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ABSTRACT 

METAL-ORGANIC FRAMEWORKS AS BACTERIA MIMICKING DELIVERY 

SYSTEMS FOR TUBERCULOSIS 

AILIN GUO 

2021 

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (M.tb), 

with an estimated 1.5 million deaths and 10 million infections each year. Although TB 

can be effectively treated with antibiotics, because of the complications and length of 

treatment, many people fail to complete the treatment which exacerbates the emergence 

of drug-resistant M. tb strains. The goal of this work is to develop biomimetic particles as 

host-directed therapy to target the infected macrophages. Two types of metal-organic 

frameworks (MOFs), MIL-100(Fe) and MIL-88A(Fe) were developed for bacteria-

mimicking particles.  As a proof-of-concept, Mannose was selected as a ligand to target 

macrophages because many pathogens express mannose on the surface.  MOFs were 

successfully modified with mannose via EDC/NHS coupling method. No difference was 

observed in cell uptake between MIL-100(Fe) and mannose-MIL-100(Fe). Mannose-

MIL-88A(Fe) showed a significant increase in macrophage uptake compared to its 

unmodified counterpart. MIL-88A(Fe) is rod-shaped and has a size similar to M. tb 

making it a natural platform for mycobacteria mimicking. MIL-88A(Fe) was coated with 

two-layer hybrid lipids and mycolic acid (MA), the most abundant lipid in mycobacteria 

cell wall, was also incorporated. The coating was confirmed by transmission electron 

microscopy with energy dispersive x-ray analysis (TEM-EDX). Lipids coated MIL-

88A(Fe) with MA directly extracted from Mycobacterium. Avium exhibited the highest 
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cell uptake compared to lipids coated MIL-88A(Fe) with commercial MA or without MA. 

As MIL-100(Fe) is readily taken by macrophages, unlike MIL-88A(Fe) for bacteria 

mimicking, MIL-100 (Fe) nanoparticles were designed to have immunomodulatory 

property by functionalized with the immunomodulatory ligand curdlan. Curdlan coated 

MIL-100(Fe) was prepared by nanoprecipitation method. The difference in surface 

charge, intracellular stability, and thermal property confirms the coat of curdlan on MIL-

100(Fe). Overall, MOFs are promising candidates for the development of biomimetic 

particles as HDT to target infected cells. M.tb-mimetic MIL-88A(Fe) particles and 

immunomodulator MIL-100(Fe) may potentially enhance host cell response to an M.tb 

infection by encapsulated HDT drugs or the carriers themselves. 
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Chapter 1 Introduction 

1.1 Tuberculosis  

1.1.1 TB disease burden 

Tuberculosis (TB) is an old disease that has affected humans for more than a millennium. 

On March 24, 1882, Dr. Robert Koch presented his finding to the Berlin Physiological 

Society that TB was caused by a single infectious agent, Mycobacterium tuberculosis 

(M.tb)[1]. In 2020, TB is the 13th leading cause of death and the number two infectious 

disease killer after COVID-19 worldwide.  From the Global 2021 TB report[2], 10.0 

million people fell ill with TB. There were 1.5 million people who died from the disease 

and an additional 214,000 deaths among HIV-infected people. Currently, it is estimated 

that a quarter of the world population (2 billion) is infected with M.tb. Of those infected, 

5-15% of those infected people will develop active TB and exhibit symptoms of the

disease. Most people who developed TB in 2019 were in South-East Asia (44%), Africa 

(25%), and the Western Pacific (18%). However, two-thirds of the total TB cases in 2019 

were in the following eight countries: India, Indonesia, China, Philippines, Pakistan, 

Nigeria, Bangladesh, and South Africa. Globally, the TB incidence rate and the number 

of TB deaths are falling but fail to achieve the 2020 milestone of 20% reduction in TB 

incidences. 

1.1.2 Pathogenesis of infection  

This is an overview that will be expanded in later sections. 

TB is an airborne infectious disease that begins when an individual inhales M.tb aerosols. 

M.tb is rod-shaped bacilli, of 0.2-0.5 µm in diameter and 2-4 µm in length[3].  Bacilli

travel down the airways into the alveoli of the lungs, where they start to multiply. Most of 
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these bacilli are recognized and engulfed by alveolar macrophages at the early stage of 

infection, where they will be killed or inhibited. However, some bacilli can survive and 

replicate intracellularly. The bacteria usually attack the lungs, but, in some cases, a small 

number of bacilli may spread through the lymphatic channels or the bloodstream to other 

parts of the body, such as lymph nodes, central nervous system, kidneys, and bone[4]. 

This dissemination process primes the immune system for developing an effective cell-

mediated immune response to control the further multiplication of the bacteria.  Infected 

alveolar macrophages release various cytokines to recruit the different populations of 

cells, including additional macrophages, dendritic cells, and lymphocytes to the site of 

infection. Those cells form the beginning of a granuloma, as the immune system attempts 

to ward off the bacteria. Granuloma is the pathologic hallmark of tuberculosis[5]. Inside 

the granuloma, most bacilli are killed, and the disease is under control. However, the host 

cannot entirely eradicate bacilli, M.tb  has evolved strategies to persist in the granuloma. 

Those bacilli reprogram their metabolism to a dormant state and survive for decades 

(Latent TB). For those individuals whose immune system is compromised (HIV 

infection), the granuloma tends to liquefy and cavitate. Other medical (e.g., malnutrition, 

aging, diabetes, cancer) or genetic factors can also trigger the reactivation of bacteria. 

The destruction of granuloma leads to releasing many M.tb into the lungs and thence into 

the environment (Active TB). When people who have active TB cough, sneeze or talk, 

the highly transmissible infectious droplet of bacilli will release into the air, and people 

around may inhale them and become infected. 
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1.1.3 Pulmonary TB 

1.1.3.1 Latent TB 

Latent TB infection (LTBI) is a state of persistent immune response to stimulation by 

M.tb. People with LTBI have M.tb, which is non-replicating in their bodies, and does not 

clinically manifest active TB disease.  LTBI infected individuals cannot spread the 

infection to other people. The process of LTBI begins when extracellular M.tb is 

internalized by alveolar macrophages and presented to other monocytes, which triggers 

the immune response to form a granuloma. At this point, LTBI has been established. 

Bacilli can priest within the granuloma for a long time. There are no immediate 

symptoms, but LTBI may be detected by the tuberculin skin test (TST) or interferon-

gamma release assay (IGRA)[6]. In most cases, people who have latent TB never develop 

active TB disease. However, about 5-10% of people with TB infection due to a weakened 

immune system, will experience reactivation of LTBI and progress to active disease.  

1.1.3.2 Active TB 

In some people, if their immune system cannot keep the M. tb under control, the tubercle 

bacilli multiply rapidly. Persons who have TB disease are usually contagious and may 

spread the bacteria to other people. The general symptoms of active TB include coughing 

for three weeks or longer, coughing up blood, chest pain, trouble breathing, weight loss, 

and/ or fever.  TST and IGRA can only indicate that a person has been infected with M.tb. 

It does not distinguish if the person has LTBI or active TB. Chest X-ray and sputum 

culture tests are needed to confirm the TB disease.  



4 
 

1.1.4 Drug-resistant TB 

1.1.4.1Drug resistant TB burden 

The emergence of Drug-resistant TB is of great concern, as the treatment requires more 

toxic and expensive drugs than first-line drugs. Worldwide, drug-susceptible TB 

treatment success rates are at least 85%, while the latest report shows the success rate for 

multi-drug resistant TB treatment is only 57%[2]. WHO reported an estimated 182,000 

deaths in 2019[2]. In general, treatment for patients with drug-resistant TB is longer and 

less effective. In addition, detection is also a significant obstacle to effective TB 

treatment and prevention. In 2019, there were an estimated 465,000 cases of drug-

resistant TB[2]. India, China, and the Russian Federation accounted for nearly 50% of 

global resistant cases[2]. However, only 206,030 people were detected among those 

people, and 177,099 people received treatment[2].  

1.1.4.2 Drug-resistant TB types 

Drug-resistant TB can develop in two different ways. Primary resistance occurs in 

persons who are initially infected with resistant strains. Secondary resistance (or acquired 

resistance) happens during TB treatment. Drug-resistant TB occurs when current anti-TB 

drugs used to treat the disease can no longer kill the M.tb. Mostly because patients did not 

take medication appropriately, or they were treated with an inadequate regimen.   

Drug-resistant TB can be either mono-resistance, resistance to one first-line anti-TB drug 

only, or poly-resistance, resistant to more than one first-line anti-TB drug. Multidrug-

resistant TB (MDR-TB) is defined as resistance to at least both isoniazid (INH) and 

rifampicin (RIF), the two most powerful first-line anti-TB drugs. Extensively drug-

resistant TB(XDR-TB) is a rare type of MDR-TB defined as resistant to any second-line 
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anti-TB drugs: fluoroquinolone and at least one of three injectable drugs (i.e., amikacin, 

kanamycin, or capreomycin), in addition to INH and RIF. Rifampicin resistance TB(RR-

TB) is a form of TB that a strain is resistant to rifampicin with or without resistance to 

other anti-TB drugs.  

1.1.5 Current anti-TB treatment 

Treatment for drug-susceptible TB has an intensive phase of 2 months, including 

isoniazid (INH), rifampicin (RIF), ethambutol (EMB), and pyrazinamide (PZA), 

followed by a continuation phase of either 4 or 7 months with INH and RIF. INH is one 

of the most widely used and effective anti-TB drugs for TB treatment since its activity 

was discovered in 1952[7].  INH is highly active against growing bacilli with a MIC in 

the range of 0.01 to 0.25 µg∙mL-1 but not active against resting bacteria[8]. Despite its 

simple structure, the mechanism of action is very complex as it interferes with many 

metabolic pathways. Unlike INH, RIF is bactericidal against both actively growing and 

non-growing bacilli. It binds to the β-subunit of DNA-dependent RNA polymerase(rpoB) 

of M.tb, resulting in inhibition of transcription activity of bacilli[9]. EMB is a synthetic 

compound with a similar structure to D-arabinose. As an arabinose memetic, EMB 

competitively interferes with the arabinosyltransferases, inhibiting the biosynthesis of the 

cell wall component, arabinogalactan(AG)[10]. PZA is a prodrug that needs to be 

converted to its active form, pyrazinoic acid (POC)[11]. PZA plays a crucial role in 

shortening the course as it kills non-replicating bacilli in acidic environments. 

Streptomycin (SM), an aminocyclitol glycoside antibiotic, was the first antibiotic to treat 

TB[12]. SM binds to the 16S rRNA, causing misreading of the mRNA and inhibition of 
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protein synthesis[12]. As a single-drug therapy, SM exhibited a high level of resistance 

and severe side effects; therefore, SM usage has considerably declined. 

Fluoroquinolones (FQs) which target DNA gyrase, exhibit a broad-spectrum antibacterial 

activity[13]. FQs include ciprofloxacin, ofloxacin, levofloxacin, and moxifloxacin. 

Currently, FQs are primarily used in the treatment of MDR-TB or as second-line drugs 

for patients who cannot tolerate the first-line medications.  

Injectable anti-TB drugs include two different antibiotic families: aminoglycosides and 

cyclic polypeptide. They are both critical for the treatment of MDR-TB. Amikacin (AMK) 

and kanamycin (KAN) are aminoglycosides. Capreomycin (CAP) belongs to the cyclic 

polypeptide. They exert their action by binding to the ribosomes and inhibiting protein 

synthesis.  

Bedaquiline (BDQ) and delamanid (DLM), which the FDA approved in 2012 and 2014, 

respectively, are used to treat latent TB and MDR- /XDR-TB[14, 15]. BDQ interferes 

with bacterial energy metabolism by inhibiting mycobacterial ATP synthase[16]. DLM is 

a prodrug activated by the mycobacterial F420 coenzyme system to form a reactive 

intermediate metabolite that inhibits mycolic acid synthesis[17]. In 2019, the FDA 

approved pretomanid (PTM), a compound developed by the nonprofit TB Alliance, 

combined with BDQ and linezolid (LZD) to treat extensively drug-resistant pulmonary 

TB[18]. PTM is also a prodrug activated by a nitro-reductase enzyme. In addition, it is 

active against replicating and non-replicating mycobacteria via the inhibition of mycolic 

acid synthesis and the production of nitric oxide, respectively[19].  

Figure 1.1 gives an overview of currently used anti-TB drugs and target of action.  
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Figure 1.1 Target of action of currently used anti-TB drugs. 

1.1.6 Challenges of TB treatment  

The main challenge with current drugs is the lengthy and complex treatment regimens, 

which highly affect patient compliance. Currently, the WHO recommends a Directly 

Observed Therapy Short-Course (DOTS) program for TB management; this program 

includes direct observation of the consumption of every dose of TB drugs by trained 

personnel. Cure rates are very high (85% in 2018) for drug-sensitive strains when patients 

adhered to recommended protocols. However, it is difficult to prescribe and follow these 

protocols in many high TB burden countries, predominantly low-income countries. 

Incompletion of treatment plays a significant role in the emergence of drug-resistant TB. 

The treatment of MDR TB must rely on second-line drugs, which are less effective, more 

toxic, and more expensive than first-line drugs.  The high prevalence of co-infection with 

M. tb and HIV creates additional therapeutic challenges due to drug-drug interactions 

between anti-tuberculosis and antiretroviral drugs and overlapping toxicities. Therefore, 
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new anti-TB agents or new effective and affordable therapies are highly needed to 

combat TB.  

1.2 Immunology of TB infection 

1.2.1 Physical barrier  

The mucous membrane of the respiratory tract, which is in contact with the external 

environment, acts as a physical barrier to prevent microbes from reaching the alveoli. The 

mucociliary escalator is the most critical barrier, consisting of two parts, ciliated 

epithelium and mucous film[20]. The lung epithelial cells are ciliated, covered by a thin 

layer of fluid, the periciliary sol layer. Those ciliated cells are tiny muscular and hair-like 

projections with a continual beating motion that can beat freely in the sol layer[21]. 

Above that is the mucus gel layer produced by the goblet. This layer is very viscous and 

sticky, which helps protect the underlying cells and assist in trapping any inhaled 

particulates or pathogens[22].  The cilia can contact the mucous layer during the forward 

stroke, propelling the mucus towards the mouth and coughing out mucus and trapped 

particulates.   

Only small particles, less than 2-5 µm, which the mucociliary escalator fails to remove, 

enter the deep lung, alveoli, which are not protected by mucus and cilia.  M.tb can 

successfully escape the upper airway ciliary beat, the cough reflex, and mucociliary 

escalator and traverse the trachea and the bronchi to reach the alveoli. There are three 

types of alveolar cells, Type I pneumocytes, Type II pneumocytes, and alveolar 

macrophages (AMs). Type I cells are thin and flat (squamous), covering 95% of the 

alveolar surface. They are essential for gas exchange and maintenance of barrier function 

of lungs[23]. Type II cells are cuboidal and round and much smaller than Type I cells. 
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Although they are the most numerous cells in the alveoli, Type II only make up 5% of the 

alveolar surface. The major functions of Type II cells are to secrete pulmonary 

surfactants and repair the alveolar epithelium when cells are damaged[24]. AM is the 

third cell type which is located on the luminal surface of alveoli. They are the primary 

lung resident phagocytes involved in the initial immune response. Although AMs rapidly 

engulf deposited M. tb, they are less able to control and kill all of the bacilli. Ultimately, 

AMs become major niches for M.tb  and even facilitate the migration of bacteria to 

lymph nodes which later causes systemic dissemination[25, 26].  

1.2.2 Innate and adaptive immunity 

The immune responses to M. tb are composed of innate immune responses and adaptive 

responses. Adaptive immunity in TB infection generally delays[27]; therefore, innate 

immunity, which is the first line of defense, plays a significant role against M.tb at the 

early time point. Innate immune cells include macrophages, dendritic cells, neutrophils, 

and natural killer cells.  Other cells, such as airway epithelial cells (AECs) and mast that 

have also contributed to the early immune response against M.tb, are also considered 

innate immune cells[28]. These immune cells express various pattern recognition 

receptors (PRRs), which recognize the pathogen-associated molecular patterns (PAMPs) 

on the surface of M.tb. (Described in Section 1.3). The pathogen recognition by innate 

cells triggers a cascade of cellular events, such as phagocytosis, autophagy, and 

inflammatory cytokine and chemokine production, to control and remove bacteria.  

Infected DCs migrate to lymph nodes where T-cells undergo activation and expansion for 

the M.tb antigens[26]. Two major mechanisms utilized by T-cells against M.tb are 

cytotoxicity and cytokine production. Both CD4+ and CD8+ T-cells produce interferon-
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gamma (IFN-γ), which is critical for infection control[29, 30]. Other cytokines, such as 

IL-6, IL-1, and TNF-α, are also involved against intracellular M.tb[31]. Tregs are found 

to accumulate at sites of infection in human TB[32]. Tregs can exert negative effects, 

such as suppressing CD4+ T cell activity and deactivating APCs(Antigen-presenting 

cells)[33].  

1.2.3 Phagosome maturation  

M.tb enters macrophages by phagocytosis, during which phagosomes are formed by the 

fusion of the cell membrane around engulfed M.tb. To kill the bacteria, phagosomes need 

to go through maturation, including phagosome acidification and lysosome fusion. In this 

process, nascent phagosomes gradually become more acidic from pH 6.5 to pH 4.5 and 

more bactericidal by fusing with early endosomes, late endosomes, and lysosomes[34]. 

After fusion with lysosomes, phagosomes are referred to as phagolysosomes. 

Phagolysosomes contain hydrolytic enzymes and free radicals, which are essential in 

bacterial killing. In addition, macrophages recruit vacuolar proton pumps (v-ATPase) that 

actively transfer H+ across membranes to acidify the compartment and denature bacterial 

proteins in low pH.   

However, M.tb can inhibit phagosome-lysosome fusion, restricting the compartment pH 

from 6.2 to 6.4 and blocking enzyme activities[35, 36]. Therefore M. tb can survive 

within the host and evade immune detection. It is found that secreted M.tb protein 

tyrosine phosphatase (PtpA), essential for M.tb pathogenicity, binds to subunit H of the 

macrophage v-ATPase complex, leading to blocking v-ATPase trafficking[35]. Therefore, 

the level of v-ATPase on the mycobacterial phagosome membrane decreases. Another 

M.tb secreted acid phosphatase, SapM, hydrolyzes phosphatidylinositol 3- phosphate 
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(PI3P), which plays a vital role in the biogenesis of phagosomal membrane, thereby 

preventing phagolysosome formation[37].  Nitric oxide (NO) is a critical anti-

mycobacterial molecule that is generated by inducible nitric oxide synthase (iNOS) in 

infected macrophages[38]. A study shows that M.tb can inhibit iNOS recruitment to 

phagosomes during the infection[39]. Inhibition of phagosome maturation also further 

affects macrophage antigen production and presentation. 

1.2.4 Autophagy 

Autophagy is an intracellular homeostatic process that mediates the degradation of 

cytoplasmic components, including organelles and pathogens. Autophagy as an immune 

mechanism acts as a cell-autonomous defense protecting the host against intracellular 

M.tb.  Bacteria are sequestered into a double-membrane vacuole, so-called 

autophagosomes, and delivered to the lysosome for degradation, leading to antigen 

presentation and T-cell activation. In addition to autophagosome formation, autophagy-

targeting molecule p62, an adaptor protein, is critical for M. tb killing activity. The p62 

delivers specific cytosolic components to autolysosomes, in which those components are 

processed into mycobactericidal products[40].  Stimulation of autophagy also overcomes 

M.tb phagosomes maturation arrest[41, 42]. The human immunity-related guanosine 

triphosphatases (IRGM) are involved in the autophagy-mediated clearance of M.tb by 

interacting with mitochondrial lipid cardiolipin to promotes mitochondrial fission[43].                                                                                                  

M.tb has developed several strategies to counteract autophagic defense.  M.tb enhanced 

intracellular survival (EIS) protein plays essential roles in inhibition of macrophage 

autophagy, inflammatory responses, and cell death[44, 45]. The early secretory antigenic 

target 6 (ESAT-6) secretion system-1 (ESX-1) of M. tb has been reported to be involved 
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in inhibiting autophagy[46, 47]. M.tb lipoproteins, LprE, promote intracellular bacterial 

survival by inhibiting cytokines, phagolysosome fusion, and autophagy[48].  

1.2.5 Inflammation  

Inflammation is regulated by both the host and M. tb during different stages of infection. 

Infected AMs invade the low epithelial layer, accompanied by an intense local 

inflammatory response, such as recruitment of immune cells and induction of pro-

inflammatory cytokines. The interaction of M.tb with AEC and Type II alveolar cells 

induces the secretion of tumor necrosis factor-alpha(TNF-α) and (IFN)-γ[49, 50].  M.tb 

infection of macrophages also stimulates the production of IL-1β, which is another 

critical pro-inflammatory cytokine for host defense[51]. However, M. tb has developed 

various mechanisms to evade the host response and bypass the pro-inflammatory 

response, leading to survival and replication inside AMs. Anti-inflammatory cytokines, 

such as IL-10 and transforming growth factor-beta (TGF-β), are induced by M.tb-infected 

AMs, which counteract pro-inflammatory molecules and reduce T cell activation[52]. 

These pro-inflammatory and anti-inflammatory cytokines stabilize the reciprocation 

between bacterial clearance and proliferation. 

1.2.6 Granuloma formation 

The local inflammatory response results in the recruitment of macrophages, monocytes, 

and other inflammatory cells to the site of infection, but those cannot effectively kill the 

bacteria.  Antigen-presenting dendritic cells (DCs) travel to lymph nodes where T 

lymphocytes are activated and recruited. A mass migration of immune cells and secreted 

cytokines and chemokines result in forming a specialized structure called granuloma 

around the primary site of infection. In the granuloma structure(Fig 1.2), infected 
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macrophages, epithelioid cells (differentiated macrophages), and multinucleated giant in 

the middle are surrounded by T-cells[53, 54]. The necrotic zone develops in the inner 

core of the granuloma while the outer surface is covered by fibrous tissue and 

vasculature[55, 56]. The granuloma creates an immunological microenvironment in 

which bacilli can survive and grow but contains the spread of M.tb. Bacteria may persist 

and remain dormant for a lifetime without developing active disease. However, excessive 

bacterial growth may lead to necrosis and apoptosis of infected macrophages, releasing 

the bacteria and promoting inflammation and tissue damage.  

 

Figure 1.2 Schematic of the cellular constituents of a TB granuloma. Adapted from 

reference[57]. 

1.3 Macrophage interaction with M. tb 

AMs reside beneath the surfactant layer of the alveolar lumen, which are the first to 

phagocytize M. tb when they settle in the alveolus. In addition, a few AMs are embedded 

in the connective tissue between alveoli. M.tb expresses antigenic molecules called 

pathogen-associated molecular patterns, recognized by pattern recognition receptors on 

phagocytic cells, such as macrophages and dendritic cells. M.tb gains entrance into cells 
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through receptor-mediated phagocytosis. Activation of PRRs at a different stage of 

infection initiates signaling cascades in response to the recognition, engulfment, and 

destruction of M.tb.  Macrophages have been classified into two major groups, the pro-

inflammatory (classically activated) M1 type and the anti-inflammatory (alternatively 

activated) M2 type. Macrophage-induced pro- or anti-inflammatory response highly 

depends on different PRRs.  

