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Abstract: Traditional studies of urban climate used air temperature observations from local
urban/rural weather stations in order to analyze the general pattern of higher temperatures in
urban areas compared with corresponding rural regions, also known as the Urban Heat Island
(UHI) effect. More recently, satellite remote sensing datasets of land surface temperature have been
exploited to monitor UHIs. While closely linked, air temperature and land surface temperature
(LST) observations do not measure the same variables. Here we analyze land surface temperature
vs. air temperature-based characterization and seasonality of the UHI and the surface UHI (SUHI)
from 2003 to 2012 over the Upper Midwest region of the United States using LST from MODIS,
and air temperature from the Daymet modeled gridded daily air temperature dataset, and compare
both datasets to ground station data from first-order weather stations of the Global Historical
Climatology Network (GHCN) located in eleven urban areas spanning our study region. We first
convert the temperature data to metrics of nocturnal, diurnal, and daily thermal time and their
annual accumulations to draw conclusions on nighttime vs. daytime and seasonal dynamics of
the UHI. In general, the MODIS LST-derived results are able to capture urban–rural differences
in daytime, nighttime, and daily thermal time while the Daymet air temperature-derived results
show very little urban–rural differences in thermal time. Compared to the GHCN ground station air
temperature-derived observations, MODIS LST-derived results are closer in terms of urban–rural
differences in nighttime thermal time, while the results from Daymet are closer to the observations
from GHCN during the daytime. We also found differences in the seasonal dynamics of UHIs
measured by air temperature observations and SUHIs measured by LST observations.

Keywords: Daymet; Global Historical Climatology Network; Growing Degree-Days; land surface
temperature; MODIS; surface urban heat island; urban heat island

1. Introduction

Global urban population was 746 million in 1950, increasing to 3.9 billion by 2014, and future
projections estimate an additional 1.2 billion urban inhabitants by 2030 [1]. Rapid urban population
growth drives urbanization. Global urban land area increased by 5.8 M ha from 1970 to 2000, with the
highest rates of urban land expansion occurring in India, China, and Africa [2]. However, the greatest
change in total urban land occurred in North America [2], with the United States alone accounting for
18.5% of total global urban land cover at the start of the 21st century [3]. Urbanization is projected to
increase by 152.7 M ha by 2030 [2].

Remote Sens. 2016, 8, 297; doi:10.3390/rs8040297 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2016, 8, 297 2 of 22

Urbanization can modify local to regional climate on daily, seasonal, and annual scales [4]. Urban
areas alter local atmospheric conditions by modifying surface albedo and run-off, and consequently
the surface energy balance, by releasing energy through anthropogenic heating, and by increasing
atmospheric aerosols [5]. Perhaps the clearest example of urban climate modification is the Urban
Heat Island (UHI) effect, for which urban temperatures are generally warmer than surrounding rural
areas, particularly overnight [6]. Combined with urbanization, future climate change is projected to
increase UHI temperatures by around 1 ˝C per decade [7]. Global climate models predict that the
combination of future urbanization and climate change will increase the UHI effects by up to 30% with
a doubling of atmospheric CO2 [8]. As more of the global population resides in cities, more people will
be exposed to the effects of UHIs, which have been linked to health-related consequences, including
decreased quality of living conditions and increased heat-related injuries and fatalities [9,10].

The UHI effect is a result of urban/rural differences in the surface energy budget [5,11]. During
the day, impervious surfaces in densely built-up sections of cities absorb more incoming solar radiation
than regions of dense green vegetation in rural areas. Building materials have higher heat storage
capacity than vegetation and re-radiate part of the stored energy at night as longwave thermal
infrared radiation. Impervious surfaces are drier than vegetation, resulting in more net radiation
being partitioned to sensible heat flux than to latent heat flux [5,10,12]. Consequently, urbanization
can increase the intensity of the UHI effect [13] as a result of land use/land cover changes that
often replace cooler, wetter vegetated surfaces with warmer, drier impervious surfaces [14], which
ultimately affects both the routing of wind and water and the storage and eventual release of heat and
moisture [15]. Urban canopy geometry generally decreases outgoing longwave radiation and increases
its re-absorption in nearby buildings [11,16]. The radiative, thermal, moisture, and aerodynamic
characteristics of various urban surfaces also influence the spatial, temporal, and intensity patterns of
the UHI [11,17]. Anthropogenic heating also contributes to the UHI from the heating, cooling, and
lighting of buildings, exhaust from vehicles, outdoor lighting, and industrial processes [11]. Under
stable conditions, the UHI is more pronounced during the overnight hours due to reduced cooling
rates from late afternoon into the evening, and can even be negative around midday [6]. Cities can act
as heat and moisture islands overnight [18]. Urban surfaces store more heat during the day, which is
released into the urban environment at night, leading to warmer overnight minimum temperatures
in cities [6,19], and consequently the diel (24 h) temperature range is smaller in urban areas than the
surrounding rural landscape [11]. Seasonally, the UHI is generally strongest in autumn and winter,
and weakest in summer [20].

Early studies observed the UHI effect directly through stationary in situ air temperature
measurements from weather instruments at meteorological stations [21–23]. Beginning in the 1960s,
UHI studies started combining mobile air temperature readings using automobiles and aircraft with
weather station air temperature measurements [11,24–27]. The advent of satellite observations in the
1970s led to the application of thermal infrared (TIR) data being used to identify urban areas [28].
More recently, studies have used land surface temperature (LST) data provided by the Moderate
Resolution Imaging Spectroradiometer (MODIS) to monitor the UHI [19,29–31]. Satellite-derived TIR
data is useful for UHI-related research because of its superior spatial coverage over urban areas when
compared to in situ air temperature data [29].

However, satellite-derived TIR data measure something qualitatively different from weather
station observations of the air temperature at the nominal height of 2 m. The spaceborne sensor senses
the radiometric skin temperature at the land surface. The surface urban heat island, or SUHI, can
behave differently from the UHI described by a network of air temperature measurements [32,33].
In general, LST is more variable and often higher than contemporary air temperature [34,35]. An early
satellite remote sensing-based study found that SUHI intensity is a function of land cover/land use
type and intensity is greater around midday compared to at night, because illuminated surfaces heat
and cool more quickly than air [32]. A recent modeling study of major U.S. cities found that maximal
differences in urban/rural LST occurs around 11:00 a.m. as urban impervious surfaces warm faster
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than rural vegetation [36]. Another study found that impervious surface area is the primary driver of
SUHI intensity for 38 cities across the United States, and that the average SUHI amplitude is stronger
in summer compared to winter [19].

