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Numerous land surface phenology (LSP) datasets have been produced from various coarse resolution satellite
data and different detection algorithms from regional to global scales. In contrast to field-observed phenological
events that are defined by clearly evident organismal changes with biophysical meaning, current approaches to
detecting transitions in LSP only determine the timing of variations in remotely sensed observations of surface
greenness. Since activities to bridge LSP and field observations are challenging and limited, our understanding
of the biophysical characteristics of LSP transitions is poor. Therefore, we set out to explore the scaling effects
on LSP transitions at the nominal start of growing season (SOS) by comparing detections from coarse resolution
data with those from finer resolution imagery. Specifically, using a hybrid piecewise-logistic-model-based LSP
detection algorithm, we detected SOS in the agricultural core of the United States—central Iowa—at two scales:
first, at a finer scale (30 m) using reflectance generated by fusing MODIS data with Landsat 8 OLI data (OLI
SOS) and, second, at a coarser resolution of 500m using Visible Infrared Imaging Radiometer Suite (VIIRS) obser-
vations. The VIIRS SOS datawere comparedwith OLI SOS that had been aggregated using a percentile approach at
various degrees of heterogeneity. The results revealed the complexities of SOS detections and the scaling effects
that are latent at the coarser resolution. Specifically, OLI SOS variation defined using standard deviation (SD)was
as large as 40 days within a highly spatially heterogeneous VIIRS pixel; whereas, SD could be b10 days for amore
homogeneous set of pixels. Furthermore, the VIIRS SOS detections equaled the OLI SOS (with an absolute differ-
ence less than one day) in N60% of OLI pixelswithin a homogeneous VIIRS pixel, but in b20% of OLI pixelswithin a
spatially heterogeneous VIIRS pixel. Moreover, the SOS detections in a coarser resolution pixel reflected the
timing at which vegetation greenup onset occurred in 30% of area, despite variation in SOS heterogeneities.
This result suggests that (1) the SOS detections at coarser resolution are controlledmore by the earlier SOS pixels
at thefiner resolution rather than by the later SOS pixels, and (2) it should be possible towell simulate the coarser
SOS value by selecting the timing at 30th percentile SOS at the finer resolution. Finally, it was demonstrated that
in homogeneous areas the VIIRS SOS was comparable with OLI SOS with an overall difference of b5 days.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Remote sensing has been widely used to characterize seasonal veg-
etation dynamics at continental and global scales during the last three
decades, because it can provide frequent and consistent measurements
that are spatially exhaustive. Due to the coarse spatial resolution
(N500 m) of synoptic sensors, remote sensing monitors seasonal

dynamics of the vegetated land surface that often includes multiple
types of vegetation mixed with other scene objects, such as soil,
water, and human structures. Land surface phenology (LSP) is the
term used to distinguish the object of remote sensing from traditional
notions of species-specific organismal phenology observed at ground
level (de Beurs and Henebry, 2004; Henebry and de Beurs, 2013). The
most commonly used satellite data for LSP characterization have been
from the Advanced Very High Resolution Radiometer (AVHRR) instru-
ments at a spatial resolution from 5 km–8 km (White et al., 2009;
Zhang et al., 2007, 2014; de Jong et al., 2011; Julien and Sobrino, 2009;
Zhou et al., 2001), because they boast the longest and densest time
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series available at a global coverage. With the availability of theModer-
ate-resolution Imaging Spectroradiometer (MODIS) data since 2000,
which substantially improved radiometric and geometric properties, at-
mospheric correction, and cloud screening of the time series, it has been
possible to characterize amore reliable and consistent LSP at spatial res-
olutions from 250 m to 1000 m (Ganguly et al., 2010; Tan et al., 2011;
Zhang et al., 2006). Recently, Landsat data at a spatial resolution of
30 m has also been applied to retrieve LSP (Fisher et al., 2006;
Krehbiel et al., 2015; Melaas et al., 2013; Walker et al., 2012); however,
Landsat's relatively long period for repeat observations (~16 days) have
made it impractical to consistently produce annual time series at a re-
gional scale for most parts of the planet.

A number of approaches have been developed to detect LSP, partic-
ularly, the start of growing season (SOS), based on the time series of sat-
ellite observations. Most approaches first smooth and gap-fill time
series of vegetation indices using one or more of the methods that in-
clude asymmetric Gaussians (Jonsson and Eklundh, 2002), piecewise lo-
gistic function (Zhang et al., 2003), Savitzky-Golay filter (Chen et al.,
2004), best index slope extraction algorithm (BISE) (Viovy et al.,
1992), moving average (Reed et al., 1994), movingmedian, iterative in-
terpolation (Julien and Sobrino, 2010), Fourier fitting (Moody and
Johnson, 2001; Wagenseil and Samimi, 2006), polynomial curve fitting
(Bradley et al., 2007), or the convex quadratic model based on thermal
time (de Beurs and Henebry, 2004; Henebry and de Beurs, 2013). The
timings of phenophase transitions during the vegetation growing sea-
son are then extracted based on either predefined absolute or relative
thresholds of vegetation indices (Jonsson and Eklundh, 2002; Lloyd,
1990; Reed et al., 1994; White et al., 1997), or features of the fitted
curves such as the inflection points (de Beurs and Henebry, 2010; Tan
et al., 2011; Zhang et al., 2003).

While a great number of LSP data have been produced from various
satellite datasets and approaches, the biophysical meaning and scaling
effects of these phenological data have rarely been investigated. Relative
to the large number of LSP datasets produced, the validation activities
have been surprisingly limited and simple. Validation efforts have
been typically conducted in one or more of the following ways.

First, the extracted LSP transition or phenometrics have been indi-
rectly compared with model outputs or other variables observed at
ground level. For example, the LSP SOS calculated from 8 km 15-day
composite AVHRR NDVI data was linked to phenological timings from
empirical or bioclimatic models, such as the climate data-driven phe-
nology (Schaber and Badeck, 2003; Schwartz andReed, 1999), and asso-
ciated with ground-based records from cryospheric and hydrological
networks (White et al., 2009). These comparisons have generally
shown poor correlations, such as no significant relationship between
LSP SOS and the modeled phenology (Schwartz and Hanes, 2010), or
differences between AVHRR SOS and ground observations that could
exceed two months (White et al., 2009).

