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Abstract
Few studies have examined changing snow seasonality in Central Asia. Here, we analyzed changes in
the seasonality of snow cover across Kyrgyzstan (KGZ) over 14 years from 2002/03–2015/16 using the
most recent version (v006) of MODIS Terra and Aqua 8 day snow cover composites
(MOD10A2/MYD10A2). We focused on three metrics of snow seasonality—first date of snow, last
date of snow, and duration of snow season—and used nonparametric trends tests to assess the
significance and direction of trends. We evaluated trends at three administration scales and across
elevation. We used two techniques to assure that our identification of significant trends was not
resulting from random spatial variation. First, we report only significant trends (positive or negative)
that are at least twice as prevalent as the converse trends. Second, we use a two-stage analysis at the
national scale to identify asymmetric directional changes in snow seasonality. Results show that more
territory has been experiencing earlier onset of snow than earlier snowmelt, and roughly equivalent
areas have been experiencing longer and shorter duration of snow seasons in the past 14 years. The
changes are not uniform across KGZ, with significant shifts toward earlier snow arrival in western and
central KGZ and significant shifts toward earlier snowmelt in eastern KGZ. The duration of the snow
season has significantly shortened in western and eastern KGZ and significantly lengthened in
northern and southwestern KGZ. Duration is significantly longer where the snow onset was
significantly earlier or the snowmelt significantly later. There is a general trend of significantly earlier
snowmelt below 3400 m and the area of earlier snowmelt is 15 times greater in eastern than western
districts. Significant trends in the Aqua product were less prevalent than in the Terra product, but the
general trend toward earlier snowmelt was also evident in Aqua data.

1. Introduction

Snow cover extent has been observed to be chang-
ing for more than three decades using both in-situ
data (Groisman et al 2006, Bulygina et al 2010,
2011) and remote sensing products (Schanda et al
1983, Hall et al 2002, Brown and Robinson 2011).
Remote sensing techniques for the monitoring of snow
cover extent have advanced substantially in the past
three decades (Robinson et al 1993, Armstrong and
Brodzik 2001, Painter et al 2009, Rittger et al 2013,
Morriss et al 2016). Much of the change analysis
has focused on broad scales—from hemispheric to
subcontinental—at coarse spatial resolution(Robinson
and Dewey 1990, Groisman et al 1994b, Brown 2000,

Robinson and Frei 2000, Dye 2002, Déry and Brown
2007, Hori et al 2017).

The impacts of climate change are exacerbated in
mountainous regions (Beniston 2003, Fischlin et al
2007, Immerzeel et al 2010, Rangwala and Miller
2012, Kohler et al 2014). However, the ability of global
climate projections to capture the complex dynam-
ics of mountain climates is limited (Christensen et al
2013), particularly over mountainous Central Asia
(Hijioka et al 2014, Reyer et al 2017).

Studies in montane Central Asia are relatively
few, especially at higher spatial resolutions, but they
have all shown significant changes, whether in snow
cover (Dietz et al 2013, 2014, Zhou et al 2013,
Tang et al 2017), glacial extent (Aizen et al 1995,
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Narama et al 2010), or meltwater runoff (Aizen et al
1997, Chevallier et al 2014). Still, there is a notable
paucity of studies on the changing environment
across montane Central Asia (Hijioka et al 2014,
Reyer et al 2017).

Here we evaluate trends in the seasonality of
snow cover across Kyrgyzstan since 2002 using the
latest version of the MODIS (MODerate Resolution
Imaging Spectrometer) snow cover composites. Our
need to quantify changing snow cover seasonality
arises from our interest in highland pasture condi-
tions in rural Kyrgyzstan. Kyrgyz livelihoods based
on montane agropastoralism are particularly vulner-
able to changing environmental conditions due to
a reliance on the seasonal movement of livestock
to higher elevation pastures, a practice also called
vertical transhumance (Schillhorn van Veen 1995).
We assess at multiple scales whether and where the
snow cover timing and duration have changed sig-
nificantly in the recent past: at the scale of oblasts
(provinces); in four rayons (districts); and at eleva-
tional bands within these selected rayons. We compare
results from MODIS snow cover products generated
from different overpass times (late morning and early
afternoon), and two product versions.

2. Study area

The study area is the territory of Kyrgyzstan (Kyrgyz
Republic), a highly mountainous country in the east-
ern part of Central Asia. Kyrgyzstan shares borders
with, moving clockwise from due north: Kazakhstan,
China, Tajikistan, and Uzbekistan. The total area of
the country is just shy of 200 000 km2, of which
191 801 km2 is inland and 8150 km2 is in open water.
In 2017, the population was approximately 5.8 mil-
lion living in seven oblasts or provinces (figure 1(a)),
of which only 36% are in urban areas with the largest
city being the capital Bishkek.

Kyrgyzstan is among the poorer nations, with
an estimated per capita gross domestic production
based on purchasing power parity of just US$3551
in 2016 (WorldBank 2017a). Moreover, the coun-
try is heavily dependent on remittances from workers
aboard; the World Bank projects remittance inflows of
US$2.5 billion for 2017 (WorldBank 2017b). Poverty,
particularly rural poverty, limits adaptive capacity
to respond to impacts on livelihoods arising with
climate change (Lioubimtseva and Henebry 2009,
Reyer et al 2017).

