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ABSTRACT
DETAILING THE CONNECTION BETWEEN A FAMILY OF POLAR GRAPHS AD
TREMAIN EQUIANGULAR TIGHT FRAMES
NICHOLAS BROWN
2021

The relationship between strongly regular graphs and equiar tight frames has
been known for several years, and this relationship has bs&shto construct many of the
most recent examples of new strongly regular graphs. Irpdy®er, we present an explicit
construction of a family of equiangular tight frames usihg geometry of a quadratic
space over the field of four elements. We observe that thaseel give rise to a strongly
regular graph on a subset of points of a quadratic space logédield with 4 elements. We
then demonstrate an isomorphism between this graph andsiadhconstruction of polar
graphs. While this family of graphs is known to exist, thenstruction using a Tremain
ETF is much simpler, requiring the existence of Steinetdrgystems and Hadamard
matrices of the appropriate size, whereas the originaltoactons require computing

intersections of hyperplanes.



1 INTRODUCTION

Among the most useful tools available in mathematics ateooxrmal bases. While bases
are useful for general vector spaces, they are not necgdsarideal tool for inner
product spaces. In addition to the normal linear propediesbasis, orthonormal bases
allow for the calculation of both norms and inner producfigntly. Despite their
usefulness, orthonormal bases may not be the optimal spgeat for a given application.
For example, we may want to introduce redundancy for theqeepf guarding against
data loss in signal processing applications. In this caseyducing an overcomplete
spanning set with similar properties to an orthonormalsasiuld be preferable. A
common way to describe these types of overcomplete spasatsgs to use frames [5],
[15]. A (d, N)-frame is a finite sequence &f vectors which span eith& or C¢. We

will use ® to denote both the sequenge;}¥, in C¢ or R? and thed x N matrix whose

1th column isp;. Since® spans al-dimensional spac&®* is always invertible and given
y = ®d*x, recoveringe from y might be computationally challenging. Hence, we are
particularly interested in frames which have the propdrat®d* = Al for some positive
constantd. Frames with this property are known taght frames.Tight frames are well
studied and are fairly well understood [3], [11], [14]. Aliframe helps replace an
orthonormal basis by providing an efficient reconstructammula for the vectors in space

using the frame vectors, namely

1 N
=1

Another important property of orthonormal bases is thein@gonality. If N > d
then the set of vectors in a tight frame would necessarimfalinearly dependent set, and

so it is not possible for all of the vectors in such a tight featm be mutually orthogonal.



However, this suggests looking for unit norm tight framewhich the coherence,

vi=_ max K, ;)|

i,j€{1,...,N}
i#]

is as small as possible. In general, unit norm frames withmahcoherence are called
Grassmannian frame®riginally introduced by Strohmer and Heath [15], and Ha@me
and Paulsen [12], the study of Grassmannian frames hasgancered substantial
consideration from frame theorists. A notable predeceassttrese Grassmannian frames
however was a paper by Welch [19], which provides variousldwounds for the

coherence in terms df andd. For our purposes, the most important of these bounds is

N —d
d(N —1)°

V=

This inequality has been dubbed Welch boundAn important application of the Welch
bound is that a frame with unit norm vectors whose coherenegual to the Welch bound
is what is called amquiangular tight fram¢15]. An equiangular tight frame gets its name
by being both a tight frame and being equiangular, thatis, ;)| is constant for all
i,7€{l,..., N} with i # j. Since equiangular tight frames (ETFs) have coherence equal
to the a lower bound for coherence, they are necessarilys@Gasnian.

The introduction of ETFs to solve some erasure problemsdimgpotheory led to
the discovery of many other applications. As noted in [6ljiaggular tight frames have
been useful in solving problems involving compressed sensncluding medical MRI
advancements, digital fingerprinting, which is useful towse systems, and multiple
description coding, which uses ETFs to quickly and reliadagpd and receive messages
over a channel with potential corruption of data. Unfortigha for most pairs
(d, N) e N?, an ETFs with\V vectors ind-dimensional space either does not exist or is not
known to exist [17]. Therefore, it is desirable to connecERWith other branches of

mathematics in an attempt to discover and build new ETFs.



One application of an equiangular sequence of vectors vgaswkred prior to the
introduction of ETFs. In 1966, van Lint and Seidel [13] irdtawed an identification
between equiangular sequences of vectors and graphs, wéréices corresponded to
vectors in the sequence and edges are drawn using the sige obtresponding inner
product. If we define the Gram matri&;,, of an equiangular sequence of vectors to be
G(i,5) = {pi,p;y foralli,j e {1,..., N} then we can express this matrix in terms of the
adjacency matrix4, of the graph. In the case of an equiangular tight frame thedal,
that is, an ETF whose Gram matrix contains only real entties) the tightness of the
frame implies that7 is a multiple of a projection, and sé satisfies a related quadratic
equation. More recently, this result led to the establisiméa one-to-one
correspondence between real ETFs and a familtrohgly regular graph$7], [13], [18].
Because of its importance to this paper, we note that a direegular graph (SRG) is a
class of graphs that are regular and that satisfy two acdditieegularity conditions. The
correspondence between ETFs and SRGs is the primary miogjvasult for this paper.

The discovery of the correspondence between ETFs and ayfaifBiIRGs has
inspired a large effort to build ETFs from the previously stvacted SRGs. One such
construction of ETFs that give previously known SRGs is varatcalled Steiner ETFs
[9]. Steiner ETFs are constructed using a tensor-like coatlon of the incidence matrix
of a Steiner System, a particular type of block design, anddarhard matrix. Despite
their novelty in the frame community, these ETFs were refdations of previously
known strongly regular graphs [10]. Considering that SR&setbeen intensely studied
for over 50 years, the existence of new graphs and corregppad Fs will likely be
difficult. However in [8], the authors discovered a new fanuf real ETFs and
consequently a new infinite family strongly regular graphisese new real ETFs, called
Tremain ETFs, are not constructed in an intuitive way. Tri@nBd Fs are constructed by
taking a particular family of Steiner ETFs built from Steif@iple Systems and cleverly

adding some rows and columns to obtain a larger ETF.



The purpose of this paper is to strengthen the connectiaveleet strongly regular
graphs and equiangular tight frames. In particular, we exfilore and deconstruct a
family of strongly regular graphs denoted ), ., (¢) for some prime poweg and
demonstrate its connection to Tremain ETFs. Using the oactsdn of Wilbrink [2], this
graph has points which are the hyperplanes in an odd dimegisiector space over a
finite field. While this construction works for any prime pawg we restrict our focus to
the case where = 2" for someh e N. In this paper we will present two main results.
First, we will define a new graph isomorphicA0;,, _ ,(¢) which is defined on vectors
instead of hyperplanes. Then using this isomorphic graghyilt show that there is a
natural way to define a particular family of Tremain ETFs. Amchis senseNO3, _,(q)
arises naturally as an instance of a Tremain ETF of this fdinis new explicit
connection between these strongly regular graphs and #redin ETF construction
provides us potential new avenues to discover both new iegsrof ETFs and strongly
regular graphs. By deconstructing other constructiondR&sSover other finite fields, it
may be possible to build new families of ETFs. Additionalixe may be able to generalize
the Tremain construction further and potentially obtaiwsérongly regular graphs.

This dissertation will be laid out as follows. In Section 2 previde some
preliminary results about ETFs. Section 3 contains theckamsi constructing both Steiner
ETFs and Tremain ETFs. Section 4 will introduce and exploedfinite geometry of
regular quadratic spaces over a field of characteristic Zevdaitaloging a number of
useful results to prove the connection betw@é&n;,, . , (¢) and Tremain ETFs. In Section
5 we develop a bijection that maps hyperbolic hyperplaned usthe construction of
NO3, .1 (q) to the points of a quadratic space. In section 6, we define emorelated
graphs and prove that one is isomorphicM@;, ., (¢). In Section 7 using these graphs,
we present a natural method for constructing a Steiner E@rRaaelated Tremain ETF
thus demonstrating a new connection between Tremain ETdsteangly regular graphs.

We wish to distinguish known results from new results, andigethe convention that



theorems are either new results or previously known, nam&dts for example, Theorem

4.32, the Witt Extension Theorem.

2 ETFBASICS

In order to work with equiangular tight frames, we collectaatful of results. We first

start with the definition of a frame and develop the propsmieETFs.

Definition 2.1. Let N,d € N such that N > d, and {;}}, be a sequence of vectors
in C¢, or R The sequence {p;}Y, is a called a frame if there exist constants

0 < A < B < o such that
N
Alz]* <> Kz, o)]* < Bl
i=1

for all = € C%. We often consider the matrix whose columns consist of the frame
vectors @ = |:(pl e N] . Indeed, we will often abuse notation and refer to ® as a

d x N frame.
Definition 2.2. A frame ® is called a tight frame if $®* = A for some A > 0.

If a frame is tight, then similarly to orthonormal bases, @@ obtain a

reconstruction formula for any vector in space.

Proposition 2.3. If ® is a tight frame such that ®®* = Al for some A > 0, then
N

for every x € C*, v = A™! Z<$a Pi)pi-

i—1
Proof. Since ® is a tight frame then we know that ®®* = Al for some ¢ > 0.

Therefore, we know that

N
Az = ¢O*x = ¢(d*x) = Z(x, ©iYPi-
i=1

N
Therefore, we have that z = A~ Z<x, PP O

1=t



Note that orthonormal bases also have the property thatvamgistinct vectors
are orthogonal. We now want to find a similar condition to irsg@on frames and we

arrive at a definition about the maximum inner product fotidet frame vectors.

Definition 2.4. Suppose that ® is a frame with |¢;|| =1 for all i e {1,..., N}. The

coherence of ® is defined to be v = max [<wi, 0|
i#]

Definition 2.5. A sequence of vectors {¢;}, is called equiangular if |{p;, p,)| is

constant for all 7 # j and [p;|* = s > 0 for all i.

We now want to prove the Welch bound as given by [19]. To acdmmghis we

need to define an appropriate matrix norm.

Definition 2.6. Let X be a complex matrix. The Frobenius norm of X is

1 X || F = A/tr(XX*).

Proposition 2.7. If ® = {¢;}Y, is a frame where ||p;| = 1 for allie {1,..., N}

and has coherence v, then v > %. Moreover, if equality holds, then ® is a
tight frame and (i, ;)| = % for all © # j.

Proof. Let ® = {¢;}Y | be a frame with ||| = 1 for all i € {1,..., N}. We begin by

noting that

[0 @[ = tr((2"0)(2*D)") = tr(*(2L*P)) = tr((PP* D)D) = [2D"F.

Also, denote the entries of | f;;] = [2P*];;. Now we know that



”(I)(I)*__]”F_Z|fw|2+2|fu_ Z|fm|2+2 fu__

1#] z;ﬁj
N? . 2N N?
—Z|fm|2+2 fu—— + ) = oo ||2+Z(_7fn+ﬁ)
1#] i=1
N? N2
= [®P*|* — = tr(PP*) + — = ||PP*|* — = tr(P*P) + —
902 — = 1r(80%) + — = [ B — = r(°D) + =
2N N? N?
= |[®*|* — = (N PPp*|?
[2P*]7 — —=(N) + —- = [22*] - d
* N N2
= [@*0|* — — = N+ 3 Kpipp = — S N+ NN - 1)p* — —.
1#£]
This inequality implies that v > d(]y\/ 0 and so the coherence is bounded below.

Additionally, if there is equality in the above inequality, then we can see that
|@@* — 21| = 0 which implies that ®®* = 51 and so @ is a tight frame.

Additionally, equality also implies that |(p;, ¢;)| = for all ¢ # j. O

d(N 1)

The moreover of Proposition 2.7 leads us to the definitiomag@uiangular tight

frame since all the inner products of distinct columns arga&cand the frame is tight.

Definition 2.8. A frame, ®, is called an equiangular tight frame if the

coherence of ® is equal to the Welsh bound.

According to [17], equiangular tight frames are quite unoton and generally an
ETF of IV vectors ind-dimensional space does not occur or is not known to occur for
arbitrary pairs ofd, N) € N2. The following propositions prove some results that give us

more information about what possible pairs(@f V) to look for.

Proposition 2.9. If {p;}Y, = R? is a frame such that {p;, ;) = a € [0,1) for all
i#jand |@i|| =1 forallie{l,...,N}, then N <d.

Proof. We know that ®*® = (1 — a)l + a.J. A straightforward calculation gives us

that the eigenvalues of ®*® are 1+ (/N — 1) and 1 — . Note that because « € [0, 1)



then we have that both eigenvalues are nonzero. Hence rank(®) = rank(®*®) = N.
But we know that since ® is a frame, then rank(®) < d. Therefore we have

N <d. O

Proposition 2.10. Let ® be a d x N equiangular tight frame. If ® is real, then

N < (dgl) and if ® is complex, then N < d°.

Proof. Let @ be an equiangular tight frame. Then we know that [{¢;, p;)| is

constant for all ¢ # j and ||¢;| = 1 for all i. Note that

loii T = tr((wip)) (pip))*) = tr(wipfo;er) = tr((@)e;) (eie:) = 1.
Additionally, note that

(o}, 050ty = tr(pipf (i0))*) = tr(wipfo;el) = tr((efe;) (ie:) = tr(Kej, eil)

= [{es, 00I*.

Therefore the set of matrices {p;p}¥, forms an equiangular sequence in the
vector space

V = {AeF¥™?: A= A*} since g;pf is self adjoint for each i € {1,..., N}. If
® is a real frame then V is a real vector space of symmetric matrices. If we denote
E;; to be the matrix with all zeros except for the ¢, j element equal to 1, then a

basis for V' is the set {E;; + Ej; : 1 <14 < j < d}. This implies that there are

d+1

preciesly d + (d —1) + -+ 241 = (“}') basis elements and so we must have that

N < (d;ﬂ) by the previous proposition. If ® is a complex frame, then V is a

complex vector space of self-adjoint matrices. Therefore, a basis for V is

Hence dimV = 2@ +d = d? so we have N < d>. O



3 STEINER AND TREMAIN ETF BASICS

Now that we have some basic ETF theory, we now want to definepleof ETFs that
will be the primary focus of this paper. In this section, wdl de&fine all of the
components necessary to building both a Steiner ETF andmaalineETF. Along the way,
we will also provide examples to better illustrate thesestattions. To first build a
Steiner ETF, we need a Steiner System which is a balancethpiete block design

(BIBD). And we start with that definition.

Definition 3.1. A balanced incomplete block design (BIBD) is a a pair (V, B)
where V' is a v-set and B is a collection of b k-subsets of V' such that each element of
V' is contained in exactly r bocks and any 2—subset of V' is contained in exactly A
blocks. The numbers, v, b, r, k, and A are called the parameters of the BIBD. A

Steiner System is a BIBD whith A = 1.

To build a Steiner ETF, we will need both the incidence matfithe Steiner

System and a Hadamard matrix.

Definition 3.2. The incidence matrix of a BIBD is a b x v matrix A, with rows

indexed by B and columns indexed by V' given by

1 fzeB
0 if else.

A(B,x) =
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Example 3.3. The incidence matrix A for a BIBD(7,3,1) is

where - corresponds to entries of 0.

Note that the Steiner system from the previous example h&ck bize of 3. If a

Steiner system has a parametet 3, we call this aSteiner triple system.

Definition 3.4. A Hadamard matrix is a square matrix whose entries are +1 or

—1 and whose rows are mutually orthogonal.

Example 3.5. An example of a Hadamard matrix is

+1
+1
+1
+1

+1
—1
+1
-1

+1
+1
-1
-1

Definition 3.6. Let (V,B) be a BIBD with parameters v, b, r, k, and A = 1. If ® is
an ETF with rows indexed by B and columns indexed by V' x R where |R| =1 + 1,

and

1 ifzeB
0 ifx¢ B,

[@(B, (x,5))] =

then we call ® a Steiner ETF.

