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ABSTRACT

Forensic evidence is often an important factor in criminal investigations. Analyzing evidence in an objective way involves

the use of statistics. However, many evidence types (i.e., glass fragments, fingerprints, shoe impressions) are very complex.

This makes the use of statistical methods, such as model selection in Bayesian inference, extremely difficult.

Approximate Bayesian Computation is an algorithmic method in Bayesian analysis that can be used for model selection. It

is especially useful because it can be used to assign a Bayes Factor without the need to directly evaluate the exact likelihood

function - a difficult task for complex data. Several criticisms of ABC (specifically when used for model choice) can be

found in the literature, yet the potential benefits of the method warrant study of the performance under controlled situations.

This paper explores the use of ABC in forensic science through use of a glass example. The ABC approximation of the

Bayes Factor provided the correct direction of support in the majority of known cases in the glass example. However, the

approximations did not agree with the weight of support given by analytical Bayes Factors. Exploration of the inconsistent

portion of results uncovered an issue with the method used to choose a threshold value in ABC. A novel method, based on a

relationship between the ABC Bayes Factor and the Receiver Operating Characteristic curve, was developed to address this

issue. This method produced more stable results than the traditional ABC methodology.

INTRODUCTION

The analysis of forensic evidence is often an important factor in forensic investigations. Tools in Bayesian statistics can be

used to provide a quantitative value of the evidence that can lend support to the prosecution or the defense. Bayesian

modeling allows models to be built under the prosecution and defense hypotheses to compare the probabilities of observing

the collected evidence under each model.

Modeling involves building a description of a population using parametric probability density functions. Knowledge about

the value of the parameters is gained through the observation of sample data sets from the population [5]. Models will be

denoted with Mi, where i indexes the model number for the case when multiple models are being considered.

Several terms and definitions in Bayesian statistics from Bayesian Essentials with R [5] will be discussed next for use

throughout the remainder of the paper. A complete list of symbols and definitions is included in Appendix A. The prior

density, the likelihood function, the marginal density, the posterior density, and the Bayes Factor are several fundamental

tools used in Bayesian inference. Note that Bayesian probability is described as a subjective belief, which is different than

the objective, standard definition of a Frequentist probability [5].

The prior density on the value of parameters of a population, π(θ), represents a belief about the value of these parameters

before observing the sample data set, Dn. When multiple models are being considered, π(θ |Mi) will be used to distinguish

between the priors used for different models. The likelihood function, f (Dn|θ), gives the probability of observing the

sample data set Dn from a population as a function of the set of parameters, θ . The marginal density,

π(Dn|Mi) =
∫

f (Dn|θ) ·π(θ |Mi) dθ , is the density of Dn under model Mi, which is not dependent upon θ . The posterior
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density on the value of parameters of a population, π(θ |Dn), combines the information from the likelihood function and the

prior density, and represents the knowledge about the parameters after additional information has been gathered from the

observation of Dn. The posterior odds is the ratio of two posterior probabilities. The posterior odds, given by
π(M1|Dn)

π(M2|Dn)
,

compares the probability of one model, M1, given the observed data Dn to the probability of a competing model, M2, given

the same observed data.

Bayes’ Theorem provides a way to calculate the posterior probability indirectly by using the prior density and the likelihood

function.

Theorem 1 (Bayes’ Theorem [6]). Let P be a general probability operator. Let A1, A2, A3, ... An be a set of mutually

exclusive events and B be an event such that P(B) 6= 0. Then

P(Ai|B) =
P(B|Ai) P(Ai)

∑
n
i=1 P(B|Ai) P(Ai)

for any Ai, where i = 1,2,3, ...n.

See the example below for how the posterior odds can be decomposed using Bayes’ Theorem in both the numerator and

denominator.

π(M1|Dn)

π(M2|Dn)
=

(
π(Dn|M1) ·π(M1)

π(Dn|M1) ·π(M1)+π(Dn|M2) ·π(M2)

)
(

π(Dn|M2) ·π(M1)

π(Dn|M1) ·π(M1)+π(Dn|M2) ·π(M2)

)

=

(
π(Dn|M1) ·π(M1)

π(Dn)

)
(

π(Dn|M2) ·π(M2)

π(Dn)

)

=
π(Dn|M1)

π(Dn|M2)
· π(M1)

π(M2)

The result of the decomposed posterior odds is a ratio called the Bayes Factor,
π(Dn|M1)

π(Dn|M2)
, multiplied by the prior odds,

π(M1)

π(M2)
. The Bayes Factor, given below in Equations 1 and 2, is defined as the ratio of the probability of the data under

each model framework.

BF =
π(M1|Dn)

π(M2|Dn)
· π(M2)

π(M1)
(1)

=
π(Dn|M1)

π(Dn|M2)
=

∫
f (Dn|θ) ·π(θ |M1) dθ∫
f (Dn|θ) ·π(θ |M2) dθ

. (2)

A Bayes Factor greater than one gives support to M1 because the probability of observing the data under M1 is greater than

the probability under M2. Conversely, a Bayes Factor less than one gives support to M2 because the probability of observing

the data under M2 is greater than the probability under M1. The magnitude of the Bayes Factor corresponds to the strength

of the support. Large positive values provide more support to M1 than values close to one. Values close to zero provide

strong support for M2.