In summary, UHI studies use either air temperature data from measurements at weather stations
or remotely sensed LST derived from spaceborne instruments. In situ air temperature observations
span a longer record with higher temporal resolution, but suffer from poor spatial coverage; whereas,
satellite observations offer better spatial distribution but they are constrained to a shorter period
at lower temporal resolution [29]. While both UHI and SUHI characteristics have been studied
extensively, this study is the first to use metrics of nocturnal, diurnal, and daily thermal time and their
annual accumulation to analyze: (1) urban/rural; and (2) air/land surface temperature differences in
thermal climate. Here, we compare and contrast land surface temperature vs. air temperature-based
characterization of the (surface) urban heat island by analyzing daytime, nighttime, and daily
thermal time as calculated from the MODIS land surface temperature product and the Daymet
gridded minimum/maximum daily air temperature dataset and relate the results to corresponding
first-order weather station observations from the Global Historical Climatology Network (GHCN) for
11 urban/rural station pairs in the Upper Midwest of the United States from 2003 to 2012.

2. Materials and Methods

2.1. Study Region

Broadly known as the Upper Midwest, most of the region (78–98˝W, 40–48˝N) is located on
a relatively flat, continental, temperate plain with no major mountain range. However, the U.S.
Great Lakes in the northern and eastern ends of the region do present confounding meteorological
influences for cities located on or near the Great Lakes. We selected the largest city in each state that
is located within the bounds of our study region for a total of 11 cities (Table 1). Each focal city is
embedded within a vegetated landscape and is relatively isolated from any other city. The cities range
in population from ~0.2 M in Fargo, ND to ~9.5 M in the Chicago, IL metropolitan area [37]. A study of
urban climate characterized the “ideal” conditions of UHIs arising from a city with a temperate climate,
situated on flat terrain with population greater than 100,000 [11]. With the exception of Pittsburgh, PA,
where terrain is relatively hilly, all of the focal cities match the “ideal” UHI criteria. Figure 1 shows
the 2011 National Land Cover Database Land Cover Type data product with the eleven focal cities
outlined in black [38]. The western and southern portions of the study region are predominantly crop
and pasture lands (Figure 1, brown/yellow) compared with increasingly forested regions surrounding
the cities to the north and east (Figure 1, shades of green).

Table 1. Eleven focal cities with population [37], urban extent [39], and population density from 2011
by metropolitan statistical area.

City 2011 Population (Total) 2011 Urban Extent (ha) 2011 Density (pop/ha)

Chicago 9,491,283 274,465 34.6
Detroit 4,287,556 152,077 28.2

Minneapolis-St. Paul 3,388,716 113,889 29.8
Pittsburgh 2,359,783 77,432 30.5
Cleveland 2,068,606 59,608 34.7
Milwaukee 1,561,108 47,261 33.0

Omaha 876,836 37,280 23.5
Des Moines 580,779 22,366 26.0
Fort Wayne 419,609 15,848 26.5
Sioux Falls 232,553 9468 24.6

Fargo 212,695 11,392 18.7



Remote Sens. 2016, 8, 297 4 of 22
Remote Sens. 2016, 8, 297 4 of 22 

 

 
Figure 1. 2011 National Land Cover Database Land Cover Type [38] over the Upper Midwest region 
of the United States, with selected GHCN sites in yellow, and 11 focal cities outlined in black. 
Numbers are GHCN station IDs and additional station information can be found in Table 2. 

2.2. Data 

2.2.1. MODIS Land Surface Temperature 

The Moderate-resolution Imaging Spectroradiometer (MODIS) is a scientific instrument aboard 
the NASA Earth Science satellites Aqua and Terra that operates as a part of the Earth Observing 
System [40,41]. Here, we used the MODIS-Aqua (MYD11A2) and MODIS-Terra (MOD11A2) 
products, which are level-3 global Land Surface Temperature and Emissivity 8-day composites at 
1000 m resolution, provided in sinusoidal grid format as the mean clear-sky LST during an 8-day 
time frame [42]. The specific scientific datasets we used from the product include “LST_Day_1km” 
and “LST_Night_1km”, with units in Kelvin [42]. The overpass time for MODIS-Terra 
“LST_Day_1km” is 1030 local solar time and MODIS-Aqua is 1330 local solar time, and the overpass 
time for MODIS-Terra “LST_Night_1km” is 2230 local solar time and MODIS-Aqua is 0130 local solar 
time [43]. We obtained all M{Y|O}D11A2 observations from 2003 to 2012 (46 annually; 460 total) for 
MODIS tiles h10v04 and h11v04 [42]. We also downloaded the MODIS Aqua (MYD10A2) and Terra 
(MOD10A2) snow cover products, which contain level-3 global “Maximum Snow Extent” 8-day 
composites at 500 meter resolution [44]. 

2.2.2. Daymet Modeled Air Temperature 

The Daymet data product provides daily mosaicked gridded estimates of weather parameters 
for North America [45]. The dataset is calculated from meteorological station observations via 
extrapolation and interpolation algorithms [45]. The Daymet data product is available as daily 1000 
m resolution netCDF files, distributed in 2 degree × 2 degree tiles [45]. We downloaded the maximum 
and minimum air temperature products covering tiles 11,742–11,751, 11,922–11,929, 12,102–12,108, 
and 12,282–12,287 (31 tiles total) for years 2003–2012 [46]. The maximum and minimum air 
temperature parameters are described as the daily maximum and minimum 2-meter air temperature 
provided in degrees Celsius [45].  

2.2.3. Global Historical Climatology Network 

The Global Historical Climatology Network (GHCN) provides daily climate observations from 
~30 weather station networks [47]. The network includes station-based measurements from more 

Figure 1. 2011 National Land Cover Database Land Cover Type [38] over the Upper Midwest region of
the United States, with selected GHCN sites in yellow, and 11 focal cities outlined in black. Numbers
are GHCN station IDs and additional station information can be found in Table 2.

