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ABSTRACT

DETAILING THE CONNECTION BETWEEN A FAMILY OF POLAR GRAPHS AND

TREMAIN EQUIANGULAR TIGHT FRAMES

NICHOLAS BROWN

2021

The relationship between strongly regular graphs and equiangular tight frames has

been known for several years, and this relationship has beenused to construct many of the

most recent examples of new strongly regular graphs. In thispaper, we present an explicit

construction of a family of equiangular tight frames using the geometry of a quadratic

space over the field of four elements. We observe that these frames give rise to a strongly

regular graph on a subset of points of a quadratic space over the field with 4 elements. We

then demonstrate an isomorphism between this graph and a classical construction of polar

graphs. While this family of graphs is known to exist, their construction using a Tremain

ETF is much simpler, requiring the existence of Steiner triple systems and Hadamard

matrices of the appropriate size, whereas the original constructions require computing

intersections of hyperplanes.
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1 INTRODUCTION

Among the most useful tools available in mathematics are orthonormal bases. While bases

are useful for general vector spaces, they are not necessarily the ideal tool for inner

product spaces. In addition to the normal linear propertiesof a basis, orthonormal bases

allow for the calculation of both norms and inner products efficiently. Despite their

usefulness, orthonormal bases may not be the optimal spanning set for a given application.

For example, we may want to introduce redundancy for the purpose of guarding against

data loss in signal processing applications. In this case, introducing an overcomplete

spanning set with similar properties to an orthonormal basis would be preferable. A

common way to describe these types of overcomplete spanningsets is to use frames [5],

[15]. A pd,Nq-frame is a finite sequence ofN vectors which span eitherRd orCd. We

will useΦ to denote both the sequencetϕiuNi“1
in Cd orRd and thedˆN matrix whose

ith column isϕi. SinceΦ spans ad-dimensional space,ΦΦ˚ is always invertible and given

y “ ΦΦ˚x, recoveringx from y might be computationally challenging. Hence, we are

particularly interested in frames which have the property thatΦΦ˚ “ AI for some positive

constantA. Frames with this property are known astight frames.Tight frames are well

studied and are fairly well understood [3], [11], [14]. A tight frame helps replace an

orthonormal basis by providing an efficient reconstructionformula for the vectors in space

using the frame vectors, namely

x “ 1

A

Nÿ
i“1

xx, ϕiyϕi.

Another important property of orthonormal bases is their orthogonality. IfN ą d

then the set of vectors in a tight frame would necessarily form a linearly dependent set, and

so it is not possible for all of the vectors in such a tight frame to be mutually orthogonal.
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However, this suggests looking for unit norm tight frames inwhich the coherence,

ν :“ max
i,jPt1,...,Nu

i‰j

|xϕi, ϕjy|,

is as small as possible. In general, unit norm frames with minimal coherence are called

Grassmannian frames.Originally introduced by Strohmer and Heath [15], and Holmes

and Paulsen [12], the study of Grassmannian frames has sincegarnered substantial

consideration from frame theorists. A notable predecessorto these Grassmannian frames

however was a paper by Welch [19], which provides various lower bounds for the

coherence in terms ofN andd. For our purposes, the most important of these bounds is

ν ě
d

N ´ d

dpN ´ 1q .

This inequality has been dubbed theWelch bound. An important application of the Welch

bound is that a frame with unit norm vectors whose coherence is equal to the Welch bound

is what is called anequiangular tight frame[15]. An equiangular tight frame gets its name

by being both a tight frame and being equiangular, that is,|xϕi, ϕjy| is constant for all

i, j P t1, . . . , Nu with i ‰ j. Since equiangular tight frames (ETFs) have coherence equal

to the a lower bound for coherence, they are necessarily Grassmannian.

The introduction of ETFs to solve some erasure problems in coding theory led to

the discovery of many other applications. As noted in [6], equiangular tight frames have

been useful in solving problems involving compressed sensing, including medical MRI

advancements, digital fingerprinting, which is useful to secure systems, and multiple

description coding, which uses ETFs to quickly and reliablysend and receive messages

over a channel with potential corruption of data. Unfortunately, for most pairs

pd,Nq P N
2, an ETFs withN vectors ind-dimensional space either does not exist or is not

known to exist [17]. Therefore, it is desirable to connect ETFs with other branches of

mathematics in an attempt to discover and build new ETFs.
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One application of an equiangular sequence of vectors was discovered prior to the

introduction of ETFs. In 1966, van Lint and Seidel [13] introduced an identification

between equiangular sequences of vectors and graphs, wherevertices corresponded to

vectors in the sequence and edges are drawn using the sign of the corresponding inner

product. If we define the Gram matrix,G, of an equiangular sequence of vectors to be

