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H I G H L I G H T S

• The 2020 “gigafires” contributed up to
83% of the total nitrogen emissions in
the western U.S.

• The 2020 fire emissions led to a 78% in-
crease in annual average nitrogen deposi-
tion in California.

• The average nitrogen deposition increases
to California’s forests are 6-12 times the
critical load.

G R A P H I C A L A B S T R A C T

A B S T R A C TA R T I C L E I N F O

Editor: Jay Gan Wildfire outbreaks can lead to extreme biomass burning (BB) emissions of both oxidized (e.g., nitrogen oxides; NOx=
NO+NO2) and reduced form (e.g., ammonia; NH3) nitrogen (N) compounds. High N emissions are major concerns for
air quality, atmospheric deposition, and consequential human and ecosystem health impacts. In this study,we use both
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satellite-based observations andmodeling results to quantify the contribution of BB to the total emissions, and approx-
imate the impact on total N deposition in the western U.S. Our results show that during the 2020 wildfire season of
August–October, BB contributes significantly to the total emissions, with a satellite-derived fraction of NH3 to the
total reactiveN emissions (median~ 40%) in the range of aircraft observations. During the peak of thewestern August
Complex Fires in September, BB contributed to~55% (for the contiguous U.S.) and~83% (for thewestern U.S.) of the
monthly total NOx and NH3 emissions. Overall, there is good model performance of the George Mason University-
Wildfire Forecasting System (GMU-WFS) used in this work. The extreme BB emissions lead to significant contributions
to the total N deposition for different ecosystems in California, with an average August – October 2020 relative in-
crease of~78% (from 7.1 to 12.6 kg ha−1 year−1) in deposition rate tomajor vegetation types (mixed forests+ grass-
lands/shrublands/savanna) compared to the GMU-WFS simulations without BB emissions. For mixed forest types
only, the average N deposition rate increases (from 6.2 to 16.9 kg ha−1 year−1) are even larger at ~173%. Such
large N deposition due to extreme BB emissions are much (~6-12 times) larger than low-end critical load thresholds
for major vegetation types (e.g., forests at 1.5-3 kg ha−1 year−1), and thus may result in adverse N deposition effects
across larger areas of lichen communities found in California's mixed conifer forests.

Keywords:
2020 U.S. Wildfires
Biomass burning emissions
Nitrogen emissions
Nitrogen deposition
George Mason University-Wildfire Forecast
System
WRF-CMAQ model

1. Introduction

Wildfires have been increasing in size (Westerling et al., 2006) and
potentially in severity (Miller et al., 2009) over the past decades, especially
in the western U.S. Wildfire emission outbreaks can lead to extreme
emissions of both oxidized (e.g., nitrogen oxides; NOx = NO+NO2) and
reduced forms (e.g., ammonia; NH3) of nitrogen (N) compounds, where
such N emissions are major concerns for air quality (e.g., ozone and fine
particulate matter), atmospheric deposition, and the consequential human
(Cascio, 2018; Reid et al., 2016) and ecosystem health impacts (Koplitz
et al., 2021). Using data based on the Western Wildfire Experiment for
Cloud Chemistry, Aerosol Absorption, and Nitrogen (WE-CAN) field
campaign, Lindaas et al. (2021) found that reduced N compounds comprise
a majority (39%–80%; median= 66%) of total measured reactive nitrogen
emissions. These large emissions lead to shifts in the amount and forms of
atmospheric N deposition to sensitive ecosystems that become ecologically
significant and highly variable, particularly for select western U.S. (Geiser
et al., 2010) and California ecosystems (Bytnerowicz et al., 2001; Fenn
et al., 2000, 2008) within and surrounding major wildfire areas. Outside
of major wildfires, the average annual N deposition in California ranges
from about 1–45 kg ha−1 year−1 (Bytnerowicz et al., 2001); however,
studies indicate significant contributions of wildfires to the total nutrient
(nitrogen and sulfur) deposition (e.g., maximum ~30%) that have
implications for tree growth and survival rates in some regions of the
Northwest U.S. (Koplitz et al., 2021). Other studies show that locally
enhanced N deposition (e.g., downwind of large urban areas or wildfires)
to terrestrial and aquatic ecosystems can have negative ecological effects
(e.g., biotic community changes and deleterious effects on sensitive
organisms) when levels exceed the relatively low amounts of N deposition
in thewesternU.S. (Fenn et al., 2003). There is also potential for differential
effects of reduced vs. oxidized N deposition to varying vegetative habitats
as well (van den Berg et al., 2015).

