South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange

Agricultural Experiment Station Technical Bulletins

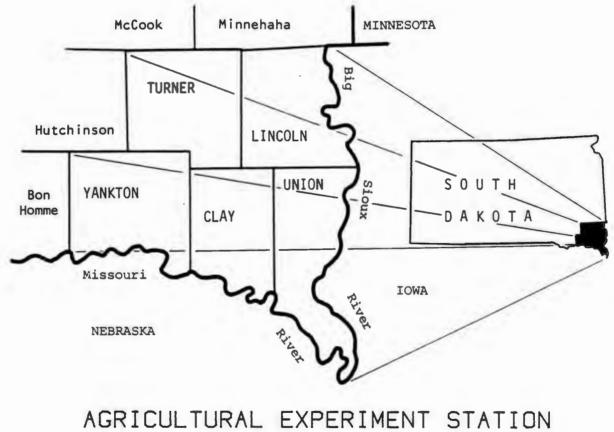
SDSU Agricultural Experiment Station

1984

Soil and Climatic Limitations for Sprinkler Irrigated Potato Production in Five Southeastern South Dakota Counties

D.D. Malo

Follow this and additional works at: http://openprairie.sdstate.edu/agexperimentsta tb


Recommended Citation

Malo, D.D., "Soil and Climatic Limitations for Sprinkler Irrigated Potato Production in Five Southeastern South Dakota Counties" (1984). Agricultural Experiment Station Technical Bulletins. 78. http://openprairie.sdstate.edu/agexperimentsta_tb/78

This Article is brought to you for free and open access by the SDSU Agricultural Experiment Station at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Agricultural Experiment Station Technical Bulletins by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu.

TB 84 DECEMBER 1984

SOIL and CLIMATIC LIMITATIONS for SPRINKLER IRRIGATED POTATO PRODUCTION in FIVE SOUTHEASTERN SOUTH DAKOTA COUNTIES

PLANT SCIENCE DEPARTMENT SOUTH DAKOTA STATE UNIVERSITY BROOKINGS

ch. Lu etin # 84

CONTENTS

Introduction1Study Limitations1Climate of Study Area2Rating Soil Use for Sprinkler Irrigated Potato Production6Criteria Used9Soil Limitation Maps27Summary33Recommendations for Future Study34Literature Cited36	
List of Figures Figure 1. Consumptive Use of Water by Potatoes	
List of Tables Table 1. Average Air Temperature for Study Area	
Dates in Spring and Before Specified Dates in Fall for Study Area	
Table 5. Average Bare Soil Temperatures for Study Areas (Data from Centerville and Castana Experiment Farms) · · · · · 5 Table 6. Soil Limitations Criteria for Center Pivot	
Sprinkler Irrigated Potato Production (Modified from Table 12 in Plant Science Pamphlet 82) •••••	
Table 7.Degree of Limitation for Sprinkler Irrigated Potato Production in Clay County, South Dakota10Table 0.Description of the second secon	
Table 8.Degree of Limitation for Sprinkler Irrigated Potato Production in Lincoln County, South DakotaTable 2.Degree of Limitation for Sprinkler Irrigated Degree of Limitation for Sprinkler Irrigated	.4
Table 9.Degree of Limitation for Sprinkler IrrigatedPotato Production in Turner County, South Dakota15-1	.8
Table 10. Degree of Limitation for Sprinkler Irrigated Potato Production in Union County, South Dakota	21
Table 11. Degree of Limitation for Sprinkler Irrigated Potato Production in Yankton County, South Dakota	26
Table 12. Degree of Limitation of Southeastern South Dakota Soils for Potato Production Under Sprinkler Irrigation	
Table 13. Summary of Soil Limitations for Sprinkler Irrigated Potato Production in Southeastern South Dakota	

Acknowledgement

The authors wish to thank Susan Williams for her assistance in preparing the soil map sheets and typing the manuscript.

Soil and Climatic Limitations for Sprinkler Irrigated Potato Production in Five Southeastern South Dakota Counties¹

by

D. D. Malo and G. D. Lemme²

INTRODUCTION

The soils of Southeastern South Dakota are an important and vital agricultural resource. Recently, questions about expanding irrigated potato production into the five counties of Clay, Lincoln, Turner, Union, and Yankton Counties have been asked by state government officials and business leaders. Soils vary greatly in their suitability for sprinkler irrigated potato production. As a result of this concern a study was initiated to identify soil limitations and suitability for sprinkler irrigated potato production. The soils in Clay and Union Counties were evaluated for both dryland and sprinkler irrigated potato production earlier (1983).

The objectives of this study were to:

- 1. describe the climate of the study area;
- 2. prepare and develop soil limitation ratings for sprinkler irrigated potato production for Clay, Lincoln, Turner, Union, and Yankton County soils; and
- 3. prepare soil limitation maps for each county using the soil association map located in the published soil survey for each county.

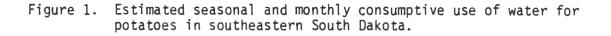
This bulletin is meant to point out potential areas and not provide detailed site information. It is designed to serve as a guide for county, state, and business officials as they explore the potential for irrigated potato production in Southeast South Dakota.

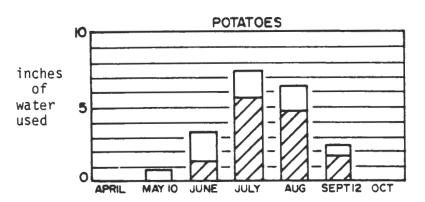
STUDY LIMITATIONS

The maps and data contained in this document are for planning purposes and are not meant to replace "on-site" investigation for potato development. Before any specific parcel of land can be evaluated for its suitability for potato development an on-site investigation by trained professionals is required.

Contribution from the Plant Science Department and the Agricultural Experiment Station, South Dakota State University, Brookings, 57007. Projects 287470 and 287548.

² Associate Professors of Pedology, Plant Science Department, South Dakota State University, Brookings, 57007.


This publication is intended to make the general public aware of the soils present in the five counties and their limitations for sprinkler irrigated potato production. With proper irrigation design, tillage, and water application management many of the limitations can be overcome. However, the costs will vary considerably with the limitation present.


CLIMATE OF STUDY AREA

The climate of this area is continental with warm to hot summers and cold winters. Temperatures can fluctuate rapidly because there are no large bodies of water or mountains to modify temperature changes.

This climatic summary was based on weather records from Centerville (1904-1983), Vermillion (1891-1983), Sioux City, Iowa (1888-1983), Marion (1900-1983), Canton (1895-1983), and Yankton (1872-1983). Soil temperature data was based on weather records from the Southeast South Dakota Experiment Farm near Centerville (1975-1983), the Castana Experiment Farm near Sioux City, Iowa (1971-1983). The Castana Farm operated by Iowa State University is located on soils similar to those found in the study area. Total evaporation and wind information was based on weather records from Sioux Falls (1964-1983) and Castana Experiment Farm (1953-1983).

Figure 1 illustrates the water demands for potato production in the study area. Note the large demand for water in the months of July and August. Consequently, a soil that is suited for potato production needs to store adequate amounts of plant available moisture until supplemental irrigation can supply the needed water.

		TOTAL CONS. _USE_	NET IRRIG.
J	ay 10	0.8"	0.0"
	une	3.4"	1.4"
	uly	7.5"	5.6"
At	ug.	6,4"	4.7"
	ept. 12	2,4"	1.7"
Seasonal Use		20.5"	13.4"

The total bar height (both light and dark portions) represents the total consumptive water use for the month. The light portion represents the portion of the total consumptive use which can be expected to be received from effective rainfall. The dark portion of the bar represents the portion of the total consumptive use required from irrigation.

	Table 1. Average Air Temperature for Study Area						
		<u></u>	Location				
Month	Centerville	Vermillion	Sioux City, Iowa	Marion	Canton	Yankton	Average
January	14.6°F	17.0°F	16.2°F	13.4°F	14.2°F	14.8°F	15.0°F
February	21.5	23.9	23.3	20.4	21.2	21.2	21.9
March	32.1	34.3	33.8	31.0	32.2	31.1	32.4
April	48.6	50.2	49.7	47.4	48.3	47.1	48.6
May	60.3	61.3	61.5	59.6	60.4	59.1	60.4
June	70.2	71.1	70.9	71.1	71.1	69.1	70.6
July	74.9	75.7	75.6	74.4	74.9	74.6	75.0
August	72.8	73.4	73.3	72.3	72.7	72.3	72.8
September	62.9	64.0	64.5	62.3	62.7	62.1	63.1
October	51.6	52.7	52.5	50.5	51.2	50.8	51.6
November	35.2	36.7	36.4	33.9	34.5	34.9	35.3
December	21.7	23.8	23.3	20.5	21.3	22.2	22.1
Annual Avg.	47.2	48.7	48.4	46.2	47.0	46.6	47.4

Tompounting for Study Anon A : ... ishis 1

Source: National Oceanic and Atmospheric Administration Climatological Data for South Dakota and Iowa.

Table 2.	Average	Precipitation	for	Study	Area
----------	---------	---------------	-----	-------	------

			Location				
Month	Centerville	Vermillion	Sioux City, Iowa	Marion	Canton	Yankton	Average
January	0.50 in	0.47 in	0.65 in	0.47 in	0.61 in	0.32 in	0.50 in
February	1.18	0.85	0.94	0.91	0.86	0.69	0.91
March	1.37	1.17	1.45	1.62	1.40	1.26	1.38
April	2.42	2.24	2.19	2.44	2.33	2.16	2.30
May	3.48	3.77	3.54	3.23	3.23	3.63	3.48
June	4.70	4.28	4.59	3.85	4.31	4.13	4.30
July	3.11	3.39	3.30	2.96	2.80	3.14	3.12
August	3.04	3.19	2,95	2.67	3.21	3.06	3.02
September	2.68	2.55	2.84	2.71	2.74	2.50	2.67
October	1.65	1.57	1.63	1.45	1.40	1.31	1.50
November	0.94	0.84	0.91	0.96	1.00	0.94	0.93
December	0.62	0.71	0.75	0.81	0.73	0.55	0.70
Annual Avg.	25.69	25.03	25.74	24.08	24.62	23.69	24.81

Source: National Oceanic and Atmospheric Administration Climatological Data for South Dakota and Iowa.

Tables 1 and 2 show the average annual temperature and precipitation data respectively, for the study area. The annual temperature averages $47.4^{\circ}F$ with monthly averages of $75^{\circ}F$ in July and $15^{\circ}F$ in January. The annual precipitation averages 24.8 inches of which 18.9 inches, or 76 percent, falls during the growing season (April through September).

The probability dates of temperatures near freezing or below are shown in Table 3. Growing season lengths as influenced by selected temperatures and various probabilities are presented in Table 4.

Both air and soil temperatures have a significant influence on the growth and development of potatoes. Optimum soil temperature for tuber production is in the range of 60 to 75° F. Warm days and cool nights are most desirable for potato production since it is a cool season crop.

Potatoes can do very well at high temperatures however, when adequate water supplies are present to meet evapotranspiration demands. The critical factor is a supply of water at soil moisture tensions low enough to keep the stomata open during the heat of the day so yield is not reduced.

