South Dakota State University

Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange

Doctor of Nursing Practice (DNP) Practice Innovation Projects

College of Nursing

2024

Implementation of an Oral Sucrose Protocol for Advanced Practice Providers

Cori Shatto South Dakota State University, corimarx22@gmail.com

Follow this and additional works at: https://openprairie.sdstate.edu/con_dnp

Part of the Maternal, Child Health and Neonatal Nursing Commons

Recommended Citation

Shatto, Cori, "Implementation of an Oral Sucrose Protocol for Advanced Practice Providers" (2024). *Doctor of Nursing Practice (DNP) Practice Innovation Projects*. 199. https://openprairie.sdstate.edu/con_dnp/199

This DNP - Open Access is brought to you for free and open access by the College of Nursing at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Doctor of Nursing Practice (DNP) Practice Innovation Projects by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact michael.biondo@sdstate.edu.

IMPLEMENTATION OF ORAL SUCROSE PROTOCOL

Implementation of an Oral Sucrose Protocol for Advanced Practice Providers:

Review of Literature

BY

Cori Shatto

A paper submitted in partial fulfillment of the requirements for the degree

Doctor of Nursing Practice

South Dakota State University

2024

Implementation of Oral Sucrose in Infants

This Doctor of Nursing Practice (DNP) Project is approved as a credible and independent investigation by a candidate for the DNP degree and is acceptable for meeting the project requirements for this degree. Acceptance of this DNP Project does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department.

Dannica Callies, DNP, CNP, FNP-C, CNE Date DNP Project Co-Advisor

Brandon Varilek, PhD, RN, CCTC, CNE, CHPN Date DNP Project Co-Advisor

Heidi Mennenga, PhD, RN, CNEDateAssociate Dean for Academic Programs

Acknowledgements

I wish to acknowledge the assistance of those who have supported me throughout the entirety of the Doctor of Nursing Practice (DNP) program as well as throughout this quality improvement project process. To Dr. Dannica Callies and Dr. Brandon Varilek who have guided me through the process of the DNP project, along with my committee members Dr. Brandi Pravecek and Dr. Sanjeev Anand. I would like to thank Amy Hockett for being the stakeholder for this project. I would also like to thank my husband for supporting and encouraging me as I worked to obtain my DNP degree.

Abstract

Introduction: Pain related to immunization administration in infancy can lead to negative effects on neurodevelopment, needle fear, vaccine hesitancy, and endemic outbreaks of previously eradicated diseases. Pain management in immunization administration may be done safely and effectively through use of oral sucrose. Methods: Using the keywords oral sucrose, immunizations, infants, sucrose, pain, analgesia, vaccine, intramuscular injection, advanced practice providers, and knowledge, attitudes, and practice survey, a literature search was completed using the databases Cochrane, Wiley, Science Direct, Ovid, and Cumulative Index to Nursing and Allied Health Literature. Full-text, peer-reviewed articles published in English between 2011 and 2023 were included. A total of 17 articles were selected for the literature review and were assigned a level and grade with guidance from the Johns Hopkins Nursing Evidence-Based Practice Model.

Gaps: There is a lack of evidence within the setting of a clinic that administers routine immunizations for infants 6 months of age and younger, as many studies focus on premature infants in a neonatal intensive care setting. There are also gaps in research on simultaneous nonnutritive sucking, minimally effective dose, and maximum number of repeated doses.

Recommendations: Implementation of an oral sucrose protocol for advanced practice providers can improve their knowledge, attitudes, and practice.

Implementation of an Oral Sucrose Protocol for Advanced Practice Providers: Review of Literature

Immunizations are a global health success story and are considered a basic human right. Immunizations reduce risks of both getting and transmitting a disease. Currently, vaccines are available to prevent more than 20 life-threatening diseases, and more are being researched and developed (World Health Organization, n.d.). Immunizations save nearly three million lives each year (Gad et al., 2019). Despite countless benefits, immunizations are among the most common yet unpleasant procedures of childhood. The Centers for Disease Control and Prevention (CDC) recommends 24 immunizations during the first 2 years of life, and it is not uncommon for three or four to be given at one visit (Abukhaled & Cortez, 2020; Kumar et al., 2019; McNair et al., 2019; Yilmaz et al., 2014). Many immunizations are intramuscular injections but there are some that are administered orally. Throughout this paper, any reference to immunizations or vaccines implies those administered by injection.

At birth, an infant's nervous system is mature enough to perceive pain to its full extent (Chang et al., 2020; Kavthekar et al., 2016; Liaw et al., 2011; Uzelli & Gunes, 2014). While pain caused by immunization administration is often short-lived, it can lead to numerous negative effects in neurodevelopment, brain function, and future pain perception. Uncontrolled pain in infancy can also produce negative physiologic, behavioral, hormonal, and metabolic changes (Banga et al., 2016; Harrison, 2020; Kavthekar et al., 2016; Liaw et al., 2011; McNair et al., 2019; Stevens et al., 2016; Uzelli & Gunes, 2014). In addition to negative developmental impacts, immunization-related pain causes distress and anxiety in infants, parents, and healthcare providers. This distress often leads to parental hesitancy in following vaccination schedules, increasing the number of unvaccinated infants and children. Recently, this hesitancy has resulted in endemic outbreaks of measles and pertussis (Abukhaled & Cortez, 2020; Harrison et al., 2016; Kumar et al., 2019).

Besides preventing endemic outbreaks, an increase in vaccination rates also decreases healthcare costs associated with preventable illnesses. While there are costs associated with vaccination programs, the result of widespread vaccination is decreased morbidity and mortality and decreased costs related to procedures, tests, and treatment of preventable illness. Additionally, the financial status of patients and parents is improved because they are taking less time off work. It has been found that industrialized nations, such as the United States, obtain a net economic benefit of \$69 billion as a result of successful vaccination programs (Rodrigues & Plotkin, 2020).

Learning about pain begins at one's first perception of pain. The experience infants have with pain has long-lasting effects on pain perception and response, and often leads to severe fear and avoidance of needles. An estimated two-thirds of children will develop needle fear as a response to repeated painful experiences, and this fear can extend into adulthood. Nearly 25% of adults have a fear of needles that developed in childhood, and nearly 10% of the adult population avoids immunization because of their fear (Gad et al., 2019; Kumar et al., 2019; Yilmaz et al., 2014). The reason for untreated pain in infancy is often due to misconceptions and a lack of understanding by healthcare providers. Opportunity exists to manage pain during routine infant and childhood immunizations.

2

Oral sucrose has become the most widely studied pain intervention (McNair et al., 2019). Oral sucrose has shown to have analgesic and calming effects in children up to 18 months of age. In addition to reducing pain response safely, administration of oral sucrose has also shown to reduce physiologic indicators, such as crying time and heart rate with no negative impact on neurodevelopment (Banga et al., 2016; Levine, 2017; Matsuda, 2017; Stevens et al., 2018; Valeri et al., 2018). The aim of this literature review is to identify recommendations, safety, and effectiveness of oral sucrose when given to minimize immunization-related pain and utilize the information to develop a protocol for advanced practice providers to implement.

Clinical Question

The population, intervention, comparison, outcome, and time (PICOT) question guiding this literature review is as follows: Among advanced practice providers in a family practice clinic that serves rural communities (P), how does the implementation of an oral sucrose protocol (I), compared to no protocol (C), affect knowledge, attitudes, and practices (KAP) regarding oral sucrose (O), within 8 weeks (T)?

Methods

A literature review was completed through Google Scholar and the Hilton Briggs Library. Cochrane, Wiley, Science Direct, Ovid, and The Cumulative Index to Nursing and Allied Health Literature (CINAHL) databases were used to collect articles. When searching the databases, the following keywords were used: *oral sucrose, immunizations, infants, sucrose, pain, analgesia, vaccine, intramuscular injection, advanced practice providers,* and *knowledge, attitudes, and practice survey*. Inclusion criteria included full text, peer-reviewed articles published between 2011 and 2023 that were written in English. Exclusion criteria included articles published before 2011, sources not available in full text, and articles not written in English.

Articles produced in the search were chosen based on applicability, and a total of 17 were selected for the literature review. The 17 articles are outlined in an evidence table that can be found in Appendix A. To assist in assigning a level and grade to each article, the Johns Hopkins Nursing Evidence-Based Practice (JHNEBP) Model from 2017 was utilized. The JHNEBP model produced the following results: 11 level I articles, one level II article, and five level III articles. Of those, 10 articles are grade A, and seven articles are grade B. A table showing the levels of evidence can be found in Appendix B.

A search for guidelines to assist in intervention planning was conducted which produced minimal results. Guidelines published by the Royal Children's Hospital (RCH) in Melbourne, Australia were the only easily accessible and publicly published guidelines available to review and reference. Upon review, the guidelines from RCH provided strong, evidence-based recommendations for the use of oral sucrose in infants for painful procedures while including details such as indications, contraindications, methods, dosing, and administration techniques (Kendrick, 2021). To determine the strength and quality of the RCH guidelines, an appraisal of guidelines for research and evaluation II (AGREE II) tool score was calculated. The AGREE II tool assesses the scope and purpose, stakeholder involvement, rigor of development, clarity of presentation, applicability, and editorial independence of published guidelines (National Collaborating Centre for Methods and Tools, 2017). Based on the AGREE II tool, the overall quality of the RCH guidelines is 6 out of 7, indicating great quality.

Evidence Summary

This literature search produced results with strong evidence, collected from peerreviewed articles, and supports the use of oral sucrose prior to immunizations and other painful procedures in infancy and childhood. The studies were completed under a variety of different conditions for varying populations, yet results remain fairly consistent. Consistency in results despite varying studies further supports the development of an oral sucrose protocol for infants receiving immunizations. When completing the literature search, there was no literature on expert opinions surrounding the use of oral sucrose.