2.2. Data

2.2.1. MODIS Land Surface Temperature

The Moderate-resolution Imaging Spectroradiometer (MODIS) is a scientific instrument aboard
the NASA Earth Science satellites Aqua and Terra that operates as a part of the Earth Observing
System [40,41]. Here, we used the MODIS-Aqua (MYD11A2) and MODIS-Terra (MOD11A2) products,
which are level-3 global Land Surface Temperature and Emissivity 8-day composites at 1000 m
resolution, provided in sinusoidal grid format as the mean clear-sky LST during an 8-day time
frame [42]. The specific scientific datasets we used from the product include “LST_Day_1km” and
“LST_Night_1km”, with units in Kelvin [42]. The overpass time for MODIS-Terra “LST_Day_1km” is
1030 local solar time and MODIS-Aqua is 1330 local solar time, and the overpass time for MODIS-Terra
“LST_Night_1km” is 2230 local solar time and MODIS-Aqua is 0130 local solar time [43]. We obtained
all M{Y|O}D11A2 observations from 2003 to 2012 (46 annually; 460 total) for MODIS tiles h10v04
and h11v04 [42]. We also downloaded the MODIS Aqua (MYD10A2) and Terra (MOD10A2) snow
cover products, which contain level-3 global “Maximum Snow Extent” 8-day composites at 500 meter
resolution [44].

2.2.2. Daymet Modeled Air Temperature

The Daymet data product provides daily mosaicked gridded estimates of weather parameters
for North America [45]. The dataset is calculated from meteorological station observations via
extrapolation and interpolation algorithms [45]. The Daymet data product is available as daily 1000 m
resolution netCDF files, distributed in 2 degree ˆ 2 degree tiles [45]. We downloaded the maximum
and minimum air temperature products covering tiles 11,742–11,751, 11,922–11,929, 12,102–12,108, and
12,282–12,287 (31 tiles total) for years 2003–2012 [46]. The maximum and minimum air temperature
parameters are described as the daily maximum and minimum 2-meter air temperature provided in
degrees Celsius [45].
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2.2.3. Global Historical Climatology Network

The Global Historical Climatology Network (GHCN) provides daily climate observations from
~30 weather station networks [47]. The network includes station-based measurements from more than
90,000 stations globally [47]. The dataset is reconstructed weekly and checked for quality assurance [47].
We used daily maximum and minimum temperature observations (tenths of degrees Celsius) provided
by GHCN for 22 stations located in and nearby our study cities from 2003 to 2012 [48]. We selected one
GHCN station within each of the eleven cities and an additional GHCN station located outside of each
city (Figure 1). Information on the station names and geographic locations can be found in Table 2.

Table 2. Global Historical Climatology Network study ID, city, type, station names, station ID,
geographic location, and elevation [46]. Station ID numbers correspond to numbered labels found in
Figure 1.

ID City Type Station Name Station ID Lat Lon Elevation (m)

1 Fargo U Fargo Hector Intl. Airport W00014914 46.9 ´96.8 274
2 Fargo R Mayville C00325660 47.5 ´97.4 288
3 Sioux Falls U Sioux Falls Foss Field W00014944 43.6 ´96.8 435
4 Sioux Falls R Rock Rapids C00137147 43.4 ´96.2 412
5 Omaha U Omaha Eppley Airfield W00014942 41.3 ´95.9 299
6 Omaha R Mead 6 S C00255362 41.1 ´96.5 352
7 Minneapolis-St. Paul U University of Minn St. Paul C00218450 45.0 ´93.2 296
8 Minneapolis-St. Paul R Gaylord C00213076 44.6 ´94.2 310
9 Des Moines U Des Moines Intl. Airport W00014933 41.5 ´93.7 292
10 Des Moines R Neal Smith Iowa R0000INEA 41.6 ´93.3 274
11 Milwaukee U Milwaukee Mitchell Intl. Airport W00014839 43.0 ´87.9 204
12 Milwaukee R Milwaukee WSFO Dousman C00478316 43.0 ´88.5 284
13 Chicago U Chicago Midway Airport 3 SW C00111577 41.7 ´87.8 189
14 Chicago R Paw Paw 2 S C00116661 41.7 ´89.0 290
15 Fort Wayne U Fort Wayne Intl. Airport W00014827 41.0 ´85.2 252
16 Fort Wayne R Paulding C00336465 41.1 ´84.6 221
17 Detroit U Detroit City Airport W00014822 42.4 ´83.0 191
18 Detroit R White Lake 4 E C00208941 42.7 ´83.5 321
19 Cleveland U Cleveland Burke Lakefront Airport W00004853 41.5 ´81.7 178
20 Cleveland R Wooster Experimental Station C00339312 40.8 ´81.9 311
21 Pittsburgh U Pittsburgh Allegheny Co Airport W00014762 40.4 ´79.9 380
22 Pittsburgh R Dennison Water Works C00332160 40.4 ´81.3 262

2.3. Methods

2.3.1. Thermal Time

Our study used the MODIS LST, Daymet modeled air temperature, and GHCN air temperature
observations in order to calculate three measures of thermal time. The Growing Degree-Day (GDD)
measures the amount of heat available for plant development for a given calendar day [49]. In other
words, the progress of calendar time is weighted by the daily temperature above a specific threshold:
GDD is the maximum of either: (1) the average of the daily maximum (Tmax) and minimum
temperature (Tmin) less the base temperature (Tbase); or (2) zero, if the average falls below the base
temperature (Equation (1)). Here we also introduce two new measures of thermal time that are
constructed similarly to GDD—the Diurnal Degree-Day (DDD) and the Nocturnal Degree-Day (NDD).
Whereas the GDD measures the amount of heat available for plant development using the average
temperature for a given calendar day (e.g., the simple average of the daily maximum and minimum),
DDD (or NDD) measures the amount of heat available during the daytime (or nighttime) associated
with satellite overpass periods. Both DDD and NDD can accommodate one or more observations
during the specified period, but here we used two daytime and nighttime land surface temperature
observations, respectively. Constructed similarly to GDD, DDD (NDD) is the maximum of either: (1)
the average land surface temperature from MODIS observations at 1030 (2230) and 1330 (0130) less the
base temperature; or (2) zero if the average falls below the base temperature (Equations (2) and (3)).
These times correspond to the nominal overpasses for the Terra and Aqua satellites, respectively. There
is substantial variation in the exact overpass times, so it may be more appropriate to consider these
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periods as before noon and before midnight for Terra and after noon and after midnight for Aqua [50].
Moreover, while these overpass times will rarely coincide with the times of day for the temperature
extremes, they are a relatively consistent temporal sample of the diel (24 h) temperature cycle. This
study used a base temperature of 0 ˝C for all calculations of thermal time.