The bare soil temperatures for the study area are shown in Table 5. The soil temperatures at the four and eight inch depths were selected for this study since they correspond to planting depth and the area of tuber production. In order to achieve high yields, potatoes should be planted in mid-April when soil temperatures reach $50^{\circ}F$ at the eight inch soil depth. The average soil temperatures in bare soil may exceed optimum conditions in July and August. A good crop canopy early in the season and proper irrigation management should minimize any potential for hot (>80°F) soil temperatures.

Probability	24 ⁰ F or lower*	28 ⁰ F or lower*	32 ⁰ F or lower*
After specified date in Spring 50 percent 30 percent 10 percent	April 14 April 26 May 1	April 24 May 7 May 13	May 6 May 16 May 22
Before specified date in Fall 10 percent 30 percent 50 percent	Oct 7 Oct 15 Oct 25	Sept 27 Oct 5 Oct 12	Sept 15 Sept 22 Oct 2

Table 3. Probabilities of Stated Temperatures After Specified Dates in Spring and Before Specified Dates in Fall for Study Area.

*Average of climatic data from Canton, Vermillion, Sioux City (Iowa), Marion, and Yankton.

	24 ⁰ F			28 ⁰ F			32 ⁰ F	
Spring	Probabil	ity*	Spring	Probabil	ity*	Spring	g Probabi	lity*
50%	30%	10%	50%	30%	10%	50%	30%	10%
	days -			days -			days -	
176	164	159	166	153	147	154	144	138
184	172	167	174	161	155	162	152	146
194	182	177	184	171	165	172	162	156
166	154	149	156	143	137	144	134	128
174	162	157	164	151	145	152	142	136
181	169	164	171	158	152	159	149	143
					<u></u>			
154	142	137	144	131	125	132	122	116
161	149	144	151	138	132	139	129	123
171	159	154	161	148	142	149	139	133
	50% 176 184 194 166 174 181 154 161	Spring Probabil 50% 30% days 176 164 184 172 194 182 166 154 174 162 181 169 154 142 161 149	Spring Probability* 50% 30% 10% days 176 164 159 184 172 167 194 182 177 166 154 149 174 162 157 181 169 164 154 142 137 161 149 144	Spring Probability* Spring 50% 30% 10% 50% days 176 164 159 166 184 172 167 174 194 182 177 184 166 154 149 156 174 162 157 164 181 169 164 171 154 142 137 144 161 149 144 151	Spring Probability* Spring Probabil 50% 30% 10% 50% 30% days days - 176 164 159 166 153 184 172 167 174 161 194 182 177 184 171 166 154 149 156 143 174 162 157 164 151 181 169 164 171 158 154 142 137 144 131 161 149 144 151 138	Spring Probability*Spring Probability* 50% 30% 10% 50% 30% 10% daysdays 176 164 159 166 153 147 184 172 167 174 161 155 194 182 177 184 171 165 166 154 149 156 143 137 174 162 157 164 151 145 181 169 164 171 158 152 154 142 137 144 131 125 161 149 144 151 138 132	Spring Probability* Spring Probability* Spring 50% 30% 10% 50% 30% 10% 50% days days 176 164 159 166 153 147 154 184 172 167 174 161 155 162 194 182 177 184 171 165 172 166 154 149 156 143 137 144 174 162 157 164 151 145 152 181 169 164 171 158 152 159 154 142 137 144 131 125 132 161 149 144 151 138 132 139	Spring Probability*Spring Probability*Spring Probability*Spring Probability* 50% 30% 10% 50% 30% 10% 50% 30% daysdaysdays 176 164 159 166 153 147 154 144 184 172 167 174 161 155 162 152 194 182 177 184 171 165 172 162 166 154 149 156 143 137 144 134 174 162 157 164 151 145 152 142 181 169 164 171 158 152 159 149 154 142 137 144 131 125 132 122 161 149 144 151 138 132 139 129

Table 4. Number of Consecutive Days with Greater than Stated Spring and Fall Temperatures for Study Area.

* Average of climatic data from Canton, Vermillion, Sioux City (Iowa), Marion, and Yankton.

Table 5. Average Bare Soil Temperatures for Study Area. (Data from Centerville and Castana Experiment Farms)

Soil Depth	J	F	М	А	Μ	J	J	А	S	0	Ν	D	Avg.
4 in.	21.4	25.1	34.2	49.1	63.9	76.9	84.4	79.0	68.7	53.2	37.1	26.9	51.7°F
8 in.	21.5	23.2	30.3	44.5	58.0	70.5	76.6	72.6	64.1	50.5	37.4	27.5	48.1 ⁰ F

RATING SOIL USE FOR SPRINKLER IRRIGATED POTATO PRODUCTION

Soils were rated based on the most restrictive features for sprinkler irrigated potato production. Thus, a soil rated severe gives only the soil property (ies) that caused the soil to be rated severe. This soil may have other restrictive features for sprinkler irrigated potato production. Soils were rated under natural conditions. No unusual modification of soil materials or site characteristics was considered.

Soil limitations are indicated by the ratings <u>slight</u>, <u>moderate</u>, <u>severe</u>, and <u>not suited</u>. <u>Slight</u> means that soil properties are favorable and the limitations are minor or easily corrected. No major problem in producing potatoes under sprinkler irrigation is expected.

Moderate means some soil and/or topographic properties are unfavorable but can be modified or corrected with management techniques and irrigation design such as tillage, artificial drainage, flood control, irrigation scheduling, and water application rates. During at least part of each year the use of these soils for sprinkler irrigated potato production is less favorable than for soils with slight limitations.

Severe means soil and/or topographic properties are unfavorable for use and are difficult and expensive to correct. These limitations require major soil reclamation, special irrigation equipment design or intensive management. In some instances the soil can be improved by reducing or removing the soil property limiting its use. Usually this practice is very difficult and costly.

Not suited means soil and/or topographic properties make the soil unsuited for sprinkler irrigated potato production based on criteria developed by USDA Soil Conservation Service (1978). Soils with steep slopes (>17%), clay textured, frequently flooded for long periods, and sodic soils are some examples of soils not suited for sprinkler irrigated potato production.

Many soils with moderate or severe limitations can be modified and/or managed to achieve satisfactory performance. It is important to remember that in rating soils for agricultural use, one can modify soil properties, site features, or can adjust system designs and management to compensate for most limitations. The key question, however, is cost. Such considerations were not considered in this publication. Soils were considered in their natural, unaltered state.

CRITERIA USED

The criteria used in this study to rank soils based on limitations for sprinkler irrigated potato production are presented in Table 6. They were modified from an earlier study (Malo and Lemme, 1983) using the best possible management information available.

The rationale used for the limitation criteria presented in Table 6 are as follows:

1. Flooding - Potatoes like most crop can not tolerate extended periods of flooding (>1-2 days).

TABLE 6 . SOIL LIMITATIONS CRITERIA FOR CENTER PIVOT SPRINKLER IRRIGATED POTATO PRODUCTION (Modified from Table 12 in Plant Science Pamphlet 82).

Degree of Limitations

Property	Slight	Moderate	Severe	Limitations
 Flooding (during growing season) 	None	Rare, occasionally (with very brief duration and HWT >24 in. deep)	Common, Occasionally (with longer than very brief duration), Frequently	Floods
 Depth to High Water Table (HWT) 	>36 in.	24 to 36 in.	<24 in.	HWT
3. Surface Texture	Silt loam, Sandy loam, Loam, Fine sandy loam, Very fine sandy loam, Loamy fine sand, Loamy very fine sand	Sandy clay loam (unfavorable air/water relationships) Very fine sand, Fine sand, Loamy,	Clay, Silty clay, Sandy clay Coarse sand, Sand	Surface texture
		Coarse sandy loam, Coarse sand, Loamy sand (wind erosion)	Consultate popular dayland	Doop doot abo
4. Drainage Class	Well drained, Moderately well drained, Somewhat excessively drained	Excessively drained, Somewhat poorly drained (HWT >24 in.)	Somewhat poorly drained Poorly drained,(HWT <24 in) Very poorly drained	drainage
5. Soil Intake Family*	≥0.5	0.3	<0.1	Slow intake
6. Slope (percent)	0-3	4-6	>6	Slope
7. Surface pH	5.6-6.5	6.6-7.4	>7.4	рН
8. Surface Salinity (mmhos/cm)	0-2.0	2.1-4.0	>4.0	Excess salinity
9. Sodicity			natric horizon present	Excess sodium
10. Available Water Holding Capacity (in/24 in. soil)	>2.5 in.	1.6-2.5 in.	<1.6 in.	Droughty
II. Permeability	Moderate, Moderately rapid	Moderately slow, Rapid, Very rapid	Very slow, Slow	Percs slowly or percs rapidly
12. Soil Profile Thickness			<24 in.	Rooting depth
<pre>13. Stoniness (>3 in. in diameter)</pre>			>15% by Vol. (top 24 inches	Excess stones
14. Accessibility for machinery and irrigation equipment			Channelled phase of map unit	Inaccessible

* Irrigation Guide for South Dakota. 1978

- Depth to High Water Table Potatoes need soils with a water table greater than 24 inches and preferably at 36 inches. A water table shallower than 24 inches prevents root growth, aeration, nutrient uptake, and thus causes a yield reduction.
- 3. Surface Texture The physical characteristics of medium textured soils provides good air/moisture relationships, friable consistence for tuber expansion, and easy tuber cleaning after harvest. Fine textured soils cling to tubers at harvest, limit tuber growth, and prevent rapid infiltration of air and water to the potato tuber and roots. Very coarse textured soils are susceptible to wind erosion and need to be protected to prevent this problem. Potatoes are vulnerable to wind erosion.
- 4. Drainage Class The early planting of potato fields can be limited by excess spring moisture in somewhat poorly, poorly, and very poorly drained soils. Excessively drained soils often can have a limitation for droughty conditions because of a low water holding capacity. Potatoes need a well aerated soil which holds adequate moisture to meet evapotranspiration demands.
- 5. Soil Intake Family Soil intake families of 0.3 or less are limited for sprinkler irrigated potato use due to the slow rate of water infiltration allowed by these soils. Definitions and descriptions of the soil intake families can be found in the <u>Irrigation Guide for South Dakota</u> (USDA-Soil Conservation Service, 1978).
- 6. Slope Potato fields are exceptionally erosive because of the open canopy, low residue cover, and soil loosening affect of the potato tuber.
- Surface pH Alkaline soil pH (>7.4) favors the pathogen responsible for potato scab. In addition, the availability of soil phosphorus is greatly reduced in moderately alkaline soils.
- 8. Surface Salinity Potatoes are sensitive to high salinity levels. Electrical conductivity values of 4 mmhos/cm will cause a yield reduction of at least 25 percent.
- 9. Sodicity The presence of a natric horizon and its associated characteristics (high pH, slow to very slow permeability, and high bulk density values) cause a soil to have a severe limitation for potato production.
- 10. Available Water Holding Capacity Potatoes require approximately 20 inches of water per year. Soils with low and very low available water holding capacity will be highly dependent upon frequent small quantity irrigation to supply the potato crop with needed moisture. Potato scab is favored by hot dry soil conditions. Thus, neutral and alkaline soils should be irrigated in a manner so that they are at or near field capacity most of the time.

- Permeability Potatoes need a soil which has a moderate permeability rate to allow for adequate air and water movement.
- 12. Soil Profile Thickness Soils with less than 24 inches of good soil material do not have adequate rooting depth for the potato crop. Nutrient storage and water holding capacity are limitations associated with thin soils.
- Stoniness Soils containing a significant percentage of stones (>15% by volume) have severe limitations for potato production due to harvesting and cultivational problems.
- 14. Accessibility Channeled phases of soil mapping units have fields which are small in size and often inaccessible for irrigation equipment and cultivational activities.