More than 56% of the territory occurs above
2500 m (Azykova 2002). Mountain ranges cover more
than 90% of the land area. These ranges include
parts of the Pamir and the Alatau, and a large por-
tion of the Tien Shan that divides the country into
two zones. The northern zone holds three oblasts—
Talas, Chuy (including the capital Bishkek), and
Issyk-Kul—and the southern zone has four oblasts—

Jalal-Abad, Naryn, Osh, and Batken (CACILM/ADB
2010).

The climate of Kyrgyzstan is influenced by
country’s inland location between temperate and sub-
tropical zone, high elevation, the distance from oceans,
and proximity to the deserts. It results in intense solar
radiation, low precipitation, and a continental climate
(Akimaliev et al 2013). The mountain relief causes
elevational climatic zonation of temperature and mois-
ture. In the hot months of July and August, the mean
air temperature over lowlands ranges between 17 ◦C–
40 ◦C and only ∼4 ◦C in the mountains. During winter
months, the lowest temperatures are recorded in the
mountain valleys and depressions (Kulikov and Schick-
hoff 2017), but frost can occur in every oblast. Annual
precipitation varies from 144 mm in some parts of
Issyk-Kul to 1090 mm in the lowlands of the Fergana
valley, but precipitation is unevenly distributed across
the country. Vegetation types are scattered along dis-
tinct elevational zones, influenced by vertical gradients
of climatic variables. Less than 10% of land area is
appropriate for crops, forests cover ∼5%, and more
than 50% of the land is used as pastoral rangeland
(CACILM/ADB 2010).

3. Methods

3.1. Satellite data
To characterize snow seasonality, we used the most
recent Version 6 of the MODIS Terra snow cover
8 day composites with a nominal spatial resolu-
tion of 500 m (MOD10A2/MYD10A2) for the period
of 14 years starting in 2002. Both datasets (Terra
and Aqua) report the maximum snow cover extent
observed during an 8 day period by compositing
500 m observations from the MODIS daily snow
cover products (MOD10A1/MYD10A1) generated by
The National Snow and Ice Data Center (https://
nsidc.org/). Snow cover information is derived from
the Normalized Difference Snow Index (NDSI) (Hall
et al 2002). Snow cover typically has very high visi-
ble (VIS) reflectance and very low shortwave infrared
(SWIR) reflectance. The algorithm uses a threshold
test for spectral band ratios of a difference in VIS
(band 4: 0.555𝜇m) and SWIR (band 6: 1.650𝜇m)
reflectance.

NDSI =
(
𝑅vis −𝑅SWIR

)
(
𝑅vis +𝑅SWIR

) . (1)

NDSI> 0.0 indicates the presences of some snow
within the pixel, while a pixel with NDSI < 0.0 indicates
a snow-free land surface (Riggs and Hall 2015).

Although snow cover always has NDSI> 0.0, not
all surface features with positive NDSI values are snow
covered (i.e. salt pans or cloud-contaminated pixels
at cloud edges). Thus, additional screening proce-
dures are required to reduce commission error. In
the MODIS products, a pixel will be mapped as
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Figure 1. Study area and results: (a) map of Kyrgyzstan with oblast borders in black and the four focal rayons outlined in red over the GMTED2010 elevation map stratified by elevation class used in the analyses; and (b) FDoS, (c)
LDoS, and (d) DoSS from the Terra MODIS snow cover product version 6 from 2002/03–2015/16 at three significance levels (p≤ 0.01, p≤ 0.05, p≤ 0.1). Shades of brown (purple) indicate negative (positive) significant trends.
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snow if the NDSI> 0.4 and the MODIS band 2 (red)
reflectance exceeds 0.11 to discriminate snow from
water (Riggs and Hall 2015). These MODIS snow
cover products (MOD10A1/MYD10A1) have under-
gone extensive peer-review evaluation and validation
processes (Hall et al 2002, Riggs and Hall 2015), and no
effort was made in this retrospective study to conduct
additional product evaluations.

We postprocessed the products by mosaicking
two MODIS tiles (h23v04 and h23v05), reprojecting
into WGS-1984, and extracting all pixels flagged as
‘snow’. There were 46 composited images per year per
product. We chose to work with the 8 day composited
products instead of the daily products for two reasons:
(1) so that the statistical power for the trend analyses
would be constant across scales, and (2) because far
fewer studies have worked with the composited data.

For terrain information, we used the 15 arc-second
(∼450 m) mean elevation product of Global Multi-
resolution Terrain Elevation Data 2010 (GMTED2010)
developed by the US Geological Survey and the
National Geospatial-Intelligence Agency.

3.2. Trend analysis
To analyze changes in snow cover seasonality, we
defined the observation season for each year to start on
day of the year (DOY) 169—approximately the sum-
mer solstice—and extend to DOY 168 of the following
year (DOY169year through DOY168year+1). Thus, we
analyzed a 14 year time series starting in the middle
of 2002 and ending in middle of 2016. For each snow
season, we tracked three snow cover variables: the first
date of snow (FDoS), the last date of snow (LDoS),
and the duration of snow season (DoSS). FDoS was
the composite date when the snow pixel is marked as
1 (snow on) first time for each snow season. LDoS
was calculated inversely, the composite date of the
last appearance of snow during the snow season. The
DoSS was the simple difference between the LDoS and
the FDoS. For each of the snow variables, we calcu-
lated the mean, standard deviation, and coefficient
of variation for the series of 14 snow seasons from
2002/03 through 2015/16.