Example 3.7. We will combine the incidence matrix and the last three rows of the

Hadamard matrix from the previous two examples to create a Steiner ETF by
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replacing the nonzero entries from each column of the incidence matrix and

replacing it with a distinct row of the Hadamard matrix. We note that in the figure

+E-E-E-E- -+ |
T + -+ -+
+ .+ +E+ -+
+|+ +|+ ++
+ -+ |- Bia i
+ -+ e -+ .+ + .+
+ e+ + I+ -+ +

Figure 1: 7 x 28 Steiner ETF

above, the blank spaces are zeros and the symbols + and — correspond to 1 and —1
respectively. Consider that this matrix has rows indexed by the blocks of the BIBD
in Example 3.3, and columns indexed by the V' x R where R is a set which orders
the columns of the Hadamard matrix from Example 3.5. Therefore, Definition 3.6
applies to this matrix.

Note that in this construction that the dot product of any two rows of is
equal to the dot product of any two rows of a Hadamard matrix, so the rows of this
matrix are mutuallly orthogonal. Additionally, the rows all contain 12 entries of
modulus 1, and so the row norms are equal as well. This implies the above matrix is
tight. To show that this matrix is equiangular, we note that each column has norm
squared equal to 3, and that because A\ = 1, then clearly the dot product of any two

distinct columns is modulus 1. Therefore, the above matrix is clearly a Steiner ETF.

Definition 3.8. Let (V,B) be a BIBD with parameters v, b, r, A =1, and k = 3. If
U is an ETF with rows indexed by X = Bu V' u {0} and columns indexed by
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Y =(VxR)uS, where |R| =r+1 and |S| = 2r + 2, and

~

ifr=BeB, y=(z,j)e (VxR), ze B
ifr=2eV, y=(2,7)e(VxR)

EoCRC I

I‘I’(aﬁ,y)|={ ifr=z2eV,yesS
ifx=0 yel
0 else,

then we say that ¥ is a Tremain ETF.

Example 3.9. We will combine the Steiner ETF from the previous example and
add the rows and columns of two scaled Hadamard matrices appropriately and we

obtain the figure below. We note that the blank spaces are zeros and the sybmols +

el — s e e Em
++ mal — il — el —
+ + el el
++ ++ ++
ale Sl i SR Rl
+ 4 e + - +
+ -+ I |+ I -
3000 VIO NIO N N
000 U N
oo oo 0 O VAV,
300 & VIS IVIY
o000 OO OO
000 1O NAVAVAV
RO OO v
®
Figure 2: Tremain ETF
and — correspond to 1 and —1 respectively. Meanwhile o = /2, { = %, Q=- %

and & = \/g . The rows and columns of this matrix can be indexed as described in
Definition 3.8 and routine calculations show that this matrix has orthogonal, equal
norm rows, equal norm columns, and the modulus of the dot product between any

two distinct columns is 1. Therefore, this matrix is a Tremain ETF.
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We now present another small example of a Tremain ETF.

Example 3.10. Let the incidence matrix of a trivial Steiner Triple system be
A= [1 1 1] .
We will build the the Steiner ETF,
¢ = [—1 -1 -1 -1 -1 —1] :

We will then add the rows and columns of two scaled Hadamard matrices

appropriately and obtain the matrix below.

Figure 3: 5 x 10 Tremain ETF
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4 GEOMETRY OF QUADRATIC SPACES OVER FIELDS OF CHARACTERIST R

The purpose of this paper is to strengthen the connectiavgeet Tremain ETFs and the
family of graphs known asy O3, . ,(2"). In order to construct the grapw,05, ., (2"),
given in [2], we require the construction of a collection gpkrplanes in an odd
dimensional vector space over a field of characteristic B wihondegenerate quadratic
form. This section will contain a number of results which aegessary to describing the

graph and better understanding its construction.
Assumption. Let V be a vector space over a field, IF, of characteristic 2.

Definition 4.1. A quadratic form on a vector space is a function @ : V' — F with

the property
Q(az) = a’Q(x)

for all a € F, all x € V, and where the function B : V x V' — F given by

B(x,y) = Q(z +y) + Q(z) + Q(y)

is a bilinear form on V.

While the common definition of a bilinear form dnassociated with a given
quadratic form isB(z, y) = 1(Q(z + y) — Q(z) — Q(y)), our definition is specific to

guadratic spaces over fields of characteristic 2.

Definition 4.2. If ) is a quadratic form on V' and x € V\{0} such that Q(z) = 0,
then we say that x is a singular vector. Additionally, if V' contains a singular
vector then we call V' a singular space. If V' contains no singular vectors, then we

call V a nonsingular space.

This new quadratic form and bilinear form are analogous torarand inner

product defined on inner product spaces. We will now invastighe properties of the
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bilinear form onV.

Definition 4.3. Let W < V be a subspace. Define the orthogonal complement
of Win V to be

W+ ={zxeV:B(x,w)=0 for all we W}.

Definition 4.4. Given a vector space V' and a quadratic form @), define the radical
of V' to be
radV ={zx eV :B(x,v) =0, forallve V}.

If radV # {0} then we say that V is defective, and if rad V' = {0}, then we say

that V is nondefective.

In order to better illustrate these definitions, we presentliasic examples in

three and four dimensional space.

Example 4.5. Let V = F} and let {ey, €2, e3} be the standard basis for V. Then for
any

T = aie; + ages + azes € V' a quadratic form on V' is given by

Q(z) = ajaq + ag.

The induced bilinear form on V is given by

B(z,y) = (a1 + b1)(az + by) + (az + b3)* + araz + a3 + biby + b3 = arby + agb;.

It is easy to see that V' is a singular space since Q(e;) = 0. Additionally, we

can see that B(es,z) = 0 for any € V and so rad V' = (e3) and so V is defective.

Note. Any quadratic space over a field of characteristic 2 has the property that for
any a € F, B(z,z) = B(z,azx) = 0.
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Example 4.6. Let V = F} and let {ey, 2, €3, €4} be the standard basis for V. Then
for any

T = aie1 + asey + azes + agey € V, a quadratic form on V is given by

Q(z) = aray + azay.

The induced bilinear form on V' is given by

B(z,y) = (a1 + by)(az + be) + (asg + b3)(ays + by) + aras + azay + bybs + bsby

= albg + &261 + 0,364 + &4b3.

Note again that V' is a singular space since Q(e;) = 0 for any i € {1,2, 3, 4}.
For this example, if for any = € V' we have B(x,y) = 0 for all y € V, then z or y

equals zero. This is an example of a nondefective space.

With the definition of a bilinear form o, a natural question is to determine the
dimension of the orthogonal complement of an arbitrary pabs of a quadratic space.

We first need a couple definitions and provide an example.

Definition 4.7. Let V, W, be subspaces of a vector space. Then

V+W={v+w:veV, we W}

If V.n W = {0}, we denote the sum as V' @ W and call it the direct sum. If in
addition, we have that V' L W then we denote the sum as V & W and call it the

orthogonal direct sum.

Example 4.8. Let V' be the vector space as given in Example 4.5 and let W = (e;)
be a subspace of V. Note that B(ey,es) =1 and B(ey, e3) = 0. This implies that
W+t = (e, e3). Therefore, we can see that dim(W) + dim(W+) = dim(V') but we do
not have W @ W+ =V since e; ¢ WS W,



Proposition 4.9. If W € V is a subspace of a quadratic space (V,Q), then

dimV —dim W if W nradV = {0}
dimV — dim W + dim(rad V) if radV < W.

dim W+t =

17

Proof. First, suppose that W nrad V' = {0}, that dim W = k and that {w, ..., w}

is a basis for W. Now, define the function ¢ : V — F* given by

Note that z € W+ if and only if p(x) = 0 and so ker p = W+. Therefore by
Rank-Nullity, we have that

dim W+ =dimV —dim¢(V) > dimV — k = dim V — dim W. Now suppose that
dimp(V) =p <k =dimW and let {z,,...x,} be a basis for p(V). Let

U1, U2, ...,0, € V such that p(v;) = z; for all i € {1,...,p}. Note that if

0=>7F, B for some §; € F for all ¢ implies that 0 = >0 | Bo(v;) = D7, fiz;. This

implies that f;, = --- = f, = 0 and so {vy,...,v,} is an independent set. Let

X ={v1,...,v,). Suppose that if z € X n W+ then we have z = > | B;v; and that

0=o(x) =" Bip(v;) =>F | fix;. This implies that x = 0, and so

X n W+ = {0}. Now consider the set X @ W*. We have that

dim W+ = dim V' — dim (V') and so

dim V = dim W+ + dim (V) = dim W+ + dim X. Hence we know that

X @ W+ = V. Next, define the map 1 : W — FP given by

Y(w) = (B(vy,w), B(vg,w), ..., B(v,,w)). We claim that ker ¢ < rad V. Suppose
that w € ker¢. Then w € X+ and w € W. Then for any v € V we have that

v =z + y for some z € X and y € W+. Hence we have that

B(v,w) = B(z + y,w) = B(z,w) + B(y,w) =0, and so we have kert < rad V.
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Therefore, we have that p = k and so

dim W+ = dimV — dim W.

Now suppose that rad V € W, and dim W = k. Then suppose that rad V' has
a basis {ry,...,r,} and let {ry,...,ry, Wg_p, Wg—py1, ..., wr} be a basis for W. Let
W' = (wg_p, . .., wg). Note that W' nrad V = {0} and clearly W+ = (W’)* and so

we can apply the first case and hence

dim W+ = dim(W')* = dimV —dim W' = dimV —dim W + dimrad V. O

Now that we have the basic definitions of quadratic spaces;dhstruction of
NO3, ., (2") utilizes a specific type of hyperplanes. Therefore, we véfink and explore

the properties of hyperplanes of a quadratic space.

Definition 4.10. Let @ be a quadratic form on V. We call the pair (V, Q) a
quadratic space, and we say that V' is regular with respect to @ if for all

x € rad V\{0}, we have Q(z) # 0.

We will begin by defining two different types of planes in a dtatic space, and
we also want to discuss the idea of regular subspaces of aajitespace. We say a

subspacéd? < V is regular if the induced quadratic spadé, Q)| ) is regular.

Definition 4.11. A hyperbolic pair is an pair (z,y) of singular vectors with
B(z,y) = 1. A two dimensional space which contains a hyhperbolic pair is a

hyperbolic plane.

Definition 4.12. Let (V, Q) be a quadratic space, and E € V. If dim E =2 and F

is nonsingular, then we say that F is an elliptic plane.

Now that we have defined two different types of planes, we waahsure that any
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regular plane of a quadratic space is either hyperboliclgtiel This allows will allow us

to be precise when we decompose hyperplanes into orthogtamads later in this section.

Proposition 4.13. If (V, Q) is a regular quadratic space of dimension 2, then V

has zero or two singular subspaces of dimension 1.

Proof. Let N denote the number of one dimensional singular subspaces of V, and
suppose that V' is regular. If N = 3, then let (x), (y),{z) be distinct one
dimensional singular subspaces of V. Without loss of generality, suppose that
V = {x,y). If B(x,y) =0, then {x) < rad V, but this is a contradiction since V' is
regular. Hence B(x,y) # 0. Without loss of generality, suppose that B(x,y) = 1.
Now if B(z, z) = B(y, z) = 0 then we have (z) € rad V' and so V is not regular, a
contradiction. If B(z,2) = 0 but B(y, z) # 0, then consider that
B(z + B(z,y)z,z) =0, B(z + B(y, 2)x,y) = B(y, 2) + B(y,2) = 0 and that
Q(z + B(y,2)z) = Q(2) + (B(y, 2))*Q(z) + B(z, By, 2)z) = 0 and so V is not
regular which is a contradiction. Now suppose that B(z, z) # 0 and B(y, z) # 0.
Then we claim that {x,y, z} is an independent set. Suppose that ax + by + cz =0
for some a, b, c € F. Without loss of generality, suppose that B(z,y) = B(x,z) =1
and B(y, z) = B for some 8 # 0. Then we have 0 = B(ax + by + cz,x) = b + ¢,
0 = B(ax + by + cz,y) = a+ fe, and 0 = B(ax + by + ¢z, z) = a + [b. This implies
that a = b =c =0 and so {z,y, z} is an independent set which is a contradiction
since dim V' = 2. Therefore, we know that N < 2.

Now suppose that N = 1 and that () € V for some x # 0 with Q(z) = 0.
Since V is regular, (x) nrad V = {0}. Hence there exists y € V' such that
B(z,y) # 0. Without loss of generality, suppose that B(z,y) = 1. Note also that
Q(y) # 0 since N = 1. Now consider the subspace (y + Q(y)z). Then we have
Qy + Qy)r) = Qy) + (Qy))*Q(x) + Q(y)B(z,y) = 0. Hence if N > 0, then
N = 2. Note that if N =0, then V is nonsingular, and therefore is regular.
Therefore, N € {0,2} if V is regular. O
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Corollary 4.14. Every regular two dimensional quadratic space is either hyperbolic

or elliptic.

The next theorem gives us a method of determining whethegudarequadratic

plane is elliptic or hyperbolic.

Proposition 4.15. Let (V,Q) be a quadradic space of dimension 2. Let u,v €V
and f € Flz] be defined by f(z) = Q(zu + v) = Q(u)z* + B(u,v)r + Qv). If V is
elliptic, then f is irreducible for any basis {u,v}. Conversely, if there exists a basis

{u, v} for V with Q(u) # 0 such that f is irreducible, then V' is elliptic.

Proof. Let (V,Q) be a quadratic space of dimension 2 and that V' is elliptic. Then
we know that V' is nonsingular. Let {u, v} be a basis for V. Consider that
f(z) = Q(zu + v) # 0 since zu +v € V for all x € F. Hence f does not have a root
and must therefore be irreducible.

Conversely, let {u,v} be a basis for V such that f is irreducible and Q(u) # 0.
Then we know that the line (zu + v) is nonsingular for each = € F. Also, since

Q(u) # 0 then we have no singular lines in V' and so V' must be an elliptic plane. O

In the light of Proposition 4.15 and Corollary 4.14, we alse that ifV is
hyperbolic, thenf is has a root, and if there is a basis for whithas a root, and’ is

regular, therl/ is hyperbolic.

Assumption. We now assume that (V, Q) is a regular quadratic space in addition

to the previous assumption that F is a field of characteristic 2.

A very useful tool in navigating quadratic spaces is to be ablidentify a
hyperbolic plane which contains a given vector. The nexppsition gives us a method of

constructing such a hyperbolic plane.

Proposition 4.16. If x € V is singular, then there exists y € V' such that (z,y) is a

hyperbolic pair.
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Proof. Let x € V such that Q(z) = 0. Since = ¢ rad V' there exists z € V so that
B(z,z) # 0. Without loss of generality, suppose that B(z, z) = 1. Consider the
element y = Q(z)x + z. Then we know that

Qy) = Q(2)°Q(z) + Q(2) B(x, 2) + Q(2) = 0 and

B(z,y) = B(z,Q(2)x + z) = Q(2)B(x,x) + B(z, z) = 1. Hence (z,y) is a hyperbolic

pair. ]

One of our major results in this section will be that reguigpdrplanes can be
written as an orthogonal direct sum of regular planes. THeviing result tells us that

taking the orthogonal complement of a hyperbolic planegsiiar.

Proposition 4.17. If H is a reqular plane of a regular quadratic space (V,Q), then

V = H® H*. Moreover, H* is a reqular subspace of V.

Proof. Suppose H = (x,y) is a regular plane in a regular quadratic space (V, Q) of
dimension n. First note that if z € H nradV then we have z = ax + by for some
a,beF and that B(x,y) # 0. Also, we know that 0 = B(z,z) = b and

0 = B(z,y) = a and so z = 0. Hence, H nrad V' = {0}. Therefore, by Proposition
4.9 we know that dim H+ = dim V' — dim H = n — 2. Additionally by the same
argument as above, we have that H n H+ = {0} and by definition H L H*.
Therefore, dim(H@® H+) =2+ n—2=n=dimV and clearly (H® H*) < V and
so we have H®O H+ = V.