The Bayes Factor can be used in forensic science to quantify the probative value of forensic evidence [2]. This is useful
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when inferring the source of trace evidence (recovered evidence materials whose original source is unknown) in forensic

cases because the trace may appear to correspond to several possible reference control samples (evidence materials taken

from a known source) by chance. The prosecution believes the trace evidence originated from a specific source (a known,

possible source for the origin of the trace evidence), while the defense believes the trace evidence originated from an

unknown alternative source. The value of the Bayes Factor allows one conclusion to be drawn, which can lend support to

the prosecution or the defense.

However, data collected for most forensic evidence types are very complex, so the likelihood function in Equation 2 is too

difficult to evaluate. In addition, the posterior density on the parameters in Equation 1 cannot be directly evaluated, so the

Bayes Factor cannot be calculated. Approximate Bayesian Computation offers a possible solution.

The ABC algorithm

The Approximate Bayesian Computation method bypasses the need for the actual, complex likelihood function. Instead,

ABC uses a simpler likelihood function fm(D∗n|θi) along with the original sample data set, Dn. Robert et al. [10] explain the

ABC algorithm as follows. First, model indexes are treated as parameters and sampled from π(Mi = m), a Bernoulli

distribution with the probability of success (sampling M2) equal to 1 minus the probability of sampling M1. Next, sets of

parameters are sampled from their prior densities, π(θ |Mi). The sampled parameters are used along with the simpler chosen

likelihood function to generate new data sets, denoted D∗n, of the same dimension as Dn. A summary statistic is computed

for Dn, denoted η(Dn), and for each of the sampled data sets, denoted η(D∗n). The distance between η(Dn) and η(D∗n) is

calculated for each generated data set. Parameters corresponding to the D∗n’s which are satisfactorily close (by the use of a

threshold, t) to the original data set Dn are retained, and used to compose a sample from the approximate posterior density,

denoted πt(θ |Dn). The Approximate Bayesian Computation method results in πt(θ |Dn), an approximation of the posterior

density π(θ |Dn) on the value of parameters of a population, given the data set Dn [10].

When ABC is used for model selection, the posterior odds can be approximated by the frequency of retained parameter sets,

θi, under each model. The approximation of the posterior odds is divided by the prior odds
π(M1)

π(M2)
, resulting in the ABC

approximation of the Bayes Factor, BFabc. The ABC Bayes factor can then be used to provide support to one of the two

models (e.g., M1 if BFabc > 1 or M2 if BFabc < 1).

Algorithm 1: ABC model selection algorithm [10]

Initialize i=0;
while i < Nacc do

Sample a model index m from the model prior π(M1 = m);
Generate the parameters θi from the prior density given the model index π(θ |m);
Generate a sample data set, D∗n, from the approximate likelihood fm(D∗n|θi);
Compute ∆(η(Dn),η(D∗n)), the distance between η(Dn) and η(D∗n);
Compare ∆(η(Dn),η(D∗n)) to a pre-determined value for t;
if ∆(η(Dn),η(D∗n)) ≤ t then

Accept θi and corresponding model index m;
i = i+1;

end

end

The formal ABC model selection method, described in Algorithm 1 above, results in a pre-determined number Nacc of

accepted parameter sets. A less computationally intensive modified version is described in Algorithm 2. This method
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repeats the sampling processes a fixed number of times, Nsim, but does not guarantee a specific number of accepted

parameter sets.

Algorithm 2: Modified ABC model selection algorithm [5]

for i = 1 to Nsim do
Sample a model index m from the model prior π(M1 = m);
Generate the parameters θi from the prior density given the model index π(θ |m);
Generate a sample data set, D∗n from the approximate likelihood fm(D∗n|θi);
Compute ∆(η(Dn),η(D∗n)), the distance between η(Dn) and η(D∗n);

end
Use a pre-determined quantile of the set of ∆(η(Dn),η(D∗n))’s to choose a value for the threshold t;
Compare ∆(η(Dn),η(D∗n)) to the value chosen for t;
Accept θi’s and corresponding model index m, that generated D∗n’s with ∆(η(Dn),η(D∗n))≤ t.

At the completion of both algorithms,
πt(M1|Dn)

πt(M2|Dn)
is estimated by the ratio of the frequency of retained θi’s under each

model (M1 and M2), which can be written as
∑

N
i=1 Imi=1I∆(η(Dn),η(D∗,in ))≤t

∑
N
i=1 Imi=2I∆(η(Dn),η(D∗,in ))≤t

, where IB(·) is the indicator function of B. Finally,

the Bayes Factor, BF =
π(Dn|M1)

π(Dn|M2)
, is approximated by BFabc =

πt(M1|Dn)

πt(M2|Dn)
· π(M2)

π(M1)
.

Literature review

Although ABC has the ability to bypass the need for evaluating a complex likelihood function, it has several limitations

when used for model choice. As the value of the threshold t approaches zero, the ABC approximation of the posterior

density, πtθ |Dn), converges to π(θ |Dn), as stated by Robert et al. [10]. However, they also showed that convergence only

holds when the summary statistic, η(Dn), used in the algorithm is a sufficient statistic. In the case where η(Dn) is an

insufficient statistic, πt(θ |Dn) converges to π(θ |η(Dn)), the posterior density given the summary statistic [10].