Gpi, jq “ xϕi, ϕjy for all i, j P t1, . . . , Nu then we can express this matrix in terms of the

adjacency matrix,A, of the graph. In the case of an equiangular tight frame that is real,

that is, an ETF whose Gram matrix contains only real entries,then the tightness of the

frame implies thatG is a multiple of a projection, and soA satisfies a related quadratic

equation. More recently, this result led to the establishment of a one-to-one

correspondence between real ETFs and a family ofstrongly regular graphs[7], [13], [18].

Because of its importance to this paper, we note that a strongly regular graph (SRG) is a

class of graphs that are regular and that satisfy two additional regularity conditions. The

correspondence between ETFs and SRGs is the primary motivating result for this paper.

The discovery of the correspondence between ETFs and a family of SRGs has

inspired a large effort to build ETFs from the previously constructed SRGs. One such

construction of ETFs that give previously known SRGs is whatare called Steiner ETFs

[9]. Steiner ETFs are constructed using a tensor-like combination of the incidence matrix

of a Steiner System, a particular type of block design, and a Hadamard matrix. Despite

their novelty in the frame community, these ETFs were reformulations of previously

known strongly regular graphs [10]. Considering that SRGs have been intensely studied

for over 50 years, the existence of new graphs and corresponding ETFs will likely be

difficult. However in [8], the authors discovered a new family of real ETFs and

consequently a new infinite family strongly regular graphs.These new real ETFs, called

Tremain ETFs, are not constructed in an intuitive way. Tremain ETFs are constructed by

taking a particular family of Steiner ETFs built from Steiner Triple Systems and cleverly

adding some rows and columns to obtain a larger ETF.
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The purpose of this paper is to strengthen the connection between strongly regular

graphs and equiangular tight frames. In particular, we willexplore and deconstruct a

family of strongly regular graphs denoted asNO`
2n`1

pqq for some prime powerq and

demonstrate its connection to Tremain ETFs. Using the construction of Wilbrink [2], this

graph has points which are the hyperplanes in an odd dimensional vector space over a

finite field. While this construction works for any prime power, q, we restrict our focus to

the case whereq “ 2h for someh P N. In this paper we will present two main results.

First, we will define a new graph isomorphic toNO`
2n`1

pqq which is defined on vectors

instead of hyperplanes. Then using this isomorphic graph, we will show that there is a

natural way to define a particular family of Tremain ETFs. Andin this sense,NO`
2n`1

pqq
arises naturally as an instance of a Tremain ETF of this form.This new explicit

connection between these strongly regular graphs and the Tremain ETF construction

provides us potential new avenues to discover both new families of ETFs and strongly

regular graphs. By deconstructing other constructions of SRGs over other finite fields, it

may be possible to build new families of ETFs. Additionally,we may be able to generalize

the Tremain construction further and potentially obtain new strongly regular graphs.

This dissertation will be laid out as follows. In Section 2 weprovide some

preliminary results about ETFs. Section 3 contains the basics on constructing both Steiner

ETFs and Tremain ETFs. Section 4 will introduce and explore the finite geometry of

regular quadratic spaces over a field of characteristic 2 while cataloging a number of

useful results to prove the connection betweenNO`
2n`1

pqq and Tremain ETFs. In Section

5 we develop a bijection that maps hyperbolic hyperplanes used in the construction of

NO
2̀n`1

pqq to the points of a quadratic space. In section 6, we define two new related

graphs and prove that one is isomorphic toNO
2̀n`1

pqq. In Section 7 using these graphs,

we present a natural method for constructing a Steiner ETF and a related Tremain ETF

thus demonstrating a new connection between Tremain ETFs and strongly regular graphs.

We wish to distinguish known results from new results, and weuse the convention that
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theorems are either new results or previously known, named results for example, Theorem

4.32, the Witt Extension Theorem.

2 ETF BASICS

In order to work with equiangular tight frames, we collect a handful of results. We first

start with the definition of a frame and develop the properties of ETFs.