GDD “ max

#«

pTmax ` Tminq

2

ff

´ Tbase, 0

+

(1)

DDD “ max

#«

pTday1 ` Tday2q

2

ff

´ Tbase, 0

+

(2)

NDD “ max

#«

pTnight1 ` Tnight2q

2

ff

´ Tbase, 0

+

(3)

We developed an algorithm to filter and convert MODIS LST into GDD, DDD, and NDD (Figure 2).
We used the MODIS maximum snow extent product to exclude MODIS LST observations when snow
cover was present. We resampled the 500 meter resolution MODIS maximum snow extent data to 1000
m using the nearest neighbor method provided by the Environment for Visualizing Images (ENVI)
software in order to align each pixel with the corresponding MODIS LST 1000 m pixel. The MODIS LST
observations were additionally filtered to exclude observations that were below freezing (273.15 K), or
unreasonably high (330 K). Next, we converted the two daytime and two nighttime LST observations
from Kelvin to degrees Celsius. The algorithm also calculates the mean daytime and nighttime LST
for each 8-day compositing period (DOY) using the 10 observations (2003–2012) available for each
DOY. The mean LST by DOY is only calculated when 8 or more years have available data. The decadal
mean daytime and nighttime LST values are later used to fill data gaps where annual observations
for a particular DOY have missing values. Next, the script calculates GDD, DDD, and NDD. GDD is
calculated as the mean of the mean daytime (T1030 and T1330) and mean nighttime (T2230 and T0130)
LST values, subtracted by a base of 0 ˝C (Equation (4)). DDD is calculated as the mean daytime LST
(T1030 and T1330) and a base of 0 ˝C (Equation (5)). NDD is calculated as the mean nighttime LST (T2230

and T0130) and a base of 0 ˝C (Equation (6)).

GDD “ max
"„

pmean pLST1030 ` LST1330q `mean pLST2230 ` LST0130qq

2



´ Tbase, 0
*

(4)

DDD “ max
"„

pLST1030 ` LST1330q

2



´ Tbase, 0
*

(5)

NDD “ max
"„

pLST2230 ` LST0130q

2



´ Tbase, 0
*

(6)

The script filters the data to exclude observations where GDD, DDD, or NDD < 0, which signifies
that zero Degree-Days (DD) were accumulated during that particular compositing period. The next
step creates annual time series of GDD, DDD, and NDD multiplied by 8 to account for the 8-day
compositing period of the MODIS products and accumulates each observation (DD in ˝C) by year. The
final products are ten-year time series of Accumulated Growing Degree-Days (AGDD), Accumulated
Diurnal Degree-Days (ADDD), and Accumulated Nocturnal Degree-Days (ANDD).
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Figure 2. Processing outline for MODIS Land Surface Temperature (LST) to Degree-Day algorithm
that converts 8-day composites of MODIS LST into annual time series of Accumulated Growing
Degree-Days (AGDD), Accumulated Diurnal Degree-Days (ADDD), and Accumulated Nocturnal
Degree-Days (ANDD).

Both the Daymet and GHCN air temperature observations provide daily minimum and maximum
temperature observations. Thus, the equations for calculating GDD, DDD, and NDD must differ
slightly from the calculations tuned for MODIS LST data. GDD from both the Daymet and GHCN
datasets is calculated as the mean daily temperature (Tmax and Tmin) subtracted by base 0 ˝C
(Equation (7)). DDD (NDD) from both the Daymet and GHCN datasets is calculated as the daily
maximum (minimum) temperature subtracted by base 0 ˝C (Equations (8) and (9)). To distinguish the
difference between DDD and NDD calculated from the MODIS LST observations vs. the Daymet and
GHCN air temperature observations, DDD and NDD calculated from Daymet and GHCN are referred
to as “maxDD” and “minDD”, respectively.

GDD “ max
"„

pTmax ` Tminq

2



´ Tbase, 0
*

(7)

maxDD “ max tTmax ´ Tbase, 0u (8)

minDD “ max tTmin ´ Tbase, 0u (9)

2.3.2. Dataset Comparison

To compare the derived thermal time series from the three different products, we calculated the
decadal mean thermal time (GDD, DDD, and NDD) and accumulated thermal time (AGDD, ADDD,
ANDD) for each dataset by DOY. We aggregated the daily Daymet and GHCN-derived measures to the
8-day compositing period of the MODIS LST-derived DD. This alignment provides the decadal mean
GDD, DDD/maxDD, NDD/minDD, AGDD, ADDD/Accumulated Tmax Degree-Days (AmaxDD),
and ANDD/Accumulated Tmin Degree-Days (AminDD) for 46 DOYs. We collected the time series
data from the MODIS and Daymet-derived products for the 1000-m pixels where the corresponding
22 GHCN stations are located. We performed linear regression on the relationships between mean
decadal DD by dataset for GDD, DDD, and NDD. We also used linear regression to characterize the
relationships between each urban and rural station pair to evaluate the ability of each dataset to capture
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the UHI effect. We analyzed the evolution of the UHI over the course of a year and the differences
between urban versus rural and daytime versus nighttime dynamics.

3. Results

3.1. Regional Characterization of Thermal Regimes

3.1.1. AGDD

Figure 3 shows the decadal (2003–2012) mean total Accumulated Growing Degree-Days over the
Upper Midwest as produced using the (a) MODIS and (b) Daymet temperature observations. On a
regional scale, the dominant spatial pattern in AGDD is similar when comparing the results from
MODIS with those from Daymet. The thermal gradient from southwest to northeast can be seen in both
images, where shades of red (blue) indicate higher (lower) AGDD. Daymet results appear smoother
with less fine-scale spatial detail than MODIS results. Major river valleys have higher annual AGDD
in the results from both datasets. Three of the major river valleys in the Upper Midwest include from
west to east: the Missouri River (forming the border between Nebraska and Iowa), the Mississippi
River (forming the eastern border of Iowa), and the Illinois River (flowing through central Illinois),
and these low-lying river valleys experience higher AGDD than the surrounding areas.
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Figure 3. Decadal (2003–2012) mean Accumulated Growing Degree-Days (AGDD) from: (a) MODIS
and (b) Daymet over the Upper Midwest Region. Areas in in shades of red (blue) indicate higher
(lower) AGDD values. GHCN sites are indicated by pale yellow circles, and eleven focal cities are
outlined in black. Notice the higher AGDD values appear within the cities in the MODIS product (a),
but are absent in the Daymet product (b).
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Two major differences are evident between AGDD derived from MODIS land surface temperature
and AGDD derived from Daymet modeled air temperature observations. The first and more obvious
difference is that Daymet data do not include air temperature over the Great Lakes. The Great Lakes
have low AGDD as seen from the MODIS LST-derived results, appearing in shades of blue in Figure 3.
Lake Superior has the lowest total AGDD of the study region. Lake Superior is both the deepest and
most northerly Great Lake. Located in the center of the region in north-south orientation is Lake
Michigan, and farthest east is Lake Erie. Moving farther south in both Lake Michigan and Lake Erie
increases the annual AGDD. Lake Erie is the shallowest Great Lake, and the western end of Lake Erie
(south of Detroit) is much shallower than Lakes Michigan and Superior; consequently, it shows a much
higher annual AGDD in shades of tan.