A sufficient statistic contains all the information contained in the sample data set to estimate the value of a parameter of the

population, meaning that no information is lost when the data is condensed into the form of the sufficient statistic [10].

Sufficient statistics are available for distributions in any exponential family [10]. One example of a sufficient statistic is the

sample mean, when used to estimate the population mean for a normally distributed population [5].

When a sufficient statistic does exist, a factorization theorem allows the likelihood fi(Dn|θ) to be factored, resulting in the

likelihood for the summary statistic of the data fi(η(Dn)|θ) multiplied by a factor gi(Dn), which can be considered the

measure of error between the two likelihoods [10]. However, there is no standard method to calculate gi(Dn). As pointed

out by [10], this causes an issue when ABC is used for model selection to approximate the Bayes Factor because there is no

way of comparison between the error of approximation across models, which can be seen in Equation 3.

BF =

∫
g1(Dn) · f1(η(Dn)|θ) ·π(θ |M1) dθ∫
g2(Dn) · f2(η(Dn)|θ) ·π(θ |M2) dθ

=
g1(Dn)

g2(Dn)
·
∫

f1(η(Dn)|θ) ·π(θ |M1) dθ∫
f2(η(Dn)|θ) ·π(θ |M2) dθ

=
g1(Dn)

g2(Dn)
·BFabc

(3)

Because of this, two major errors are possible: the algorithm supports the wrong model (direction of support), or the

algorithm supports the correct model but with the wrong magnitude (strength of support). The occurrence of either or both
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of these errors would cause the ABC Bayes Factor approximation to represent an incorrect value of the evidence. Only in a

very small number of known cases when
g1(Dn)

g2(Dn)
= 1, does the ABC Bayes Factor converge to the actual Bayes Factor [10].

Despite these criticisms from Robert, the benefit of using simpler likelihood functions made possible by ABC may allow for

the quantification of the value of forensic evidence that is not otherwise possible. The potential of ABC warrants study of

the algorithm’s behavior under controlled example environments.

ABC appears several more times in the literature. In “Reliable ABC model choice via random forests,” [9] Pudlo et al.

discuss a method for use in high dimension settings which uses random forest techniques as the distance metric for use in

the ABC algorithm. The description of random forest techniques is outside the scope of this paper, but can be reviewed in

[9]. Although Pudlo et al.’s paper uses an example in population genetics, this method would be especially helpful in

forensic science for fingerprint evidence because there is currently no known likelihood structure for this high dimensional

evidence type.

ABC has been successfully used in other disciplines. Lombaert et al. [4] used ABC to study the path of invasion of the

Asian ladybird Harmonia axyridis. The use of ABC in this situation allowed more exhaustive tests than had been possible in

previous studies, while using a greater number of invasive site samples. The results obtained using ABC were consistent

with results of previous studies. In addition, new detail about invasion routes was gained through use of ABC.

METHODOLOGY

In forensic investigations, the prosecution and the defense often have different theories on the origin of trace evidence. The

evidence is assessed to determine the strength at which it favors the prosecution or the defense. Some terminology and

notation in forensic science from Ommen [7] will be used to discuss the example. The specific source problem is concerned

with the question of whether trace evidence eu originated from a known specific source, or instead from an unknown source

in a population of alternative sources. Collected evidence from the specific source is denoted es. Observations

characterizing the alternative source population is denoted ea. The prosecution asserts that eu originated from the specific

source. The prosecution hypothesis is denoted Hp. The defense asserts that eu originated from an unknown alternative

source. The defense hypothesis is denoted Hd .

Hp: The trace evidence eu came from the specific source.

Hd : The trace evidence eu did not come from the specific source.

In this paper, the case is considered that two glass fragments (eu) have been collected from a suspect’s clothing, and are

compared by measurements of elemental composition to a set of three fragments (es) from a broken window at the scene of

a crime, and the relevant alternative population of windows (ea).

A data set of measurements taken on the elemental composition of the glass fragments was used to set up this example.

Three statistics, V2 = log
(Ca

K

)
, V3 = log

(Ca
Si

)
, and V4 = log

(Ca
Fe

)
were used to compose eu, es, and ea. The statistic V2

gives the ratio between the amounts of calcium (Ca) and potassium (K). The statistic V3 represents the ratio between the

amounts of calcium and silicon (Si). The statistic V4 represents the ratio between the amounts of calcium and iron (Fe). The

complete data set is fully described by Aitken and Lucy [1]. The subset of the elemental glass composition data used in this

example is given in Appendix B.
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Pairwise Scatter Plot of Glass Data − Hp is true − Window 10

Figure 1: The blue stars represent the trace evidence eu, taken from window 10. The red diamonds represent the specific
source evidence es, also taken from window 10. In this scenario, Hp is true. The black dots illustrate the mean of each window
in the alternative source population, while the grey dots represent measurements on individual fragments in the alternative
source population ea.
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Figure 2: The blue stars represent the trace evidence eu, taken from window 10. The red diamonds represent the specific
source evidence es, taken from window 5. In this scenario, Hd is true. The black dots illustrate the mean of each window
in the alternative source population, while the grey dots represent measurements on individual fragments in the alternative
source population, ea.
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Pairwise Scatter Plot of Glass Data − Hd is true − Window 27