Definition 2.1. Let N, d P N such that N ě d, and tϕiuNi“1
be a sequence of vectors

in Cd, or Rd. The sequence tϕiuNi“1
is a called a frame if there exist constants

0 ă A ď B ă 8 such that

A}x}2 ď
Nÿ
i“1

|xx, ϕiy|2 ď B}x}2

for all x P Cd. We often consider the matrix whose columns consist of the frame

vectors Φ “
„
ϕ1 ¨ ¨ ¨ ϕN


. Indeed, we will often abuse notation and refer to Φ as a

dˆN frame.

Definition 2.2. A frame Φ is called a tight frame if ΦΦ˚ “ AI for some A ą 0.

If a frame is tight, then similarly to orthonormal bases, we can obtain a

reconstruction formula for any vector in space.

Proposition 2.3. If Φ is a tight frame such that ΦΦ˚ “ AI for some A ą 0, then

for every x P Cd, x “ A´1

Nÿ
i“1

xx, ϕiyϕi.

Proof. Since Φ is a tight frame then we know that ΦΦ˚ “ AI for some c ą 0.

Therefore, we know that

Ax “ ΦΦ˚x “ ΦpΦ˚xq “
Nÿ
i“1

xx, ϕiyϕi.

Therefore, we have that x “ A´1

Nÿ
1“i

xx, ϕiyϕi.
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Note that orthonormal bases also have the property that any two distinct vectors

are orthogonal. We now want to find a similar condition to impose on frames and we

arrive at a definition about the maximum inner product for distinct frame vectors.

Definition 2.4. Suppose that Φ is a frame with }ϕi} “ 1 for all i P t1, . . . , Nu. The
coherence of Φ is defined to be ν “ max

i‰j
|xϕi, ϕjy|.

Definition 2.5. A sequence of vectors tϕiuNi“1
is called equiangular if |xϕi, ϕjy| is

constant for all i ‰ j and }ϕi}2 “ s ą 0 for all i.

We now want to prove the Welch bound as given by [19]. To accomplish this we

need to define an appropriate matrix norm.

Definition 2.6. Let X be a complex matrix. The Frobenius norm of X is

}X}F “
a
trpXX˚q.

Proposition 2.7. If Φ “ tϕiuNi“1
is a frame where }ϕi} “ 1 for all i P t1, . . . , Nu

and has coherence ν, then ν ě
b

N´d
dpN´1q . Moreover, if equality holds, then Φ is a

tight frame and |xϕi, ϕjy| “
b

N´d
dpN´1q for all i ‰ j.

Proof. Let Φ “ tϕiuNi“1
be a frame with }ϕi} “ 1 for all i P t1, . . . , Nu. We begin by

noting that

}Φ˚Φ}2F “ trppΦ˚ΦqpΦ˚Φq˚q “ trpΦ˚pΦΦ˚Φqq “ trppΦΦ˚ΦqΦ˚q “ }ΦΦ˚}2F .

Also, denote the entries of rfijs “ rΦΦ˚sij . Now we know that
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0 ď }ΦΦ˚ ´ N

d
I}2F “

ÿ
i‰j

|fij|2 `
dÿ

i“1

|fii ´ N

d
|2 “ÿ

i‰j

|fij|2 `
dÿ

i“1

pfii ´ N

d
q2

“ÿ
i‰j

|fij|2 `
dÿ

i“1

pfii ´ 2N

d
fii ` N2

d2
q “ }ΦΦ˚}2 `

dÿ
i“1

p´2N

d
fii ` N2

d2
q

“ }ΦΦ˚}2 ´ 2N

d
trpΦΦ˚q ` N2

d
“ }ΦΦ˚}2 ´ 2N

d
trpΦ˚Φq ` N2

d

“ }ΦΦ˚}2 ´ 2N

d
pNq ` N2

d
“ }ΦΦ˚}2 ´ N2

d

“ }Φ˚Φ}2 ´ N2

d
“ N `

ÿ
i‰j

|xϕi, ϕjy|2 ´ N2

d
ď N `NpN ´ 1qν2 ´ N2

d
.

This inequality implies that ν ě
b

N´d
dpN´1q and so the coherence is bounded below.

Additionally, if there is equality in the above inequality, then we can see that

}ΦΦ˚ ´ N
d
I} “ 0 which implies that ΦΦ˚ “ N

d
I and so Φ is a tight frame.

Additionally, equality also implies that |xϕi, ϕjy| “
b

N´d
dpN´1q for all i ‰ j.

The moreover of Proposition 2.7 leads us to the definition of an equiangular tight

frame since all the inner products of distinct columns are equal, and the frame is tight.

Definition 2.8. A frame, Φ, is called an equiangular tight frame if the

coherence of Φ is equal to the Welsh bound.