1.3.1 Mycobacterial cell envelope 

M.tb has a unique cell envelope structure which plays an essential role in intrinsic 

antibiotic resistance and virulence. The M. tb cell envelope consists of a typical plasma 

membrane, a complex cell wall, and an outer capsule (Fig 1.3).  The main structural 

components of the cell wall are the peptidoglycan (PG) layer, the arabinogalactan (AG) 

polysaccharide, and the mycolic acids (MA) layer. Between the plasma membrane and 

PG, there is the gelatinous material called periplasm. Lying outside the plasma membrane, 

PG is covalently linked to AG via a phosphodiester bond. Both gram-negative and gram-

positive bacteria have PG, composed of repeating units of N-acetylglucosamine (GlcNAc) 

and N-acetylmuramic acid (MurNAc).  However, mycobacterial PG contains oxidized 

MurNAc, N-glycolylmuramic acid (MurNGlyc). It appears that this modification 

increases the resistance of mycobacterial PG to lysozyme[58]. The highly branched AG 

layer is composed of D-arabinofuranoses and D-galactofuranoses. The galactan domain 

of AG connects to selected MurNGlyc. The arabinan unit of AG serves as an attachment 

site for those α-branched and β-hydroxylated long-chain(C60-C90) fatty acids, mycolic 

acids. The acid-fastness of the genus Mycobacterium is directly related to a high amount 

of MA, approximately 60% of the weight of the cell wall. Several extractable glycolipids 
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intercalate into the MA layer to form a “pseudo” lipid bilayer, such as trehalose mono-

mycolates (TMMs), trehalose dimycolates (TDMs, cord factor), phenolic glycolipids 

(PGLs), phosphatidylinositol mannosides (PIMs), phosphatidylethanolamine (PE), 

triacylglycerols (TAGs), and lipoarabinomannan (LAM).  The outermost capsule-like 

layer of slow-growing mycobacterial species is rich in polysaccharides, such as α 1-4 

glucan, arabinomannan, and mannan, whereas the rapid-growing species are abundant for 

proteins[59].  

 

 

 

 



16 
 

 

Figure 1.3 Schematic of the mycobacterial cell envelope. GL, granular layer; MmpL, 

mycobacterial membrane protein large; PL, phospholipids. Adapted from reference[60]. 

1.3.2 Macrophage recognition of M. tb 

1.3.2.1Toll-like receptors 

Toll-like receptors (TLRs) are a family of single-pass membrane-spanning receptors 

which play an essential role in both innate immune responses and initiation of adaptive 

immunity to M.tb infection. Depending on the type of recruited adaptor proteins, TLR-

ligand binding signaling can be mainly divided into MyD88 dependent pathway and 
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TRIF dependent pathway, which induce the pro-inflammatory cytokines (IL-1β, TNF-α, 

IL-6) and type I IFNs (IFNα), respectively[61].  

Among the ten members (TLR1-TLR-10) that have been identified in humans, TLR2, 

TLR4(extracellular receptors), and TLR9, TLR8 (intracellular receptors) are known to be 

involved in recognition of M.tb. TLR2 can bind to various mycobacterial cell wall 

components, such as lipoarabinomannan (LAM)[62, 63], lipomannan (LM)[64, 65], 

lipoprotein (LP)[62, 66-68], and phosphatidyl-myo-inositol mannoside (PIM)[62]. TLR2 

can form a heterodimer with either TLR1 or TLR6, interacting with di- and tri-acylated 

LP, respectively. TLR4 binds to different components of M.tb, including 65 heat shock 

protein (HSP65)[69], 50S ribosomal protein (50S RP)[70], and tri-and tetra-acylated LM. 

TLR9 localized in the endosomes and phagolysosomes can recognize mycobacterial 

DNA with unmethylated CpG (cytosine-phosphate-guanine) dideoxynucleotides[71].  

Keegan et al. reported that mycobacterial tRNA triggered a distinct innate immune 

response via TLR8[72].  

1.3.2.2 C-type lectin receptors 

C-type lectin receptors (CLR) are a family of transmembrane calcium-dependent

receptors that binds a range of carbohydrate-rich molecules, including trehalose 6,6’ 

dimycolate (TDM), PIMs, LAM, and LM. CLRs that interact with M.tb include mannose 

receptor (MR), Mincle, Dectin-1, Dectin-2, and DC-SIGN.   

MR is a type I transmembrane CLR expressed on the surface of alveolar macrophages, 

M2 macrophages, and dendritic cells. The binding of MR to mannose residues of 

lipoarabinomannan (ManLAM) medicates phagocytosis of M.tb by macrophages[73, 74]. 
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Mincle, a type II transmembrane CLR expressed on the surface of macrophages, has been 

shown to recognize TDM[75, 76]. TDM activates macrophages to produce nitric oxide 

and pro-inflammatory cytokines contributing to antibacterial function and granuloma 

formation, respectively[75, 77].  

Dectin-1 and Dectin-2 are type II transmembrane CLR. Dectin-1 has been extensively 

characterized as a major receptor for β -1,3-glucan. In addition, many studies have 

associated Dectin-1 with mycobacteria’s recognition and innate immune response [78-80], 

although its mycobacterial ligand remains unknown. Dectin-2 specifically recognizes 

ManLAM, resulting in the production of inflammatory cytokines[81, 82]. 

Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-

SIGN) is a type II transmembrane receptor mainly expressed on DCs and plays a role in 

mycobacterial-induced immune suppression. In addition, DC-SIGN recognizes ManLAN 

and LM and produces anti-inflammatory cytokine IL-10[83, 84]. 

1.3.2.3 Complement receptors 

Complement receptors (CRs) are membrane proteins expressed on the surface of 

phagocytes. M.tb can activate the alternative pathway of the complement system, 

resulting in opsonization with C3b and C3bi enhancing phagocytosis. CR1, CR3, and 

CR4 are involved in the phagocytosis of M.tb [82, 83]. It is reported that CR4 is the most 

abundant C3 receptor on human alveolar macrophages compared to CR1 or CR3[85]. In 

addition, a prior study demonstrated non-opsonic M.tb could directly bind to monocyte-

derived macrophages via CR4. This indicates that CR4 plays a significant role in M.tb 

and macrophage interaction at an early stage of infection when opsonins are unavailable 

[86].   
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1.3.2.4 NOD-Like receptors 

The nucleotide oligomerization domain (NOD) like receptors (NLRs) are intracellular 

proteins containing leucine-rich repeats. NLRs are responsible for the recognition of the 

PAMPs of a pathogen, bacterial peptidoglycan-derives. NOD2 is a receptor for muramyl 

dipeptide (MDP) in most bacteria. However, M.tb produces the modified form of MDP, 

N-glycolyl MDP[87]. N-glycolyl MDP is also more potent for activation of NOD2, which 

leads to both innate and adaptive immunity[88]. NOD2-deficient mice showed impaired 

production of cytokines upon infection with M.tb[89].  

1.3.2.5 Other receptors  

Scavenger receptors (SRs) and Fc receptors are also involved in M.tb recognition and 

immunity responses but play a less important role than other receptors discussed above. 

SRs are expressed on the surface of macrophages and bind to numerous ligands, 

including host-modified ligands and bacterial cell wall components. It is reported that 

Class A SR, MARCO, was involved in recognizing TDM[90]. SR-B1 has been shown to 

mediate the binding of M.tb in RAW264.7 macrophages[91].  Fc receptors are found on 

the surface of hematopoietic cells and are involved in antigen recognition.  Fcγ receptors 

bind to IgG-opsonized M.tb and mediate cellular response during M.tb infection[92].  

1.3.2.6 Others 

Pulmonary surfactant, a complex of lipids and proteins, forms a thin layer at the alveolar 

surface. It is made up about 70%-80% phospholipids, mainly dipalmitoyl-

phosphatidylcholine (DPPC), 10% surfactant protein A, B,C and D (SP-A,B,C,D) and 10% 

neutral lipids, mainly cholesterol[93]. Pulmonary surfactant also plays an important role 

in M.tb-AM interaction. SP-A has been found to enhance AM phagocytosis via up-
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regulation of mannose receptor activity[94, 95]. In contrast, by binding to mannosylated 

lipoarabinomannan (ManLAM), SP-D decreases phagocytosis of M.tb while increases 

fusion of M.tb containing phagosomes with lysosomes[96, 97]. Cholesterol may also play 

a part in host-pathogen interaction. It has been found to accumulate around the site of 

M.tb entry in macrophages[98]. 

1.4 Host-directed therapy (HDT)  

Although TB is treatable by antibiotic therapy, it is often associated with prolonged 

duration, poor patient compliance, and, most importantly, the development of drug 

resistance M.tb strains. In addition, the treatment of MDR- and XDR- TB is expensive, 

less effective, and more toxic. Therefore, recent attention has focused on host-directed 

therapy (HDT), which aims to restore or enhance the host immune response to M.tb 

infection and minimize inflammatory tissue damage. HDT includes, but is not limited to, 

agents that (a) change the integrity of granuloma;(b) induce autophagy; (c) modulate pro- 

and anti-inflammatory responses; and/or (d) regulate cell-mediated immune responses. 

HDT could also act as adjuvant therapy for standard TB treatment to shorten the duration 

of the regimen and improve treatment outcomes.   

1.4.1 Granuloma disruption 

One of the hallmarks of TB is the extensive formation of granuloma, which can restrict 

the access of drugs to the center of granuloma. Granuloma can be a niche where bacilli 

persist in the latent form until they have a chance to reactivate. On the other hand, 

disruption of granuloma may cause multiplication and dissemination of extracellular 

bacteria.  TNF-α is an inflammatory cytokine involved in host immunity against M.tb 

infection. It is also essential in the formation and function of granuloma[99].  When TNF- 
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α is blocked, it leads to granuloma disintegration. However, it may also cause an 

unregulated inflammatory response. Therefore, it is important to understand the dose-or 

time-dependent cytokine response of anti-TNF- α therapy. A recent study shows anti-

TNF- α antibody (Enbrel) combined with chemotherapy enhanced M.tb clearance and 

reduced lung pathology[100]. A major similarity between cancer and granuloma is 

central hypoxia and necrosis due to abnormal angiogenesis. Therefore, targeting the 

granuloma microenvironment is a promising therapeutic strategy. Vascular endothelial 

growth factor (VEGF) and angiopoietins (Angs) have been shown to increase in active 

TB patients compared to healthy people[101, 102]. Bevacizumab (anti-VEGF antibody) 

has been shown to normalize vasculature and reduce hypoxia, facilitating small molecule 

delivery in the rabbit TB granuloma model[56].  Pozopanib, a VEGF receptor inhibitor, 

reduced infection burden and limited dissemination of bacteria in the zebrafish model by 

inhibiting vascularization. This anti-angiogenic therapy also increased the efficacy of 

anti-TB drugs, rifampicin, and metronidazole[103].  

1.4.2 Autophagy treatment pathway  

Autophagy is a lysosomal degradation of harmful cellular macromolecules and organelles.  

Phagosomes containing M.tb can fuse with autophagosomes and lysosomes, resulting in 

bacteria killing. Besides pathogen clearance, autophagy is also part of innate immunity, 

which acts as a modulator of pro-inflammatory cytokine secretion and involves antigen 

processing and presentation[104]. Autophagy can be regulated via mammalian target of 

rapamycin (mTOR), AMPK-activated protein kinase pathway, vitamin D receptor 

signaling, and stimulator of IFN genes (STING)-dependent pathway. Rapamycin is an 

immunosuppressive drug used in organ transplantation. It is an inhibitor of the Ser/Thr 
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protein kinase mTOR, a suppressor of autophagy induction. Rapamycin has been shown 

to promote autophagy-mediated M.tb killing[105, 106]. Activated AMPK promotes 

autophagy against M.tb by inhibiting mTOR in macrophages[107]. Metformin, an anti-

diabetic drug, can limit the intracellular growth of M.tb via the AMPK pathway[108]. 

Activation of vitamin D receptor (VDR) signaling by vitamin D induces the production 

of various antimicrobial peptides, including cathelicidin and autophagy of M.tb infected 

cells[109, 110]. STING, a transmembrane protein that can recognize extracellular 

bacterial DNA, triggers ubiquitin-mediated selective autophagy, resulting in the delivery 

of M.tb to autophagosomes[111].  

1.4.3 Inflammatory response modulation  

The balance between pro-and anti-inflammatory responses is crucial in the control of TB 

infection. Excessive pro-inflammatory immune responses often lead to chronic 

inflammation and irreversible lung damage, whereas anti-inflammatory responses cause 

minor tissue damage but may lead to pathogen survival and proliferation.  

Corticosteroids are a class of glucocorticoid receptor antagonists that can downregulate 

the expression of pro-inflammatory cytokines[112, 113]. Although corticosteroid therapy 

has not been shown to improve the pulmonary TB regimen with anti-TB drugs 

significantly, it is recommended in TB meningitis as an adjuvant treatment[114, 115]. 

Matrix metalloproteinases (MMPs) contribute to tissue damage and pulmonary cavitation 

in TB patients by degrading the extracellular matrix and exacerbating the 

inflammation[116]. Doxycycline, an MMP inhibitor, has decreased MMP activity and 

suppressed M.tb growth in vitro and the guinea pig model[117]. Marimastat, a broad-

spectrum MMP inhibitor, decreased granuloma formation and M.tb growth in the human 
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lung tissue model[118]. Poly (ADP-ribose) Polymerase-1 (PARP-1), mainly known for 

its role in DNA repair, is also a key regulator of inflammatory cytokines, TNF-α, NF-κB, 

and MMP[119-121]. Inhibition of PARP-1 has been shown to reduce inflammatory 

conditions[122]. Therefore, PARP inhibitors might be used as HDTs to improve TB 

therapy by reducing inflammation and tissue damage.   

Aspirin, an anti-inflammatory drug, has been reported to enhance pyrazinamide treatment 

in the TB mouse model[123]. One study shows that aspirin improved the clinical efficacy 

of standard anti-TB regimens in patients with pulmonary TB and type 2 diabetes 

mellitus[124]. In addition, ibuprofen without other anti-TB treatments has shown 

significant decreases in M.tb load and lung lesions and improved survival in the mouse 

model[125].  

1.4.4 Cell-mediated immunity  

It is reported that the level of myeloid-derived suppressor cells (MDSCs) increased after 

M.tb infection, resulting in suppression of T-cell function[126]. Tasquinimod (TSQ) is a 

novel anti-cancer drug that impairs both infiltration and function of  MDSCs in the tumor 

environment[127].  Gupta et al. found that in the TB mouse model, TSQ treatment 

decreased MDSC frequency during TB infection and successfully reduced M.tb burden in 

infected lung and spleen[128]. CD4+CD25+ regulatory T-cells (Tregs) have suppressive 

properties by down-regulating effectors functions of CD4+ and CD8+ T-cells. It is 

reported that Tregs may contribute to the suppression of Th1-type immune responses[32]. 

Denileukin diftitox (DD), a diptheria toxin-related IL-2 fusion protein toxin used for 

refractory cutaneous T-cell lymphoma, has been shown to deplete Tregs[129]. DD 

monotherapy significantly decreased MDSCs and Tregs in the lung and spleen, reducing 
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M.tb replication in the mouse model[130]. When taken with standard TB treatment, DD 

significantly improved the M.tb clearance[130]. IL-10 is a key anti-inflammatory 

cytokine that suppresses T-cell function and promotes M.tb progression[131].  

Macrophages transformed from M1 to M2 during M.tb infection[132]. It has been 

reported that the increased expression of IL-10 was consistent with the increase of M2 

macrophages, and a large amount of M2 macrophages were found in granulomas[132, 

133]. Beamer et al.reported that anti-IL-10 receptor antibody treatment stabilized the 

lung M.tb load, improved survival, and enhanced T cell responses in the CBA/J mouse 

model[131].   

1.5 Metal-organic frameworks (MOFs) 

Metal-organic frameworks (MOFs) are a novel class of hybrid crystalline porous 

materials that consist of a regular array of single metal ions or clusters of ions 

coordinated to organic “linker” molecules. Different metal centers and linkers are applied 

to produce MOFs with suitable and desirable characteristics for various applications. 

MOFs have been used in multiple fields, such as catalysis, sensors, gas storage and 

separation, toxin removal, batteries, and supercapacitors.[134].  

1.5.1 Drug delivery system 

Many remarkable properties enable the potential of MOFs as drug delivery systems. The 

large surface area, high porosity, and tunable pore size of MOFs are beneficial to drug 

encapsulation. Pore size and porosity highly depend on the dimensions of the network by 

metal clusters and the length of linkers. The versatility of construction and chemical 

compositions may contribute to good water solubility, biodegradability, biocompatibility, 

and flexibility. As for metals, Ca, Cu, Mn, Mg, Zn, and Fe are generally used for drug 
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carriers as they are biocompatible and exist in an appreciable amount in the body[135]. 

Organic linkers are either exogenous or endogenous compounds. The most used 

exogenous linkers are polycarboxylates, imidazolates, pyridyl, and amines. Endogenous 

linkers could be ideal for drug delivery applications as the organic linker might be reused 

in the body, reducing the risk of toxicity. At least 28 different endogenous linkers were 

previously reported, such as amino acid, cyclodextrin, and nucleobases[136].  The 

stability of MOFs is another main topic for their use in drug delivery systems. The 

degradation of MOFs facilitates the diffusion of drugs from the materials. However, the 

appropriate stability of MOFs is required to prevent premature drug release. The stability 

relies on chemical composition, crystallinity, and the biological environment.  

Iron (III) carboxylate MOFs, MIL-100, and MIL-88A (MIL= Materials of Institute 

Lavoisier) were used as delivery systems in this dissertation work. MIL-100 was built up 

from a hydrophilic aromatic linker, trimesate, while MIL-88A was made from a 

hydrophilic aliphatic linker, fumarate. They both have reasonable degradability and low 

toxicity. The major degradation of MIL-100 and MIL-88A under physiological 

conditions was found after seven days of incubation at 37 o C[137]. The toxicity of 

degradation products is estimated by oral lethal dose 50 (LD50) (Fe=30g∙kg-1; trimesic 

acid=8.4g∙kg-1; fumaric acid=10.7g∙kg-1)[135, 137]. Of note, iron fumarate, which has the 

same chemical composition as MIL-88A(Fe), has been approved as an oral iron 

supplement[138]. This indicates the body might clear MIL-88A(Fe) composition without 

adverse effects.  In vivo toxicity studies of MIL-100 and MIL-88A were performed 

through intravenous administration in Wistar female rats[137]. There were no detrimental 

effects of MOF on animal behavior, animal and organ weight evolution, and enzymatic 
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activities. Another important feature of these iron carboxylate MOFs is the potential as 

contrast agents. The efficiency of iron-based MOFs as MRI contrast agents is related to 

their capacity to modify the relaxation time of the water protons. MIL-100 and MIL-88A 

are constructed with large amounts of paramagnetic iron atoms and possess  an 

interconnected porous matrix filled with metal coordinated and free water molecules[137]. 

It has been reported that the iron-based MOFs show favorable relativities and imaging 

properties[137, 139].  The MIL family is a very promising group of MOFs in drug 

delivery. Besides the two advantages discussed above, high drug loading capacities, good 

control release profiles, and the possibility for further functionalization have also been 

widely reported.  

1.5.2 MOFs as anti-TB drug delivery systems 

Iron-based MOFs have been reported as anti-tuberculosis drug carriers. Wyszogrodzka et 

al. reported using Fe-MIL-101-NH2 as an extended-release carrier for anti-TB drug 

isoniazid and proved this iron-MOF can also serve as a MIR contrast agent [140]. Simon 

et al. demonstrated that the MIL-100(Fe) drug delivery platform for isoniazid showed a 

good controlled-release profile[141]. 3D printed mesoporous bioactive and iron-based 

MOF scaffolds have been fabricated for anti-TB drug delivery[142]. The system exhibits 

good biocompatibility and bioactivity with a sustained drug release behavior.  

In addition to Fe-MOFs, Cui et al. developed ZnO nano-cages derived from zeolitic 

imidazolate framework-8(ZIF-8), which showed inhibiting the growth of M.tb[143].  Luz 

et al. developed copper-based MOF particles using pyrazinoic acid (prodrug for 

pyrazinamide) as linkers via spray drying for multi-drug resistant TB with desirable 

aerodynamic properties for pulmonary administration[144].  
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1.6 Biomimetic drug delivery systems 

1.6.1 Introduction  

 “Biomimetic” was coined by Otto Schmitt in 1957, who first explained this matter with 

biophysics[145]. Expanding his expression leads to the following definition: 

“Biomimetics is not so much a subject matter as it is a point of view. It is an approach to 

problems of technology utilizing the theory and technology of the biological sciences”. 

The natural world provides versatile sources of inspiration for designing biomimicking 

drug delivery. Biomimetic particles usually exhibit functional merits similar to their 

mimicked entities by two approaches: 1) the surface modification with lipids, saccharides, 

and amino acids of biological entities; and 2) engineering the physicochemical properties, 

like size, shape, and stiffness. Particles engineered with the existing cell membrane 

components or specific biological entities can inherit the characteristics of source cells, 

such as tumor targeting, prolonged circulation, and immune modulation.  For example, 

cell surface carbohydrates play an important role in cell recognition and immune 

modulation. Ganbold et al. reported nanoparticles functionalized with mannose 

efficiently delivery siRNA to primary mouse peritoneal macrophages by targeting 

mannose receptors present on the surface of macrophages[146]. Polyanhydride 

nanoparticles with galactose modified antigen-induced high avidity antibody response 

and enhanced CD4+ T-cells proliferation[147]. Red blood cells (RBC) and platelet 

membranes both express an immunosuppressive protein, CD47, which acts as a “ do not 

eat me” marker to avoid uptake by macrophages[148]. Hu et al. developed PLGA 

nanoparticles with RBC membrane, including the corresponding lipids and surface 

proteins as a biomimetic delivery system. The biodistribution study shows high particle 
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retention in the blood 72 h after injection in mice[148]. Platelet membrane coated 

nanogel with TNF-related apoptosis-inducing ligand and doxorubicin exhibited high 

accumulation in the tumor site resulting in promising antitumor efficacy in the mouse 

breast cancer model[149]. 

In addition, the morphology of particles has also received increasing attention in drug 

delivery.  The particle shape influences the particle-cell interactions by either generating 

varied angles or providing different curvatures. Rod-like or disc-like particles with a 

higher aspect ratio within a specific range are reported to be uptake by cells more 

efficiently than spherical-shaped ones[150]. Besides high uptake, rod-like particles also 

showed prolonged circulation, preferential accumulation in a particular organ, and 

different immune responses[151]. The shape of particles is shown to impact the intrinsic 

physicochemical properties of drug carriers. For example, Reguera et al. described gold 

and silver nanoparticles with anisotropic shapes, namely nanorods, nanotriangles, 

nanocubes, and nanostars, exhibited different plasmonic properties, thereby potentially 

influencing their therapeutic effects[152]. Stiffness also has an impact on cellular uptake 

and circulation of particles. RBCs have superior mechanical flexibility than spherical 

cells, allowing them to pass through gaps narrower than their diameter. This feature is 

highly desirable for developing drug carriers with improved infiltration capability.  

1.6.2 Types of biomimetic delivery systems  

1.6.2.1 Virus mimetics 

Viruses have an intrinsic ability to avoid immune system recognition and then deliver 

their genes into the host for self-replication. Therefore, virus-based particulates are of 

interest in drug delivery, especially gene delivery. Virus vectors, such as adenovirus, 
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retroviruses, and lentiviruses, have been used to deliver specific genes of interest[153]. 