Second, pixel-based LSP has also been compared with phenological
observations of vegetation communities within field plots. For exam-
ple, the MODIS SOS in a 1 km2 footprint exhibited a root mean square
error (RMSE) of 20.5 days and a bias of 17 days compared with in-situ
observations of 36 trees in a 0.5 ha (0.005 km2) plot in France
(Soudani et al., 2008). Satellite derived green-up timing had a RMSE
of about 15 days as compared with leaf-out dates of four woody spe-
cies observed from the PlantWatch citizen science project across
Canada (Delbart et al., 2015).

Third, LSP SOS dates have also been compared with landscape scale
observations. By aggregating individual plants to population, communi-
ty, and landscape scales within homogeneous regions consisting of
deciduous and conifer plants, indices of landscape phenology — a
concept distinct from land surface phenology (Liang and Schwartz,
2009) — were derived and compared with MODIS SOS dates (Liang et
al., 2011). The results indicated the LSP SOS dates matched well with
full bud burst in deciduous forests, but not so well in conifer forests,
which lagged LSP SOS dates by about 10 days.

Fourth, LSP SOS dates have recently been compared to PhenoCam
observations. PhenoCam provides consistent and continuous monitor-
ing of vegetation canopy conditions using tower-mounted webcams
that collect images multiple times a day (Hufkens et al., 2012;
Richardson et al., 2009; Richardson et al., 2007; Sonnentag et al.,
2012). It has provided important information for validating and under-
standing satellite-derived LSP. However, PhenoCam analyses rely on
vegetation indices derived from visible wavelengths, introducing
some differences from satellite vegetation indices that are derived
from both red and near infrared reflectance. Moreover, a mismatch
of camera field of view angle and its large variation with the view
angle of satellite pixel-coverage may cause major uncertainties
(Elmore et al., 2012; Graham et al., 2010; Hufkens et al., 2012;
Keenan et al., 2014).

Validation efforts have shown a discrepancy of N10 days between
LSP and other phenological observations. This discrepancy arises in
part from the arguably erroneous assumptions that (1) field observa-
tions are obtained from large homogeneous sites, and (2) LSP mea-
surements should be consistently equivalent to the field observations
despite the scaling differences. Homogeneous SOS values within a
moderate or coarse satellite footprint are rarely observed because
the timing of phenophase transitions vary greatly among different
species and even within the same species due to ecotypic variation
or local site conditions. Indeed, woody understory plants often leaf
out more than three weeks earlier than the forest canopy
(Augspurger et al., 2005). Budburst dates for coexisting tree species
in temperate forests can vary by three weeks or more (Lechowicz,
1984). Similarly, budburst dates among woody species within an
area of locally homogeneous forests can even vary by roughly six
weeks (Richardson and O'Keefe, 2009). Even in relatively homoge-
neous deciduous forests (with similar composition, age, and struc-
ture), leaf out timing in a same species can vary more than two
weeks spatially within a 500 m area (Fisher et al., 2006).

Thesefindings indicate that simple comparisons of LSPwith field ob-
servations may only illuminate their differences rather than provide
meaningful validation. This situation arises mainly because the scaling
effects on the coarse resolution LSP are poorly understood. Field pheno-
logical measurements have sharply defined life cycle events, such as the
appearance of first bloom,first leaf unfolding, and first leaf coloration. In
contrast, “events” in LSP are not sharply defined, but rather are transi-
tions within fitted curves of remotely sensed “greenness” that has
equivocal biophysical meaning. This study, therefore, aims to explore
the question: what kinds of SOS occurrences at the field scale translate
into coarser resolution LSP “events”?

Our hypothesis is that SOS at coarser resolution becomes detect-
able once the vegetation starts to greenup in a certain proportion of
finer resolution pixels. A corollary to this hypothesis is that coarser
resolution SOS is driven by the portion of earlier SOS pixels at the
finer resolution rather than the later SOS pixels. To explore this hy-
pothesis, we made the assumptions that (1) vegetation phenology, en-
vironmental conditions, and microclimate within the 30 m scale are
relatively homogenous, and (2) the SOS derived at the finer scale
could well represent the start of surface vegetation leaf seasonality.
Thus, we first detected LSP at finer scale (30 m) using the reflectance
data from the fusion of MODIS data with Landsat 8 OLI observations,
and then at the coarser resolution (500 m) using Visible Infrared Im-
aging Radiometer Suite (VIIRS) observations during 2013 and 2014.
The scaling effect on SOS at coarser resolution was then investigated
by linking to the SOS observations at the finer scale. Our study area
is central Iowa in the United States (US), where agricultural lands
dominate in the northern part of the State and forests and grasslands
occur in the south. The timing of phenological events spans a wide
range in central Iowa from low spatiotemporal heterogeneity within
crop fields, to moderate spatiotemporal heterogeneity between differ-
ent crop types, to high spatiotemporal heterogeneity in mixtures of
croplands and natural vegetation.
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2. Methodology

2.1. Datasets

The data used here include land cover classifications, Landsat-
MODIS fused surface reflectance, and VIIRS surface reflectance in central
Iowa in the Western Corn Belt.

2.1.1. Land cover data
We used land cover data from the USDA (United States Department

of Agriculture) National Agricultural Statistics Service (NASS) Cropland
Data Layer (CDL) in 2013 and 2014. The CDL is a crop-specific land cover
data layer with a ground resolution of 30 m. The CDL products were
generated using satellite imagery from the Operational Land Imager
(OLI) and Thermal Infrared Sensor (TIRS) on Landsat 8 and the Disaster
Monitoring Constellation (DMC) DEIMOS-1 and UK2 sensors, which
were collected during the crop growing season. Imperviousness and
natural vegetation cover data were obtained from the USGS (United
State Geological Survey) National Land Cover Database 2011 (Homer
et al., 2015).