According to [17], equiangular tight frames are quite uncommon and generally an

ETF ofN vectors ind-dimensional space does not occur or is not known to occur for

arbitrary pairs ofpd,Nq P N
2. The following propositions prove some results that give us

more information about what possible pairs ofpd,Nq to look for.

Proposition 2.9. If tϕiuNi“1
Ď R

d is a frame such that xϕi, ϕjy “ α P r0, 1q for all

i ‰ j and }ϕi} “ 1 for all i P t1, . . . , Nu, then N ď d.

Proof. We know that Φ˚Φ “ p1´ αqI ` αJ. A straightforward calculation gives us

that the eigenvalues of Φ˚Φ are 1`αpN ´ 1q and 1´ α. Note that because α P r0, 1q
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then we have that both eigenvalues are nonzero. Hence rankpΦq “ rankpΦ˚Φq “ N.

But we know that since Φ is a frame, then rankpΦq ď d. Therefore we have

N ď d.

Proposition 2.10. Let Φ be a dˆN equiangular tight frame. If Φ is real, then

N ď `d`1

2

˘
and if Φ is complex, then N ď d2.

Proof. Let Φ be an equiangular tight frame. Then we know that |xϕi, ϕjy| is
constant for all i ‰ j and }ϕi} “ 1 for all i. Note that

}ϕiϕ
˚
j }2F “ trppϕiϕ

˚
j qpϕiϕ

˚
j q˚q “ trpϕiϕ

˚
jϕjϕ

˚
i q “ trppϕ˚

jϕjqpϕ˚
i ϕiqq “ 1.

Additionally, note that

xϕiϕ
˚
i , ϕjϕ

˚
j y “ trpϕiϕ

˚
i pϕjϕ

˚
j q˚q “ trpϕiϕ

˚
i ϕjϕ

˚
j q “ trppϕ˚

i ϕjqpϕ˚
jϕiqq “ trp|xϕj, ϕiy|2q

“ |xϕj, ϕiy|2.

Therefore the set of matrices tϕiϕi̊ uNi“1
forms an equiangular sequence in the

vector space

V “ tA P Fdˆd : A “ A˚u since ϕiϕi̊ is self adjoint for each i P t1, . . . , Nu. If
Φ is a real frame then V is a real vector space of symmetric matrices. If we denote

Eij to be the matrix with all zeros except for the i, j element equal to 1, then a

basis for V is the set tEij ` Eji : 1 ď i ď j ď du. This implies that there are

preciesly d` pd´ 1q ` ¨ ¨ ¨ ` 2` 1 “ `d`1

2

˘
basis elements and so we must have that

N ď `d`1

2

˘
by the previous proposition. If Φ is a complex frame, then V is a

complex vector space of self-adjoint matrices. Therefore, a basis for V is

tEii : 1 ď i ď Nu Y tEij ` Eji : 1 ď i ă j ď Nu Y tiEij ´ iEji : 1 ď i ă j ď Nu.
Hence dimV “ 2dpd´1q

2
` d “ d2 so we have N ď d2.
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3 STEINER AND TREMAIN ETF BASICS

Now that we have some basic ETF theory, we now want to define a couple of ETFs that

will be the primary focus of this paper. In this section, we will define all of the

components necessary to building both a Steiner ETF and a Tremain ETF. Along the way,

we will also provide examples to better illustrate these constructions. To first build a

Steiner ETF, we need a Steiner System which is a balanced incomplete block design

(BIBD). And we start with that definition.

Definition 3.1. A balanced incomplete block design (BIBD) is a a pair pV,Bq
where V is a v-set and B is a collection of b k-subsets of V such that each element of

V is contained in exactly r bocks and any 2´subset of V is contained in exactly λ

blocks. The numbers, v, b, r, k, and λ are called the parameters of the BIBD. A

Steiner System is a BIBD whith λ “ 1.

To build a Steiner ETF, we will need both the incidence matrixof the Steiner

System and a Hadamard matrix.

Definition 3.2. The incidence matrix of a BIBD is a bˆ v matrix A, with rows

indexed by B and columns indexed by V given by

ApB, xq “
$&%1 if x P B
0 if else.
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Example 3.3. The incidence matrix A for a BIBD(7,3,1) is

A “

»————————————–

1 1 1 ¨ ¨ ¨ ¨
1 ¨ ¨ 1 1 ¨ ¨
1 ¨ ¨ ¨ ¨ 1 1

¨ 1 ¨ 1 ¨ 1 ¨
¨ 1 ¨ ¨ 1 ¨ 1

¨ ¨ 1 1 ¨ ¨ 1

¨ ¨ 1 ¨ 1 1 ¨

fiffiffiffiffiffiffiffiffiffiffiffiffifl
where ¨ corresponds to entries of 0.

