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Introduction

Osteoporosis and related fractures are major health concerns
and lead to billions of dollars in health care costs1. A 2005
meta-analysis of the relationship between bone mineral density
(BMD) and fracture risk indicates that at age 65, for each stan-
dard deviation decrease in femoral neck areal BMD (aBMD),
the risk ratio for hip fracture is increased by 2.94 in men and
2.88 in women2. BMD is affected by both genetic and envi-
ronmental factors3, so it is important to maximize the effects
of positive environmental variables, such as physical activity.
Increasing bone mass during childhood through physical ac-
tivity could possibly reduce osteoporosis and related fractures
later in life.

Physical activity is associated with bone outcomes, and this
is apparent in both male and female children and adolescents4,5.
Research in both elite and non-elite child and adolescent ath-
letes also shows that those who participate in high impact load-
ing sports have higher aBMD at a number of sites, as well as
higher spine BMC than controls and athletes in low impact
loading sports6-14. Regarding racquet sports, marked bone
asymmetry between the dominant and non-dominant arms was
seen in pre- and early pubertal children who played tennis15,16,
further indicating physical activity affects bone. Some research
suggests that the benefits accrued from participating in high
impact sports during childhood and adolescence may be re-
tained into adulthood, even though adult activity levels and in-
tensity decreased15-20, while others suggest increases are lost
when activity ceases21-23. Similarly, exercise interventions have
demonstrated that BMD in children and adolescents can be in-
creased above that of controls24-26. In addition to high-impact
and weight-bearing activity interventions, interventions specif-
ically using jumping activities have been assessed for their ef-
fect on bone in children and adolescents and yield similar
results as other exercise-based intervention studies27-31.

Less is known about the effect of regular activity levels dur-
ing childhood and adolescence on adult bone, and research on
the topic provides mixed results – in part because of different
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definitions of physical activity and differences in the methods
used to assess bone. Moderate levels of historical leisure time
activity have been associated with spine and proximal femur
aBMD32 and bone area in postmenopaual women33. Con-
versely, other studies in men and women have shown no asso-
ciation between lifetime leisure and occupational activities and
BMD34,35. In South Africans, studies have shown weak signif-
icant associations between occupational physical activity dur-
ing adolescence and BMD36 and associations between impact
loading activities during adolescence and BMD later in life37.
Although some studies longitudinally examine the relationship
between physical activity and bone density, they do not draw
associations between previous physical activity and current
bone density38-40. 

The purpose of this study was to determine whether an ac-
tive rural lifestyle during childhood and adolescence, defined
as low farm mechanization, is associated with bone measure-
ments later in life. Based on previous findings we hypothesized
that if increased physical activity prior to 20 years of age leads
to bone differences in adulthood, rural participants who lived
on farms with low mechanization during childhood and ado-
lescence would have higher aBMD at one or more sites, and
greater trabecular vBMD, cortical thickness and periosteal cir-
cumference than rural participants who lived on farms with
moderate or high mechanization during childhood. We also in-
vestigated differences in other bone measurements such as
BMC and bone area. 

Subjects and Procedures
Subjects

The South Dakota Rural Bone Health Study (SDRBHS) is a
longitudinal study of 1,271 healthy adults aged 20 to 66 years41.
Of the 1,271 participants enrolled between 2001 and 2004, 585
were Hutterite Brethren, 350 were classified as rural non-Hut-
terites, and 336 were classified as non-rural, non-Hutterites.
These populations are described in detail elsewhere41. The cur-
rent study includes only the 350 individuals (166 females) clas-
sified as rural, non-Hutterites. Briefly, to be considered as rural
the subject had to have spent 75% or more of his or her life on
a working farm while working less than 1,040 h/year off the
farm. Rural participants were recruited by calling all individuals
who owned land zoned agricultural in 8 counties in eastern
South Dakota. Individuals with uncontrolled type I diabetes,
parathyroid disease, or chronic regular use (>6 months) of oral
steroids, anticonvulsants, or immunosuppressants were not el-
igible for the study, and none of the participants were taking
bisphosphonates. Since estrogen status is a potential covariate
for females, we categorized women as either replete (N=114;
pre-menopausal or post-menopausal and receiving hormone re-
placement therapy (HRT)) or deplete (N=43; post-menopausal
and no HRT) based on self-reported information. There were 5
women who stated that they had a menstrual cycle in the past
12 months but self-reported themselves as menopausal. These
women were included in the estrogen-replete group. Two
women were excluded from analysis due to possible effects of

lactation, and 11 men and 7 women were excluded because they
did not answer the farm mechanization level question. Follow-
ing these exclusions, data from 157 female and 173 male rural
non-Hutterites were analyzed.