The overall classification accuracies for major crops (soybeans and
corn) in NASS CDL were generally above 96%. The typical commodity
crop rotation alternates between corn and soybeans. We simplified
the CDL crop classes to corn, soybean, hay (aggregating these classes: al-
falfa, other hay/non alfalfa), other crops (aggregating these classes: bar-
ley, wheat, other small grains, rye, oats, millet, and spelt), grass
(grassland/pasture), forests, shrublands, non-vegetated areas (aggre-
gating these classes: fallow/idle cropland, developed/open space,
developed area, and barren), and open water/wetlands (aggregating
these classes: open water, woody wetlands, and herbaceous wetlands)
(Fig. 1). The aggregated land cover data were then reprojected and
resampled to match the Landsat scene (path 26 and row 31).

2.1.2. Daily Landsat-MODIS fused data
Satellite observations with high temporal frequency and high spatial

resolution can be generated by fusing Landsat andMODIS data together
(Gao et al., 2006). One commonly used data fusion methodology is the
Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM),

which combines the higher spatial resolution of Landsat data with the
high temporal MODIS observations to produce higher spatiotemporal
resolution data (Gao et al., 2006; Hilker et al., 2009; Zhu et al., 2010).
This approach compares one or more pairs of observed Landsat and
MODIS datasets collected on the same day to predict maps at Landsat-
scale on other MODIS observation dates (Gao et al., 2006). Recently,
STARFM has been modified and extended for different applications,
which includes the Spatial Temporal Adaptive Algorithm for mapping
Reflectance Change (STAARCH) for the detection of reflectance changes
associated with land cover change and disturbance (Hilker et al., 2009),
and an enhanced STARFM (ESTARFM) approach for the fusion of very
heterogeneous scenes without “pure” pixels (Zhu et al., 2010).

The STARFM approach was used here to produce Landsat-MODIS
fused daily 30 m surface reflectance in 2013 and 2014 (Gao et al.,
2006, 2017). Specifically, the MODIS daily directional surface reflec-
tance (250 m MOD09GQ and 500 m MOD09GA) (Vermote et al.,
2002) in tiles H10V04 and H11V04 were obtained and corrected to
Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted
Reflectance (NBAR) data using MODIS BRDF product (500 m
MCD43A1) (Schaaf et al., 2002). The Landsat 8 OLI surface reflectance
data (in path 26 and row 31) were downloaded from the USGS EROS
(Earth Resources Observation and Science) Data Center, in which the
Landsat digital number data were calibrated and atmospherically
corrected using the Landsat EcosystemDisturbanceAdaptive Processing
System (LEDAPS) (Masek et al., 2006). The OLI observations we used
here were acquired at the following days of year (DOY) in 2013: 140,
188, 252, 268, 284, 300; and in 2014: 79, 95, 127, 143, 175, 191, 271,
303, 351. Note that Landsat 7 ETM+ imagery was not used because of
the gaps resulting from the failure of the Scan Line Corrector (SLC). Fi-
nally, Landsat images on each MODIS date were then simulated with
STARFM using co-temporal pairs of Landsat and MODIS imagery. The
fused daily 30 m time series exhibited mean biases of ±0.01 for the
red band and ±0.02 for the NIR band. Henceforth this data will simply
be called “OLI”. In this dataset, an observationwas defined as good qual-
ity if it was from either a cloud-free observation in Landsat or MODIS
NBAR produced using a full BRDF inversion model (Schaaf et al.,
2002), while the remaining observations were considered as other
(poor) quality.

Fig. 1. Spatial pattern of land cover types from NASS in 2014. Waterloo and Des Moines are the two largest cities in the area and are indicated by the black pushpins. Land cover types in
2013 were similar to those in 2014, with some spatial changes arising from crop rotation.
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2.1.3. VIIRS NBAR data
The VIIRS instrument onboard the Suomi National Polar-orbiting

Partnership (NPP) has a similar design to MODIS. VIIRS observes the
surface at local time around 1:30 pm. It acquired its first measurements
on November 21, 2011. The spatial resolution is 375 m at nadir for the
red (0.60–0.68 μm) and near infrared (0.846–0.885 μm) bands. The
VIIRS NBAR is produced utilizing a similar algorithm as the MODIS Col-
lection V006 daily BRDF/Albedo/NBAR product (Schaaf et al., 2002). The
NBAR product is ideal for land surface analysis since the view angle ef-
fects have been removed using BRDF estimates and the daily cloud
and aerosol contaminations have been reduced or corrected in the sur-
face reflectance product. Although the BRDF estimation is based on di-
rectional reflectance within a temporal window, the reflectance on the
day of interest is emphasized to retain the phenological characteristics
of that day. This product also provides quality assurance (QA) field indi-
cating the quality of the surface reflectance, which includes snow flag,
good quality, other (poor) quality, and fill values (Schaaf et al., 2002).
In this study, the daily 500 m NBAR data were produced for the tiles
of H10V04 and H11V04 from January 1, 2013 to December 31, 2014.

2.2. Land surface phenology detection

First, the daily two-band enhanced vegetation index (EVI2)was gen-
erated fromboth the VIIRSNBARandOLI datasets. The EVI2 is calculated
from red and near infrared reflectance by removing the blue-reflectance
influence on enhanced vegetation index (EVI) through an empirical re-
lation between red and blue reflectance (Jiang et al., 2008; Rocha and
Shaver, 2009). Thus, EVI2 can also be derived from satellite sensors
without blue reflectance, such as the AVHRR. EVI2 remains functionally
equivalent to EVI (enhanced vegetation index) and has previously been
used to monitor vegetation phenology (Jiang et al., 2008; Rocha and
Shaver, 2009; Zhang et al., 2014), but it is less sensitive to background
reflectance, including bright soils and non-photosynthetically active
vegetation (i.e., litter andwoody tissues) than someother vegetation in-
dices (Rocha et al., 2008).