Note that the Steiner system from the previous example has a block size of 3. If a

Steiner system has a parameterk “ 3, we call this aSteiner triple system.

Definition 3.4. A Hadamard matrix is a square matrix whose entries are `1 or

´1 and whose rows are mutually orthogonal.

Example 3.5. An example of a Hadamard matrix is

H4 “

»—————–
`1 `1 `1 `1
`1 ´1 `1 ´1
`1 `1 ´1 ´1
`1 ´1 ´1 `1

fiffiffiffiffiffifl .

Definition 3.6. Let pV,Bq be a BIBD with parameters v, b, r, k, and λ “ 1. If Φ is

an ETF with rows indexed by B and columns indexed by V ˆR where |R| “ r ` 1,

and

|ΦpB, px, jqq| “
$&%1 if x P B
0 if x R B,

then we call Φ a Steiner ETF.

Example 3.7. We will combine the incidence matrix and the last three rows of the

Hadamard matrix from the previous two examples to create a Steiner ETF by



11

replacing the nonzero entries from each column of the incidence matrix and

replacing it with a distinct row of the Hadamard matrix. We note that in the figure

Figure 1: 7ˆ 28 Steiner ETF

above, the blank spaces are zeros and the symbols ` and ´ correspond to 1 and ´1
respectively. Consider that this matrix has rows indexed by the blocks of the BIBD

in Example 3.3, and columns indexed by the V ˆR where R is a set which orders

the columns of the Hadamard matrix from Example 3.5. Therefore, Definition 3.6

applies to this matrix.

Note that in this construction that the dot product of any two rows of is

equal to the dot product of any two rows of a Hadamard matrix, so the rows of this

matrix are mutuallly orthogonal. Additionally, the rows all contain 12 entries of

modulus 1, and so the row norms are equal as well. This implies the above matrix is

tight. To show that this matrix is equiangular, we note that each column has norm

squared equal to 3, and that because λ “ 1, then clearly the dot product of any two

distinct columns is modulus 1. Therefore, the above matrix is clearly a Steiner ETF.

Definition 3.8. Let pV,Bq be a BIBD with parameters v, b, r, λ “ 1, and k “ 3. If

Ψ is an ETF with rows indexed by X “ B Y V Y t0u and columns indexed by
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Y “ pV ˆRq Y S, where |R| “ r ` 1 and |S| “ 2r ` 2, and

|Ψpx, yq| “

$’’’’’’’’’’’&’’’’’’’’’’’%

1 if x “ B P B, y “ pz, jq P pV ˆRq, z P B
?
2 if x “ z P V, y “ pz, jq P pV ˆRqb
1

2
if x “ z P V, y P Sb

3

2
if x “ 0, y P S

0 else,

then we say that Ψ is a Tremain ETF.

Example 3.9. We will combine the Steiner ETF from the previous example and

add the rows and columns of two scaled Hadamard matrices appropriately and we

obtain the figure below. We note that the blank spaces are zeros and the sybmols `

Figure 2: Tremain ETF

and ´ correspond to 1 and ´1 respectively. Meanwhile ‚ “ ?
2, ♦ “

b
1

2
, ♥ “ ´

b
1

2

and ♠ “
b

3

2
. The rows and columns of this matrix can be indexed as described in

Definition 3.8 and routine calculations show that this matrix has orthogonal, equal

norm rows, equal norm columns, and the modulus of the dot product between any

two distinct columns is 1. Therefore, this matrix is a Tremain ETF.
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We now present another small example of a Tremain ETF.

Example 3.10. Let the incidence matrix of a trivial Steiner Triple system be

A “
„
1 1 1


.

We will build the the Steiner ETF,

Φ “
„
´1 ´1 ´1 ´1 ´1 ´1


.

We will then add the rows and columns of two scaled Hadamard matrices

appropriately and obtain the matrix below.

Figure 3: 5ˆ 10 Tremain ETF
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4 GEOMETRY OF QUADRATIC SPACES OVER FIELDS OF CHARACTERISTIC 2

The purpose of this paper is to strengthen the connection between Tremain ETFs and the

family of graphs known as,NO
2̀n`1

p2hq. In order to construct the graph,NO
2̀n`1

p2hq,
given in [2], we require the construction of a collection of hyperplanes in an odd

dimensional vector space over a field of characteristic 2 with a nondegenerate quadratic

form. This section will contain a number of results which arenecessary to describing the

graph and better understanding its construction.