Procedures

Data collected at baseline included anthropometric and grip
strength measurements, a 24-hour diet recall, and a 7-day ac-
tivity recall. Body composition outcomes, bone measurements
and corresponding Z-scores of the total body, spine and hip
were measured using a Hologic QDR 4500A (Waltham, MA,
USA). Two-dimensional measures of areal BMD (aBMD,
g/cm2), bone mineral content (BMC, g) and bone area (cm2)
were determined, and sex-specific T- and Z-scores were ob-
tained from the Hologic reference data sets. The coefficients
of variation (CV) at our institution for total body, spine and
hip aBMD measured by QDR 4500A in adults are 1.3% or
less. Peripheral quantitative computed tomography (pQCT;
Norland-Stratec XCT 2000) measurements of cortical area
(mm2), cortical volumetric BMD (vBMD, mg/ccm), periosteal
circumference (PeriC, mm), and cortical thickness (mm) at the
20% distal radius, and total cross-sectional area (CSA, mm2)
and trabecular vBMD(mg/ccm) at the 4% distal radius of the
left arm were obtained. Arm length was measured once from
the elbow to the ulna styloid process. A scout view was taken
and a reference line was set to identify the endplate of the ra-
dius. Slice views were taken at 4 and 20% of the measured arm
length from the reference line. Slices were obtained using a
voxel size of 0.4 mm and scan speed of 30 mm/second with a
1-block rotation. The slices were analyzed using ContMode2,
PeelMode 2 and a threshold of 400 mg/cm3 for trabecular bone
(4% site only). Cortical bone was identified using CortMode
1 with a density threshold of 710 mg/cm3 at the 20% site. The
circular ring model was used for both periosteal circumference
and cortical thickness measurements. CV’s in our laboratory
for trabecular bone measures are 4% or less and CV’s for cor-
tical bone measures are 1% or less based on duplicate scans
with repositioning in 11 adults.

Height without shoes and weight with light clothing were
determined with a portable stadiometer (SECA) and digital
scale (SECA, Model 770). Height measurements, recorded to
the nearest 0.5 cm, were taken in duplicate and repeated if they
differed by more than 0.5 cm. Weight was recorded to the near-
est 0.1 kg. Grip strength measurements, which have been
shown to be significantly associated with pQCT bone meas-
urements41, were made on each participant as both a measure
of arm strength and as an indicator of overall fitness level. Grip
strength was measured using a digital GRIP-D grip strength
dynamometer (Takei Scientific Instruments Co., Ltd., Tokyo,
Japan). The dynamometer was fit to the hand size of the par-
ticipant. While standing, the participant held the dynamometer
in his or her dominant hand, with the arm relaxed and extended
downward, and was instructed to squeeze the instrument as
hard as possible for 1 second. Each measurement was made in
triplicate and the highest value recorded.

A twenty-four-hour dietary recall interview was obtained.
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Nutrient intakes, including vitamin and mineral supplements,
were determined using the Nutritionist V software (First Data-
Bank, San Bruno, CA). Calcium (mg/d) and vitamin D (IU/d)
intakes were the main outcomes obtained from the dietary re-
call. Current activity levels were measured using a Seven-Day
Physical Activity Recall (SDPAR)42, which was modified to
include examples consistent with a rural lifestyle. The SDPAR
requires the participant to determine the average amount of
time spent per day sleeping, sitting, or in vigorous or moderate
activity during the previous week. The remaining time was
classified as light activity. Vigorous activity was considered as
any activity that leads to an increase in heart rate or heavy
breathing and included such activities as running, brisk walk-
ing and shoveling. Moderate activity was considered as an ac-
tivity that required significant movement but did not

noticeably increase heart rate or result in heavy breathing. Ac-
tivity patterns for both week days and weekend days were in-
cluded, and the number of days per week considered weekend
days also was obtained. The average daily percent of time
spent in moderate plus vigorous activity was then calculated.