RANKING OF SOILS

Using the criteria developed in the previous section and listed in Table 6, the soils of the study area were categorized according to their limitations for sprinkler irrigated potato production (see Tables 7 through 11). Detailed soils information was obtained from the published soil surveys for each county (Buntley, et al., 1953; Driessen, 1976, 1978; Ensz, 1979; Kunze, 1982) and from detailed soil series information sheets available from the USDA-National Cooperative Soil Survey.

		IN CERT CO	UNIT, SUUTI DAKUTA		
Symbol	Name	Degree of Limitation	Limitations	Acres	
	Albaton-Haynie			19,674	
	Albaton	Not Suited	Surface texture, Poor drainage, HWT, Percs slowly, Slow intake		
	Haynie	Moderate	Floods, Ph		
CY-EU	Clarno-Ethan			5,324	
	Clarno	Moderate	Slope, Slow intake		
	Ethan	Moderate	Slope		
DX	Dempster	Moderate	Surface texture	2,662	
FF-WF-		induct a be			
CY	Egan-Wentworth-Clarno			23,376	
01	Egan	Moderate	Surface texture, Slope, Slow intake	20,070	
	Wentworth	Moderate	Surface texture, Slope		
	Clarno	Moderate	Surface texture, Slope, Slow intake		
		rouerate	Surface Lexilite, Stope, Stow Incake		-
EF-WF-				98,981	2
VH	Egan-Wentworth-Viborg	Madauata	Curferer tenture Clane Clau intoka	90,901	
	Egan	Moderate	Surface texture, Slope, Slow intake		
	Wentworth	Moderate	Surface texture, Slope		
	Viborg	Moderate	Surface texture		
EU-CY-					
B3	Ethan-Clarno-Betts			29,656	
	Ethan	Moderate	Slope, pH		
	Clarno	Moderate	Slope, Slow intake		
	Betts	Severe	Slope, pH		
HH-SD	Haynie-Sarpy			7,604	
	Haynie	Moderate	pH, Floods		
	Sarpy	Severe	pH, Floods		
LC	Lamo	Severe	HWT, Floods, pH, Poor drainage	5,324	
LU	Luton	Not Suited	Surface texture, Poor drainage, HWT, Percs slowly,	35,854	
			Slow intake		
NA	Napa	Not Suited	Poor drainage, HWT, Percs slowly, Slow intake	3,328	
34	Fluvaquents	Severe	Poor drainage, HWT, Floods	3,993	
	Trent-Moody	564616		19,840	
11 -110	Trent	Moderate	Surface texture, pH, Floods	1,010	
			Surface texture, pr, ribbds		
TP-WK	Moody Trent-Wakonda	Moderate	Jurrace Lexiure	2,840	
1F-WK	Trent	Moderate	Surface texture pH Electe	2,040	
		-	Surface texture, pH, Floods		
	Wakonda	Severe	рН	1	

TABLE 7. DEGREE OF LIMITATION FOR SPRINKLER IRRIGATED POTATO PRODUCTION IN CLAY COUNTY, SOUTH DAKOTA . .

TABLE 8 . DEGREE OF LIMITATION FOR SPRINKLER IRRIGATED POTATO PRODUCTION IN LINCOLN COUNTY, SOUTH DAKOTA

~

-

Symbo l	Name	Degree of Limitation	Limitations	Acres	
AcA	Alcester Silty clay loam,	Moderate	Floods, pH	3,900	
AcB	O to 2% slopes Alcester Silty clay loam,	Moderate	Slope, pH	3,500	
ACD	2 to 6% slopes	noderate	Stope, ph	3,500	
Af	Alcester Silty clay loam,	Severe	Inaccessible	3,000	
A I.	channeled, 0 to 2% slopes			2 200	
Ah	Alcester and Lamo Silty clay loams, 0 to 2% slopes			3,200	
	Alcester (50%)	Moderate	Floods, pH		
	Lamo (50%)	Severe	Floods, HWT, pH		
Во	Bon soils, frequently	Severe	Floods, pH	2,300	
Ca	flooded, 0 to 2% slopes Chancellor-Tetonka Silty			25,500	
cu	clay loams, 0 to 2% slopes			23,300	
	Chancellor (65%)	Not Suited	Floods, HWT, Percs slowly, Poor drainage		1
	Tetonka (25%)	Not Suited	Floods, HWT, Percs slowly, Poor drainage		
Cd	Chancellor-Viborg Silty clay loams, 0 to 2% slopes			13,200	•
	Chancellor (55%)	Not Suited	Floods, HWT, Percs slowly, Poor drainage		
	Viborg (45%)	Moderate	Surface texture		
Ch	Chancellor-Wakonda-Tetonka			17,400	
	complex, 0 to 2% slopes	Not Suited	Floods WWT Dones slowly Doon drainage		
	Chancellor Wakonda (35%)	Severe	Floods, HWT, Percs slowly, Poor drainage HWT, pH		
	Tetonka	Not Suited	Floods, HWT, Percs slowly, Poor drainage		
Со	Clamo Silty clay loams,	Not Suited	Floods, Percs slowly, Poor drainage, HWT	2,300	
0	0 to 1% slopes, eroded			0.200	
CpD2	Crofton-Nora Silt loams, 9 to 17% slopes, eroded			9,200	
	Crofton (50%)	Severe	Slope, pH		
	Nora (50%)	Severe	Slope		
Da	Davis Loam, O to 2% slopes	Moderate	Floods	1,500	
DeA	Delmont Loam, 0 to 2% slopes		pH Slope pH	456	
DeB	Delmont Loam, 2 to 6% slopes	riouerate	Slope, pH	1,050	
	I	1	1	1	

TABLE 8. Continued.

1

+

		1		1
Symbol	Name	Degree of Limitation	Limitations	Acres
DgB	Delmont-Graceville complex,			2,150
-	2 to 6% slopes			
	Delmont (45%)	Moderate	Slope, pH	
	Graceville (35%)	Moderate	Slope, Surface texture	
DkB	Delmont-Talmo soils,			1,500
	2 to 9% slopes			1
	Delmont (50%)	Moderate	Slope, pH	
	Talmo (50%)	Severe	Slope, Rooting depth, pH	0.000
DmA	Dempster Silt loam,	Slight		2,000
	O to 2% slopes			
DmB	Dempster Silt loam,	Moderate	Slope	830
	2 to 6% slopes			00 500
EaB	Egan Silty clay loam,	Moderate	Slope, Surface texture, Slow intake	29,500
	3 to 6% slopes			10 700
EcB	Egan-Chancellor Silty clay			13,700
	loams, 2 to 4% slopes			
	Egan (70%)	Moderate	Slope, Surface texture, Slow intake	
	Chancellor (30%)	Not Suited	Floods, HWT, Percs slowly, Poor drainage	11 600
EsB	Egan-Shindler complex,			11,600
	2 to 6% slopes		Class Conferentemen Classimtele	
	Egan (55%)	Moderate	Slope, Surface texture, Slow intake	1
_	Shindler (45%)	Moderate	Slope, pH, Slow intake, Surface texture	7,800
EsC	Egan-Shindler complex,			7,000
	6 to 9% slopes	6	Clana	1
	Egan (50%)	Severe	Slope	1
F D	Shindler (50%)	Severe	Slope	4,400
EwB	Egan-Worthing complex,			4,400
	2 to 6% slopes	Moderate	Slope, Surface texture, Slow intake	
	Egan (70%)	Not Suited	Floods, HWT, Percs slowly, Poor drainage,	1
	Worthing (30%)	Not Suited	Surface texture	
Circ	Currecuille Silty clay loam	Moderate	Floods, Surface texture	4,250
Gr	Graceville Silty clay loam,	Moderate	rious, surface texture	4,200
μuΛ	0 to 2% slopes	Not Suited	Percs slowly, Slow intake	3,050
HuA	Huntimer Silty clay loam,		reics stowly, stow incake	0,000
La	O to 2% slopes Lamo Silty clay loam,	Severe	Floods, pH, HWT	7,300
La	0 to 1% slopes	JEYELE		.,
	o to 10 stopes	1		1
		•		1

-12-

~

TABLE 8. Continued.

•

Symbol	Name	Degree of Limitation	Limitations	Acres
Lu	Luton Silty clay,	Not Suited	Floods, HWT, Percs slowly, Poor drainage, Slow	480
	O to 1% slopes		intake	
Mh	March, O to 1% slopes	Not Suited	Floods	1,100
MoA	Moody Silty clay loam,	Moderate	Surface texture	1,450
	0 to 2% slopes			10.000
MoB	Moody Silty clay loam,	Moderate	Surface texture	12,200
	2 to 6% slopes			0.450
MpB	Moody-Nora Silty clay loams,			2,450
	2 to 6% slopes			
	Moody (60%)	Moderate	Slope, Surface texture	
	Nora (40%)	Moderate	Slope, Surface texture, pH	10 100
MpC2	Moody-Nora Silty clay loams,			18,400
	6 to 10% slopes, eroded	Courses	Sland	
	Moody (55%)	Severe	Slope	1
6	Nora (45%)	Severe	Slope, pH	2,050
Sa	Salmo Silty clay loam,	Not Suited	Floods, HWT, Excess salt, pH, Poor drainage	2,000
CLD	very wet, 0 to 1% slopes	Soucha	Slope	700
ShD	Shindler clay loam,	Severe	Stope	100
	9 to 15% slopes	Not Suited	Slope	1,900
ShF	Shindler Clay loam, 25 to 40% slopes	Not Suited	Stope	1,500
SkD2				3,100
SKUZ	Shindler-Egan complex, 9 to 15% slopes, eroded			5,100
	Shindler (55%)	Severe	Slope	
	Egan (45%)	Severe	Slope	
SmF	Shindler-Renner complex,	50000		2,300
Jiii	15 to 40% slopes			_,
	Shindler (55%)	Not Suited	Slope	
	Renner (45%)	Not Suited	Slope	
StD	Shindler-Talmo soils,			530
	6 to 30% slopes			
	Shindler (50%)	Severe	Slope	
	Talmo (50%)	Severe	Slope, pH, Rooting depth	
SuF	Steinauer-Shindler Clay			2,900
	loams, 24 to 40% slopes			
	Steinauer (50%)	Not Suited	Slope, pH	
	Shindler (50%)	Not Suited	Slope	

-13-

1

4

Symbol	Name	 Degree of Limitation	Limitations	Acres
Te	Tetonka Silty clay loam, O to 1% slopes	Not Suited	Floods, HWT, Percs slowly, Poor drainage	5,100
ThB	Thurman Fine sandy loam, 2 to 6% slopes	Moderate	Slope	1,350
ThC	Thurman Fine sandy loam, 6 to 9% slopes	Severe	Slope	219
WeA	Wentworth Silty clay loam, 0 to 2% slopes	Moderate	Surface texture	20,800
WhA	Wentworth-Chancellor Silty clay loams, O to 2% slopes			106,300
	Wentworth (75%)	Moderate	Surface texture	
Ws	Chancellor (25%) Worthing Silty clay, O to 1% slopes	Not Suited Not Suited	Floods, HWT, Percs slowly, Poor drainage Floods, HWT, Percs slowly, Poor drainage	8,600