Guidelines developed by RCH in Melbourne, Australia were reviewed along with peer-reviewed articles. As mentioned above, these were the only accessible and public guidelines, which resulted in them being the only guidelines reviewed. Despite only reviewing one set of guidelines, those produced by RCH overlap with the information found in the articles reviewed, further supporting the evidence that has been gathered (Kendrick, 2021). The following section will provide specific information about oral sucrose, pain and physiologic responses, parent approval, and provider knowledge, attitudes, and practices.

Oral Sucrose

Sucrose activates the central endogenous opioid system, producing results similar to those of opioids and stimulates the release of endorphins, which bind to opioid receptors and inhibit the feeling of pain (Kavthekar et al., 2016). These effects are attributed to the sweet taste. When given 2 minutes prior to injection, which has been determined as the peak effect, the infant experiences relief from pain as evidenced by decreased pain scores, lower heart rate variability, and reduced crying time (Kavthekar et

5

al., 2016; Kumar et al., 2019; Liaw et al., 2011; Uzelli & Gunes, 2014). In addition to the analgesic effects, the use of oral sucrose as a nonpharmacologic pain intervention is convenient. Oral sucrose can be used without a prescription and is inexpensive, as opposed to pharmacological interventions, which are not as effective and tend to elicit side effects (Liaw et al., 2011).

Though the research of oral sucrose is becoming more widespread, the concentration and dose of the solution can vary from study to study. Oral sucrose is most commonly studied in concentrations of 20-30% but concentrations as high as 75% have been studied. The American Academy of Pediatrics (AAP) recommends using a 24% concentration of oral sucrose (Chang et al., 2020; Matsuda, 2017). Oral sucrose solution is generally dispensed in 2 mL syringes or droppers. The dose of oral sucrose ranges from 0.5 to 2 mL of solution. It has been proven that 0.1 mL per dose is the minimally effective dose in reducing injection-related pain (Stevens et al., 2018).

Research has also shown that oral sucrose can be used safely in the pediatric population up to 18 months of age (Kumar, 2019; Liaw, 2022; Stevens, 2016). Oral sucrose in older infants and toddlers can be effective in reducing pain response and crying time, but higher sucrose concentrations may be required. In one study, it was found that response to oral sucrose was not as evident when using 12% sucrose, and some children required up to 75% sucrose to produce a significant effect on injection-related pain (Yilmaz, 2014).

Pain Response

Pain can be difficult to determine in infants as they cannot verbally express their pain. There are a variety of pain scales designed for use in infants and children. While

there can be variability among each examiner's interpretation of findings, these pain scores can also be extremely beneficial in providing information on infant pain response. Chang et al. (2020) compared pain scores after a painful procedure among five different intervention groups: (a) breastfeeding, (b) nonnutritive sucking, (c) skin-to-skin, (d) oral sucrose, and (e) a control group. Using the Neonatal Pain, Agitation and Sedation Scale (NPASS), the mean pain score for the oral sucrose group was 1.01 out of 13. Pain scores in the comparison groups were 5.14, 1.88, 1.84, and 3.21 out of 13 in the control, breastfeeding, nonnutritive sucking, and skin-to-skin groups respectively (Chang et al., 2020). In another study comparing the effect of (a) oral sucrose, (b) breastfeeding, and (c) control groups when given to infants receiving intramuscular injection, the Face, Legs, Activity, Cry, Consolability (FLACC) pain scale was used to show the effectiveness of both breastfeeding and oral sucrose, and both groups showed significant improvements in pain scores. In this study, the control group had a mean pain score of 8.9 out of 10, while oral sucrose and breastfeeding groups produced mean pain scores of 3.2 and 2.6 out of 10 respectively (Gad et al., 2019).

Other studies compared oral sucrose to control groups and topical anesthetic solutions while utilizing the Modified Behavior Pain Scale (MBPS) and the Neonatal Infant Pain Scale (NIPS) for data collection (Kumar et al., 2019; Uzelli & Gunes, 2014). When comparing oral sucrose to topical anesthetic, the MBPS found a mean of 5.09 out of 10 for the oral sucrose group (Kumar et al., 2019). The topical anesthetic group had a mean pain score of 5.74, and the control group had a mean of 6.7 out of 10. This data was found to be statistically significant by a chi squared test and *t*-test (Kumar et al., 2019). Additionally, Uzelli and Gunes (2014) utilized NIPS and results showed the control group had a mean pain score of 5.6 while the oral sucrose group had a mean of 4.2 out of 10. A two-tailed *t*-test found the results to be statistically significant with a p value of less than 0.001 (Uzelli & Gunes, 2014). These statistics reflect consistently lower pain scores in the oral sucrose intervention groups and reinforces the efficacy of oral sucrose as a pain management intervention.

Physiologic Indicators

Along with pain scales, physiologic indicators are an effective way to determine the pain and distress an infant is experiencing. In studies analyzing the use of oral sucrose, crying time and heart rate fluctuations were the most commonly assessed physiologic indicators. When assessing heart rate variability, it was found that the oral sucrose group had a smaller increase in heart rate after the painful stimulus. When comparing sterile water, breastmilk, and 24% sucrose, the change in heart rate from baseline was 18.2, 7.4, and 3, respectively (Kavthekar et al., 2016). Additionally, the total duration of crying after injection was significantly reduced in several studies. Chang et al. (2020) provided statistics that showed a mean cry time of 9.6 seconds for the oral sucrose group. Other cry times include 81, 90, 73.2, and 284 seconds for the breastfeeding, skinto-skin, nonnutritive sucking, and control groups respectively. This was proven to be statistically significant with a p value of < 0.01 through analysis with the Kruskal-Wallis test (Chang et al., 2020). Yilmaz et al. (2014) found crying time to range from 85.6 to 154.4 seconds in the control group while the oral sucrose group ranged from 36.2 to 88.2 seconds. This was analyzed with the ANOVA test and produced a p value of < 0.001(Yilmaz et al., 2014). Kavthekar et al. (2016) found the mean crying time to be 36.3 seconds in the oral sucrose group, 42.1 seconds in the breastfeeding group, and 137.2

seconds in the control group. ANOVA analysis was also used in this study which confirmed statistical significance (Kavthekar et al., 2016). Finally, in a study written by Levine (2017), it was specifically noted that the duration of cry in the oral sucrose group was reduced by 12-77 seconds.

When assessing physiologic indicators such as heart rate variation and crying time, Kavthekar et al. (2016) paid specific attention to the duration of the first cry. The first cry is defined in the article as the duration of continuous crying before a quiet interval of 5 seconds. In that study, the duration of first cry was reduced by up to 75 seconds (p < 0.05; Kavthekar et al., 2016).

Breastfeeding is often a common comparison group for pain management during immunizations. Breastfeeding has been consistently proven as effective in reducing pain following immunization administration, but studies are inconsistent on whether breastfeeding is more effective than oral sucrose for pain management. Some report oral sucrose being more effective while others report breastfeeding to be more effective (Chang et al., 2020; Gad et al., 2019; Kavthekar et al., 2016). However, despite its effectiveness, it has been reported that while breastfeeding reduced the pain score, it did not affect any physiologic indicators (e.g., crying duration or heart rate reduction; Harrison et al, 2016).

Parental Response

Parents ultimately make the decision if their infant will receive all recommended immunizations per CDC guidelines in their first 2 years of life. While pain control is a moral obligation for the infant, it also provides a sense of comfort and satisfaction to parents and increases adherence to the recommended immunization schedule (Yilmaz et al., 2014). Studies have shown that the distress of the parent and infant during routine immunizations causes vaccine nonadherence at the parent's discretion (Harrison et al., 2016; Kumar et al., 2019). When educated on nonpharmacologic pain interventions and questioned on awareness and approval before and after intervention, there was a great response for satisfaction. In one specific study, 96% of parents would recommend the use of oral sucrose to other parents, and 87% of parents were satisfied with the effects of the pain intervention (Abukhaled & Cortez, 2020).

Knowledge, Attitudes, and Practice

Knowledge, attitudes, and practice surveys are used to collect information, often on health practices. They have many advantages including ease of use, relative generalizability, and cost-effectiveness (Patel, 2022). When completing a literature review, there was no information found on KAP surveys and oral sucrose protocols, specifically. When the search was widened to determine the effect of protocols in general on the KAP of advanced practice providers (APPs), there were still no findings. However, many results populated related to KAP surveys and a variety of protocols, indicating they are commonly used across healthcare settings. As of right now, there is no clear expression of the feelings of healthcare workers administering vaccines to infants before and after pain interventions.

Gaps in the Literature

There are gaps in the literature in relation to the population of infants receiving immunizations in a clinic setting. Many studies reviewing the use of oral sucrose for pain management are set in a neonatal intensive care unit with premature infants as the population of interest. There are also gaps involving the use of nonnutritive sucking as an aide in pain management. Nonnutritive sucking is often compared to oral sucrose to determine which intervention produces greater results, but evidence is lacking if use of the two simultaneously enhance pain relief. There are gaps in evidence regarding how much sucrose to administer in each dose and how many doses can be given consecutively. Along with the dose of sucrose that should be administered, there is a lack of evidence regarding the long-term effects of sucrose after repeated administration (Stevens, 2018).

Recommendations for Practice

Pain management during infancy, and especially during injections, is helpful to prevent needle fear and vaccine nonadherence. Nonpharmacologic pain interventions have repeatedly proven to be safe and effective, with oral sucrose being recommended from numerous sources, including the AAP (Abukhaled & Cortez, 2020; Chang et al., 2020). In order to improve the KAP of APPs regarding oral sucrose, implementation of a protocol is recommended to provide consistency in oral sucrose indications and administration while allowing APPs to incorporate oral sucrose into their practice in a way they are comfortable with.