However, they are pathogenic and often associated with safety concerns. Virus-like 

particles (VLPs) and virosomes have been developed, which have the advantages of 

viruses while avoiding introduction of viral genetic materials. VLPs are self-assembled 

particles of the virus-derived capsid or envelop proteins. Virosomes are bilayer 

phospholipids sphere-shaped vesicles incorporated with the surface glycoproteins of 

viruses. Virosomes were originally generated by liposomes and influenza virus subunits,  

haemagglutinin (HA), and neuraminidase (NA)[154]. VLPs and virosomes have been 

utilized in vaccines as they contain virus-specific antigens. For example, VLP HPV 

vaccines approved by FDA for cervical cancer were self-assembled from L1 major outer 

proteins of the virus[155]. Virosome-based vaccines, such as influenza virus (Inflexal® V) 

and hepatitis A virus (Epaxal®), have been on the market for decades[156, 157]. In 

addition to the substantial progress in vaccine development, VLPs and virosomes can 

load diverse payloads, including chemotherapeutics, proteins/peptides, siRNA, nucleic 

acid, antibodies.[158, 159].  Kaczmarczyk et al. demonstrated that VLPs could effectively 

deliver several proteins to the cells, including GFP (Green fluorescent protein), Cre 

recombinase, and human caspase 8. VLPs can be modified with specific ligands on the 

surface to cause corresponding cellular responses[160]. Waelti et al. described 

doxorubicin virosomal formulation, which conjugated Fab’ fragment of the monoclonal 

antibody, showing the inhibition of tumor formation in the breast cancer mouse 

model[161].  Inspired by the success of VLPs and virosomes for drug delivery, many 

researchers have been trying to develop synthetic virus-mimicking particles by mimicing 

either surface topology or function of the virus. Lee et al. described a pH-sensitive 
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nanogel with folate ligands loaded with an anti-cancer drug; doxorubicin resembled 

structural and functional virus features [162]. To mimic a capsid-like viral shell, one end 

of polyethylene glycol (PEG) was connected to the core polymer and another end to 

bovine serum albumin (BSA). PEG and BSA components may help to avoid immune 

responses. Folate ligands known to be recognized by folate receptors highly expressed on 

tumors may enhance the anti-cancer activity due to active targeting. This nanogel was 

pH-sensitive; when pH was cycled between 7.4(cytosolic pH) to 6.4(early endosomal pH), 

the particles reversibly swelled and shrank, closely associated with the drug release. In 

addition, due to proton buffering effect of poly(L-histidine-co-phenylalanine), endosome 

membranes were disrupted to facilitate nanogel transfer from the endosomes to the 

cytosol.  The virus-mimicking nanogels were found to migrate to the neighboring cells 

and repeated the same cycle. Therefore, the infection cycle of viruses was essentially 

replicated.  

1.6.2.2 Bacteria mimetics 

Like virus-based carriers, bacteria are also used as vectors for gene delivery systems. For 

example, attenuated Salmonella typhi was used as a multi-drug resistance gene (MDR1) 

siRNA delivery vector in a human tongue squamous cell cancer mouse model[163]. 

E.coli was engineered to produce a short hairpin RNA (shRNA) against human colon 

cancer[164]. The use of non-genetic engineering of bacteria has also been introduced. 

Akin et al. described a bacteria-mediated delivery system, microbots, using Listeria 

monocytogenes bacteria to attach streptavidin-coated nanoparticles, which contain 

therapeutic plasmid DNAs[165]. Another type of bacteria-based delivery system is 

bacterial ghosts which are non-denatured cell envelopes of Gram-negative bacteria 
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devoid of the cytoplasmic content[166]. Bacterial ghosts from Mannheimia haemolytica 

were used to deliver doxorubicin (DOX), which exhibited more potent antiproliferative 

activities on Caco-2 cells than free DOX[167]. Escherichia coli ghosts loaded with 

plasmid DNA efficiently targeted murine macrophages and mediated gene transfer[168]. 

Gram-positive Enhancer Matrix (GEM) particles made from Lactococcus lactis bacteria 

loaded with antigens containing a cell-wall binding domain have been used as vaccine 

delivery[169, 170].  Recently, the design of bacteria-like particles containing the 

components present in pathogens to promote cellular immune responses has gained much 

attention, particularly in vaccine development. Those particles are usually designed to 

trigger the activation of pattern recognition receptors. Seifert et al. described artificial 

bacterial biomimetic PLGA nanoparticles encapsulating with unmethylated CpG-rich 

oligodeoxynucleotides (CpG) and displaying monophosphoryl lipid A (MPLA) as a 

vaccine platform[171]. MPLA and CpG are bacterial PAMPs recognized by TLRs to 

initiate immune responses against pathogens. The particles loaded with model antigen 

Ovalbumin OVA) exhibited enhanced TH1 immune responses and antibody-mediated 

responses. 

1.6.2.3 Cell mimetics 

Natural cells, such as RBCs, macrophages, stem cells, have been explored as drug 

carriers for an extended period[172-174]. RBCs have been one of the most widely used 

cells to encapsulate therapeutic agents inside the cells or conjugate them on the surface. 

RBCs have been used to deliver small molecule drugs, proteins, peptides, enzymes, and 

nucleic acids due to their high flexibility, biodegradability, biocompatibility, prolonged 

circulation time (~120 days), and limited immunogenicity[175]. However, RBCs are not 
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ideal drug carriers due to the fragility of cells during the loading process and the rapid 

leakage of encapsulated agents. The remarkable properties of RBCs have driven interest 

in the pursuit of artificial vehicles that mimic RBCs for more efficient drug delivery. To 

mimic natural RBCs, physiological and biological characteristics of RBCs, in terms of 

size, shape, flexibility, and biological entities, should be considered. Doshi et al. 

developed PLGA nanoparticles mimicking the shape and deformability of RBCs[176]. 

They first prepared RBC-shaped template PLGA using the electrohydrodynamic jetting 

process, followed by a layer-by-layer self-assembly method to electrostatically deposit 

polycation and polyanion pairs on the surface of particles. The assembled shell was cross-

linked using glutaraldehyde and then partially fluidized by tetrahydrofuran, resulting in 

the formation of soft particles with RBCs morphology. 

Biological components on the surface of cells are important for many cellular functions. 

RBCs express several biomarkers which have been identified as immunomodulatory 

proteins to inhibit immune responses actively. For example, CD47, a 50 kDa membrane 

protein, can inhibit phagocytosis by macrophages by binding the signal regulator protein 

α(SIRPα)[177]. CD59 and C8-binding protein are responsible for preventing full 

assembly of the membrane attack complex (MAC)[178, 179]. Those biomarkers should 

also be considered in mimicking RBC for design the drug delivery system. It has been 

shown that CD47 functionalized nanoparticles significantly reduced phagocytic uptake 

by J774A.1 murine macrophages, which express high levels of SIRPα[180].  The 

membranes of RBCs are a readily available cell source. Many studies describe the 

translocation of RBC membranes onto the surface of synthetic nanoparticles, such as 

polystyrene-, gold-, Fe3O4- and PLGA- nanoparticles, to avoid rapid clearance and have 
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prolonged circulation[181-184]. The RBC membranes camouflaged nanoparticles were 

prepared using mechanical co-extrusion to fuse RBC membrane-derived vesicles and 

particles.  

Another feature of cells that can motivate the design of a cell-mimicking drug delivery 

system is the compartmentalization of cells. The interior of cells is compartmentalized 

into various sizes of organelles, such as ribosomes, endosomes, and lysosomes. Those 

intracellular multifunctional compartments are involved in a variety of processes. 

Synthetic particles with multiple compartments may provide diverse characteristics as 

delivery systems. For example, particles can load with a different payload in each 

compartment. Compartments can be made of different materials, which may enable 

independent control of drug release. Multicompartmental micelles prepared by self-

assembly of triblock copolymers have been reported[185]. Kisak et al. constructed 

particles with nano-compartments, called vesosomes, containing multiple vesicles, 

colloidal particles, and macromolecules inside the interdigitated lipid bilayers[186].  

1.6.3 Biomimetic materials  

Biomaterials have been designed for drug delivery systems for over 60 years, which have 

improved the delivery and efficacy of many compounds, like small molecule drugs, 

proteins, antibodies, vaccines, and genes[187, 188].  Besides existing biological 

substances like inactivated viral vectors, bacteria vectors, biomimetic delivery systems 

are made of synthetic materials similar to biological materials. Hydrogels are a group of 

natural or synthetic hydrophilic polymers capable of absorbing large amounts of water 

due to chemical or physical cross-linking of polymer chains. Hydrogels can closely 

resemble the natural cellular microenvironment by modifying the hydrogel matrix and 
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incorporating biological entities[189]. Liposomes are spherical vesicles comprising a 

phospholipid bilayer. Liposomes are non-toxic, biocompatible, and biodegradable, which 

could encapsulate both hydrophobic and hydrophilic drugs. The similarity of the 

liposomes to the cell membrane in humans or animals made them a potential biomimetic 

drug delivery system. Zasadzinski et al. reported multi-compartmentalized liposomes, 

vesosomes, which mimic compartments in cells for multi-component drug delivery[190].  

Polymeric nanoparticles as biomimetic carriers have many advantages, such as high drug 

loading, controllable drug release, and modification due to functional groups on the 

surface. These biomimetic polymers can mimic cellular interaction with the environment 

through active biological entities[191]. Nanostructures, unique adjustable hollow 

structures, have been widely used in biomimetic drug delivery systems. For example, 

nanofibers produced from silk fibroin and hyaluronic acid could be fabricated to mimic 

the extracellular matrix (ECM) for tissue engineering[192].  Wang et al. described 

eukaryotic cell-like nanoparticles for delivery of theranostic agents[193]. This 

nanostructure consists of a phospholipid membrane, a cytoskeleton-like mesoporous 

silica matrix, and a nucleus-like fullerene core.   

1.6.4 Application of MOFs as biomimetics 

MOFs are another promising material for the development of biomimetics in medicine 

and pharmaceutics. Chen et al. engineered spiky, bacterium-like MOFs as photothermal 

agents, which consist of aluminum (Al) and ruthenium (Ru) and a linker of 2-

aminoterephthalic acid[194]. These bacterium-like MOFs were more easily phagocytosed 

by macrophages than are spherical and can elicit several immune-mediated functions to 

modulate the immunosuppressive environment of tumors.  Alyami et al. reported 
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developing biomimetic zeolitic imidazolate frameworks (ZIFs) encapsulating 

CRISPR/Cas9 coated with cancer cells membrane for targeted and cell-specific 

delivery[195]. Inspired by the natural multi-enzyme system, Zheng et al. developed a 

novel Cu-MOF system of the co-encapsulation of glucose oxidase and L-arginine by 

biomimetic mineralization to achieve synergistic bacteria killing[196]. Zhong et al. also 

reported a biomimetic MOF-545(Fe) with enzyme-mimetic properties for rapid detection 

of glucose[197]. 

In this dissertation, two types of iron-based MOFs, namely MIL-100(Fe) and MIL-

88A(Fe), were used as biomaterial to develop bacteria-mimicking particles. The 

biomimetic strategies focused on physical properties (size and shape) and surface 

modification (saccharides and lipids). 
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Chapter 2 Mannose-MOFs for Macrophage Targeting 

2.1 Introduction  

Metal-organic frameworks (MOFs), novel crystalline hybrid materials comprised of 

metal ions or clusters bridged by polydentate organic linkers, have emerged as a 

promising carrier for drug delivery. MOFs have remarkable characteristics to ensure high 

drug loadings, such as high porosities, tunable pore size, large surface areas, and versatile 

surface functionality to interact with drug molecules [198-200]. The bio-applications of 

MOFs have been intensively studied as various therapeutic agents have been loaded in 

these materials [201, 202]. Taylor-Pashow et al. demonstrated MIL-101(Fe) for loading 

the anti-cancer agent cisplatin [203]. McKinlay et al. used 

MOF([M2(C8H2O6)(H2O)2] · 8H2O (M=Co, Ni)) to store and release the vasodilating gas 

nitric oxide for antibacterial, antithrombotic, and wound healing applications [204]. 

Horcajada et al. showed several iron-carboxylate MOFs with engineered cores and 

surfaces to encapsulate many anti-cancer and antiviral agents against cancer and 

AIDS(acquired immunodeficiency syndrome)[205]. So far, only a few studies have been 

found to investigate the potential of MOFs in the treatment of infectious diseases [140, 

206]. Among all known MOF structures, the iron (III) carboxylate-based MOFs have 

attracted increasing interest for bioapplications [202, 205]. The iron (III) fumarate 

MIL‐88A and (III) trimesate MIL‐100 MOFs (MIL: Material of Institute Lavoisier) are 

examples of biocompatible and biodegradable materials as assessed by thorough in vivo 

toxicity studies [207].   

Recent advances in bionanotechnology indicated the importance of biomimicry in 

biomedical applications and drug delivery. Precisely engineered biomimetic particles 
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have been applied to deliver anti-cancer drugs [208, 209] and devolvement of vaccine 

adjuvants [210, 211].  A few studies have demonstrated bioengineered bacteria or 

“pathogen-like” particles as antibiotic carriers for infectious diseases [212-214]. MOFs’ 

unique crystalline structure and surface functionality make them attractive biomimetic 

micro-and nano-particle delivery platforms. The bipyramidal hexagonal prism and 

octahedral shapes of MIL-88A(Fe) and MIL-100(Fe) crystals can provide defined rod-

like and spherical particles, mirroring the main basic shapes of bacteria. For example, 

Mycobacterium, Yersinia pestis, and Bacillus anthracis, which cause tuberculosis, plague, 

and anthrax, respectively, are rod-shaped. Staphylococcus aureus often causes skin 

infections, and Neisseria meningitidis, the primary cause of bacterial meningitis, are both 

spherical. One common approach to form “pathogen-like” particles is to functionalize 

particles with bacterial outer components, such as sugars (e.g., mannose, fucose, and 

glucan), peptidoglycans, lipopolysaccharides, etc. Mannose is often found on the surface 

of many respiratory pathogens, such as Yersinia pestis, Streptococcus 

pneumonia, Mycobacterium tuberculosis, and influenza virus [215-218]. Alveolar 

macrophages (AMs) are the predominant resident host defense cells in the lungs against 

infection by these pathogenic microbes.  Mannose receptor (MR, CD206), which belongs 

to the C-type lectin family, is found in most tissue macrophages, dendritic cells and select 

hepatic and lymphatic endothelia [219]. MR is also highly expressed in AMs [220], and it 

has been reported that MR mediated the recognition, binding, and internalization of many 

pathogens by AMs [221-224]. Macrophages can recognize and interact with pathogens 

and, in the same manner, “pathogen-like” particles, opening a new perspective on treating 

infectious diseases. For example, Chavez-Santoscoy et al. developed mannose-
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functionalized“pathogen-like” nanoparticles targeting C-type receptors on AMs [225].

Also noteworthy is that the treatment of infectious diseases such as tuberculosis, leprosy, 

legionnaires, or toxoplasmosis is often associated with poor efficiency by conventional 

therapy, increasing the risk of developing antibiotic resistance and clinical relapses. This 

is because these pathogens (e.g., Mycobacterium tuberculosis, Mycobacterium leprae, 

Legionella pneumophila, Toxoplasma gondii) can use macrophages as host cells to 

survive and multiply. Many mechanisms involved include blocking phagolysosome 

formation and phagosome maturation, promoting fusion of endosomes with cell 

organelles other than lysosomes, disrupting endosomes and escaping into the cytosol, etc. 

[226].  

Although MOFs are a promising biomimicry delivery platform, there is little information 

about how MOFs interact with macrophages and how their properties, such as shape, size, 

and surface modification, impact this interaction. Therefore, understanding the role and 

significance of physicochemical properties is vital for the further biomimetic application 

of MOFs. This chapter aims to investigate the new potential application of MOFs (MIL-

88A(Fe) and MIL-100(Fe)) with various properties as drug delivery vehicles for 

infectious disease applications. The fluorescently labeled MIL-88A(Fe) and MIL-100(Fe) 

were modified with mannose to model “pathogen-like” particles. The internalization 

kinetics, endocytosis mechanism, and intracellular fate of these particles were studied in 

3D4/21 swine alveolar macrophages. This strategy may provide a new paradigm of 

MOFs in biomimicry applications.   
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2.2 Materials and methods 

2.2.1 Synthesis of MOF particles 

2.2.1.1 MIL-100(Fe) 

MIL-100(Fe) metal-organic frameworks were synthesized by a microwave-assisted 

solvothermal route as previously described[227]. 6.0 mM of iron (III) chloride 

hexahydrate and 4.0 mM trimesic acid was dissolved in 30 mL water.  The mixture was 

introduced into the microwave oven and heated to 130 °C for 6 min with a power of 1600 

W. The reacting mixture was cooled down to room temperature and centrifuged at 10,000

g for 15 min. The solvent was removed, and the orange pellet was then washed with 20 

mL absolute ethanol to remove the excessive trimesic acid. MIL-100(Fe) was stored in 

absolute ethanol at room temperature for further usage.  

2.2.1.2 MIL-88A(Fe) 

MIL-88A (Fe) metal-organic frameworks were synthesized by a microwave-assisted 

hydro-solvothermal approach based on Chalati et al.work[228]. 40 mM of iron (III) 

chloride hexahydrate and 40 mM of fumaric acid was dissolved in 10 mL water. The 

reaction mixture was then placed into a microwave oven, heated to 80 °C (600W) under 

continuous stirring for 10 min. The resulting precipitate was cooled down to room 

temperature and recovered by centrifugation at 10,000 g for 15 min. To remove the free 

acid, the pellet was washed with 20 mL of absolute ethanol three times. MIL-88A(Fe) 

was stored in ethanol at room temperature for further usage.  
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2.2.2 Characterization of MOF particles  

2.2.2.1 X-Ray Powder Diffraction (XRPD) 

Powder X-ray diffractograms of MIL-100(Fe) and MIL-88A(Fe) were generated on a 

Siemens D5000 diffractometer using Cu Kα1,2 radiation (λ=1.5406Å). The pattern was 

recorded within the 3 – 40° (2θ) range, with a step of 0.02° and 4 s per step in continuous 

mode.  

2.2.2.2 Thermogravimetric Analysis (TGA) 

Thermogravimetric measurements were performed on a thermogravimetric analyzer 

(Perkin Elmer Diamond TGA/DTA STA 6000). 5-10 mg samples were heated from room 

temperature to 600 °C with an oxygen flow of 200 ml/min.  

2.2.2.3 Fourier Transform Infrared Spectroscopy (FT-IR) 

A JASCO FT-IR 6800 spectrophotometer investigated the structural characterization of 

MOF particles. Each spectrum was collected at room temperature, scanned in the spectral 

region of 4000–500 cm−1, and analyzed using JASCO Spectra Manager™ II cross-

platform software. 

2.2.2.4 Nitrogen sorption isotherms (NSP) 

The N2 adsorption-desorption isotherms were measured on BELSORP-miniII (Bel, Japan) 

at liquid nitrogen temperature (77 K). Prior to the analysis, samples were dried for 6 h at 

T=150°C under primary vacuum. BET (the Brunauer, Emmett, and Teller) surface was 

determined at a relative pressure below 0.25. Surface area and pore size of MOF particles 

were calculated by BET method and density functional theory (DFT) based on N2 

adsorption-desorption data. Samples were degassed in a vacuum for 12 h before the 

measurement.  
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2.2.2.5 Dynamic Light Scatting (DLS) 

The mean hydrodynamic diameter of MIL-100 (Fe) and zeta-potentials of pure MOFs 

and modified MOFs were determined using Zetasizer, Nano-ZS (Malvern). Prior to 

analysis, particles were suspended in distilled water at 50µg∙mL-1 and sonicated under 

ultrasound for 10 min.   

2.2.2.6 Scanning Electron Microscopy (SEM) 

Scanning electron microscopy (SEM) analysis was performed using a JEOL JSM-7001F 

microscope equipped with an energy-dispersive X-ray (EDX) spectrometer and an X-

Max SDD (Silicon Drift Detector) by Oxford. Samples were placed onto carbon support 

and then sputter-coated with gold before observation under SEM. The specimen was 

imaged at a voltage of 15 keV. Over 120 MOF particles from 5 different images were 

randomly selected, and their aspect ratio and particle size were measured using ImageJ 

version 1.42v software (National Institutes of Health, Bethesda, MD). 

2.2.3 Fluorescent labeling of MOFs 

2.2.3.1Method

The feasibility of engineering the outer surface of MOFs by covalent attachment with 

molecules containing amino groups through EDC/NHS coupling was previously 

reported[229]. 10 mg MOFs (MIL-100(Fe) or MIL-88A(Fe)) were dispersed in 2 mL of 

5 mM HEPES buffer (pH 7.4) and sonicated for 2 min. Then, 3.2 mg EDC and 4 mg 

NHS were dissolved in 400 μL of HEPES and added dropwise into the MOF suspension 

followed by 30 min stirring at room temperature. Then, 200 μL of sulfo-Cy5-NH2 in 

anhydrous DMSO (2 mg∙mL−1 for MIL-100(Fe) and 4 mg∙mL−1 for MIL-88A(Fe)) was 

added to the mixture and stirred for 2 h at room temperature. After the reaction, particles 
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were collected by centrifugation at 20,000×g for 30 min and washed with ethanol and 

water to remove the unreacted dye. Fluorescently labeled MOFs (Cy5-MOFs) were then 

collected by centrifugation as mentioned above and lyophilized for 24 h. 

2.2.3.2 Quantification 

The labeling ratio (%w/w) was determined by measuring fluorescent intensity of sulfo-

Cy5-NH2 solution (λex = 649 nm, λem = 666 nm) after decomposition of fluorescently 

labeled MOFs by incubation in 100 mM citrate buffer (pH 5.5) at 40°C for 24 h and 

compared with a calibration curve of free dye. The concentration of Cy5-NH2 stock 

solution was 2 µg∙mL-1.  Serial two-fold dilutions were prepared, and their fluorescent 

intensity was measured by Synergy H4 Multi-Mode Microplate Reader (Bio-Tek, 

Winooski, VT).  Dilutions of a standard dye stock solution (2 µg∙mL-1) with 

corresponding fluorescent intensities which fall within the linear range of the dye 

calibration curve are chosen. The dilution factor for samples was determined empirically 

to obtain fluorescence intensity within the linear range. 

2.2.4 Mannose modification of MOFs 

2.2.4.1 Method

Fluorescently labeled MOFs hereafter called Cy5-MOFs (Cy5-MIL-100 or Cy5-MIL-

88A) were dispersed in 5 mM HEPES buffer (pH 7.4) to final concentration 0.37 mg/mL 

and sonicated for 2 min at room temperature. Then, 1.6 mg EDC and 1.9 mg NHS were 

added dropwise to 13.4 mL of Cy5-MOF suspension and stirred for 15 min. Then, 2.6 mg 

of mannosamine hydrochloride in 200 μL anhydrous DMSO was added to the mixture, 

followed by overnight stirring at room temperature. After mannosylation, particles were 

collected by centrifugation at 20,000×g for 30 min and washed three times with 14 mL of 
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water. After each centrifugation, supernatant with unreacted mannosamine after reaction 

and washing steps was kept to detect unreacted mannosamine further. Mannsolyated 

MOFs particles were defined as MIL-100(Fe)-Cy5-Man or MIL-88A(Fe)-Cy5-Man. To 

study whether mannosamine would be encapsulated in MOFs, a control was conducted 

by the same procedure mentioned above without the EDC/NHS coupling reaction. 