The second major difference between the AGDD results from MODIS and Daymet is the
appearance of local “hotspots” (as shades of red) in the MODIS AGDD (Figure 3a) but not the
Daymet AGDD (Figure 3b). The phenomenon is particularly evident in the focal cities of the study
region that are outlined in black. Even much smaller cities appear as small “hotspots” throughout
the region. In contrast, it is very difficult to distinguish urban from rural areas in the Daymet results
(Figure 3b).

3.1.2. ADDD and AmaxDD

Figure 4 shows the decadal (2003–2012) mean Accumulated Diurnal Degree-Days over the Upper
Midwest produced from the (Figure 4a) MODIS LST observations and the decadal (2003–2012) mean
Accumulated maximum Degree-Days produced using the (Figure 4b) Daymet air temperature data.
The dominant spatial pattern in ADDD/AmaxDD is similar at the regional scale in both sets of results.
A gradient from southwest to northeast can be seen in both images. However, the range in Degree-Days
from the MODIS results is much greater than in the Daymet results. The dynamic range in the MODIS
results is very large, ranging from 1600 ADDD over northern Lake Superior to 7600 in southern
Nebraska (Figure 4a). A lower range is evident in the Daymet (Figure 4b), where there is very little
contrast, as most of the region appears in a similar shade of light red to tan in color. Again, the Daymet
results appear smoother than the MODIS. Major river valleys have higher annual AmaxDD, but they
appear lower in ADDD than the surrounding areas.

The Great Lakes have low ADDD, appearing in shades of blue. Similarly, smaller inland lakes
also appear to have lower ADDD in the MODIS results, including Lake Mille Lacs north of the
Minneapolis-St. Paul, MN region and Lake Winnebago north of Milwaukee, WI (Figure 4a). However,
the Daymet results do not show lower AmaxDD over either of these large inland lakes (Figure 4b).
Variations in ADDD also appear to be influenced by land cover. In the southern and western portions
of the region, ADDD is higher (crop and pasturelands, Figure 1) while the northern and eastern
portions of the region have lower ADDD (forests and wetlands, Figure 1). In the MODIS LST-derived
results (Figure 4a), cities again appear as local “hotspots” (shades of red) compared to the surrounding
rural landscape, although the contrast is less striking than in the AGDD (Figure 3a). Again, it is very
difficult to distinguish urban from rural areas with the mean annual AmaxDD derived from Daymet
air temperature data (Figure 4b).
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Figure 4. Decadal (2003–2012) mean Accumulated Diurnal Degree-Days (ADDD) from: (a) MODIS
and (b) Daymet over the Upper Midwest Region. Areas in in shades of red (blue) indicate higher
(lower) values of (a) ADDD or (b) AmaxDD values. GHCN sites are indicated by pale yellow circles,
and eleven focal cities are outlined in black.

3.1.3. ANDD and AminDD

Figure 5 shows the decadal (2003–2012) mean Accumulated Nocturnal Degree-Days over the
Upper Midwest as produced using the (a) MODIS data and the decadal (2003–2012) mean Accumulated
minimum Degree-Days produced using the (b) Daymet data. The dominant spatial pattern in
ANDD/AminDD is similar at the regional scale in both sets of results. However, the thermal gradient
from southwest to northeast seen with AGDD and ADDD/AmaxDD has shifted to predominantly
north–south. The regional ranges of ANDD and AminDD are much smaller compared to AGDD
and ADDD/AmaxDD. Daymet results again appear smooth with less detail than the MODIS results.
Major river valleys have higher annual ANDD (Figure 5a) and higher AminDD (Figure 5b) than the
surrounding regions.
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Figure 5. Decadal (2003–2012): (a) mean Accumulated Nocturnal Degree-Days (ANDD) from MODIS
and (b) AminDD from Daymet over the Upper Midwest Region. Areas in in shades of red (blue)
indicate higher (lower) values of (a) ANDD or (b) AminDD values. GHCN sites are indicated by pale
yellow circles, and eleven focal cities are outlined in black. Notice how major water bodies and river
valleys have higher ANDD.

The Great Lakes have generally higher ANDD than the surrounding land. The difference in
the physical characteristics of the different Great Lakes once again becomes evident: the shallower
Lake Erie located farther south exhibits higher ANDD while the deeper, northern reaches of Lake
Superior retain relatively low ANDD (Figure 5a). Smaller inland lakes also appear with higher ANDD,
including the numerous lakes north of the Minneapolis-St. Paul, MN region and Lake Winnebago
north of Milwaukee, WI (Figure 5a). Although the Daymet AminDD map shows a local “hotspot”
over Lake Winnebago (Figure 5b), it is difficult to detect thermal anomalies for most inland lakes in
the Daymet data (Figure 5b). Areas surrounding the Great Lakes have higher AminDD than regions
farther away, and this phenomenon can be seen in both urban and rural areas (Figure 5b). In the
ANDD map (Figure 5a), cities again appear as local “hotspots”. In the AminDD map (Figure 5b), the
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larger urban areas do show some contrast with the surrounding landscape, notably in Minneapolis-St.
Paul, MN and Chicago, IL.

3.2. Urban/Rural Differences and Dataset Comparison

3.2.1. Urban/Rural Differences in Thermal Time

We compared the decadal (2003–2012) mean of thermal time (GDD, DDD/maxDD, and
NDD/minDD) by day of year to identify urban/rural differences in thermal time and the differences
between the three datasets. Table 3 summarizes the results from linear regression analysis. All
relationships were statistically significant with coefficients of determination ranging from 0.86–0.98.
The root mean square difference (RMSD) was lowest for the relationship between urban and rural
Daymet GDD with a correspondingly high correlation between the GDD calculated from Daymet at
urban sites and the GDD calculated from Daymet at rural sites. Daymet urban vs. rural comparisons
showed the highest correlation for all three metrics of thermal time (GDD, maxDD, and minDD; RMSD
= 0.31–0.41). Metrics of thermal time taken from the urban sites between GHCN and Daymet also
showed high correlations. However, between GHCN urban and rural metrics of thermal time RMSD
ranged from 0.79–1.07. The RMSD between MODIS urban and rural metrics of thermal time ranged
from 0.71–1.73. The weakest correlation for GHCN urban/rural values was at night (minDD); in
contrast, the weakest correlation was during the daytime (DDD) for MODIS urban/rural values.