Conclusion

Pain management in infancy as a whole is underutilized due to misconceptions in the infant's pain experience and development of the neurologic system (Abukhaled & Cortez, 2020). Painful procedures can have significant negative effects on neurodevelopment and even short-term pain can have detrimental, long-lasting effects (Banga et al., 2016). Various nonpharmacological interventions have been tested, and of those, many have proven effective. Oral sucrose has been found to produce the most consistent results and is recommended by the AAP (Changa et al., 2020). Despite the evidence, oral sucrose is not yet a well-known, widespread practice. Oral sucrose, when utilized to manage immunization-related pain in infancy, may be beneficial in preventing vaccine nonadherence and needle fear as well as preventing negative impacts on neurodevelopment throughout the first 2 years of the child's life. Educating APPs on oral sucrose and implementing a protocol regarding oral sucrose use prior to immunizations can close the gap in knowledge and promote incorporation into everyday practice.

References

- Abukhaled, M & Cortez, A. (2020). Nonpharmacological methods for reducing parental concern for infant vaccine-associated pain. *Journal of Pediatric Health Care*, 35(2), 180-187. <u>https://doi.org/10.1016/j.pedhc.2020.09.006</u>
- Banga, S., Datta, V., Rehan, H. S., & Bhakhri, B. K. (2016). Effect of sucrose analgesia, for repeated painful procedures on short-term neurobehavioral outcome of preterm neonates: A randomized controlled trial. *Journal of Tropical Pediatrics*, 62, 101-106. <u>https://doi.org/10.1093/tropej/fmv079</u>
- Chang, J., Filoteo, L., & Nasr, A. S. (2020). Comparing the analgesic effects of 4 nonpharmacologic interventions on term newborns undergoing heel lance: A randomized controlled trial. *Journal of Perinatal & Neonatal Nursing*, *34*(4), 338-345. https://doi.org/10.1097/JPN.00000000000495
- Gad, R. F., Dowling, D. A., Abusaad, F. E., Bassiouny, M. R., & Abd El Aziz, M. A. (2019). Oral sucrose versus breastfeeding in managing infants' immunization-related pain: A randomized controlled trial. *The American Journal of Maternal/Child Nursing*, 44(2), 108-114.

https://doi.org/10.1097/NMC.000000000000512

Harrison, D., Reszel, J., Bueno, M., Sampson, M., Shah, V. S., Taddio, A., Larocque, C., & Turner, L. (2016). Breastfeeding for procedural pain in infants beyond the neonatal period (review). *Cochrane Database of Systemic Reviews, 10.* https://doi.org/10.1002/14651858.CD011248.pub2

- Harrison, D. (2020). Pain management for infants- myths, misconceptions, barriers; knowledge and knowledge gaps. *Journal of Neonatal Nursing*, 27, 313-316. https://doi.org/10.1016/j.jnn.2020.12.004
- Kavthekar, S., Patil, R., Kurane, A., & Bharati, H. (2016). Comparison of analgesic effect of 24% sucrose and breast milk in healthy infants less than 2 months of age. *International Journal of Contemporary Pediatrics*, 3(4), 1375-1379.

https://doi.org/10.18203/2349-3291.ijcp20163681

- Kendrick, A. (2021). Sucrose (oral) for procedural pain management in infants.
 <u>https://www.rch.org.au/rchcpg/hospital_clinical_guideline_index/Sucrose_oral_fo_r_procedural_pain_management_in_infants/</u>
- Kumar, A., Narang, G. S., Singh, G., & Kaur, J. (2019). Comparison of the effectiveness of oral sucrose solution and topical anaesthetics during immunization in infants between age 6 weeks-6 months. *International Journal of Contemporary Pediatrics*, 6(3), 1008-1013. <u>https://doi.org/10.18203/2349-3291.ijcp20190121</u>
- Levine, H. (2017). Does giving a sweet-tasting solution before vaccine injection reduce infant crying? *The Journal of Family Practice*, *66*(3), 185-186. <u>https://cdn.mdedge.com/files/s3fs-public/JFP06603185.PDF</u>
- Liaw, J., Zeng, W., Yang, L., Yug, Y., Yin, T., & Yang, M. (2011). Nonnutritive sucking and oral sucrose relieve neonatal pain during intramuscular injection of hepatitis vaccine. *Journal of Pain and Symptom Management*, 42(6), 918-930. <u>https://doi.org/10.1016/j.jpainsymman.2011.02.016</u>

Matsuda, E. (2017). Sucrose as analgesia in neonates undergoing painful procedures. *American Journal of Nursing*, *117*(8), 21.

https://doi.org/10.1097/01.NAJ.0000521966.23470.7d

- McNair, C., Yeo, M. C., Johnston, C., & Taddio, A. (2019). Nonpharmacologic management of pain during common needle puncture procedures in infants.
 Clinics in Perinatology, 46, 709-730. <u>https://doi.org/10.1016/j.clp.2019.08.006</u>
- National Collaborating Centre for Methods and Tools. (2017). *Appraisal of guidelines for research & evaluation (AGREE) II instrument*. <u>https://www.nccmt.ca/knowledge-</u> repositories/search/100
- Patel, P. (2022). KAP survey: Does it really measure knowledge, attitudes and practices? *National Journal of Community Medicine*, 13(5), 271-273. <u>https://doi.org/10.55489/njcm.130520222063</u>
- Rodrigues, C. M.C. & Plotkin, S. A. (2020). Impact of vaccines; health, economic and social perspectives. *Frontiers in Microbiology*, 11(1526). https://doi.org/10.3389/fmicb.2020.01526
- Stevens, B., Yamada, J., Ohlsson, A., Haliburton, S., & Shorkey, A. (2016). Sucrose for analgesia in newborn infants undergoing painful procedures. *Cochrane Database* of Systematic Reviews, 7. <u>https://doi.org/10.1002/14651858.CD001069.pub5</u>

Stevens, B., Yamada, J., Campbell-Yeo, M., Gibbins, S., Harrison, D., Dionne, K.,
Taddio, A., McNair, C., Willan, A., Bellantyne, M., Widger, K., Sidani, S.,
Estabrooks, C., Synnes, A., Squires, J., Victor, C., & Riahi, S. (2018). The
minimally effective dose of sucrose for procedural pain relief in neonates: a

randomized control trial. *BMP Pediatrics*, *18*(85). <u>https://doi.org/10.1186/s12887-</u>018-1026-x

University of Florida Health. (2021). *Pain assessment scales/tools*. <u>https://pami.emergency.med.jax.ufl.edu/resources/provider-resources/pain-assessment-scales/</u>

- Uzelli, D. & Gunes, U. Y. (2015). Oral glucose solution to alleviate pain induced by intramuscular injections in preterm infants. *Journal for Specialists in Pediatric Nursing*, 20, 29-35. <u>https://doi.org/10.1111/jspn.12094</u>
- Valeri, B. O., Gaspardo, C. M., Martinez, F. E., & Linhares, M. B. M. (2018).
 Effectiveness of sucrose used routinely for pain relief and neonatal clinical risk in preterm infants: A nonrandomized study. *The Clinical Journal of Pain, 34*(8), 713-722. <u>https://doi.org/10.1097/AJP.000000000000584</u>
- World Health Organization. (n.d.). Vaccines and immunization.

https://www.who.int/health-topics/vaccines-and-immunization#tab=tab_1

Yilmaz, G., Caylan, N., Oguz, M., & Karacan, C. D. (2014). Oral sucrose administration to reduce pain response during immunization in 16-19-month infants: A randomized, placebo-controlled trial. *European Journal of Pediatrics*, 173, 1527-1532. <u>https://doi.org/10.1007/s00431-014-2358-7</u>

Appendix A

Evidence Table

Authors & Date	Study Design	Participants, Sample, Setting	Intervention /Variables Studied	Measure- ment	Data Analysis	Findings/ Recommend ations for Practice	Strengths/ Limitations	Level of Evidence
Abukhaled, M. & Cortez, S. (2020).	Pre- and post- evidence- based implementat ion design	100 infants up to 6 months of age presenting to the clinic for routine well-baby examination and vaccinations	While being held by their parents, infants were either breastfed or given 24% sucrose solution for pain relief.	Pre and post intervention survey with a 5-point Likert scale. The survey studied the level of parental concern for infant vaccine- related pain before and after implementat ion of pain relief intervention s.	Fisher exact test and Wilcoxon- Mann- Whitney test. Both tests revealed significant differences in parental concern when comparing pre- and post- intervention surveys with <i>p</i> values of 0.48 and 0.38 respectively.	Both intervention groups showed significant differences in parental concern from pre- to postinterven tion. Pre- intervention surveys showed 43% of parents had a moderate level of concern and 37% had higher levels of concern.	Strengths: minimal cost, ease of use, absence of adverse reactions. Limitations: limited population of 6 months, lack of nurse compliance to the intervention, limited generalizabi lity,	Level III: Quality Grade B

						After observing the pain intervention, 14% of parents reported moderate levels of concern and 2% reported higher levels of concern. Providing pain relief is a moral and ethical obligation and pain		
						obligation and pain relief		
						intervention s should be common practice		
Banga, S., Datta, V., Rehan, H. S., &	Randomized Controlled Trial (RCT)	93 clinically stable preterm newborns in	Neonates were administere d either a	Motor developmen t and vigor (MDV) and	Unpaired and paired t- tests. The test was not	No difference in neurobehavi oral scores	Limitations: low likelihood of adverse	Level I: Quality Grade B
		the neonatal	24% sucrose	alertness	statistically	in either	neurodevelo	

Bhakhri, B.	care unit at	solution or	and	significant	group. No	pmental	
K. (2016).	a tertiary-	double-	orientation	indicating	difference in	outcomes.	
	level	distilled	(AO)	no change	the		
	teaching	water	domains	in MDV or	frequency of		
	hospital.	depending	performed	AO in	adverse		
		on	at 40 weeks	sucrose	effects such		
		randomizati	gestational	groups.	as fall in		
		on for every	age.		heart rate or		
		potentially	Measureme		oxygen		
		painful	nt of highest		saturation.		
		procedure	heart rate		Recommend		
		over a 7 day	and lowest		using		
		period.	SpO2		sucrose for		
			obtained 30		single		
			seconds		painful		
			after the		events as		
			prick.		well as		
					repeated		
					events.		
					Recommend		
					further		
					studies with		
					a longer		
					follow up		
					period to		
					follow		
					neurodevelo		
					pmental		
					outcomes.		