Figure 4: The blue stars represent the trace evidence eu, taken from window 27. The red diamonds represent the specific
source evidence es, taken from window 5. In this scenario, Hd is true. The black dots illustrate the mean of each window
in the alternative source population, while the grey dots represent measurements on individual fragments in the alternative
source population, ea.
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Pairwise Scatter Plot of Glass Data − Hp is true − Window 27

Figure 3: The blue stars represent the trace evidence eu, taken from window 27. The red diamonds represent the specific
source evidence es, also taken from window 27. In this scenario, Hp is true. The black dots illustrate the mean of each window
in the alternative source population, while the grey dots represent measurements on individual fragments in the alternative
source population, ea.
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Two scenarios were set up to observe the behavior of ABC in each case. In the first scenario, eu and es were chosen from the

same window, making the prosecution hypothesis Hp true. The ABC approximation of the Bayes Factor should be greater

than one, supporting the prosecution. In the second scenario, eu and es were chosen from different windows, making the

defense hypothesis Hd true. The ABC approximation of the Bayes Factor should be less than one, supporting the defense. In

both scenarios, measurements on fragments from the remaining windows in the data set were used to compose ea. Each

scenario was set up using two different window choices (window 10 and window 27 from the data) for es in order to observe

the behavior of ABC under a variety of evidence.

Figures 1-4 contain pairwise scatter plots of the statistics, V2, V3, and V4. Evidence from the first scenario, when Hp is true,

is illustrated in Figures 1 and 3. Evidence from the second scenario, when Hd is true, is illustrated in Figures 2 and 4.

Algorithm 2 was implemented in R programming statistical software and simulations for this example were run to get an

approximate Bayes Factor for each of several situations. When Hp is sampled in the ABC algorithm, the sampling model

used for the vector of measurements on the glass fragments follows a multivariate normal model. When Hd is sampled in

the ABC algorithm, the sampling model used for the vector of measurements on the glass fragments follows a simple

random effects model, defined by Ommen [7]. Typical non-informative priors were used for both models [5]. For a detailed

description of these models and priors, reference Ommen [7].

This example was used to observe the behavior of ABC in forensic science under a controlled setting. Each scenario was

run using several different values for model priors. The results of each scenario were compared to a Monte Carlo (MC)

Standard Mean approximation of the Bayes Factor [7]. The Standard Mean method uses Monte Carlo integration and

approximate samples from the posterior density of the parameters through Gibbs sampling algorithms to approximate the

Bayes Factor. For a full derivation and justification of the Standard Mean approximation, reference Ommen [7].

Algorithm 3: Glass Simulations

Initialize i=0;
for eu from {window 10, window 27} do

for {Hp, Hd} is true do
for i in 1:10 do

ABC with π(Hd) = 0.25;
ABC with π(Hd) = 0.50;
ABC with π(Hd) = 0.75;
MC Standard Mean method;
i=i+1;

end
i=0.

end
end

Ten simulations were completed for each of a total of 16 cases, with eight variations under each of the two main scenarios:

Hp is true (es taken from the same window as eu), and Hd is true (es taken from window 5). The simulations were completed

according to Algorithm 3, above.
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RESULTS AND DISCUSSION
Results from the glass example using traditional ABC

The Bayes Factor approximations made by the Monte Carlo Standard Mean method produced stable results under each

scenario, as expected. The ABC approximations of the Bayes Factor were unstable in comparison to the Standard Mean

approximations. In most cases, the ABC approximation provided less strength of support (a less extreme Bayes Factor) than

the Standard Mean approximation. The two approximations agreed in the direction of support in most cases; however in the

scenario where Hd was true and the measurements composing eu were taken from window 10, the ABC approximation

provided support to the incorrect proposition, Hp. Results of the glass example are illustrated in Figures 5 and 6. The

numerical results are given in Appendix C in Tables 2-5.

For the scenario when Hp was true and both eu and es originated from window 10, the ABC approximations of the Bayes

Factor were smaller in magnitude in comparison to the Standard Mean, but favored the correct model.

In the scenario when Hd was true and only eu originated from window 10 (es was taken from window 5), the ABC estimates

did not favor the correct model. One possibility for the inconsistency can be seen in Figure 2. Several values of the statistics

used for comparison of the glass fragments in ABC are very similar between eu and es. By random selection of the windows,

a window that was similar to the trace evidence fragments was chosen for the specific source window to set up this scenario.

For the scenario when Hp was true and both eu and es originated from window 27, most ABC estimates of the Bayes Factor

were smaller in magnitude in comparison to the Standard Mean, and all favored the correct model.

When Hd was true and only eu originated from window 10 (es taken from window 5), the ABC estimates favored the correct

model, but were not as close to zero as the Standard Mean estimates.

The density plots in Figures 7-8 of the distance metrics calculated in the ABC algorithm, ∆(η(Dn),η(D∗n)), separated by the

sampled model, Hp and Hd , illustrate a possible explanation of the instability observed in the ABC Bayes Factor

approximations. The distributions of ∆(η(Dn),η(D∗n)) shift slightly between completions of the algorithm due to slight

differences in the set of generated sample data sets. The ratio of the left tail areas (contained by the vertical line representing

the threshold t) in the distributions of ∆(η(Dn),η(D∗n)) for each sampled model (Hp and Hd) represents the approximation

of the posterior odds, or the Bayes Factor when equal model priors are used (π(Hp) = π(Hd) = 0.50) as in Figures 7 and 8.