Now by way of contradiction, suppose that H* is not regular. Then there
exists a vector r € H+ such that B(r,h) =0 for all h € H+ and Q(r) = 0. But then
B(r,k) =0 for all k € H since r € H* and so r is a singular vector in the radical.
This contradicts that V is a regular space, so it must be the case that H* is a

regular subspace of V. O

BecauseF is a field of characteristic 2, we will want to leverage thepgaxties of

such fields. Hence the following definition.
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Definition 4.18. A field F is called a perfect field if either F has characteristic 0,
or, when I has characteristic p > 0, the Frobenius endomorphism z — x? is an

automorphism of F.

In our case, we have thitis a field of characteristic 2. Therefore [ifis perfect,
then Definition 4.18 tells us that— 22 is an automorphism df and so each element of
F has a square root. Another useful characterization of plaa® determine their
regularity based on their bases. A majority of our analysth® geometry will require our

spaces to be regular.

Proposition 4.19. Let (V,Q) be a quadratic space with dimV = 2. V' is regular if

and only if no basis for V is orthogonal.

Proof. Let (V,Q) be a quadratic space with dim V' = 2. Suppose that {u, v} is a
basis for V' such that B(u,v) = 0. Then if Q(u) = 0 or Q(v) = 0 then V is not
regular. Then consider the polynomial

f(z) = Q(zu +v) = Q(u)z? + B(u,v)z + Q(v) = Q(u)z* + Q(v). Note that since F

is a perfect field, there exists zo € F such that 23 = 88 and so f has a root and

hence Q(xou + v) = 0 Also, note that B(zou + v,u) = B(xou + v,v) = 0 and so V is
not regular.

Now let {u,v} be a basis for V' such that B(u,v) # 0. Let 2 € rad V. Then
x = au + bv for some a,b € F and we have 0 = B(z,u) = B(au + bv,u) = bB(v,u)
and 0 = B(x,v) = B(au + bv,v) = aB(u,v). But since B(u,v) # 0, then we must

have a = b = 0 and so x = 0. Hence V' is regular. O

The property of perfection will allow us to determine the nmaxm dimension of
the radical of a given quadratic space as well as determatejtiadratic spaces of high

enough dimension are singular.

Proposition 4.20. Let V' be a vector space over a perfect field. If V is a regular

quadratic space with respect to @, then the radical of V' has either dimension 0 or 1.
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Proof. Suppose that dim(rad V') > 2. Then we know that there exists an
independent set, {x,y} < rad V. Since V is a regular space, we know that Q(x) # 0
and Q(y) # 0. Since F is perfect, we may assume that Q(z) = Q(y) = 1. Consider
that since z,y € rad V, we have 0 = B(z,y) = Q(z + y) + Q(x) + Q(y) = Q(z + y).
Since {z,y} is independent, then we know that x 4+ y # 0 and so there exists a

nonzero singular vector in the radical of V' and so V' is not regular. Hence,

dim(rad V') < 2 and so we have dim(rad V') € {0, 1}. O

Proposition 4.21. If (V,Q) is a quadratic space over a perfect field with

dim V' = 3, then V is singular.

Proof. Let x € V\{0} and let y € (x)\(x). Note that since x # 0, we have by

Proposition 4.9 that dim{z)* > 2. If Q(z) = 0 then V is singular. If Q(x) # 0, then

% € IF. Since F is perfect, there is an element a € F such that a? = % Consider
z =ax +y. Then Q(2) = a*Q(z) + aB(z,y) + Q(y) = Q(y) + Q(y) = 0. Hence V is
singular. O

Corollary 4.22. If (V,Q) is a quadratic space over a perfect field with dim'V > 3,

then there is a hyperbolic plane in V.

The previous proposition allows us to factor regular, oddefisional quadratic

spaces into an orthogonal direct sum of hyperbolic plandgtaradical.

Proposition 4.23. If (V,Q) is an odd dimensional reqular quadratic space with
with dim V' = 2n + 1 = 3, then there exists a set of hyperbolic planes {H;}?_, such

that V. ="  H;SradV.

Proof. We will induct on n where dimV = 2n + 1. Let n = 1. Then

dimV = 2n + 1 = 3. By Corollary 4.22 and Proposition 4.17, we see that there
exists a hyperbolic plane, H, in V. Therefore, V = H @ H* with dim H+ = 1. Since
V is regular and clearly B(h,v) = 0 for all h e H+, and v € V, then H* is

nonsingular and hence H+ =radV so V = H®radV.
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Suppose that the proposition is true for when n = k. Let n = k + 1 and
dim V' = 2k 4 3. Since 2k + 3 > 3, we have that there is a hyperbolic plane, H; < V,
by Corollary 4.22 and that V = H; & Hi-. Note that Hi" is a regular and
dim Hi* = 2k + 1. By the induction hypothesis, there exists a set of hyperbolic
planes, {H,}* | such that Hi* = @F , H; ®rad H}-. Hence
V=0 HoradH: =0 HoradV. 0

(2

The previous proposition covers all of the odd dimensioegutar quadratic
spaces, so now we want to determine a decomposition for greaimensional regular

hyperplanes of these odd dimensional spaces.

Definition 4.24. Let (V, Q) be a regular quadratic space. We say that V' is a

hyperbolic space if there exists a collection of hyperbolic planes {H;}?_, such that
V= @?:1 H.

Definition 4.25. Let (V, Q) be a regular quadratic space of dimension 2n + 1 and
let H <V be a hyperplane. We say that H is a hyperbolic hyperplane if the

induced quadratic space (H, Q|x) is a hyperbolic space.

Definition 4.26. Let (V, Q) be a regular quadratic space of dimension 2n + 1 and
let H <V be a hyperplane. We say that H is a elliptic hyperplane if the induced

quadratic space (H, Q|g) is regular and not hyperbolic.

To ensure that our definitions of hyperbolic hyperplanesediigtic hyperplanes

are consistent, we prove that they are regular.

Proposition 4.27. Let V be a reqular quadratic space of dimension 2n + 1. If H is

a hyperbolic hyperplane then H is a reqular hyperplane.

Proof. Note that if V' is odd dimensional, then H is even dimensional. Let {H;}I ,
be a collection of hyperbolic planes such that H = & | H;. Then if we let (h1, ho)

be a hyperbolic pair for H; then we have {hq1, hia, ho1, haa, . .., hn1, hno} as a basis
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for H. Let x € rad H. Then we know that x = " | (@i hi1 + ah;2) for some scalars
a;; € F. Note that for all i € {1,...,n} and j € {1,2} we have 0 = B(x, h;;) = a;;, for

ke {1,2}\{j}. Hence we have that x = 0 and so H is regular. O

Note that Proposition 4.27 along with the definition of glighyperplanes tell us
that every regular hyperplane of an odd dimensional quiadspace is either hyperbolic
or elliptic. This now allows us to decompose any elliptic Byggane of an odd

dimensional regular quadratic space.

Proposition 4.28. Let (V,Q) be a reqular quadratic space of dimension 2n + 1. If
H s an elliptic hyperplane, then there exists a collection of hyperbolic planes

{H;}7=! and an elliptic plane W such that

n—1

H=OHaoW.

i=1

Proof. If H is an elliptic hyperplane, then we know that H is regular. If n = 1 then
dim H = 2 and so H is an elliptic plane. Now suppose n > 1. Then dim H = 2n > 3.
By Corollary 4.22, there exists a hyperbolic plane H; < H. By Proposition 4.17, we
can decompose H = H, @ Hi-. By successively applying Proposition 4.17, we have
H = @?;11 H; & W where W is regular and dim W = 2. If W contains a singular
vector, then W would be a hyperbolic plane and hence H would then be a
hyperbolic hyperplane. Thus it must be the case that W does not contain any
singular vectors. Hence H = @' H; & W. O

We now want to leverage our decomposition of regular hyaegs to help us
quickly determine whether a hyperplane is elliptic or hygmic without having to

decompose it. This leads us to the following definitions.

Definition 4.29. Let (V, Q) be a quadratic space and 7' < V be a subspace. We

say that T is a totally singular subspace of V' if for all z € T" we have Q(z) = 0.
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Definition 4.30. Let T" be a totally singular subspace of V. We say that 1" is a
maximal totally singular subspace if for any totally singular subspace S such

that 7€ S then T = S.

Using these totally singular subspaces will allow us to eilee which type of
regular hyperplane it is. However, we still must prove tihat ¢ardinality of any two
maximal totally singular subspaces are the same. The néritas and theorem will

allow us to do just that.

Definition 4.31. Suppose that ); and () are quadratic forms on quadratic spaces
Vi and V5 respectively. An isometry relative to By and By is an F-linear injection

f Vi = Vy satistying Qa(f(v)) = Q1(v) for all v € V4.

Note that in light of the previous definition, we also havettha

By(f(x), f(y) = Qa(f(x) + f(y)) + Qa(f(2)) + Q2(f(y))
= Qi(z +y) + Qi(z) + Q1(y) = Bi(z,y).

Theorem 4.32 (Taylor 7.4 Witt’s Extension Theorem). Suppose that U is a
subspace of V' and that the map f : U — V is a linear isometry. Then there is a
linear isometry g : V- — V such that g(u) = f(u) for all uw e U if and only if
f(UnradV) = f(U) nradV.

We omit the proof, but it can be found in [16].

Corollary 4.33. Any two maximal totally singular subspaces of V' are isometric

and have the same dimension.

Proof. Let Wi be a maximal totally singular subspace of V' with dim W; = n and let
W3 be a totally singular subspace with dim Wy < n. Let {us, ..., u,} be a basis for
Wy and {vq,...,v,} be a basis for Wy. Since V' is regular, we have that

Wy nradV = {0} and Wy nrad V' = {0}. Let f : Wy — V be the linear map given
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by v; — u;. Note that for each basis element of W5 we have that

Q(v;) = Q(f(v;)) = Q(u;) = 0. Hence f is an isometry. Additionally,

f(WenradV) = f({0}) = {0} = f(W3) nradV since f(W53) is a totally singular
subspace of V. Then there exists a linear isometry g : V' — V such that f(w) = g(w)
for all w € Ws. Since ¢ is an isometry, g~*(W}) is a totally singular subspace and

since g is a bijection, n = dim Wy = dim g(W) = dim W;. O

Definition 4.34. Let (V, Q) be a quadratic space. The dimension of a maximal

totally singular subspace is called the Witt index and is denoted m(V).

Now that we have proven that the dimension of maximal totsithgular subspaces
are invariant, we want to catalog the Witt indices of odd digienal regular quadratic

spaces and their regular hyperplanes.

Proposition 4.35. If (V, Q) is reqular quadratic space where dimV = n is odd,
then m(V) = -

T2
Proof. Let (V, Q) be a regular quadratic space with dim V' = n where n is odd. Then

n=1
by Proposition 4.23 we have V = 5,2 H; ©rad V where H; is a hyperbolic plane

for each i € {1,..., 22}, Let (hs, hi2) be a hyperbolic pair for each H;. Then the

n—1

subspace T' = (hi1, hau, - - -, hanl 1, is a totally singular subspace of dimension “3

Now by way of contradiction, suppose that 7" is not maximal. That is, there
exists S < V such that T"< S but T # S. This implies that dim S > dim 7. Suppose
that dim S = dim T + 1. Let {hqyy, hoy, . . ., hanll, s) be a basis for S. Since
B(s,hy)=0forallie{l,..., "T’l}, Proposition 4.19 implies that s ¢ H; for every ¢
since each H; is regular. Therefore, (s) < rad V' which implies that V' is not regular.

This is a contradiction, and so 1" must be a maximal totally singular subspace, and

dim 7T = 271, O

Proposition 4.36. Suppose (V,Q) is a reqular quadratic space of dimension n. The

space V' is hyperbolic if and only if m(V') = 3.
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Proof. Suppose that (V, Q) is a quadratic space of dimension n. If V' is hyperbolic,
then by definition, we have n = 2m for some m € N and V = &'" | H; where {H;}™",
is a collection of hyperbolic planes. Note that each H; contains a hyperbolic pair
(hi1, hiz). Then subspace T' = (hyq, ha1, - .., 1) is a totally singular subspace and
dimT =m = 3.

Now suppose by way of contradiction, that T" is not maximal. Then there
exists S € V such that T'< S but T"# S. Let dim S = dim 7" + 1 and let
{h11, ..., hm1, s} be a basis for S. Since B(s, h;1) =0 for alli e {1,...,m},

Proposition 4.19 implies that s ¢ H; for every ¢ since each H; is regular. Therefore,

V=V=@" Hao(s)and so dimV = 2n + 1 which is a contradiction since V is a

n

hyperbolic space. Therefore, T' must be maximal and dim7T" = 7.

Now suppose that V' contains a maximal totally singular subspace, T', of of
dimension m = 7. Note that since V' is regular we have T'nrad V' = {0}. Now
induct on the dimension of 7. If m =1 then T" = {t;). By Proposition 4.16, we have
that there exists a hyperbolic plane H = (¢, s1). Since we know that if m = 1, then
dimV = 2, we must have V = H and so V is hyperbolic. Now suppose that if
dimV = 2m — 2 and V contains an m — 1 dimensional maximal totally singular
subspace, then V' is hyperbolic. Let {¢1,...,t,} be a basis for T'. Let
C =(ts,...,tmy*. Note that dim C' = Z + 1 by Proposition 4.9. Additionally,

T < C. Note that since dim C' > dim 7T, there exists s € C such that s ¢ T" but
B(ty1,s) # 0. Without loss of generality, suppose that B(s,t;) = 1. If s is singular,
then we have the hyperbolic pair (¢1, s). If s is not singular, then (¢;, Q(s)t; + s) is a
hyperbolic pair. Let H; be the hyperbolic plane that contains ¢; and is orthogonal
to C. Then V = H, ® Hit and {t,,...,t,» S Hi. Note that dim H{ = 2m — 2 and it
contains the maximal totally singular subspace T" = (ta, ..., t;). Since Hi is

regular dim 7" = m — 1, the induction hypothesis gives us that Hi- is a hyperbolic

space. Hence there exist hyperbolic planes { H;}!", such that Hi- = @;", H; and so
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V =", H; and so V is a hyperbolic space. ]

Note a consequence of Proposition 4.36, we have thi&t i) is a regular
quadratic space withim V' = 2n, and that/” is elliptic, thenm(V) = § — 1.

It is at this point that we focus our attention on quadrat@acgs over finite fields.
We will utilize the trace function given by finite fields to amour understanding of

regular hyperplanes.
Definition 4.37. The field IF, is the field containing ¢ elements.
Assumption. Suppose that |F| = (2") for some h € N.

Definition 4.38. Let F be a finite field of characteristic 2 such that |[F| = 2" for

some h € N. Define tr : F — Fy given by tr(a) = a +a®+ -+ a2 .

Proposition 4.39. IfF is a finite field of characteristic 2 such that |F| = 2" for

some h € N, then tr(a + 8) = tr(a) + tr(83), tr(a?) = tr(a) for all a,B € T,

Proof. Let F be a finite field of characteristic 2 such that |F| = 2" for some h € N.

2h—1

First let a, 3 € F. Then tr(a+ ) = (a + B) + (a + B)? + -+ (a + B)? =
at+a+ a4+ B = tr() + tr(B).

Next, consider that since F is a finite field, we have that a — a2 is the
identity map since the nonzero elements of F form a cyclic group under

multiplication. Therefore,

tr(@®) +tr(a) = o+ o'+ -+ +a¥ va+at+- 4+

2h— 2h—1

—?+al -+  +ata+ralt o fa =0.