Previous studies of wildfire emissions and atmospheric N deposition are
typically averaged over specific time periods that consist of many wildfire
events/locations (e.g., the 2008–2012 period in Koplitz et al., 2021). This
strategy may inherently dampen the effects of extreme wildfire events
that are becoming ever more common in the western U.S. In this work,
we analyze atmospheric N emissions and deposition resulting from the
record-breaking 2020 wildfire season, which includes the extreme cluster
wildfire event known as the “August Complex Fire” (ACF). The ACF origi-
nated as 38 separate fires started by lightning strikes on August 16–17,
2020, where the four largest fires, the Doe, Tatham, Glade, and Hull fires
had combined and burned together by August 30. The ACF became the
first “gigafire” event in modern history in California on October 5, defined
as a blaze that burns at least 1 million acres. The total acres burned nearly
doubled late on September 10, when the Elkhorn Firemergedwith the ACF.
The total area burned by ACF was 1,032,648 acres (~1% of the area of
California) at the time it was extinguished on November 12, which is an
area larger than the size of Rhode Island (https://inciweb.nwcg.gov/
incident/6983/). Overall in 2020, California experienced 9917 incidents

of multiple complex wildfires, which led to over 4 million acres burned
and 10,488 structures destroyed (CAL FIRE, 2020).

The total biomass burning (BB) emission estimates for 2020 were
historic in the western U.S., and were largely dominated by the ACF
between August–October. The total carbon dioxide (CO2) emissions due
to the ACF were 27.7 million metric tons (Mmt) (https://ww2.arb.ca.
gov/). There were also contributions from other very large “megafires”
(at least 100,000 acres burned) during this period in the west including
the Santa Clara Unit lightning complex (396,399 acres burned; 4.6 Mmt
CO2 emissions), Creek (379,882 acres burned; 13.8 Mmt CO2 emissions),
North Complex (318,777 acres burned; 10.9 Mmt CO2 emissions), and
Hennessey (305,352 acres burned; 3.5 Mmt CO2 emissions) fires
(https://ww2.arb.ca.gov/). Such historically large fires and their associ-
ated BB emissions lead to prominent amounts of N compounds that alter
atmospheric chemistry, aerosol formation, and deposition (Li et al.,
2021). Model results from Li et al. (2021) found that the record breaking
wildfires and BB emissions in 2020 contributed to 81% of near-surface
fine particulate matter (PM2.5) concentrations during the U.S. Environ-
mental Protection Agency (EPA)-defined air quality exceedances in the
west. Many previous studies have evaluated BB emissions impacts on
air quality and health (e.g., Johnston et al., 2012; Reid et al., 2016;
Cascio, 2018; Li et al., 2021; Liu et al., 2021; O’Neill et al., 2021); how-
ever, there are only a few that assess the impacts of BB on both oxidized
and reduced N emissions and their impacts on atmospheric deposition
and ecosystem health (e.g., Koplitz et al., 2021), with no apparent stud-
ies covering these aspects for the 2020 ACF, extreme gigafire events in
the U.S.

In this study, we analyze the 2020 U.S. wildfire season and focus on
the ACF gigafire events to quantify the percent contribution of satellite-
derived BB to the total emissions, evaluate the satellite-based wildfire
model system used in the study, i.e., the George Mason University
(GMU) Wildfire Forecast System (WFS; Li et al., 2021), and then use
the GMU-WFS to approximate the impact of the 2020 BB emissions on
total N deposition in the western U.S. We hypothesize and show that
the extreme ACF gigafire events have prominent effects on the BB
emissions of oxidized and reduced N and contribute significantly to
the total (anthropogenic + BB source) emissions and atmospheric
deposition in the western U.S.

2. Methods

2.1. Air quality modeling system

Here we employ the GMU-WFS, which is based on an offline-coupled
Weather Research and Forecasting (WRF) model version 4.2 (Skamarock
et al., 2019)meteorological output that is used to drive a chemical transport
model known as the Community Multiscale Air Quality (CMAQ) model
version 5.3.1 (U.S. EPA, 2020). Themodel resolution is 12×12 km, covers
the contiguous U.S. (CONUS), and includes 35 vertical layers. While all
model configuration details are not repeated here, we note that the Carbon
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Bond Version 6 (CB6) gas-phase chemical mechanism (Luecken et al.,
2019), Aero07 aerosol scheme (Pye et al., 2015; Xu et al., 2018), and
aqueous chemistry (Fahey et al., 2017) are used in the CMAQ system. The
reader is referred to Li et al. (2021) for the complete GMU-WFS
configuration details and input data used in this study.

2.2. Model emissions inputs

The model emissions inputs may be the most influential input for
chemical transport model predictions in any air quality prediction system
(Matthias et al., 2018). This is indeed the case here for both the
anthropogenic and BB emissions datasets, which have profound impacts
on the model outputs. The anthropogenic base-year emissions are taken
from the U.S. EPA National Emissions Inventory (NEI) Collaborative
(NEIC) 2016v1 Emissions Modeling Platform, which is based on updated
models and datasets applied to the U.S. EPA's NEI 2014 version 2 (NEIC,
2019). The base year's NEIC 2016v1 emissions are shifted to represent
the 2020 prediction year's representative day-of-the-week in the GMU-
WFS (Li et al., 2021).