Table 3. Different combinations of datasets, metrics of thermal time, and urban/rural comparisons
with corresponding root mean square difference (RMSD) and Spearman correlation coefficient from
linear regression analyses between thermal time derived from MODIS, Daymet, and GHCN.

X Y RMSD Spearman Coefficient

Daymet GDD Rural Daymet GDD 0.31 0.997
Daymet NDD Rural Daymet NDD 0.37 0.995
Daymet DDD Rural Daymet DDD 0.41 0.997

GHCN GDD Daymet GDD 0.70 0.987
MODIS NDD Rural MODIS NDD 0.71 0.986

GHCN DDD Daymet DDD 0.72 0.992
GHCN NDD Daymet NDD 0.73 0.975

GHCN GDD Rural GHCN GDD 0.79 0.993
Daymet NDD Rural MODIS NDD Rural 0.82 0.980
GHCN NDD Rural Daymet NDD Rural 0.84 0.961
GHCN NDD Rural GHCN NDD 0.90 0.983

Daymet NDD MODIS NDD 0.93 0.983
GHCN GDD Rural Daymet GDD Rural 0.94 0.983
GHCN NDD Rural MODIS NDD Rural 0.97 0.961

GHCN NDD MODIS NDD 1.01 0.974
GHCN DDD Rural GHCN DDD 1.07 0.989
GHCN DDD Rural Daymet DDD Rural 1.13 0.986
MODIS GDD Rural MODIS GDD 1.20 0.982

GHCN GDD MODIS GDD 1.66 0.982
Daymet GDD MODIS GDD 1.70 0.978

MODIS DDD Rural MODIS DDD 1.73 0.968
Daymet GDD Rural MODIS GDD Rural 1.85 0.971
GHCN GDD Rural MODIS GDD Rural 1.90 0.970

Daymet DDD MODIS DDD 2.62 0.967
GHCN DDD MODIS DDD 2.68 0.965

Daymet DDD Rural MODIS DDD Rural 3.03 0.935
GHCN DDD Rural MODIS DDD Rural 3.21 0.927
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3.2.2. Urban/Rural Differences in Accumulated Thermal Time

We used the 11 urban and rural station pairs from the Global Historical Climatology Network
(Table 2) and corresponding pixels from Daymet and MODIS to analyze urban/rural differences in
thermal time and to compare the results from each dataset. Figure 6 shows the mean urban–rural
difference in AGDD, ADDD, and ANDD. Values represented in Figure 6 were calculated as the mean
urban–rural difference in decadal mean annual accumulated thermal time (AGDD, ADDD or AmaxDD,
and ANDD or AminDD) from the eleven urban/rural station pairs. The urban–rural differences in all
three accumulated thermal time metrics were highest from the MODIS LST-derived results (Figure 6,
blue). The difference was greatest in ADDD and least in ANDD. In contrast, Daymet consistently had
the lowest urban–rural differences for all three metrics (Figure 6, orange). The urban–rural differences
in accumulated thermal time from the GHCN station air temperature data showed the greatest
difference in AminDD, followed by AGDD, and the smallest urban–rural difference in AmaxDD
(Figure 6, grey). MODIS results were much closer to GHCN results than Daymet during nighttime;
whereas, Daymet results were much closer to GHCN results than MODIS during daytime. The
urban–rural differences in AGDD derived from GHCN station data were between the differences from
Daymet (lower) and MODIS (higher).
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GHCN, Daymet, and MODIS.

3.2.3. Seasonal Progression of Urban/Rural Differences in Accumulated Thermal Time

Figure 7 shows the decadal (2003–2012) mean AGDD, ADDD/AmaxDD, and ANDD/AminDD
by day of year (46 dates representing the 46 8-day compositing periods of the MODIS data) for the
urban GHCN station in Des Moines, IA (ID = 9, Table 2). In general, ADDD (or AmaxDD) is the
highest metric of accumulated thermal time (Figure 7, green), followed by AGDD (purple), and
lowest is ANDD (or AminDD, blue). Based on the accumulation curves in Figure 7, the seasonal
progression of thermal time at this location is evident: in the winter months when temperatures
are below freezing (0 ˝C), the line is flat; a steep slope of rapid warming occurs during the late
spring and summer months; and the pace of thermal accumulation slows as autumn gives way to
freezing conditions near year’s end (Figure 7). The symbols shown in Figure 7 trace the seasonal
progression of urban–rural differences in AGDD, ADDD/AmaxDD, and ANDD/AminDD. Notice
the large urban–rural differences in accumulated thermal time from MODIS (Figure 7a; 2nd y-axis)
followed by GHCN (Figure 7c; 2nd y-axis), and the very small urban–rural differences in accumulated
thermal time from Daymet (Figure 7b; 2nd y-axis). These patterns align with the results displayed in
Figures 3b, 4b and 5b, where it was difficult to distinguish urban areas from the surrounding rural
regions using Daymet data.
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Urban–rural differences in accumulated thermal time were not evenly distributed throughout the
year. The most dynamic seasonal difference occurred in the MODIS urban–rural ADDD difference
(Figure 7a; green circles). The difference was higher in the early spring before decreasing and actually
became negative for a portion of the spring season. The urban–rural difference in ADDD then increased
rapidly before peaking again near the height of summer, and by the end of the year the urban–rural
difference in ADDD decreased and was lower than the urban–rural difference in AGDD (purple
diamonds) and ANDD (blue triangles). The results from the GHCN air temperature-derived thermal
time were similar to those from MODIS, where AmaxDD was higher than AGDD or AminDD during
the early spring, but by the end of the year was lower than AGDD and AminDD (Figure 7c). However,
the urban–rural differences in accumulated thermal time from GHCN did not include the peaks and
troughs evident in the urban–rural differences of ADDD from MODIS.