Chang, J.,	RCT	226 full-	Infants were	NPASS pain	t-test for 2	Mean	Limitations:	Level I:
Filoteo, L.,		term infants	given one of	score	independent	NPASS	control arm	Quality
& Nasr, A.		aged 24-48	four		samples	scores were	was not	Grade A
S. (2020).		hours in a	nonpharmac		with normal	5.14, 1.88,	randomized	
		California	ological		distribution	1.01, 1.84,	at the same	
		tertiary-	pain		and	and 3.21 out	time as the	
		level	intervention		Wilcoxon-	of 13 for	other arms,	
		hospital	s:		Mann-	control,	difficulty	
		maternity	breastfeedin		Whitney test	breastfeedin	recruiting	
		unit.	g, sucrose,		for	g, oral	healthy	
			nonnutritive		nonparametr	sucrose,	newborns,	
			sucking, and		ic	nonnutritive	and lack of	
			skin-to-skin		distribution.	sucking, and	resources.	
			contact		Oral sucrose	skin-to-skin		
			during heel		was shown	contact		
			lance		to be the	groups		
			procedure.		most	respectively.		
					effective	Oral sucrose		
					intervention	was the		
					in reducing	most		
					pain and	effective		
					shortening	intervention		
					crying time	in		
					with p	shortening		
					values of	the		
					<0.01 for	newborn's		
					both	crying time.		
					variables.	Nonpharma		
						cologic pain		
						intervention		
						S		

						(breastfeedi		
						ng oral		
						sucrose		
						nonnutritive		
						sucking and		
						sucking, and		
						SKIII-tO-SKIII		
						nave		
						analgesic		
						effects and		
						should be		
						used to		
						decrease the		
						amount of		
						pain		
						newborn's		
						experience.		
Gad, R. F.,	Randomized	120 healthy,	The infant's	FLACC	Repeated	Mean pain	Limitations:	Level I:
Dowling, D.	Controlled	breastfed	mother	pain scale to	measures	scores,	lack of	Quality
A.,	Experiment	infants aged	randomly	measure	ANOVA	crying time,	blinding	Grade A
Abusaad, F.	al Study	2. 4. and 6	chose a card	pain before.	and post hoc	and heart	because of	
É.,	5	months	that	during, and	tests with	rate changes	the	
Bassiouny.		attending	assigned	after	Bonferroni	of the	breastfeedin	
M. R., &		the	them to	injection.	adjustment.	sucrose and	σ	
Abd El		immunizatio	group A		There were	breastfeedin	^o intervention	
Aziz M A		n clinic for	(sucrose) B		significant	g grouns	using	
(2019)		routine	(breastfeedi		differences	were lower	manual	
(=01)).		immunizatio	ng) or C		in pain	when	methods to	
		ng	(control)		scores	compared	measure	
		115.	indicating		during and	with the	hoort roto	
			the		ofter	with the	and	
			the		after	control	and	

	intervention	injection	group. Pain	accuracy of	
	to be used	between	scores and	mothers	
	prior to	groups (p	crying time	estimating	
	intramuscul	value	were lower	the last	
	ar injection.	< 0.001) and	in the	feeding	
	All	breastfeedin	breastfeedin	time.	
	injections	g and oral	g group		
	were in the	sucrose	when		
	left vastus	groups	compared to		
	lateralis	produced	the oral		
	muscle with	lower pain	sucrose		
	a 23G	scores than	group. Pain		
	needle.	the control	scores after		
		group (p	injection		
		value	were 3.2,		
		<0.001).	2.6, and 8.9		
			out of 10 for		
			the sucrose,		
			breastfeedin		
			g, and		
			control		
			groups		
			respectively.		
			There was		
			no		
			difference in		
			heart rate		
			changes		
			between the		
			breastfeedin		
			g and		

						sucrose groups. Recommend ations: new mothers should be encouraged to breastfeed to manage immunizatio n-related pain, but oral sucrose is a strong alternativo		
Harrison, D., Reszel, J., Bueno, M., Sampson, M., Shah, V. S.,	Systematic Review of RCTs and quasi-RCTs.	N/A	Study the effect of breastfeedin g on procedural pain in infants	N/A	N/A	Breastfeedin g reduced behavioral pain responses and crying time but did	Limitation: all studies were high risk of bias for blinding of participants	Level II: Quality Grade A
Taddio, A., Larocque, C., & Turner, L. (2016).			between age 28 days and 1 year compared to no intervention, placebo, parental			not reduce changes in physiologic indicators (heart rate). Crying time was reduced by 38	and personnel and high risk for blinding of outcome assessment.	

			holding,			seconds and		
			skin-to-skin			standardized		
			contact,			pain scores		
			expressed			were		
			breast milk,			reduced by		
			formula			1.7 points.		
			milk, bottle			Recommend		
			feeding,			breastfeedin		
			distraction,			g for pain		
			or sucrose			managemen		
			solution.			t during		
						injections		
						when		
						available,		
						but dextrose		
						also		
						significantly		
						reduced		
						pain scores.		
Harrison, D.	Non-	N/A	N/A	N/A	N/A	Use of pain	Non-	Level III:
(2020).	experimenta					intervention	experimenta	Quality
	1					s are	1	Grade A
						underused		
						due to a		
						variety of		
						myths and		
						misconcepti		
						ons and		
						other		
						barriers.		
						Painful		

IMPLEMENTATION OF ORAL SUCROSE PROTOCOL

-				
			procedures	
			have been	
			cited as	
			having a	
			strong	
			association	
			with poor	
			neurobehavi	
			oral	
			outcomes,	
			and it has	
			been proven	
			that sucrose	
			solutions do	
			not have a	
			negative	
			effect on	
			neurobehavi	
			oral	
			outcomes.	
			Oral sucrose	
			should be	
			used as a	
			pain	
			intervention,	
			but it should	
			be treated as	
			a	
			medication	
			and doses	

						should be tracked		
Kavthekar, S., Patil, R., Kurane, A., & Bharati, H. (2016).	Double- Blind RCT	150 healthy, exclusively breastfed infants less than 2 months of age presenting to the clinic for their first DPT vaccine.	Infants were randomized into 3 groups of 50 for intervention s of sterile water, 24% sucrose, or breastmilk Duration of cry, first cry, change in heart rate, and modified facial coding score (MFCS) were assessed and compared to other intervention s.	Assessment of crying time, first cry, heart rate change, and MFCS immediately , after 1 minute, and after 3 minutes.	ANOVA to assess crying time and heart rate changes. Kruskal Wallis test to analyze MFCS. Crying time and MFCS analysis produced <i>p</i> values of 0.000 indicating statistical significance.	Total duration of cry, first cry, and change in heart rate were all significantly lower in breastfed and sucrose groups. Mean duration of total cry was 36.3 seconds, 42.1 seconds, and 137.2 seconds for sucrose, breastfeedin g, and control groups respectively. Duration of first cry was	Strengths: comparable postnatal age, weight, sex, and time since last fed in all babies. Limitations: only half the face is visible for MFCS in the breastfed group.	Level I: Quality Grade A

			18.2	
			seconds,	
			25.1	
			seconds,	
			and 94.3	
			seconds	
			respectively.	
			Change in	
			MFCS was	
			significantly	
			lower in	
			breastfed	
			and sucrose	
			groups.	
			Maximum	
			reduction	
			was more	
			significant	
			in the	
			sucrose	
			group when	
			compared to	
			the	
			breastfed	
			group.	
			Sucrose had	
			a better	
			effect than	
			breastmilk,	
			but both	
			could be	

						used simultaneou sly to enhance analgesia.		
Kumar, A., Narang, G. S., Singh, G., & Kaur, J. (2019).	Case control study	210 healthy infants coming to a clinic for immunizatio ns	Response to pain was recorded in three intervention groups: oral sucrose solution, topical anesthetic, and control.	Modified Behavior Pain Scale (MBPS) before injection, 15 seconds after injection, and 60 seconds after injection.	Chi square test and t test. <i>p</i> values at 15 and 60 seconds after injection were 0.00 indicating statistical significance.	At 15 seconds after injection, mean pain scores were 5.09, 5.74, and 6.7 out of 10 for oral sucrose, topical anesthetic, and control groups respectively. At 60 seconds, scores were 6.43, 7.17, and 8.33 out of 10. Administrati on of sucrose before injection	Strengths: random division into groups, close range of age. Limitations: similar studies have shown variable results.	Level III: Quality Grade B

						showed		
						greater		
						reduction in		
						pain.		
Levine, H.	Systematic	N/A	Provide an	N/A	N/A	Oral	Potential	Level I:
(2017).	Review of		evidence-			administrati	bias in	Quality
	RCTs		based			on of	RCTs used	Grade A
			answer to			sucrose	for the	
			"does giving			before	review is	
			a sweet-			intramuscul	not clear.	
			tasting			ar injection		
			solution			reduces		
			before			crying		
			vaccine			duration by		
			injection			12-77		
			reduce			seconds as		
			infant			shown by		
			crying?"			RCTs.		
Liaw, J.,	RCT	165 full	Measure	Neonatal	Kruskal-	Sucrose and	Infant facial	Level I:
Zeng, W.,		term	pain in	Facial	Wallis test	nonnutritive	and	Quality
Yang, L.,		newborns	infants	Coding	and Mann-	sucking	physiologic	Grade A
Yug, Y.,		receiving	receiving	System,	Whitney U	lowered	responses	
Yin, T., &		intramuscul	injection	heart rate	test. Pain	pain after	could have	
Yang, M.		ar injection.	based on	and	scores were	vaccine	been	
(2011).		-	treatment	respiratory	significantly	administrati	influenced	
			group:	rate	lower in the	on. When	by hunger,	
			nonnutritive	measuremen	sucrose	given 2	discomfort,	
			sucking,	t. All	group with a	minutes	temperamen	
			oral sucrose,	measures	p values of	before	t,	
			or routine	were	<0.001. Cry	injection,	sleep/wake	
				collected for	duration	sucrose	state, or	

			care (control).	5 minutes: baseline, during injection, and minutes 1-5 after injection.	was significantly shorter in the oral sucrose group with a p value of <0.001. Both values are statistically significant.	more effectively reduced the newborns pain. Recommend a study that analyzes the effect of sucrose and nonnutritive sucking simultaneou sly.	prior experiences.	
Matsuda, E. (2017).	Systematic review of RCT.	N/A	Analyze if administerin g sucrose to hospitalized newborns undergoing painful procedures is safe.	N/A	N/A	Sucrose in concentratio n of 20-30% reduced pain scores in infants undergoing heel lance. High- quality evidence also suggests it is effective in intramuscul ar injection.		Level I: Quality Grade A