There are advanced treatments of BB emissions and wildfire plume
rise treatment in the GMU-WFS. The BB emissions are based on the
Blended Global Biomass Burning Emissions Product (GBBEPx V3;
Zhang et al., 2012, 2014). GBBEPx provides daily 0.1° × 0.1° global
BB emissions for a number of gases and aerosols (NOx, NH3, carbon
monoxide, sulfur dioxide, PM2.5, Black Carbon, and Organic Carbon) de-
rived from satellite-based Fire Radiative Power (FRP) values. It blends
the fire observations from two sensors, including the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) on the NASA Terra and
Aqua satellites, and the Visible Infrared Imaging Spectrometer (VIIRS)
on the Suomi National Polar-orbiting Partnership (SNPP) and Joint
Polar-orbiting Satellite System 1 (JPSS1) satellites. A global 1 km Inter-
national Geosphere–Biosphere Programme (IGBP) land cover type is
used to stratify land surface into tropical forests, extratropical forest,
cerrado/woody savanna, and grassland/cropland. From these land
cover types, emissions factors are assigned based on the Quick Fire
Emissions Dataset (QFED; Darmenov and da Silva, 2013). The GBBEPx
data are further processed to prepare model-ready emission datasets
for the GMU-WFS. The original GBBEPx emissions input are at 0.1° ×
0.1° degree globally (~ 10 × 10 km) and are close to the regional nu-
merical simulation grid size (12 × 12 km; see Section 2.1). Thus, the
GBBEPx re-gridding errors are minimal. The Sofiev plume rise scheme
in GMU-WFS utilizes the FRP, planetary boundary layer height, and
the Brunt-Vaisala frequency in the free troposphere to estimate fire in-
jection height (Sofiev et al., 2012). The reader is referred to Li et al.
(2021) for more details of GBBEPx and Li et al. (2020) for the Sofiev
plume rise scheme used in the GMU-WFS for this study. We note that
the GBBEPx performed well for other large wildfire events in California
such as the Camp Fire (Li et al., 2020), and that, Li et al. (2020) found
that GBBEPx together with the Sofiev plume rise scheme performed
the best compared to different combinations of emissions datasets and
plume rise algorithms in the GMU-WFS.

2.3. Simulation design, observations, and evaluation protocol

The simulation design in this paper consists of two sets of GMU-WFS
runs, both with and without BB emissions. The first run (ALLF) includes
all GBBEPx emissions from all fires (i.e., (wildfires, prescribed fires, and
other BB sources), while the second run (NOF) is the same as in ALLF,
except all types of GBBEPx emissions are excluded. Comparison of the
GMU-WFS results from the ALLF and NOF runs quantify the impacts of
all BB, wildfire, and prescribed fires on N deposition. The simulation
period is run for the entire 2020 year including the historic summer
wildfire season from August 01–October 31 over the CONUS domain,
with initial conditions based on NOAA's well-established operational
air quality forecasting system (https://airquality.weather.gov/). The
Surface Weather Observations and Reports for Aviation Routine

Weather Reports (METAR), collected by NCEP's Meteorological
Assimilation Data Ingest System (MADIS) (https://madis.ncep.noaa.
gov/madis_metar.shtml, last access: 5 April 2022), provide observations
of 2-m temperature (TEMP2), 2-m specific humidity (Q2), and 10-m
wind speed (WS10) and direction (WD10). Results from the ALLF case
are further evaluated against the U.S. EPA AirNow network (https://
www.airnow.gov/) for PM2.5 and nitrogen dioxide (NO2), and against
the Chemical Speciation Network (CSN; https://www.epa.gov/amtic/
chemical-speciation-network-csn) and the Interagency Monitoring of
Protected Visual Environments (IMPROVE; http://vista.cira.colostate.
edu/Improve/) network for total PM2.5 and PM2.5 sulfate, nitrate, and
ammonium ions. The Clean Air Status and Trends Network (CASTNET)
(https://www.epa.gov/castnet, last access 27 April 2022) provide
weekly aggregated observations of nitrate and ammonium ion dry
deposition. Full description of the GMU-WFS simulation design and
additional model evaluations are found in Li et al. (2021).

The statistical measures used to evaluate the GMU-WFS meteorology
and air quality predictions include the mean bias (MB), normalized
mean bias (NMB), normalized mean error (NME), root-mean-square
error (RMSE), anomaly correlation coefficient (ACC), Pearson's
correlation coefficient (R), and index of agreement (IOA). Statistical
measures such as R, NMB, and NME or RMSE provide measures of the
associativity (i.e., correlation), bias, and accuracy, respectively, of the
GMU-WFS modeled surface meteorology, chemistry, and deposition.
The meteorological and chemical evaluations use the publicly available
US EPA Atmospheric Model Evaluation Tool (AMET; Appel et al., 2011),
NOAA/ARL Model and Observation Evaluation Toolkit (MONET; Baker
and Pan, 2017), and NCAR Command Language (NCL; https://www.ncl.
ucar.edu, last access: 5 April 2022).

3. Results

3.1. Relative contribution of nitrogen emissions from the 2020 wildfires

The average August–October 2020 mean FRP and associated NOx

emissions from GBBEPx show significant wildfire hotspots in California,
particularly northern California (Fig. 1a-b). These hotspots are found in
direct vicinity or just upstream of sensitive ecosystems in Central and
Northern California (e.g. the Sierra Nevada Mountains). Because the
GBBEPx emissions vary with different land use/vegetation types (Li
et al., 2021), the NH3/NOx ratio shows spatial variability and ranges
from 0.18–1.08 (Fig. 1c; average ~ 0.62 (i.e., 62%) for the western
U.S., i.e., > 102°W). For further reference to the connection of GBBEPx
and QFED land-use dependent species emission factors, Fig. S1 in the
supporting information shows the QFED nitric oxide (NO) and NH3

emissions as a function of different biomass types in California for an
average of August–October 2020 (i.e. the ACF events). The majority of
NO and NH3 emissions are associated with the forest biomass type in
California during the ACF events.