-14-

,

TABLE	9.	DEGREE	0F	LIMITATION	FOR	SPRI	NKLER	IRRIGATED	POTATO	PRODUCTION
				IN TURNER	COUN	NTY,	SOUTH	DAKOTA		

Symbol	Name	Degree of Limitation	Limitations	Acres
Ac	Alcester Silt loam	Moderate	Floods, pH	2,100
Ar	Arlo Clay loam	Not Suited	HWT, Floods, pH, Poor drainage	520
Ba	Baltic Silty clay loam	Not Suited	Floods, HWT, Percs slowly, Ph, Poor drainage	4,940
Bb	Baltic Silty clay loam,	Not Suited	Floods, HWT, Percs slowly, pH, Poor drainage	1,990
	ponded			
BeE	Betts-Ethan loams,			1,780
	15 to 40% slopes			
	Betts (70%)	Not Suited	Slope, pH	
	Ethan (30%)	Not Suited	Slope	
BhE	Betts-Talmo complex,			1,660
	12 to 40% slopes			
	Betts (75%)	Not Suited	Slope, pH	
	Talmo (25%)	Not Suited	Slope, pH, Rooting depth	
BkA	Blendon Fine sandy loam,	Slight		900
	0 to 2% slopes			
BmB	Blendon-Henkin Fine sandy			780
	loams, 2 to 6% slopes			
	Blendon (65%)	Moderate	Slope	
	Henkin (35%)	Moderate	Slope	
Ca	Chancellor Silty clay loam	Not Suited	Floods, HWT, Percs slowly, Poor drainage	5,990
Cc	Chaska Loam, channeled	Not Suited	Floods, HWT, Inaccessible, Poor drainage	5,560
Cd	Clamo Silty clay	Not Suited	Floods, Percs slowly, HWT, Poor drainage,	6,530
			Surface texture	
Ce	Clamo Clay, gravelly	Not Suited	Floods, Percs slowly, HWT, Poor drainage,	2,090
	substratum		Surface texture	
ChA	Clarno-Bonilla loams,			21,520
•••••	0 to 2% slopes	1		
	Clarno (70%)	Moderate	Slow intake	
	Bonilla (30%)	Moderate	Floods, HWT	
ChB	Clarno-Bonilla loams,			18,980
0110	1 to 6% slopes			
	Clarno (75%)	Moderate	Slope, Slow intake	
	Bonilla (25%)	Moderate	Floods, HWT	
		- HOUCEUUUU		
	1	ł	1	1

-15-

1

~

ymbol	Name	Degree of Limitation	Limitations	Acres
kА	Clarno-Crossplain-Davison			39,850
	complex, 0 to 3% slopes			
	Clarno (60%)	Moderate	Slow intake	1
	Crossplain (25%)	Not Suited	Floods, Slow intake, HWT, Percs slowly,	
			Poor drainge	
	Davison (15%)	Severe	HWT, pH	
mΒ	Clarno-Davison loams,			1,610
	2 to 5% slopes	1		
	Clarno (65%)	Moderate	Slope, Slow intake	
	Davison (35%)	Severe	Slope, HWT, pH	1
юΒ	Clarno-Ethan loams,			20,770
	2 to 6% slopes			1
	Clarno (60%)	Moderate	Slope, Slow intake	
	Ethan (40%)	Moderate	Slope, pH	
oC	Clarno-Ethan loams,			7,150
	5 to 9% slopes			
	Clarno (50%)	Severe	Slope	
	Ethan (50%)	Severe	Slope	
r	Crossplain Clay loam	Not Suited	Floods, HWT, Percs slowly, Slow intake	4,620
аA	Davis Loam, O to 2% slopes	Moderate	Floods	2,910
ЬΑ	Davis Loam, 2 to 6% slopes	Moderate	Slope	880
bB	Davis Loam, Sandy	Moderate	Floods	920
	substratum, 0 to 2% slopes	1		
eA	Delmont-Enet Loams,			12,470
	0 to 2% slopes	1		
	Delmont (65%)	Moderate	pH	
	Enet (35%)	Slight		
eB	Delmont-Enet Loams,	-		5,300
	2 to 6% slopes	1		
	Delmont (60%)	Moderate	Slope, pH	
	Enet (40%)	Moderate	Slope	
gB	Dempster-Graceville Silty			1,270
-	clay loams, 1 to 5%			
	slopes			
	Dempster (70%)	Moderate	Surface texture, Slope	
	Graceville (30%)	Moderate	Surface texture, Slope	

۰

Symbol		Degree of Limitation	Limitations	Acres	
Do	Dimo Clay loam	Severe	Floods, HWT, Surface texture	2,390	
EeA	Egan-Ethan complex,			910	
	0 to 2% slopes				
	Egan (75%)	Moderate	Surface texture, Slow intake		
	Ethan (25%)	Moderate	рН		
EeB	Egan-Ethan complex,			52,260	
	2 to 6% slopes				
	Egan (60%)	Moderate	Slope, Surface texture, Slow intake		
	Ethan (40%)	Moderate	Slope, pH		
EfA	Egan-Trent Silty clay loam,			49,020	
	O to 2% slopes				
	Egan (75%)	Moderate	Surface texture, Slow intake		
	Trent (25%)	Moderate	Floods, Surface texture	07.000	
EgB	Egan-Wentworth Silty clay			27,800	
	loams, 2 to 6% slopes				
	Egan (60%)	Moderate	Slope, Surface texture, Slow intake		
	Wentworth (40%)	Moderate	Slope, Surface texture	740	H
EnA	Enet Loam, 0 to 2% slopes	Slight		740	
EsD	Ethan-Betts Loams,			6,770	
	6 to 15% slopes				
	Ethan (60%)	Severe	Slope		
	Betts (40%)	Severe	Slope, pH	0.000	
EtB	Ethan-Egan complex,			2,960	
	2 to 6% slopes				
	Ethan (60%)	Moderate	Slope		
	Egan (40%)	Moderate	Slope, Surface texture, Slow intake	10 000	
EtC	Ethan-Egan complex,			10,280	
	5 to 9% slopes	Comment	Class.		
	Ethan (60%)	Severe	Slope		
	Egan (40%)	Severe	Slope	880	
HuA	Huntimer Silty clay loam,	Not Suited	Percs slowly, Slow intake	000	
	0 to 2% slopes	Courses		6,870	
La	Lamo Silty clay loam	Severe	Floods, HWT, pH	840	
0r	Orthents-Aquents complex	Severe	Rooting depth, HWT, Inaccessible	7,050	
Ro	Roxbury Silt loam	Severe	Floods, pH	1,710	
Rv	Roxbury Variant Silt loam	Severe	Floods, pH Floods, HWT Excess salt pH Poon drainage	3,510	
Sa	Salmo Silty clay loam	Not Suited	Floods, HWT, Excess salt, pH, Poor drainage	8,850	
Te	Tetonka Silt loam	Not Suited	Floods, Percs slowly, HWT, Poor drainage	0,000	

-17-

Table 9. Continued.

. .

•

Symbol	Name	Degree of Limitation	Limitations	Acres
WaA	Wakonda-Wentworth-Chancellor			1,450
	Silty clay loams,			
	0 to 3% slopes			
	Wakonda (45%)	Severe	pH	
	Wentworth (35%)	Moderate	Surface texture	
	Chancellor (20%)	Not Suited	Floods, HWT, Percs slowly, Poor drainage	
WeA	Wentworth-Chancellor-Wakonda			28,850
	Silty clay loams,			
	0 to 2% slopes			
	Wentworth (60%)	Moderate	Surface texture	
	Chancellor (25%)	Not Suited	Floods, HWT, Percs slowly, Poor drainage	
	Wakonda (15%)	Severe	pH	
Wo	Worthing Silty clay loam	Not Suited	Floods, HWT, Percs slowly, Poor drainage	4,990

*

Symbo	1 Name	Degree of Limitation	Limitations	Acres
Ab	Albaton Silt loam, overwash	Not Suited	Poor drainage, pH, HWT, Surface texture, Percs slowly	930
Ac	Albaton Silty clay	Not Suited	Poor drainage, pH, HWT, Surface texture, Percs slowly	7,800
Ad	Albaton Silty clay, depressional	Not Suited	Poor drainage, pH, HWT, Surface texture, Percs slowly	1,450
Ae	Alcester Silt loam, 2 to 6% slopes	Moderate	Slope, pH	27,490
Bd	Benclare Silty clay loam, Somewhat poorly drained	Severe	Floods	4,150
Be Bf	Benclare soils, overwash Blencoe Silty clay	Severe Not Suited	Floods	1,320 2,500
Bg	Blyburg Silt loam	Moderate	pH, Floods	4,150
Ca	Calco Silty clay loam, wet	Not Suited	Poor drainage, pH, HWT, Percs slowly	9,710
CbE2	Crofton Silt loam,	Severe	Slope, pH	11,320
	12 to 17% slopes, eroded			2,400
CbF	Crofton Silt loam,	Not Suited	Slope	2,400
	17 to 30% slopes			1,500
CnB	Crofton-Nora Silt loams,			1,000
	2 to 6% slopes	Severe	рН	
	Crofton (65%) Nora (35%)	Moderate	Slope	
CnD2	Crofton-Nora Silt loams,	Tioder a te		37,190
CHDZ	6 to 12% slopes, eroded			
	Crofton (55%)	Severe	pH, Slope	
	Nora (25%)	Severe	Slope	
Da	Davis Loam	Moderate	Floods	1,500
De	Dempster Silty clay loam	Moderate	Surface texture	1,960
EaB	Egan-Shindler complex,			4,200
	2 to 6% slopes			
	Egan (55%)	Moderate	Slow intake, Surface texture, Slope	
	Shindler (45%)	Moderate	Surface texture, Slope, Slow intake, pH	

TABLE 10. DEGREE OF LIMITATION FOR SPRINKLER IRRIGATED POTATO PRODUCTION IN UNION COUNTY, SOUTH DAKOTA

.

. .

.