Note that since we are interested in the potential
impact of changes in snow seasonality on pastoral-
ism, we have purposefully chosen to characterize the
snow cover season by its temporal extremities: the
first occurrence of snow appearing in a composite
during the observation season (FDoS) and the last
occurrence of snow appearing in a composite (LDoS).
We understand that snowmelt can occur after FDoS
and before LDoS, even multiple times. Were our pur-
pose to evaluate snow cover duration to estimate the
regional hydrological budget or the surface energy bal-
ance, then these outer bounds of snow occurrence
could overestimate snow cover influence. However,
our motivation in characterizing snow season timing is
different. We are more interested in pasture dynamics
than in high mountain snow processes.

Simple linear regression has been used by remote
sensing scientists to estimate trends (de Beurs and
Henebry 2008). However, it is better to use non-
parametric tests since they provide higher statistical
power in case of nonnormality and are robust against
outliers (de Beurs and Henebry 2004). To evaluate the
change in snow season metrics, we applied the non-
parametric Mann–Kendall trend test and the Theil-Sen
linear trend estimator. The non-parametric test is based
on the rank correlation coefficient statistic 𝜏 (Kendall
1938) with modification (Mann 1945), which requires
an observation series y and an accompanying time
vector x of length n to detect monotonic changes
over time. The Mann–Kendall trend test calculates
difference between later-measured data to all earlier-
measured data, (y𝑗—y𝑖), where j> i are the jth and
ith year in the time series, and assigns an integer value
of 1, 0, or −1 (positive difference, no difference, and
negative difference, respectively) (de Beurs and Hene-
bry 2004). The Mann–Kendall score S is computed
as the sum of the integer scores:

𝑆 =
𝑛−1∑
𝑖=1

𝑛∑
𝑗=𝑖+1

⎧⎪⎨⎪⎩
1, if 𝑦𝑗 − 𝑦𝑖 > 0
0, if 𝑦𝑗 − 𝑦𝑖 = 0
−1, if 𝑦𝑗 − 𝑦𝑖 < 0

. (2)

Then the Mann–Kendall test statistic 𝜏 is measured by
dividing S by the total of n× (n−1)/2 possible pairs of
data, where n is the total number of observations for
trend direction and strength. Kendall’s 𝜏 ranges from
−1.0 to 1.0, analogous to a correlation coefficient.

We estimated the monotonic rate of change in the
time series using the Theil-Sen slope, which computes
the slope for all pairs of observations and selects the
median value as the robust estimate of the trend’s slope
(Hirsch et al 1982):

𝛽1 = median
(
𝑦𝑗 − 𝑦𝑖

𝑥𝑗 − 𝑥𝑖

)
. (3)

We calculated the area of Theil–Sen slope values
associated with a significance level of p< 0.05
for positive and negative trends for each of the
seven oblasts of Kyrgyzstan and focused on four
rayons (districts). To analyze elevational effects,
we divided the area of the focal rayons into five
classes: 1400≤×< 1900 m; 1900≤×< 2400 m;
2400≤×< 2900 m; 2900≤×< 3400 m; and
×≥ 3400 m. Note there are no elevations below
1900 m in At-Bashy and Chong-Alay rayons. Note
also that Alay and Chong-Alay are adjacent rayons
located in the southwest of the country and Naryn and
At-Bashy are adjacent rayons in central Kyrgyzstan
located to the east of the other pair of focal rayons.

A negative (positive) trend in FDoS indicates ear-
lier (later) onset of snow. A negative (positive) trend
in LDoS indicates earlier (later) snowmelt. A negative
(positive) trend in DoSS indicates a shorter (longer)
snow season.
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Table 1. Area in predominant significant (p< 0.05) trends from Terra and Aqua during 2002/3–2015/16 by oblast for snow season metrics:
FDoS, LDoS, and DoSS. ‘–‘ indicates no prevalent trend.

Oblast Terra FDoS earlier
(km2)

Aqua FDoS earlier
(km2)

Terra LDoS earlier
(km2)

Aqua LDoS earlier
(km2)

Terra DoSS
shorter (km2)

Terra DoSS longer
(km2)

Batken 526 179 – – – 325
Chuy 2079 682 401 375 – 701
Issyk-Kul – – 1376 823 884 –

Jalal-Abad 1534 – 759 645 – –

Naryn 839 – 2227 1242 872 –

Osh 2021 648 – – – 701
Talas 972 – 222 213 – 357

Total 7971 1510 4985 3298 1757 2084

To highlight areas of significant change and to
attenuate the risk of finding a significant difference
where none exists (i.e. a Type I inferential error),
we calculated the ratio of area of significant negative
trends to the area of the significant positive trends for
each administrative unit. We interpreted a factor of
>2.0 (or <0.5) in the ratio of significant trends to
indicate the predominant direction of change over
the study period. We report here only the significant
trends showing a predominant direction of change
at the level of administrative unit or elevation class.
Pixel totals can vary among metrics due to the exclu-
sion of pixels exhibiting no variation in snow cover
and thereby generating NaNs (i.e. not a number) in
the trend analyses.