Hence, tr(a?) = tr(a) for all a € F. O

Proposition 4.40. Let F be a finite field. The polynomial 2* + x + 3 € F[z] is
irreducible if and only if tr(B) = 1.
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Proof. Suppose that 2% + = + 3 € F[z] is reducible. Then for some v € F we have
v+~ + B =0, or equivalently, v2 + v = 3. But then
tr(8) = tr(y* +7) = tr(v?) + tr(y) = 2tr(y) = 0.
Now suppose that F = Fy. for some n € N and that
0=tr(8) =B+ B*+---+ B> . Note that for any a € F\{0} that we have

a?" "t =1 and so o®" = a. If n is odd, then n = 2m + 1 for some m € Z. Let

To=0+ B4+ 8%+ + 52" + 32" and consider

wotzo+ B = (B4 B0+ BT 4 g
+(/6+ﬁ4+ﬁ16++ﬁ22m72+/6227n)+ﬁ
— 52 +58 +ﬁ32 +”'+522m—1 +522m+1 +ﬁ+ﬁ4+"'+522m72

+/622m —I—/B

22m71 22m

=B+ B+B+B+8 +8+-+ 5+ =tx(8) = 0.

Hence, we know that 2% + x + 8 has a root and so it is reducible.

Now suppose that n is even, and let vy € F such that tr() = 1. Then define

2

2o =B+ (Y +)B + -+ (Y + 2+ #9272 and consider

Ztao+ 8=+ +P)B (P )
+(752+---+(7+72+-..+72"*2)ﬁ2nfl)_'_5

=B+ B+ (r+ )BT+ B = yt(B) = 0.

Hence we know that 22 + x + 3 has a root and so it is reducible. O
Proposition 4.41. Let F be a finite field and a,b € F\{0}. The polynomial
ax® + bz + ¢ € Fz] has a root if and only if tr(5) = 0.

Proof. Let F be a finite field, and let f(z) = az? + bz + ¢ € F[z]. Note that since F
is finite and has characteristic 2, then F is perfect. Suppose that f is irreducible.

Now consider the polynomial g(z) = f(%z) = 2—2&:82 + %ZE +c= %(:ﬁ +r+ ).
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Note that by Proposition 4.40 tr(f5) = 1 if and only if g is irreducible if and only if
f is irreducible. O

The previous propositions provide us another way to tesplfae is hyperbolic or

elliptic when using Proposition 4.15.

Proposition 4.42. IfF is a finite field of characteristic 2 such that |F| = 2" for
some h € N, then for each c € Fy, there are exactly 2"~ elements a € F such that

tr(a) = c.

Proof. Let T be a finite field of characteristic 2 such that |F| = 2" for some h € N.
First, suppose that tr(IF) = 0. Then by Proposition 4.41, we know that every monic
quadratic polynomial, 2 + bz + ¢ € F[x] is reducible. Therefore, we know that every
monic quadratic polynomial is of the form (z — f;)(x — 52) for some Sy, 5 € F.
Consider the set of monic, quadratic polynomials over this field, that is

Flz] = {#® + cnz + ao : a1, a5 € F}. Let h : F? — F[z] be given by

h(ay, az) = 22 + a;x + ay. This function is clearly a bijection and therefore,

|F[z]| = |F|*. However, since each monic polynomial is reducible, we have that

Flz] = {(x — B1)(x — B2) : B1, B2 € F}. Let g : F? — F[z] be given by

9(B1, B2) = (z — B1)(x — Ba). Note that g(51, f2) = g(52, £1) and so g is not injective.
This implies that |{(z — £1)(z — B2) : 1, B2 € F}| < |[F|*> which is a contradiction.
Hence there exists an element 5 € F such that tr(8) = 1. Now note that for any

« € ker(tr), we have that tr(a + ) = 1. Now we can build the coset of 8 + ker(tr) in
the additive structure of I, that this is a well-defined coset. Note that since ker(tr)
is a subgroup of F, we know that by Lagrange’s Theorem, [F : ker(tr)] = 2 and so

| ker(tr)] = |3 + ker(tr)| = El — oh—1, O

2
The final result of this section is to show that if a quadrapiace is written as the

orthogonal direct sum of two elliptic planes, then it is atyia hyperbolic space. This

result allows us to obtain ideal bases for hyperbolic spaces
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Proposition 4.43. Let F be a finite field. If Ey, Ey are elliptic planes in a

quadratic space (V,Q) and Ey € Ey-, then E1 ®© Ey is a hyperbolic space.

Proof. Let {uy,v1} and {us,v2} be bases for E; and Es respectively. Without loss of
generality we can suppose that Q(u1) = B(uy,v1) = 1 and Q(ug) = B(ug,v,) = 1.
Now let z € rad(F; © E5). Then x = auy + bvy + cuy + dve. Note that
B(z,uy) = B(x,v1) = B(x,us2), B(x,v2) = 0 implies that a = b= ¢ =d =0 and so
x = 0. Therefore, rad(F; © Ey) = {0} so £y © Ej is regular.

We will show that E; & Es contains a two dimensional totally singular

subspace and we consider two cases.

Case 1. Suppose that Q(v;) = Q(v2). Then the subspace T' = {(uy + ug, v; + v2) has

the properties that

Q(ug +ug) = Quy) + Q(uz) + Bug,ug) =1+14+0=0,

that

Q(v1 +v2) = Q(v1) + Q(v2) + B(vy,v2) =0,

and that

B(ul + ug,v1 + UQ) = B(Ul,’Ul) + B(UQ,UQ) =1+1=0.

Hence T' is a two dimensional totally singular subspace and by Proposition 4.36,

FE, & E, is a hyperbolic space.

Case 2. Suppose that Q(v;) # Q(v2) and define the polynomials

f(x) = Q(zu; +v1) = 2% +  + Q(vy) and g(x) = Q(zuy + v5). Clearly f # g. Since
E4, E, are elliptic planes, we know that tr(Q(vy)) = tr(Q(vz)) = 1. Therefore, we
know that tr(Q(v1) + Q(v1)) = 0. Hence the polynomial

h(z) = 22 + = + (Q(v1 + Q(v9))) is reducible. Since h is reducible, then there exists

s € F such that h(s) = 0. Consider the basis {ug, sus + vy} for Es. This implies that
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Q(zuy + sug +vg) =2 + 2 + (s> + s + Q(v2)) = 22 + x + Q(v1) = f(z). Then the

subspace T' = (u; + ug, v1 + sug + vg) has the properties that
Qur +u2) = Q(ur) + Q(uz) + B(uy,u2) =1+1+0=0,
that

Q(v1 + sug + v2) = Q(v1) + Q(suz + v9) = Q(v1) + Q(v1) =0,

and that

B(uq+ug, v1+sus+vy) = B(ug+ug, v1)+sB(uy+usg, ug) + B(u+ug, v9) = 1+40+1 = 0.

Therefore, T' is a two dimensional totally singular subspace and by Proposition 4.36

E, © Es is a hyperbolic space. [

5 A CORRESPONDENCE BETWEEN POINTS AND HYPERPLANES

The graphV O3, ., (2") is defined on hyperplanes of an odd dimensional regular qtiadr
space. Usually, it is useful to consider a set of vectoreawbf hyperplanes. Sinéeis
characteristic 2, the usual convention of identifying hyenes with the vector in its
orthogonal complement doesn’t work here. So instead, wWedenelop a correspondence
between the regular hyperplanes of an odd dimensionalaequkdratic space and

vectors in a regular quadratic space of one fewer dimension.

Definition 5.1. Two maximal totally singular subspaces are said to be

complementary if they have trivial intersection.

This definition allows us to develop bases for two complemgmiotally singular

subspaces where the vectors are almost all orthogonal.

Proposition 5.2. Let (V,Q) be a regular quadratic space with Witt index m. The
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subspaces T and S are complementary if and only if there exist bases {t1,...,tm}

and {s1,...,sn} for T and S, resepectively, such that B(t;,s;) = d;;.

Proof. Suppose that there exist bases for T' = (¢;,...,t,» and S = (sq,...,,) such

that B(t;, s;) = 0i;. Let v€ T n S. Then x = 3" | a;t; and & = 377, b;s;. Note that
since z € S, we have B(xz,s;) =0 for all i € {1,...,n}. Hence, we have

0= DB}, aiti,s;) =a; for all je{l,...,n}. Hence we must have x = 0 and so the
intersection is trivial.

Now suppose that 7" and S are maximal and that 7'n S = {0}. We will
induct on the Witt Index of V. First suppose that dim7T = dim S = m = 1. Let
T = (t;y and S = (s1). Since m = 1, then dim V' = 2 or dim V' = 3. Suppose that
dim V' = 2 and that B(t;,s;) = 0. Since {t1, s1} is an independent set, then {#,s;}
is an orthogonal basis for V. This implies that V' is not regular by Proposition 4.19,
which is a contradiction. Hence B(t1, s1) # 0 and therefore, there is a basis {t1, s}}
such that B(t,s)) = 1.

Now suppose that dim V' = 3 and B(ty, s;) = 0. Since V is regular, then V
contains a nontrivial and nonsingular radical. Let rad V' = {r). But then we know
that {t1, s1,7} is an independent set and a basis for V. However, this implies that
t; € rad V which implies that V' is not regular, a contradiction. Therefore,

B(t1, s1) # 0 and thus there is a basis {t1, s}} such that B(t, s}) = 1.

Now suppose that when m = k then there exist bases {t1,...,#;} and
{s1,...,s,} for T and S, respectively, such that B(t;,s;) = d;;. Let m = k + 1. This
implies that dimV = 2k + 2 or dimV = 2k + 3. Also, dim7T =dim S = k + 1 and
that T'n S = {0}. Let t; € T\{0}. If B(t;,s) =0 for all s € S then S is not maximal
which is a contradiction. Therefore, since S is maximal, then without loss of
generality, there exists s; € S\{0} such that B(t;,s;) = 1. This implies that (¢, s1)
is a hyperbolic pair and that V' = (t1, s1) © (t1, s;)* where (¢, s1)* is a regular

space with Witt index m = k. Consider that the subspaces T" = T n (t;, s1)* and
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S" =8 N {ty, s1)*" have trivial intersection since T'n S = {0} and that

dim 7" = dim S” = k. Therefore by the induction hypothesis, there exist bases

{ta, ..., ter1} and {sq,...,sk41} for T" and ', respectively, such that B(t;,s;) = ;5.
Therefore, the bases {t1,...,tr41} and {s1,...,sk41} for T and S, respectively, have

the property that B(t;, s;) = di;. a

The previous proposition will allow us to write down a specbasis for any odd
dimensional regular quadratic space. This basis lets @sagivformula for all of the

regular hyperplanes that space.

Proposition 5.3. If (V,Q) is a reqular quadratic space with dim'V' = n for some
oddneN and if T, S <V are mazximal, complementary, totally singular subspaces,

then V. =(T@®S)GradV.

Proof. If n is odd then we have m(V) = 221 by Proposition 4.35. Hence, T, S are
complementary totally singular subspaces of V' implies that dim(7°@® S) =n — 1 and
sodim((T@®S)SradV)=2n+1landsoV =(T®S)SradV. O

Corollary 5.4. If dimV =2n + 1 and (V,Q) is reqular, then there is a basis for

V= <b1762a RS b2n*1’ b2n’r>

where r e rad V\{0}, Q(r) = 1, and B(bg;_1,bsj) = d;j for alli,je {1,...,n}.

Proposition 5.5. If (V,Q) is a hyperbolic quadratic space with dim'V = n for some

evenn € N and if T, S €V are mazximal, complementary totally singular subspaces,

thenV =T®S.
Proof. Since n is even, then we have m(V') = § by Proposition 4.36, and so we have
dim7T = dim S = § and so dim(7'® S) =n and hence V =T ® S. O

Corollary 5.6. If dimV = 2n and (V, Q) is hyperbolic, then there is a basis for
V= <b1, bg, ey bgnfl, bgn> and B(bg,;l, bgj) = (S,'j fOT all Z,] € {1, e ,n}.
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Since the direct sum of complementary totally singular pabss will always be a
subspace of their quadratic spaces, we will find it usefullémtify vectors with their

components from the two complementary totally singulaspaloes.

Definition 5.7. Let T',.S be complementary totally singular subspaces of a regular
quadratic space, (V;Q), and let z =t + s+ r eV for some t € T, s € S, and

r € rad V. Define the proj;(x) =t to be the projection of z onto T.

The next proposition allows us to find a hyperbolic plane amiihg any given

vector in space. This allows us to determine the intersedf@ur hyperplanes.

Proposition 5.8. If (V,Q) be a singular quadratic space with dimV = 2n for some

n € N, then any vector x € V\{0} is contained in a hyperbolic plane.

Proof. Since V is regular, if Q(x) = 0 then by Proposition 4.16, z is in a hyperbolic
plane. Now suppose that Q(z) # 0. Since dim V' = 2n, then we know that = ¢ rad V.
Therefore, there exists y € V such that B(z,y) # 0. Let

f(9)=Q(x+vy) =1+~B(z,y) + v?Q(y). If f is reducible, then there exists

z € {x,y) such that Q(z) = 0 and B(z, z) = 1. Therefore, if w = Q(x)z + x then
Q(w) = Q(x)*Q(2) + Q(z) + Q(z)B(x,2) = 0 and so (z,w) = (x,y) is a hyperbolic
plane that contains .

If f is irreducible, then (z,y) contains no singular vectors and must be an
elliptic plane. Since V is singular, then we know that (x,y)* is singular and hence
there exists a hyperbolic plane, H < {z,y)*. Therefore, there exists w € H such that
Q(w) = Q(y). Then B(w +y,x) = B(x,y) # 0 and Q(w +y) = Q(w) + Q(y) = 0.
Therefore by a similar argument to above, (x,w + y) spans a hyperbolic plane that

contains x. O

The next proposition begins our work towards developingctireespondence
between regular hyperplanes and the points in a vector $pacis the same dimension as

the hyperplanes. Here we identify a sequende which will become our point that we
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associate with the hyperplane. It is at this point which wizetthe previously known
results to identify the regular hyperplanes of an odd dinwerad quadratic space and

vectors of a regular quadratic space of one dimension fewahas a new identification.

Theorem 5.9. Let (V,Q) be a regular quadratic space with dimV = 2n + 1 for
some n € N. If a hyperplane H <V is reqular, then there exists a unique sequence of
elements, {3;}?",, in F, such that

H =& (bai1 + Boj1r,bay + Bayry. Conversely, if {B:}2" € F*" is a
sequence, then the hyperplane H = @) (by;i_1 + Pai—17, by + Poyr) is a regular

hyperplane.

Proof. Let H <V be a regular hyperplane. And let {b;,...,by,,r} be a basis for V'
given by Corollary 5.4. Then we know that r ¢ H, and so dim(H N {(by; 1, be;, 7)) = 2
for each 7 € {1,...,n}. Now let {z,y} be a basis for H n (by;_1, by;, ). Then

x = aby; 1 + cby; + dr and y = eby; 1 + fby; + gr for some a,c,d, e, f,g € F. Since x
and y are independent and H is regular, then we know that either a # 0 or ¢ # 0
and that e # 0 or f # 0. If @ # 0 then let p € F such that v =y + px = f'by; + ¢'r.
And then let g € F such that 2’ = x + qy’ = a’by; 1 + d'r. A similar construction can
be made for " and g’ if ¢ # 0. In either case, without loss of generality, there exists
a basis for H n (by;_1, ba;, ) of the form {by; 1 + [a;_17, ba; + Boir} for some

Bai—1, Po; € F. Therefore, we know that for each i € {1,...,n} we have

H n{bgi_1,bo;, ) = {bgi_1 + Pa;i_17, ba; + Po;r). By construction and the basis for V'
from Corollary 5.4, the planes are orthogonal for distinct i, 5 € {1,...,n}.
Additionally, if (by; 1 4 Ba;—17, bai + Bai) N (baj 1 + Baj 17, baj + Pojr) # {0} then

{b1,...,bay_1,7} is not an independent set which is a contradiction. Hence we have

H = @<b2i—1 + Bai—17, bay + Poir).
i=1

Now consider H = @7 | {(by;_1 + [2i—17, ba; + o) and
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H =@ (b1 + Yai_17, ba; + 7Y2i7). Since H is written as a direct sum, the
intersection of any two planes must be trivial. Hence, for all i € {1,...,n},
H n{boi 1,b9;, 7} = (boi 1 + Poir, by; + Poiry = (ba; 1 + Yai_17, ba; + ;7). Note that if
Boi_1 # Yoi—1 then we have (B;_1 + Y2i_1)r € H N (bo;_1, ba;, ) which is a
contradiction since H is a regular hyperplane. Hence f9;_1 = y9;_1. A similar
argument shows that (; = 79; and so the sequence of {f3;}?", is unique.