Farm mechanization level was assessed using a question-
naire developed by SDRBHS staff. The questionnaire ad-
dressed primary agricultural operations at 0-20 years of age,
21-40 years of age, and 41-current years of age. The participant
was asked to subjectively categorize the operation as low,
moderate or high mechanization for each of the age groups rel-
ative to other farms located near them. A highly mechanized
operation means most of the work is done with machines,
while a low mechanization level means there is little use of
farm machinery. Finally, the participant answered ‘Yes’ or ‘No’

Mechanization Level 

Low Moderate High p value1

Females (N) 47 96 14

Age (years) 51±11 47±14 42±16 0.053

Number of live births 3.1±1.6 2.8±1.9 1.9±2.1 NS
Age at first menses (y) 13.1±1.6 13.0±1.4 13.2±1.2 NS
Estrogen Status (Replete/Deplete) 32/15 71/25 11/3 NS4

Anthropometrics
Weight (kg) 78.5±15.3a 73.2±14.6 68.0±11.2a 0.03
Height (cm) 164.5±6.1 164.3±5.9 164.1±6.6 NS
Total body % fat 37±6 35±6 33±6 NS
Lean Mass (kg) 48±6a 45±6 42±6a 0.01
Fat Mass (kg) 30±10a 26±10 23±7a 0.02
Grip Strength (kg) 32±6a 30±6 28±5a 0.03
% Time moderate+vigorous activity 28±15 24±12 29±12 NS
Sleep/Weekday (hours) 7.4±1.2 7.4±1.0 7.0±1.0 NS
Years Farming 47±12 43±14 38±16 NS

Calcium intake (mg/day) 1260±812 1037±756 1024±477 NS
Vitamin D intake (IU/day) 328±293 293±278 343±290 NS

Males (N) 34 121 18

Age (years) 48±14a 45±13 38±16a 0.02
Anthropometrics

Weight (kg) 102.7±22.5a 93.0±15.3a 91.3±18.2 0.01
Height (cm) 178.3±7.9 178.7±7.4 178.2±7.8 NS
Total body % fat 26±6a 23±6a 24±7 0.03
Lean Mass (kg) 71±8 68±8 67±8 NS
Fat Mass (kg) 27±11a 22±8a 23±12 0.02
Grip Strength (kg) 49±9 52±9 50±9 NS
% Time moderate+vigorous activity 23±13 26±13 21±13 NS
Sleep/Weekday (hours) 7.0±1.3 7.1±1.0 6.8±1.2 NS
Years Farming 46±14a 43±13 35±16a 0.02

Calcium intake (mg/day) 1112±760 1202±753 1499±856 NS
Vitamin D intake (IU/day) 265±281 262±241 282±261 NS

1 p value determined by one-way ANOVA
2 Means with similar superscripts are different at p<0.05 (Tukey HSD for multiple comparisons).
3 No difference among groups using Tukey HSD
4 Chi-square

Table 1. Characteristics of study populations by sex. Data are mean ± SD2.



L.A. McCormack et al.: Farm mechanization and bone

10

to being currently involved in farming for the majority of the
year (>20 hours per week on average).

Written informed consent was obtained from all partici-
pants, and the study was approved by South Dakota State Uni-
versity Institutional Review Board.

Statistical analysis

Statistical analyses were carried out using the JMP software
package (Version 8.0.2, SAS Institute, Inc., Cary, NC). Group
differences among low, moderate and high mechanization level
in demographic, anthropometric and bone characteristics were
tested using one-way ANOVA after stratifying by sex. Group
differences in bone measurements were further assessed by
general linear models after including the following covariates:

age, height, lean mass, fat mass, grip strength and number of
hours of sleep per week night. Estrogen status (replete vs. de-
plete) was also included for women. These covariates are ones
thought, or have been previously shown, to influence bone
measurements41. Tukey Honestly Significant Difference
(HSD) was used to determine which groups differed at p<0.05.
Results are presented as mean or least square mean ± standard
error of the mean (sem) unless otherwise stated. 