Instead, mannosamine was directedly added into Cy5-MOF suspension. After thoroughly 

washing, MOF particles were collected and lyophilized. The MOFs underwent 

decomposition in 100 mM citrate buffer (pH 5.5) at 40°C in the incubator overnight, and 

then the solution was kept for detection of encapsulated mannosamine. 

2.2.4.2 Quantification 

Mannosylation ratio (% w/w) was determined using a previously described colorimetric 

method based on the detection of unreacted mannosamine [230]. For this aim, 100 μL of 

supernatant after nanoparticle collection was mixed with 30 μL of solution of 

fluorescamine in DMSO (3 mg∙mL−1). The fluorescence intensity was measured using a 

96-well plate spectrophotometer SpectraMax M2 (Molecular Devices) at λex = 395 nm

and λem = 495 nm. Standard solutions of mannosamine were prepared in HEPES buffer. 

Compared with the calibration curve of free mannosamine, the concentration of 

mannosamine in all supernatant samples was determined. The dilution factor for the 

sample was determined empirically to obtain fluorescence intensity within the linear 

range. 
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The labeling ratio of mannosamine on MOFs (P; % w/w) was calculate 
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 Equation 2.1 

 Wattached mannose=Winitial−Wsupernatant 

where Winitial is the weight of mannosamine at the beginning of the reaction, Wsupernatant is 

the weight of unreacted mannosamine, and WMOFs is the weight of MOFs.  

2.2.5 Cell culture 

3D4/21 swine alveolar macrophages (ATCC, CRL-2843) were cultured in RPMI 1640 

medium containing 2 mM L-glutamine and supplemented with 10 mM HEPES, 1.0 mM 

sodium pyruvate, 1% PenStrep, 90% 0.1 mM nonessential amino acids, and 10% fetal 

bovine serum. Cells were grown in a humidified atmosphere of 5% CO2 at 37°С. 

Passages 6–10 were used in this study. 

2.2.6 Cellular viability  

Cellular viability in the presence of inhibitors and MOFs was assessed using an MTT 

assay. 3D4/21 cells were seeded on 96 well plates at an initial density of 5000 cells/well 

and cultured overnight. Cells were treated with varying concentrations (0.1,1,2,5,10, 20, 

50,100 µg∙mL-1), of MIL-88A(Fe) and MIL-100(Fe) particles for 24 h to evaluate 

cytotoxicity. Cells were also treated with varying concentrations of cytochalasin D 

(0.1,1,2.5,5,7.5,10,25, 50µM), chlorpromazine (0.1,1, 2.5, 5, 7.5,10, 25, 50µM), or 

sodium azide (0.1,1,2.5,5,7.5,10,25, 50 mM), for 8 h to determine non-toxic 

concentrations for inhibitory analysis. After the incubation period, 20 µL/well MTT 
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reagent (5mg∙mL-1) was added to each well for 4 h in the dark at 37°C until purple 

formazan crystals were visible under a microscope. The medium was removed, and 100 

µL solubilization solution (DMSO/EtOH, 1:1) was added to each well. The plates were 

placed on an orbital shaker (200rpm) for 30 min to enhance the dissolution of purple 

crystals. The absorbance of samples was measured at 560 nm using Synergy H4 Multi-

Mode Microplate Reader (Bio-Tek, Winooski, VT). The reference absorbance at 650nm 

was used to correct nonspecific background. The 650 nm absorbance values were 

subtracted from the 560nm absorbance values of corresponding experimental wells. The 

relative cell viability (%) for the negative control (100% cell viability) was determined. 

2.2.7 Intracellular reactive oxygen species (ROS)  

3D4/21 cells were seeded in a 96-well plate at a density of 5000 cells/well. Cells were 

incubated with MIL-100(Fe) and MIL-88A(Fe) at a serial concentration of 

0.1,1,2,5,10,20,50, and 100 µg∙mL-1 for 24 h.  After exposure to MOFs, the supernatant 

was removed, and cells were washed twice with warmed HBSS (GibcoTM). 2′,7′-

Dichlorofluorescin diacetate (DCFH-DA; Sigma) was dissolved in DMSO to a final 

concentration of 1mM and diluted in HBSS. Cells were incubated with 10 µM DCFH-

DA for 30 min at 37°С. Fluorescence intensity was measured by GloMax®-Multi 

Detection System (Promega, Madison, WI) equipped with a blue optical kit (λex = 470 nm, 

λem = 510-570 nm) 

2.2.8 MOF particle uptake 

3D4/21 cells were seeded in 24-well plates at a density of 6 × 104 cells/well and cultured 

for 48 h. MIL-100(Fe)-Cy5 ± Man or MIL-88A(Fe)-Cy5 ± Man particles were added at a 

final concentration of 5 μg∙ mL−1 and 20 μg ∙mL−1 per well, respectively. After incubating 
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MOFs for 2 h, 5 h, 8 h, 12 h, and 18 h, the growth medium was removed, and cells were 

washed with HBSS. Cells were dispersed with 75 μL per well of 0.25% trypsin in 37°С 

incubator for 15 min, suspended in 500 μL Versene solution per well and collected in 

2.0 mL microcentrifuge tubes. Following centrifugation at 500×g for 30 s, cells were 

resuspended in 300 μL of Versene solution containing 1 μg mL−1 propidium iodide to 

differentiate live and dead cells. The intensity of nanoparticles internalized by cells was 

measured using a BD Accuri™ C6 Plus flow cytometer (BD Biosciences) equipped with 

a 640 laser in a 625-675 nm channel. Over 10,000 events were gated per sample. Samples 

were prepared in quadruplicate. 

2.2.9 Endocytosis pathway  

3D4/21 cells were seeded in 24-well plates at a density of 6 × 104 cells/well and cultured 

for 48 h. Cells were pretreated with 5 μM cytochalasin D, 10 μM chlorpromazine, or 

50 mM sodium azide for 30 min prior to the addition of MOF particles.  After incubation 

of MOFs for 8 h, the growth medium was removed, and cells were washed with HBSS. 

Sample preparation, flow cytometry, and data collection followed the same procedure as 

described in Section 2.2.8.  

2.2.10 MOF particle localization in 3D4/21 cells 

3D4/21 cells were seeded onto POC mini chambers (PeCon, Germany) with 5 × 105 cells 

per chamber in 1 mL growth medium and cultured for 24 h in a humidified atmosphere of 

5% CO2 at 37°С. Then, cells were incubated with either MIL-100(Fe)-Cy5-Man or MIL-

88A(Fe)-Cy5-Man particles, added at a final concentration of 10 μg∙mL−1, and incubated 

for 5 h. Prior to confocal laser scanning microscopy, Hoechst 33342 and LysoTracker 

Green DND-26 were added to 3D4/21 cells at final concentrations of 1 μg∙mL−1 and 
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75 nM, respectively. An Olympus FV1200 laser scanning microscope equipped with 

a × 100/1.4 oil objective lens was used for image acquisition. Cell images were obtained 

using an excitation wavelength of 405 nm for Hoechst (425–475 nm passband for 

emission), 488 nm for LysoTracker Green (500–545 nm passband for emission), and 

635 nm excitation for Cy5 (655–755 passband for emission). The quantification of 

colocalization was determined by Mander’s overlap coefficient using Image J version 

1.42v software (National Institutes of Health, Bethesda, MD). 

2.3 Results and discussion  

2.3.1 Synthesis and characterization of MOF particles    

Different synthetic strategies can be applied to obtain the desired size and morphology of 

MOF particles. MIL-100(Fe) was synthesized at low temperature (<100°C), and 

atmospheric pressure was mainly octahedral in shape[231].  MIL-100(Fe) obtained with 

water/ethanol(80:20) mixture exhibited two-thirds of BET specific surface area compared 

to those synthesized with water only[227]. It is reported that three kinds of 

crystallographic structures of MIL-88A(Fe), such as rod-like, spindle-like, and diamond-

like structures, can be prepared using a solvothermal process with different solvents [232]. 

The synthesis of MIL-100(Fe) and MIL-88A(Fe) was performed according to previously 

published procedures[227, 228]. Both microporous flexible MIL-88A 

(Fe3O(OH)[C2H2(CO2)2]3) and mesoporous rigid MIL-100 

(Fe3O(OH)(H2O)2[C6H3(COO)3]2) are built up from oxo-centered trimers of iron (III) in 

octahedral coordination that is bridged by fumaric or trimesic acids, respectively (Fig 2. 

1a and b).  SEM image shows that particles of MIL-88A(Fe) had rod-like shapes, and the 

size was ranging from 3-5 µm in length with an aspect ratio of 1:5, whereas particles of 
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MIL-100(Fe) were spherical with a z-average diameter of 100 nm (Fig 2.1c). The mean 

diameter of MIL-100(Fe) measured by DLS was approximately 300 nm (Fig 2.7a) 

 

 

Figure 2.1 Crystalline structure and images of MOFs. (a) Scheme of MIL-88A(Fe) 

structure and post-synthesis modifications; Fe (III) octahedra indicated in orange, oxygen 

in red, carbon in gray, nitrogen in blue, mannosamine in purple, Cy5 dye in green; H 

atoms have been omitted for clarity. (b) Scheme of MIL-100(Fe) structure; Fe (III) 

octahedra indicated in green, oxygen in red, carbon in gray; H atoms have been omitted 

for clarity. The pore volume of the MIL-100(Fe) mesoporous cavity is represented by 

yellow sphere. (c) SEM images of MIL-88A (Fe) and MIL-100(Fe) nanoparticles; scale 

bars are 3 µm for MIL-88A(Fe) and 100 nm for MIL-100(Fe). 

 



49 
 

Obtained materials were characterized using X-ray powder diffraction, infrared 

spectroscopy analysis, thermogravimetric analysis, and nitrogen sorption porosimetry. 

The presence of characteristic diffraction peaks confirmed the MIL-100 (Fe) and MIL-

88A(Fe) crystalline structures. As shown in Fig 2.2, the main diffraction peaks of as-

synthesized MIL-100(Fe) and MIL-88A(Fe) are in good agreement with those reported in 

the literature [37-40]. 

 

Figure 2.2 XRD patterns of (a) MIL-100(Fe) and (b) MIL-88A(Fe). 

Figure 2.3 presents the FT-IR spectrums of MIL-100(Fe) and MIL-88A(Fe). The 

significant bands of the MIL-100(Fe) are attributed to -OH stretching(3400cm-1), -C O 

stretching vibration (1630cm-1), -OH vibration(1450cm-1), -C-O stretching vibration 

(1360cm-1), C C stretching vibrations in benzene ring (758cm-1 and 709cm-1) and Fe-O 

stretching vibrations (487cm-1)[233, 234].  In the spectrum of MIL-88(Fe), the bands at 

1400 and 1600 cm−1 can be attributed to the symmetric and asymmetric carboxyl group 

(−COOH) stretching vibration, respectively, and band at 550 cm−1can be assigned to the 

stretch vibration of Fe-O[235-237].  
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Figure 2.3 FT-IR spectrum of (a) MIL-100(Fe) and (b) MIL-88A(Fe). 

 

As can be seen from thermogravimetric analysis in Fig 2.4, both MIL-100(Fe) and MIL-

88A(Fe) showed two-stage weight loss. MIL-100(Fe) and MIL-88A(Fe) had 

approximately 75% and 65% total weight loss, respectively.  The first stage (below 

100 °C) can be attributed to the loss of the residual water insides the pores. The second 

stage of a sharp weight loss occurred at 275 °C to 350°C for MIL-100(Fe), and at 225°C 

to 300°C for MIL-88A(Fe) is related to linker decomposition with the framework.  
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Figure 2.4 Thermogravimetric analysis profile of (a) MIL-100(Fe) and (b) MIL-88A(Fe). 

The N2 adsorption-desorption isotherm of MIL-100(Fe) displayed a typical type- I shape, 

indicating microporous structure (Fig 2.5a). The BET-specific surface area of MIL-

100(Fe) and MIL-88A(Fe) was 1543 m2g-1 and 62 m2g-1, respectively. The mean pore 

diameter of MIL-100(Fe) and MIL-88A(Fe) were 2.5-2.7 nm and 0.5-0.7 nm, 

respectively.  

Figure 2.5 Nitrogen sorption isotherm of (a) MIL-100(Fe) and (b) MIL-88A(Fe). 
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2.3.2 MOF modification and characterization of functionalized MOF particles  

MOFs have been widely explored in the application of gas storage [238], gas/vapor 

separation [239], catalysis [240], and biomedicine [202, 241] due to their diverse 

structure types, tunable porosity, large surface area, high drug loading, and 

biocompatibility. To expand the unique properties of MOFs, surface engineering has 

become of increasing research interest. Several approaches have been developed to attach 

a desired functional unit to the MOF surface, including the use of capping molecules 

during MOF synthesis [242, 243], covalent [244], and non-covalent [245-247] post-

synthesis modification. Fe (III) carboxylates MIL-88A(Fe), and MIL-100(Fe) possess 

both Lewis acid sites and terminal carboxylic groups on their outer surface that are 

available for surface modification. The covalent conjugation of sulfo-Cy5-NH2 and 

mannosamine to MIL-88A(Fe) and MIL-100(Fe) particles was successfully achieved by 

EDC/NHS coupling reaction (Fig 2.1a). MOF particles depended on EDC/NHS to 

activate the carboxyl groups on their surface to form MHS ester intermediates that can 

subsequently react with primary amine groups on the dye or surface ligands. EDC/NHS 

coupling has been previously applied to modify the outer surface of MIL-100(Fe) [229]. 

A main advantage of EDC/NHS coupling is its water-based condition without prior 

organic solvent dissolution and short time frame. The reaction was performed under pH 

7.4 to minimize risk of hydrolysis. As for the selection of fluorophore, water solubility, 

pH-independence in physiological pH range (from pH 4 to 10), and molecular 

size/weight were taken into consideration. However, sufficient washing is still required in 

this protocol to remove all excess reagents, free-dye, and unreacted molecules.  Figure 

2.6 (a) shows the Cy 5 fluorescence intensities standard curve with a regression value of 
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0.9991. According to the equation (y = 397.53x + 1.1566), the amount of dye conjugated 

on MOFs was calculated. The fluorescent labeling ratios of MIL-88A(Fe) and MIL-

100(Fe) were 0.06% w/w and 0.33% w/w, respectively.  

MOF particles were then modified with mannosamine to further bind to the mannose 

receptor on macrophages. The amount of unreacted mannosamine in each wash step was 

calculated based on the equation (y= 47484x + 413.55, R² = 0.9988) in Fig 2.6 b. 

Mannosylation ratio (% w/w) was 19.7% and 15.1% for MIL-88A(Fe) and MIL-100(Fe), 

respectively. Since the mannosamine molecule is small enough to pass through 

microporous apertures of MIL-88A(Fe) and MIL-100(Fe), several washing steps were 

needed to ensure its successful removal. The absence of mannosamine in the supernatant 

after the last wash was confirmed by colorimetric measurement. The same method was 

also performed to detect potentially encapsulated mannosamine. The experiment was 

conducted under the same condition and procedure except for EDC/NHS coupling 

reaction, which means no surface modification with mannosamine would happen. 

Particles were washed three times with water, dried, and then destroyed in 100mM citrate 

buffer. The following equation calculated the loading capacity: 
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                                                                                                                              Equation 2.2 

Negligible amounts of unreacted mannosamine were found to be encapsulated in MIL-

100(Fe) (0.5%) and MIL-88A(Fe) (0.15%). The result indicates that a substantial amount 

of mannosamine was on the MOFs’ surface, not within the MOFs’ pores. The zeta 

potential of Cy5-MOF slightly shifted, indicating the achievement of mannosylation. The 
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hydrodynamic diameter of mannosylated MIL-100(Fe) remained compared to non-

mannosylated ones (Fig 2.7). Physicochemical characteristics of native MOFs and MOFs 

with the modified surface are summarized in Table 2.1.  

 

Figure 2.6 The standard curve of the fluorescent intensity of (a)Cy5 in 100mM citrate 

buffer and (b)mannosamine in water.  
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Table 2.1 Physicochemical Characteristics of MOF Nanoparticles. 

MOF MIL-88A-Cy5 MIL-88A-Cy5-Man MIL-100-Cy5 MIL-100-Cy5-Man 

Organic linker Fumaric acid Trimesic acid 

Unit Formula Fe3O(OH)[C2H2(CO2)2]3 Fe3O(OH)(H2O)2[C6H3(COO)3]2 

Pore size(Å) 5-7 25-27 

Aspect ratio 1:5 1:1 

Particle size(nm) 3628 ± 573*  103.9±7.2* 

295.7 ± 15.0‡ 

307.9 ±32.1‡ 

PDI †  0.254 2.263 

Zeta potential 

(mV) 

7.3±0.6 12.1±2.0 -25.9±0.5 -20.9±0.8 

Fluorescent 

labeling 

(% w/w) 

0.06 0.33 

Labeling with 

mannosamine 

(% w/w) 

- 19.7 - 15.1 

The values are given as means±SD. *Measured by SEM for MIL-88A(Fe) and MIL-

100(Fe), respectively. For MIL-88A(Fe) particles, the values are given for the long axis. 

‡Measured by DLS for MIL-100(Fe) and MIL-100-Man. †PDI values are given for the 

diameter of MIL-100(Fe) particle by DLS.
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Figure 2.7 DLS distribution of (a)MIL-100(Fe) and (b)MIL-100-Man (Fe). 

 

2.3.3 Cytotoxicity and ROS generation  

The cytotoxicity of MOF highly depends on MOF composition, metals, and organic 

linkers. MIL-100(Fe) and MIL-88A(Fe) have carboxylic acid linkers that are less toxic 

and easily removed. The nature of the metals could damage the cells through the 

formation of reactive oxygen species (ROS). Many studies have shown that iron 

carboxylate MOFs exhibit good biocompatibility and low cytotoxicity. MIL-100(Fe) and 

MIL88A(Fe) were evaluated for their cytotoxicity against 3D4/21 swine alveolar 

macrophage. Considering that alveolar macrophages are critical for the clearance of 

inhaled bacterial pathogens, the synthesized MOFs should not be toxic to the host cells. 

The MTT results show that MOFs were non-toxic for the 3D4/21 cells up to 100 µg∙mL-1 

with 80% and 90% cell viability for MIL-100(Fe) and MIL-88A(Fe) in 24 h (Fig 2.8). 

The level of oxidative stress is related to the cytotoxicity of materials. As concentrations 

of MOF increased, the ROS level gradually increased (Fig 2.9). MIL-88A(Fe) and MIL-

100(Fe) induced ROS levels comparably at concentrations below 50 µg∙mL-1. Although 
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at 100 µg∙mL-1, ROS level in MIL-88A(Fe) was nearly 2-fold as MIL-100(Fe), the high 

ROS value did not significantly affect cell viability over 24 h.   

Tamames-Tabar et al. [248]investigated the cytotoxicity of a series of MOF particles, 

including MIL-100(Fe) and MIL-88A(Fe), by MTT assay using human cervical 

carcinoma (Hela) and murine macrophage (J774) cell lines. They concluded that Fe-

based MOFs are less toxic compared with the Zr- or Zn-based MOFs. Grall et al. [249] 

investigated the cytotoxicity of MIL-100(Fe, Cr, and Al) on lung epithelial human cell 

lines (A549 and Calu-3) and hepatic epithelial human cell lines (HepG2 and Hep3B) by 

measuring cell impedance, cell death, ROS generation and the level of DNA damage. 

They found that MIL-100 did not induce cell toxicity and only the toxic effect of MIL-

100(Fe) particles in the Hep3B cell line. Strzempek et al. [250]  tested the cytotoxic effect 

of MIL-100(Fe) on A549 epithelial and RAW 246.7 macrophages cells. They concluded 

that MIL-100(Fe) is biocompatible and does not show a significant cytotoxic effect. Zhao 

et al. [251] showed no cytotoxicity of MIL-88A(Fe) was observed in 293T cells even 

with a concentration of 100µg∙mL-1. Based on the non-toxic concentration range and 

fluorescent labeling ratio, 5 μg∙ mL−1 for MIL-100(Fe) and 20 μg ∙mL−1 for MIL-88A(Fe) 

were chosen for MOFs uptake experiments. 
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Figure 2.8 MTT assays of 3D4/21 cell viability after 24 h exposure to (a) MIL-100(Fe) 

or (b) MIL-88A(Fe) Data are given as means±SD. 

 

Figure 2.9 Intracellular reactive oxygen species level in 3D4/21 cells induced by (a) 

MIL-100(Fe) and (b) MIL-88A(Fe), measured as the fluorescence intensity of 2′,7′-

Dichlorofluorescin diacetate (DCFH-DA). Data are given as means±SD. 
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According to the cytotoxicity of inhibitors on 3D4/21 cells shown in Fig 2.10 and 

observed changes in cell morphology, 5 μM cytochalasin D, 10 μM chlorpromazine, or 

50 mM sodium azide were chosen to have sound inhibitory effects with desirable cell 

viability.  

Figure 2.10 MTT assays of 3D4/21 cell viability after 8 h exposure to inhibitors of 

endocytosis such as (a) chlorpromazine, (b) sodium azide, or (c) cytochalasin D. Data are 

given as means±SD. 

2.3.4 Uptake kinetics in 3D4/21 cells 

The particle size, shape (aspect ratio), and surface chemistry play crucial roles in 

macrophage uptake [252-254].  Here, the combinatorial effects of MOF particles’ 

physicochemical properties on uptake were demonstrated using 3D4/21 alveolar 

macrophages. The uptake kinetics of MIL-88A(Fe)-Cy5±Man or MIL-100(Fe)-Cy5±Man 

particles in 3D4/21 cells were measured using flow cytometry. Cellular uptake was 

presented as fluorescence intensity per cell and the faction of positive cells.  Overall, the 

internalization of MOFs particles in 3D4/21 cells increased over time to a different extent.  

As expected, the uptake of mannosylated MIL-88A(Fe)-Cy5 particles was markedly 

higher than that of non-modified counterparts with a 5-fold difference after 18 h (Fig 



60 
 

2.11a).  However, there was no difference in uptake kinetics between mannosylated and 

non-mannosylated MIL-100(Fe)-Cy5 (Fig 2.11b).  

Figure 2.11 Cellular uptake of MIL-88A(Fe)and MIL-100(Fe) particles by 3D4/21 swine 

alveolar macrophages. (a) The internalization kinetics of mannosylated MIL-88A(Fe) and 

its non-mannosylated counterpart; (b) The internalization kinetics of mannosylated and 

non-mannosylated MIL-100(Fe)-Cy5; (c) The fractions of fluorescently positive cells in 

MIL-100(Fe)-Cy5 ± Man and MIL-88A(Fe)-Cy5±Man particles. 

Fig 2.11 c shows the percentage of total cells containing MOF particles (fluorescently 

positive cells) at each time point.  After 2h incubation of MIL-100(Fe)-Cy5 and MIL-

100(Fe)-Cy5-Man nanoparticles, more than 90% of 3D4/21 cells were involved in the 

internalization of particles, and around 8 h the fraction of fluorescent cells reached 100%. 

As for MIL-88A(Fe) -Cy5and MIL-88A(Fe)-Cy5-Man particles, the fractions of 

fluorescently positive cells only reached 13 % and 45 % of the cell population after 18h, 

respectively. 