Finally, at the national level only, we tracked the
trend status (positive at p< 0.05 or negative at p< 0.05
or not significant at p≥ 0.05) of every pixel for the three
metrics at two sequential stages yielding 32 combina-
tions for each of the three metrics as follows:

(1) FDoS = {+ | - | ns} AND DoSS = {+ | - | ns}
(2) LDoS = {+ | - | ns} AND DoSS = {+ | - | ns}
(3) FDoS = {+ | - | ns} AND LDoS = {+ | - | ns}.
Random spatial variation should yield an approx-

imately equal proportion of positive and negative
trends. Accordingly, deviations from equal propor-
tions are particularly interesting, especially when the
deviations occur in two sequential stages.

4. Results

We first present the areal extent in each oblast asso-
ciated with the predominant trend direction and
compare the results from the most recent MODIS snow
product from Terra (MOD10A2 v006) with the sim-
ilar MODIS product from Aqua (MYD10A2 v006).
Since these satellites have different equatorial day-
time overpass times (1030 and 1330, respectively), we
expect to see some areal differences. We then focus
on the four rayons in the southern zone where we
have conducted summer field work in pastures—Alay
and Chong-Alay rayons in Osh oblast and At-Bashy
and Naryn rayons in Naryn oblast—and compare
the areal extent of the predominant trends by ele-
vation class in the Terra product only. (Some tables

appear in the supplementary materials available online
available at stacks.iop.org/ERL/13/065006/mmedia.)

For visual display only, we identified pixels from
Terra with values of Thiel-Sen slope that were signif-
icantly different from zero at three significance levels
(p< 0.1, p< 0.05, and p< 0.01). The areal analyses are
limited to those data significant at p< 0.05.

Earlier snow arrival corresponds to a negative trend
in the FDoS, and it appears prevalent across Kyr-
gyzstan (figure 1(b)), particularly in the oblasts of
Chuy (2079 km2), Jalal-Abad (1534 km2) and Osh
(2021 km2), for almost 8000 km2 in total (table 1,
column 1). Only Issyk-Kul oblast does not exhibit a
significant predominant trend of earlier snow arrival.
Some patches of significant positive trends in FDoS
(later snow arrival) are evident in eastern Kyrgyzstan
(figure 1(b)), but they are not predominant, resulting
in no entry (‘–’) in table 1.

Earlier snowmelt corresponds to a negative trend
in the LDoS, and it appears prevalent across Kyrgyzs-
tan (figure 1(c)), particularly in the oblasts of Naryn
(2227 km2) and Issyk-Kul (1376 km2), for almost
5000 km2 in total (table 1, column 3). Note, however,
that neither Batken nor Osh oblast exhibit snowmelt
that is either significantly earlier or significantly later.

A shorter (longer) snow season corresponds to a
negative (positive) trend in theDoSS, and the results are
mixed across Kyrgyzstan (figure 1(d)). A shorter snow
season is apparent in Naryn (872 km2) and Issyk-Kul
(884 km2) oblasts, totaling 1757 km2 (table 1, column
5). In contrast, a longer snow season appears in parts of
four oblasts to the west: Batken (325 km2), Chuy and
Osh (each at 701 km2), and Talas (357 km2), total-
ing 2084 km2 (table 1, column 6). Only Jalal-Abad
oblast exhibits no predominant change in areal extent
of DoSS.

Trend analysis with the Aqua product (MYD10A2)
shows predominant trends in fewer oblasts and much
smaller areas than in the Terra product (MOD10A2)
(table 1, columns 2 and 4). There are no oblasts with
predominant positive trends in FDoS, LDoS, or DoSS
as well as no predominant negative trends in DoSS
(table 1). Earlier snow arrival is evident in just three
oblasts in the Aqua product: Chuy (682 km2), Osh
(648 km2), and Batken (179 km2) (table 1, column 2).
These areal extents are less than the corresponding
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Table 2. Area in predominant significant trends from Terra for last
date of snow (LDoS) by elevation class in the four focal rayons. Bold
entries indicate significant (p< 0.05) negative trends at least twice as
prevalent as significant positive trends. Italicized entries indicate
significant (p< 0.05) positive trends at least twice as prevalent as
significant negative trends. Negative (positive) trends in LDoS
correspond to earlier (later) snowmelt. ‘nd’ = no data as lowest
elevation in rayon is >1900 m. ‘–’ indicates no prevalent trend.

Elevation class Naryn
(km2)

At-Bashy
(km2)

Alay (km2) Chong-Alay
(km2)

1400–1900 m 2.6 nd 2.1 nd
1900–2400 m 38.0 57.5 25.1 –

2400–2900 m 137.8 93.2 23.8 18.5
2900–3400 m 182.0 441.8 47.7 –

> 3400 m 47.2 720.0 49.2 18.7

Total earlier 407.6 1312.4 98.7 18.5
Total later – – 49.2 18.7

areas in the Terra product by 67%, 68%, and 66%,
respectively. The total area with earlier onset of snow
is 1510 km2 for Aqua versus 7971 km2 for Terra, or a
decrease of 81%. Earlier snowmelt (negative trend in
LDoS) is evident in five of seven oblasts in the Aqua
product, but the proportional decreases in area are less
than seen with the FDoS: Chuy (6%), Issyk-Kul (40%),
Jalal-Abad (15%), Naryn (44%), Talas (4%), and 34%
overall (table 1, column 4).