McNair, C.,	Systematic	N/A	Evaluate use	N/A	N/A	Units should establish protocols regarding the use of oral sucrose for painful procedures such as heel lance, venipunctur e, and intramuscul ar injection.	Limited	Level III:
Yeo, M. C., Johnston,	Review		of various nonpharmac			supports the use of	understandi ng of	Quality Grade A
C., &			ologic pain			nonpharmac	mechanism	
Taddio, A. (2019)			intervention s for			ologic	of action of	
(2019).			common			S,	ologic	
			needle			particularly	intervention	
			punctures in			breastfeedin	s. Various	
			infants.			g, sweet	limitations	
						solutions	in studies used for this	
						and skin-to-	review.	
						skin care.		
						These three		
						intervention		
						s are		

						encouraged for managing pain and distress during common needle procedures in infants.		
Stevens, B., Yamada, J., Ohlsson, A., Haliburton, S., & Shorkey, A. (2016).	Systematic Review of RCTs	N/A	Determine efficacy, effect of dose, method of administrati on and safety of sucrose for relieving procedural pain in neonates.	N/A	N/A	Sucrose is effective for reducing procedural pain from single events with no serious side effects or harms documented	Inconsistenc y of effective sucrose dosage among studies.	Level I: Quality Grade A
Stevens, B., Vamada, I	Single- Blind RCT	245	Determine	Premature	Analysis of	No difference in	Limitation	Level I: Quality
Campbell-		a NICU	in infants	Profile-	models <i>n</i>	pain	seconds	Grade B
Yeo. M.		born	receiving	Revised	value at 30	intensity	after	
Gibbins, S.		between 24	one of three	(PIPP-R) 30	seconds was	was shown	injection	
Harrison,		and 42	doses of	and 60	0.97 and at	among the	may have	
D., Dionne.		weeks	24%	seconds	60 seconds	three doses.	different	
K., Taddio,		gestation	sucrose: 0.1		was 0.93.	Mean pain	results than	

A., McNair,		and less	mL, 0.5 mL,	after heel	there is no	scores 30	longer	
C., Willan,		than 30 days	or 1.0 mL.	lance.	significant	seconds	intervals.	
A.,		old at the			change in	after heel	No gold	
Ballantyne.		time of			pain related	lance were	standard for	
M. Widger		intervention			to dose of	6.8. 6.8. and	measuring	
K Sidani					oral sucrose	67 for the	nain in	
S					administere	three	infants-	
Estabrooks					d	groups	different	
C Synnes					u.	indicating	nain score	
A Squires						that 0.1 mI	may	
I. Victor						is the	produce	
C & Piahi						minimally	different	
$S_{(2018)}$						offective	regulte	
5. (2016).						dosa of	resuits.	
						uuse of		
						sucrose that		
						for poin		
						for pain		
						managemen		
	TT 11' 1 1		40 : 6 4	NT (1	TT (11)	t in infants.	C (1	T 1 T
Uzelli, D. &	Unblinded	80	40 infants	Neonatai	I wo-tailed	Mean NIPS	Strengths:	Level I:
Gunes, U.	RCI	medically	were given	Infant Pain	Student's t	score and	even	Quality
Y. (2014).		stable	5% glucose	Scale	test. Infants	mean crying	distribution	Grade B
		infants	and 40	(NIPS)	in the	time was	of males	
		receiving	infants were		intervention	significantly	and females,	
		intramuscul	not given		group had	longer in the	no	
		ar Synagis	anything		lower pain	control	significant	
		injection.	prior to		scores, less	group when	difference in	
			intramuscul		crying time,	compared to	age,	
			ar injection		higher	the sweet	gestational	
			to assess		oxygen	solutions	age, and	
					saturation,	group. NIPS	weight.	

	pain	and lower	scores were	Limitations:	
	response.	heart rate	4.2 and 5.6	investigator	
	_	than the	in the	s were not	
		control	glucose and	blinded,	
		group (p	control	producing a	
		values	groups	risk of bias.	
		<0.001,	respectively.	Limited	
		<0.001,	Crying time	generalizabi	
		<0.001, and	had a mean	lity.	
		0.02	of 10.9		
		respectively	seconds in		
).	the glucose		
			group and		
			16.9		
			seconds in		
			the control		
			group.		
			Recommend		
			glucose be		
			given 2		
			minutes		
			before		
			injection as		
			part of		
			routine		
			practice if		
			no other		
			solution is		
			available.		

Valeri, B.	Nonrandomi	104	Assess pain	Neonatal	Repeated	Sucrose	Study was	Level III:
O.,	zed	preterm,	response in	Facial	measure	intervention	not	Quality
Gaspardo,	controlled	very low	high and	Coding	ANOVA	s for pain	randomized	Grade B
С. М.,	clinical trial	birth weight	low clinical	System	with mixed	relief during	and blinded.	
Martinez, F.		neonates in	risk	(NFCS)	design.	acute	Amount of	
E., &		a level 3	neonates	taken in	There is a	painful	sucrose was	
Linhares,		NICU.	using	four stages:	significant	procedures	estimated as	
M. B. M.			sucrose	baseline,	effect on	is effective	there was	
(2018).			intervention	puncture,	NFCS	in reducing	not	
			and	and two	scores and	pain	prescription	
			comparing it	recover	facial	intensity	or routine	
			to the	phases.	activity.	and	documentati	
			control		This is	increasing	on.	
			group.		proven with	biobehavior		
					p values of	al		
					< 0.0001 and	regulation,		
					0.002	regardless		
					respectively.	of clinical		
						risk status.		
						Pain scores		
						in the high		
						risk group		
						were 4 and		
						6.5 for		
						sucrose and		
						control		
						groups		
						respectively.		
						In low risk		
						groups, pain		
						scores were		

						3.4 and 15		
						for sucrose		
						and control		
						groups.		
Yilmaz, G.,	RCT	537 healthy,	Infants were	Crying time	Analysis of	Both	Previous	Level I:
Caylan, N.,		16 to 19	randomized	and	variance	sucrose	pain	Quality
Oguz, M., &		month old	into groups	Children's	(ANOVA).	groups	experience	Grade B
Karacan, C.		infants	to receive 2	Hospital of	There was a	showed	and use of	
D. (2014).		receiving	mL of 75%	Eastern	significant	reduced	intraoral	
		routine	sucrose,	Ontario Pain	difference in	crying time	sugar in the	
		intramuscul	25%	Scale	pain and	and	home	
		ar	sucrose, or	(CHEOPS)	crying time	CHEOPS	environment	
		injections.	sterile water	``````````````````````````````````````	when	scores. The	can impact	
		5	before		comparing	75% sucrose	pain scores.	
			injections.		the control	group had a	Sucrose is	
			Crying time		group with	greater	inexpensive	
			and pain		both	reduction in	and easily	
			scores were		intervention	crying and	administere	
			measured.		groups. p	pain when	d.	
					value was	compared to		
					<0.001 for	the 25%		
					both	sucrose		
					variables.	group.		
						Crying time		
						was 120		
						seconds,		
						62.2		
						seconds,		
						and 43.4		
						seconds in		
						the control,		

			25%	
			sucrose, and	
			75% sucrose	
			groups	
			respectively.	
			The control	
			group had	
			152 infants,	
			out of 179,	
			with	
			CHEOPS	
			scores	
			greater than	
			4. In the	
			25% and	
			75% sucrose	
			groups, a	
			majority of	
			the group	
			had	
			CHEOPS	
			scores less	
			than 4.	

Appendix B

Evidence Level	Quality	Number of sources
	А	7
Level I	В	4
	С	0
	A	1
Level II	В	0
	С	0
	А	2
Level III	В	3
	С	0
	А	0
Level V	В	0
	С	0

Levels of Evidence

IMPLEMENTATION OF ORAL SUCROSE PROTOCOL

Implementation of an Oral Sucrose Protocol for Advanced Practice Providers:

Methodology

BY

Cori Shatto

A paper submitted in partial fulfillment of the requirements for the degree

Doctor of Nursing Practice

South Dakota State University

2024

Abstract

Background/Purpose: Pain in infancy due to immunization administration often goes untreated. The pain infants experience leads to negative effects on neurodevelopment and pain response. Needle fear develops in infancy and can extend into adulthood, leading to vaccine avoidance and endemic outbreaks.