The slight shifts in the distributions cause the ratio of areas to change, resulting in the unstable results of the ABC Bayes

Factor approximation between completions of the algorithm.

A similar effect is also illustrated in Figures 9a and 9b. As the value of the quantile used for threshold choice in ABC

decreases, the approximate Bayes Factors become more extreme, providing more strength of support. However, as the

quantile approaches zero, the Bayes Factor approximation becomes very unstable, instead of stabilizing as originally

expected.

As the quantile (and threshold t) approaches zero, the ratio of the accepted data (left tail of each density) generated under

each of the models varies in magnitude and direction. Further study is warranted to investigate alternative methods of

choosing a value for the threshold in order to get a more stable approximation of the Bayes Factor.

Other sources of error in the example include using an insufficient statistic for the summary statistic in the implemented

ABC algorithm, and the selected number of repetitions in the algorithm, Nsim. One hundred thousand repetitions (Nsim) were

used in the algorithm due to the amount of available computational power. An increase in the number of repetitions may

have increased the accuracy of Bayes Factor approximation.
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Figure 5: Results of the ABC Bayes Factor approximations in comparison to the Standard Mean approximations, given in
natural log scale, for all cases using window 10 measurements. Cases are from left to right: ABC algorithm with π(Hd) =
0.25; ABC algorithm with π(Hd) = 0.50; ABC algorithm with π(Hd) = 0.75; MC Standard Mean method; ABC algorithm
with π(Hd) = 0.25; ABC algorithm with π(Hd) = 0.50; ABC algorithm with π(Hd) = 0.75; MC Standard Mean method.
Reference Tables 2 and 3 in Appendix C for numerical results.
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Figure 6: Results of the ABC Bayes Factor approximations in comparison to the Standard Mean approximations, given in
natural log scale, for all cases using window 27 measurements. Cases are from left to right: ABC algorithm with π(Hd) =
0.25; ABC algorithm with π(Hd) = 0.50; ABC algorithm with π(Hd) = 0.75; MC Standard Mean method; ABC algorithm
with π(Hd) = 0.25; ABC algorithm with π(Hd) = 0.50; ABC algorithm with π(Hd) = 0.75; MC Standard Mean method.
Reference Tables 4 and 5 in Appendix C for numerical results.
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Figure 7: The blue density curve gives the distribution of ∆(η(Dn),η(D∗n)) when Hp was sampled. The red density curve
gives the distribution of ∆(η(Dn),η(D∗n)) when Hd was sampled. The black vertical line gives the value of the threshold
t, which corresponds to the 0.10 quantile of the set of ∆(η(Dn),η(D∗n)). These plots were created using results from one
completion of the algorithm in the case where π(Hd) = 0.50.
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Figure 8: The blue density curve gives the distribution of ∆(η(Dn),η(D∗n)) when Hp was sampled. The red density curve
gives the distribution of ∆(η(Dn),η(D∗n)) when Hd was sampled. The black vertical line gives the value of the threshold
t, which corresponds to the 0.10 quantile of the set of ∆(η(Dn),η(D∗n)). These plots were created using results from one
completion of the algorithm in the case where π(Hd) = 0.50.
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Figure 9: The blue curve shows how the ABC approximation of the Bayes Factor changes as the quantile in the algorithm
changes, in the scenario when Hp is true. Similarly, the red curve shows how the ABC approximation of the Bayes Factor
changes as the quantile in the algorithm changes, in the scenario when Hd is true. The blue and red dotted lines give the
average value of the 10 Standard Mean approximations in each respective scenario.

A more stable approximation could be produced by reducing its strong dependency on t. This is done in the next section by

proposing an alternative approach to assigning an ABC Bayes Factor that relies on a relationship with the receiver operating

characteristic.

Modification of ABC methodology using the Receiver Operating Characteristic

The first portion of the ABC algorithm results in two different distributions of distances: the distribution of

∆(η(Dn),η(D∗n))’s resulting from D∗n’s generated under model M1 and the distribution of ∆(η(Dn),η(D∗n))’s resulting from

D∗n’s generated under model M2. A threshold, t, is used to discriminate among the combined group of distances. Distances

less than or equal to t are accepted, while distances greater than t are rejected. The number of acceptances under model M1

is part of the numerator of BFabc, while the number of acceptances under model M2 is part of the denominator of BFabc. As

illustrated in the glass example in Figure 9, this is very dependent on the quantile-selected value of t from Algorithm 2, and

is especially apparent as the quantile approaches zero.

This concept used to arrive at the ABC approximation of the Bayes Factor can be compared to assessment of the

performances of classification systems using receiver operating characteristic (ROC) curves. A ROC curve provides a

comparison between two distributions of scores. The first distribution is composed of scores obtained by comparing pairs of

objects generated under M1, while the second distribution is composed of scores obtained by comparing pairs of objects

obtained under M2. A ROC curve represents the cumulative distribution of the scores less than a threshold t under the first

distribution against the cumulative distribution of scores less than t under the second distribution across all possible values

of t [8]. To do this, the two cumulative distributions, denoted G(t) and F(t), are plotted as functions of t on the x- and

y-axes, respectively, resulting in the ROC curve [8]. If p is defined by p = G(t), then t = G−1(p). Substituting this
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expression for t into F(t) gives F(t) = F(G−1(p)), or F(t) = ROC(p). Using this notation, ROC(p) is plotted on the y-axis

while p is plotted on the x-axis [8]. Note that G−1(p) denotes the quantile function, defined by van der Vaart [11].