Furthermore, the ratio of the GBBEPx NH3 emissions to the total
reactive N (~ NH3/[NH3 + NOx]*100%) is ~15%–52%, with a mean
of ~37% and median of ~40% in the western U.S.(not shown). This is
within the range of Lindaas et al. (2021) that showed reduced N
compounds comprise a majority (39%–80%; median = 66%) of total
reactive emissions during the 2018 Western wildfire Experiment for
Cloud chemistry, Aerosol absorption and Nitrogen (WE-CAN; https://
www2.acom.ucar.edu/campaigns/we-can; last access 09 May 2022),
and suggests that the GBBEPx N emissions speciation is within the
range of aircraft observations.

Comparison of the GBBEPx BB emissions to the total major (NEIC
2016v1 anthropogenic + GBBEPx BB) emissions sources over CONUS
and just the western U.S. (> 102°W) indicates that BB contributes
<20% (minimum ~3% during winter months) to the total NOx and
NH3 emissions for most of the year; however, during the 2020 wildfire
season of August–October, BB contributes significantly more to the
total emissions (Fig. 1d and Table 1). During the peak of the ACF in
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September, BB contributed to ~55% and ~ 83% of the total NOx and
NH3 emissions in CONUS and the western U.S., respectively. These
substantial fractions indicate the importance of enhanced BB emissions
on the atmospheric N concentration and resulting deposition to
surrounding ecosystems, particularly during the height of the ACF
(gigafire) event in September 2020. Hence, while other months of the
year 2020 are included in this paper (and in Supporting Information)
for reference, the month of September is a main focus of the following
analyses (Sections 3.2–3.4).

3.2. Evaluation of the GMU-WFS simulated meteorology, chemistry, and
deposition

3.2.1. Meteorology evaluation
We first perform a spatial evaluation of wildfire-related meteorological

variables predicted by the GMU-WFS, which include TEMP2, Q2, WS10,
and WD10 against the MADIS/METAR network (Fig. 2).

The statistical GMU-WFS meteorological performances in Table 2 fall
near or within typical model bias and error performance benchmarks for

Mean FRP (W m-2)  NOx Emissions (*10-8 kg m-2 s-1)

NH3/NOx Emis. Ratio

GBBEPx Average August - October 2020

a) b)

c) d) Sep ~ 83%

Sep ~ 55%

% Contribution of Fires to Total Emis. 

%

Fig. 1. Analysis of a)-c) spatial distribution of average August–October 2020 FRP, NOx emissions, and NH3/NOx emissions ratio in the western U.S. (> 102°W and insert/
zoomed-in N. California region), and d) 2020 monthly percent contribution of GBBEPx NOx (blue) and NH3 emissions (red) to total (NEI2016v1 + GBBEPx BB)
emissions for entire CONUS domain (solid) and western U.S. only (dashed; > 102°W).
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both relatively simple (e.g., East U.S.) and complex terrain (West U.S.)
conditions (see Table 5–1 in LADCO, 2018). Supporting Fig. S2 also
shows a statistical evaluation of the diurnal characteristics of GMU-WFS
predicted TEMP2, Q2, and WS10 and WD10. Given the nuances of using
typical statistical metrics to evaluate model wind directions (see n/a values
in Table 2), Supporting Fig. S3a-S3b also show more robust statistical

summary plots for the GMU-WFS simulated WD10 in the east and west
U.S. for further reference.

3.2.2. Chemistry evaluation
The GMU-WFS demonstrates overall good model agreement with the

observed 550 nm aerosol optical depth (AOD; against VIIRS) and the spatial

Table 1
Total August – October 2020 NOx and NH3 GBBEPx and NEIC2016v1 emissions
(in Tg) for the CONUS and western U.S. (> 102°W) regions. Supporting Table S1
shows similar monthly results for the entire 2020 year.

NOx (Tg) NH3 (Tg)

NEIC2016v1 GBBEPx NEIC2016v1 GBBEPx

August 2020
CONUS 11.3 2.9 0.60 0.16
Western U.S. 2.8 2.6 0.14 0.14

September 2020
CONUS 10.2 11.8 0.38 0.48
Western U.S. 2.5 11.6 0.10 0.48

October 2020
CONUS 11.0 1.7 0.37 0.07
Western U.S. 2.6 1.4 0.10 0.06

Table 2
September 2020 average statistical metrics for the GMU-WFS simulated TEMP2,
Q2, WS10, and WD10 compared against the MADIS/METAR network in the East
and West U.S. regions.