Based on the Terra data, elevational patterns are
consistent across the four focal rayons for LDoS. In
both Naryn and At-Bashy, earlier snowmelt occurs
at every elevational stratum, with an increase area
with increasing elevation most apparent in At-Bashy
(table 2, column 1–2). In Alay and Chong-Alay, there
are predominant areas of later snowmelt only above
3400 m, but earlier snowmelt below 3400 m (table 2,
columns 3–4). The area of earlier snowmelt is greater
in the eastern than the western rayons by a factor of 15.

In contrast to the LDoS, the FDoS shows eleva-
tional variation across rayons. In Naryn, 167 km2 show
earlier snow onset and all of it occurs below 3400 m
(table S1, column 1). In the neighboring rayon of At-
Bashy, there is both earlier snow onset and later snow
onset, with the latter appearing between 2900–3400 m
(table S1, column 2). Alay exhibits earlier snow onset
below 2900 m and above 3400 m (table S1, column
3). Chong-Alay rayon, in contrast, shows earlier snow
onset particularly between 2900–3400 m, but not above
3400 m (table S1, column 4).

The DoSS show both longitudinal and elevational
patterns of significant change. The two eastern rayons
(Naryn and At-Bashy) exhibit areas with shorter snow
season duration, with a clear pattern of increasing
area with increasing elevation above 2400 m in At-
Bashy, but only at the highest elevation class in Naryn
(table S2). The two western rayons (Alay and Chong-
Alay) show areas of longer snow season duration, with
Chong-Alay’s duration highest between 2400–2900 m
but absent above 3400 m (table S2).

We conducted the two-stage trend analyses only
at the national scale and used only the Terra dataset,
since it had larger areas of significant change. The

varying amount of total pixels in the first stage met-
rics arises from the exclusion of pixels exhibiting no
variation in snow cover, which generated NaNs in the
trend analyses.

Two-stage trend analysis for FDoS followed by
DoSS shows a substantially larger area with signif-
icantly earlier FDoS than significantly later and, of
those significantly earlier FDoS pixels, a substantially
larger area (19.8%) exhibits significantly longer DoSS
than shorter (table 3, row 1). In contrast, there is a
substantially larger area (60.1%) showing significantly
shorter DoSS associated with pixels with significantly
later FDoS (table 3, row 2). No predominant trend in
DoSS was evident in those pixels with no significant
trends in FDoS (table 3, row 3).

Two-stage trend analysis for LDoS followed by
DoSS shows a substantially larger area (3.2%) in sig-
nificantly earlier LDoS than significantly later and, of
those significantly earlier LDoS pixels, a substantially
larger area (8.2%) exhibits significantly shorter DoSS
than shorter (table S3, row 1). In contrast, there is a
substantially larger area (19.9%) showing significantly
longer DoSS associated with pixels with significantly
later LDoS (table S3, row 2). No predominant trend
in DoSS was evident in those pixels with no significant
trends in LDoS (table S3, row 3).

Two-stage trend analysis of FDoS followed by
LDoS shows a substantially larger area (4.8%) in sig-
nificantly earlier FDoS than significantly later and,
of those significantly earlier FDoS pixels, a substan-
tially larger area (2.3%) exhibits significantly earlier
LDoS than later (table S4, row 1). Likewise, there is
a substantially larger area showing significantly ear-
lier LDoS associated with pixels with significantly later
FDoS (0.9%) or no significant trend in FDoS (91.3%)
(table S4, rows 2–3).

5. Discussion

Our results, based primarily on the most recent ver-
sion of Terra MODIS snow cover composites, indicate
that snow seasonality has been changing in recent years
in each of the seven oblasts of the Kyrgyz Republic:
specifically, more territory has been experiencing ear-
lier onset of snow than earlier snowmelt, and roughly
equivalent areas have been experiencing longer and
shorter duration of snow seasons in the past 14 years
(table 1). Significant trends apparent in the Aqua
data were less prevalent (table 1). This discrepancy
between the Terra and Aqua results may arise from
the early afternoon overpass of Aqua, when imag-
ing geometry, cloudiness, and surface temperature
may differ. However, the general trend toward earlier
snowmelt seen in the Terra product was also evident in
the Aqua product.

Zooming into the rayon level and stratifying by
broadelevational bandswithin the focal rayons revealed
trend variation in snow cover metrics. We found
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Table 3. Two-stage trend analysis for FDoS and DoSS. Bold entries indicate at least twice the area of the significant (p< 0.05) pair.