Additional variables were screened as potential covariates
(the quadratic term for age (age + age2), dietary intakes of cal-
cium and vitamin D, currently farming (yes/no), percent time
in moderate plus vigorous activity, age of first menstrual pe-
riod and number of live births) and were considered significant
and included in a screening model if they influenced the bone

Mechanization Level 

Low Moderate High p value

Females BMC (g)

Femoral Neck 4.09±0.08 4.14±0.05 3.92±0.14 NS
Total Hip 33.0±0.58 32.8±0.40 31.8±1.09 NS
Spine 64.9±1.6 66.8±1.2 67.3±2.8 NS

Bone Area (cm2)

Femoral Neck 5.09±0.05a 5.07±0.04b 4.81±0.09ab 0.03
Total Hip 33.8±0.4 33.4±0.3 32.4±0.7 NS
Spine 59.8±0.7 60.0±0.5 59.5±1.2 NS

Areal BMD (g/cm2)

Femoral Neck 0.81±0.02 0.81±0.01 0.82±0.03 NS
Total Hip 0.95±0.02 0.95±0.01 0.94±0.03 NS
Spine 1.03±0.02 1.05±0.01 1.06±0.04 NS

Femoral Neck Z-Score 0.45±0.14 0.52±0.09 0.53±0.26 NS
Total Hip Z-Score 0.66±0.13 0.68±0.09 0.57±0.24 NS
Spine Z-Score 0.72±0.16 0.96±0.11 1.04±0.32 NS

Males BMC (g)

Femoral Neck 5.12±0.12 5.12±0.07 5.10±0.16 NS
Total Hip 49.1±1.1 47.1±0.7 47.5±1.5 NS
Spine 79.1±2.3 76.7±1.2 76.9±3.3 NS

Bone Area (cm2)

Femoral Neck 5.90±0.06 5.89±0.03 5.98±0.08 NS
Total Hip 46.5±0.6 45.7±0.3 46.1±0.8 NS
Spine 72.2±0.8 70.5±0.4 70.9±1.2 NS

Areal BMD (g/cm2)

Femoral Neck 0.88±0.02 0.88±0.01 0.86±0.02 NS
Total Hip 1.07±0.02 1.04±0.01 1.03±0.03 NS
Spine 1.11±0.02 1.08±0.01 1.10±0.04 NS

Femoral Neck Z-Score 0.24±0.13 0.21±0.08 0.13±0.18 NS
Total Hip Z-Score 0.48±0.13 0.30±0.08 0.26±0.18 NS
Spine Z-Score 0.10±0.26 -0.11±0.15 0.03±0.35 NS

1 Least square means +/- SEM after adjusting for age, height, lean mass, fat mass, grip strength, number of hours of sleep and estrogen status
in women. Means with similar superscripts are different from each other at p<0.05, using Tukey HSD.

Table 2. Bone differences among farm mechanization level groups by sex1.
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measurement at a value <0.10, but were dropped from the
model if they were not significant at a level ≤0.05. Mechaniza-
tion level was added last to the model. Results from these mod-
els containing only significant covariates did not differ from
those models previously mentioned.

Results

General characteristics of the study population are given in
Table 1. In females, the low mechanization group was slightly
(not significantly) older, currently heavier, and had higher grip
strength than the high mechanization group. Lean mass and
fat mass were significantly higher in the low mechanization
group compared to the high group. No other characteristics
differed among groups. In males, the low mechanization group
was significantly older and had been farming for more years
than the high mechanization group. Also, the low mechaniza-
tion group was heavier and had a greater percent body fat than
the moderate mechanization group. Fat mass was significantly
higher in the low mechanization group compared to the mod-
erate group. No other characteristics differed among groups.

Controlling for covariates, females who grew up on farms
with low or moderate mechanization had higher femoral neck
bone area than females who grew up on farms with high mech-

anization (p=0.03). No other bone measures, including Z-
scores, differed among low, moderate or high mechanization
groups after controlling for covariates (Table 2). In men, there
were no significant differences in bone outcomes, including
Z-scores, among the mechanization groups after controlling
for covariates (Table 2).

Table 3 shows pQCT measures among mechanization lev-
els. There were no significant differences among farm mech-
anization groups in males or females after controlling for
covariates. Differences in farming operations by sex and mech-
anization level are shown in Table 4. 