Now suppose that for some sequence {f3;}!; that the hyperplane
H =@ (b 1+ [ai 17, bai + Po;r) but also that H is not regular. Let z € rad H.
Then we know that « = Y\ | (a2i—1(bai—1 + Boi—17) + a9i(be; + Poir)) where a; € F for

all i e {1,...,2n}. Additionally, we have that

B(x,bai—1 + Pai—1r) = B(agi(ba + f2ir), bai—1 + Poi—1r) = ag; =0

for all i e {1,...,n}. A similar argument shows that ag_; =0 for all i € {1,...,n}.

Therefore, x = 0 and so rad H = {0}. Therefore, H is a regular hyperplane. O

Now that we can identify a given sequence with regular hylpegs, we now want

to determine which hyperplanes are hyperbolic and ellggtien the sequence.

Theorem 5.10. Let H €V be a regular hyperplane and let
H =& (byi—y + Pai_17,ba; + Poir). The hyperplane H is hyperbolic if and only if
tr(Z?zl Bai—1B2i) = 0.

Proof. Let P; = (by;_1 + Po;i_17, ba; + [o;r). Since P; must be regular for all
i€ {l,...,n} by Proposition 5.9, then by Corollary 4.14, P; is either a hyperbolic
plane or an elliptic plane.

Now consider the polynomial
f(x) = Q(x(bai—1 + Boi17) + b + Boir) = $2ﬁ§i_1 + x4+ ﬁ%l By Proposition 4.41, P;
is hyperbolic if and only if tr(3% ;8%) = tr((B2_152:)?) = tr(Bei_182) = 0 and P, is

elliptic if and only if tr(f8e 152) = 1.
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Next, suppose that H is a hyperbolic hyperplane. If P; is hyperbolic for all ¢,

then we have

Z tr(Bai—152) = tl"(Z Bai-1B2:) = 0.
iz i=1

If P; is not hyperbolic for all 7, then consider the set
B ={j : tr(Boj-152;) = 1}.
By Proposition 4.43, we know that if 7, k € E then

tr(B2j—102;) + tr(Bax—1021) = 0

and therefore P; © Py, is a hyperbolic space.

Since H is hyperbolic, the Witt index is n. Suppose that |E|mod2 = 1.
Then there exists an elliptic plane P; so that H = @;‘;in © P, where H, is a
hyperbolic plane for all ¢ € {1,...,n — 1}. But then since P, is elliptic, it contains no
singular vectors and thus m(H) = n — 1 which is a contradiction. Thus we have

|| mod2 = 0 and hence
tr <Z 521'—1522‘) = 0.
i=1

Now suppose that 0 = tr(}]" | Bai—182:) = Xy tr(B2i—152). Now if
tr(fa;_152:) = 0 for all 7, then each P; is a hyperbolic plane and so H is a hyperbolic
hyperplane. If tr(f_102) # 0 for all i then let E = {j : tr(fa;_152;) = 1}. Clearly
we must have |E| mod 2 = 0 and so by Proposition 4.43, there exist hyperbolic

planes {H;}", such that H = &} | H; and so H is a hyperbolic hyperplane. O

Since the construction af O3, ., (2") involves computing the intersection of

hyperbolic hyperplanes, we now compute these intersextiogeneral.

Proposition 5.11. Let H, K be reqular hyperplanes of V. If



40

H = @?:1@22’4 + Bai17, ba + Por) and K = @?:1@22;1 + Yai—17, ba; + Y2i7), then

HﬁKZ{i b-{-ﬁz i ﬁz'{‘% }

Proof. Let x € H n K. Then for some scalars a;,¢; € F for i € {1,...,2n} we have
2n 2n
T = Zai(bi + Bir) = Zci(bi +T).
i=1 i=1
Thus,

0= Z ((al + Cl)bz + (CLZﬁZ + ci%)r) = Z ((CLZ + Cl)bl) + (Z(alﬁl + Cz’Yz)) T

=1 =1 1=1

Since {b1,...,bo,, 7} is a basis for V, then a; = ¢; for all i € {1,...,2n} and
St ai(Bi + i) = 0. o

In our final result, we establish a bijection between the hyplec hyperplanes of
an odd dimensional quadratic space and the points of a qi@space of one dimension

fewer. We will use this bijection to prove a graph isomorphia Section 5.

Proposition 5.12. Let (Vi, Q1) be a regular quadratic space of dimension 2n + 1
for some n € N and (Va,Qa) be a hyperbolic quadratic spaces of dimension 2n. If
H ={H < Vi: H is a hyperbolic hyperplane} and Py = {v e V5 : tr(Q(v)) = 0},

then |H| = |Pul.

Proof. Let n € N be given, let (V;,Q1) be a regular quadratic space with
dim V) = 2n+1 and let {by, ..., by, r} be the basis for V; given by Corollary 5.4. Let
(Va,Q2) be a hyperbolic quadratic space with dim Va = 2n, and let {e;, ..., ea,} be

the hyperbolic basis for V5 given by Corollary 5.6. This implies that if v € Py, then

2n
v = Z piei
1=1
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such that
tr <Z 521'—1522‘) = 0.
i=1

Define the function f : Py — H given by
f(v) = B {bai_1 + Bai_17, by + Par). Note that since {e;}?" is a basis for V5 that

f is well-defined. Also, by Theorem 5.10 we have that

n

f(w) = b1 + Bai17, by + Boir)

i=1

is a hyperbolic hyperplane of V;. We claim that f is a graph isomorphism.

Note that if H € H then by Theorem 5.9 there is a sequence {f3;}2", such that
H = @<b2i—1 + Bai—17, bay + Bair).
i=1

Clearly, if we let v = 222:1 Bie; then f(v) = H, and v € Py by Theorem 5.10 so f is

surjective. Let u,v € Py such that

2n
u = Z Yi€;-
i=1

Now suppose that f(v) = f(u). Then

@<b2i71 + Boi 11, byi + Pair) = @@22’4 + Yai 17 bai + Yair)

i=1
and by Theorem 5.9, u = v and so f is injective. Hence f is a bijection and

|H| = |Pul. O

6 ISOMORPHIC STRONGLY REGULAR GRAPHS

In this section, we formally define the graprO;, ., (2"). In addition, we define two new

graphs on the points of an even quadratic space. We will thew shat one of our new
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graphs is isomorphic t&/ O;, ; (2") and prove that both new graphs are strongly regular.

Definition 6.1. Let (V, Q) be a regular quadratic space with dimV' = 2n + 1 for
some n € N, and let H be the set of hyperbolic hyperplanes of V' and let £ be the
set of elliptic hyperplanes of V. Define the graph on H or £ with H ~ K if and only
if H " K is not regular. The graph on H is denoted by NO3, ;(2") and the graph
on & is denoted by NOg,.;(2") .

Definition 6.2. Let (V, Q) be a hyperbolic quadratic space with dim V' = 2n for
some n € N, and where |F| = 2" for some h > 2. Let Py be the vectors in V' such
that tr(Q(v)) = 0 and let Pg be the vectors in V' such that tr(Q(v)) = 1. We will
call the set Py the hyperbolic points. Define the graphs on Py and Pg with

v ~ u if and only if v # u and Q(u + v) + B(v,u)* = 0. We denote this graph on Py
by NO;, (2") and we denote the graph on Pg by NO,, (2"). We will call NO3, (2")

the hyperbolic points graph.

In order to prove that the hyperbolic points graph is isorhapo NO;,, , (2"),
we will need to show that the number of vectors with trace etyuzero is the same
number as hyperbolic hyperplanes usedVif;, ., (2"). Since every singular vector has
trace equal to zero, we begin by counting the number of sargidctors in an even

dimensional quadratic space.

Lemma 6.3. Let (V,Q) be a regular quadratic space of dimension 2n where n € N

and assume |F| = 2" for some h e N. If (V, Q) is a hyperbolic quadratic space, then
[ker@) = (20 — 1))t + (2P,

Proof. We first note that since (V, Q) is a hyperbolic quadratic space, then there
exists a basis {b;}7"; such that V = @&} (by;_1,bs;) where (by;_1,bs;) is a hyperbolic

pair. Hence for any x € V' we have

2n n
=Q (Z Clz'bi) = Zazi—ﬂm-
i=1 i=1
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Suppose n = 1. Then dim V' = 2 and so Q(a1b; + asby) = ajas = 0 if and only
if a; =0 or as = 0. Thus
|ker Q| =21 —1 = (2" —1)(1) + 2" = (2" — 1)(2")° + (2")".

Now for ease of notation, let ¢ = 2". Also suppose that for n = m for some

m = 1 we have

| ker Q| = (¢ —1)¢" ' + ¢ .

Now let n = m + 1. Then we have dimV = 2m + 2 and

i=1 i=1

2m+2 m+1
Qz) =Q Z Z Agi—10Q2; = Zam 102; + G2m4102m+2-

If 37" agi—1ag; = 0 then Q(z) = 0 if and only if agyy1 = 0 or agyie = 0. There are
2q — 1 choices for such coefficents. If Zﬁl a9;_1a9; 7 0 then ag,,.1 # 0 and
aom+o 7 0. Additionally, we know that without loss of generality, we can choose

aom+1 to be any nonzero element, and then as,, s is determined. Hence

[ker Q| = (2¢ = D[(¢ = D)g" " + ¢+ (¢ = D[¢*" — [(¢ = Vg™ + ¢ ]

m+1 2m—+1

=q¢"" —q¢" +q

= (¢ —1)g" + ¢

Hence by induction, we have |ker Q| = (2" — 1)(2")"=1 + (27)n~L, O

Using Lemma 6.3, we now will be able to find the cardinalitylué set of

hyperbolic points and set of elliptic points.

Theorem 6.4. Let (V,Q) be a hyperbolic quadratic space with dim'V' = 2n for some
neN. Also let |F| = q. If Py = {v e V : tr(Q(v)) = 0}, then |Pu| = 3(¢*" + ¢").

Proof. First we note that tr(Q)(v)) = 0 if and only if Q(v) = 0 or if Q(v) = o where

tr(a) = 0. Note that by Proposition 4.42, we know that there are ¢" ' —1 =% —1

nonzero elements with trace equal to 0. Next we note that by Lemma 6.3, we have
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|ker Q| = (¢ — 1)¢™* + ¢ '. This implies that there are % singular lines in V'

L [erQI 1 pon—1 _ gn—1 popsingular lines in V. Note that since

and there are qzn:l =

q q
[F is perfect, for each element « € F there exists a unique element, z, of a
nonsingular line such that Q(x) = «. Therefore

Pul = (g —1g" "+ ¢+ (§—1) (¢ = ") = 5(¢*" +¢"). O

Corollary 6.5. Let (V,Q) be a hyperbolic quadratic space with dim' V' = 2n for some
neN. Also let |F| =q. If Pp ={veV :tr(Q(v)) = 1}, then |Pg| = %(q2n ).

Proof. Since tr : F — [y, we know that any vector in F that does not map to zero,

must map to 1. Hence |Pg| = [V| = |Pu| = ¢ — 1(¢*" — ¢") = 3(¢*" — ¢"). O

With the cardinality of the hyperbolic points set deterndiype can now use our
bijection from Proposition 5.12, to show that the hyperbplbints graph andv Oy, ., (2")

are isomorphic.
Theorem 6.6. NO3, . (2") is isomorphic to NO3, (2").

Proof. Let n € N be given, let (V1,Q1) be a regular quadratic space with

dim V) = 2n + 1 and let {by,...,bo,, 7} be the basis for V; given by Corollary 5.4.
Let (Va, @Q2) be a hyperbolic quadratic space with dim Vo = 2n. Let {eq,...,ea,} be
the hyperbolic basis for V5 given by Corollary 5.6. Recall that

Py ={veVy:tr(Q(v)) =0} and H = {H < Vi : H is a hyperbolic hyperplane}.

Let v € Py. That is
2n
v = Z Biei
i=1
such that

tr <Z 522'1521') = 0.
im1

Let f . PH —H given by f(’U) = @?=1<b2i_1 + 522'_17”, bgi + 522'7’> be the

bijection from Proposition 5.12. Additionally, this gives us that |H| = |Pg|. Now let
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v,u € Py. By Proposition 5.11

fw {Z (b + Bir) + Y ai(Bi + i) = }
=1 =1
Let {¢;}?", be a sequence in F such that

61;1 + Vi1 if - = Omod?2
C; =

Biz1 + Vig1 if i = 1mod?2.

We claim that © = 37", ¢;(b; + Bir) € rad(f(v) N f(u))\{0}. Clearly, = # 0, and we

have that

2n

Do alBi+7) = (Ba +72) (B + )

=1

+ (Br+7)(B2+72) + -+ (Bon1 + Yon1)(Ban + 72n) = 0.

Hence z € f(v) n f(u). Note also that

< zn: b +62 >=zn:zn:a,iCjB(bj,bi)

i=1j=1

= Q1Cy + A2C1 + A3C4 + A4C3 + *++ + A2y _1C2pn, + A2y Con_1

2n

= Zal(ﬁl + ’}/i) = 0.

=1

Hence x € rad(f(v) n f(u))\{0}.
Now let y € rad(f(v) n f(u)). Then

2n
y = di(bi + Bir)
i1



where d; € F for all i € {1,...,n} and

Now let z € f(v) n f(u). Then

2n
2= filbi + Bir)
i=1

where f; e F for all i € {1,...,n}, and

Then we have that
2n 2n
0=B(y,z) = >, >, difiB(bi,b;) = dvfo + dofy + -+ + don1.fon + don fon1

i=1j=1

This implies that that

4 — C(ﬁ,;l + %,1) if = Omod?2

C(ﬁprl + %’Jrl)) if i = 1mod?2.

Hence, y € (x) and so rad(f(v) n f(u)) = (x).

46
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Additionally, we have that

Q(x) =Q (Zn: Ci(bi + @'7’)) =Q (Zn: ciby + (Zn: Ciﬁi) 7”)

i:;n N i:21 i=1
= Q((;Q@)) + <ZZ; Czﬁz)

2n 2
= (Br+7)(B2 +72) + -+ (Bon—1 + Y2n—1)(Bon + 720) + (Z Ciﬁi)

i=1
=Q(B+7)
+ (B2 +72)B1 + (B1 +7)B2) + -+ + (Bon + Y2n) Ban—1 + (Bon—1 + 72n—1)ﬁ2n)2

= Q(B+7) + B(8,7)%

Then we have 3 ~ v if and only if Q(8 + ) + B(8,7)? = 0 if and only if
Q(z) = 0 if and only if f(8) n f(7) is not regular.
Therefore, f is a graph isomorphism. Hence NOJ, +1(2h) is isomorphic to

NO;,, (2M). O
Theorem 6.7. NO,, ,(2") is isomorphic to NO,, (2").

Proof. The function f : Prp — & given by f(v) = & {(boi—1 + Pai_17, by + Poir) is

clearly a graph isomorphism and the proof is identical to that of Theorem 6.6. O

We note that it is known [4] that N}, , (2") and that NQ, ., , (2") are strongly
regular, but we prove that Nf)2") is strongly regular for completeness. But first, we
need to catalog some properties of a useful function to piteaiethe hyperbolic points

graph is strongly regular.