Trend of 1st

metric: FDoS
Area in 1st metric (%) Area in 1st metric

(km2)
Trend of 2nd metric:

DoSS
Area in 2nd metric (%) Area in 2nd metric

(km2)

DoSS shorter 0.0 0
FDoS earlier 4.9 8555 DoSS longer 19.8 1693

DoSS ns 80.2 6862

DoSS shorter 60.1 983
FDoS later 0.9 1635 DoSS longer 0.8 13

DoSS ns 39.1 639

DoSS shorter 1.1 1878
FDoS ns 94.2 166, 832 DoSS longer 0.8 1307

DoSS ns 98.1 163 197

elevational variation in each snow metric: (1) earlier
onset of snow below 2900 m in all four rayons, but
divergence above 2900 m, including later onset of snow
in At-Bashy between 2900 and 3400 m (table S1); (2)
earlier snowmelt below 3400 m in all rayons except
Chong-Alay, but later snowmelt above 3400 m in Alay
andChong-Alay (table 2); and (3)occurrenceof shorter
snow seasons in At-Bashy above 2400 m and longer
snow seasons in Chong-Alay below 3400 m (table S2).

At the national level, there are ∼8600 km2 with
significantly earlier snow onset (tables 3, S4) and
∼5500 km2 with significantly earlier snowmelt (table
S3). Regardless of trend status in the first date of snow,
there is a substantially larger area exhibiting signifi-
cantly earlier snowmelt across Kyrgyzstan (table S4).
Snow season duration is significantly longer across
∼1700 km2 where snow onset is significantly earlier
(table 3). However, snow season duration is signif-
icantly shorter across 980 km2 where snow onset is
significantly later (table 3). Snow season duration is
significantly shorter across 452 km2 where snowmelt
is significantly earlier (table S3). In contrast, snow sea-
son duration is significantly longer in 155 km2 where
snowmelt is significantly later (table S3). Each of these
two-stage trends exhibits strong asymmetry in the area
associated with the pair of significant trends, strength-
ening the interpretation that these trends arenot a result
of random spatial variation.

Spatial, temporal, and elevational variations in
snowseasonality inCentralAsiahavebeendetected and
quantified in earlier studies at multiple spatial extents.
(We summarize the results of the following studies and
ours in table S5.) Dietz et al (2013) processed daily
MODIS snow cover products between 2000 and 2011
to characterize interannual variation in snow cover
across Central Asia with a view to estimating the water
content in major regional catchments contributed by
snowmelt. They found high spatial and temporal vari-
ation in snow cover and no discernable trend in the
start, end, or duration of the snow season at this broad
scale of analysis.

In a follow-on study, Dietz et al (2014) expanded
the temporal scope of the analysis from 1986–2014
by adding coarser spatial resolution Advanced Very
High Resolution Radiometer (AVHRR) data to the
MODIS data. They divided the snow cover duration
into early (01SEP-15JAN) and later (16JAN-31AUG)

seasons to detect trends within nine major catchments
in Central Asia and by 100 m elevational increments
across Central Asia. They found significant positive
trends in early season snow cover duration for most
catchments, but mixed results for later season snow
cover duration, with five of the nine catchments
having no significant trend and the remaining four
showing significant negative trends. A similar pattern
was apparent in their elevational analysis: significant
increasing snow cover duration in the early season
at most elevations, but more than half the trends in
the later season were not significant. Of those that
were significant, there was decreasing later season
snow duration between 2500 m and 3300 m (Dietz
et al 2014). This elevational range is significant: most
of the highland pastures on which Kyrgyz agropas-
toralism depends fall into this band. However, the
scale of their analysis was broad, encompassing all of
Central Asia.

Zhou et al (2013) used AVHRR and MODIS data
to study snow cover trends across the basin of the Amu
Darya from 1986–2008. They found statistically signif-
icant negative trends in snow cover duration, date of
snow cover onset, and date of snowmelt across most
of the basin, except trends of earlier snow onset in
the Central Pamir, especially at elevations greater than
4000 m (Zhou et al 2013).

Tang et al (2017) found that maps of snow cover
daysbasedoncloud-screenedMODISdaily snowprod-
ucts exhibited a high mean (> 85%) consistency with
in-situ observations of snow cover days. Their anal-
ysis focused on the Tien Shan range divided into
four regions of which Central Tien Shan corresponds
most closely to our study area. Using simple linear
regression to identify and characterize trends, Tang
et al (2017) found in the mean snow-covered area in
each of four seasons in the Central Tien Shan rang-
ing from a minimum of −8% in autumn to maximum
of −14% in spring, but no trend was statistically sig-
nificant at p< 0.05. They also calculated a decrease
of −12% in the duration of snow cover in the Cen-
tral Tien Shan from 2001–2015, but it was also not
significant.

Despite substantial spatio-temporal variation
within Kyrgyzstan and across the rest of Central
Asia, significant trends in snow seasonality exist and
these changes have the potential to disrupt herder
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livelihoods. We took along preliminary maps of the
snow season analyses during a field campaign in
Osh oblast during July 2017 to sample pastures.
The longtime head of the pasture committee for
Chong-Alay rayon studied our trend maps and com-
mented that earlier onset of the snow season had
indeed become a serious problem for herders in
recent years by limiting the use of the fall and win-
ter pastures (Maatkarimov 2017). Note that when we
speak of trends, we are talking retrospectively about
changes that have already occurred. We are not infer-
ring changes to the local or regional climates using
14 years of data. However, there have been suffi-
cient observations gathered through remote sensing
to document significant trends in snow seasonality
across large areas in Kyrgyzstan and elsewhere in
montane Central Asia.