Variable East U.S. (< 100° W) West U.S. (> 100° W)

TEMP2
MB (°C) RMSE

(°C)
R IOA MB (°C) RMSE

(°C)
R IOA

−0.001 2.0 0.96 0.96 0.57 3.1 0.93 0.93

Q2
MB

(g kg−1)
RMSE

(g kg−1)
R IOA MB

(g kg−1)
RMSE

(g kg−1)
R IOA

−0.40 1.4 0.96 0.95 −0.43 1.5 0.87 0.86

WS10
MB

(m s−1)
RMSE
(m s−1)

R IOA MB
(m s−1)

RMSE
(m s−1)

R IOA

0.20 1.5 0.72 0.72 −0.54 1.9 0.71 0.69

WD10
MB
(deg)

RMSE
(deg)

R IOA MB
(deg)

RMSE
(m s−1)

R IOA

3.4 33.1 n/a n/a 0.84 55.2 n/a n/a
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distribution of near-surface PM2.5 concentrations (against the U.S. EPA
AirNow Network) for the August–October 2020 ACF period (See Fig. 2 in
Li et al., 2021). Overall, the GMU-WFS model demonstrates the ability to
reproduce the large-scale wildfire smoke dispersion, especially when the
fire is intense; however, the near-surface PM2.5 evaluation in Li et al.
(2021) is only shown for spatial overlay on September 15, 2020 across
relatively wide bracketed PM2.5 concentration ranges.

Here we show a more detailed statistical evaluation of the average
September 2020 PM2.5 and NO2 concentrations against the AirNow
network for the western U.S. (Fig. 3). There are high PM2.5 overpredictions
(Normalized Mean Bias, NMB ~ 82%; Normalized Mean Error, NME ~
138%; Index of Agreement, IOA ~ 0.2) near the major ACF fire source
regions in September (Fig. 3a). However, the AirNow PM2.5 measurement
devices may be limited during long-term, extreme BB smoke plume events
such as the ACF. In such occurrences, the flow rates may be affected and
slow down after a period of time due to a clogged filter, and the

response/concentrations may become saturated (https://www.airnow.
gov/fires/using-airnow-during-wildfires/). In fact, the GMU-WFS has
better model performance for NO2 concentrations near the major ACF
regions, with an overall relatively low NMB and NME (~ −18% and
59%) and high IOA (~ 0.7). While this indeed provides guidance on the
model NO2 performance, we note that standard ground-based NOx

evaluations may involve errors of a factor of two or more due to
interferences from other nitrogen species (e.g., NOy) (Dickerson et al.
(2019).

Further comparison of the GMU-WFS against the IMPROVE and CSN
near-surface total PM2.5 (PM25_TOT), PM2.5 sulfate (PM25_SO4), PM2.5

nitrate (PM25_NO3), and PM2.5 ammonium ion (PM25_NH4)
concentrations show generally good agreement for the spatial pattern of
higher values near major BB source regions in September 2020 (Fig. 4).
While the simulated higher PM2.5 values near fire sources are in qualitative
good agreement with the location of such observed values (also see Li et al.,

Fig. 3. Average September 2020 AirNow spatial bias (model-observation) evaluation for a) PM2.5 (μg m−3), and b) NO2 (ppb). Monthly average statistics for California are
shown in the insert, where NMB = Normalized Mean Bias, NME = Normalized Mean Error, R = Pearson's Correlation Coefficient, and IOA = Index of Agreement.
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2021), we note that there is some discrepancy in terms of the simulated
PM2.5 magnitudes in Fig. 4.

Themodel results suggest extreme PM2.5 concentrations (max>1000 μg
m−3) in September, and appear overpredicted compared to the IMPROVE
observations (Fig. 4a). The largest contributions to the inorganic PM2.5 is
from PM25_NO3, then PM25_SO4, and then PM25_NH4, where all

components appear to be overpredicted in GMU-WFS. However, we note
that there is limited spatial coverage for the CSN PM25_NH4 observations,
and similar to the AirNow total PM2.5 comparison, extremely high PM2.5

concentrations from BB sources may not well be captured by the
IMPROVE and CSN measurement devices due to possible instrument
saturation. Thus, the AirNow, IMPROVE, and CSN PM2.5 observations

Fig. 4. Combined IMPROVE and CSN spatial overlay comparison for PM25_TOT (IMPROVE only), PM25_SO4 (IMPROVE + CSN), PM25_NO3 (IMPROVE + CSN), and
PM25_NH4 (CSN only) averaged over September 2020. The temporal resolution of IMPROVE and CSN networks are 3-day averages.
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may be biased low. However, we also note that the GMU-WFS/GBBEPx
spatiotemporal (i.e. once-per-day at 12 × 12 km) resolutions may be
limited in accurately capturing the BB emissions that drive the magnitude
of PM2.5 wildfire plumes in the western U.S. Indeed, there is active
development and application of a higher hourly and 3 × 3 km resolution
GBBEPx dataset at GMU and NOAA, which has shown to improve

September 2020 CMAQ PM2.5 predictions compared to the original daily
12 × 12 km GBBEPx emissions in some cases (Jianping Huang/NOAA;
personal communication). However, the comparisons shown here are
valid in the sense that the 2020 wildfires (e.g. the ACF event) are relatively
larger in area compared to the 12×12 km horizontal grid resolution of the
GMU-WFS. While the evaluation of the BB smoke plumes with “ground
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truth” data are limited for the 2020wildfire events, there is confidence that
the overall GMU-WFS PM2.5 and NO2 spatial patterns demonstrate skill and
agreement with observations here and in Li et al. (2021).