Definition 6.8. A graph is called a strongly regular graph if each vertex has the
same number of neighbors, k, that adjacent vertices have the same number of
common neighbors, A\, and that non-adjacent vertices have the same number of

common neighbors, p. We will often say a graph is an SRG(v, k, A, p).
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Lemma 6.9. For all x € V there exists a linear bijection 7, : V — V with the

following properties:

1. ForyeV,

m(y) =y (6.1)

if and only if B(x,y) = 0. In particular, 7,(x) = .

2.
7(1:(y)) = ¥ (6.2)
forallyeV.
3. Forally,zeV
B(1.(y), 2) = B(y, 7(2))- (6.3)
4. If x € Py, then
Q(7.(y)) = Qy) + B(z,y)*. (6.4)

Proof. Let x € V. Define the following function 7, : V' — V given by

7:(y) = y + vB(x,y)x where v € F\{0}. First, let a € F and y, z € V. Note that

T.(ay + 2) = ay + 2+ yBlay + z,x)x = a(y + 7By, x)x) + (z + vB(z,y)x)

= at,(y) + 7.(2).

Therefore, 7, is a linear function.

Now, suppose 7,(y) = 7.(2). Then y + vB(y,z)x = 2z + vB(z, v)x. Hence we
have that y + z = vB(y + z,z)x. Hence y + z € (x). This implies that
B(y + z,2) = 0 and so y = z. Hence 7, is injective.

Next, we know that B(z,y) = 0 if and only if 7,(y) = y + vB(z,y)z = y.
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Additionally, we know that

To(Ta(y)) = 2y + vB(y, x)z) =y + 7By, )z + By + vB(y, )z, 2)x = y.

Next, note that

B(7:(y),2) = By + vB(w,y)x,z) = By, 2) + vB(%,y)B(z, 2)

= B(y,z +vB(x, 2)x) = By, 72(2))-

Finally, suppose that x € Py. Then,

Q(1.(y)) = Qy +vB(z,y)v)

= Q) + Q(vB(y,x)z) + B(y,vB(y, z)x) = Q(y) + B(z,y)*(v*Q(x) + 7)

Note that v2Q(z) + v + 1 = 0 has a solution if and only if tr(Q(z)) = 0. Since

x € Py, then there exists v € F such that 43Q(z) + 0 + 1 = 0 and hence 7, given

by 7.(y) = y + 7 B(y, ¥)x has the property that Q(7.(y)) = Q(y) + B(z,y)>. O

The next Lemma will help us determine the set of hyperboliafsaconnected to a
given point in the hyperbolic points graph, called neiglsbdrhis characterization of this
set will help us compute the intersection between two seteighbors. In other words,

we will be finding the set of common neighbors to two hypempbints.

Lemma 6.10. Ifz € Py, and V, = {z € Py : z ~ z}, then

Vo = 2+ {7(y) - y € ker Q\{0}}.

Proof. Let x € Py be given let 7, : V. — V be the map from Lemma 6.9. Note that
forall zeV, z = x + 7,(x + 7,(2)) and that if 2 = z + 7,(y) for some y € V' then

y = = + 7,(2) by the injectivity of 7,. Therefore, z € {y : Q(x + 7.(y)) = 0} if and
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only if z + 7,(2) € ker @) if and only if

T4+ Te(x+71:(2) =zex+ {m(y) : y € ker Q}.

Hence, {y: Q(z + 7,(y)) =0} = 2 + {7.(y) : y € ker @}. Since y € V, if and only if
Q(z +y) + B(z,y)*> = 0 and z # y if and only if Q(7,(x + y)) = 0. Therefore,

Ve =2+ {7.(y) : y € ker Q\{0}}. U

Lemma 6.11. Ifz,ye Py, Vo, ={2€Py:z~a}, V, ={pePu:p~y}, and 7, be

the linear map from Lemma 6.9, then

Ve Vy={x+ 7.(2) : z€ ker Q\{0}, Q(z + 7:(y)) + B(x + 7.(y), 2) + B(z + 7.(y), 2)* = 0}.

Proof. Let w € V,. Then by Lemma 6.10, we know that w = x + 7,(z) for some

singular z. Therefore using properties of 7, from Lemma 6.9, w € V,, if and only if

0=Qy+w)+ Bly,w)?=Qy + +7.(2)) + B(y,z + 7:(2))
=Q(z +y) +Q(1.(2) + B(x +y,7(2)) + B(z,9)* + By, 72(2))?
=Q(z +y) +Q(2) + B, 2)* + B(ro(x + 9), 2) + B(z,x +y)* + B(1.(v), 2)*

= Q(z +7.(y)) + B(x + 7.(y), 2) + Bz + 7.(y), 2)%
Thus,
Ve Vy={x +7.(2) : z € ker Q\{0}, Q(z + 7(y)) + B(z + 72(y), 2) + B(z + 7.(y), 2)* = 0}.
]

This next lemma will give us the cardinality of the set of sifag vectors that are
orthogonal to a given vector. We will use this to help deterthe number of common

neighbors between two hyperbolic points.
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Lemma 6.12. Let (V,Q) be a regular quadratic space of dimension 2n for some

neN. If v e Py, then

Pl — g ifvekerQ

> if v ¢ ker Q.

[ker Q  (0)*| =

Proof. Suppose v € Py. First, suppose v € ker (). Then there exists u € V' such that
{u,v) is a hyperbolic plane. Therefore, V = (u,v)® (u,v)*. We will show that
ker Q n ()t ={bv+p:beT, pelu,v)t, Q(p) =0}. Note that since (u,v)* is

regular, then by Lemma 6.3,

2n—3+ n—1 _ n—2'

| ker Q|euyt = ¢ q q

Let z € ker Q N (v)*.

Then z = au + bv + p for some a,b € F and p € {u,v)*. Since z € (v)*,

B(z,v) = B(au + bv + p,v) = aB(u,v) =0

implies that @ = 0. Hence z = bv + p. Additionally, Q(z) = 0 if and only if Q(p) = 0.
Thus

ze{bv+p:bel, peluv)t, Qp) =0}

Now suppose that z € {bv +p:beF, pe {u,v)t, Q(p) = 0}. Then

B(z,v) = B(bv + p,v) = bB(v,v) + B(p,v) =0

and so z € (v)*. Also, Q(z) = Q(bv + p) = b*Q(v) + Q(p) + B(bv,p) = 0. Hence
z € ker Q. Therefore, ker Q N (o)t ={bv +p:be T, pe (u,v)t, Q(p) = 0}.
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Hence if v € ker @), then

| ker @Q n <U>J'| =[{bv+p:beF, pe <u,v>L, Q(p) = 0} = |F x ker Q| uL]

2n—3 2n—2 n—1

=g P+ =" ) =" +q" —¢q

Now suppose v ¢ ker (). Then by Proposition 5.8 there exists H < V such
that H is a hyperbolic plane, and v € H. Therefore, V = H @ H+. We will show
ker Q n vyt ={av+p:aeF, pe H-, Q(p) = Q(av)}. Suppose z € ker Q n {v)*.
Then z = h + p for some h € H and p e H*. Since B(z,v) = 0, we have that
B(h,v) = 0 which implies that A = av for some a € F. Additionally, Q(z) = 0 if and

only if

Q(z) = Q(av + p) = Q(av) + Q(p) + Blav,p) = Q(av) + Q(p) = 0.

Hence z € {av +p:a€lF, pe H-, Q(p) = Q(av)}.
Now let z € {av +p:a€F, pe H-, Q(p) = Q(av)}. Then
B(z,v) = B(av + p,v) = 0 and so z € {v)*. Additionally, Q(z) = Q(av) + Q(p) =0
and so z € ker Q. Hence z € ker Q n {(v)*. Therefore,
kerQn(v)t ={av+p:aeF, pe H-, Q(p) = Q(av)}.
Now we wish to compute [{av +p:aeF, pe H-, Q(p) = Q(av)}|. First, for

a€l, set

ca=|{pe H" : Qp) = Q(av)}|.

We claim that

q2n73 4 qnfl _ qnf2 ifa = 0
Cq =

g2 — g2 if a # 0.

Suppose that a = 0. Then av + p = p € ker Q|y1 and so
co = |k€I'Q|HJ_| — q2n—3 4 qn—l _ qn—2.

Now suppose a # 0. Then for each nonsingular line of H+ there exists
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exactly one vector such that Q(av) = Q(p). Therefore,

Hence if v ¢ ker (), we have that

[ker@ n ()| = {av +p:acF, pe HY, Q(p) = Qav)}] = Y e

aelF

— q2n—3 + qn—l _ qn—2 + (q _ 1)(q2n—3 _ qn—2) — q2n—2' ]
Theorem 6.13. NOJ, (2") is an

q2n 4 qn
2

SRG( ’ q2n71 + qn o qnfl o 1’ 2(q2n72 o 1)qn71(q o 1)’ 2(q2n72 4+ qn1)> ]

Proof. Note that if ¢ = 2" then by Theorem 6.4 we have the number of vertices of
NO; (2") is
Pul = 3(@*" +q").

Let ~ denote adjacency the graph and let V,, = {y : y ~ z}. By Lemma 6.10,

Ve =2+ {7.(y) 1 y € ker Q\{0}}.

Hence by Lemma 6.3, the degree of NOJ (2") is

k=|V,]=|kerQ—1=(q—1)(¢)" "+ (¢)* ' — 1.

Now suppose that  ~ y. This implies that Q(z + 7,(y)) = 0. Hence if we let
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v = + 7,(y) then by Lemma 6.11,

VeV, = {2+ 7.(2) : z € ker Q\{0, v}, B(v, 2)* + B(v,2) = 0}
={z +7.(2) : z € ker Q\{0,v}, B(v,z) € {0,1}}
= {z + 7,(2) : z € ker Q\{0, v}, B(v,z) =0}

U {r + 7,(2) : z € ker Q\{0,v}, B(v,2) =1}.

By Lemma 6.9, the map z — z + 7,(2) is a bijection, and so

|{£L’ +Tm(z) tzE kerQ\{O,v}, B(U,Z) = 0}| = |{Z € kerQ\{O,v}, B(U,Z) = 0}|

= |(ker @ n {v)")\{0, v}

_ q2n—2 + qn _ qn—l -9

Now to compute |{x + 7,(z) : z € ker Q\{0, v}, B(v,z) = 1}| we first note

that |ker Q\(v)*| = |ker Q| — | ker Q@ n (v)*| = ¢*"~ — ¢*"2. This implies there are

q2n—liq2n—2

po = ¢*"~2 lines in ker Q that are not orthogonal to v. From each of these

lines, there is exactly one vector, z;, such that B(v, z;) = 1. Therefore,

A\ = |vx A vy| _ q2n72 + qn _qnfl — 24+ q2n72 _ 2(q2n72 o 1) + qnfl(q _ 1)

Now suppose that z »# y. Note that since x,y € Py we have

tr(Q(z)) = tr(Q(y)) = 0, and

tr(Q(z + 72(y))) = tr(Q(2) + Qy) + B(z,y) + B(z,y)*)
= tr(Q(z)) + tr(Q(y)) + tr(B(z,y)) + tr(B(z,)*)

= 0.



95

Also,
Ve Vy={x +7.(2) : z € ker Q\{0}, Q(z + 7(y)) + B(z + 7.(y), 2) + B(z + 7.(y), 2)* = 0}.

Additionally, if v = z 4+ 7,(y) then by Lemma 6.9,
VeV, =[{zekerQ: Q(v) + B(v,z) + B(v,2)* = 0}|. Note that by Lemma 6.9

6.4, we have that

Q(v) = Q(ro(z+y)) = Qa+y) + Bz, 2 +y)* = Q(x) +Q(y) + B(x,y) + B(z,y)* # 0.
We wish to find |[{z € ker @ : B(v, z) = 1}|. By Lemma 6.12
[ ker Q\(v)"| = [ker Q| — |ker @ n (v)*| = ¢*" 7"+ ¢" ="' = ¢*" 2.

This implies there are qzn_l’q%;:zl*qn*qn_l = ¢*" 2 + ¢" ! lines in ker Q\{(v)*.

Therefore, for each line in ker Q\(v)*, there exists 2 such that B(v, z;) = 1 and so
{zekerQ: B(v,2) =1} =¢* 2+ ¢" ' Now let 2’ € {zekerQ : B(v,2) = 1} and
let 3 € F. Then we have that 82 € {z € ker Q : Q(v) + B(v, 2) + B(v, 2)* = 0} if and
only if

0= Q) + B(v,32") + B(v, 52')* = Q(v) + B + 8%

Since tr(Q(v)) = 0, then there exist 3y, 5, € F for each 2’ € {z € ker@Q : B(v,z) = 1}

such that 812/, 522" € {z e ker Q : Q(v) + B(v, z) + B(v,2)? = 0}. Hence,
p=IVanVyl=H{zekerQ: Q) + B(v,2) + B(v,2)" = 0}| =2(¢"* + ¢" 7).

Therefore NOJ, (2") is a

SRG(3(¢" +¢"), ¢*" ' +q"—¢" ' =1, 2(¢*" 2 =1)+¢" " (¢—1), 2(¢> 2 +¢"")). O

Now that we have proven that the hyperbolic points graphraangly regular, we
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now want to define a graph that is related to the hyperboliotpagraph. We will define
this graph on a subset of the hyperbolic points, namely ah@foints which do not lie in
a given totally singular subspace. We define adjacencyailyilo that of the hyperbolic
points graph, but alter adjacency in a key way. Additionallg need to note that we will
also restrict ourselves to building this graph onl§fi& 4. This is because in the proof

that it is strongly regular, we require that the trace fumttave the desired properties.

Definition 6.14. Let F = F, and (V, Q) be a hyperbolic quadratic space of
dimension 2n. Also let T, S be complementary, maximal totally singular subspaces

of V. Define the graph on Py\S in the following way: The vertices x ~ y if either
L. projp(z) = projp(y) and Q(z +y) + B(z,y)* = 1, or
2. projp(x) # projp(y) and Q(z +y) + B(z,y)* = 0.

We call this graph the hyperbolic subpoints graph.

Note that because of the clear relationship betw¥él, (4) and the hyperbolic
subpoints graph, we distinguish between adjacencydn;, (4) as~ and adjacency in the
subpoints graph as, . We now present a handful of lemmas that determine the number

of common neighbors that are in certain sets.

Lemma 6.15. Let (V,Q) be a regular quadratic space of dimension 2n for some
n € N over Fy and let T, S be maximal, complementary, totally singular subspaces of

V. If x,y € Pg\S are distinct,

A, = {z € Py\S : projp(x) = projp(z), Q(z + 2) + B(z,2)* = 0},

B, := {2 € Py\S : projr(z) = proj(2), Q(x + z) + B(x,2)* = 1},

and

C, = {z € Py\S : projp(x) # projr(2), Q(z + 2) + B(z, 2)* = 0},
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then

1.
|Az| = | Bl (6.5)

2.
|A, N Ay| = |Bs n By, (6.6)

and

3.

|A, N Cy| = | By n Cyl. (6.7)

Proof. Suppose that z,y,z € Py\S = U such that
projp(z) = projr(y) = projp(z) =t for some ¢t € T'. Then for some s1, 59, 53 € S we

have x =t + s, y =t + s, and z =t + s3. Therefore

Qz +2) + B(z,2)* = Q(s1 + 52) + (B(t, 51) + B(t, 52))" = (Q(2) + Q(2)).

Hence, Q(z + z) + B(z, 2)> = 1 if and only if Q(z) = Q(z) + 1. By Proposition 5.2
there exists s € S such that B(t, s) = 1. Define the map x; from B, given by
2+ z+ s. Then if z € B, then proj,(z + s) =t and
Qz +s) = Q(2) + Q(s) + B(z,s) = Q(z) + 1. This implies that
Qx+z+5)+B(z,z+s)? =0and so z + s € A,. Additionally, if z€ A, " A, S A,
then x1(z) € B, n B, < B,. Note that x1(x1(z)) = z and so x; is its own inverse
and therefore a bijection. Hence |A,| = |B,| and |A, n A,| = |B; 0 B,|.