The changes between cellular uptake levels of MIL-88A(Fe)-Cy5 and MIL-88A(Fe)-

Cy5-Man particles can be clearly illustrated by the images of 3D4/21 cell number 
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distributions depending on Cy5 fluorescence intensity per cell (Fig 2.12a) and 

microscopy images of 3D4/21 after 5 h incubation with MIL-88A(Fe)-Cy5 and MIL-

88A(Fe)-Cy5-Man particles (Fig 2.12b). To understand how mannosylation influences 

macrophage uptake of MIL-88A(Fe)-Cy5±Man particles, the fractions of cells displaying 

high, medium, and low Cy5 fluorescent intensity changed over time were measured (Fig 

2.13a and b). Figure 2.13c illustrates how the low, medium and high proportions of 

fluorescence intensity were defined. First, the signal in the control group (no treatment of 

MOF) was set up as a baseline. The absolute fluorescent signal, which was between 

baseline and 10000, was considered a low-intensity part. The signal between 10000 and 

50000 and over 50000 was defined as medium intensity and high intensity. The cell 

number in each category was counted, and the percentage of each part over the total cell 

numbers was calculated. The cell fraction of high and medium fluorescent intensity in 

MIL-88A(Fe)-Cy5 slightly increased over 18 h, whereas the percentage of high signal in 

MIL-88A(Fe)-Cy5-Man increased considerably, and the medium proportion remained 

unchanged. Combined with the results of total positive cells over time, surface decoration 
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of MIL-88A(Fe) particles with mannose can improve 3D4/21 cell uptake and involve 

more cell participation in particles uptake. After 12 h internalization of MIL-88A(Fe)-

Cy5 particles, its kinetics reached a plateau while MIL-88A(Fe)-Cy5-Man particles 

continued being taken up by cells, and uptake efficiency also improved since the high-

intensity fraction significantly increases.   

Figure 2.12 Cellular uptakes of MIL-88(Fe) by 3D4/21 cells after 5h incubation (a) Cy5 

positive cell number distributions; (b) Microscopy images of 3D4 cells stained with 

Hoechst 33342 (blue nuclei) with MIL-88A(Fe)-Cy5 or MIL-88A(Fe)-Cy5-Man (red 

particles). Scale bars are 100 µm. 
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Figure 2.13 The cell fractions of high, medium, and low Cy5 fluorescent intensity over 

time in case of (a)MIL-88A(Fe)-Cy5 or (b) MIL-88A(Fe)-Cy5-Man nanoparticles, 

respectively. The value of 100 % corresponds only to the cell population that internalized 

nanoparticles (Cy5 fluorescently positive cells). Each measurement was carried out in 

quadruplicate; over 10,000 events were gated per one measurement. Data are shown as 

means ± SEM. (c) illustration of the determination of low, medium, and high 

fluorescence intensity. 

Of note, surface modification with mannose had no opportunity to improve the 

internalization of MIL-100(Fe) nanoparticles as its rate and extent of uptake already 

reached very high levels (Fig 2.11b).  There was a significant increase in uptake in terms 

of mannosylated-MIL-88A(Fe) particles (Fig 2.11a). Kolhar et al. found that rod-shaped 

particles appear to adhere more effectively to cells compared with their spherical 

counterparts [255].  The radius of curvature of rods is much higher than that of spheres 

which increases the available functionalized area on particles with which cells can 

interact.  The rod-shaped particles, MIL-88A(Fe), have a larger radius of curvature; 

therefore, mannose surface coating can facilitate the ligand-to-receptor interaction that 

leads to more effective internalization [256]. Champion et al. investigated the 



64 
 

dependence of phagocytosis on size by alveolar macrophages using particles ranging in 

diameter from 1 μm and 6 μm. They found that particles 2-3 μm exhibited the highest 

phagocytosis and attachment based on the number of contact points of particles with cells 

[257]. MIL-88A(Fe) particles are more advantageous as a drug delivery system compared 

with MIL-100(Fe) for macrophage-targeted therapy for several reasons. First, MIL-

88A(Fe) particles possess the size range and shape of the most found bacteria in nature, 

which might play an important role in the initial recognition step. Additionally, 

attachment of the active ligand, mannose, on the surface highly increased cell 

involvement and uptake 

Bacteria are the leading cause of infectious diseases, and intramacrophagic pathogens 

reduce the efficiency of current therapy. The synthesized MIL-88A(Fe) and MIL-100(Fe) 

particles resembled rod-like and spherical shapes of bacteria and were further 

incorporated with targeting functionality. This could facilitate the recognition and 

internalization by macrophages. No anti-infectious drugs were loaded at this stage, but 

efficient delivery of agents has been achieved in many MOF-based particles. Recently, 

Wyszogrodzka et al. evaluated the potential of MIL-101-NH2 (Fe) as a theranostic drug 

delivery system for anti-tuberculosis treatment [140]. Taherzade et al. synthesized nano-

sized MIL-100(Fe) to encapsulate antibiotics to treat bacterial infections [206]. They 

mainly investigated the applicability of MOFs as drug carriers in terms of drug loading, 

drug release, and cytotoxic safety.  Little studies have explored how shape, size, and 

surface modification of MOFs influence cellular internalization. However, one major 

limitation in our study is that cellular uptake efficiency between MIL-88A (Fe) and MIL-

100(Fe) cannot be directly compared due to the different fluorescent labeling ratios, 
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absolute size, and/or volume of the particles. The results show that MIL-100(Fe)-Cy5 

nanoparticles were rapidly internalized by most cells within 2 h, whereas the rate of 

uptake of MIL-88A(Fe)-Cy5 particles was much slower, and only a small portion of cells 

were involved (Fig 2.11c). Yue et al. found that the internalization of nanosized particles 

by macrophages occurred immediately within 1h, whereas the uptake of microparticles 

exhibited a lag phase at the beginning [258]. Therefore, it is not surprising that MIL-

100(Fe) particles, having a diameter of approximately 100 nm, were readily taken up by 

macrophages. MIL-88A(Fe) particles are micron-scaled and rod-shaped, of which 

internalization likely depends on the shape and its point of initial attachment to the cell 

surface (local geometry), as has been seen for other rod-shaped particles [259]. The high 

aspect ratio and orientation may prevent cells from completing phagocytosis and retard 

the rate of internalization [260].   

2.3.5 Mechanism of endocytosis pathway  

Since little has been done to elucidate the endocytosis mechanism of MOF particles by 

AMs, the MOFs uptake pathways were investigated by exposure to specific chemical 

inhibitors. Chlorpromazine is a known specific inhibitor of clathrin-mediated endocytosis, 

disrupting clathrin disassembly and inhibiting receptor recycling [261, 262]. Cytochalasin 

D is an inhibitor of actin polymerization to suppress micropinocytosis/phagocytosis [261, 

262]. The ATP synthesis inhibitor, sodium azide (NaN3), was used as a control to inhibit 

all types of endocytosis [263].  

Prior to co-incubation with MOF particles and inhibitors, the safe dose of each inhibitor 

was determined by MTT assay. Cells were incubated with MIL-100(Fe)-Cy5±Man and 

MIL-88A(Fe)-Cy5-Man particles in the presence of endocytosis inhibitors, namely, 10 
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µM chlorpromazine (CPZ), 5 µM cytochalasin D (cytoD), or 50 mM sodium azide 

(NaN3). According to Fig 2.11c, the fraction of cells containing MOF particles reached 

100% after 8 h in both types of MIL-100(Fe) nanoparticles. Although the internalization 

of MIL-88A(Fe) particles did not reach plateau at that point, with only 12% (MIL-

88A(Fe)-Cy5) and 25% (MIL-88A(Fe)-Cy5-Man) of cell population, in consideration of 

inhibitor toxicity 8 h incubation time was chosen for inhibitory analysis.   

Several studies have shown that cellular uptake of MOFs is an energy-dependent process 

[264-266].  As shown in Fig 2.14, NaN3 (metabolic inhibitor) presence resulted in a 

considerable decrease in the cellular internalization with a 60% decrease relative to the 

control cells in all four groups, indicating that internalization is an energy-dependent 

process, consistent with the literature.  There was a statistically significant reduction of 

uptake by approximately 40% in cytoD-treated cells compared to the control cells. It is 

noticeable that the MIL-100(Fe)-Cy5 with cytochalasin D demonstrated a much higher 

fluorescent signal than the non-treated control group. This enhanced fluorescent signal 

from MIL-100(Fe)-Cy5 group could be the experimental artifact.  Therefore, the 

internalization of MIL-100(Fe) particles in 3D4/21 cells was further observed under 

microscopy. From transmitted light images (Fig 2.15), both types of MOFs in the absence 

of inhibitors accumulated within cells (black arrowheads), whereas particles in the 

presence of cytochalasin D stayed in extracellular space (black arrows). The images 

obtained by microscopy did not support the data from flow cytometry. 

Interestingly, the cells treated with chlorpromazine (clathrin-mediated endocytosis 

inhibitor) showed that the uptake of non-mannosylated particles remained approximately 

the same as that of the control, whereas the uptake slightly increased in mannosylated 
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MOF particles. Clathrin-mediated endocytosis had no contribution to MOFs uptake in 

AMs. Based on the above results, the internalization of MOF particles is predominated by 

micropinocytosis/phagocytosis.  

 

Figure 2.14 Inhibitory study of endocytic pathways of MOF particles in 3D4/21 cells. 

Data are shown as means ± SEM, *p < 0.05, **p < 0.01, ***p < 0.001 (one-way ANOVA 

followed by Dunnett test). Each measurement was carried out in quadruplicate; over 

10,000 events were gated per one measurement. 
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Figure 2.15 Inhibitory effect of cytochalasin D on uptake of MIL-88A(Fe)-Cy5 and 

MIL-88A(Fe)-Cy5-Man in 3D4/21 cells. A large number of particles accumulated in 

extracellular space with pretreated cytochalasin D for 30 min (Black arrows).  

2.3.6 Intracellular colocalization  

To investigate the fate of the endocytosed MOF particles, 3D4/21 cells were incubated 

with MIL-88A(Fe)-Cy5-Man or MIL-100(Fe)-Cy5-Man particles for 5 h and then stained 

with a lysosome marker (LysoTracker Green DND-26 dye). As shown in Fig 2.16, the 

colocalization between particles and LysoTracker was observed at perinuclear region 

(Mander’s coefficients between Cy5/LysoTracker channels were 0.68 ± 0.12 and 0.81 ± 

0.08 for MIL-88A(Fe)-Cy5-Man and MIL-100(Fe)-Cy5-Man, respectively), represented 

by yellow color in merged images (white arrows).  After endocytosis, the vesicles 

containing particles will progressively acidify. The high level of colocalization of 

mannosylated MIL-100(Fe) and MIL-88A(Fe) with acidic organelles indicates MOFs 
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were prone to accumulate in acidic compartments (such as early endosomes, phagosomes, 

and phagolysosomes) after entering macrophages. There was no significant difference 

between these types of MOFs.  Degradation in acidic compartments is undesirable for 

most drug delivery systems, and many MOF-based delivery systems are designed to 

escape lysosomes to prevent the premature release of cargos [267] or acidic degradation 

of MOF structures [265, 266, 268]. These MOF properties may be advantageous in 

infectious disease applications since a large number of intracellular pathogens have been 

found to reside in the acidic niche via diverse mechanisms [269, 270]. 

Figure 2.16 Intracellular localization of fluorescent, mannosylated MIL-88A(Fe) and 

MIL-100(Fe) nanoparticles in 3D4/21 cells. Incubation of cells with mannosylated Cy5-

labeled MOFs (red) after 5 hours resulted in their accumulation (white arrows) in acidic 

compartments stained with LysoTracker Green (green). Staining with Hoechst 33342 

determines nuclei of 3D4/21 cells (blue). Scale bars are 10 µm. 
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2.4 Conclusions  

In this chapter, fluorescently labeled carboxylate MIL-88A(Fe) and MIL-100(Fe) 

particles were successfully synthesized and modified with mannose via amine-carboxylic 

acid coupling reaction to study their potential in applications as “pathogen-like” particle 

drug delivery systems for infectious diseases. The internalization kinetics, endocytosis 

pathway, and intracellular fate of mannosylated and non-mannosylated MOFs were 

conducted in 3D4/21 swine alveolar macrophages. The data show that MIL-100(Fe) 

nanoparticles were internalized faster and higher compared to MIL-88A(Fe) 

microparticles. However, the mannosylation did not increase MIL-100(Fe) cellular 

uptake further. By contrast, rod-shaped MIL-88A(Fe) particles exhibited a slower kinetic 

profile and less cellular uptake, likely due to its micro-scale size, but uptake was 

increased significantly with mannosylation.  Micropinocytosis/phagocytosis was the 

major endocytic pathway involved in MOF particle uptake. Endocytosed particles 

accumulate in acidic compartments where many pathogens are known to reside and 

survive, indicating the opportunity to deliver therapeutic agents in the pathogen proximity. 

Cellular uptake highly depends on the size, shape, and surface functionality of particles. 

The choice of particles with different physicochemical properties needs to be based on 

biological application. 
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Chapter 3 Development of M.tb mimicking MIL-88A(Fe) for TB 

3.1 Introduction  

Currently, the effective treatment for TB is a 6-month regimen of 4 first-line antibiotics. 

For people with drug-susceptible TB, this treatment had a success rate of at least 85%, as 

reported by WHO[2]. However, the lengthy duration of treatment, improper use, and poor 

patient compliance has led to drug-resistant M.tb strains. Multidrug-resistant TB (MDR-

TB) remains a public health threat. It is estimated that half a million new cases have 

resistance to the most effective first-line antibiotic, 78% resistant to multiple 

antibiotics[2]. The treatment of MDR-TB requires a longer time and more complicated 

drugs, which are more expensive and less effective. The treatment success rate for MDR-

TB was 57% globally[2]. Therefore, improved therapeutic approaches are highly needed 

to avoid drug resistance.  

The host-directed therapy (HDT) is a new and emerging approach in TB treatment, which 

is intended to directly enhance the host’s innate response to TB infection rather than 

targeting the bacterium itself. The potential HDT strategies against M.tb include targeting 

granuloma structure, inducing macrophage autophagy, optimizing inflammatory response, 

modulation of immune function, or enhancing the cell-mediated immune response[271]. 

The current HDT has focused on using repurposed drugs to improve the treatment 

outcomes of drug-resistant TB. Metformin (MET) is a well-known drug for type 2 

diabetes. Many clinical studies have reported the potential role of MET as an adjuvant 

agent against TB with promising outcomes, such as less pulmonary cavitation, protection 

against reactivation of latent infection to active diseases, decreased mortality, and 

relapse[108, 272-274].  
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Biomimetic microparticles that mimic M.tb may enhance recognition and uptake by 

alveolar macrophages. These particles could have similar cellular trafficking as M.tb, 

further modulating host responses to promote bacteria killing. The use of a biomimetic 

microparticle host-directed therapy to target the infected cells could be effective against 

M.tb infection and overcome the emergence of drug resistance. Bacterial- and viral-

derived biomimetic particles have been widely used in cancer, vaccines, and 

immunotherapies[171, 275-278]. Those particles can be pathogen responsive and host-

directed, which improves therapeutic efficacy. However, biomimetic approaches are 

relatively unexplored for TB treatment. This chapter aims to develop biomimetic particles 

as HDT drug delivery systems for TB.  MOFs as anti-TB drug delivery systems have 

been reported in Fe-based[141, 279], Zn-based[143], and Cu-based MOFs[144], but none 

of them was a biomimetic delivery system.  

The MIL-88A(Fe) was selected to use in biomimetic microparticles HDT approach for 

TB due to their non-toxic components (fumaric acid and Fe (III)), similar size and shape 

as M.tb, and surface carboxylic acid amiable to conjugation. MOFs were coated with 

lipids, including mycolic acids (MAs), a predominant M.tb cell wall component. MAs are 

long 2-alkyl 3-hydroxyl fatty acids, typically 60-90 carbon atoms in length. MAs, known 

to be potent immunomodulators, are critical for the virulence of M.tb[280]. The M.tb 

lipid -MAs were incorporated into the surface lipid coating of MIL-88A(Fe) to mimic the 

cell membrane of M.tb. The M.tb-mimetic particles are expected to have alveolar 

macrophage specificity. These novel microparticles that were used as the M.tb-mimicking 

drug delivery system to target macrophages may create a more effective localized 

treatment that can prevent or reduce drug-resistance TB. 
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3.2 Materials and methods  

3.2.1 Cell culture 

3D4/21 swine alveolar macrophages (ATCC, CRL-2843) were cultured in RPMI 1640 

medium containing 2 mM L-glutamine and supplemented with 10 mM HEPES, 1.0 mM 

sodium pyruvate (Gibco), 1% PenStrep, 90% 0.1 mM nonessential amino acids (Gibco), 

and 10% fetal bovine serum (FBS; Corning). A549 human lung carcinoma cells 

(ATCC, CCL-185) were cultured in DMEM/F12 growth medium (Corning) 

supplemented with 10 % FBS. Cells were grown in a humidified atmosphere of 5% 

CO2 at 37°С.  

3.2.2 Synthesis of MIL-88A(Fe) 

MIL-88A(Fe) was prepared using the same method as described in Chapter 2, Section 

2.2.1.2.  All studies in this chapter were conducted using the new batch of MIL-88A(Fe). 

3.2.3 Characterization of MIL-88A 

The new batch of MIL-88A(Fe) was characterized by the following methods as described 

previously in Section 2.2.2: 

• Fourier Transform Infrared Spectroscopy (FT-IR) 

• Thermogravimetric analysis (TGA) 

• Dynamic Light Scatting (DLS) 

• Scanning Electron Microscopy (SEM)  

3.2.3.1 Stability  

Extracellular stability:  
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The stability of MIL-88A(Fe) particles was investigated in different biological media by 

assessing the disassociated iron using a colorimetric method[281]. MIL-88A(Fe) particles 

were added to PBS, RPMI 1640 medium (containing 2 mM L-glutamine and 

supplemented with 10 mM HEPES, 1.0 mM sodium pyruvate, 90% 0.1 mM nonessential 

amino acids, and 10% fetal bovine serum), and Middlebrook 7H9 medium with 10% 

OADC to achieve 1 mg∙mL-1. After incubated with biological media for 2h,6h,12h, 24h, 

3 days, and 7 days, samples were centrifuged at 20,000×g for 20 min. 10 µL of 

supernatant from each sample was taken for iron detection.  

Intracellular stability:  

The sample preparation method was based on previously published protocol[282]. 

3D4/21 cells and A549 cells were seeded in 24-well plates at a density of 100 000 cells 

per well 48 h prior to the addition of MOFs. MIL88A(Fe) particles were added to the 

cells at a final concentration of 10 μg∙mL–1. After incubation for 8, 18, and 24 h, cell 

medium from each well was collected in 2 mL microcentrifuge tubes. Then cells were 

lysed by 0.5% Triton X-100 in deionized water, and lysates were transferred to the 

corresponding microcentrifuge tubes with medium from the same well. The samples were 

centrifuged at 20 000g for 10 min to remove free soluble iron or iron bound with soluble 

proteins. The pellet was washed twice with deionized water and collected each time by 

centrifugation. After the last washing and removing of supernatant, 100 μL of 100 mM 

sodium citrate (pH 5.5) was added into each tube to destroy MOFs. Samples were 

centrifuged again to precipitate the cell debris. As for 0h time point sample (consider as 

100% MOF-associated iron), 10 μg∙mL–1 MOF particles were added into 1mL cell 

medium followed by centrifugation and three times washing. This step is to eliminate the 
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impact of particle loss during the sample preparation. Without the same treatment for the 

0 h sample, the degradation might be overestimated.  

In a well of 96-well plate, 10 μL of a sample (or standard) was mixed with 75 μL of 1 M 

acetic buffer (pH 4.5) with 120 mM of thiourea (Sigma, St. Louis, MO), and 25 μL of a 

solution containing 240 mM ascorbic acid (ACROS Organics, NJ), 3 mM Ferene S 

(Sigma, St. Louis, MO), and 120 mM of thiourea.  Iron (III) chloride hexahydrate (Fisher) 

was used as standard. The concentration of 0.01,0.025,0.05,0.075,0.1,0.5,1,2 mM per 

well were prepared for calibration plot. The optical density measurement at 595 nm was 

performed using Synergy H4 Multi-Mode Microplate Reader (Bio-Tek, Winooski, VT) 

after 1 h upon mixing the reagents. 

3.2.4 Development of lipid-coated MIL-88A(Fe) 

3.2.4.1 DPGG modification of MIL-88A(Fe)  

The surface modification of MIL-88A(Fe) particles was based on coordination with 

phenolic lipid by a phase transfer process[283]. Briefly, MOF particles were dispersed in 

water (1 mg∙mL-1) and then added to a CHCl3 solution of 1,2-dipalmitoyl-sn-glycero-3-

galloyl (DPGG; 1mg∙mL-1; Avanti Polar Lipids).  After stirring the suspension for 30 min, 

ethanol was added to break the emulsion. Finally, the DPGG-modified MIL-88A(Fe) 

particles were collected by centrifugation and washed with ethanol three times.  

3.2.4.2 Mycolic acid on DPGG-modified MIL-88A(Fe) 

Due to mycolic acid (MA) high cost, it was omitted from the lipid coating optimization 

process. MA was only added into the formulation until the ideal coating was achieved. 

DPGG- modified MIL-88A(Fe) particles were coated with phosphocholine (PC) and 

cholesterol(Chol) using the solvent-spherule evaporation method with modification[284]. 
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In brief, 1 mL of a 0.15 M sucrose solution was mixed with 1 mL of chloroform 

containing PC and Chol (3:2 molar ration; 10µ mol total lipid) and 1-2 mg of DPGG-

MIL-88A(Fe) by vertexing for 1 min. For mycolic acid-DPGG-MIL-88A(Fe), 5% and 10% 

of total lipids were substituted with mycolic acid (Sigma). Next, 0.5 mL of diethyl ether 

containing the same lipids as above was mixed with 2.5 mL of a 0.2 M sucrose solution.  

The resulting water-in-chloroform emulsion was mixed with diethyl ether-in-water 

emulsion by vertexing for 1 min and then added into the round bottom flask linked to the 

rotary evaporator. The organic solvents were evaporated under vacuum evaporation for 

2h at the temperature of 55 °С.  The bilayer lipid coated particles were centrifuged twice 

with water at 600 g for 10 min. To separate the coated from non-coated MIL-88A(Fe), 

discontinuous sucrose density gradient centrifugation was used. The sucrose column was 

prepared by adding 60% and 120% sucrose in an ultracentrifuge tube (Beckman). 1mL 

mixture was placed on the top of the gradient and then centrifuged for 1 h at 20,000 g in 

an ultracentrifuge.  Free lipids remained on the top. The sample was then washed with 

water 3 times to remove sucrose. 

3.2.5 Characterization of lipid-coated MIL-88A(Fe) 

3.2.5.1 Zeta-potential measurements  

The zeta-potentials of MIL-88A(Fe) and lipid-coated MIL-88A(Fe) were determined 

using Zetasizer, Nano-ZS (Malvern). Before analysis, particles were suspended in 

distilled water at 50µg∙mL-1 and sonicated under ultrasound for 10 min.  All analyses 

were carried out in triplicate. 
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3.2.5.2 Transmission electron microscope (TEM) 

The morphology of samples was characterized using a JEM-2100Plus transmission 

electron microscope (JEOL, Japan) operating at an accelerating voltage of 200 kV. 

Particles dispersed in water were deposited on a 200-mesh copper grid with carbon film 

(Electron Microscopy Science) and dried in air. Images were taken by Gatan 832 CCD 

camera. 