Methods: In a family practice clinic in an upper Midwest state, an oral sucrose protocol was implemented for use by advanced practice providers (APPs). Prior to education on the protocol, a survey was administered to assess the providers' knowledge, attitudes, and practice (KAP) in relation to oral sucrose. The providers were educated on the benefits and intended use of oral sucrose prior to the oral sucrose protocol being implemented throughout the clinic. After 8 weeks, the survey was repeated, and the two KAP surveys were compared and analyzed statistically.

Results: A statistically significant improvement was found in the knowledge, attitudes, and practices of clinic APPs.

Discussion: Due to statistical significance upon analysis, this quality improvement project has the potential to become sustainable practice. It is difficult to make this a regular practice in a rural area due to patient population. Recommendations would be to implement in a large family practice or pediatric clinic to confirm sustainability.

Implications for Practice: Oral sucrose has a quick onset and is cost-effective. Implementing an oral sucrose protocol can block pain response in infants receiving immunizations, which may promote adherence to vaccine schedules, improve the health of the population, and decrease healthcare costs related to preventable illness.

Implementation of an Oral Sucrose Protocol for Advanced Practice Providers: Methodology

Background and Purpose

Current immunizations prevent more than 20 life-threatening diseases and save nearly three million lives each year (Gad et al., 2019; World Health Organization [WHO], n.d.). While immunizations are extremely beneficial, they are one of the most unpleasant procedures of childhood. Children receive up to 24 immunizations during their first 2 years of life when following guidelines set by the Centers for Disease Control and Prevention [CDC]; Abukhaled & Cortez, 2020; CDC, 2022). Many immunizations are intramuscular injections but some are administered orally. Throughout this paper, any reference to immunizations or vaccines implies those administered by injection.

Research shows that an infant's nervous system is mature enough to perceive pain which can lead to negative developmental effects when untreated (Chang et al., 2020; Kavthekar et al., 2016; Liaw et al., 2011; Uzelli & Gunes, 2014). An infant's experience with pain has permanent effects on pain perception and response, often leading to severe fear and avoidance of needles. Nearly two-thirds of children develop needle fear, which can extend into adulthood. It is estimated that 25% of adults have a needle fear that developed in childhood (Gad et al., 2019; Kumar et al., 2019; Yilmaz et al., 2014). There continues to be an increasing number of unvaccinated infants, children, and adults. Nearly 10% of adults avoid immunizations because of their fear, and many parents are hesitant to follow vaccine schedules due to the distress injections cause both themselves and their child. Hesitancy to receive recommended immunizations has recently resulted in endemic outbreaks of measles and pertussis (Abukhaled & Cortez, 2020; Kumar et al., 2019; Yilmaz et al., 2014).

Pain management during infancy and childhood is widely underutilized due to misconceptions and lack of understanding by providers. Through education, advanced practice providers (APPs) can improve their knowledge and attitudes on infant pain management and confidently incorporate interventions into their practice. With more utilization of infant pain management during painful procedures, there is potential to have a positive impact on vaccination rates and needle fear development. Treating pain during immunization is a basic human right and should be routinely included in pediatric care (Gad et al., 2019).

PICOT Question

The population, intervention, comparison, outcome, and time (PICOT) question used for this quality improvement project is: Among advanced practice providers in a family practice clinic that serves rural communities (P), how does the implementation of an oral sucrose protocol (I), compared to no protocol (C), affect knowledge, attitudes, and practice (KAP) regarding oral sucrose (O) within 8 weeks (T)?

Evidence Findings

The American Academy of Pediatrics (AAP) recommends using 24% sucrose concentrations for painful procedures (Chang et al., 2020; Committee on Fetus and Newborn & Section on Anesthesiology and Pain Medicine, 2016; Matsuda, 2017). A variety of studies have compared the use of sucrose solutions to breastfeeding, nonnutritive sucking, skin-to-skin contact, and control groups in different settings and populations. Oral sucrose consistently produced lower pain scores, smaller heart rate

IMPLEMENTATION OF ORAL SUCROSE

increases, and shorter durations of crying that proved to be statistically significant through a variety of analytical methods (Chang et al., 2020; Gad et al., 2019; Kavthekar et al., 2016; Kumar et al., 2019; Uzelli & Gunes, 2014; Yilmaz et al., 2014). Additionally, oral sucrose is convenient and inexpensive (Liaw et al., 2011).

Many parents are unaware of pain management options for their infants. After education on the benefits of oral sucrose with immunization administration, 96% of parents would recommend oral sucrose to other parents, and 87% of parents were satisfied with the effects of pain management for their infant (Abukhaled & Cortez, 2020). When conducting research about APPs and oral sucrose protocols specifically, there is no published evidence. There is also no published evidence regarding APP KAP related to protocols. Through further research, there was a wide population of results related to KAP surveys and a variety of protocols, indicating KAP surveys are commonly used across healthcare settings. An oral sucrose protocol based on guidelines produced by Royal Children's Hospital (RCH) in Melbourne, Australia and independent research can provide consistency in the use of oral sucrose in clinic settings. The protocol also gives APPs the opportunity to directly impact the pain experienced by infants receiving immunizations, in turn providing a more positive experience and promoting immunization compliance.

Recommendations for Practice

Nonpharmacologic pain interventions have proven to be safe and effective in reducing pain response in infants and have gained support from credible sources such as the AAP (Chang et al., 2020). With a peak response of 2 minutes and a duration of up to 10 minutes, oral sucrose should be administered 2 minutes before the injection for

3

IMPLEMENTATION OF ORAL SUCROSE

maximum efficacy (Abukhaled & Cortez, 2020; Kavthekar et al., 2016; Levine, 2017; Liaw et al., 2011; McNair et al., 2019). Pain management during infancy is necessary to prevent needle fear and vaccine nonadherence; routine administration of oral sucrose prior to immunizations should become a common practice (Abukhaled & Cortez, 2020). APPs in a primary care role should take the time to educate parents on the use and benefits of oral sucrose and encourage use prior to routine immunizations.

Gaps

Gaps in the literature make it difficult to fully grasp the impact of oral sucrose in infants up to 6 months of age as much of the current research is focused on premature infants as the population of interest. Additionally, current research compares nonnutritive sucking to oral sucrose to determine which produces greater pain reduction as a nonpharmacologic intervention, but there is limited evidence regarding whether it is beneficial to use both nonnutritive sucking and oral sucrose together. Finally, evidence is limited on how much sucrose to administer in each dose and how many doses can be given consecutively. There is also a lack of evidence related to long-term and potential negative effects of sucrose after consecutive administration (Stevens, 2018).

Methods

Framework, Theories, and Models

The Johns Hopkins Nursing Evidence-Based Practice (JHNEBP) Model and Guidelines was utilized to help guide this project (Dang et al., 2022). The Knowledge-to-Action theoretical framework helped guide the planning and implementation of the oral sucrose intervention (WHO, n.d.-a). The Awareness, Desire, Knowledge, Ability, and Reinforcement (ADKAR) model change theory was used to aid in reaching goals and promoting adherence to the protocol (Prosci, n.d.).

Setting and Sample

This project was implemented in a primary care clinic that serves rural communities in an upper Midwest state. The town has an estimated population of 23,577 with 5.4% of the population being 5 years old and younger. Of the population, 89.1% is Caucasian, followed by 4.4% Asian, 1.8% American Indian, and 1.7% African American (United States Census Bureau, 2021). The clinic employs eight APPs: six nurse practitioners (NPs) and two physician assistants [PA-Cs] (**Caucasian**, personal communication, August 26, 2022).

The APPs at the clinic see a variety of pediatric patients with well-child checks and routine immunizations being common appointments. Prior to project implementation, there were no pain management protocols in place to promote comfort for infants 6 months of age and younger receiving routine immunizations (**Compared**, personal communication, August 26, 2022).

Intervention Tools

Oral Sucrose Protocol

Oral Sucrose Protocol Guidelines developed by RCH were used as a guide for planning the Doctor of Nursing Practice (DNP) Project implementation (Kendrick, 2021). These guidelines are published publicly and permission for their use is not required. The guidelines note that oral sucrose should be used for reduction of pain during minor procedures, and the benefits have been demonstrated in older infants. Intramuscular injections are listed as one of the approved procedures in which oral sucrose is

IMPLEMENTATION OF ORAL SUCROSE

recommended (Kendrick, 2021). No other guidelines were found during the literature search. After completing an appraisal of guidelines for research and evaluation II (AGREE II) tool, it was found these guidelines score an overall quality rating of 6 out of 7, indicating great quality.

The RCH oral sucrose guidelines encourage administration of oral sucrose 2 minutes prior to the painful procedure, with or without use of nonnutritive sucking. It is also specified that oral sucrose should be administered on the anterior aspect of the tongue. Infants older than 1 month of age can receive 1-2 mL of oral sucrose (Kendrick, 2021).

The oral sucrose protocol was created to reflect those published by RCH. The protocol highlights administering oral sucrose prior to injections with consideration to timing, onset of action, and location of administration on the tongue. Based on the population of this DNP Project, the protocol was limited to infants 6 months old and younger in a clinic setting, while RCH guidelines do not specify an age limit and are written to be used in an inpatient setting. A copy of the oral sucrose protocol can be found in Appendix C.

Knowledge, Attitudes, and Practice Survey

A knowledge, attitudes, and practice (KAP) survey is a cost effective and readily available tool used to assess the feasibility of an intervention in a healthcare setting (Patel, 2022). There is widespread use of KAP surveys to determine the impact of a variety of different interventions and protocols. For this DNP Project, a KAP survey was administered pre- and post-implementation. To promote survey completion and provide a survey that is easily accessible to the APPs, a web-based platform, QuestionPro, was used to record the responses. Because the survey was assessing the KAP of APPs, there was no patient protected health information included in the survey. The survey was developed based on previous KAP surveys utilized in healthcare. A copy of the pre- and post-intervention surveys that were used can be found in Appendix D and Appendix E.