Next we will show that |A, n C,| = |B, n Cy|. Let z,y, z € U such that
projp(z) = proj,(z) = t; and that proj,(y) = t2 # t;. Suppose z € A, N C,. We will

now proceed in two cases.

Case 1. Suppose that ty = St; for some 5 € F4\{0, 1}. Then by Proposition 4.42,
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tr(f) = 1, and by Proposition 5.2, there exists s € S such that B(t,s) = 1. This
implies that B(ts,s) = 5. Now set 2’ = z + s. Note that

Q(7) =Q(2) + B(z,s) = Q(z) + 1 and so 2’ € U. Also,

Qz+ 7))+ B(z,2') = B(x,z +s) = 1, and

Qy+2)+ By, ) =Qy+2)+Q(s) + By + 2,5) + By, z + s)*

= B(s,2) + B(s,y) + B(s,y)> =1+ 8+ > =1+1tr(8) = 0.

Therefore, 2’ € B, n Cy, and so the map x, given by z — 2z + s is an invertible map

which shows that |A, N Cy| = |B, N C,|.

Case 2. Now suppose that {t,?2} is an independent set. Then by Proposition 5.2
there exists s1, 5o € S such that B(t;, s;) = 6;; for i,j € {1,2}. Set s = 51 + (52 such
that 5 € F,\{0,1}. By Proposition 4.42, tr(5) = 1. Set 2’ = z + s. Then we have
that Q(2') = Q(2) + B(z,s) = Q(2) + 1 and so 2’ € U. Also,

Q(z +2')+ B(z,2') = B(x,z + s) = 1, and

Qy +2) + By, #)* = Q(y + 2) + Q(s) + By +2,5) + By, 2 + s)°
= B(s,2) + B(s,y) + B(s,y)? =1+ 8+ 8> =1+ 1tr(8) = 0.
Therefore, 2’ € B, n C, and so the map x3 given by z — z + s is an invertible map
which shows that |A, N Cy| = |B, N Cy|.
Therefore, |A, N Cy| = |B, N C,|. O

The next lemma will count the number of common neighborgimsif a given

totally singular subspace.

Lemma 6.16. Let (V,Q) be a regular quadratic space of dimension 2n for some

n € N over Fy and let T, S be maximal, complementary, totally singular subspaces of

V. Ifx e Py\S and S, = {s€ S : s~ x}, then |S,| = |2ﬂ Moreover, if x,y € Py\S,
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then

0 i projp(z) = projr(y) and x ~5 y

B3

[z 08| = if projp(z) = projy(y) and x #5y

©» v

if projy(z) # projr(y).

.

Proof. Let U = Pg\S, x € U, and let y € S. Then proj(x) =t # 0 and proj;(y) =0
then x =t 4+ s; and y = s, for some s, s9 € S. Then
0=Q(z +vy) + B(x,y)*> = Q(z) + B(t, s2) + B(t, s2)* = Q(z) + tr(B(t, 52)).

Therefore, note the set
{seS:x~s}={seS:tr(B(ts) =0} ={seS:B(ts)e{0,1}}.

Note that by Proposition 5.2, there is a basis for S so that S = (wy, ..., w,) where
B(t,w;) = d1;. Then we know that B(t,s) = 0 if and only if s € (wa, ..., w,).

Additionally, we know that B(t,s) = 1 if and only if s € w + (ws, . .., w, ). Therefore,

{yeS:Q+y) + Blz,y)* = 0} = [wa, ..., wi)| + |wy + (wa, ..., wy))|
s, 181 _1s)

4 4 2

Now let z,y € U. Suppose that proj;(x) = projp(y) =t, z =t+s1, y =t + $a,
and = ~ y. This implies that 1 = Q(z + y) + B(z,y)? = B(z,y)* = B(z,y) and
Q(z) = Q(y) + 1. Now let s€ S and x ~ s. Then

Q(z) = B(t + s1,8) + B(t + s1,5)?
Q(y) +1 = B(t,s) + B(t,s)*

1=Q(y) + B(t+s2,8) + B(t+52,5)* = Q(y + s) + B(y, s)*.

Therefore, s # y and so |5, N S,| = || = 0.

Now suppose that = #4 y. This implies that B(z,y) = 0 and that
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Qz) = Q(y). If s e S,, then

0=0Q()+Q(s)+ B(t+sy,5) + B(t+s1,5)°

= Q(y) + Q(s) + B(t + 89,5) + B(t + 52,8)* = Q(y + 5) + B(y, 5)*

Hence, we have s € S, and so |[S, N S| = @
Finally, suppose that proj,(z) = t; and proj;(y) = ta # t;. We will proceed

in two cases.

Case 1. Suppose ty = 5ty for some 5 € F4\{0,1}. Let S = (wy, ..., w,) such that
B(t,w;) = d1;. Also let w € S and suppose that w € S, N S,. Then

Q(z) + B(z,w) + B(z,w)? = 0 and Q(y) + B(y,w) + B(y,w)? = 0. Since

B(z,w) = B(t,w) and B(y,w) = B(ft,w) then B(t,w), B(ft,w) € {0, 1} since

x,y € U. Suppose by way of contradiction that w = w; + s for some s € (ws, ..., wy).
Then B(t,w) =1 and B(ft,w) = § ¢ {0,1} and so w ¢ S, a contradiction. Hence,
it must be the case that w € (wy, ..., w,) and therefore

1S, 0 Sy| = [Cwa, ... wy)| = B

Case 2. Suppose that {t;, >} is an independent set and = = t; + s; and y = t5 + $o.
Also let S = (wy, ..., w,) such that B(t;,w;) = 61; and B(t2, w;) = d9;. Then we

have w € S; N S, if and only if
Q(z) + B(t1, s) + B(t1,8)*> =0

and

Q(y) + B(ta, s) + Blts, s) =0

if and only if

Q(LE) + Q(y) = B(tl + tQ, 8) + B(tl + tg, 8)2.

Note that since z,y € U then we know Q(z) + Q(y) € {0,1} and so
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If Q(xz) + Q(y) = 1 then tr(B(t; + t2,s)) = 1. This implies that
B(ty,s) + B(ts, s) € {41, 1 + 1} where 8, € F4\{0, 1}. If B(t1,s) = 1 and
B(ty, s) =0 then s € fywy + (ws, ..., wy). If B(t1,s) = 51 and B(ts,s) = 1 then
s € (Prwy + wa) + (ws, ..., wpy. If B(t1,s) =0 and B(ta, s) = 5 then
s € frwe + (ws, ..., wp). If B(ty,s) =1 and B(ta,s) = /51 then
s € (wy + frws) + (ws, ..., wy). Therefore, |S, N S,| = 4(4"2) = 4" = ‘7‘2‘.
If Q(x) + Q(y) = 0 then tr(B(t; + t2,s)) = 0. This implies that
B(t1,s) + B(ts,s) € {0,1}. If B(t1,s) = 1 and B(ty, s) = 0 then
s€wy +{ws, ..., wyy. If B(t1,s) =1 and B(ts,s) =1 then
s € (wy + wa) +{ws, ..., wy). If B(ty,s) =0 and B(ty, s) = 1 then
s € wy + {ws, ..., wy). If B(ty,s) = B(tz,s) =0 then s € (ws,...,w,). And so,
1S, S,y | = 4(4"2) = 471 = Bl Therefore, if projy(z) # projp(y), then

1S.n S, =2 O
We now want to prove that our new hyperbolic subpoints gragtrongly regular.

Proposition 6.17. The hyperbolic subpoints graph is a
SRG(24n—1 _ 22n—1’42n—1 + 4n—17 2(42n—2 + 4n—1)7 2(4)2n—2 + 411—1).

Proof. Let U = Py\S. First we know that from Theorem 6.4 that the size of the

hyperbolic subpoints graph is

1
U] = [Py] — 47 = (@20 —47) = gin g2t

Now to show that this graph is regular, we first note that the degree of the

hyperbolic points graph and the hyperbolic subpoints graph are related. Consider
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the disjoint sets

A, = {y e U : projp(z) = projr(y), Q(x +y) + B(z,y)* = 0},
B, = {y € U : projp(z) = projr(y), Qz +y) + B(z,y)* = 1},
C, = {y € U : projp(z) # proj;(y), Q(x +y) + B(z,y)* = 0}, and

,={2€5:Q(z +2z) + B(z,2)* = 0}.

From Theorem 6.13 that for any = € Py, set of adjacent points to x in NO;, (4) is
Ve = (A:\{z}) v C, U S,

and has degree 3(4)"~! + 42"~! — 1. Note that in the subpoints graph for any = € U,
we have

U,={yelU:y~sz} =B, uC,.

We can now compute the degree of the hyperbolic subpoints graph since we

know that x %, z for all x € Py, Lemmas 6.15 and 6.16 give that
Ual = [Vl = [Su] + 1 =3(4)" T+ 42 =1 —2(4)" ' + 1. = 4"t 4 42

Next, we want to determine |U, n U, | for distinct x,y € U. We begin by

noting that
UnU,=(B,uCy)n(B,uCy) = (B, nBy)u (B, nCy) u (B, nCy)u (CpnCy).

Additionally, we have

Vo nVy = ((Ap v G v So)\z}) 0 ((Ay v Gy v S)\w})

= ((Ae 0 Ay) v (Ae 0 Cy) u (Ay N Cp) L (S 0 Sy))\i, y}-
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Suppose & ~ y. If projp(z) = proj,(y) then 2 # y in NO3, (4) and by
Lemmas 6.15 and 6.16, we have |U, N U,| = |V, NV, | = 2(4*" 2 + 4" 1), If
projr(z) # proj,(y) then z ~ y in NO;, (4) and so Lemmas 6.15 and 6.16 give us

that
(U Uy | = [Van V| =]S2n S, |+2 = 2(4)*" 2 =2+43(4)" ' = (4)" 142 = 2(4>" 2 +4"71).

Now suppose that = #, y. If proj;(z) = projr(y) then z ~ y in NO;, (4) and

by Lemmas 6.15 and 6.16, we have
U Uy | = [Van V| =]S2n S, |+2 = 2(4)*" 2 =2+43(4)" ' = (4)" 142 = 2(4>" 24" 1),

If proj;(z) # projr(y), then = # y in NOJ, (4) and so Lemmas 6.15 and 6.16, we

have that
Up 0 Uyl = Ve n V| =[S 0 S, | = 2(42" 2 + 4" 1) — 4™ 1 = 2(4)" 2 4471

Therefore, the hyperbolic subpoints graph is a
SRG(427L2—47L’42TL—1 + 4n—1’ 2(42n—2 + 4n—1)’ 2(4)2n—2 + 4n—1). 0

It is key that this graph and/ Oy, (2") are strongly regular. The identification of
the points of the subpoints and hyperbolic points graphisbeikey in building a Steiner
ETF for the subpoints graph, and a Tremain ETF for the hyperpoints graph.

7 CORRESPONDING ETFS FROMW O, (4) AND THE HYPERBOLIC
SUBPOINTS GRAPH

In our final section, we will establish the connection betwa&);, (2") and the
hyperbolic subpoints graph with a Tremain ETF and a Steifiér iespectively. To

accomplish this we first establish that the Gram matrix of &k ®ith the properties our
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Steiner and Tremain ETFs have give rise to an adjacencyxatra strongly regular
graph. Then we will show that if we have the adjacency mabbafstrongly regular

graph, then it satisfies a quadratic relation.

Proposition 7.1. If A is the adjacency matriz for a graph, G, which is a
SRG(n,k, \, i), then
A2 = NA+ KL, + p(J, — I, — A)

where I, is an n x n identity matrix and J, s an n x n all ones matriz.

Proof. We begin by noting that the Agy entry contains the number of vertices
adjacent to both x and y. If x = y then this would be a diagonal entry and since G
is regular, then A7, = k for all z. Note that if z ~ y in G then A2 corresponds to
the number of vertices adjacent to two connected vertices. Since G is a strongly
regular graph, then this number is A for every nonzero entry of A. Lastly if z # y
and x # y then Aiy corresponds to the number of vertices adjacent to two

disconnected vertices. This number is p and is in every nonzero, non-diagonal entry

of A. These cases are exhaustive, and so A2 = NA + K1, + u(J,, — A — I,,). O

This lemma allows us to build an object which will act as ouabaed incomplete

block design for our Steiner ETF.

Lemma 7.2. Let T, S be a maximal totally singular subspace of a reqular quadratic
space (V,Q) of dimension 2n so that V=T @ S and let F =TF,. If
b= {t1,ta,t3} < T\{0} such that t; +to+t3 =0 and x =t; + s € Pg\S for some

s € S, then the quantity Q(x) + B(z,t) + B(z,t)? is constant for all t € b\{proj,(x)}.

Proof. Define the function g : b — F given by g(t) = Q(z) + B(x,t) + B(x,t)?. Note
that g(t1) = Q(x) + B(t: +s,t1) + B(t1 + 5,t1)* = Q(z) + Q(z) + Q(x)* = Q(z). We
now proceed by cases. Suppose that Q(z) = 0 and g(t2) = 0. Then

g(t3) = g(t1 +t2) = Q(z) + B(x,t1 + to) + Bz, t1 + t3)° =
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Q(z) + B(x,t2) + B(z,t3) = g(t2) = 0. If g(t2) = 1 then a similar calculation yields

g(ts) = 1.
Now if Q(x) =1 and ¢(t2) = 0 then a similar calculation yields g(¢3) = 0.

And simliarly if g(¢5) = 1, then g(t3) = 1. Hence g is constant for all

t € B\{projr(x)}- O

Lemma 7.3. Let T, S be mazimal, complementary totally singular subspaces of a

reqular quadratic space (V, Q) of dimension 2n and let F = F,. If s € S\{0}, then

[{teT:tr(B(t,s)) =0} = |{te T: tr(B(t,s)) = 1}|.

Proof. Let s € S\{0}. By Proposition 5.2, there exists t' € T" such that B(t',s) = 1.
Also, by Proposition 4.42; there exists € Fy such that tr(5) = 1. Let v be a map
from {t € T : tr(B(t,s)) = 0} to {t € T : tr(B(t,s)) = 1} given by v(t) =t + pt’.

Then we see that

tr(B(t + ft',s)) = tr(B(t,s)) + tr(B(5t',s)) = 0+ tr(B) = 1.

Therefore, y(t) € {t € T : tr(B(t,s)) = 1}. Additionally, v(v(t)) =t and so this is an

invertible map and is therefore a bijection. Hence, it must be the case that

[{teT:tr(B(t,s) =0} = |{te T: tr(B(t,s)) = 1}|. O

Now we will build our Steiner ETF from the hyperbolic subpisigraph.

Definition 7.4. Let T',.S be maximal complementary, totally singular subspaces of
a regular quadratic space of dimension 2n so that V =T @ S and let F = F,. Also

let B = {{t1,t2,t3} < T\{0} : t; +to + t5 = 0}. We define the matrix ¢, with rows
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indexed by elements of B and columns indexed by elements of Py \S given by

—1 if projp(x) € B and Q(z) + B(x,t;) + B(z,t;)*> = 0 for any t; € B\{proj(z)}
®(B,x) =41 if projy(z) € B and Q(z) + B(x,t;) + B(z, t;)? = 1 for any t; € B\{proj,(z)}

0 otherwise.