3.2.5.3 Energy-dispersive X-ray spectroscopy (EDX) 

The samples' chemical characterization and elementary analysis were investigated using a 

scanning transmission electron microscope equipped with an energy-dispersive X-ray 

spectroscopy (EDX) detector (X-MaxN, Oxford Instruments) at an accelerating voltage of 

200 Kv. 

3.2.5.4 TGA 

Thermogravimetric measurements were performed on a thermogravimetric analyzer 

(Perkin Elmer Diamond TGA/DTA STA 6000). 2-3 mg samples were heated from room 

temperature to 500 °C with an oxygen flow of 200 ml/min.  

3.2.5.5 Cytotoxicity study  

Cytotoxicity of lipid-coated MIL-88A(Fe) was evaluated by MTT assay. 3D4/21 cells 

were seeded on 96-well plates at an initial density of 5000 cells/well and cultured 

overnight. Cells were treated with varying concentrations (1,10, 25, 50,100,250, and 500 

µg∙mL-1) of lipid-coated MIL-88A(Fe) particles for 24 h to determine the cytotoxicity. 

(MTT-assay, see chapter two, section 2.2.6) 
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3.2.6 Metformin loaded MIL-88A(Fe) 

3.2.6.1 Solubility of metformin  

To identify the solvent in which metformin hydrochloride (MP Biomedicals) was the 

least soluble for maximum precipitation yield, 5 mg drug was dissolved in the following 

solvents (500 µL): DMSO, tetrahydrofuran (THF), acetonitrile (ACN), acetone, 

dimethylformamide (DMF), methanol, isopropanol (IPA), propanol. The solubility was 

determined by HPLC. 

3.2.6.2 Encapsulation method  

Metformin and MIL-88A(Fe) were dispersed in 1mL ethanol followed by stirring for 12 

h. Next, the mixture was added into 15 mL organic solvent (with lowest metformin 

solubility) dropwise under constant stirring speed (500 rpm) at room temperature. The 

sample was collected by centrifugation at 20,000×g for 10 min. Prior to lyophilization, 

the sample was quickly washed with water to remove the free drug absorbed on the 

surface of particles. To determine the drug loading, metformin encapsulated MOF 

particles were destroyed by incubation in 100 mM citrate buffer (pH 5.5) at 40°C for 24 h 

to release all the drugs.   

3.2.6.3 Quantification of metformin by high-performance liquid chromatography 

(HPLC) 

Quantification of encapsulated metformin was performed by HPLC (Agilent Technology 

1220 Infinity LC, Germany) coupled with a UV Detector and software. The analysis was 

carried out on a reversed-phase C18 column (250nm × 4.6mm, 5.0µm) using a mobile 

phase consisted of acetonitrile-aqueous phase (20 mM K2HPO4, adjusted to pH 2.8 using 
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H3PO4) (10:90, v/v) at the UV detection of 232 nm. The flow rate was 1mL∙min-1, and the 

injection volume was 20 µL.  

Metformin hydrochloride (Met∙HCL; salt form) stock solution of 1000 µg∙ mL-1 was 

made in triplicate. The standard solutions of 50,25,20,15,10,5,1 µg∙ mL-1 were diluted 

from the stock using water. The calculated concentration of the metformin (Met; free 

base) was obtained by the following equation: 

Concentration (Met)= Concentration (Met∙HCL) × Conversion factor (F) 

F=
���
�����  
!"	� �# #�

 $��


���
�����  
!"	� �# ����
=

%&'.%) "∙���+,

%)-.)& "∙���+,= 0.78 

                                                                                                                   Equation 3.1 

3.2.7 Bacteria culture 

3.2.7.1 Bacteria strain and growth condition  

Mycobacterium. Avium subsp. avium (ATCC,25291) was cultured in Middlebrook 7H9 

medium (Sigma-Aldrich,) supplemented with 10%(v/v) OADC (oleic acid, albumin, 

dextrose, catalase; Sigma-Aldrich,) and 0.5% glycerol(v/v) at 37 °C with 5% CO2. 

Bacteria were grown for 2 weeks until OD600nm reached the log phase. To make 

bacterial stock, 500µL of bacterial suspension was dispensed into a 2 mL cryovial, and 

500µL of 50% glycerol was added.  

3.2.7.2 Growth profile  

A 100 µL aliquot of bacterial stock was inoculated in 10 mL of Middlebrook 7H9 

medium with 10% OADC. The bacterial culture was incubated in constant shaking at 

200rpm to avoid clump formation. The optical density (OD600) of 1mL bacterial 
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suspension was measured every day for 21 days using Bio-photometer (Eppendorf).  The 

bacterial suspension was streak onto an M7H10 OADC media agar plate to determine the 

colony-forming units per mL by serial dilution. 

3.2.7.3 Acid fast staining (Ziehl Neelsen) 

One colony of M.avium was mixed with one drop of water and smeared onto a slide. 

After air drying, the slide was placed on a hot plate to fix the bacteria. 1% carbol-fuchsin 

dye was added, and the slide was left on a hot plate for 5 min. The slide was rinsed with 

water until the solution became clear and then washed with 1% acid alcohol for 20 sec. 

After rinsing again with water, 0.1% methylene blue (counterstain) was added for 1 min. 

The slide was rinsed with water and left to air dry before checking under a microscope.  

3.2.8 M.avium lipid extraction and analysis 

3.2.8.1 Method  

Mycolic acid extraction is based on a procedure described by Butler and Kilburn[285]. 

Briefly, bacteria were harvested by centrifugation at 2000 g for 20 min. 2 mL of 

saponification reagent (25% KOH in 50% ethanol) was added to the bacteria pellet. 

Saponification of bacteria was performed by autoclaving for 1 h at 121°C.  50% HCL was 

added to acidified when the temperature cooled to room temperature. The mycolic acids 

were extracted by adding 2 mL chloroform and vigorously shaking. Then the mixture was 

centrifugated for 5 min to assist separation of the chloroform layer. Finally, the lower 

organic layer was collected and evaporated to dryness.  
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3.2.8.2 Thin-layer chromatography (TLC) 

TLC was performed using silica gel 60 F254 TLC aluminum sheets (Merck). The mobile 

phase was 100% chloroform. TLC chamber was filled with the mobile phase to 1 

centimeter of the bottom, saturating the tank for 15 min.  

3.2.8.3 Fourier Transform Infrared Spectroscopy (FT-IR) 

The chemical structures of mycolic acid standard (from Mycobacterium tuberculosis 

(bovine strain); Sigma-Aldrich) and extracted lipids were characterized by Nicolet 380 

FT-IR spectrometer (Thermo Scientific Corporation). The sample was placed on a 

diamond crystal plate at room temperature. Each spectrum was scanned in the spectral 

region of 4000–500 cm−1.  

3.2.9 M.avium fluorescent labeling  

3.2.9.1 Method 

Biorthogonal ligation with alkyne-functionalized dye was used to label the azide-

modified trehalose analogs of glycolipids of M.avium[286]. 1 mL frozen bacteria stock 

was inoculated into 50 mL Middlebrook 7H9 medium with OADC and 5% glycerol. The 

culture was incubated at 37°С with shaking until reaching the log phase and diluted to the 

desired density (OD600~0.5) to start the experiment. Bacteria were seeded in a 96-well 

plate. Next, 6-azide-trehalose (TreAZ; Click Chemistry Tools) was added at a final 

concentration of 25,50,100 or 250µM at a volume of 200 µL. To prevent evaporation and 

clumping during the incubation period, 200 µL of water was added to all outer-perimeter 

wells of 96-well plate, and each well was resuspended every 24h. The plate was 

incubated for 3-5 days until OD600 reached ~0.8-1.0. Next, the plate was centrifuged and 

washed three times with PBSB (PBS 1X with 0.5 % bovine serum albumin). Next, cells 
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were incubated with alkyne-functionalized Alexa Fluor 488(Click Chemistry Tools; 1:1000 

dilution of 1 mM stock solution in DMSO into PBSB; volume 150 μL) for 30 min. After the 

incubation period, bacteria were centrifugated at 4 °C and washed with PBSB three times. 

Next, bacteria were fixed with 200 µL of 4% paraformaldehyde in PBS for 1h, followed 

by final washing with PBS two times.  Samples were readied for analysis by flow cytometry 

and microscopy. 

4.2.9.2 Flow cytometry  

The fluorescence intensity of bacteria treated with different concentrations of TreAZ was 

measured by flow cytometry. Flow cytometry was conducted on a BD Accuri™ C6 Plus 

flow cytometer (BD Biosciences) equipped with a 488-nm argon laser. 100,000 cells were 

collected for each sample, and samples were prepared in quadruplicate. The fluorescence 

data were processed using FlowJo v10.7.1  

4.2.9.3 Fluorescence microscopy  

Bacteria were air-dried and mounted on a slide with a coverslip. Microscopy was 

performed on a BZ-X800 All-in-One fluorescence microscope equipped with a × 60/1.4 

NA Plan-Apochromat oil immersion objective lens, and the channel imaged were bright-

field and GFP. 

3.2.10 MIL-88A(Fe) on the impact on M.avium growth 

M.avium was cultivated in the flask with gentle agitation until an OD600 of ~0.5 was 

obtained. Bacteria suspension was adjusted to have an OD600 of 0.02. 100µL of bacterial 

dilution was added to each well of a 96-well plate. MIL-88A(Fe) and FeCl3∙6H2O were 

dispersed in water and added into each well with finial concentrations of 1, 10, and 

100µg∙mL-1. The plate was incubated at 37°С for 24h and 72h. Bacteria from three 



83 
 

parallel wells of each concentration at specified time points and appropriate serial 10-fold 

dilutions were seeded on Middlebrook 7H10 agar plates. The plates were incubated for 

two weeks.  

3.2.11 Cell uptake  

3.2.11.1 cell uptake kinetics in non-infected macrophages 

3D4/21 cells were seeded in 24-well plates at a density of 6 × 104 cells/well and cultured 

for 48 h. 1) MIL-88A(Fe)-Cy5(12 μg∙ mL−1) and lipid-coated MIL-88A(Fe)-Cy5(50 

μg∙ mL−1); 2) lipid-, 5% MA-, 10% MA-, 5% extracted lipid- MIL-88A(Fe)-Cy5 particles 

(20 μg ∙mL−1), were added into 3D4/21 cells. After incubation of MOFs for 2 h, 5 h, 8 h, 

12 h, and 18 h, the growth medium was removed, and cells were washed with HBSS. 

Cells were dispersed with 75 μL per well of 0.25% trypsin in 37°С incubator for 15 min, 

suspended in 500 μL Versene solution per well and collected in 2.0 mL microcentrifuge 

tubes. Following centrifugation at 500×g for 30 s, cells were resuspended in 300 μL of 

Versene solution containing 1 μg mL−1 propidium iodide to differentiate live and dead 

cells. The intensity of nanoparticles internalized by cells was measured using a BD 

Accuri™ C6 Plus flow cytometer (BD Biosciences) equipped with a 640 laser in 625-

675 nm channel. Over 10,000 events were gated per sample. Samples were prepared in 

quadruplicate. 

3.2.11.2 Mechanism of endocytosis pathway 

3D4/21 cells were seeded in 24-well plates at a density of 6 × 104 cells/well and cultured 

for 48 h. Cells were pretreated with 5 μM cytochalasin D, 1 μM filipin III, 10 μM 

chlorpromazine, or 50 mM sodium azide for 30 min prior to the addition of MOF 

particles.  After incubation of MOFs for 8 h, the growth medium was removed, and cells 
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were washed with HBSS. Sample preparation, flow cytometry, and data collection 

followed the same procedure as described in Section 3.2.11.1.  

3.3 Results and discussion  

3.3.1 Synthesis and characterization of MIL-88A(Fe) 

The new batch MIL-88A(Fe) particles were successfully synthesized and characterized 

by dynamic light scattering (DLS), infrared spectroscopy (IR), thermogravimetric 

analysis (TGA), and scanning electron microscopy (SEM) using Zetasizer, Nano-ZS 

(Malvern), Fourier-transform infrared spectrometer (Nicolet iS50), Perkin Elmer 

Diamond TGA/DTA STA6000 thermogravimetric analyzer and JEOL JSM-7100F 

microscope. Figure 3.1 depicts the FTIR spectrum of MIL-88A(Fe) and its linker, 

fumaric acid. The bands at 1390 cm-1and 1601 cm-1 in MIL-88A(Fe) can be attributed to 

the symmetric and asymmetric vibration of the carboxyl group, respectively, indicating 

the successful coordination of iron ions and fumaric acid. The TGA analysis was shown 

in Fig 3.2. Two-stage weight loss was observed: the first stage (<100 °С) can be 

attributed to water loss. The second weight loss was between 250 °С to 350 °С, 

indicating the decomposition of the MOFs. SEM images show that the obtained MIL-

88A(Fe) particles have spindle-shaped with a diameter of 0.6±0.1µm and length of 

2.6±0.2 µm (Fig 3.3). The zeta potential of MIL-88A(Fe) was 22.1±3.36 mV (Fig 3.4).  

All the physicochemical characterization confirms the success of synthesizing MIL-

88A(Fe) particles congruent with characteristics of previous batches.  
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Figure 3.1 FT-IR spectrum of MIL-88A(Fe) and fumaric acid. 

 

Figure 3.2 The TGA curve of MIL-88A(Fe). 



86 
 

 

Figure 3.3 The SEM images of MIL-88A(Fe) under the magnifications of (a)5k x; (b)15k 

x;(c)35k x. 
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Figure 3.4 The zeta potential distribution of MIL-88A (Fe). 

The extracellular stability of MIL-88A(Fe) was carried out in 3 different biological media, 

namely PBS, 3D4/21 cell medium, and bacteria medium for mycobacteria, for different 

periods. The protocol developed in our lab enables the complete elimination of soluble 

and protein-associated iron[282]. Therefore, only the MOF-associated iron (not degraded 

fraction) was measured by the colorimetric assay. As shown in Fig 3.5, MIL-88A(Fe) 

was very stable in PBS for up to a week. However, MIL-88A(Fe) started to degrade after 

72 h in cell medium with about a 15% decrease of MIL-88A(Fe)-associated iron at the 

end of the incubation period. The rate of MIL-88A(Fe) degradation was much higher in 

the bacteria medium. 30% of MOF-associated iron was detected within 6 h, and nearly 

half of the particles degraded after a week. Bacterial medium-7H9 broth contains sodium 

citrate and ferric ammonium citrate. 100 mM sodium citrate was used for the 

decomposition of MOF[282]. The citrate ions, which have a more robust interaction with 

Fe3+ compared to fumaric acid, substituted the linkers, leading to the decomposition of 

MIL-88A(Fe).  The intracellular stability of MIL-88A(Fe) was conducted in both 3D4/21 
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alveolar macrophages and A549 alveolar basal epithelial cells. The degradation kinetics 

in Fig 3.6 shows MIL-88A(Fe) particles had an initial degradation of 17% within 8h, 

followed by a slight decomposition in the following 10 h. Then they remained relatively 

stable until 24h post-exposure to 3D4/21 cells.  In A549 cells, particles experienced a 

gradual degradation trend with nearly 40% the particles degraded after 24 h incubation. 

Slower degradation in macrophages compared to epithelial cells leads to more prolonged 

exposure of particles to targeted macrophages, indicating the potential use of MIL-

88A(Fe) in controlled released drug delivery for intramacrophagic infection diseases.  

 

 

 

 



89 
 

 

Figure 3.5 The degradation profile of MIL-88A(Fe) in PBS, cell medium, and bacteria 

medium at different time points. Data are shown as mean ± SEM. Each measurement was 

carried out in triplicate. 

 

 

 

 

 

 

 



90 
 

 

Figure 3.6 Intracellular degradation of MIL-88A(Fe) in 3D4/21cells and A549 cells at 

different time points. Data are shown as mean ± SEM. Each measurement was carried out 

in a quadruplicate.  

3.3.2 Development and characterization of lipid-coated MIL-88A 

Lipid-coated MIL-88A(Fe) particles have been reported previously as a drug delivery 

system in chemotherapy[287, 288]. The lipid coating act as a temporary shell for 

encapsulated drugs, allowing efficient drug loading and control of release.  Wuttke et al. 

reported that MOF nanoparticles, MIL-88A(Fe) and MIL-101(Cr), can efficiently load 

with dye molecules while the lipid bilayers coated on MOFs prevent their premature 

release[289].  Ploetz et al. showed that the lipid coating on MIL-100(Fe) nanoparticles 

controlled iron delivery to induce pyroptosis in cancer cells[290]. However, there is little 

study about using lipid-coated MOF for biomimetic applications.  

Studies above used a controlled solvent exchange method to deposit the lipid onto the 

MOF surface[291]. Briefly, lipids and MOFs are dispersed in a solvent that is completely 



91 
 

miscible with water, such as ethanol and isopropanol. Thus, as water content drastically 

increases, lipids that are not soluble in water start to adhere to the surface of the particles. 

However, this widely used method is not applicable in our case. First, mycolic acid, 

which contains between 60 and 90 carbon atoms, is very hydrophobic. It can dissolve in 

chloroform, but chloroform is immiscible with water. Second, MIL-88A(Fe) size in those 

studies was about 100 nm, much smaller than the one we used (3 µm in length). Zhu et al. 

described a novel strategy for providing MOFs with versatile surface functionalization 

through direct metal coordination with a phenolic lipid using a phase transfer process(Fig 

3.7b)[283].  The galloyl head group of phenolic lipids, DPGG (Fig 3.7a), has substantial 

interaction with the activated metal-binding sites of the surface on MOFs, allowing rapid 

lipid coating without disrupting the integrity of MOF structure. In MIL-88A(Fe) structure, 

there are three binding sites between Fe (III) and phenol groups, resulting in mono-, bis-, 

and tris-complex.  
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Figure 3.7 (a) Chemical structure of DPGG lipid; (b) Scheme of the surface 

functionalization of MOF particles by a phase transfer reaction. Adapted from reference 

[283]. 

 

The next step is to fuse a second functional layer onto DPGG-modified MOF cores to 

form a MOF-supported hybrid bilayer. As the solvent exchange deposition method is not 

suitable in our case, the thin-film hydration method for the preparation of liposomes was 

utilized experimentally. Mycolic acid was not included in the trials due to the high cost. 

First, DPGG-MOFs, phosphatidylcholines (PC), and cholesterol (Chol) were thoroughly 

mixed in the chloroform. Next, the organic solvent was evaporated to form a thin film 

using a rotary evaporator, followed by hydration to form hybrid liposomes. However, by 

vigorous agitating, the thin lipid film was still hardly suspended in the aqueous medium. 

After extensive bath sonication, hydrated lipid suspension was formed.  Figure 3.8 shows 

that the mixed MOF-lipids suspension had a broad range of size distribution. The first 
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part could be excessive lipids vesicles(I), while the second part might be lipid-coated 

MOFs.  

 

Figure 3.8 Size distribution of MOF-lipid suspension using a hydration thin film.  

 

Antimisiaris et al. described using giant liposomes (~5.5 m) as vaccines carriers to 

incorporate particulate antigen, Mycobacterium Bovis bacillus Calmette-

Guérin (BCG)[284].  Since MIL-88A(Fe) particles exhibit a similar size and shape as 

bacilli, the strategy of formulating the bacteria-containing liposomes with minor 

modification could be applied to develop the lipid-coated bacteria-mimicking MOFs. The 

first trial followed the methodology described in Antimisiaris et al. paper. In brief, 1mL 

of a 0.15M sucrose solution containing MIL-88A(Fe) was mixed with 1mL chloroform 

containing PC and Chol. This water in chloroform emulsion was remixed with diethyl 

ether in water emulsion prepared from 0.5 mL diethyl ether containing the same lipids 

mixed with a 2.5mL of 0.2M sucrose solution. The emulsion was placed in a shaking 
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incubator at 37°C with flushing nitrogen to evaporate organic solvent. Generated 

liposomes were centrifuged twice over 5% glucose solution, collected, resuspended in 

water for TEM analysis.  

Figure 3.9 Representative TEM images of lipid-coated MIL-88A(Fe) in trial one. 

 

We found many particles have a thin layer lipid coating like the top two images in Fig 3.9, 

with zeta potential near neutral, indicating the surface coating. We also observed many 

crystal structures on the surface of lipid-coated particles, which could be excessively used 

sugar molecules in the preparation.  

Next, instead of adding MIL-88A(Fe), DPGG-MIL-88A(Fe) was added in 1mL 

chloroform containing other lipids. The same procedure was followed, but the 

formulation was washed with water to remove sugar crystals. As shown in Fig 3.10, most 
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particles were not covered with crystals; therefore, washing with water could help 

remove crystals’ precipitation on the particles. Particles also exhibited a thicker and more 

coverage lipid coating than the previous batch. Compared to pure MIL-88A(Fe), DPGG-

MIL-88A(Fe) has a hydrophobic shell that could facilitate the secondary lipid interaction.  

 

Figure 3.10 Representative TEM images of lipid-coated MIL-88A(Fe) in trial two. 

In the third trial, we modified the process using a rotary evaporator to remove the organic 

solvent. In liposome preparation, the lipid film is formed after drying out the solvent. 

Interestingly, the initial emulation became viscous and gel-like as time increased under 

the rotary-evaporator, eventually turning into the aqueous solution (Fig 3.11a). To 

separation of the lipid-coated MOFs from the empty lipid vesicles, sucrose gradient 
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fractionation was used. The mixture was placed on the top of the gradient for 

ultracentrifugation. The separation of the particles and lipid components was shown in 

Fig 3.11b. The top layer (yellow arrow), purple-grey, could contain PC, DPGG, and 

DPGG-Fe3+ complex. The Fe3+ ion with a phenolic group will give a violet, purple, or 

red-brown color depending on the pH and ratio of Fe3+ ion to phenolic group[283]. The 

resulting lipid-coated MIL-88A(Fe) particles were shown in Fig 3.12. 

Figure 3.11 The transition from gel to an aqueous solution. 

 

The TEM images confirm the presence of lipid on the MOFs particles. Bright fields 

usually indicate the lipid content, whereas MOFs are in the dark fields due to high 

electron density. We found that most of the particles had a relatively uniform and clear 

coating. The zeta potential of lipid-coated MIL-88A(Fe) was -22.8 ± 9.59 mV. The 

change in surface charge from positive to negative also indicates the successful lipid 

coating. The TGA curve shows that lipid-coated particles were more stable between 20°C 

to 200°C compared to bare particles and then exhibited a gradual weight loss step up to 

500°C (Fig 3.13). In comparison, the bare particles started to degrade at 250°C 

drastically. The potential toxicity of lipid-coated particles was evaluated on 3D4/21 cells 
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using MTT assay.  It is shown in Fig 3.14 that lipid-coated particles were non-toxic up to 

100 μg ∙mL−1 with approximately 85% viability, which is similar to the bare particles 

(See 

Fig 2.1 c in Chapter two). Based on the MTT assay result, the IC50 of the lipid-coated 

particles was around 500 μg ∙mL−1. 

 

Figure 3.12 Representative TEM images of lipid-coated MIL-88A(Fe) in trial three. 
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Figure 3.13 The TGA curve of MIL-88A(Fe) and lipid-coated MIL-88A(Fe). 

 

Figure 3.14 MTT assay of 3D4/21 cell viability after 24 h exposure to lipid-coated MIL-

88A(Fe). Data are given as means±SD. 
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3.3.3 Metformin loaded MIL-88A(Fe) 

Metformin (MET) is the most used drug for type 2 diabetes mellitus (DM). Many groups 

have reported the potential of using MET as host-directed therapy for TB[108, 274, 292]. 