The ROC can be related back to the ABC Bayes Factor by recalling from Section 2:

BFabc =
∑

N
i=1 Imi=1I∆(η(Dn),η(D∗,in ))≤t

∑
N
i=1 Imi=2I∆(η(Dn),η(D∗,in ))≤t

· π(M2)

π(M1)
.

Defining k = ∑
N
i=1 Imi=1 and l = ∑

N
i=1 Imi=2, along with letting π(M1) = π(M2), results in

BFabc =
k
l

Fk(t)
Gl(t)

=
k
l

Fk(G−1
l (Gl(t)))
Gl(t)

=
k
l

Fk(G−1
l (p))
p

=
k
l

ROCkl(p)
p

=
ROCkl(p)

p
.

(4)

The last step in Equation 4 assumes that k = l for a large number of simulations with π(M1) = π(M2). Also note that Fk(t)

and Gl(t) denote the empirical distribution functions as defined by van der Vaart [11].

Due to the construction of the ABC algorithm, the limit of BFabc when p→ 0 is of interest.

BF = lim
t→0

BFabc

= lim
p→0

BFabc

= lim
p→0

ROCkl(p)
p

= lim
p→0

d
d p

(
ROCkl(p)

)
d

d p (p)

= lim
p→0

d
d p

(
ROCkl(p)

)
By the chain rule,

d
d p

ROCkl(p) =
d

d p
F(G−1(p))

= f (G−1(p)) · 1
g(G−1(p))

The empirical ROC can be obtained from samples of scores from the two distributions of ∆(η(Dn),η(D∗n)) under M1 and

M2. The empirical curve can be modeled using a parametric function, resulting in a functional form that can facilitate the

Monte-Carlo estimation of the ABC Bayes Factor for t close to 0.

In particular, the binormal representation of the ROC

ROC(p) = Φ(a+bΦ
−1(p)) (5)
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is a common functional form of the ROC that involves two parameters, a =
µF −µG

σG
and b =

σF

σG
, where µG and σG are

parameters of one distribution of scores and µF and σF are parameters of the other distribution of scores[8]. Note that Φ in

Equation 5 represents the standard normal CDF.

The slope of the binormal ROC is given below.

∂ (ROC(p))
∂ p

=
∂ (Φ(a+bΦ−1(p)))

∂ p
=

φ(a+bΦ−1(p)) ·b
φ(Φ−1(p))

The behavior of the first derivative of the ROC as the threshold t approaches zero can be examined by evaluating the limit of

the derivative of the binormal ROC as p approaches zero, by utilizing a change of variable from p to the standard normal

z-score (z = Φ−1(p)). Note that φ as used below denotes the standard normal probability density function (PDF) and Φ

denotes the standard normal CDF.

lim
p→0

φ(a+bΦ−1(p)) ·b
φ(Φ−1(p))

= lim
z→−∞

φ(a+b · z) ·b
φ(z)

= lim
z→−∞

1√
2π

e
−

1
2
(a+bz)2

·b

1√
2π

e
−

1
2
(z)2

= lim
z→−∞

b · e
−

1
2
(a2+2abz+b2z2−z2)

(6)

The remaining portion of the limit will be evaluated by cases.

When b = 1, substitution provides for the following simplifications:

...= lim
z→−∞

e
−

1
2
(a2+2az). (7)

When b = 1 with a < 0 it follows that lim→ 0.

When b = 1 with a = 0 it follows that lim→ 1.

When b = 1 with a > 0 it follows that lim→ ∞.

When b > 1 it follows that lim→ 0.

When 0 < b < 1 it follows that lim→ ∞.

When b = 0 it follows that lim→ 0.

When b < 0 it follows that lim→ 0.

Thus, the first derivative of the binormal ROC as p (and the threshold t) approaches zero does not produce a stable result.

Since BFabc when t = 0 is of interest (and thus, the likelihood ratio at t = 0), this is not ideal. However, the first derivative of

the binormal ROC curve can still be observed at a neighborhood near zero. For this paper, the binormal model will still be

used to model the ROC for BFabc, and the first derivative will be evaluated at a neighborhood near zero. Future steps will

involve using a mixture of noncentral beta distributions to model the ROC curve near zero.
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Results from the glass example using ROC modified ABC

A binormal fit was performed on a set of ∆(η(Dn),η(D∗n))’s generated by the ABC algorithm in the case where equal priors

were used, Hp was true, and both eu and es originated from window 10, and resulted in a functional form of the ROC. The

binormal ROC curve exhibited a close fit to the empirical ABC ROC curve, especially in the neighborhood near t = 0. This

can be seen in Figure 10. From the fitted binormal function, the first derivative could be examined and evaluated near zero

to produce a more stable value of the Bayes Factor than the original ABC algorithm, as illustrated in Figure 11.
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Figure 10: The black curve gives the empirical ABC ROC and the blue curve gives the fitted binormal ROC.
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Figure 11: The black curve represents the ABC Bayes Factor (becoming very unstable as it approaches zero) and the blue
curve gives the stabilized binormal version of the ABC Bayes Factor. The dashed, black line represents the value of the
Standard Mean Bayes Factor.
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CONCLUSION

Approximate Bayesian Computation provides a method to approximate the Bayes Factor in cases where the exact likelihood

function is not available in a usable form. This is extremely useful in forensic science where complex and high-dimension

evidence forms are often encountered, and exact likelihood functions cannot be evaluated. A traditional ABC Bayes Factor

could be used in these settings to quantify the probative value of forensic evidence.