• •

	1	1		1
Symbol	Name	Degree of Limitation	Limitations	Acres
EaC	Egan-Shindler complex,			1,300
	6 to 9% slopes			
	Egan (50%)	Severe	Slope	
	Shindler (50%)	Severe	Slope	
EmA	Enet Loam, O to 2% slopes	Slight		700
EnB	Enet & Dempster soils,	Moderate	Slope	480
	2 to 6% slopes			
Fa	Fluvaquents	Not Suited	Floods, HWT	2,600
Fb	Fluvaquents, wet	Not Suited	Floods, HWT	3,450
Fc	Forney Silty clay	Not Suited	Poor drainage, HWT, Surface texture, Slow intake,	15,730
			Percs slowly	
Fe	Forney soils, overwash	Not Suited	Poor drainage, HWT, Surface texture, Slow intake, Percs slowly	1,260
Ga	Grable Silt loam	Severe	pH, Floods	3,150
Gb	Graceville Silt clay loam	Moderate	Surface texture, Floods	2,160
Ha	Haynie Silt loam	Moderate	Floods, pH	7,250
Hb	Haynie Silty clay loam	Moderate	Floods, pH, Surface texture	2,300
Ja	James Silty clay	Not Suited	Floods, HWT, Poor drainage, Percs slowly, High salt	420
Ka	Kennebec Silty clay loam	Severe	Floods	12,220
La	Lakeport Silty clay loam	Moderate	Floods, Surface texture, Poor drainage, Slow intake	2,300
Lb	Lamo Silty clay loam	Severe	Floods, HWT, pH	2,900
Ld	Luton Silty clay	Not Suited	Floods, HWT, Percs slowly, Poor drainage,	9,510
			Slow intake	
Ma	McPaul Silt loam	Severe	рН	8,500
Mb	Modale Silt loam	Severe	PH	5,600
McA	Moody Silty clay loam,	Moderate	Surface texture	200
	0 to 2% slopes			1
McB	Moody Silty clay loam,	Moderate	Surface texture, Slope	11,020
	2 to 6% slopes			
MdC	Moody-Nora Silty clay loams,			14,320
	6 to 10% slopes			
	Moody (65%)	Severe	Slope	
	Nora (35%)	Severe	Slope, pH	1
NeF	Nora-Crofton Silt loams,			610
	20 to 50% slopes			
	Nora (50%)	Not Suited	Slope	
	Crofton (50%)	Not Suited	Slope, pH	
		•		1

x

-20-

-

Symbol	Name	Degree of Limitation	Limitations	Acres
0a	Oamdi Silt loam	Moderate	рН	3,450
Ob	Onawa Silty clay	Not Suited	Floods, Percs slowly, Slow intake, Surface texture, pH	6,500
Pa	Percival Silty clay	Not Suited	Floods, Percs slowly, Slow intake, Surface texture,	1,400
Sa	Salix Silty clay loam	Moderate	Surface texture, pH, Floods	3,200
Sb	Salmo Silty clay loam, Somewhat poorly drained	Severe	Drainage	780
ScB	Sarpy Loamy find sand, 3 to 9% slopes	Severe	pH, Slope, Floods	2,800
SdA	Sarpy Silty clay overwash, 0 to 1% slopes	Severe	pH, Surface texture, Floods	720
SeA	Sarpy soils, 0 to 3% slopes	Severe	pH, Floods	2,900
ShD	Shindler Clay loam, 9 to 15% slopes	Severe	Slope	1,330
ShE	Shindler Clay loam, 15 to 30% slopes	Not Suited	Slope	1,000
St	Storla Loam	Severe	рН	720
TaB	Thurman Fine sandy loam, 3 to 9% slopes	Moderate	Slope	670
Wa	Wakonda-Worthing-Chancellor complex,			11,820
	Wakonda (50%)	Severe	На	
	Worthing (30%)	Not Suited	Floods, HWT, Percs slowly, Poor drainage	
	Chancellor (20%)	Not Suited	Floods, HWT, Percs slowly, Poor drainage	
WbA	Wentworth Silty clay loam, 0 to 2% slopes	Moderate	Surface texture	8,950
WbA	Wentworth Silty clay, 2 to 6% slopes	Moderate	Slope, Surface texture	4,150
Wc	Wentworth-Worthing Silty			4,300
	clay loams Wentworth (40%)	Moderate	Surface texture	
	Worthing (60%)	Not Suited	Floods, HWT, Percs slowly, Poor drainage	
Wh	Whitewood Silty clay loam	Not Suited	Floods, HWT, Percs slowly, Poor drainage	1,230
Wo	Worthing Silty clay loam	Not Suited	Floods, HWT, Percs slowly, Poor drainage	1,000
Ws	Worthing-Chancellor Silty			2,950
	clay loams			
	Worthing (55%)	Not Suited	Floods, HWT, Percs slowly, Poor drainage	
	Chancellor (45%)	Not Suited	Floods, HWT, Percs slowly, Poor drainage	

-21-

TABLE 11. DEGREE OF LIMITATION FOR SPRINKLER IRRIGATED POTATO PRODUCTION IN YANKTON COUNTY, SOUTH DAKOTA

	1			A
Symbol	Name	Degree of Limitation	Limitations	Acres
Ba	Baltic Clay loam	Not Suited	Percs slowly, Floods, HWT, Slow intake, Poor drainage	945
Bb	Baltic Silty clay	Not Suited	Percs slowly, Floods, HWT, Slow intake, Poor	3,625
			drainage, Surface texture	
Bc	Baltic Silty clay,	Not Suited	Percs slowly, Floods, HWT, Slow intake, Poor	1,015
	depressional		drainage, Surface texture	075
BdE	Betts-Gavins complex,			875
	15 to 40% slopes			
	Betts (45-55%)	Not Suited	Slope, Surface texture, pH	
	Gavins`(25-35%)	Not Suited	Slope, Rooting depth,	
Be	Blake Silty clay loam	Severe	pH	3,155
Bf	Blencoe Silty clay	Not Suited	HWT, Slow intake, Surface texture, Percs slowly,	420
			Poor drainage	
Bg	Blencoe-Gayville complex,			415
- 5	Blencoe (45-55%)	Not Suited	HWT, Slow intake, Surface texture, Percs slowly,	ſ
			Poor drainage	ſ
	Gayville (25-35%)	Not Suited	Floods, Percs slowly, Excess sodium	
BhB	Blendon-Thurman complex,			1,185
	0 to 6% slopes			
	Blendon (40-50%)	Moderate	Slope	
	Thurman (25-35%)	Moderate	Slope, Percs rapidly, Surface texture	
Bk	Blyburg Silt loam	Moderate	pH, Floods	2,245
Bm	Bon Loam	Severe	Floods, pH	2,805
BnA	Bonilla-Crossplain complex,			1,050
Dint	0 to 2% slopes			
	Bonilla (45-55%)	Severe	Floods	
	Crossplain (30-40%)	Not Suited	Floods, HWT, Percs slowly, Surface texture, pH	
BoE	Boyd-Ethan association,			1,425
201	15 to 40% slopes			
	Boyd (45-55%)	Not Suited	Slope, Slow intake, Percs slowly, Surface texture,	
			pH	
	Ethan (30-40%)	Not Suited	Slope, pH	
Ca	Chancellor Silty clay loam	Not Suited	Floods, HWT, Percs slowly, Poor drainage	3,230
Cb	Clamo Silty clay loam	Not Suited	Floods, HWT, Percs slowly, Poor drainage	5,600
Cc	Clamo Variant Silty clay	Not Suited	Floods, HWT, Percs slowly, Poor drainage	1,030
	loam			
		I		

-22-

. . . .

_

Symbol	Name	Degree of Limitation	Limitations	Acres	
CdA	Clarno Loam, O to 2% slopes	Moderate	Slow intake	13,550	
CeB	Clarno-Bonilla Loams,			47,230	
1	1 to 6% slopes		Glana Clau intola		
	Clarno (55-65%)	Moderate	Slope, Slow intake		
C L A	Bonilla (15-25%)	Moderate	Floods, HWT	2,880	
ChA	Clarno-Crossplain-Stickney			2,000	
	complex, Clarno (65%)	Moderate	Slow intake		
	Crossplain (35%)	Not Suited	Floods, Slow intake, HWT, Percs slowly,		
1	Crosspram (55%)	Not Surted	Poor drainage		
ļ	Stickney (15%)	Not Suited	Percs slowly, Excess sodium		
CkA	Clarno-Crossplain-Tetonka			49,692	
	complex				
	Clarno (60%)	Moderate	Slow intake		
)	Crossplain (30%)	Not Suited	Floods, Slow intake, Percs slowly, HWT, Poor drainage		
1	Tetonka (10%)	Not Suited	Floods, Percs slowly, HWT, Poor drainage		
CoE	Crofton-Boyd association,			1,655	
ļ	15 to 40% slopes				6
	Crofton (55%)	Not Suited	Slope, pH		
C E	Boyd (45%)	Not Suited	Slope, Percs slowly, Slow intake pH	1 270	
CmE	Crofton-Nora Silt loams,			1,270	
1	9 to 25% slopes Crofton (45-55%)	Severe	Slope, pH		
	Nora $(30-40\%)$	Severe	Slope		
DaB	Davis Silt loam, 2 to 9%	Moderate	Slope	5,055	
Dab	slopes			0,000	
DbB	Davis Variant Loam,	Severe	Floods, pH	855	
	0 to 6% slopes				
EaB	Egan-Chancellor Silty clay			4,340	
)	loams, 1 to 6% slopes				
1	Egan (45-55%)	Moderate	Surface texture, Slow intake, Slope		
1	Chancellor (20-30%)	Not Suited	Floods, HWT, Percs slowly, Poor drainage		
EbB	Egan-Ethan-Trent complex,			29,075	
	1 to 6% slopes		Conference Classification Class		
	Egan (45-55%)	Moderate	Surface texture, Slow intake, Slope		
	Ethan (20%) Trent (20%)	Moderate Moderate	pH, Slope Floods, Surface texture		
		moderate	1100us, suitace lexture		

-23-

Symbol	Name	Degree of Limitation	Limitations	Acres
EbC	Egan-Ethan-Trent complex,			12,870
	2 to 9% slopes			
	Egan (35-45%)	Moderate	Slope, Surface texture, Slow intake	
	Ethan (25-35%)	Moderate	Slope, pH	
	Trent (15%)	Moderate	Floods, Surface texture	
EcA	Egan-Wentowrth Silty clay			6,040
	loams, 0 to 2% slopes			l.
	Egan (45-55%)	Moderate	Surface texture, Slow intake	
	Wentworth (30-40%)	Moderate	Surface texture	
EcB	Egan-Wentworth Silty clay			8,415
	loams, 2 to 6% slopes			1
	Egan (45-55%)	Moderate	Slope, Surface texture, Slow intake	ļ
	Wentworth (35-45%)	Moderate	Slope, Surface texture	
EdA	Egan-Whitewood Silty clay			6,055
	loams, 0 to 3% slopes			
	Egan (65%)	Moderate	Slope, Surface texture, Slow intake	
	Whitewood (35%)	Not Suited	Floods, HWT, Slow intake, Poor drainage	۲ ۱
EhA	Enet-Delmont Loams,			1,145
	0 to 2% slopes			
	Enet (45-55%)	Slight		
	Delmont (30-40%)	Moderate	pH	
EhB	Enet-Delmont Loams			880
	2 to 6% slopes			
	Enet (40-50%)	Moderate	Slope	
	Delmont (35-45%)	Moderate	Slope, pH	
EkD	Ethan Stony loam, 3 to 25%	Severe	Excess stones, Slope	810
	slopes			00.000
EmE	Ethan-Betts Loams,			22,890
	15 to 40% slopes			
	Ethan (45-55%)	Severe	Slope	
	Betts (25-35%)	Severe	Slope, pH	12.000
EnC	Ethan-Bonilla Loams,			13,080
	3 to 9% slopes			
	Ethan (65%)	Moderate	Slope, pH	
	Bonilla (35%)	Severe	Floods	10.000
EoD	Ethan-Davis Loams,			10,890
	9 to 15% slopes	6	Clana all	
	Ethan (60%)	Severe	Slope, pH	
	Davis (40%)	Severe	Slope	
	· · ·	7	1	I,