Singhal et al. concluded that in vitro MET controlled the growth of drug-resistant M.tb by 

inducing mitochondrial reactive oxygen species(ROS) and increased acidification of 

phagosomes which also facilitated phagosome-lysosome fusion[108]. In their M.tb 

infected mouse model, MET improved the efficacy of conventional anti-TB drugs, 

reduced tissues pathology and inflammatory responses, and enhanced the host immune 

responses. Lachmandas et al. investigated both in vitro and in vivo effects of metformin 

in humans [293]. MET was demonstrated to ameliorate the pathological inflammatory 

responses and enhance antimycobacterial activity.  Degner et al. reported that MET 

significantly decreased mortality among patients with or without DM during TB 

treatment[274].  Many experimental and clinical studies suggest MET is a promising 

candidate HDT drug for improved TB treatment outcomes. In addition, MET is a 

commonly used drug and cheap, which is the advantage as most TB cases are in third-

world counties. Therefore, MET was selected as an HDT drug for this study.  

A few studies have been found using MOFs as a MET delivery system. Vahed et al. 

demonstrated a novel MET-MIL-100(Fe) system in which MET was combined with Fe3+ 

and trimesic acid as an organic linker[294]. Particles were further loaded with MET by 

incubation in the drug solution. The same group developed alginate-coated zeolitic 

imidazolate MOF(ZIF-8) as a MET carrier for controlled release[295]. Sethuraman et al. 

developed zinc-based MOF(ZIF-8) to load MET for pH-sensitive release for lung cancer 

treatment[296].  
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The Nanoprecipitation method was adapted to encapsulate MET. In brief, MIL-88A(Fe) 

was incubated in MET EtOH solution overnight. Then, the suspension was added into an 

organic solvent (miscible with H20) in which MET has the lowest solubility to ensure a 

high drug loading. The solubility of MET in different solvents was determined by HPLC 

and calculated from the standard curve in Fig 3.15.  The results show that MET has the 

lowest solubility in THF (practically insoluble).  To determine the drug loading, MET-

MIL-88A(Fe) particles were first destroyed, and the encapsulated drug was analyzed by 

HPLC. The drug loading (DL) from those three samples was 12.78%, 12.42%, and 12.33% 

(Table I).  The novel MET-MIL-100(Fe) system mentioned above can reach a DL of 

35%. Wang et al. reported that the DL of MET-chitosan nanoparticles was 37.3 ± 

3.6%[297]. The loading capacity of MET-MIL-88A(Fe) was still considerably high 

compared to alginate nanoparticles (3.12%), solid lipid nanoparticles (<1%), and 

chitosan-PLGA nanoparticles (~1%) [298-300].  Although MET has shown a lot of 

promising results in vitro, it is not very potent. Rodriguez-Carlos et al. showed that at 

least 2mM MET could significantly reduce bacillary loads in macrophages and lung 

epithelial cells[301]. Theoretically, if 100 µg∙mL-1 of particles (safe concentration 

determined by MTT assay) were given to the cells, to have the same effect as 2 mM free 

MET, 77.4% drug loading would be required. In our case, MET-MIL-88A(Fe) particles 

would be coated with bacterial lipids, which may play a role in recognition and immune 

response so that the dose of MET could be lower. Another concern is drug loss during the 

lipid coating process. From TEM/EDX image (Fig 3.16), iron-based MOF was coated 

with lipids(carbon). A sufficient nitrogen element was still not overlapped with carbon 

shown in the element mapping of the lipid-coated particle. However, EDX is not as 
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sensitive as XPS analysis. XPS is especially sensitive to light elements such as C, N, and 

O[302].  

 

Figure 3.15 Standard curve of MET used for HPLC method. 

 

 Table 3.1 Drug loading of MET-MIL-88A(Fe). 

mg I II III 

MET-MIL-88A(Fe) 2.38 2.45 2.34 

MET 0.3042 0.3042 0.2886 

DL% 12.78% 12.42% 12.33% 
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Figure 3.16 (a) TEM image of lipid-coated MIL-88A(Fe) particles; (b)Element mapping 

of metformin-loaded particles. Fe (III) indicated in yellow, carbon in red, and nitrogen in 

blue. 

3.3.4 Bacterial lipid extraction and labeling 

Mycobacterium avium is the non-tuberculosis mycobacterial species frequently found in 

animals and humans [303]. It is also known as one of the species of M.avium 

complex(MAC), which is the most common deadly pathogens in people with HIV 

infection[304]. M. avium is classified into four subspecies, M. avium subsp. avium, M. 

avium subsp. silvaticum, M. avium subsp. paratuberculosis, and M. 

avium subsp. hominissuis.  

M. avium subsp. avium (MAA) was used in this dissertation study as a surrogate for 

Mycobacterium. tuberculosis (MTB). MAA and MTB are pathogens that infect and 

replicate inside macrophages. They both have adapted themselves to survive in the 

phagosomes that fail to fuse with lysosomes. However, MAA primarily causes a 

tuberculosis-like disease in birds[305]. It can also infect domestic animals, like cattle, 

swine, sheep, etc. However, it is rarely found in humans[306]. The spread of MAA is 
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thought to be caused by ingestion of poultry and/or soil contaminated with MAA 

excreted in the feces of sick birds[303].  MAA, which is considered a lower risk 

opportunistic pathogen, can be maintained in Biosafety level 2 laboratories, whereas M.tb 

requires a biosafety level 3(BSL-3)facility. M.avium is also a slow-growing and rod-

shaped bacterium. The morphology of M.avium colonies is rough opaque with pale-

yellow color and irregular shape(Fig 3.17b). The mid-log phase was between OD600 

0.5~1(Fig 3.18). 

Figure 3.17 (a)Acid-fast stain of M.avium; (b) M.avium colonies on 7H10 agar plate. 
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Figure 3.18 The growth curve of M.avium in 7H9 medium. 

Mycolic acids (MA) are long-chain 2-alkyl-branched, 3-hydroxyl fatty acids, the primary 

cell wall component of M.tb, constituting approximately 40-60% by weight cell envelope. 

Members of the genus mycobacterium can be characterized using acid-fast staining due 

to this waxy MA layer. MA-containing bacteria can retain coloration (red; Fig 3.17a) 

with carbol fuchsin, whereas the other bacteria will be decolorized and take the 

counterstain. MA can either be trehalose 6,6-dimycolate (TDM; cord factor) or other 

glycolipid forms. MA is also believed to play a significant role in the virulence of the 

M.tb[307, 308]. It has been reported that TDM can bind to mincle receptors on 

macrophages[75]. MA can be presented via CD1b molecules on dendritic cells to T-cells 

which are cytotoxic and produce proinflammatory cytokines IFN- γ and TNF- α [309, 

310]. Coating MA on MOFs to have bacteria-like particles may mimic certain features of 

M.tb infection, especially interaction of MA with macrophages. However, the cost of 

commercial MA is very high. We decided to extract lipids from the lab-cultured bacteria. 



105 
 

The TLC plate shows that the extracted lipids (ELs) contain several compounds. The top 

band, which was the same level as standard mycolic acid (highlighted in red box), 

indicates the success of MA extraction from M.avium(Fig 3.19a).  The IR spectrums of 

S-AM and P-MA are presented in Fig 3.19b. The purified MA exhibited similar peaks as 

the commercial one, with only 1683.7cm-1 peak missing (highlighted by yellow).  This 

difference could be due to the two different strains (M.tb vs M.avium). IR by itself is not 

100% reliable. More studies need to be done to confirm the structure of extracted MA 

further.  

To visualize particles, the Cy5 dye was linked on the surface of MOFs. However, during 

the coating process, the outer layer of MOFs may disassociate from the framework. The 

purple color on the top in Fig 3.11b indicates the existence of the Fe3+- phenolic group 

complex. Meanwhile, the dyes which were conjugated with the linkers may also be lost. 

Therefore, instead of fluorescent label the MOFs, we labeled the cell-surface glycolipids 

of bacteria which can be extracted and coated on the particles later. M.avium was treated 

with azide-modified trehalose (TreAZ). Trehalose is present as a free disaccharide in the 

cytoplasm. It combines with MA to form trehalose monomycolate (TMM), which is the 

precursor to trehalose dimycolate (TDM) TMM, translocated across the plasma 

membrane, bound to another molecule mycolate to become TDM. Those trehalose-

containing glycolipids reside in the outer membrane, which then was tagged by alkyne-

functionalized dye(alk-AF488). Analysis by flow cytometry indicates that TreAZ was 

labeled on M.avium, and fluorescent intensity increased as TreAZ concentrations 

increased(Fig 3.20). Even the lowest concentration, 25 µM, was sufficient and 

significantly higher than the control group. Fluorescence microscopy was used to 
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visualize TreAZ M.avium. Bacteria were fixed and reacted with alk-AF488. In Fig 3.21, 

fluorescence was observed uniformly throughout the bacterial population. Therefore, we 

can potentially form alkyne functionalized fluorescent lipid-coated particles by extracting 

those TreAZ-labeled glycolipids and introducing them in the lipid layer. 

 

Figure 3.19 (a)TLC profile of extracted lipids from M.avium. (b) FT-IR spectrum of MA 

and P-MA. S-MA: standard mycolic acid from M.tb(bovine strain; Sigma-Aldrich); P-

AM: purified mycolic acid from M.avium; Els: extracted lipids from M.avium. 
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Figure 3.20 Flow cytometry analysis of different concentrations of TreAz-labeled M. 

avium (a) Fluorescence intensity of the labeled-M. avium distributions; (b) Quantified 

mean fluorescence intensity. 

 

 

Figure 3.21 Fluorescence microscopy of TreAz-labeled M. avium reacted with alk-

AF488; Scale bars, 5 µm. 
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3.3.4 Impact of MIL-88A(Fe) on M. avium growth 

Iron is an essential nutrient for nearly all organisms. It is a cofactor for many enzymes of 

important metabolic functions. M.tb has evolved strategies to compete for iron in the host 

and establish an infection. M.tb secretes siderophores with a high affinity for iron (III) 

can take iron from the host proteins. It has been shown that excessive iron load could 

enhance the growth of M.tb in the mouse model and the risk of active TB in humans.[311, 

312]. On the other hand, iron is a key component of the Fenton reaction, generating ROS 

that can kill the bacteria[313]. Ameral et al. described the regulated necrosis in M.tb 

infection as ferroptosis triggered by iron overload[314].  Excessive iron induces lipid 

peroxidation, resulting in plasma membrane disruption. The Gpx4 enzyme can generally 

remove those lipid peroxides. However, the overloaded iron can inhibit Gpx4 expression 

and/or activity.  

The impact of iron-based MOFs with different concentrations on the bacteria growth was 

investigated using a colony-forming assay. Treated with MIL-88A(Fe), MIL-100(Fe), 

and FeCl3 for 1 and 3 days, M.avium was then plated on the 7H10 agar plate in the 

incubator at 37°С. FeCl3 was used to provide free iron. Also, both MIL-88A(Fe) and 

MIL-100(Fe) were made of FeCl3 and their corresponding linkers. The results are shown 

in Fig 3.22.  For the short exposure, the colony numbers of MOF treated groups were not 

significantly higher or lower than that of the control. Interestingly, a higher number of 

colonies was observed in the medium concentration FeCl3 treatment (highlighted by 

yellow), whereas the high and low concentrations did not show much difference. It seems 

that a specific concentration of iron is favorable for bacterial growth. In three-day 

incubation, low- and medium concentrations of MOF had comparable colony number as 



109 
 

the control. The high MOF concentration treated groups had more colonies than the 

control but varied in each group as SD were considerably high. This is likely due to the 

increased free iron from MOF degradation. Based on the results in Fig 3.5, about 20% of 

MIL-88A(Fe) degraded after three days. However, FeCl3 experienced a decreased trend 

in colony number as concentration increased, starting from much higher colonies to 

slightly shorter than the control group. Both iron concentration and exposure time play a 

role in bacteria growth. Although iron-based MOFs did not show any intrinsic 

antimycobacterial activity, they still have the potential to deliver TB treatment as no 

significant increase in bacteria growth using MOFs. The lipid coating may retard the 

dissociation of iron from MOFs.  

 

Figure 3.22 The number of colony-forming units of M.avium with different treatment. 
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3.3.5 Effects of the coating on macrophage uptake 

In chapter two, the inhibition study showed that the major endocytic pathway of MIL-

88A(Fe)-Cy5 internalized by alveolar macrophages was phagocytosis. The same 

experiment was conducted on lipid-coated MIL-88A(Fe)-Cy5 particles to investigate if 

the coating would impact the endocytosis mechanism. Cells were pretreated with 

chlorpromazine (clathrin-dependent inhibitor), filipin III (caveolae-dependent inhibitor), 

cytochalasin D (phagocytosis inhibitor), and sodium azide (ATPase inhibitor) prior to 

incubation with MOF particles. Flow cytometry was used to quantify the number of 

MOFs being internalized in macrophages. As shown in Fig 3.23, a significant decrease of 

uptake was showed in the groups treated with sodium azide and cytochalasin D. This 

suggests that energy-dependent endocytosis-phagocytosis is the main uptake pathway of 

lipid-coated MOFs.  The lipid coating did not change the mechanism of macrophage 

uptake.  

To compare the uptake of non-coated and coated MOFs, the amount of MOF particles 

expressing the same fluorescent signal (MIL-88A(Fe)-Cy5(12 μg∙ mL−1) and lipid-coated 

MIL-88A(Fe)-Cy5(50 μg∙ mL−1)) were given to cells at different time points. Fig 3.24 

shows that the lipid coating did not increase MIL-88A(Fe) uptake by macrophages. 

Instead, the uptake of non-coated particles was significantly higher than coated ones. The 

lipid mixture did not contain M.tb-specific lipids or macrophage targeting ligands. In 

addition, the positively charged bare-MIL-88A(Fe) could have a more robust interaction 

with the cell membrane than negatively charged coated particles. The other two lipid-

coated MIL-88A(Fe) studies did not conduct cell uptake for coated and non-coated 

particles[287, 288]. However, one group that developed lipid-coated MIL-100(Fe) (Lip-
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MOF) did investigate the impact of lipid coating on uptake by comparing the uptake at 

37°С and 4°С in Hela cells[290]. They found out the Lip-MOF showed a significant 

reduction in uptake at 4°С, whereas the uptake of uncoated MOF was not significantly 

decreased at reduced temperature.  Nevertheless, there was no evidence showing that the 

uptake of Lip-MOF was significantly higher than uncoated MOF.  

Next, we evaluated cell uptake for more M.tb specific lipid-coated MIL-88A(Fe) 

formulations. MA and self-extracted lipids were included in the coating. Korf et al. 

incorporated purified MA from the cell wall of M.tb into liposomes[315]. These MA-

liposomes were phagocytosed by peritoneal macrophages and elicited innate immune 

responses. Lemmer et al. developed MA-PLAG nanoparticles via a double emulsion 

solvent evaporation method[212]. The inclusion of MA into PLGA significantly 

increased phagocytic uptake of nanoparticles by macrophages. As shown in Fig 3.25, 

MA-containing lipid-coated groups exhibited a slightly higher uptake than the control, 

and a higher percentage of MA also induced higher uptake during the period (not 

significantly). Of note, lipid-coated MIL-88A(Fe) containing extracted lipids from 

M.avium induced a significant greater cell uptake. In the extracted lipids, besides MA, 

there are many other lipids or components from cell wall components which could be 

involved and contribute to cell recognition and uptake process. 
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Figure 3.23 Inhibitory study of endocytic pathways of lipid coated MIL-88A(Fe)-Cy5 in 

3D4/21 cells. Data are shown as means ± SEM, ***p < 0.001 (one-way ANOVA 

followed by Dunnett test). 

 

Figure 3.24 Cellular uptake of MIL-88A(Fe) and lipid-coated MIL-88A (Fe) particles by 

3D4/21 swine alveolar macrophages. 
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Figure 3.25 Cellular uptake of different lipid-coated MIL-88A(Fe) by 3D4/21 swine 

alveolar macrophages. X: extracted lipids from M.avium; MA: mycolic acid from Sigma-

Aldrich. Data are shown as means ± SEM, ***p < 0.001 (one-way ANOVA followed by 

Dunnett test). 

3.4 Conclusions 

In this chapter, the M.tb-mimicking drug delivery system for TB infection was developed 

by mimicking the shape, size, and cell membrane of M.tb. The synthesized MIL-88A(Fe) 

particles were rod-shaped and positively charged with the size of (2.6±0.2) × (0.6±0.1) 

μm. MIL-88A(Fe) particles were stable in PBS and cell medium for over a week, 

whereas nearly half of particles decomposed in bacteria medium. MOFs did not have 

intrinsic bacterial killing activity in the extracellular study. MIL-88A(Fe) was coated with 

lipids, including DPGG, PC, Chol, and MA, to mimic the cell wall of M.tb. The coating 

involved two steps: 1) direct coordination of phenolic lipids (DPGG) on the surface of 

particles to provide a platform for secondary coating; 2) hydrophobic interaction of other 
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lipids with DPGG-coated particles. TEM-EDX and negatively surface charge confirmed 

the successful coating of lipids on MOFs. 

MET as a model HDT agent was encapsulated via the modified nanoprecipitation method. 

Drug loading analyzed by HPLC was 12%. EDX confirmed the existence of the drug in 

biomimetic MIL-88A(Fe) particles after the coating process. TLC and IR determined 

extracted lipids from M.avium. Visualized by fluorescence microscopy, the azide-

modified trehalose analogs of M. avium labeled with alkyne-functionalized dye were 

confirmed. The internalization mechanisms and cell uptake kinetics of the bacteria-

mimetic particles were studied in the non-infected alveolar macrophage cell model. 

Increased cell uptake was observed in particles with M.tb specific lipids. The group using 

extracted lipids from M.avium exhibited considerably higher uptake compared to the 

groups treated with lipid-coated particles with commercial MA and the control group. 

Phagocytosis was still the major endocytic pathway involved in the internalization of 

lipid-coated particles. Overall, lipid-coated MIL-88A(Fe) with bacterial lipids, which are 

designed to mimic the physical and biological features of M.tb, is a promising candidate 

to target the macrophages to deliver HDT in TB infection.  
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Chapter 4 Curdlan- MIL-100 nanoparticles for TB 

4.1 Introduction  

In recent years, the appreciation of host-directed therapy using immunomodulators to 

achieve better control of TB has considerably increased[130, 316-318]. M.tb, 

phagocytized by macrophages, can reside and replicate in the phagosomes of 

macrophages. The infected macrophages trigger the release of pro-inflammatory 

cytokines and chemokines, which help to activate the T cell responses. Therefore, 

delivering the immunomodulatory signal to the infected cells may stimulate the immune 

system, particularly macrophages, to kill intracellular bacteria through self-defense 

mechanisms.  

Curdlan, a bacterial polysaccharide (β-1,3 glucan) produced by  Rhizobium, 

Agrobacterium, and Alcaligenes faecalis, possesses anti-tumor, anti-inflammatory, anti-

infective, and immunomodulatory properties[319-322]. Curdlan can be recognized by the 

dectin-1 receptor expressed on dendritic cells and macrophages[323, 324]. Therefore, 

many studies used curdlan as ligands in the targeting delivery system[321, 325, 326]. 

Dectin-1 signal contributes to various cellular activities, including phagocytosis, 

regulation of the expression of inflammatory cytokines, and modulation of host immune 

responses[327]. Lee et al. showed activation of Dectin-1increased ROS production, pro-

inflammatory cytokines, and antimicrobial activities against intracellular M.tb growth in 

A549 cells[328].   

Dude et al. previously described immunomodulatory nanoparticles for infectious 

diseases[329]. This multimodal nanoparticle composed of curdlan adsorbed on the 

surface of a chitosan shell and PLGA Core could stimulate pro-inflammatory cytokine 
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and intracellular reactive oxygen and nitrogen species (ROS/RNS) in the alveolar like 

macrophages. The same group later reported that curdlan-conjugated PLGA 

nanoparticles(C-PLGA-NPs)were non-toxic to cells, enhanced ROS/RNS production, 

toxic to intracellular pathogens, and functioned as a sustained anti-TB drug release 

system[330]. Basha et al. demonstrated dual anti-TB drugs complexed with cyclodextrin 

and conjugated to curdlan nanoparticles to target infected macrophages[321].  

Several studies have reported using MIL-100(Fe) as anti-TB drug delivery systems. Iron-

based MOF, MIL-100 (Fe), has been reported as an isoniazid(INH) delivery system with 

a good controlled-release profile[141]. Another example described the MIL-100(Fe) on 

3D porous diatoms as carriers for INH exhibiting the drug release up to 23 days[331]. 

Panda et al. investigated the effects of structural parameters (pore volume and surface 

area) of MIL-100(Fe) on the loading of the anti-TB drug, Rifampicin[332].  

This chapter aims to investigate the method to incorporate curdlan onto the MIL-100(Fe) 

nanoparticles, which could further function as an immunomodulating anti-TB drug 

delivery system. 

4.2 Material and methods 

4.2.1 Synthesis and characterization of MIL-100(Fe) 

In this chapter, MIL-100(Fe) was used the same batch synthesized by a microwave-

assisted solvothermal method (See Chapter 2, Section 2.2.1.1). Characterization of MIL-

100(Fe) was completed in Chapter 2.  
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4.2.2 Stability of MIL-100(Fe) 

4.2.2.1 Extracellular stability of MIL-100(Fe) 

The stability of MIL-100(Fe) particles was determined in different biological media by 

assessing the disassociated iron using a colorimetric method[281]. MIL-100(Fe) particles 

(1 mg∙mL-1) were incubated in PBS, cell medium, and bacteria medium for 2h,6h,12h, 

24h, 3 days, and 7 days. Samples were centrifuged at 20,000×g for 20 min.  

In a well of 96-well plate, 10 μL of a sample or FeCl3 standard solutions 

(0.1,0.15,0.3,0.5,0.75,1,1.5, 2 mM) were mixed with 75 μL of 1 M acetic buffer (pH 4.5) 

with 120 mM of thiourea (Sigma), and 25 μL of a solution containing 240 mM ascorbic 

acid (ACROS Organics), 3 mM Ferene S (Sigma), and 120 mM of thiourea. The optical 

density measurement at 595 nm was performed using Synergy H4 Multi-Mode 

Microplate Reader (Bio-Tek, Winooski, VT) after 1 h upon mixing the reagents. 

4.2.2.2 Intracellular stability of MIL-100(Fe) 

The intracellular stability of MIL-100(Fe) was evaluated on 3D4/21 cells and A549 cells. 

10 μg∙mL–1 of particles were incubated in the cells for 8, 18, and 24 h. The sample 

preparation method was based on previously published protocol[282]. Details were 

described in Chapter 3, Section 3.2.3.1. Iron detection followed the same procedure 

described above.  

4.2.3 Cell culture 

3D4/21 swine alveolar macrophages (ATCC, CRL-2843) were cultured in RPMI 1640 

medium containing 2 mM L-glutamine and supplemented with 10 mM HEPES, 1.0 mM 

sodium pyruvate (Gibco), 1% PenStrep, 90% 0.1 mM nonessential amino acids (Gibco), 

and 10% fetal bovine serum (FBS; Corning). 
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4.2.4 Development of curdlan-conjugated MIL-100(Fe) particles 

The procedure for conjugation of curdlan to carboxylated MIL-100(Fe)(MIL-100(Fe)-

COOH) was adopted from Tukulula et al. [330]. 5mg curdlan (Sigma) was suspended in 

1mL anhydrous DMF (Fisher) and heated at 60°C under N2 atmosphere until dissolution. 