3.2.3. Dry deposition evaluation
While field observations of atmospheric deposition (both dry and wet)

are relatively sparser in space and time and subject to larger uncertainties
than PM2.5 concentrations, we compare weekly aggregated observed

CASTNET NO3
− and NH4

+ dry deposition against GMU-WFS in California
between September 1 and October 6, 2020 (Fig. 5).

The GMU-WFS simulated dry deposition of NO3
− and NH4

+ are larger
than CASTNET by a factor of ~4 and 3; however, there are overall good
agreement in correlation with an R2 of ~0.76 and 0.65, respectively.
Thus, while overpredicted, the good correlations demonstrate skill for the
GMU-WFS in predicting the relatively higher dry deposition values during
the ACF events in California.

Fig. 6. Sumof September 2020 total (wet and dry) deposition (kg ha−1) for a) oxidized nitrogen (OxN~NO+NO2+HNO3
−+N2O5+ClNO3+NO3

−), b) reduced nitrogen
(NHx~ NH3+NH4

+), and c) total nitrogen (TN=OxN+NHx) species for the NOF case, as well as d)-f) the total deposition changes when including fires (ALLF-NOF). The
“DomTot” and “DomFrac” in the upper right corner of the panels represent the western U.S. (> 102°W) NOF total deposition (in Teragrams; Tg) and ALLF fractional
deposition increases, respectively.
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3.3. Impacts of the 2020 biomass burning emissions on nitrogen deposition

Overall, the highest levels of N deposition in the U.S. are found in the
forested areas of California, and are mainly due to dry deposition (Fenn
et al., 2012; Bytnerowicz et al., 2016). The no wildfire (NOF) model
simulation in our work shows that the oxidized (OxN ~ NO+NO2 +
HNO3

− + N2O5 + ClNO3 + NO3
−), reduced (NHx ~ NH3 + NH4

+), and
total N (TN=OxN + NHx) deposition (TOT_DEP TN; dry + wet) have
September 2020 maxima in the Pacific Northwest and in the central and
southern parts of California, which are mainly areas just downstream of
major urban centers (e.g., Seattle, San Francisco, and Los Angeles) typical
of very high anthropogenic emissions (Fig. 6a-c). Most of the higher N
deposition in central and southern California, e.g. the TOT_DEP NHx
maximum in the San Joaquin Valley air basin, is due to high dry deposition
rates of reactive N species in this region (Fenn et al., 2010; Bytnerowicz
et al., 2016). Largely, the N deposition in California is dominated by dry
deposition of nitric acid vapor (HNO3) and NH3, which are driven by
their relative high ambient concentrations and high deposition velocities
(Bytnerowicz and Fenn, 1996; Bytnerowicz et al., 2016). While not
shown here, these aspects are consistent with the results of the GMU-WFS
predictions for the NOF case.

The addition of BB burning emissions in the ALLF case leads to
significant additions (ALLF-NOF) of oxidized (ΔTOT_DEP OxN), reduced

(ΔTOT_DEP NHx), and total N (ΔTOT_DEP TN) deposition in regions
outside the NOF maxima (Fig. 6d-f). Near the vicinity of the extreme NOx

and NH3 BB emissions (Fig. 1a-c), there are increases in the TOT_DEP TN
of up to ~91 kg ha−1 (Fig. 6f) that are dominated by reduced N (TOT_DEP
NHx; Fig. 6e) in September. There is a factor of 1.6, 3.5, and 2.0 increase in
the TOT_DEP OxN, TOT_DEP NHx, and TOT_DEP TN for the entire western
U.S. for the ALLF compared to the NOF case. Supporting Fig. S4a-4f show
similar spatial plots for all months during the 2020 year, which clearly
indicate that the 2020 ACF (August–October) events dominate the TN
increases due to fires in the west. While the natural state of aquatic and
terrestrial ecosystems in California is one of limited N availability
(Bytnerowicz et al., 2016), such large increases in N deposition due to
wildfires will have significant ecological effects on California's ecosystems
(e.g., nitrogen excess).

3.4. Implications of wildfire-enhanced nitrogen deposition for California
ecosystems

Themost widespread impacts of N deposition observed in California are
shifts in communities of epiphytic lichens (defined as organisms that grow
on the surface of a plant) in forests and chaparral/oak woodlands
(Bytnerowicz et al., 2016). Epiphytic lichens are among the most sensitive
bioindicators of N in forested ecosystems and are particularly responsive to