Procedure

The DNP Project began with APPs completing a survey at the beginning of a monthly staff meeting to assess their KAP regarding oral sucrose and its use and benefits. After all surveys were completed, the DNP Project Manager presented an educational PowerPoint presentation. The presentation was developed utilizing RCH guidelines combined with independent research and covered oral sucrose risks and benefits, correct administration, the developed oral sucrose protocol, and general project information (Appendix F). Following the educational presentation, all questions were addressed to ensure understanding and promote adherence to the intervention.

After the educational presentation, the oral sucrose protocol was implemented for 8 weeks. The APPs then completed a post-intervention survey. The survey remained open with weekly reminders via the clinic director until all responses were received.

To maintain confidentiality during survey completion, the APPs entered a unique identification code so pre- and post-survey answers could be compared. Only the APP knew their unique code as they developed their own ID based on a prompt from the DNP Project Manager. The prompt was a four-digit ID code with their birth month plus the number of years they have worked in their current position.

Ethical Considerations

Approval was obtained from the facility's Nursing Research Council prior to project implementation. Additionally, an application for approval from the facility and university institutional review board (IRB) was submitted. The DNP Project was deemed a non-human subjects quality improvement project by the facility. The university accepted the facility's determination. Copies of IRB approval can be found in Appendix A and B. Electronic surveys were used for data collection, which helped ensure no data was lost. The DNP Project Manager is the only person with access to the results of completed surveys. The results are accessible to the DNP Project Manager on a password protected QuestionPro account on a password protected computer.

Results

Demographics

Six APPs completed the pre- and post-intervention KAP survey with all of them being female. The age of the sample ranged from 25-49 with a mean age of 40. The years of experience of this group of participants are distributed evenly between one and 15 years of experience. Of the APPs in the sample, one of them had prior experience administering oral sucrose for pain management in the pediatric population.

KAP Survey

The KAP of the APPs were assessed in the format of a 5-point Likert scale with 1 being very unlikely or very unfamiliar and 5 being very likely or very familiar. The KAP sections were all scored individually to assess changes in each aspect of the survey. The data of the pre- and post-intervention surveys were analyzed statistically using the Wilcoxon signed-rank test for paired data. Appendix G shows significant data related to the KAP of APPs.

Knowledge. On a 5-point scale, the mean response regarding knowledge for the pre-intervention group was 2.06. The post-intervention mean increased to 4. With a p value of 0.027, this is a statistically significant increase in knowledge.

Attitudes. When assessing attitudes, the pre-intervention survey mean score was 3.67. The mean increased to 4.5 in the post-intervention survey, indicating the providers find pain management important and beneficial in the pediatric population. The p value was 0.026, indicating a statistically significant increase in APP attitudes.

Practice. When starting the intervention, none of the APPs participating in the survey regularly offered oral sucrose to pediatric patients for the purpose of pain management. Over the course of the intervention, four APPs reported seeing 6-10 infants aged 6 months and younger. Two APPs reported seeing 0-5 infants aged 6 months and younger. Oral sucrose was offered to 0-5 infants over the course of 8 weeks by 5 of the APPs, while one APP offered it to 6-10 infants. When assessing how likely the APPs would be to offer oral sucrose on a regular basis, the pre-intervention mean was 1.83, and the post-intervention mean was 3.5. With a *p* value of 0.041, this is statistically significant.

Discussion

Significance of Findings

This project showed a statistically significant increase in APP KAP with the implementation of an oral sucrose protocol, and response to the protocol was positive throughout. In free text comments provided at the end of the post-intervention survey,

two APPs reported the desire to offer oral sucrose to more patients. Two APPs also reported that parents were very receptive to the protocol and one APP is looking forward to receiving more in-depth feedback from the parents whose infants received oral sucrose. Knowing that an improvement in KAP at this clinic was found suggests that an oral sucrose protocol for infants prior to immunizations could become a sustainable practice that can reduce immediate pain response in infants. Implementing the routine use of oral sucrose as an analgesic for immunizations may translate to improved vaccine adherence throughout childhood and into adulthood.

The family practice clinic where the oral sucrose protocol was implemented is going to keep oral sucrose in stock so APPs can continue offering this intervention to their patients receiving immunizations. At this time, they are not expanding the age range in which it is offered. However, the number of patients they see that are eligible for oral sucrose administration is relatively low.

The APPs were receptive to the oral sucrose protocol implementation and reported it was easy to use and understand. Overall, it is a sustainable protocol, but the setting in which it was implemented makes it challenging to continue utilizing it on a regular basis. Widespread research on oral sucrose outlines larger age groups and purposes other than immunizations in which oral sucrose can be used. It would be recommended to introduce the oral sucrose protocol at a larger family practice or pediatric clinic to determine if the protocol is sustainable within the defined population on a larger scale. Determining sustainability in other similar settings will be helpful in widespread adoption of an oral sucrose protocol, which must be done prior to expanding use based on age and indication.

Barriers

One barrier was a small sample size due to a small team of APPs. Another barrier was difficulty obtaining the supply of oral sucrose. The oral sucrose was on backorder but arrived in time for protocol implementation. Finally, the location proved to be a barrier for implementation of the oral protocol. APPs were excited about the intervention, and parents were receptive to the oral sucrose. However, due to the location serving rural communities, there was a small number of infants that were eligible to be offered oral sucrose over the course of implementation.

Implications for Practice

Administering oral sucrose is a quick, cost-effective intervention that has the potential to make a large impact. The cost per unit of 1 mL oral sucrose droppers is \$0.51

(**Letter**, personal communication, July 12, 2023). Infants are one of the most vulnerable populations that often do not receive healthcare services to the extent that they deserve, such as pain control (Gad, 2019). Successful implementation of an oral sucrose protocol can manage vaccine-related pain and may promote adherence to future vaccines and improve the health of the population. Improved population health related to increased immunization rates would greatly decrease healthcare costs and reduce clinic visits for preventable illnesses (Infectious Diseases Society of America, 2019).

Conclusion

Immunizations are essential and lifesaving, but untreated pain related to frequent injections during infancy can lead to negative neurodevelopmental effects and alter future pain response (Chang et al., 2020; Kavthekar et al., 2016; Liaw et al., 2011 Uzelli & Gunes, 2014). The untreated pain related to immunizations can lead to needle fear that

IMPLEMENTATION OF ORAL SUCROSE

extends into adulthood and contributes to the growing number of unvaccinated individuals (Gad et al., 2019; Kumar et al., 2019; Yilmaz et al., 2014). Oral sucrose has continuously proven to be effective in reducing pain response throughout a variety of studies (Chang et al., 2020; Gad et al., 2019; Kumar et al., 2019; Uzelli & Gunes, 2014). Through education to clinic APPs and implementation of the oral sucrose protocol, a statistically significant increase in KAP was found among the APPs. The long-term potential for reduction in infant pain and increase in vaccine compliance may lead to improvements in the health of the entire population, which would reduce healthcare costs related to preventable illness.

References

Abukhaled, M & Cortez, A. (2020). Nonpharmacological methods for reducing parental concern for infant vaccine-associated pain. *Journal of Pediatric Health Care,*

35(2), 180-187. https://doi.org/10.1016/j.pedhc.2020.09.006

Centers for Disease Control and Prevention. (2022). *Immunization schedules: Child & adolescent immunization schedule*.

https://www.cdc.gov/vaccines/schedules/hcp/imz/child-adolescent.html

- Chang, J., Filoteo, L., & Nasr, A. S. (2020). Comparing the analgesic effects of 4 nonpharmacologic interventions on term newborns undergoing heel lance: A randomized controlled trial. *Journal of Perinatal & Neonatal Nursing*, 34(4), 338-345. <u>https://doi.org/10.1097/JPN.00000000000495</u>
- Committee on Fetus and Newborn & Section on Anesthesiology and Pain Medicine.

(2016). Prevention and management of procedural pain in the neonate: An update. American Academy of Pediatrics, 137(2).

https://publications.aap.org/pediatrics/article-

pdf/137/2/e20154271/1094461/peds_20154271.pdf

Dang, D., Dearholt, S., Bissett, K., Ascenzi, J., & Whalen, M. (2022). Johns Hopkins evidence-based practice for nurses and healthcare professionals: Model and guidelines. 4th ed. Sigma Theta Tau International.

https://www.hopkinsmedicine.org/evidence-based-practice/ijhn_2017_ebp.html

Gad, R. F., Dowling, D. A., Abusaad, F. E., Bassiouny, M. R., & Abd El Aziz, M. A.(2019). Oral sucrose versus breastfeeding in managing infants' immunizationrelated pain: A randomized controlled trial. *The American Journal of* Maternal/Child Nursing, 44(2), 108-114.

https://doi.org/10.1097/NMC.000000000000512

Infectious Diseases Society of America. (2019). Lower health care costs act highlights the value of vaccines. <u>https://www.idsociety.org/news--publications-</u>

new/articles/2019/lower-health-care-costs-act-highlights-the-value-of-vaccines/

- Kavthekar, S., Patil, R., Kurane, A., & Bharati, H. (2016). Comparison of analgesic effect of 24% sucrose and breast milk in healthy infants less than 2 months of age.
 International *Journal of Contemporary Pediatrics*, *3*(4), 1375-1379.
 https://doi.org/10.18203/2349-3291.ijcp20163681
- Kendrick, A. (2021). Sucrose (oral) for procedural pain management in infants. The Royal Children's Hospital Melbourne.

https://www.rch.org.au/rchcpg/hospital_clinical_guideline_index/Sucrose_oral_fo r_procedural_pain_management_in_infants/