Although ABC has received criticism when used for model selection, there is still merit in its abilities as demonstrated by

the simple glass example. ABC Bayes Factors provided the correct direction of support in the majority of test cases in the

glass example. However, instability in the results indicated an issue relating to the choice of threshold in a traditional ABC

model selection algorithm. After addressing this issue by using a Receiver Operating Characteristic curve, updated results

of the glass example showed more stability.

In conclusion, results from the controlled glass example show that the ROC modified ABC approach has promising

potential in the field of forensic science. This approach also has the potential to be applied to other complex evidence types.

More testing would be needed. Further work could also be done using a mixture of noncentral beta distributions to model

the ROC curve near zero. Anticipated results would be greater reliability and more stability than the currently proposed

modification to ABC provides.
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APPENDIX A: Notation from ABC and Bayesian Statistics

symbol description page

θ a set of parameters describing a population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

π(θ) the prior density represents a belief about the value of population parameters prior to

observing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

Dn a sample data set with n observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

f (Dn|θ) the likelihood function gives the probability of observing the data set Dn as a function

of the parameters θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

π(θ |Dn) the posterior density represents a belief about the values of the population parameters

after observation of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

M1 and M2 two defined, competing models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

π(Dn|Mi) the marginal density is the density of Dn under Mi, not dependent on θ . . . . . . . . . . . 1
π(M1|Dn)

π(M2|Dn)
the posterior odds is the ratio of probabilities for two competing models given a

common data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

π(M1)

π(M2)
the prior odds is the ratio of model priors for two competing models . . . . . . . . . . . . . . 2

BF =
π(Dn |M1)

π(Dn |M2)
the Bayes Factor gives the quantitative value of evidence . . . . . . . . . . . . . . . . . . . . . . . . 2

D∗n a sampled data set with n observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

fm(D∗n|θi) the simpler likelihood function chosen for use in the ABC algorithm . . . . . . . . . . . . . . 3

η(Dn) summary statistic on Dn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

η(D∗n) summary statistic on D∗n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

t the threshold used in the ABC algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

πt(θ | Dn) the ABC approximation of the posterior density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Nacc the predetermined number of accepted parameters in the ABC algorithm. . . . . . . . . . . 4

Nsim the fixed number of repetitions for the modified ABC algorithm . . . . . . . . . . . . . . . . . . . 4

∆(η(Dn),η(D∗n)) the distance metric computed in the ABC algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

BFabc the ABC approximation of the Bayes Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

eu observations characterizing the trace evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

es observations characterizing the evidence from the specific source . . . . . . . . . . . . . . . . . 6

ea observations characterizing the alternative population . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Hp the prosecution hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Hd the defense hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6



APPROXIMATE BAYESIAN COMPUTATION 19

APPENDIX B: Glass data

The subset of the data used for the glass example is provided in the table below. The statistics on the fragments plotted in

the pairwise scatter plots (Figures 1 - 4) are given in the first three columns.

Table 1: Glass data, Group 1

logCaK logCaSi logCaFe window

4.91496 -0.34855 2.43375 2

4.8904 -0.33896 2.45729 2

4.811 -0.34886 2.44283 2

4.96556 -0.3414 2.43553 2

4.89558 -0.35564 2.45974 2

4.3378 -0.26225 2.63358 5

4.19659 -0.26582 2.66615 5

4.30314 -0.26684 2.68043 5

4.34333 -0.27339 2.67434 5

4.2737 -0.26973 2.67515 5

4.50285 -0.4015 2.65562 6

4.71998 -0.40101 2.70488 6

4.59287 -0.40417 2.66377 6

4.54464 -0.41209 2.66506 6

4.61372 -0.40982 2.6835 6

4.61924 -0.35607 2.69542 10

4.64588 -0.36343 2.71724 10

4.57294 -0.36936 2.68579 10

4.43477 -0.37827 2.71534 10

4.66207 -0.36113 2.68219 10

4.55597 -0.41731 2.67724 11

4.62876 -0.43356 2.65036 11

4.59576 -0.42875 2.65662 11

4.48033 -0.41931 2.63373 11

4.76723 -0.41832 2.67436 11

4.72771 -0.28559 2.75208 26

5.01285 -0.29837 2.7742 26

4.90503 -0.28864 2.74915 26

4.76014 -0.29178 2.72062 26

4.74913 -0.30246 2.75422 26

5.11487 -0.34261 2.9874 27
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Table 1: Glass data, Group 1