Fig. 7. 2020 Annual average of total (wet and dry) nitrogen (TN=OxN+NHx) species deposition (kg ha−1 year−1) for the a)NOF and b) ALLF cases. Data within the state of
California is shown, and is further masked by the model dominant landuse types that represent a total of 8 major vegetation types including deciduous broadleaf forest,
deciduous needle leaf forest, evergreen broadleaf, evergreen needleleaf, other mixed forest, grasslands, shrublands, and savanna from the USGS 24-category land use data
used in the simulation. Note that the color scale includes shading (other than white) only for those levels above a low-end Critical Load (CL) ~ 3 kg ha−1 year−1, above
which can result in adverse N deposition effects on lichen communities found in California mixed conifer forests and some scrub species (see Fenn et al., 2008 and
Table 7.2 in Bytnerowicz et al., 2016). The insert statistics are the plotted values divided by the CL ~ 3 kg ha−1 (i.e., factor of values> CL), the area in square miles of values
> CL, and the representative % of the total area of California (~ 163,696 mi2) in parentheses.
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changes in environmental stressors (e.g., forest structure, air quality, and
climate), while alleviating the difficulty in separating the effects of air
pollutants and deposition from other influences on tree growth (such as
soil variations) (Fenn et al., 2008). Consequently, the implementation of
lichen-derived Critical Load (CL) thresholds for N deposition can prevent
undesired impacts to the broader forest ecosystem (e.g., expansion of
invasive species, vegetation change, and biodiversity loss), particularly in
areas of exacerbated near-surface ozone pollution levels. Indeed, many
areas of California already fall into this category. Oligotrophic
species (defined as plants that can live where there aren't many available
nutrients) are highly sensitive to atmospheric N, with initial declines in
number observed at N deposition levels (i.e. CLs) as low as 3 kg ha−1

year−1 (Fenn et al., 2008; Bytnerowicz et al., 2016).
In the case of no BB emissions (NOF) during 2020, there are widespread

areas of relatively low to moderate TOT_DEP TN to the major vegetation
types in California, many of which still exceed the low-end CL of 3 kg
ha−1 year−1 (Fig. 7a). The presence of extreme BB emissions largely due
to the ACF events, however, leads to a substantial increase in annual
average TOT_DEP TN with an average relative increase of ~78% (from
7.1 to 12.6 kg ha−1 year−1) to the major vegetation types in California
(Fig. 7b). To place this into context, the ~5.5 kg ha−1 yr−1 increase in
TN deposition during 2020 is significantly larger than shown in Koplitz
et al. (2021), which estimated that wildland fires contributed 0.2 kg N
ha−1 yr−1 on average across the US during 2008–2012, with maxima up
to 1.4 kg N ha−1 yr−1 in the Northwest. The large increase may be
reflective of a significant interannual variability in TOT_DEP TN due to
wildfire occurence and severity in the western U.S., where further work is
needed to investigate long-term BB emissions trends and impacts on N
deposition.

Supporting Fig. S5 (and graphical abstract) shows a similar plot for
the TOT_DEP TN/CL ratio for both the NOF and ALLF case. Overall,
the average TOT_DEP TN/CL ratio increases from 2.4 (NOF) to 4.2
(ALLF), with an ALLF grid cell maximum of up to ~37 times greater N
deposition (at ~110 kg ha−1 year−1) compared to the low-end CL
(Supporting Fig. S5). The enhanced N deposition leads to an increase
in area of TOT_DEP TN > CL from 65% to 83% for the major vegetation
types relative to the total area of California (~ 163,696 mi2) (Fig. 7).

The increase in TOT_DEP TN is even larger to mixed forests in the
ALLF case, with increases of ~173% when including BB emissions that
are about six times larger than the lichen-based CL of 3 kg ha-1 year-1

(Table 3). We note that relatively new research has indicated an even
lower CL for U.S. forests of 1.5 kg N ha-1 yr-1 (Geiser et al., 2021),
which suggests that BB in the ALLF would have even larger (i.e., twelve
times larger) increases in annual average N deposition to California’s for-
ests. For grasslands/shrublands/savanna, croplands/pasture, and in-
land water body land use types, the increases are ~37%, 22%, and
17%, respectively (Table 3).

Here we note that choice of a single, conservatively low CL~ 3 kg ha−1

year−1 for all major vegetation types is an approximation, where different

CL thresholds based on a range of ecosystem response variables can be
applied for a single vegetation type (e.g., mixed forests) or for different
vegetation types (e.g., grasslands/shrublands) (see Table 7.2 in
Bytnerowicz et al., 2016). Thus, Supporting Figs. S6 and S7 show the
range of annual average 2020 TOT_DEP TN/CL ratios for mixed forests
across a range of CL thresholds (~ 3, 5, 10, and 17 kg ha−1 year−1) from
Bytnerowicz et al. (2016) and for grasslands/shrublands (CL ~ 6 kg ha−1

year−1) in California. The enhancedN deposition due to the ACFfire events
leads to a wide range of profound ecosystem effects that can vary spatially
for different vegetation across California; however, the largest N deposition
increases due to fires are clearly due to the mixed forests types (compare
Fig. S6 and S7).