Recent studies over the Central Asia region show
a shift in precipitation from snow to rain. It causes a
decrease in snowfall fraction, reducing snow and glacier
accumulation during winter (Chen et al 2016). More-
over, changes in snow cover and substantial shrinkage
of glaciers induce alterations in the local water cycle,
changing runoff and groundwater storage. Less pre-
cipitation in the form of snow leads to earlier melting
of snow, which can eventually shift peak runoff and
river flow toward earlier in the year instead of during
the summer when demand for water is highest (Bar-
nett et al 2005, Tang et al 2017). Higher increases
of temperature are projected for summer and fall
seasons, while lower increases are projected during
winter (Xu et al 2017), and a significant decrease in
precipitation in spring and summer (Hijioka et al
2014, Yuan-An et al 2013). However, these precip-
itation projections are highly uncertain (Flato et al
2013, Hijioka et al 2014). The assessment of climate
change effects on snow cover is particularly difficult
(Tang et al 2017) because those effects strongly vary
with geographic context and elevation. Complex ter-
rain generates many local microclimates with different
feedbacks making them harder to compare. Sunshine
duration, vapor pressure, wind velocity, and their
interactions may also enhance spatial and temporal
variation in snow cover.

Snow cover affects surface climate, including sub-
sequent vegetation growth (Groisman et al 1994a, Dye
andTucker2003).Changes in the timingof snowarrival
and snowmelt may also have impacts on montane veg-
etation (Inouye 2000, 2008). Changes in vegetation
community composition at higher elevations occur
as cold-adapted species decrease in abundance while
warm-adapted species increase in a process called ther-
mophilization (Gottfried et al 2012). Furthermore,
pasture degradation, including the spread of weedy
and unpalatable species, is already a concern in the
highland pastures of Kyrgyzstan (Hoppe et al 2016,
Eddy et al 2017). A logical next step is to link snow
cover seasonality—timing of snow onset, snowmelt,
and duration of snow season—with subsequent land

surface phenology to detect moisture-induced vegeta-
tion stress in highland pastures.

6. Conclusions

Climate change impacts threaten the prospects for
economic development across Central Asia, but espe-
cially rural livelihoods that depend on natural resources
(Reyer et al 2017). One possible consequence is
increased rural to urban migration (Reyer et al 2017).
Yet Central Asia in general and Kyrgyzstan in particu-
lar are lagging in institutional preparation for climate
change adaptation (Ford et al 2015, Lesnikowski et al
2015).

The Working Group II of the IPCC Fifth Assess-
ment report noted that there are manifold knowledge
gaps about the impacts of climate change in Central
Asia (see table 24-2 in Hijioka et al 2014). This study
attempts to help address some of these gaps at a scale
finer than most of the literature to date. By using the
most recent MODIS snow cover composited product
at multiple scales relevant to herder livelihoods in Kyr-
gyzstan, we have identified areas where snow season
timing and duration have already significantly changed
in the past 14 years.

Significant shifts toward earlier onset of snow have
been identified innearly 8000 km2 in six of sevenoblasts
and significant shifts toward earlier onset of snowmelt
in nearly 5000 km2 in five of seven oblasts. In the
past 14 years, the duration of the snow season has sig-
nificantly shortened in two oblasts and significantly
lengthened in four oblasts. At finer scales, changes in
snow seasonality have varied by elevation and rayon,
and the changes detected may impact the montane
agropastoralism that forms the basis of the economy
in much of rural Kyrgyzstan. The next step is an assess-
ment of how these recent changes in snow seasonality
have affected the highland pastures upon which rural
livelihoods depend.
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Table S1. Area in predominant significant trends from Terra for First Date of Snow by elevation class in 
selected rayons. Bold entries indicate significant (p<0.05) negative trends at least twice as prevalent as 
significant positive trends. Italicized underlined entries indicate significant (p<0.05) positive trends at least 
twice as prevalent as significant negative trends. Negative (positive) trends in FDoS correspond to earlier 
(later) onset of snow cover. "nd" = no data as lowest elevation in rayon is >1,900 m. "--" indicates no 
prevalent trend.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

elevation class 
Naryn 
(km2)  

At-Bashy  
(km2) 

Alay  
(km2) 

Chong-Alay  
(km2) 

1,400-1,900 m 2.8 nd 13.1 nd 
1,900-2,400 m 58.0 45.5 45.5 1.7 
2,400-2,900 m 41.0 33.1 33.1 7.7 
2,900-3,400 m 64.8 116.6 -- 20.8 
>3,400 m -- -- 109.7 -- 
Total earlier 166.6 78.6 201.4 30.3 
Total later -- 116.6 -- -- 
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Table S2. Area in predominant significant trends from Terra for Duration of Snow Season (DoSS) by 
elevation class in selected rayons. Bold entries indicate significant (p<0.05) negative trends at least twice 
as prevalent as significant positive trends. Italicized underlined entries indicate significant (p<0.05) positive 
trends at least twice as prevalent as significant negative trends. Negative (positive) trends in DoSS 
correspond to shorter (longer) snow season. "nd" = no data as lowest elevation in rayon is >1,900 m. "--" 
indicates no prevalent trend. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

elevation class 
Naryn 
(km2)  

At-Bashy  
(km2) 

Alay  
(km2) 

Chong-Alay  
(km2) 