Second, land surface phenological metrics were then retrieved using
the hybrid piecewise-logistic-model-based LSP detection algorithm
(HPLM-LSPD; Zhang, 2015; Zhang et al., 2003). The HPLM-LSPD first re-
constructed the EVI2 temporal trajectory in a pixel following previously
describedmethods (cf., Zhang, 2015). Briefly, spuriously large daily EVI2
values were removed if they were larger than 90% of the corresponding
daily NDVI in the time series, which were likely subject to red band
overcorrection in some observations that were contaminated by either
residual snow or atmosphere (Justice et al., 2013; Zhang, 2015). The
daily EVI2 values were used to generate a 3-day composite dataset by
applying the maximum value composite approach to the EVI2 data se-
lected with best quality observation within the 3-day window. The
EVI2 values contaminated by snow were identified using the VIIRS
snow flag and were replaced using a background EVI2 value at each
pixel. The background EVI2 value is referred to as the minimum EVI2
within the vegetation growing cycle that is not contaminated by snow
and clouds or the maximum EVI2 during the phase of vegetation dor-
mancy. Itwas determined by averagingfive good observations (without
cloud and snow contamination) during the winter period, which was
identified using a MODIS LST (land surface temperature) climatology
(LST b 278 K). Short gaps caused by clouds in the time series were re-
placed using a moving average of two neighboring good quality values
starting from the point close to larger EVI2 values. If a gap was longer
than one month, the corresponding EVI2 values were replaced using
good quality observations in preceding or succeeding years, but the de-
tected LSPwas labeled as low confidence. The time series of EVI2 data at
each pixelwas further smoothed using a Savitzky-Golayfilter and a run-
ning local median filter with a five 3-day window. The median filter
could remove local sharp peaks or troughs in the time series. Finally,
the hybrid piecewise logistic functions were applied to reconstruct the
temporal EVI2 time series.

Phenological transition dates within each growth or senescence
phase were detected using the rate of change in the curvature of the
modeled curves. Specifically, transition dates correspond to the day of
year on which the rate of change in curvature in the EVI2 time series
data exhibits localminima ormaxima (Zhang et al., 2003). Because phe-
nological detections are significantly impacted by the number of good
satellite observations during the period of phenological occurrences
(Zhang et al., 2009), we further calculated the proportion of good qual-
ity (PGQsos) EVI2 observations during three 3-day periods before and
after the start of growing season (SOS), respectively. This critical period
was selected because the phenological metrics could be reasonably de-
tected, if there was a good quality EVI2 observation within 8 days
(Zhang et al., 2009).

2.3. Matchup of SOS detected from OLI and VIIRS data

OLI SOS and VIIRS SOS were matched spatially and qualitatively in
order to compare these two datasets properly. Two VIIRS titles
(H10V04 and H11V04) were first adjoined to cover the entire Landsat
8 OLI scene (path 26 and row 31). Both OLI and VIIRS data were then
re-projected to the Universal Transverse Mercator (UTM) projection
with a spatial resolution of 30 m and 450 m, respectively, resulting in
one VIIRS pixel containing 225 OLI pixels. OLI SOS detections were
also spatiallymatchedwith a grid of 3 by 3 VIIRS pixels (hereafter called
the VIIRS grid) to reduce the spatial mismatch between these two
datasets. The mismatch is caused by the following factors. First, the
pixel size in VIIRS red and near infrared bands is 375 m at nadir while
it is over 500 m at high scan angles. Second, the actual pixel size is
463.312 m (instead of 500 m) in the NASA 500 m VIIRS reflectance
product, but the spectral reflectance data represent a median effective
resolution of 565 m × 595 m (Campagnolo et al., 2016). Therefore, we
also investigated SOS using the matched VIIRS grid that contains 9
VIIRS pixels or 2025 OLI pixels to ensure a better spatial match.

To qualitativelymatch the SOS, the SOS pixelswith low PGQsoswere
t removed frombothOLI and VIIRS detections. Based on sensitivity anal-
ysis (Zhang et al., 2009), we considered the SOS detection as high con-
fidence if PGQsos N 40%. The precision of SOS detection can be greatly
reduced if there were very few or no good satellite observations during
the period of SOS occurrence. Therefore, we only selected the pixels
with PGQsos N 40%, which are hereafter referred to as “high confidence
SOS pixels”. The pairs of VIIRS and OLI SOS observations were also re-
moved if the number of high confidence OLI SOS pixels was fewer
than 200 (~90%) within a VIIRS footprint. Further, the VIIRS grids
were excluded if the number of good VIIRS SOS detections was fewer
than 7 out of 9 pixels.

2.4. Comparison of OLI SOS and VIIRS SOS

We compared VIIRS SOS with OLI SOS in order to characterize the
biophysical context of the SOS derived from a coarser pixel to the SOS
at finer scale. Therefore, the comparison was conducted across various
levels of heterogeneity and with a set of aggregated OLI SOS values.

The SOS can vary greatly in heterogeneous areas,while it is relatively
similar in homogeneous areas. To understand the impact of spatial het-
erogeneity on SOS detections at a coarser scale, we divided the entire
study area into five levels of SOS heterogeneity. To do this, the standard
deviation (SD) of OLI SOS within a VIIRS pixel and grid was calculated,
and its cumulative frequencydistributionwas established across the en-
tire study area in 2013 and 2014, separately. The five levels of heteroge-
neity for VIIRS pixels were then determined using the proportion of OLI
SOS SD frequency (PSD) at an interval of 20%: 0–20% PSD represents the
most homogeneous level, whereas 80–100%PSD indicates themost het-
erogeneous level.

The OLI SOS was then aggregated to be comparable with VIIRS SOS.
The aggregated OLI SOS is called “SOSag” hereafter. In previous studies,
the SOS at the coarser scale was generally averaged from all SOS values
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or high frequency SOS values at a finer scale (Delbart et al., 2015;
Ganguly et al., 2010). Biophysically, the SOS becomes detectable from
satellite sensors after a certain amount of leaves within the pixel start
to emerge. This means that the SOS value detected in a coarser pixel is
associatedwith earlier SOS values (the plant leaves that emerge earlier)
at finer pixels rather than later SOS pixels. To explore the correspon-
dence of VIIRS SOS to OLI SOS, we aggregated a set of SOSag by selecting
the timing at a specific percentile at an interval of 5% (starting from 0.5%
which represents the earliest OLI SOS) from the cumulative OLI SOS fre-
quency distribution within a VIIRS pixel or grid (Fig. 2). We call this ap-
proach “percentile aggregation”. In this way, we obtained 21 potential
timings of SOSag in a VIIRS pixel or grid. From a biophysical perspective,
SOSag from this percentile approach represents the date at which vege-
tation greenup has occurred in a certain percent of the OLI pixels, name-
ly 0.5%, 5%, 10%, 15%, … 100%.