There are also increases in TOT_DEP TN to California's inland water
bodies due to BB burning (~ 17%; Table 3), where high nitrate ion
(NO3

−) concentrations in surface waters are harmful pollution. Increases
in N deposition to Lake Tahoe have led to doubling in the mean annual
primary productivity, decreases in Secchi disk transparency (i.e., water
clarity), and increases in the eutrophic to mesotrophic diatom Fragilaria
crotonensis (common araphid species in temperate, mesotrophic lakes of
North America; see Fenn et al., 2003 and references within). High NO3

−

deposition is known to induce toxic effects on freshwater biota (Fenn
et al., 2003), and there are recent reports of beneficial decreases in
NO3

− concentrations in surface waters that are primarily attributed to
decreases in the emissions of precursor air pollutants (e.g., NOx;
Austnes et al., 2018).

Extremewildfires and BB emissions can detrimentally counteract the
progress made in reducing the total NO3

− deposition in California. The
~17% increase in N deposition to inland water bodies mainly consists
of Lake Tahoe, which is California's largest lake (area ~ 191 mi2)
expanding across the border into Nevada (see Fig. 7a). In addition to
well documented reductions in water clarity and increased algal
growth, Lake Tahoe has also experienced shifts in diatom communities
due to N enrichment (see Table 2 in Fenn et al., 2003 and references
found within). More detailed studies are needed on the impacts of
large to extreme wildfire events and BB emissions on N deposition to in-
land water bodies in California and the western U.S.

4. Summary and discussion

In this work, we use satellite-based observations and modeling to
quantify the contributions of biomass burning (BB) to the total emissions,
and the impacts of such BB emissions on nitrogen (N) deposition in the
western U.S. during 2020 that included a historic wildfire season
(e.g., August–October). We find that during the 2020 wildfire season BB
contributes significantly to the total emissions, with a satellite-derived
fraction of NH3 to the total reactive N emissions (range ~ 15%–52%;
mean ~ 37%; median ~ 40%) that is in the range of previous aircraft
observations (Lindaas et al., 2021). During the peak of the western August
Complex Fires (ACF) in September, BB contributed to ~55%
(for contiguous U.S.) and ~ 83% (for western U.S.) of the total NOx and
NH3 emissions.

Previous evaluation of the George Mason University-Wildfire Forecast
System (GMU-WFS) shows overall good model performance of the novel
Blended Global Biomass Burning Emissions Product (GBBEPx) with the
Sofiev plume rise scheme, as well as the ability of the model to reproduce
the large-scale smoke transport and near-surface total PM2.5 concentration
ranges across the U.S. from August–October 2020 (Li et al., 2020, 2021).
Further evaluation here of the simulated meteorology demonstrates that
the GMU-WFS is near or within reported model bias and error performance
benchmarks. Evaluation of the GMU-WFS simulated near-surface PM2.5 and
associated sulfate, nitrate, and ammonium ion composition against the
AirNow, CSN, and IMPROVE networks, as well as evaluation of the
simulated dry deposition against CASTNET in this work identifies possible
model overpredictions; however, potential instrument issues and
measurement uncertainties at extremely high wildfire-related PM2.5

concentrations are possible.

Table 3
2020 Annual average of total (wet and dry) nitrogen (TN=OxN + NHx) species
deposition (kg ha−1 year−1) for different combined land use typesa in California.

Land Use Types NOF ALLF Relative (%) Change

Major Vegetation Types (Fig. 5) 7.1 12.6 77.5
Mixed Forests 6.2 16.9 172.6
Grassland/Shrubland/Savanna 7.6 10.4 36.8
Croplands/Pasture 18.0 22.1 22.8
Inland Water Bodiesb 2.3 2.7 17.4

a Combined USGS-24 Category land use types: All Major Vegetation = Mixed
Forests+Grassland/Shrubland/Savanna; Mixed Forests = 11–15; Grassland/
Shrubland/Savanna = 7–10; Croplands and Pasture = 2–6; Inland Water Bodies/
Lake Tahoe Only = 16.

b Lake Tahoe (labeled in Fig. 7) values include those grid cells across both
California and Nevada.

P.C. Campbell et al. Science of the Total Environment 839 (2022) 156130

11



5. Conclusions

The extreme 2020 BB emissions lead to significant contributions to the
total N deposition for different ecosystems in California, with ~ a 78%
relative increase (from 7.1 to 12.6 kg ha−1 year−1) in average deposition
to the major vegetation types (mixed forests + grasslands/shrublands/sa-
vanna) compared to the GMU-WFS simulations without BB emissions. To
place into context, these increases are much larger than the 5 year annual
average increases in N deposition reported for the 2008–2012 period
(Koplitz et al., 2021). For mixed forest types only, the relative N deposition
increases (from 6.2 to 16.9 kg ha−1 year−1) are even larger at ~173%.
Such large N deposition due to extreme BB emissions are much (~6-12
times) larger than low-end critical load thresholds for major vegetation
types (e.g., 1.5-3 kg ha−1 year−1; Fenn et al., 2008; Bytnerowicz et al.,
2016; Geiser et al., 2021), and may result in adverse N deposition effects
across larger areas of lichen communities found in California's mixed
conifer forests. Indeed, there are persistent feedbacks of long-term fire
suppression, increased fuel consumption, climate change, drought stress,
invasive species outbreaks, extreme mega- and gigafire events (e.g., the
2020 ACF events in this study), and excess N deposition that have already
affected and will continue to affect the vigor, resilience, and sustainability
of U.S. forests.
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