alternative times were tested for efficacy and influence on DON levels.

² Percentage of the flag leaf affected by leaf blights (tan spot, Septoria complex, leaf rust).

³ Percentage of the flag leaf affected by leaf rust.

⁴ Index represents overall amounts of disease (Incidence x Severity of Diseased Heads).

⁵ Data not available at time of publication.