VIIRS SOS was statistically compared with the SOSag using average
absolute difference (AAD), mean difference (bias), root mean square
difference (RMSD), and linear regression. AAD was a measure of statis-
tical dispersion equal to the average absolute difference of two indepen-
dent variables. RMSD was used to evaluate the average uncertainty
between two observations. Note that root mean square error (RMSE)
was not used here since both the OLI SOS and VIIRS SOS are remote
sensing estimates without a clear reference a priori. Bias was used to
evaluate the overestimation (positive bias) or underestimation (nega-
tive bias) of the two variables. Linear regression was used to examine
the overall relation between the samples.

ADD ¼ ∑N
i¼1 SOSOLI−SOSVIIRSj j

N
ð1Þ

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 SOSOLI−SOSVIIRSð Þ2

N

s
ð2Þ

Bias ¼ ∑N
i¼1 SOSOLI−SOSVIIRSð Þ

N
ð3Þ

The statistical comparison between VIIRS SOS and OLI SOSag was
conducted for 21 different potential SOSag timings and five levels of
heterogeneity in 2013 and 2014, separately, for a total of 210 compari-
sons. The analysis allowed us to determine the scale effects on the SOS at

coarser resolutions. It was further used to reveal the most appropriate
approach to aggregate SOS from finer resolution to coarser resolution.

3. Results

The SOS data derived from finer (OLI) and coarser (VIIRS) resolu-
tions are investigated and compared. The spatial patterns of SOS and
the corresponding confidence (including all different confidence levels)
are presented in Section 3.1, which provides the impacts of EVI2 data
quality in OLI andVIIRS observations on SOSdetections across the entire
study area. Next, the scaling effects on SOS detections are illustrated and
evaluated in Sections 3.2–3.4 based on the OLI SOS and VIIRS SOS data
that were of high confidence and matched spatially and qualitatively.

3.1. Spatial pattern of SOS detected from OLI data and VIIRS data

Fig. 3 shows the spatial patterns of SOS (including all different con-
fidence levels) derived from OLI data and VIIRS observations in 2013
and 2014. SOS dates were similar in 2013 and 2014, although dates
were slightly earlier in 2013 than in 2014. However, PGQsos was rela-
tively poorer in 2013 compared to 2014 in the southeastern region of
the study area for both OLI and VIIRS data, and the northwestern region
only for OLI. Overall, SOS was delayed moving northward: from DOY
100 to 160. Early SOS was mainly distributed in the southern portion
of the study area, where forests dominate. Relatively later SOS was
found in the northwestern region, where the croplands were the main
land cover. In the central eastern portion of the study area, crops and
natural vegetation were interspersed: SOS exhibited dates that were
earlier for natural vegetation while later for croplands.

The north-south SOS gradient was more evident in the VIIRS data
than in the OLI data. To the north, OLI SOS matched well with VIIRS
SOSwhile larger differences were apparent in the south. This spatial in-
consistency was apparently associated with the quality of the SOS de-
tections, which was determined by the frequency and availability of
OLI and VIIRS observations. The OLI PGQsos was generally higher than
20% from southwest to northeast in 2013, but it was very low in large
areas across both the northwest and southeast corners because of lack
of high quality OLI observations during the SOS periods. In 2014, the
OLI PGQsos revealed no high quality temporal observations in large
parts of the southern region. In contrast, theVIIRS PGQsoswas relatively
high in the southern region, particularly in 2014, although there were
still various randomly distributed spots without high quality VIIRS ob-
servations during SOS periods.

The spatial transect of SOS dates exhibits patches of earlier and later
occurrences, although there is a clear trend from earlier in the south to
later in the north (Fig. 4). This change mainly follows land cover types,
but a latitudinal effect cannot be discounted as the transect spans nearly
two degrees of latitude. The SOS could be more than one month earlier
in forests and grasslands than in croplands. This pattern was evident
from 41.5°N northward, where corn and soybean were abundant and
forests and grasslands were sparse. In contrast, forest and grasslands
were the main cover types in the southern region, so that SOS was con-
spicuously early with small proportion of late SOS dates over croplands
in the VIIRS time series. However, there was also a spatial pattern of
poor PGQsos in the south driven by a lack of sufficient high confidence
OLI observations around the estimated timing of SOS.

Closer examination revealed that OLI SOS varied substantially even
within a limited area (Fig. 5). The OLI SOS displayed sharp boundaries
with a difference as large as one month among neighboring crop fields
and among different crop types; whereas the SOS was generally homo-
geneous within larger fields of the same crop type. Similarly, OLI SOS
presented heterogeneous patterns between forests and croplands
while itwas relatively homogeneouswithin local forests and grasslands.
The SOS heterogeneity among different crop fields and between crop-
lands and forests or grasslands was verified using a high resolution
image (Google Earth) from June 2012, which visually indicated growth

Fig. 2. Schematic diagram of the percentile approach to aggregate SOS from finer scales
(OLI) to coarser scales (VIIRS pixel or grid). The percentile represents OLI SOS
distribution within a VIIRS pixel. The T1 and T2 are the examples of the SOSag
aggregated using 15th and 80th percentile, separately.
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Fig. 3. Spatial distributions of SOS and data quality in the time series of OLI andVIIRS in 2013 and2014. The top row represents the SOS detected fromOLI in 2013 (a) and 2014 (e) and from
VIIRS in 2013 (b) and 2014 (f). The bottom row is PGQsos around SOS occurrence along the OLI time series in 2013 (c) and 2014 (g) and theVIIRS time series in 2013 (d) and 2014 (h). The
black vertical line and box in (a) indicate the locations for Figs. 4 and 5, respectively. The dark gray color indicates no good EVI2 observations around SOS occurrence (PGQsos = 0).