MIL-100(Fe)-COOH (10 mg) and NHS (~5 mg; Thermo Scientific) was stirred in water 

(1 mL). EDC.HCl (~3mg; Thermo Scientific) and DIEA (5µL; ACROS Organics) were 

added and then reacted for 2 h. Then the curdlan-DMF solution was added to the 1 mL 

EDC-activated MIL-100(Fe-COOH solution and the resultant mixture was further stirred 

at room temperature for 48 h. After this time, the solvent was removed under 

centrifugation at 10,000 g for 10 min, and particles were washed successively with water 

to remove the carbodiimide chemistry byproduct. The resulting curdlan-conjugated MIL-

100(Fe) conjugate was then obtained lyophilized.  

4.2.5 Characterization of curdlan-conjugated MIL-100(Fe) 

4.2.5.1 Fourier transform infrared spectroscopy (FT-IR) 

The structural characterization of curdlan-conjugated MIL-100(Fe) was conducted on 

Nicolet 380 FT-IR spectrometer (Thermo Scientific Corporation). The sample was placed 

on a diamond crystal plate at room temperature. Each spectrum was scanned in the 

spectral region of 4000–500 cm−1.  

4.2.5.2 Quantification of curdlan  

The fluorescence dye-binding micro-assay was used for curdlan quantification [333]. 

Sample (~1 mg) was prepared from destroying curdlan-conjugated particles in100mM 

citrate buffer. The curdlan standard solutions or samples were prepared in 1 N NaOH.  30 

µL of 6N NaOH was added into 300 µL of standard, incubating at 80 °С for 30 min. A 
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630 L dye of aniline blue mix was added. The mix was prepared with 40 volumes of 0.1% 

aniline blue in water, 21 volumes of 1 N HCl, and 59 volumes of 1 M glycine/NaOH 

buffer, pH 9.5.  

4.2.6 Curdlan-coated MIL-100(Fe) particles  

Curdlan-MIL-100(Fe) particles were prepared by co-precipitation method adapted from 

Basha. R.Y, et al.[321]. 20 mg MIL-100(Fe) and 1 mg curdlan were added in 2 mL 

formic acid (Fisher Scientific). Curdlan and MIL-100(Fe) were mixed thoroughly under 

bath sonication for 10 mins. The mixture was then added dropwise to 20 mL water 

containing 1% pluronic F-127 (Sigma) under probe sonication. Curdlan-MIL-100(Fe) 

particles were precipitated due to the solvent change. The particles were washed with 

ethanol twice and water three times and lyophilized. 

4.2.7 Degradation of curdlan  

According to a previous study, the degradation of curdlan was prepared by hydrolysis 

using hydrogen peroxide under modified conditions [334]. Curdlan (Sigma) was 

dissolved in 2 N, NaOH in a concentration of 2%(w/v). H2O2 (30% wt, ACROS Organics) 

was added, and the reaction was kept in a water bath at 65 °C for 40 min. To precipitate 

the hydrolysates, the equal volume of 2N, HCL was added into the mixture. The resulting 

flocculation was centrifuged, washed with water three times to remove the salts, and 

lyophilized. The degradation process was repeated followed the same process above.  
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4.2.8 Characterization of digested curdlan  

4.2.8.1 Fourier Transform Infrared Spectroscopy (FT-IR) 

The structural characterization of breakdown curdlan was conducted on Nicolet 380 FT-

IR spectrometer (Thermo Scientific). Sample (curdlan and breakdown curdlan) was 

placed on a diamond crystal plate at room temperature. Each spectrum was scanned in the 

spectral region of 4000–500 cm−1.  

4.2.8.2 13C and 1H nuclear magnetic resonance  

Curdlan and breakdown curdlan were analyzed by 13C and 1H NMR using a Bruker 

Avance 600MHz solutions spectrometer (Bruker Instruments, Inc.). Samples were 

dissolved in d6-dimethyl sulfoxide (d6-DMSO, Sigma).  

4.2.8.3 Water dispersion of curdlan and digested curdlan 

1 mg curdlan and digested curdlan were added into small glass vials containing 10 mL 

water. The suspensions were bath-sonicated for 10 mins. The water dispersion of curdlan 

and its breakdown were observed.  

4.2.9 Characterization of curdlan-coated MIL-100(Fe) 

4.2.9.1 Dynamic light scattering (DLS) 

The size and zeta-potentials of Curdlan-coated MIL-100(Fe) were determined using 

Zetasizer, Nano-ZS (Malvern). Prior to analysis, particles were suspended in distilled 

water at 50µg∙mL-1 and sonicated under ultrasound for 10 min.   

4.2.9.2 Scanning electron microscopy (SEM) 

The morphology of the lyophilized curdlan-coated MIL-100(Fe) and MIL-100(Fe) 

particles was examined on Hitachi S-3400 scanning electron microscope (Hitachi, Japan) 
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at an accelerating voltage of 5 keV. Samples were placed onto aluminum specimen stubs 

and then sputter-coated with gold prior to imaging.  

4.2.9.3 Differential scanning calorimetry (DSC) 

Thermal properties of samples were characterized by the differential scanning calorimeter 

(DSC-Q2000, TA Instruments-Waters LLC) under N2 atmosphere.  Curdlan, digested, 

curdlan-MIL-100(Fe), and MIL-100(Fe) were accurately weighed and added into sliver 

pans. Samples were heated at a rate of 5 °C / min from 20 °C to 400 °C. 

4.2.9.4 Intracellular stability  

The stability of curdlan-coated MIL-100(Fe) in 3D4/21 cells was also determined to 

compare with non-coated MIL-100(Fe). The procedure was described in Chapter 3, 

Section 3.2.3.1. 

4.3 Results and discussion  

4.3.1 Stability of MIL-100(Fe) 

MIL-100(Fe) stability was evaluated in PBS, 3D4/21 cell medium, and 7H9 bacteria 

medium. Samples from different time points were collected and analyzed. The 

colorimetric assay was used to determine the disassociated iron in the medium[281].  The 

result is shown in Fig 4.1. MIL-100(Fe) was very stable in PBS and cell medium for up 

to a week. However, Horcajada et al. reported that MIL-100(Fe) nanoparticles undergo a 

progressive degradation in PBS[137]. 14% of the total amount of the organic linkers in 

particles was disassociated from MIL-100(Fe) after 5 days. Then particles had a drastic 

58% degradation after 7days.  
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MIL-100(Fe) in bacteria medium exhibited a gradual degradation with about 40% loss of 

total iron weight in particles, similarly, observed in MIL-88A(Fe). Sodium citrate and 

ferric ammonium citrate in bacterial medium-7H9 broth are excellent chelating agents. 

These salts’ interaction with the MOFs slowly replaces the carboxylate linkers to form a 

citrate-Fe3+ complex, leading to the progressive degradation of the MOFs.  

 

Figure 4.1 The degradation profile of MIL-100(Fe) in PBS, cell medium, and bacteria 

medium at different time points. Data are shown as mean ± SEM. Each measurement was 

carried out in triplicate. 

4.3.2 Development and characterization of curdlan-conjugated MIL-100(Fe) 

The curdlan-conjugated MIL-100(Fe)was carried out through carbodiimide chemistry, 

EDC/NHS-mediated ester formation. The carboxyl groups of MIL-100(Fe) were 

activated by the addition of EDC and NHS and then reacted with the functional hydroxyls 

on the curdlan. Tukulula et al. demonstrated the conjugation of curdlan on PLGA with -
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COOH terminal and the use of the synthesized copolymers in nanoparticles 

formulation[330]. Lehtovaara et al. described the synthesis of curdlan-graft-

poly(ethylene glycol)(PEG)copolymers through carboxylated PEG to the hydroxyl 

groups of the curdlan backbone[335]. The IR spectrum shows that the product shared 

~1600 cm-1(-C O), ~1380 cm-1(-C-O) with MIL-100(Fe), and ~1000 cm-1 (C–O–C) 

with curdlan (Fig 4.2). However, IR cannot confirm the successful conjugation but can 

confirm the presence of curdlan in MIL-100(Fe).  

Next, a fluorescent dye, aniline blue, was used to label 1,3-β-glucan. Curdlan and 

other1,3-β-glucan form right-handed triple helices[336]. Then treatment of the triple-

helix glucans with NaOH produces single-helix conformers, preferentially reacting with 

aniline blue in solution[337]. The stable bound form of aniline blue-curdlan complexes 

exhibits fluorescence. The equation from the standard curve of curdlan is 

Y=0.8803x+4.6094. The amount of curdlan was 1.6% (curdlan/ formulated particles, 

w/w). Another issue according to this method is the solubility of curdlan in DMF. Even 

with the addition of DMSO in DMF with heating, it cannot completely dissolve curdlan. 

Therefore, large particles were observed after resuspending into the water, which could 

be due to the undissolved curdlan attached to particles interacting with other particles 

(Data are not shown).  
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Figure 4.2 The FT-IR spectrum of the curdlan, MIL-100(Fe), and curdlan-conjugated 

MIL-100(Fe).  

4.3.3 Degradation and characterization of curdlan 

Curdlan is a linear chain homopolymer of d-glucose linked β-(1 → 3). Curdlan is 

insoluble in water due to the extensive intra/intermolecular hydrogen bonds, but it can 

dissolve in alkaline, acidic, and dimethyl sulfoxide (DMSO). Therefore, 

nanoprecipitation could be used to prepare curdlan-coated nanoparticles. First, the natural 

curdlan and MIL-100(Fe) (1:10 w/w) were dissolved in formic acid with vortex. They 

were added under probe sonication to water containing 1% pluronic F-127, which serves 

as a stabilizer of particles, resulting in the stable single-particle suspension. Changing the 

solvent led to the precipitation of curdlan on nanoparticles. However, a large number of 

aggregates were observed (Fig 4.3a) after resuspending the curdlan-coated MIL-100(Fe) 

into the water. The size distribution of particles was presented in Fig 4.3b. The z-average 
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was 2921 nm, whereas the size of MIL-100(Fe) was 300 nm. The long linear chain of 

curdlan on particles interacts with other chains through hydrogen bonds, forming 

aggregations. Next, a shorter and more water-soluble curdlan was prepared by hydrogen 

peroxide degradation. In Fig 4.4, the natural curdlan is not water-soluble, with many 

large flakes floating.  After curdlan experienced the first degradation, the water 

dispersion of curdlan improved, the size of aggregates decreased significantly. After 

being hydrolyzed twice with H2O2, curdlan was well dispersed in the water.  

 

Figure 4.3 (a)Curdan-MIL-100(Fe) in water before and after vertex; (b) size distribution 

of curdlan-MIL-100(Fe). 
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Figure 4.4 Water dispersion of curdlan and once- and twice-digested curdlan. DC: 

digested curdlan. 

The FT-IR and NMR were carried out to determine the chemical structure of curdlan and 

its digested products. Ideally, this procedure only changes the molecular weight of 

curdlan and will not create new functional groups. Alternat ion of curdlan structure may 

affect its biological activities. The FT-IR spectrum shows peaks across three samples at 

~3300 cm-1(-OH), ∼1400 cm−1 (symmetrical deformation of –CH3 and –CH2), and 

∼1035 cm−1 (stretching vibration of the C–O–C in glucose circle) (Fig 4.5). No 

distinctive peak was shown up in the degradation products. However, Wu et al. reported 

hydrolysates of curdlan using H2O2 exhibited the new bands at ~1720 cm-1 indicated to 

the carboxylic group[334].  
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Figure 4.5 FT-IR spectrum of the curdlan and once- and twice digested curdlan.  

The NMR fingerprint of the original curdlan correlated with the literature[330, 335]. 6 

carbon positions in curdlan backbone rings can be seen as separately distinct peaks. 

Compared to the 13C-NMR spectrum of curdlan, there is no new peak in the digested 

curdlan (Fig 4.6). It is indicated that the digested curdlan still maintains the same carbon 

backbone as the original curdlan. The 1H-NMR spectrum reveals no new peaks, and the 

chemical shifts are the same in both original and digested curdlan (Fig 4.7).  Overall, 

using the H2O2 treatment with optimized conditions to prepare a water-soluble low 

molecular weight curdlan would not alter its chemical structure. 
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Figure 4.6 The 13C NMR spectrum of Curdlan and digested Curdlan in d6-DMSO. 

 

Figure 4.7 The 1H NMR spectrum of Curdlan and digested Curdlan in d6-DMSO. 

4.3.4 Characterization of curdlan-coated MIL-100 (Fe) 

As the structure of the digested curdlan was verified, instead of using the original water-

insoluble curdlan, the digested curdlan was used to prepare curdlan-coated MIL-100(Fe). 

The size of curdlan-coated MIL-100(Fe) measured by DLS was about 2µm (Fig 4.8). 

However, the size of non-coated MIL-100(Fe) was 300nm (Chapter two, Fig 2.7a). SEM 

images show no significant morphological changes before and after the curdlan coating 

(Fig 4.9). The increase in the hydrodynamic size of curdlan-coated particles suggests the 

presence of an external hydration sheath due to the curdlan coating.  
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To confirm the interactions between curdlan and MIL-100(Fe), DSC was performed for 

curdlan, digested curdlan, MIL-100(Fe), and curdlan-MIL-100(Fe). As shown in Fig 4.10, 

MIL-100(Fe) exhibits two sharp endothermic peaks (melting peaks) at 354 °C and 374 °C 

indicating the two crystalline structure forms of MIL-100(Fe). Curdlan-coated MIL-

100(Fe) also had two endothermic peaks, with one peak shifting to 225 °C. This indicates 

the curdlan interacted with MIL-100(Fe) surface, leading to the change in its thermal 

properties. Curdlan and digested curdlan did not reveal any distinctive peaks in the 

temperature range. The intracellular stability of curdlan-coated MIL-100(Fe) was 

conducted in 3D4/21 cells for 24 h period. The evaluation of MOF stability was followed 

by quantifying the accumulative release of the iron.  The curdlan coating conferred 

enhanced stability. The degradation profile in Fig 4.11 shows curdlan-coated MIL-

100(Fe) had 16% of the total amount of iron in the particles releases, whereas bare MIL-

100(Fe) lost 32%. Based on DSC and stability study, we can confirm the curdlan was 

coated on the surface of MIL-100(Fe).  

Figure 4.8 The size distribution of MIL-100(Fe). 
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Figure 4.9 The SEM images of (a) MIL-100(Fe) and (b)curdlan-coated MIL-100(Fe) 

under the magnification of 5k and 10k. 
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Figure 4.10 The DSC curve of Curdlan, digested curdlan, MIL-100(Fe), and curdlan-

coated MIL-100(Fe).  

 

 



132 
 

 

Figure 4.11 Intracellular degradation of MIL-100(Fe) and Cur- MIL-100(Fe) in 

3D4/21cells at different time points. Data are shown as mean ± SEM. Each measurement 

was carried out in a quadruplicate. Cur- MIL-100(Fe): Curdlan-coated MIL-100(Fe). 

4.4 Conclusions  

In this chapter, two methods of preparing MOF particles with curdlan were explored. The 

success of the conjugation method needs to be studied in more detail. However, the 

water-soluble issues retard this method moving forward. We developed curdlan-coated 

MIL-100(Fe) using nanoprecipitation, which was adopted from preparing curdlan 

nanoparticles. In order to solve the water dispersion issues with the curdlan, we 

successfully digested the curdlan into short chains using the hydrogen peroxide method. 

The FTIR and NMR spectrums can confirm that this degradation approach did not disrupt 

the chemical structure of curdlan. There were no significant morphology changes in 

coated-MIL-100(Fe) from SEM images. The endothermic peak shifted in curdlan-coated 
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MIL-100(Fe) compared to the meting peak in MIL-100(Fe), indicating the surface 

interaction between curdlan and MIL-100(Fe). The curdlan coating improved the stability 

of MOFs as the release of iron decreased in coated particles. The curdlan-coated MIL-

100(Fe) could be potential immunomodulating particles whose biological activities need 

to be carried out in the future.  
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Chapter 5 Conclusions and Future directions 

5.1 Conclusions  

Tuberculosis (TB) is the world’s leading infectious disease caused by Mycobacterium 

tuberculosis which most commonly affects the lungs. Although TB is preventable and 

curable, approximately 10 million people fall ill every year, and 1.5 million people die 

from TB. Current standardized treatment regimens are very lengthy, including 3 to 6 

drugs for at least 6 months. This prolonged anti-TB therapy leads to patient nonadherence 

and the ongoing emergence of drug-resistant - M.tb strains. There is a great need for new 

treatment approaches.  

The principal objective in this work was to engineer the particles that mimic 

physicochemical and biological properties of bacteria, resulting in enhance recognition 

and uptake by macrophages. One promising approach is host-directed therapies (HDTs) 

to enhance the host immune responses to kill the bacteria rather than targeting the 

bacterium itself; therefore, drug resistance could be avoided. Chapter 2 was the proof-of-

concept for developing general “pathogen-like” particles, whereas Chapter 3&4 were 

M.tb-specific.  

Metal-organic framework (MOFs), a novel hybrid porous material composed of metal 

nodes and organic linkers, has become a promising platform for this biomimetic 

application due to its outstanding characteristics, including high porosity and large 

surface area adjustable pore size, easy modification. In this work, we used carboxylated 

iron-based MOFs, namely MIL-100(Fe) and MIL-88A(Fe). MIL-100(Fe) is spherical, 

and nanoscale whereas MIL-88A(Fe) is rod-shaped and micro-sized. They are non-toxic 
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(MTT assay), and stable in PBS and cell medium (Degradation study) materials. They 

process versatile surface functionality due to their organic linker molecules. 

We first developed mannose-functionalized MOFs as many pathogens expressed 

mannose which mannose receptors can recognize on macrophages. MIL-88A(Fe) and 

MIL-100(Fe) particles were successfully synthesized and modified with mannose via an 

amine-carboxylic acid coupling reaction. We found that the macrophage uptake of 

mannose-modified MIL-88A(Fe) significantly increased compared to non-modified 

particles. MIL-100(Fe) without mannosylation already exhibited considerably fast and 

high uptake; therefore, the mannose modification did not affect its uptake. Phagocytosis 

was the major endocytic pathway involved in MOF particle uptake. Endocytosed 

particles were observed to accumulate in acidic compartments where many pathogens are 

known to reside and survive. Therefore, there is a potential to use MOFs as a delivery 

system to target intramacrophagic pathogens.  

As the surface modification in large and rod-shaped particles positively impacts uptake, 

we modified MIL-88(Fe), which is of similar shape and size to M.tb, to mimic bacteria as 

host-direct therapy(HDT) delivery system for the treatment of TB.  We developed the 

MIL-88(Fe) hybrid coating system to mimic the M.tb cell wall, including the inner layer 

of phenolic lipids and outer mixed lipids containing mycolic acids. We found that the 

uptake of MIL-88A(Fe) coated with extracted bacterial lipids significantly increased. 

Lipid coating did not change the endocytic pathway of the internalization of particles. 

Metformin as a model HDT agent was encapsulated in MIL-88A(Fe) via the modified 

nanoprecipitation method with 12% drug loading.   
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On the other hand, MIL-100(Fe) itself without surface functionalization exhibited high 

macrophage uptake, so MIL-100(Fe) modification with curdlan was not to improve the 

uptake but be expected to show immunomodulating activity. We investigated two 

methods to develop curdlan-coated MIL-100(Fe). To improve the water dispersion of 

particles, we used the digested curdlan rather than the original curdlan to coat on MIL-

100(Fe). FTIR and NMR confirmed the chemical structure of the digested.  

In summary, iron-based MOFs are good candidates to develop bacteria-mimicking 

delivery systems. Modification of MIL-88A(Fe) with biological components from 

bacteria showed a promising macrophage target. M.tb mimicking MIL-88A(Fe) as 

metformin delivery system had a reasonable drug loading which still needs further 

improvement. MIL-100(Fe) can also be easily modified with bacterial components 

(mannose and curdlan). MIL-100(Fe) were readily taken by macrophages, so ligands 

modification did not significantly increase uptake. The immunomodulation activity of 

curdlan-coated MIL-100(Fe) will be investigated in the future.  

5.2 Future directions  

This dissertation mainly focused on the development of pathogen-like delivery systems to 

target macrophages. However, achieving good drug loading was still a challenge, 

particularly for small and hydrophilic molecules. Identification of an ideal HDT agent 

will be the first focus. Drug candidates should have a proper size that allows them to 

enter the particles via the pore. During the lipid coating process, many drugs were lost 

due to their small size and hydrophilicity. The functional groups of candidates that can 

interact with MOFs via non-covalent bonds may help improve the drug loading and 

prevent the pre-mature release of drugs. Despite low drug loading, metformin used in this 
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work is still a strong candidate due to its low cost and evidence of efficacy and safety in 

TB patients. Two potential strategies have been proposed to obtain higher drug loading 

and a controlled release profile. First, a different type of MOF, MIL-53(Fe), made of iron 

(III) and 1,4-dicarboxylic acid, can be used as a delivery system for metformin. 

Second, metformin can be combined with iron (III) and fumaric acid (MIL-88A(Fe)) as a 

part of the constituent of MOF. Like MIL-88A(Fe), MIL-53(Fe) also displays a typical 

bipyramidal hexagonal prism structure (Fig 5.1) [1]. MIL-53(Fe), which is more stable 

and has a larger pore size than MIL-88A(Fe), is expected to have higher drug loading and 

a slow-release profile. Vahed at el. described MIL-100(Fe)-metformin system where 

metformin like trimesic acid served as an organic linker[294]. Since metformin is a part 

of the synthesized MOF structure, the MOF contains a large number of drug molecules, 

which highly increases drug loading compared to the direct encapsulation method. 

Therefore, there is a potential to develop the MIL-88A(Fe)-Metformin system.   

Figure 5.1 TEM image of MIL‐53(Fe). Adapted from reference[338]. 
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We expect these bacteriomimetic particles to work as HDT drug delivery carriers and act 

as immunomodulatory compounds that could activate host cells and further stimulate 

immune responses. The next plan will explore alveolar macrophage activation status after 

exposure to the M.tb-mimicking HDT drug delivery system in both infected and non-

infected cell models. Different biomarkers can determine activation status for M1 and M2 

identification. The expression of inflammatory cytokines can be evaluated by EALSA or 

real-time polymerase chain reaction (RT-PCR). The intracellular bacteria-killing activity 

of empty-and HDT-loaded M.tb mimicking particles will be assessed in M.avium and 

M.smegmatis infected macrophage models.  

The cellular trafficking of bacteria and particles is needed to understand the interaction 

between particles, bacteria, and macrophages. Therefore, the initial step will be to 

transfect M.tb to express a GFP. The next step is to have bacterial cell membrane 

components such as lipoproteins become fluorescent-labeled. This is because we 

extracted the modified lipids from mycobacteria to coat on the MOFs to allow the 

particles to become fluorescent.  

Developing personalized bacteria-mimicking particles for TB treatment will be one of the 

future directions. The strategy will be to extract lipids from patients isolates and 

formulate specific bacteria-mimicking delivery systems, which may improve therapeutic 

effects, particularly for drug-resistant TB patients.  

Curdlan-functionalized polycaprolactone (PCL) nanoparticles were showed to activate 

macrophages and induce killing of intracellular M.tb. Therefore, the antimicrobial 

activity of curdlan-MIL-100(Fe) particles needs to be investigated both extracellularly 

and intracellularly.  
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