1,400-1,900 m -- nd 4.3 nd 
1,900-2,400 m -- -- 15.7 5.4 
2,400-2,900 m -- 38.0 -- 57.1 
2,900-3,400 m -- 222.0 -- 38.6 
>3,400 m 23.4 331.4 24.3 -- 
Total shorter 23.4 591.4   
Total longer -- -- 44.3 101.1 
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Table S3. Two-stage trend analysis for LDoS and DoSS. Bold entries indicate at least twice the area of 
the significant (p<0.05) pair 

Trend of 1st 
metric: 
LDoS 

Area in 1st 
metric  

(%) 

Area in 1st 
metric  
(km2) 

Trend of 2nd 
metric: 
DoSS 

Area in 2nd 
metric 

(%) 

Area in 2nd 
metric 
(km2) 

 
LDoS earlier 

 
3.2 

 
5,514 

DoSS shorter    8.2        452 
DoSS longer    0.1            8 
DoSS ns  91.7     5,054 

 
LDoS later 

 
0.4 

 
778 

DoSS shorter  <0.1          <1 
DoSS longer  19.9        155 
DoSS ns  80.1        623  

 
LDoS ns 

 
96.4 

 
168,131 

DoSS shorter    1.4     2,408 
DoSS longer    1.7     2,850 
DoSS ns  96.9 162,873 
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Table S4. Two-stage trend analysis for FDoS and LDoS. Bold entries indicate at least twice the area of the 
significant (p<0.05) pair.  

 

Trend of 1st 
metric: 
FDoS 

Area in 1st 
metric  

(%) 

Area in 1st 
metric 
(km2) 

Trend of 2nd 
metric: 
LDoS 

Area in 2nd 
metric 

(%) 

Area in 2nd 
metric 
(km2) 

 
FDoS earlier 
 

 
4.8 

 

 
8,555 

 

LDoS earlier    2.3       196 
LDoS later    0.2          21 
LDoS ns  97.5     8,338 

 
FDoS later 

 
0.9 

 
1,634 

LDoS earlier    3.2          54 
LDoS later    1.0          15 
LDoS ns  95.8     1,565 

 
FDoS ns 

 
91.3 

 
161,225 

LDoS earlier    3.3     5,264 
LDoS later    0.5        742 
LDoS ns  96.2 155,219 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



S-5 
 

Table S5. Summary of trend results from recent research studies. 
 

Dietz et al. (2013) Dietz et al. (2014) Zhou et al. (2013) Tang et al. (2017) Tomaszewska & 
Henebry (2018) 

Time  2000 – 2011 1986 – 2014 1986 – 2008 2001 – 2015 2002/03 – 
2015/16 

Data  Daily snow cover 
Terra/Aqua MODIS 
at 500m 
 

Daily snow cover 
Terra/Aqua MODIS at 
500 m, and daily 
AVHRR at 1km 

Daily and 8-day snow 
cover composites 
Terra MODIS at 
500m, and daily 
AVHRR at 1km 

Daily snow cover 
Terra MODIS at 
500m  
 

8-day snow cover 
composites 
Terra/Aqua 
MODIS at 500m 

Area  Central Asia Central Asia 
(results for Syr Darya 
upstream sub-catchment) 

Central Asia 
(Amu Darya 
catchment) 

Tien Shan 
Mountains 

Kyrgyzstan 

Snow 
Season 
Metrics  

Snow cover duration 
(SCD) 

Snow cover start 
(SCS) 

Snow cover melt 
(SCM) 

Snow cover index 
(SCI) 

Snow cover duration 
(SCD) 

Snow cover duration in 
early season (SCDES) 

Snow cover duration in 
later season (SCDLS) 

Snow covering days 
(SCD) 

Snow cover onset 
date (SCOD) 

Snow cover melting 
date (SCMD) 

Snow covered 
area (SCA) 

Snow covered 
days (SCD) 

First date of snow 
(FDoS) 

Last date of snow 
(LDoS) 

Duration of snow 
season (DoSS) 

R
es

ul
ts

 

Sn
ow

 A
rr

iv
al

 No discernable trend 
recognized 

 

Negative trend of snow 
arrival 
 

Negative trend of 
snow arrival (>3,000 
m) 
 
Slightly positive 
trend > 4,000 m in 
Central Pamirs 

Did not analyze 
snow arrival 

 

Negative trends of 
snow arrival in 
western and 
central KGZ  

Sn
ow

 D
ep

ar
tu

re
 No discernable trend 

recognized. 
 

Negative trend of  snow 
departure 

 

Negative trend of 
snow departure (> 
3,000 m) 

No significant trend 
>4,000 m in Central 
Pamirs 

Did not analyze 
snow departure 

 

Negative trends of 
snow departure in 
eastern KGZ 

 

Sn
ow

 D
ur

at
io

n 

Positive trend 
increases with 
elevation 

Positive trend in early 
season increases with 
elevation 
 
Negative trends in later 
season in upstream sub-
catchment of the Syr 
Darya 

Did not analyze 
duration 

 

Negative trend in 
central and 
eastern Tien Shan 

Positive trend 
northern and 
western Tien Shan 

Negative trends in 
western and 
eastern KGZ 
 
Positive trends in 
north and 
southwestern 
KGZ  
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