Fig. 4.Variation in SOS, PGQsos, and land cover types along a north-south transect in 2013. (a) detections fromVIIRS data, (b) detections fromOLI data, and (c) land cover type. The transect
location is identified in Fig. 3.
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conditions among different fields (although of course the crop types
might be not exactly the same between 2012 and 2013). In contrast,
the VIIRS SOS only captured the large spatial patterns of SOS rather
than the details in and among individual fields, but the overall coarse-
scale spatial pattern corresponded well with the OLI SOS.

3.2. Heterogeneity within VIIRS SOS pixels

Fig. 6 presents the heterogeneity of the OLI SOS within a VIIRS pixel
(225 OLI pixels) after the low confidence SOS pixel pairs were removed
using the criterion that the percent of high confidence OLI SOS pixels
within a high confidence VIIRS pixel (PGQsos N 40%) was over 90% (~-
200 pixels). The result indicates that the heterogeneities were only dis-
tinguished in 12,583 VIIRS pixels in 2013 and in 20,707 pixels in 2014.
The spatial patterns of the selected pixels between the two years were
generally inconsistent (Fig. 6a and c), because of differences in the
ranges of OLI SOS SD (Fig. 6b and d).

The frequency distribution of OLI SOS SD within VIIRS pixels varied
between 2013 and 2014 (Fig. 6b and d). A peak in both years appeared
around 4 days of SD. However, SD frequency indicated that OLI was
more heterogeneous in 2013 than in 2014. The SD frequency in 2014
was skewed right (positively skew), and the cumulative frequency
was larger than 60% for SD b 10 days. In contrast, the frequency in
2013 was relatively uniform in the SD range between 10 and 27 days,
and the cumulative frequencywas about 40% for SD b 10 days. The larg-
est SD was 40 days in 2013 and 30 days in 2014.

Fig. 7 displays the frequency distribution of high confidence OLI SOS
dates within a VIIRS pixel at five levels of heterogeneity. These
randomly selected VIIRS pixels represent several typical types of SOS
heterogeneity across the study area. Within homogenous VIIRS pixels
(PSD b 20%), the OLI SOS frequency displayed a strong peak of N10% (N-
23 pixels) at the same SOS and most OLI SOS estimates were within
10 days of each other. Correspondingly, the cumulative frequency
showed a pattern of sharp increase. Within heterogeneous VIIRS pixels

Fig. 5. Local pattern (14,280m× 14,880m) of SOS fromOLI and VIIRS across different land cover types in 2013. (a) VIIRS SOS, (b) OLI SOS, (c) land cover type (1 - other crops, 2 - corn, 3 -
soybean, 4 - hay, 5 - grasslands, 6 - forests, 7 - water and wetlands, 8 - non-vegetated area), and (d) Google Earth imagery from June 2012. The location is defined in Fig. 3.
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(PSD N 60%), by contrast, the OLI SOS dates varied within a wide range
spanning more than three months, and the cumulative distribution ex-
hibited a relatively flat pattern. The frequency at the same SOS date was
b3% (b6 OLI pixels). In some cases, where a VIIRS pixel contained sever-
al different crop types andnatural vegetationwith divergent SOS values,
the OLI SOS frequency displayed multiple distinct peaks.

3.3. Difference between VIIRS SOS and OLI SOSag

Fig. 8 shows the average absolute difference between VIIRS SOS and
a set of OLI SOSag aggregated by the percentile approach (as described
in Fig. 2) over the various levels of heterogeneity. For OLI SOSag aggre-
gated using a specific percentile, AAD increased with increasing hetero-
geneity, resulting in AAD values for the most heterogeneous pixels
(PSD = 80–100%) that were more than twice as large as the most ho-
mogenous pixels (PSD= 0–20%). AAD differences in relatively homog-
enous pixels (PSD b 60%) were generally b10 days, but generally larger
than 10 days in heterogeneous pixels (PSD N 60%). If all pixels (PSD =
0–100%) were considered, AAD was similar to the values from themid-
dle heterogeneity level, i.e., PSD = 40–60%.

At a same level of heterogeneity, AAD varied more than threefold
(Fig. 8), if the OLI SOSagwas aggregated using different OLI SOS percen-
tiles. AAD was very large, if SOSag was aggregated from either b10th or
N90th percentile of OLI SOS within a VIIRS pixel. For example, AAD was
57 days, if SOSag was obtained using 100th percentile of OLI SOS;
whereas it was 32 days, if SOSag was obtained using 0.5th OLI SOS per-
centile in the most heterogeneous regions (PSD = 80–100%) (Fig. 8).
However, AAD reached minimum (AADmin), if SOSag was aggregated
from an optimal OLI SOS percentile. In homogenous regions (PSD =
0–20%), the low AAD (bAADmin + 1 day) was reached, if OLI SOSag

was selected from 5th to 70th percentiles. However, in themost hetero-
geneous region (PSD = 80–100%), the low AAD (bAADmin + 1 day)
was obtained, if OLI SOSag was selected from 20th to 40th OLI SOS per-
centile. The range of optimal percentiles with the low AAD varied from
larger than 45% in homogeneous regions to b20% in heterogeneous re-
gions. If the SOS values in the entire region were considered together
(PSD=0–100%), then the AADwas distributed between those fromho-
mogenous and heterogeneous regions. Overall, AAD was smallest if OLI
SOSag in a VIIRS pixel was aggregated as the date when SOS had oc-
curred in 20%–40% of OLI pixels. In contrast, AAD was largest if OLI
SOSag was considered as the date when SOS had appeared in N80% of
the OLI pixels.

Fig. 9 depicts the bias between VIIRS SOS and OLI SOSag aggregated
fromdifferentOLI SOSpercentiles across various levels of heterogeneity.
Negative bias appeared if OLI SOSag was aggregated from the 0.5th to
30th percentiles of OLI SOS within a VIIRS pixel, while positive bias
mainly occurred if OLI SOSag was aggregated from the 40th to 100th
percentiles. This pattern was similar for all the levels of OLI SOS hetero-
geneity. Similar to AAD, the bias was smaller in homogeneous regions
than in heterogeneous regions. Moreover, the negative bias could be
as large as 30 days and the positive bias could be as large as 50 days.
Overall, if OLI SOSag was aggregated using the timing around the 30th
percentile, then the bias approached zero.