logCaK logCaSi logCaFe window

4.9873 -0.35484 2.92806 27

5.19403 -0.36614 2.99461 27

5.12464 -0.35581 3.01663 27

5.04411 -0.36464 2.97961 27

5.00871 -0.35024 2.94909 28

5.64772 -0.34551 2.96003 28

5.08184 -0.34541 2.95508 28

5.46454 -0.3348 3.00193 28

4.91008 -0.35085 3.0165 28

4.85665 -0.27848 2.72331 31

4.80565 -0.27413 2.75176 31

4.81562 -0.28573 2.70856 31

4.94187 -0.28045 2.71725 31

5.02693 -0.29857 2.72357 31

5.11738 -0.34456 3.00107 33

5.09724 -0.35778 3.01569 33

5.02488 -0.3552 3.05047 33

5.09537 -0.33615 3.05705 33

5.00744 -0.35284 3.01518 33

4.58919 -0.33376 2.29581 37

4.55096 -0.33616 2.31947 37

4.6238 -0.33274 2.34727 37

4.58853 -0.32933 2.32211 37

4.64406 -0.32723 2.30886 37

4.41554 -0.31573 2.29715 42

4.43597 -0.31287 2.3331 42

4.62635 -0.30298 2.28141 42

4.52247 -0.31785 2.31428 42

4.60349 -0.30033 2.28786 42

4.76416 -0.33157 2.80666 46

4.86111 -0.34159 2.89627 46

4.97293 -0.33882 2.81864 46

4.74509 -0.34084 2.871 46

4.67535 -0.35184 2.84802 46

4.45784 -0.30217 2.63046 47
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Table 1: Glass data, Group 1

logCaK logCaSi logCaFe window

4.56416 -0.29569 2.68883 47

4.61673 -0.30759 2.67237 47

4.68832 -0.30885 2.67029 47

4.50146 -0.31348 2.66752 47

4.81052 -0.33034 2.85795 48

4.93715 -0.30307 2.87275 48

4.63925 -0.32851 2.83454 48

4.80885 -0.32053 2.8127 48

4.76915 -0.31918 2.8568 48

5.80845 -0.45109 3.4743 58

5.31633 -0.45276 3.46656 58

5.75272 -0.46434 3.47846 58

5.60795 -0.46332 3.46605 58

5.78077 -0.46379 3.49782 58



APPROXIMATE BAYESIAN COMPUTATION 22

APPENDIX C: Glass example results

Numerical results obtained from the simulations described in Algorithm 3 are given below in Tables 2 through 5.

Table 2: Approximate Bayes Factors when Hp is true, with trace evidence eu from window 10.

π(Hd) = 0.25 π(Hd) = 0.50 π(Hd) = 0.75 Standard Mean
1110.778 2499 349.9412 4005.284

3333 1110.111 326.6703 4051.384
833 1110.111 309.5 4045.92

1666.333 768.2308 386.6104 4018.659
1110.778 433.7826 402.4054 3984.788

833 475.1905 413.6667 3993.366
555.2222 433.7826 807.8108 4085.482

3333 999 397 3966.998
1110.778 2499 573.9231 4161.404
555.2222 2499 563.0377 4006.677

AVG 1444.11114 1282.72085 453.05656 4031.9962

Table 3: Approximate Bayes Factors when Hd is true, with trace evidence eu from window 10.

π(Hd) = 0.25 π(Hd) = 0.50 π(Hd) = 0.75 Standard Mean
6.944687 4.144033 7.387812 0.001580734
5.240803 6.262164 4.82881 0.000851726
6.414305 4.640158 12.51992 0.000896609
5.979798 5.968641 9.526096 0.003657319
45.96296 8.157509 15.65672 0.000308687
5.167217 5.006006 5.542141 0.007451877
5.683514 7.748906 6.454775 0.000162563
4.779141 6.380074 4.625826 8.38E-05
3.864819 4.991612 5.862629 0.001812223
5.672673 4.081301 8.843664 0.002659687

AVG 9.5709917 5.7380404 8.1248393 0.001946519
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Table 4: Approximate Bayes Factors when Hp is true, with trace evidence eu from window 27.

π(Hd) = 0.25 π(Hd) = 0.50 π(Hd) = 0.75 Standard Mean
555.2222 369.3704 341.8276 1437.623

833 276.7778 212.8273 1434.838
555.2222 293.1176 242.9016 1423.567
555.2222 2499 269.7273 1444.326
666.3333 768.2308 269.7273 1447.91
1110.778 383.6154 312.7895 1469.986

833 624 188.0828 1439.504
302.697 343.8276 171.4186 1426.103

666.3333 768.2308 193.0784 1445.715
555.2222 499 233.2205 1447.562

AVG 663.30304 682.51704 243.56009 1441.7134

Table 5: Approximate Bayes Factors when Hd is true, with trace evidence eu from window 27.

π(Hd) = 0.25 π(Hd) = 0.50 π(Hd) = 0.75 Standard Mean
0.05100119 0.01317123 0.009027081 3.87E-06
0.02621076 0.02848915 0.01144349 0.000218999
0.02424372 0.01564087 0.009630819 2.76E-06
0.05827068 0.04307917 0.01265314 3.89E-06
0.02470462 0.04014978 0.01356102 4.43E-05
0.06938907 0.05385183 0.01416658 2.05E-05
0.0406942 0.05864916 0.01265314 0.000470388
0.1501789 0.02291326 0.02632906 0.000673247
0.07626772 0.01698363 0.1269543 5.92E-05
0.03446247 0.01153146 0.01659125 4.10E-06

AVG 0.055542333 0.030445954 0.025300988 0.000150121
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