3.2.4. Thermal Time versus Accumulated Thermal Time

Figure 8 shows decadal mean thermal time (GDD, DDD/maxDD, and NDD/minDD) versus
accumulated thermal time (AGDD, ADDD/AmaxDD, and ANDD/AminDD) derived from MODIS
(blue), Daymet (orange), and GHCN (grey) data for the Detroit, MI urban (ID = 17, Table 2) and rural
(ID = 18, Table 2) sites. Observations for the urban site (Figure 8a,c,e) had generally higher thermal
time and accumulated thermal time than the rural site (Figure 8b,d,f). This discrepancy indicates a
potentially longer growing season within the city of Detroit, MI, compared to the surrounding rural
areas. The urban–rural difference was strongest in DDD from MODIS (Figure 8c,d; blue). Figure 8a,c
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shows that both the thermal time and accumulated thermal time are higher than the thermal time and
accumulated thermal time derived from Daymet and GHCN air temperature observations. However,
in terms of NDD/ANDD (Figure 8e) the results from MODIS are closer to the results from GHCN
compared with the Daymet modeled air temperature-derived minDD and AminDD. The results
from the rural site (Figure 8b,d,f) show little variation between the thermal time and accumulated
thermal time derived from MODIS LST, Daymet modeled air temperature, or GHCN air temperature
observations. Figure 8 also shows the distinct seasonality driven by the annual cycle of insolation that is
characteristic of the temperate northern climate of the study region [51], and all relationships in Figure 8
fit a statistically significant convex quadratic regression model with coefficients of determination
between 0.89–0.96.
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Figure 8. Decadal mean GDD (a,b); DDD/maxDD (c,d); and NDD/minDD (e,f) vs. AGDD,
ADDD/AmaxDD, and ANDD/AminDD derived from MODIS (blue), Daymet (orange), and GHCN
(grey) temperature observations for the Detroit, MI urban and rural sites.

3.2.5. Latitudinal Effects

Although our study region spans only eight degrees latitude (40–48 ˝N), the region experiences
considerable latitudinal influence on the local thermal regime. Figure 9 shows mean decadal
(2003–2012) total accumulated thermal time (AGDD, ADDD/AmaxDD, and ANDD/AminDD) versus
latitude from MODIS (shades of blue), Daymet (shades of orange), and GHCN (shades of grey) for all
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eleven (Figure 9a) urban and (Figure 9b) rural study sites. A statistically significant negative linear
relationship between total accumulated DD and latitude was found for all cases, with coefficients
of determination ranging from 0.47–0.86. Thus, it is evident that latitude affects the accumulated
thermal time in the study region. We also performed a multiple analysis of covariance test (ANCOVA),
and found that only the slope for MODIS DDD from the rural sites was significantly different from
the slopes for the GHCN and MODIS NDD from the rural sites. All other combinations were not
significantly different for the fitted slope parameter coefficient.
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4. Discussion

The results from the spatial analysis of decadal mean accumulated thermal time metrics, including
Accumulated Growing Degree-Days (AGDD), Accumulated Diurnal Degree-Days (ADDD), and
Accumulated Nocturnal Degree-Days (ANDD) were different depending on dataset, and consequently
the type of temperature being measured. MODIS LST results showed urban areas appearing
as local “hot spots” for all three metrics; whereas, the Daymet air temperature results revealed
urban hotspots only for AminDD, and then for only the largest cities. Daymet modeling of air
temperature data does not account for urban microclimatic effects—namely the Urban Heat Island.
This conclusion is further supported by the linear regression analyses, where Daymet urban versus
rural Growing Degree-Days (GDD), maximum Degree-Days (maxDD), and minimum Degree-Days
(minDD) have the three lowest RMSD values, nearly half of the RMSD values for the GHCN and
MODIS urban–rural differences. This pattern indicates that urban areas do not influence local
temperature observations as calculated from Daymet modeled air temperature data. Figure 6 shows
the very small urban–rural differences in the three measures of accumulated time as calculated by
Daymet (orange), where the urban–rural differences are less than half of the urban–rural differences as
calculated from the GHCN air temperature station observation data. In particular, the Daymet data
appear to underestimate the UHI effect of smaller cities, which can be seen in Figure 7b, where total
urban–rural differences in accumulated thermal time for Des Moines, IA are less than 50 Accumulated
Degree-Days for all three metrics, compared to the MODIS results, where urban–rural differences
exceed 450 Accumulated Degree-Days in all cases, and GHCN, where urban–rural differences range
between 200–275 Accumulated Degree-Days.
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Another interesting finding from the linear regression analyses between urban/rural Degree-Days
is that the RMSD of the MODIS results ranges from 0.71–1.73, similar to the results from GHCN
(0.79–1.07). However, upon further inspection, the RMSD for MODIS urban versus MODIS rural DDD
is higher than for GDD or NDD (1.73) while the RMSD for GHCN urban versus GHCN rural minDD is
higher than GDD or maxDD. This pattern indicates that urban–rural differences in LST are greatest
during the day (DDD) compared to urban–rural differences in air temperature, which are greatest
at night (minDD). These results make sense in the context of differences between surface urban heat
islands (SUHI) that are characterized by land surface temperature observations and the more traditional
urban heat islands (UHI) that are measured by air temperature observations. Under stable conditions,
the air temperature UHI is most pronounced during the overnight hours as a result of reduced cooling
rates from late afternoon into the evening [6,18,19]. In contrast, the land surface temperature SUHI
is more intense near midday compared to night, because surfaces heat and cool faster than air [32].
One modeling study of major US cities found that maximum differences in urban/rural LST occur
near 1100 [36]. Their finding helps to explain why the greatest urban–rural differences in Accumulated
Degree-Days occurs for Accumulated Nocturnal Degree-Days for the two air temperature datasets
(Daymet, GHCN) compared to the MODIS LST dataset where urban–rural differences are greatest as
measured using Accumulated Diurnal Degree-Days (Figure 6). It is worth mentioning again that the
overpass time for MODIS-Terra “LST_Day_1km” is 1030 local solar time and MODIS-Aqua is 1330
local solar time, which is during the peak timing of urban–rural LST differences. Studies have also
found that LST is generally higher than corresponding air temperatures, which helps to explain the
major differences in both AGDD versus GDD and ADDD versus DDD found for the urban Detroit,
MI site (Figure 8a,c). One study using MODIS LST in Milan, Italy found daytime SUHI intensity
to peak between 9 K and 10 K, decreasing by a factor of two at night [52]. Interestingly, while the
results from MODIS appear significantly higher for (A)GDD and (A)DDD, the results from MODIS
LST-derived (A)NDD are actually closer to the GHCN station data compared to the Daymet modeled
air temperature-derived results (Figure 8e). For the rural Detroit, MI site, all three datasets show
similar results for all three thermal time metrics (Figure 8b,d,f).