3.4. Evaluation of SOS aggregation at different scales

The relationship between VIIRS SOS and OLI SOS was evaluated by
comparing VIIRS SOS with a set of OLI SOSag within a VIIRS grid (3 by
3 VIIRS pixels). We first generated VIIRS SOS in a VIIRS grid (SOSVIIRSag)
using the approach of 30th percentile based on the result obtained at

Fig. 6.Heterogeneity of OLI SOSwithin a VIIRS pixelwith high confidence VIIRS SOS detection.Heterogeneity levelswere defined using percentile of OLI SOS standarddeviation in 2013 (a)
and 2014 (c), and frequency distributions represented VIIRS pixels varying with OLI SOS standard deviation in 2013 (b) and 2014 (d). Gray color in (a) and (c) represents the VIIRS pixels
with either PGQsos b 40% or the percent of high confidence OLI SOS pixels b 90%.
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individual VIIRS pixels (see Section 3.3). The SOSVIIRSag was then com-
pared with a set of OLI SOSag aggregated using the percentile approach
within a VIIRS grid. AAD in a VIIRS grid displayed similar patterns as in a
single VIIRS pixel, butwithmuch smallermagnitudes (Fig. 10). AADwas
smallest in the most homogeneous regions and increased with hetero-
geneity. At the same level of heterogeneity, AAD was smallest when
SOSag was aggregated by choosing the date when OLI SOS occurred in
30% of OLI pixels in the relatively homogeneous grids, and at 40% of
OLI pixels in the more heterogeneous grids. If SOSag in a VIIRS grid
was aggregated using the timing of 30th–40th percentile of OLI SOS,
then the AADwas b5 days in homogeneous grids and 15 days in hetero-
geneous grids.

Fig. 11 displays the bias between VIIRS SOSVIIRSag and SOSag in a
VIIRS grid. Similar to the comparison at a VIIR pixel (Fig. 9), the bias
was negative if SOSag was aggregated using b20th percentile of OLI
SOS and the bias was positive if SOSag was aggregated from 35 to
100th percentile. The bias approached zero if SOSag was selected from
20 to 30th percentile of OLI SOS, identical to the pixel-based result.

Figs. 12 presents the difference between VIIRS SOSVIIRSag and OLI
SOSag aggregated using the timing at the SOS occurrence of 30% OLI
pixels in a VIIRS grid. The samples were closely distributed along the
1:1 lines with slopes close to 1 in homogeneous regions. With the in-
crease of heterogeneity, the intercept in the linear regression increased
while the slope decreased, and the correlation coefficients were also re-
duced. AADwas b5 days and RMSD b 6 days in the homogeneous region
(PSD b 60%). In the most heterogeneous region (PSD= 80–100%), AAD
was 6 days and RMSD was 8 days. If all the good SOS pixels across the
regions were considered (0–100% PSD), then the AAD and RMSD were
5 days and 6 days, respectively.

4. Discussion and conclusion

This study investigated and compared SOS dates as estimated from
remote sensing data at two common spatial resolutions: 500 m and
30 m. The SOS at different scales was retrieved from the fused OLI
data and from VIIRS observations, instead of aggregation from the

Fig. 7. Frequency and cumulative frequency distributions of high confidence OLI SOS within a high confidence VIIRS pixel across different levels of heterogeneity and the corresponding
VIIRS SOS in 2013.
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same finer resolution, which avoided the risk that SOS agreement arose
due to the data source being identical at both scales. It should be noted,
however, that the time series of 30mdatawere fused fromobservations
with high spatial resolution of Landsat and higher frequency of MODIS
using the STARFM algorithm. Because the fusing algorithm relies on
the existence of co-temporal pairs of Landsat and MODIS image to pre-
dict Landsat images on aMODIS date (Gao et al., 2006), the quality of the
fused time series is dependent on the number of observations from
Landsat. In 2013, there are only 6 Landsat OLI observations available
to use and no data available before DOY 140, so that the fused time se-
ries likely contains large uncertainties during spring. In contrast, there
are 9 Landsat OLI observations in 2014 and 5 observations from DOY
70–175 (spring to early summer), which is likely to produce more reli-
able fused time series and more accurate SOS dates. Moreover, fused
time series were affected by off-nadir observations from Terra MODIS
images with reduced spatial resolution (Campagnolo et al., 2016). We
expect that these results will be further explored and verified once

time series observations from Sentinel-2 satellite and Landsat 8 OLI
are well-calibrated and combined.

The selected research area covers awide range of SOS heterogeneity,
which enabled us to explore the complexities of SOS variation in coarser
resolution pixels. Within the same crop field, SOS patterns and growth
conditions were relatively homogeneous because of the same manage-
ment practice. In a 30 m pixel, SOS could well reflect the planting date
and crop germination for specific crop varieties, because the mean size
of crop fields that had a prominent and contiguous boundary with the
same crop type was 0.193 km2 (~214 Landsat pixels) across the central
US (Yan and Roy, 2016). However, changing agronomic practices result-
ed in dramatic changes of crop types and varieties among neighboring
fields. As a result, the crop planting timing for various fields could vary
sharply with a time difference of more than three months. A sharp dif-
ference in SOS was also evident between crops and natural vegetation
across the study area, where SOS was more than one month earlier in

Fig. 8. Average absolute difference between VIIRS SOS and OLI SOSag at different levels of
heterogeneity based on data in both 2013 and 2014. OLI SOSag was aggregated within a
VIIRS pixel using the percentile approach.

Fig. 9. Bias between VIIRS SOS and OLI SOS aggregated using the percentile approach
within a VIIRS pixel at different levels of heterogeneity based on data from both 2013
and 2014.

Fig. 10. AAD between VIIRS SOS and SOSag within VIIRS grids aggregated using the
percentile approach at different levels of heterogeneity based on data in both 2013 and
2014.