- Kumar, A., Narang, G. S., Singh, G., & Kaur, J. (2019). Comparison of the effectiveness of oral sucrose solution and topical anaesthetics during immunization in infants between age 6 weeks-6 months. *International Journal of Contemporary Pediatrics*, 6(3), 1008-1013. <u>https://doi.org/10.18203/2349-3291.ijcp20190121</u>
- Levine, H. (2017). Does giving a sweet-tasting solution before vaccine injection reduce infant crying? *The Journal of Family Practice*, 66(3), 185-186. <u>https://cdn.mdedge.com/files/s3fs-public/JFP06603185.PDF</u>
- Liaw, J., Zeng, W., Yang, L., Yug, Y., Yin, T., & Yang, M. (2011). Nonnutritive sucking and oral sucrose relieve neonatal pain during intramuscular injection of hepatitis

vaccine. Journal of Pain and Symptom Management, 42(6), 918-930.

https://doi.org/10.1016/j.jpainsymman.2011.02.016

Matsuda, E. (2017). Sucrose as analgesia in neonates undergoing painful procedures. *American Journal of Nursing*, *117*(8), 21.

https://doi.org/10.1097/01.NAJ.0000521966.23470.7d

- McNair, C., Yeo, M. C., Johnston, C., & Taddio, A. (2019). Nonpharmacologic management of pain during common needle puncture procedures in infants.
 Clinics in Perinatology, 46, 709-730. <u>https://doi.org/10.1016/j.clp.2019.08.006</u>
- Patel, P. (2022). KAP survey: Does it really measure knowledge, attitudes and practices? *National Journal of Community Medicine*, *13*(5), 271-273.

https://doi.org/10.55489/njcm.130520222063

Prosci. (n.d.). The Prosci ADKAR model: Why it works.

https://www.prosci.com/resources/articles/why-the-adkar-model-works

United States Census Bureau. (2021). QuickFacts.

https://www.census.gov/quickfacts/fact/table/brookingscitysouthdakota/PST0452 21

Uzelli, D. & Gunes, U. Y. (2015). Oral glucose solution to alleviate pain induced by intramuscular injections in preterm infants. *Journal for Specialists in Pediatric Nursing*, 20, 29-35. https://doi.org/10.1111/jspn.12094

World Health Organization. (n.d.). Vaccines and immunization.

https://www.who.int/health-topics/vaccines-and-immunization#tab=tab_1

Yilmaz, G., Caylan, N., Oguz, M., & Karacan, C. D. (2014). Oral sucrose administration to reduce pain response during immunization in 16-19-month infants: A randomized, placebo-controlled trial. European Journal of Pediatrics, 173, 1527-

1532. <u>https://doi.org/10.1007/s00431-014-2358-7</u>

Appendix A

Facility IRB Approval

NOT HUMAN RESEARCH

August 29, 2023

Dear

The IRB reviewed the following submission:

Type of Review:	Initial Study via Non-Committee Review
Title of Study:	Oral Sucrose Protocol for APPs: Implementation of an
_	Oral Sucrose Protocol for Advanced Practice Providers
Investigator:	
IRB ID:	STUDY00003341
Special Determinations:	

The IRB determined, on 8/29/2023, that the proposed activity is not human research. IRB review and approval is not required.

This determination applies only to the activities described in the IRB submission and does not apply should any changes be made. If changes are being considered and there are questions about whether IRB review is needed, please submit a study modification to the IRB for a determination. You can create a modification by clicking **Create Modification / CR** within the study.

For questions please contact the IRB Office:

Template Revision: May 2, 2019

Appendix B

University IRB Approval

RE: Shatto DNP Project- Non-Human Subjects

SDSU IRB <sdsu.irb@sdstate.edu> Wed 9/6/2023 10:47 AM</sdsu.irb@sdstate.edu>	
To: Shatto, Cori A - SDSU Student	; SDSU IRB <sdsu.irb@sdstate.edu></sdsu.irb@sdstate.edu>
Cc: Callies, Dannica	Varilek, Brandon
Good morning Cori,	
SDSU will rely on determination of not hum	nan subjects research. No further action is needed as this time.
Best,	

Appendix C

Oral Sucrose Protocol

Cori Shatto- SDSU, DNP-FNP Program

1. PURPOSE

a. Immunizations reduce the risk of getting and transmitting diseases but they are the most common painful procedure throughout infancy and childhood. Oral sucrose is a cheap, effective non-pharmacologic intervention to reduce injection related pain in infants.

2. CHARACTERISTICS OF THE PATIENT POPULATION

- a. Infants aged 6 months old and younger.
- b. Infants attending a well-child appointment and receiving routine immunizations.

3. PROCEDURES

- a. Sucrose is recommended to be given before immunizations.
- b. The onset of action of oral sucrose is 2 minutes. After administration, wait 2 minutes before administering any ordered injections.
- c. Use of other comfort measures (swaddling, nonnutritive sucking, etc.) can be used as needed in conjunction with oral sucrose.
- d. Prefilled 1 mL syringes will be used for oral sucrose administration. Sweet receptors are found on the tip of the tongue; place 3-5 drops of oral sucrose on the tip of the tongue.
- e. Sucrose should not be used to calm fussy babies or after the administration of injections.

Appendix D

Pre-intervention KAP Survey

 Enter a four digit ID code that will be used for future surveys. 	
Prompt: Birth month + number of years in your current position.	

What is your gender?					
- Female					
O Male					
Other (specify)					
What is your age?					
25-29					
30-39					
40-49					
50-59					
60+					
How many years have you been in your cur	rent position?				
O Less than 1 year					
O 1-5 years					
O 6-10 years					
11-15 years					
O More than 15 years					
Do you have any experience with oral su	icrose for pain ma	nagement in the	pediatric population	?	
◯ Yes					
O No					
Knowledge					
How familiar are you with oral sucrose and its	Very Unfamiliar	Unfamiliar	Somewhat Familiar	Familiar	Very Familiar
intended use? How familiar are you with the benefits of oral	0	O	O	U	0
sucrose?	0	0	0	0	0
How familiar are you with correct administration of oral sucrose?	0	0	0	0	0

IMPLEMENTATION OF ORAL SUCROSE

Attitudes

	None	Low	Medium	High	Very High
How would you rate the importance of pain management in infants?	0	0	0	0	0
To what extent is there a need for pain management interventions for infants?	0	0	0	0	0
In your opinion, how beneficial would oral sucrose be for the infant population at your clinic?	0	0	0	0	0
Practice					
		Yes			No
Do you regularly offer oral sucrose to any patients?		0			0
Practice					
	Very Unlikely	Unlikely	Somewhat Likely	Likely	Very Likely
How likely are you to offer oral sucrose to infants receiving routine immunizations?	0	0	0	0	0

Appendix E

Post-intervention KAP Survey

Enter your four digit ID code.

Prompt: Birth month + number of years in your current position.

Over the past 8 weeks, how many infants 6-months old and younger did you see that received routine immunizations?

- O-5 infants
- O 6-10 infants
- O 11-15 infants
- 16+ infants

Over the past 8 weeks, how many times did you offer oral sucrose to infants receiving routine immunizations?

- O-5 times
- O 6-10 times
- 11-15 times
- More than 15 times

Knowledge

	Very Unfamiliar	Unfamiliar	Somewhat Familiar	Familiar	Very Familiar
How familiar are you with oral sucrose and its intended use?	0	0	0	0	0
How familiar are you with the benefits of oral sucrose?	0	0	0	0	0
How familiar are you with correct administration of oral sucrose?	0	0	0	0	Ο
Attitudes					
	None	Low	Medium	High	Very High
How would you rate the importance of pain management in infants?	0	0	0	0	0
To what extent is there a need for pain management interventions for infants?	0	0	0	0	0
In your opinion, how beneficial would oral sucrose be for the infant population at your clinic?	0	0	0	0	0
Practice					
		Yes			No
Do you regularly offer oral sucrose to any patients?		0			\bigcirc
Practice					
	Very Unlikely	Unlikely	Somewhat Likely	Likely	Very Likely
How likely are you to offer oral sucrose to infants receiving routine immunizations?	0	0	0	0	0

IMPLEMENTATION OF ORAL SUCROSE

Please include any feedback you have on the oral sucrose protocol and administration of oral sucrose.

Appendix F

Clinic Provider Education

IMPLEMENTATION OF AN ORAL SUCROSE PROTOCOL FOR ADVANCED PRACTICE PROVIDERS CONSUMITO, BRI 2014 DANNEA CALES, DHR CHR PHACE, BRANCOR WHERE, PHAD, BR, BCCN, CCTC, CHR CHRP

BACKGROUND

BACKGROUND SUPPORTING EVIDENCE Potential for fear and vaccine avoidance 2.6.6 Oral sucrose stimulates endorphin release ⁴ Endemic outbreaks following vaccine hesitancy 1.6 Studies compare oral sucrose to: Preastleeding Normutritive sucking Skin-to-skin contact ^{2,3}. + Potential to improve population health Consistently lower pain scores 2.3.6

4

3

1

PROJECT PLAN

- Sample: Brookings clinic APPs
- Oral sucrose education session
- Oral sucrose protocol implementation
- · Statistical analysis to assess knowledge and attitudes

6

7

CONCLUSION

- Immunizations are lifesaving
- · Prevent negative neurodevelopmental effects
- Oral sucrose effective for pain management
- Anticipated findings:
- · Reduction in FLACC pain accrea
- May improve vaccine compliance
- May improve population health

8

Appendix G

Table 1

Table 1

KAP of APPs Before and After Implementation of an Oral Sucrose Protocol

	Pre-intervention mean	Post-intervention mean	<i>p</i> value				
Use	2.33	4.17					
Benefits	2.33	4.17					
Administration	1.5	3.67					
Total	2.06	4	0.027				
Attitudes							
	Pre-intervention mean	Post-intervention mean	p value				
Importance of pain management	4.17	4.67					
Need for pain	3.67	4.5					
Benefit for infants	3.17	4.33					
Total	3.67	4.5	0.026				
Practice							
	Pre-intervention mean	Post-intervention mean	<i>p</i> value				
Likely to offer oral sucrose regularly	1.83	3.5	0.041				

Knowledge