Discussion

Based on previous research, we hypothesized that if increased
physical activity prior to 20 years of age leads to bone differences
in adulthood, rural participants who lived on farms with low
mechanization during childhood and adolescence would have
higher aBMD at one or more sites, and greater trabecular vBMD,
cortical thickness and periosteal circumference than rural partic-
ipants who lived on farms with moderate or high mechanization
during childhood. We found that a low farm mechanization level,
indicating high physical activity, prior to 20 years of age is asso-
ciated with greater FN bone area in females.

Mechanization Level 

Low Moderate High p value

Females BMC (g)

20% Distal Radius

Cortical Thickness (mm) 2.60±0.05 2.59±0.04 2.59±0.09 NS
Cortical vBMD (mg/ccm) 1218±5 1215±4 1221±8 NS
Cortical Area (mm2) 74.3±1.2 74.7±0.8 72.9±2.2 NS
Periosteal Circumference (mm) 37.3±0.4 37.3±0.2 37.0±0.7 NS
pSSI (mm3) 247±7 245±6 243±13 NS

4% Distal Radius

Trabecular vBMD (mg/ccm) 201±5 201±3 216±9 NS
Total Area (mm2) 282±6 283±4 285±10 NS

Males BMC (g)

20% Distal Radius

Cortical Thickness (mm) 3.13±0.05 3.00±0.03 3.07±0.07 NS
Cortical vBMD (mg/ccm) 1204±5 1197±3 1194±6 NS
Cortical Area (mm2) 109.6±1.8 109.3±0.9 110.4±2.5 NS
Periosteal Circumference (mm) 45.6±0.5 46.4±0.3 46.2±0.7 NS
pSSI (mm3) 387±12 400±7 407±17 NS

4% Distal Radius

Trabecular vBMD (mg/ccm) 232±5 224±3 221±7 NS
Total Area (mm2) 387±9 392±5 396±12 NS

1 Least square means +/- SEM after adjusting for age, height, lean mass, fat mass, grip strength, number of hours of sleep and estrogen 
status in women.

Table 3. Differences in pQCT measures between farm mechanization level groups by sex1.
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Our finding of greater bone area in females with low farm
mechanization compared to those with high mechanization is
consistent with results from Kriska and colleagues who found
bone area in postmenopausal women was significantly related
to increased historical physical activity levels at age 14-21, al-
though they were measuring the dominant radius using com-
puterized tomography33. It is possible that we did not see the
same site-specific results because we measured the left arm,
which is not necessarily the dominant arm. In fact, 90% of the
study population was right-handed, while only 10% was left-
handed. This also may explain why differences were found in
femoral neck bone area, but there were no differences in pQCT
findings. Bone differences were expected due to differences
in physical activity as a child. Activity is likely to have a
greater influence on loaded, rather than non-loaded bones, as
demonstrated in tennis players who started playing during pre-
or early puberty and displayed a marked bone asymmetry be-
tween the dominant and non-dominant radii at the ultradistal
region as adults15. We speculate that pQCT differences by farm
mechanization group may be more apparent in the tibia or in
the loaded forearm. 

We based our hypothesis on evidence that exercise during
growth affects certain bone parameters both in the short- and
long-term (see reviews of pediatric exercise trials43-45). Many
studies on the effect of exercise during bone growth have been
done in individuals who participated in competitive sports as
a child6-12, some of which were elite athletes, and additional
studies have pointed toward the potential for long-term bene-
fits of this physical activity on bone15-20,46. It is conceivable that
in our study population, duration and intensity of physical ac-
tivity were less than that of an elite athlete, so group differ-
ences in aBMD would not been seen. Additionally, there were
marked differences in body composition measures in both
males and females. It is possible that differences in socioeco-
nomic status among the mechanization levels are driving the
differences in body composition, however this was not as-

sessed. It is also possible that those who worked on low mech-
anization farms prior to 20 years of age transitioned to more
mechanized operations later in life, thereby going from an ac-
tive lifestyle to an inactive lifestyle and decreasing their phys-
ical activity. Being older, they would have more time to accrue
additional weight. Controlling for these factors eliminated dif-
ferences seen in all but one bone outcome.