Over the course of a year, urban–rural differences in accumulated thermal time are striking.
In particular, the urban–rural difference in MODIS LST-derived results during the day (ADDD)
change drastically over the progression of a year (Figure 7a), because LST is strongly influenced by
land cover/land use, including impervious surface area [19,32,53]. The seasonality of urban–rural
differences in ADDD is important in the Upper Midwest of the United States because: (1) the temperate
climate drives land surface phenology; and (2) the rural vegetated land surface changes drastically
over the course of the year. Croplands of the region typically have bare soil in spring, followed by
dense, green vegetation during the summer, and ultimately dried out crops and crop residue following
the harvest in fall. Broadleaf forests are bare in the spring, followed by dense foliage during the
summer, and ultimately senesce and drop leaves in the fall. Land surface phenology helps to explain
our understanding of Figure 7a, where urban–rural differences hover near zero in the winter, since
neither urban nor rural locations are accumulating any thermal time when temperatures are below
the base temperature threshold. By early spring, there is a small peak in the urban–rural difference in
ADDD, suggesting that urban areas begin to thaw from the cold winter faster than corresponding rural
areas. However, as spring progresses, urban–rural ADDD differences decrease and actually fall below
zero for a short period (indicating warmer land surface temperatures in rural areas). This phenomenon
is likely due to the increased extent of bare soils in rural areas (lack of crops, trees yet to have foliage)
compared to urban areas; studies have found earlier green-up in cities compared to corresponding
rural areas [6,54,55]. As spring gives way to summer, the rural crop and tree canopies quickly develop,
and urban–rural differences in ADDD increase rapidly, until the difference peaks near the end of
summer. This period is characterized by full vegetation canopy and the hottest temperatures of the year.
The transpiring vegetation covering the rural areas leads to lower temperatures than the drier, hotter
impervious surfaces throughout urban areas. As summer gives way to fall, urban–rural differences
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in ADDD begin to decrease because the crop canopy dries and is eventually harvested, and the tree
canopy senesces and drops leaf, in combination with urban areas where vegetation remains greener
for longer, due to increased duration of the growing season [51].

In situ air temperature observations span a longer record and have a higher temporal resolution,
but suffer from poor spatial coverage [29]. The advent of satellite remote sensing in the 1970s created
new opportunities to measure and monitor urban areas, and more specifically, urban heat islands.
Satellite derived thermal infrared data is useful for assessing urban climatic characteristics because it
provides complete spatial coverage over urban areas when compared to in situ air temperature data [29].
However, satellite-derived land surface temperature data are constrained to a shorter climatological
record and suffer from lower temporal resolution [29]. Also, urban thermal climate studies must
account for inherent differences between air temperature and land surface temperature data. This
study provides insight into the differences between more traditional urban heat island monitoring using
air temperature observations, and the surface urban heat island that is monitored using land surface
temperature observations from satellite remote sensors. Our results show similarities and differences
between MODIS LST-derived and Daymet modeled air temperature-derived measures of thermal time
and accumulated thermal time, and ultimately how they compare to corresponding GHCN station
observations of air temperature. However, as is always the case when dealing with remote sensing
observations, we are constrained by our temporal resolution (46 annual 8-day composites) and missing
data due to snow and cloud cover. By leveraging a decade of observations, we have obtained greater
confidence in the observed differences in thermal time.

We have provided an overall assessment of urban–rural differences in daily, daytime, and
nighttime thermal time as seen through MODIS land surface temperature observations, Daymet
modeled air temperature estimates, and GHCN station air temperature observations for eleven cities
in the Upper Midwest of the United States. Our results would likely differ in parts of the country with
very different climate, i.e., in the arid Southwest. We know from past studies that UHI/SUHI dynamics
vary by biome [19]. Moreover, land surface temperature observations are influenced by land use, land
cover, and land condition, including the land surface phenology; thus, the MODIS observations that
capture conditions at particular times of day will likely differ from the daily temperature extremes.
Future research could investigate the influence of impervious surface area, land cover type, elevation,
proximity to water bodies, and other land surface variables that could influence the microclimatic
texture of the UHI/SUHI. However, the complex fabric of urban areas often leads to mixtures of
materials within pixels [56]. The locations of weather stations and the composition of nearby urban
(or rural) surfaces can also affect observed temperatures. We recognize the limitation of comparing
in situ air temperature observations at a point with the coarser resolution land surface temperature
observations. To better compare point-source station observations with the MODIS/Daymet 1000 m
resolution data and decrease the influence of mixed pixels, future research could use downscaling
techniques to increase spatial resolution, which has been done down to 100 m resolution for urban
LST observations [57]. To further explore local spatial microclimatic differences within cities, future
studies could aim to analyze not only urban–rural differences in thermal time, but also differences
within cities and the surrounding peri-urban to rural environments using the Local Climate Zones
approach [58]. Spatial resolution of available thermal remote sensing data is a limitation.

5. Conclusions

This study demonstrates the differences and similarities between datasets measuring air
temperature and land surface temperature, and their application of and subsequent implications
on studies of urban climate. The first key finding of this study is that the Daymet modeled
daily temperature estimates do a poor job of accounting for UHI-induced amplification of urban
temperatures, and exhibit very small urban–rural temperature differences, even after accumulating
the thermal time over the course of a year. The second key finding is that MODIS LST-derived
differences in urban–rural thermal time are much greater than the corresponding weather station
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air temperature-derived metrics during the daytime (diurnal); however, the nighttime (nocturnal)
dynamics of thermal time between both datasets are quite similar. Major differences in daytime
characterization of UHIs arise from differences in the object being measured. That is, characterization of
UHIs using air temperature observations is measuring a different urban thermal climate phenomenon
than are land surface temperature observations, which characterize the surface UHI. The SUHI show
more seasonal dynamics than the UHI, due to the physical differences of urban and rural land covers
that are amplified by differences in urban and rural land surface phenologies [59]. This information
should prove useful to inform a variety of interests, including scientists interested in performing urban
thermal climate analyses as well as urban land surface modelers, urban ecologists, urban planners,
urban developers, urban policy-makers, meteorologists, and climatologists.
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