Example 7.5. In this example, we will present the smallest example of the Steiner
ETF from the hyperbolic subpoints graph. In this case V = F} and we let

V = {ey, €9, €3, €4y and the quadratic form is

Q(are1 + ages + ages + asey) = ajas + azay. We then note that we can let T' = {eq, e3)
and S = {eg, e4). Using this setup and Definition 7.4, we obtain the following matrix
on the next page. We note that the rows are indexed by triples of elements that
sum to zero but we only write the first two elements to save space. The third
element of the set can be found by taking the sum of the two elements shown. We

will prove that a matrix constructed like this is indeed an equiangular tight frame.
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{ae, +aes, (a+ e + (a+1)es

{ae, + aey, (@ + 1)ey +e5

{aer +aey,e; +aey

{aer +aez,ae; +e3

{ae; +aes, (a + 1)e; +aes

{ae; + aes, ae;

{(a+1)er + (a + )es,ae; + (a+ 1)es
{(a+1)es + (@ + es, (a+ 1)ey +e3

{(a+1)es + (@ + )es, s
{(a+1)er + (a+ 1es, (@ + 1)ey + aes
{(a+1)er + (a+ 1)es, e + (@ + 1es
{(a+1)es + (a+
+es.ae; +(a+ e
{er+es,(a+1)er +e5
{e1+es,e1 +aes

{e1 +e3,ae, +
{er+eg.e1+ (a+ 1)

{er +es.er

{ae; + (a+1)eg, (a+ 1es +e3
{ae) + (a+1)es, ae, + €3

{ae) + (a+ 1)es, ey + (a+ 1)es
{ae; + (a +1)es, aey
{(a+1)e; + es,ae; + €3
{(a+1)er + 3, (a+ 1)es +aes
{(a+1)es + €5, (a + 1)ey

{ae; +e3,(a+1)e; +aey
{ae, + es,ae

{(a+1)es + aes, (a+1)e;
{er+ (a+1)es,e;

{aey, (a+1)e;

{aes, (a+1)es

¢ a
O S R R S RN N RN N O

HFIFFH
11 o+ -+ I+

L L T R L I
11 L R
1] E BE B

I
RS

A

Figure 4: Steiner ETF Associated with Hyperbolic Subpoints Graph
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. . L. . 2n _ n n n
Theorem 7.6. The matriz ® given by Definition 7.4 is a %M X %(42 —4")

Steiner equiangular tight frame.

Proof. For ease of notation, denote the columns of ® by ¢, where z € Py\S = U.

Now consider

[@ul? = (pus 02y = Y @(b,0)@(b,2) = ), 1=|{be B: projp(x) € b}}|

beB beB
projp (x)eb

= [{{ts, 12} = T\{0} : projp(z) =ty + fo}] = %I{tl e T\{0, projy(z)}}].

If we consider T" as a 2n dimensional vector space over the subfield of 4 consisting
of {0, 1} then clearly |{t; € T\{0, projp(z)}}| = 22" — 2. Therefore,

lu]? = 252 = 2(4m1) — 1 for all z € U.

Now we will show that ® is equiangular. First, let z,y € U and let
projr(z) = t; and proj,(y) = to where t; # to. Since ty,ty are distinct, then there is

exactly one block, by € B such that{t;,t2} < by. Therefore,

Kpar ol = | 3 @b, 2)2(b,y)| = |8 (bo, 2)8 (b, y)| = 1.

Now suppose that proj,(z) = proj,(y) = t; and that for some s;, s9 € S we

have z = t; + s1, and y = t; + $o. In this case we have

[ar o)l = | D @0, 2) (b, y)| = | > B(b,2) (b, y)

beB beB
t1€eb

1
=3 Z O({t1,t2,t1 + ta}, )P ({t1, t2, t1 + t2}, y)|.

toeT\{t1,0}

Let to € T\{0,#;} and let ¢ = Q(z) + Q(y) + tr(B(t2, 51 + s2)). Then

(I)({t17t27t1 + t2}7x)q)({t17t27t1 + t2}7y) = 1



69

if and only if € = 0. Additionally, ¢ = 1 if and only if

O({t1,t2,t1 + to}, )@ ({t1, t2,t1 + t2},y) = —1. Therefore, we have

e D

toeT\{tq,0}
tr(B(tg,s1+s2)=¢)

By Lemma 7.3, we have that
|{ta € T : tr(B(ta, s1 + $2)) = 0} = [{t2 € T : tr(B(ta, s1 + s2)) = 1}|. However, we
note that 0 € {to € T : tr(B(t2, s1 + s2)) = 0} and that
Q) + Q(y) = B(t1,s1 + s2) € {0,1} and so t; € {ta € T : tr(B(t2, s1 + s2)) = 0}.
Therefore,

2 ifQx) = Qy)
I
(Bligoes £ag)=e) —2 i Qx) = Qy) + L.

Hence, (¢4, ¢,)| =1 and so ® is equiangular.

Now we wish to show that (y,,p,) = 1 if and only if  ~; y in the
hyperbolic subpoints graph. Suppose that proj,(z) # proj,(y) and for some
s1,52 € S we have x = t; + s; and y = t5 + so. Then we have (¢, p,» = 1 if and only
if ®(by, z) = ®(bo,y) if and only if
Q(z) + B(ta, x) + B(t2,2)* = Q(y) + B(t1,y) + B(t1,y)? if and only if
Q(z) + Q(y) + B(x,y) + B(z,y)? = 0. Thus in the hyperbolic subpoints graph we
have © ~ y. If proj;(x) = proj;(y) then we can see that (¢, p,) = 1 if and only if
Q(z) + Q(y) =1 from the equiangularity proof. Therefore we know that in the
hyperbolic subpoints graph, we have x ~, y. Therefore ®*®(z,y) = 1 if and only if
x ~4 y in the hyperbolic subpoints graph.

Let A be the adjacency matrix for the hyperbolic subpoints graph and let I, J

be the identity and all ones matrix of approriate dimension, then we can see that

O*P =2A+pl —J
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where p = 2(4)""!. Since we know that A is the adjacency matrix for a strongly

regular graph on n vertices, we know that A? = MA + kI + u(J — I — A). Hence,

(@*®)* = (2A +pl — J)(2A +pI — J)
= (4\ — 4y + 4p) A + (4k — 4p + p*)I + (4p +n — 4k — 2p)J

= (2(4)" — 24" H(2A + pI — J).

Hence we see that the gram matrix of ® is a multiple of a projection, and so
® is tight. Therefore, ® is an equiangular tight frame.

Lastly, we note that if we consider the nonzero elements of T" to be the points
and the set B as a collection of subsets of T', then clearly (7\{0}, B) is a BIBD with
A =1, and k = 3. Additionally, since {s € S :t + s € Py} for any t € T'\{0} is has

cardinality 8, then ® satisfies Definition 3.6 and so ® is a Steiner ETF. O

Now using this frame> we will build another frame of Tremain style. LEY, Q)
be a regular, hyperbolic quadratic space dugwith complementary totally singular
subspace¥’, S such tha’ = T'® S. Let the matrixA indexed by elements &f and

elements ofPy;\ S be defined by

V2 ifte T\{0}, projp(z) =t, Q(x) =0
A(t,z) = § =v2 if t e T\{0}, projp(z) =t, Q(z) =1
0 else

Note thatA is a4™ x 1 (42" — 4™) matrix.
Next we define the matrig’' indexed by elements @f and elements of defined

by
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Note thatC' is a4™ x 4™ matrix.
Using the construction b from Theorem 7.6, now lets define the following

matrix,
d 0

A C

U =

Notably, this matrix ha% (42" + 4™) columns. We will now give an equivalent definition

of the entire matrixl.

Definition 7.7. Let T',.S be maximal complementary, totally singular subspaces of
a regular quadratic space of dimension 2n so that V =T @ S and let F = F,. We
define the matrix ¥, with rows indexed by elements of R = B u T and columns

indexed by elements of Py given by

-1 ifreB, projp(x)er, Q(x)+ B(x,t;) + B(x,t;)* = 0 for any t; € r\{projp(z)}

1 if r € B, projp(z) e r, Q(x) + B(x,t;) + B(z,t;)? = 1 for any t; € 7\{proj(z)}

V2 o ifre T\{0}, projp(z) =7, Qz) =

—/2 if r e T\{0}, proj;(z) =r, Q(z)

if re T\{0}, z€ S, tr(Q(r + z))
)

~—

U(r,x) = 1
0

Vi

- if re T\{0}, z €S, tr(Q(r + x)
\/g ifr=0,ze8
0

otherwise.

Example 7.8. We continue with the same set up from Example 7.5. We will take
the matrix from that example and add the appropriate rows and columns as
described by Definition 7.7. In the figure below, we note that the blank spaces are

zeros and the sybmols + and — correspond to 1 and —1 respectively.
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{ae; ,st. (a+1)e; + (a+1)es
ae, + aes, ae; + (a + 1)e, B+
{ae; + aey, (a+1)e; +e3 B — —Eaed — B8 .+
faet oo R -
e, +aeg, ae, + [+ B
{aer +aey, (a+ 1)e; + .
1H E+EH R
B+
[+ + -+ +
B R
EEEE e
ErEHE {_Eas I
R R
I
=
=
R+ pp— = e
[SSRNNNSS B ]
i E+E+EE
SEE cmas
B+ B
llrl++ll++
EmEE B+
T .I++++J
-+ B3 _Eae
= e B
R

R
DO o o o o |
.

PO IO

Emcwmm”HSB@EMHHU>mmoﬁmﬁmmé;w>\©HEv
e = V3 o= V2 0=y /L o=/l 4= /8
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Finally, we prove that the graph ofO3, ., (2") arises naturally from a Tremain

ETF

Theorem 7.9. The matriz W is a 243442 o 1420 4 47y Tremain equiangular
tight frame. Moreover, if G = W*W, D is the adjacency matriz of NOS, (4), and
p=2(4)""1+2, then G =2D + pI — J where I, J are identity matriz and all ones

matrix.

Proof. We first begin by noting the relationship between ¥ and ® from Theorem
7.6. Let v, denote the column of ¥ associated with z € Py and ¢, be the column of
¢ associated with z € Py\S. Now let z € Pg\S. Then we have

[ ]? = by ey = {pa, Puy + 2 = 2(4)" 1 + 1. Now if we consider s € S then

[ ? = (s, 0y = D (b, 9)* + >0 W(t,s)” +¥(0,5)° =0+ %(4" 1)+ g
beB teT\{0}
=2(4)" "+ 1.

Hence each column of ¥ has equal norm.

Now we will show that U is equiangular. And we will proceed in cases.

Case 1. First let z,y € Py\S such that proj,(z) = ¢, and proj,(y) = to where
t1 # to. This implies that A(ts, z) = A(t1,y) = 0 and so (¢, ¥y )| = [{ps, py)| = 1.

Case 2. Now consider x,y € Py\S where proj,(z) = projp(y) = t. Note that from
the proof of Theorem 7.6 if Q(x) = Q(y) then {(¢,, p,) = —1. Additionally, we see
that A(t,z) = A(t,y) and so [z, ¥y = (e, 0y) + At 2) At y)| = [ =1+ 2[ = 1.
Now consider that if Q(x) + Q(y) = 1 then (p,, ¢,y = 1. Since in this case we have
A(t,x) = —A(t,y) then we have [(Vy, ¥y)| = (o, 9y) + Alt, 2) At y)| = [1 =2 = 1.

Case 3. Now suppose t € T and s; € S such that x =t + s; € Pg\S and y € S.
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Then we can see that

Kby ¥yl = {2, 0) + AL, 2)C (L, y)| =

1
(o)

Case 4. Lastly, suppose that x,y € S. Consider that when t # 0, C(t,2)C(t,y) = %
if and only if tr(Q(¢t + x)) + tr(Q(t +y)) = tr(B(¢,x + y)) = 0. This also implies that
C(t,z)C(t,y) = —3 if and only if tr(B(t,z + y)) = 1. Therefore, by a similar
argument in the proof of Theorem 7.6, there are 2(4)" ! — 1 vectors in T\{0} such

that tr(B(t,z +y)) = 0 and 2(4)"~! vectors in T\{0} such that tr(B(t,z + y)) = 1.

Then
[ta, byl =1 >, C(t,2)C(t,y) + C(0,2)C(0,y)|
teT\{0}
1 n—1 n—1 3
= 5 =120 +

= 1.

Therefore, W is equiangular.

Since the columns of ¥ are indexed by elements of Py, then we will show
that for any z,y € Py, (V*V)(z,y) = 1 if and only if x ~ y in NO;, (4).

First suppose that z,y € Py\S and that proj,(x) # proj,(y). Then from
Theorem 7.6 we know that this implies that x ~, y in the hyperbolic subpoints
graph which implies that z ~ y in NOJ (4). Next, if we suppose that z,y € Py\S
and that projp(z) = proj,(y), then Q(x + y) + B(z,y)* = 0 if and only if
Q(x) = Q(y) if and only if (¢, ¢, = 1. Therefore in this case we have = ~ y if and
only if U*W(z,y) = 1.

Now suppose that t € T and s; € S such that x =t + 51 € Pg\S and that
y € S. Then (¢, ) = A(t,z)C(t,y) = 1 if and only if
Qz) +tr(Q(t +y)) = Q(x + y) + B(x,y)* = 0 if and only if z ~ y.

Finally, note that if =,y € S then {¢,,1,) = 1 and we have

Q(z +y) + B(z,y)*> = 0 so z ~ y. Hence if we consider the gram matrix of ¥, we
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have U*U(z,y) = 1, if and only if z ~ y in NO3,, ;.

Therefore, if D is the adjacency matrix for NO3, (4), then we have
U*W = 2D + pl — J where p = (2(4)"' + 2). Since we know that D is the adjacency
matrix for a strongly regular graph we know that D? = A\D + kI + u(J — I — D)
where A\, 1, and k are the graph parameters of the hyperbolic points graph.

Therefore we can see that

(U*W0)? = (2D + pl — J)(2D + pl — J)
= (4N — 4y + 4p)D + (dk — 4p + p*)I + (4p +n — 4k — 2p)J

= (6(4)""Y) (2D + pI — J).

Hence we can see that W*W is a multiple of a projection and is therefore
tight. Thus, ¥ is an equiangular tight frame.

Clearly, the matrix W is has rows indexed by B u T\{0} U {0} and columns
indexed by (I'x {s€ S :t+ s e Py\S}) u S. We know that from the proof of
Theorem 7.6, that (7°\{0}, B) is a Steiner triple system, and that this matrix

satisfies Definition 3.8. Hence W is a Tremain ETF. O

Example 7.10. We recall Example 3.10. This Tremain ETF is actually an instance
of this construction. In this case we have V =3 and let V = (e, e5) with a
quadratic form Q(ae; + bey) = ab. We then note that 7' = (e;) and S = {ey). Using
this setup and Definition 7.4, we can construct a Steiner ETF with a BIBD
consisting of a pointset of {e;)\{0} and the set of blocks consists of a single set

{e1, aeq, (o + 1)ey}. This gives us a trivial Steiner ETF of
O = [—1 1 -1 -1 -1 —1] .

Using this trivial Steiner ETF, we can build a nontrivial Tremain ETF according to

Definition 7.7.
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Figure 6: Tremain ETF Associated with NO3 (4)
.:\/ivo:_\/éaoz %7(92_ %7‘:\/5

8 CONCLUSION AND FUTURE WORK

In this paper we have analyzed the constructionef;, ., (2") and developed a
construction of an isomorphic strongly regular graph wtattbwed us to identify the
vertices of the graph with vectors in a particular vectorcgpastead of hyperplanes. This
identification allowed us to observe a natural correspocel®etweenvO;, ,(4) and a
family of Tremain ETFs.

By strengthening the connection between a family of Trer&diRs and
NO3, ., (4) we hope to extend this correspondence to other contextsaslowitical to
building this particular family of Tremain ETFs that we mistied to vector spaces over
F,. We hope to duplicate this analysis over other fields of charestic 2 as well as other
finite fields. In [8], the discovery of the SR&0, 429, 228, 220) arose as a generalization
of a particular family of Tremain ETFs. This particular SR@sanot an instance of
NO3,.,(2"). By analyzing the construction of other polar graphs in alsinmanner, we

hope to find new extensions of ETFs similar to Tremain ETFvimay give new graphs
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that aren’t polar graphs.

We may search for a frame representation that does not rigly sm ETFs since
every strongly regular graph corresponds to a generalizati equiangular tight frames,
called two-distance tight frames [1]. By developing an @iptonnection between other
polar graphs over fields that are riot then we can potentially discover generalizations of

two-distance tight frames that may result in new stronggyutar graphs.
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