-24-

Symbol	Name	Degree of Limitation	Limitations	Acres
EpD	Ethan-Talmo Loams,			740
	9 to 15% slopes			
	Ethan (40-50%)	Severe	Slope, pH	
	Talmo (30-40%)	Severe	Slope, Rooting depth, pH	
Fa	Farney Silty clay loam	Severe	HWT, Poor drainage, Percs slowly, Slow intake	7,565
Ga	Grable Silt loam	Severe	Floods, pH	1,250
Gb	Graceville Silty clay loam	Moderate	Surface texture, rare	460
Ha	Haynie Silt loam	Moderate	Floods, pH	6,080
Hb	Haynie Silty clay loam, overwash	Moderate	Floods, pH, Surface texture	2,365
Ja	James Silty clay loam	Not Suited	Floods, HWT, Poor drainage, Percs slowly, Excess salt	1,305
La	Lakeport Silty clay loam	Moderate	Floods, Poor drainage, Surface texture, Slow intake	1,915
Lb	Lamo Silty clay loam	Severe	Floods, HWT, pH	2,015
Lc	Luton Silty clay	Not Suited	Floods, HWT, Percs slowly, Poor drainage, Slow intake	2,750
Ld	Luton Silty clay loam, depressional	Not Suited	Floods, HWT, Percs slowly, Poor drainage, Slow intake	945
0a	Onawa Silty clay	Not Suited	Floods, Percs slowly, Slow intake, Surface texture, pH	1,525
0b	Owega Silty clay loam	Not Suited	Floods, Percs slowly, Slow intake	2,025
Pa	Pits, gravel	Not Suited	Rooting depth, Inaccessible	345
Ra	Redstoe Variant Silt loam, 6 to 15% slopes	Severe	Slope, pH	485
Rb	Roxbury Loam, channeled	Severe	Floods, pH, inaccessible	1,910
Rc	Roxbury Silt loam	Severe	Floods, pH	4,195
Sa	Salix Silty clay loam	Moderate	Floods, Surface texture, pH	500
Sb	Salmo Silty clay loam	Not Suited	Floods, HWT, pH	2,115
SdA	Sarpy Loamy fine sand, 0 to 3% slopes	Severe	Floods, pH	1,710
SeA	Sarpy-Grable complex, O to 4% slopes			2,955
	Sarpy (45-55%) Grable (30-40%)	Severe Severe	Floods, Surface texture, pH Floods, pH	
TaE	Talmo-Thurman complex,			1,865
	15 to 40% slopes Talmo (50-60%)	Not Suited	Slope, Rooting depth, pH	
	Thurman (25-35%)	Not Suited	Slope	
Tb	Tetonka Silt loam	Not Suited	Floods, HWT, Percs slowly, Poor drainage	4,925

-25-

· ~

Symbol	Name	Degree of Limitation	Limitations	Acres
TcC	Thurmam-Ethan complex,			1,250
	2 to 9% slopes			1
	Thurman (40%)	Moderate	Slope	
	Ethan (35%)	Moderate	Slope, pH	
TdA	Trent Silty clay loam, 0 to 2% slopes	Moderate	Floods, Surface texture	975
Wa	Waubonsie Very fine sandy loam	Severe	Floods, HWT, pH	1,090
WbA	Wentworth Silty clay loam, 0 to 2% slopes	Moderate	Surface texture	3,065
WcB	Wentworth-Trent Silty clay loams, 2 to 6% slopes			2,515
	Wentworth (55-65%)	Moderate	Slope, Surface texture	
	Trent (20-30%)	Moderate	Floods, Surface texture	
Wd	Worthing Silty clay loam	Not Suited	Floods, HWT, Percs slowly, Poor drainage	2,270
We	Worthing Silty clay loam, ponded	Not Suited	Floods, HWT, Percs slowly, Poor drainage	1,225

-26-

SOIL LIMITATION MAPS

General soil association soil map sheets from each of the published county soil surveys were selected to use as base maps for this study. The limitation categories for sprinkler irrigated potato production were overprinted onto each soil map using the criteria developed in previous sections. The coded maps appear as Figures 2 through 6. Legends for the limitation categories are shown on each map.

The dominant soil was considered when preparing these maps. Thus, there may be soils with widely different limitation ratings occurring in the same mapping unit. These maps are for planning purposes only and are meant to illustrate potential areas for in-depth on-site inspection by trained professionals to determine suitability for sprinkler irrigated potato production.

,

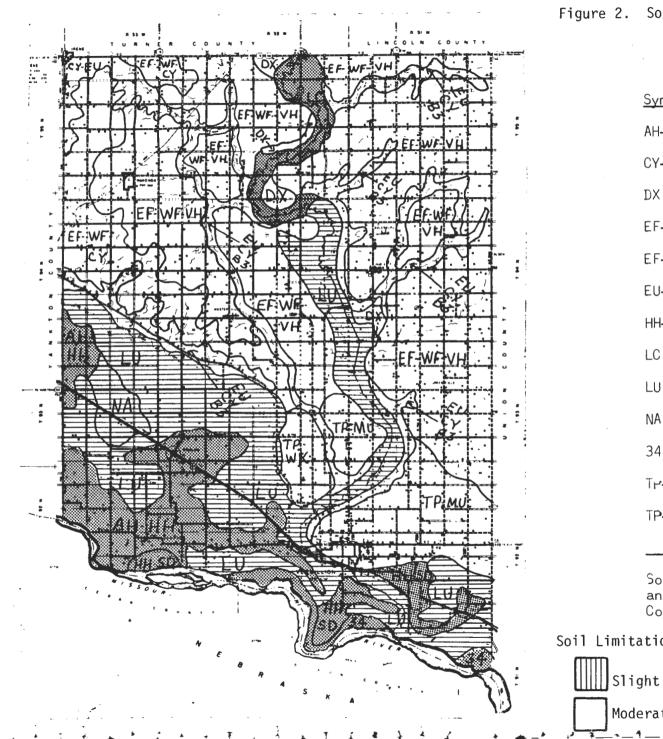
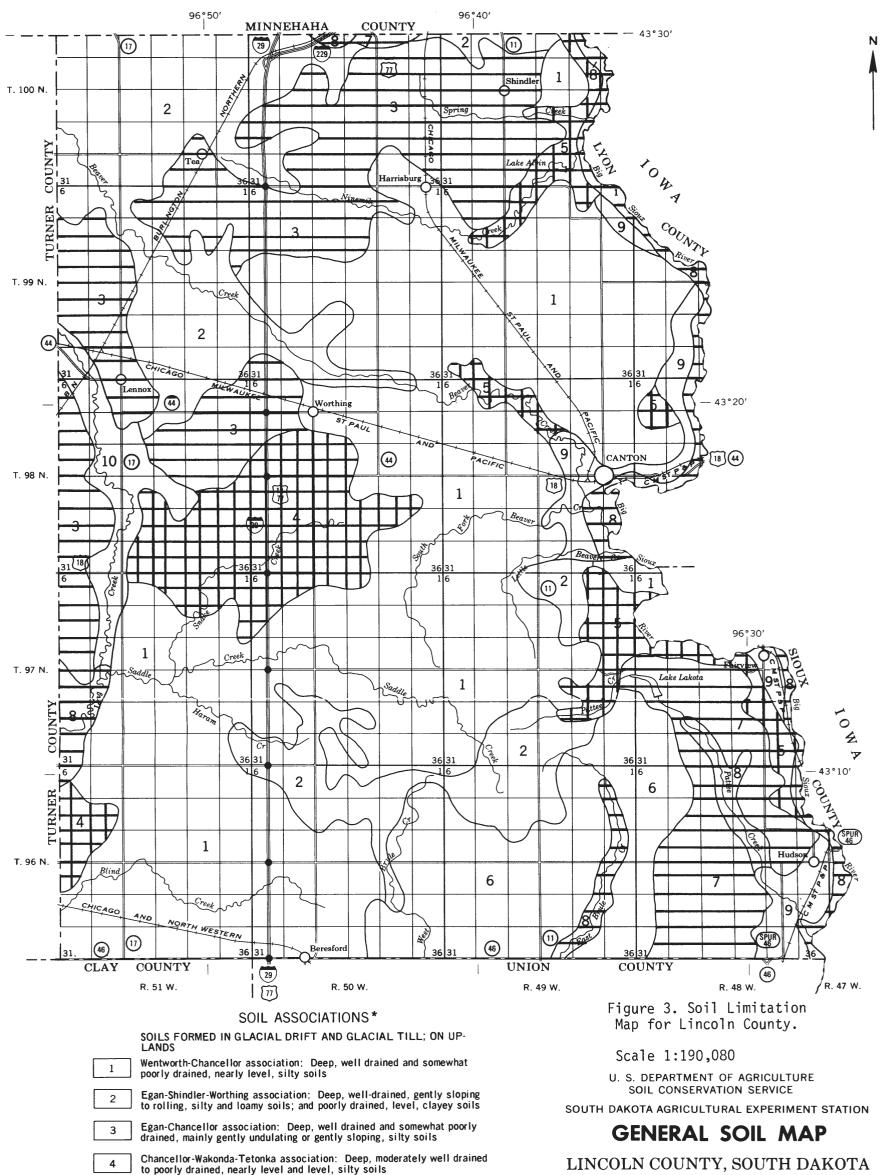


Figure 2. Soil Limitation Map for Clay County.

CLAY COUNTY General Soil Map


Symbol	Name
АННН	Albaton-Haynie
CY-EU	Clarno-Ethan
DX	Dempster
EF-WF-CY	Egan-Wentworth-Clarno
EF-WF-VH	Egan-Wentworth-Viborg
EU-CY-B3	Ethan-Clarno-Betts
HH-SD	Haynie-Sarpy
LC	Lamo
LU	Luton
NA	Napa
34	Riverwash
T ⊬- MU	Trent-Moody
TP-WK	Trent-Wakonda
	ation Service, U.S.D.A., gr. Expt. Station DLB, FCW & JD 6/70

Soil Limitations for Sprinkler Irrigated Potato Production

Moderate

Severe

Not Suited

5

Shindler-Steinauer-Renner association: Deep, well-drained, hilly to steep, loamy soils

SOILS FORMED IN LOESS; ON UPLANDS

Moody-Nora-Alcester association: Deep, well drained and moderately well drained, nearly level to sloping, silty soils

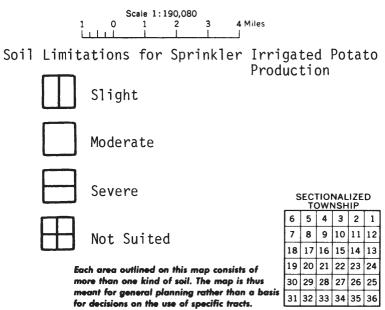
Nora-Moody-Crofton association: Deep, well-drained, gently sloping to strongly sloping, silty soils