Overall, little is known about the effect of regular activity
levels during childhood and adolescence on adult bone, and
research on the topic provides mixed results – in part because
of different definitions of physical activity, examining lifetime
physical activity versus physical activity during various age
groups and differences in methods for assessing bone. Rideout
and colleagues examined historical leisure time activity in
postmenopausal women and found a positive association be-
tween spine and proximal femur aBMD and leisure physical
activity at 12-18 years32. These findings were not supported
by our results; however the type of physical activity being per-
formed as part of the different levels of mechanization was not
assessed. Perhaps the types of physical activity being per-
formed in the low mechanization group were not of adequate
intensity and duration to confer benefits into adulthood, or per-
haps individuals in the moderate and high mechanization
groups were participating in physical activity not related to
working on a farm, making it difficult to discern differences
among groups attributable to lifestyle. Additionally, Mickles-
field and colleagues found that physical activity for transport
(walking and biking) at ages 14-21 was associated with prox-
imal femur BMD in South African women, as was total peak
bone strain score and spine BMD during the same time
frame37. Other studies have examined the effects of lifetime
occupational and leisure activity on bone measurements (using
different assessment methods) in different populations and
have found mixed results34-36. Although some longitudinal
studies examine the relationship between physical activity and
bone density, they do not draw associations between previous

Mechanization Level 

Low Moderate High

Females (N) 47 96 14

Livestock or Dairy 7 8 1
Crop 3 11 0
Crop & Livestock 25 55 13
Crop & Dairy 8 19 0
Other 4 3 0

Males (N) 34 121 18

Livestock or Dairy 6 15 0
Crop 2 8 5
Crop & Livestock 21 76 10
Crop & Dairy 4 19 0
Other 1 2 3

Table 4. Differences in farming operations by mechanization level and sex.
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physical activity and current bone density38-40. Examining
mechanization level as a proxy for physical activity before age
20 and its relationship between adult bone outcomes is a
strength of this study, providing insight into how lifestyle at a
young age may affect bone later in life, however it does not
capture information all types and amounts of physical activity,
which could ultimately contribute to our lack of findings.

There are studies that suggest that “rural” vs. “urban” adult
populations have higher BMD or BMC and lower fracture
risk47-49, but the rural/urban classification was based on geo-
graphic location (living in a city vs. living outside of a city)
and not on actually living a rural lifestyle. To our knowledge,
there are no studies that have looked at how everyday activities
of rural children and adolescents living a rural or farming
lifestyle affect adult bone. We looked at the specific lifestyle
the individual lived, and not the type of geographical area they
were from, and found that simply living a less-mechanized
rural lifestyle led to a difference in the femoral neck among
adult women in our groups. Our findings suggest that partici-
pating in daily activities associated with a farming lifestyle is
associated with at least one long-term adult bone measure in
females. The fact that farm mechanization level prior to 20
years of age, and not current farming activity, was a significant
predictor of this bone measurement later in life leads us to be-
lieve that some benefits to bone derived from lifestyle-related
physical activity early in life are important and can be main-
tained into adulthood. However, these long-term benefits are
not seen at all bone sites and are sex-specific.

There are several limitations to the current study. First, the
mean ages were different between the low and high mecha-
nization groups for the males. We did, however, include age
as a potential covariate in all analyses, and given the similarity
in the age ranges of the different mechanization groups, this
should control for the influence of age on the bone outcomes.
Second, data collected from the farming questionnaire was
self-reported and based on individual perception. Third, the
amount of time actually spent doing physical tasks as a child
was never asked. A person may have lived on a farm with low
mechanization but did very little, or perhaps sporadic physical
work. We also did not take into account other physical activi-
ties that were done during childhood and adolescence outside
of farm duties. Finally, the number of individuals in the low
and high mechanization groups was relatively small, which
may have limited findings. Future studies on how a farming
lifestyle influences bone development in children and adoles-
cents should address hours per week of activity and the types
of activities that are performed. Despite these limitations, we
still observed a bone difference by level of farm mechanization
in females.

Our hypothesis that individuals raised on farms with low
mechanization would have higher aBMD, trabecular vBMD
and differences in bone size compared to individuals raised on
farms with high mechanization was based on the assumption
that individuals raised on farms with low mechanization would
have greater activity levels during childhood and adolescence.
We found that a low farm mechanization level, which we spec-

ulate would lead to a high physical activity level, prior to 20
years of age, is associated with greater femoral neck bone area
in females. Further confirmation, and additional information
that includes the type and amount of physical activity per-
formed, will contribute to the growing knowledge base of how
and when regular physical activity during childhood and ado-
lescence affects adult bone health.
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