Fig. 11. Bias between VIIRS SOS and SOSag within VIIRS grids aggregated using the
percentile approach at different levels of heterogeneity based on data in both 2013 and
2014.
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natural vegetation than croplands. Amongnatural vegetation, SOS could
also shift greatly due tomicroclimatic changes (Augspurger et al., 2005;
Fisher et al., 2006; Richardson and O'Keefe, 2009). Consequently, OLI
SOS SD in a VIIRS pixel was observed to be as large as 40 days in 2013
and 30 days in 2014, although the peak frequency of OLI SD appeared
at 4 SD days across the study area. The heterogeneous regions with SD
larger than 10 days were 40% in 2014 and 60% in 2013. Although the
heterogeneity levels were defined using the cumulative frequency dis-
tribution of OLI SD in a given year and the SD differed within the same
heterogeneity level between years, the relative impacts of heterogene-
ity on SOS detections remained constant.

Comparisons between VIIRS SOS and OLI SOS by selecting only high
confidence SOS retrievals (PGQsos N 40%) ensured the reliability of the
results. SOS detections were significantly affected by the quality of sat-
ellite observations used in the time series. Poor SOS detections were re-
moved using PGQsos threshold during the period of SOS occurrences.
PGQsos showed no consistent spatial and temporal patterns, because
it was driven mainly by patterns of missing data that typically resulted
from cloud cover. OLI PGQsos was very poor (insufficient high quality
temporal observations) in large portions of the southern region in
both years. In contrast, the VIIRS PGQsos was relatively high in the
southern region and the poor VIIRS PGQsos retrievals were randomly
distributed across large parts of the region. The difference between
OLI PGQsos and VIIRS PGQsos was associated with the time lag of the
satellite observations. OLI time series were fused using observations
around 10:30 am fromTerraMODIS and Landsat 8,while VIIRS observa-
tions were obtained around 1:30 pm. This time lag could have signifi-
cantly impacted the level of cloud contamination, which was
particularly evident in the southern region of the study area.

Comparisons between VIIRS SOS dates and OLI SOS dates across a
wide range of heterogeneities improved our understanding of the scal-
ing effect on land surface phenology (LSP) at coarse resolutions. This
step is critical in evaluating LSP quality and bridging LSP across scales.
VIIRS SOS could be well represented using optimal OLI SOS values

within a VIIRS pixel or grid. In homogeneous regions, OLI SOS values
in N60% of pixels were equivalent to VIIRS SOS. However, about 5% of
earliest OLI SOS and 20% of the latest OLI SOS within a VIIRS pixel rela-
tively deviated from the VIIRS SOS dates. This level of deviation is rea-
sonable because the VIIRS pixels or grids were more or less mixed
covers with several vegetation types and completely homogeneous
VIIRS pixels were rare. This result suggests that plot-based, in-situ ob-
servations in homogeneous regions can be generally effective for the
validation of LSP (Roman et al., 2011). Unsurprisingly, the most homo-
geneous SOS is likely to be observed within a single crop field because
of similarity of agronomic management practices. In comparison, SOS
in a “homogeneous” forest area could still vary considerably due to for-
est species distribution andmicroclimate resulting in SOS dates that are
larger than 10 days (Fisher et al., 2006; Richardson and O'Keefe, 2009;
Liang et al., 2011). In contrast, the proportion of OLI pixels with SOS
dates similar to VIIRS SOS dates greatly decreased with increasing het-
erogeneity. Within a heterogeneous VIIRS pixel containing various
plant species, the range of OLI SOS could be as large as three months.
In these situations, the OLI SOS values in b20% of pixels were compara-
ble to VIIRS SOS dates.

Comparing VIIRS SOS with OLI SOSag further revealed that the AAD
was smallest and bias approached zero, if the OLI SOSag data were ag-
gregated by selecting the date when SOS transition had occurred in
about 30% of OLI pixels. This result was consistent for individual VIIRS
pixels and for the VIIRS grids (3 × 3 pixels) in both 2013 and 2014.
This finding is also consistent with other remote sensing studies that
have foundMODIS SOS dates corresponds to the timingwhen budburst
has occurred in 20%–33% of individual stems monitored from the
ground in the Harvard Forest (Zhang et al., 2006; Ganguly et al.,
2010). Thus, we can conclude that the SOS detected from satellite data
represents the timing at which vegetation greenup onset occurred in
30% of area in an individual pixel despite the heterogeneity in SOS
dates. The finding also supports our hypothesis that the SOS at a coarser
resolution becomes detectable when vegetation starts to greenup in a

Fig. 12. Scatterplots of VIIRS SOS and OLI SOSag at different levels of heterogeneity in 2013 and 2014. The color indicates the sample density, increasing from blue to red.
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certain proportion of finer resolution pixels, and that the coarser resolu-
tion SOS is associated with the earlier SOS pixels at the finer resolution
rather than the later SOS pixels.

Understanding the scaling effect on LSP helps the process of validat-
ing coarser resolution SOS using finer resolution observations. Valida-
tion of satellite-based products is an important and challenging task in
remote sensing; however, one of the main difficulties is how to scale
plot levelmeasurements up to the coarser resolution of spaceborne sen-
sors (Buermann et al., 2002; de Beurs et al., 2009; Herold et al., 2008;
Weiss et al., 2007). Coarser resolution LSP is commonly validated
using the simple average of finer resolution data (Delbart et al., 2015;
Roman et al., 2011); however, this study suggests that selecting the
timing of the 30th percentile at the finer resolution is biophysically
meaningful, particularly in very heterogeneous areas. Based on this cri-
terion, we have demonstrated that the VIIRS SOS was well detected be-
cause its overall difference with the OLI SOSag was b5 days in
homogeneous regions, although the difference was larger in heteroge-
neous regions.

Finally, it should be noted that the result of coarser resolution SOS
equivalent to finer resolution value at 30th percentile was derived
fromOLI (30m) and VIIRS (~450m) and verified by comparing SOS ag-
gregated in 3by3 VIIRS pixels with OLI SOS. Further studies are needed
to explore how the SOS scales across various landscapes and ecosys-
tems. To investigate SOS variations across scales is challenging, because
it requires multiple sets of SOS data across spatial scales. Moreover,
these multiple sets should be derived from vegetation index time series
at various spatial resolutions independently rather than simply aggre-
gated from the same finer resolution SOS dataset using aggregation ap-
proaches such as averaging, thinning, or majority filtering. Finally,
further research is needed to verify if the 30th percentile is always the
optimal percentile for the aggregation of LSP SOSvalues that are extract-
ed by various methods.
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