SOILS FORMED IN ALLUVIUM; ON BOTTOM LANDS

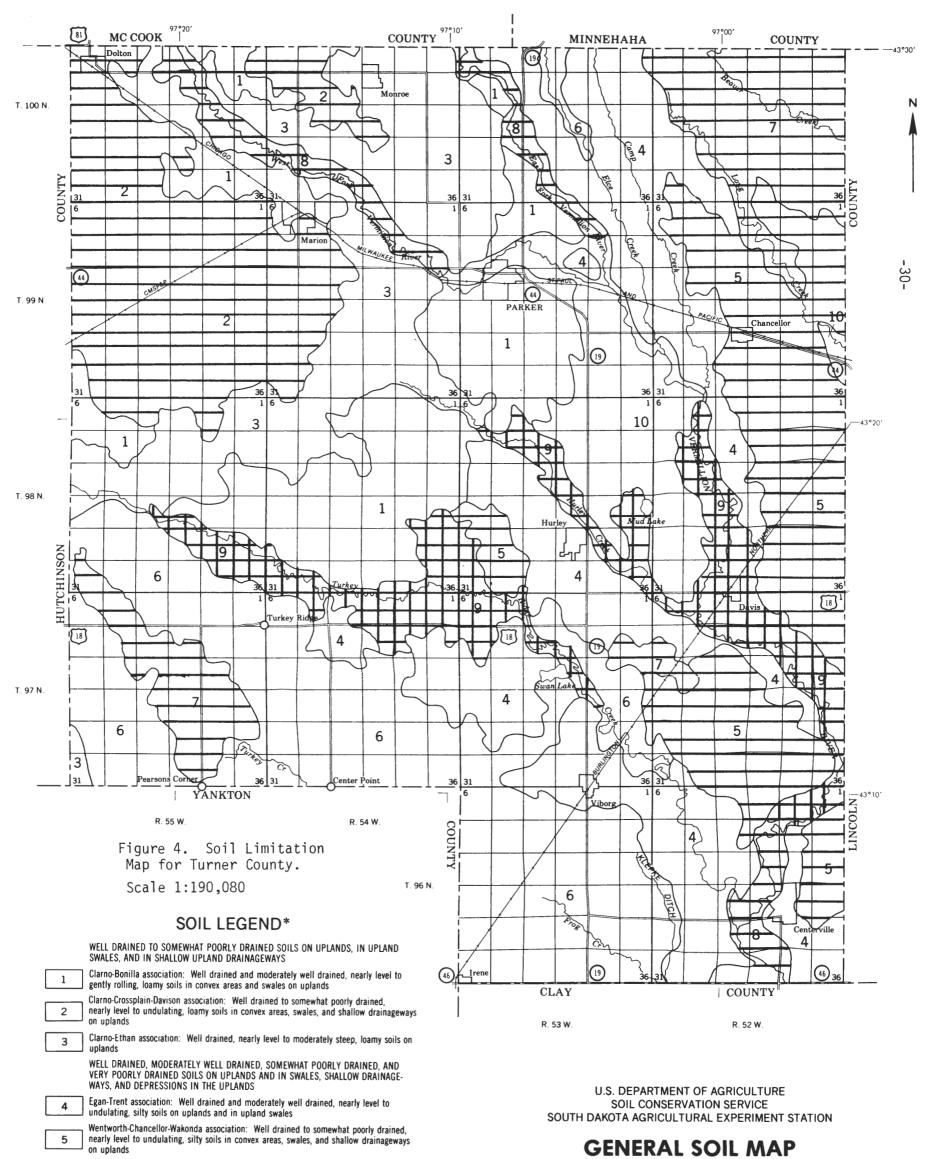
8

Lamo-Bon-Clamo association: Deep, moderately well drained to poorly drained, level and nearly level, silty and loamy soils

SOILS UNDERLAIN BY SAND AND GRAVEL; ON HIGH TERRACES



Graceville-Dempster association: Moderately well drained and well drained, nearly level to gently sloping, silty soils that are deep and moderately deep over sand and gravel



Delmont-Graceville-Talmo association: Moderately well drained to excessively drained, nearly level to undulating, loamy and silty soils that are deep to very shallow over sand and gravel

* Terms for texture refer to the surface layer of the major soils in each association unless otherwise indicated.

29

6

Egan-Ethan association: Well drained, nearly level to moderately steep, silty and loamy soils on uplands

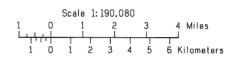
Egan-Worthing association: Well drained and very poorly drained, level to gently rolling, silty soils on uplands and in upland depressions

WELL DRAINED, SOMEWHAT POORLY DRAINED, AND POORLY DRAINED SOILS ON FLOOD PLAINS

Roxbury-Davis-Chaska association: Well drained and somewhat poorly drained, nearly level and gently sloping, silty and loamy soils on flood plains

Clamo-Lamo association: Poorly drained and somewhat poorly drained, level and nearly level, clayey and silty soils on flood plains

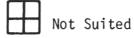
SOMEWHAT EXCESSIVELY DRAINED AND WELL DRAINED SOILS ON TERRACES

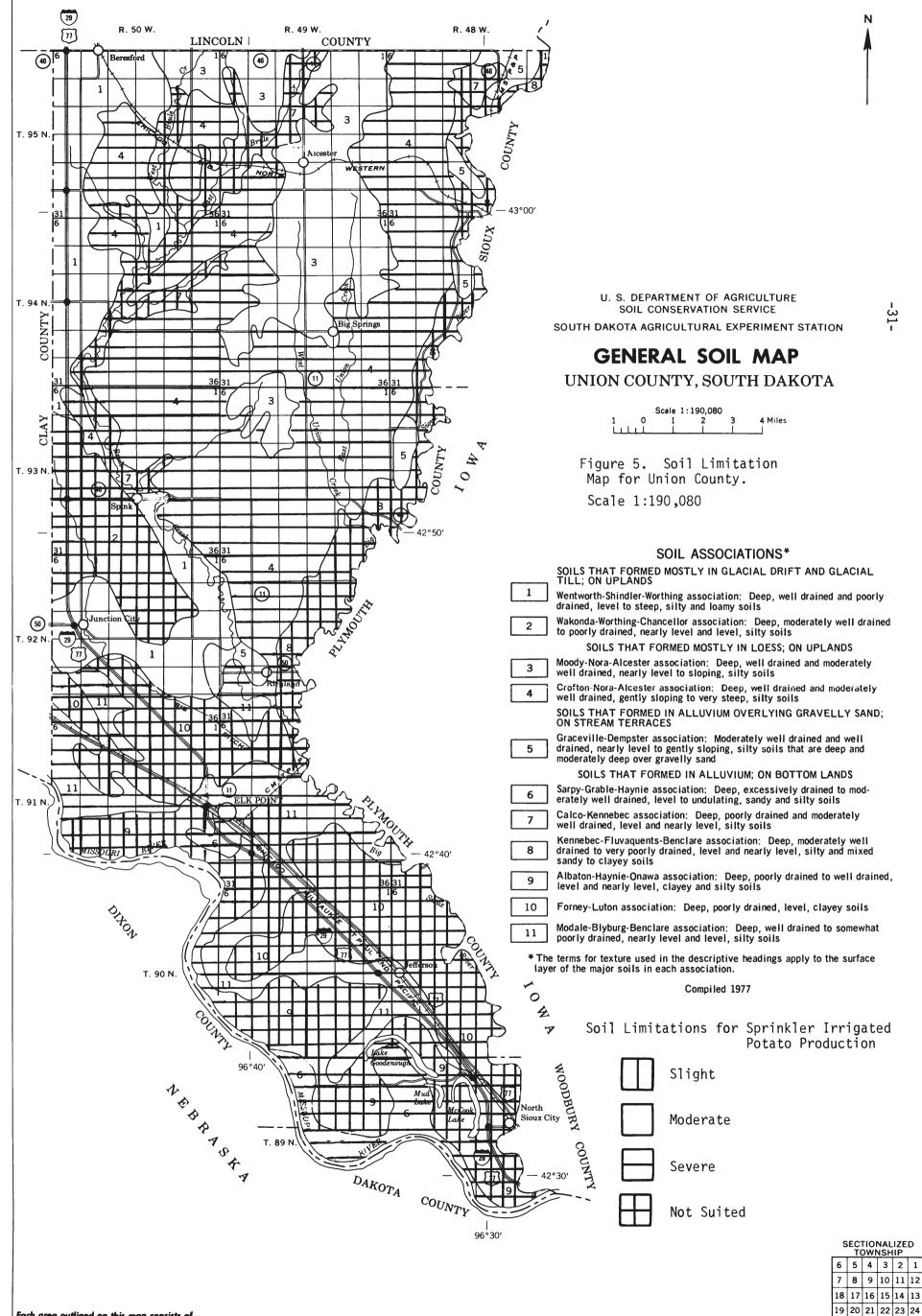

Delmont-Enet association: Somewhat excessively drained and well drained, nearly level to undulating, loamy soils on terraces

*The texture terms in the descriptive headings refer to the surface layer of the major soils in each association.

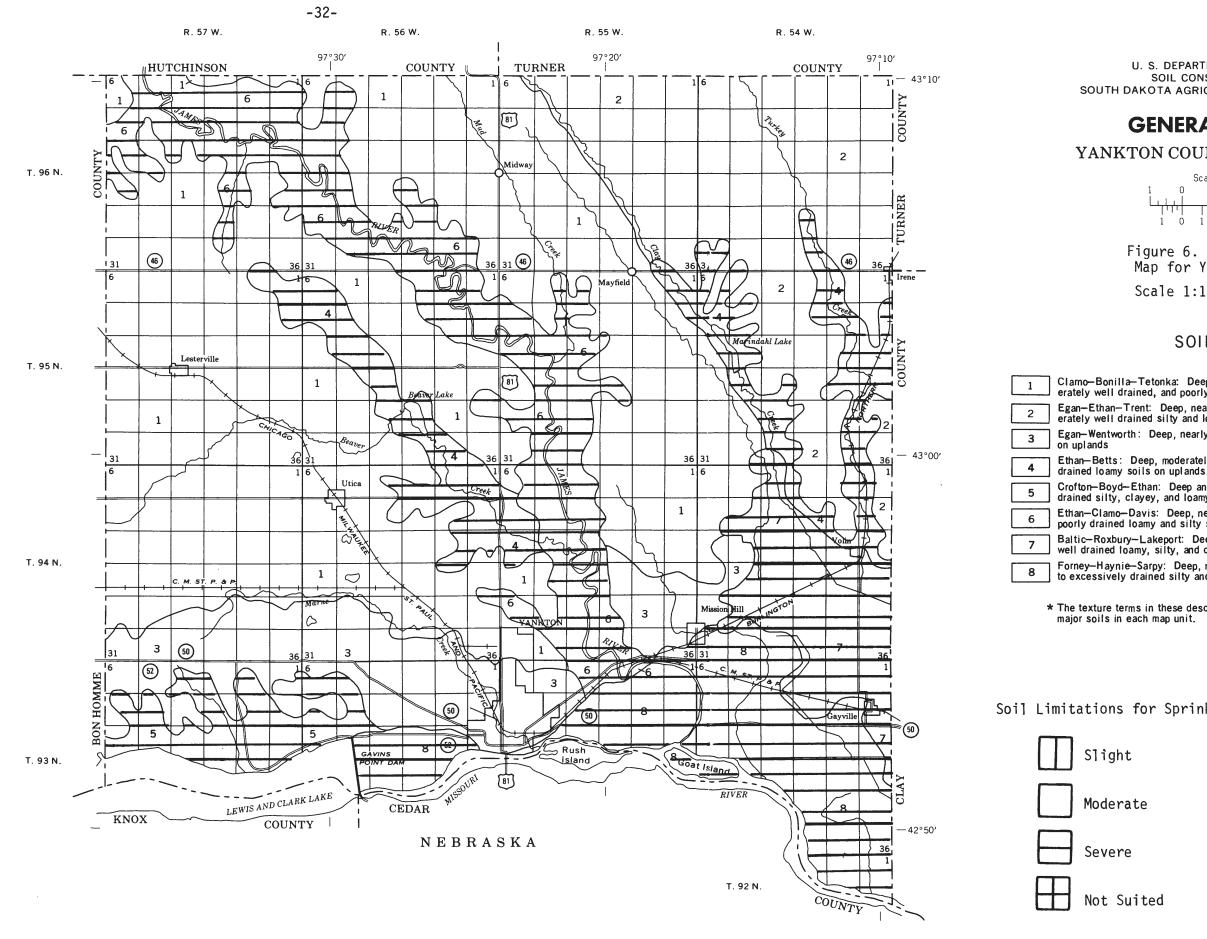
Compiled 1981

Each area outlined on this map consists of more than one kind of soil. The map is thus meant for general planning rather than a basis for decisions on the use of specific tracts.


TURNER COUNTY, SOUTH DAKOTA


Soil Limitations for Sprinkler Irrigated Potato Production

Slight


SECTIONALIZED TOWNSHIP											
6	5	4	3	2	1						
7	8	9	10	11	12						
18	17	16	15	14	13						
19	20	21	22	23	24						
30	29	28	27	26	25						
31	32	33	34	35	36						

30 29 28 27 26 25

31 32 33 34 35 36

Each area outlined on this map consists of more than one kind of soil. The map is thus meant for general planning rather than a basis for decisions on the use of specific tracts.

Each area outlined on this map consists of more than one kind of soil. The map is thus meant for general planning rather than a basis for decisions on the use of specific tracts.

U. S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE SOUTH DAKOTA AGRICULTURAL EXPERIMENT STATION

GENERAL SOIL MAP

YANKTON COUNTY, SOUTH DAKOTA

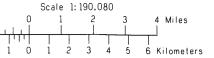


Figure 6. Soil Limitation Map for Yankton County.

Scale 1:190,080

SOIL LEGEND*

Clamo-Bonilla-Tetonka: Deep, nearly level to undulating, well drained, moderately well drained, and poorly drained loamy and silty soils on uplands

Egan-Ethan-Trent: Deep, nearly level to gently rolling, well drained and moderately well drained silty and loamy soils on uplands

Egan-Wentworth: Deep, nearly level and gently sloping, well drained silty soils

Ethan-Betts: Deep, moderately steep and steep, well drained and excessively

Crofton-Boyd-Ethan: Deep and moderately deep, strongly sloping to steep, well drained silty, clayey, and loamy soils on uplands

Baltic-Roxbury-Lakeport: Deep, nearly level, very poorly drained to moderately well drained loamy, silty, and clayey soils on flood plains

Forney-Haynie-Sarpy: Deep, nearly level and gently undulating, poorly drained to excessively drained silty and sandy soils on flood plains

* The texture terms in these descriptive headings refer to the surface layer of the

Compiled 1979

Soil Limitations for Sprinkler Irrigated Potato Production

SECTIONALIZED
TOWNSHIP

TOWNSHIP											
6	5	5 4		2	1						
7	8	9	10	11	12						
18	17	16	15	14	13						
19	20	21	22	23	24						
30	29	28	27	26	25						
31	32	33	34	35	36						

SUMMARY

The five county area of Southeast South Dakota (Union, Clay, Yankton, Turner, and Lincoln Counties) has been evaluated for its potential as a commercial potato production area. It was assumed that sprinkler irrigation would be used to supplement the natural precipitation of the area. The criteria used to evaluate the soils of the area were obtained from a review of pertinent literature and conversations with Extension Potato Specialists from other states. A table of the criteria used to evaluate soils is found on page 7 of this report.

The acreage within each county with slight, moderate, and severe limitations for potato production plus the acreage of soils not suitable for sprinkler irrigation is given in Table 12.

Table 12. Degree of Limitation of Southeastern South Dakota Soils for Potato Production Under Sprinkler Irrigation.

County	Slight	Moderate	Severe	Not Suited	
			Limitation cres*		
Clay	0	190,867	16,602	50,986	
Lincoln	2,000	197,871	60,989	105,655	
Turner	6,004	260,259	54,321	71,375	
Union	700	87,675	118,105	80,940	
Yankton	687	192,856	71,745	66,742	
Total	9,391	929,528	321,762	375,698	
% of area	0.6	56.8	19.6		

*Estimated total acres per county based on mapping unit composition information from detailed soil survey reports.

Those soils with moderate and severe limitations can successfully be used for potato production if management measurements are taken to overcome the listed limitations. The indirect and direct costs of production increase as the limitations are overcome. Generally soils with slight and moderate limitations are well enough suited for the given use to be considered potentially suitable acreage. Sound soil management practices can generally reduce the limitations.

The ratings given in Table 12 assume that good quality irrigation water is available. The Water Resource Institute (SDSU) and the South Dakota State Geologic Survey should be consulted as to the availability and quality of ground and surface water in those areas selected for serious planning.

The acreage of soils with various limitations associated with the sprinkler irrigated potato production are shown in Table 13, for those soils not considered unsuitable for irrigation in the Soil Conservation Service's irrigation guide for South Dakota (SCS, 1978). Acreages and limitations are included under all appropriate limitations. For example, Lamo silty clay loam in Yankton County has severe limitations due to flooding, high water table, and pH. Thus, the 2,015 acres of this soil were included in both the slope and pH total for Yankton County.

The most common limitations of irrigated potato production in Southeastern South Dakota are excessive wetness early in the spring due to seasonal high water . tables, slope, and alkaline pH values (Table 13). Management alternatives such as residue management and limited tillage can help reduce the erosion hazard on some of the more gently sloping soils. Crop rotation with other crops commonly grown in the area will reduce the hazard of potato pathogens building up on the soil. A two or three year rotation would be necessary to overcome this limitation. The most serious and difficult limitation to overcome continues to be seasonal wetness problems that plague many acres of soil in Southeastern South Dakota. Potatoes should be planted early in the spring. Without the installation of artificial drainage systems in those soils with moderate and severe limitations due to a high water table, early planting of a potato crop would be difficult some years. For example, the years of 1983 and 1984 were too wet to allow timely planting of small grains and corn in Southeastern South Dakota. These conditions could have been a serious problem if potatoes were commercially being produced in the area. The Southeast South Dakota Experiment Station near Beresford should be contacted as to any existing research results that may exist on potatoes for Southeastern South Dakota.

Moderate surface texture, slow intake, and slope were the most common soil limitations in the five county area. This combination of slope and surface texture induced slow intake rates is a serious limitation to sprinkler irrigation development. The inability of the soil to allow water to enter the soil quickly would result in a more serious erosion problem under irrigation than would occur under dryland conditions. Low pressure irrigation systems would result in a more serious erosion hazard than high pressure systems. However, high pressure systems have a higher power requirement and cost than do low pressure systems.

Turner and Yankton counties should be considered the most suitable of the five evaluated counties. They have over 400,000 acres between them that have slight and moderate limitations. The availability of an adequate supply of good quality ground water may be a concern in some of the area. Local shallow aquifers do exist within the outwash plains and in pockets of the glacial tills of the area.

RECOMMENDATIONS FOR FUTURE STUDY

It is our professional opinion that no decisions should be made about the potential of a commercial irrigated potato industry in South Dakota until some other areas are evaluated. The loess and residual sandstone derived soils of South Central South Dakota may provide a generally more acceptable area. Charles Mix and Gregory counties are scheduled to be evaluated within a few weeks. In addition, the loess and silty drift areas of Sully, Hughes, Potter, and Walworth counties should also be considered. There are several hundred thousand acres of soil with slight and moderate limitations in this Overcoming these limitations (mostly slope and surface pH) would be area. less costly to overcome than the seasonal wetness problem in Southeastern South Dakota. The potential for irrigation water from the Missouri River exists in these areas. Irrigation is better accepted and understood as a management technique in this area than in Southeastern South Dakota. Unpublished potato production results from the South Dakota Agricultural Experiment Station Research location in the Gettysburg area indicate that a production potential exists.

	F10	od	н	WT		face ture	Drai	nage	Inta	ake	S1	ope	p	H	Sali	nity
County	Moderate	/Severe	Moderate	/Severe	Moderate		Moderate	/Severe	Moderate,	Severe	Moderate	/Severe	Moderate	/Severe	Moderate	/Severe
Clay Lincoln	18,170 11,250	12,359		9,317 14,990	146,563 101,613	 79,725		9,317	76,880 53,770		131,610 65,850	5,931 40,699	40,868 14,954	15,433 32,565		
Turner Union	30,335	18,020	12,150	16,642	132,939	3,660	2,300	 780	160,631 6,500		126,353 48,535	24,764	34,485 49,730	29,861 73,110		
Yankton	38,019	23,941	16,530	10,670	63,095	1,625	1,915	7,565	114,585	7,565	97,718	37,085	32,864	38,988		
Total Acres	120,634	95,680	28,680	54,519	486,370	85,730	4,215	17,662	412,366	7,565	470,066	176,739	172,901	189,957		
% of Area	<u>7.27</u> 13	5.84 1.2%	$\frac{1.75}{5.}$	<u>3.33</u> 08%	<u>29.7</u> 34.	<u>5.24</u> 9%	<u>.257</u> 1.	<u>1.08</u> 34%	<u>25.2</u> 25.7	.462 7%	<u>28.7</u> 39.	<u>10.8</u> 5%	<u>10.6</u> 22.	<u>11.6</u> 2%		

TABLE 13. SUMMARY OF SOIL LIMITATIONS FOR SPRINKLER IRRIGATED POTATO PRODUCTION IN SOUTHEASTERN SOUTH DAKOTA

- N

	Sodicity		Available H ₂ 0			Permea- bility						Stones		Channe]			
County	Moderate	/Severe	Moderate	/Severe	Moderate	/Severe	Moderat	e/Severe	Moderate	/Severe	Moderat	e/Severe	Unsuited	<u></u>			
Clay													50,986				
Lincoln								1,015				3,000	105,655				
Turner								840				840	71,375				
Union													80,940				
Yankton					593	7,565		370		810		1,910	66,742				
Total Acres					593	7,565		2,225		810		5,750	375,698				
% of Area					.036	.462 498%		. 136		.049		.351 35%	22.0%				

,

Literature Cited

- Buntley, G.L., W. C. Bourne and F. C. Westin. 1953. Soils of Clay County. Bulletin 430. Agricultural Experiment Station, South Dakota State University. Brookings, 57007.
- 2. Driessen, J. L. 1976. Soil Survey of Lincoln County, South Dakota. USDA-SCS. Washington, D. C.
- 3. Driessen, J. L. 1978. Soil Survey of Union County, South Dakota. USDA-SCS. Washington, D. C.
- 4. Ensz, Edgar H., 1979. Soil Survey of Yankton County, South Dakota. USDA-SCS. Washington, D. C.
- 5. Kunze, Bruce O., 1982. Soil Survey of Turner County, South Dakota. USDA-SCS. Washington, D. C.
- Malo, D. D. and G. D. Lemme, 1983. Soil and Climatic Limitations for Dryland and Sprinkler Irrigated Potato Production in Clay and Union Counties of South Dakota. Plant Science Pamphlet #72. South Dakota State University. Brookings, 57007.
- 7. Soil Conservation Service, USDA. 1978. Irrigation Guide for South Dakota. USDA-SCS. Huron, South Dakota.

Published in accordance with an Act passed in 1881 by the 14th Legislative Assembly, Dakota Territory, establishing the Dakota Agriculture College and with the Act of re-organization passed in 1887 by the 17th Legislative Assembly, which established the Agricultural Experiment Station at South Dakota State University

-36-