Assumption. Let V be a vector space over a field, F, of characteristic 2.

Definition 4.1. A quadratic form on a vector space is a function Q : V Ñ F with

the property

Qpaxq “ a2Qpxq

for all a P F, all x P V, and where the function B : V ˆ V Ñ F given by

Bpx, yq “ Qpx` yq `Qpxq `Qpyq

is a bilinear form on V.

While the common definition of a bilinear form onV associated with a given

quadratic form isBpx, yq “ 1

2
pQpx` yq ´Qpxq ´Qpyqq, our definition is specific to

quadratic spaces over fields of characteristic 2.

Definition 4.2. If Q is a quadratic form on V and x P V zt0u such that Qpxq “ 0,

then we say that x is a singular vector. Additionally, if V contains a singular

vector then we call V a singular space. If V contains no singular vectors, then we

call V a nonsingular space.

This new quadratic form and bilinear form are analogous to a norm and inner

product defined on inner product spaces. We will now investigate the properties of the
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bilinear form onV.

Definition 4.3. Let W Ď V be a subspace. Define the orthogonal complement

of W in V to be

WK “ tx P V : Bpx, wq “ 0 for all w P W u.

Definition 4.4. Given a vector space V and a quadratic form Q, define the radical

of V to be

radV “ tx P V : Bpx, vq “ 0, for all v P V u.

If radV ‰ t0u then we say that V is defective, and if radV “ t0u, then we say

that V is nondefective.

In order to better illustrate these definitions, we present two basic examples in

three and four dimensional space.

Example 4.5. Let V “ F3

4
and let te1, e2, e3u be the standard basis for V. Then for

any

x “ a1e1 ` a2e2 ` a3e3 P V a quadratic form on V is given by

Qpxq “ a1a2 ` a2
3
.

The induced bilinear form on V is given by

Bpx, yq “ pa1 ` b1qpa2 ` b2q ` pa3 ` b3q2 ` a1a2 ` a2
3
` b1b2 ` b2

3
“ a1b2 ` a2b1.

It is easy to see that V is a singular space since Qpe1q “ 0. Additionally, we

can see that Bpe3, xq “ 0 for any x P V and so radV “ xe3y and so V is defective.

Note. Any quadratic space over a field of characteristic 2 has the property that for

any a P F, Bpx, xq “ Bpx, axq “ 0.
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Example 4.6. Let V “ F
4

4
and let te1, e2, e3, e4u be the standard basis for V. Then

for any

x “ a1e1 ` a2e2 ` a3e3 ` a4e4 P V, a quadratic form on V is given by

Qpxq “ a1a2 ` a3a4.

The induced bilinear form on V is given by

Bpx, yq “ pa1 ` b1qpa2 ` b2q ` pa3 ` b3qpa4 ` b4q ` a1a2 ` a3a4 ` b1b2 ` b3b4

“ a1b2 ` a2b1 ` a3b4 ` a4b3.

Note again that V is a singular space since Qpeiq “ 0 for any i P t1, 2, 3, 4u.
For this example, if for any x P V we have Bpx, yq “ 0 for all y P V , then x or y

equals zero. This is an example of a nondefective space.

With the definition of a bilinear form onV , a natural question is to determine the

dimension of the orthogonal complement of an arbitrary subspace of a quadratic space.

We first need a couple definitions and provide an example.

Definition 4.7. Let V,W, be subspaces of a vector space. Then

V `W “ tv ` w : v P V, w P W u.

If V XW “ t0u, we denote the sum as V ‘W and call it the direct sum. If in

addition, we have that V KW then we denote the sum as V kW and call it the

orthogonal direct sum.

Example 4.8. Let V be the vector space as given in Example 4.5 and let W “ xe1y
be a subspace of V. Note that Bpe1, e2q “ 1 and Bpe1, e3q “ 0. This implies that

WK “ xe1, e3y. Therefore, we can see that dimpW q ` dimpWKq “ dimpV q but we do

not have W kWK “ V since e2 R W kWK.
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Proposition 4.9. If W Ď V is a subspace of a quadratic space pV,Qq, then

dimWK “
$&%dimV ´ dimW if W X radV “ t0u
dimV ´ dimW ` dimpradV q if radV Ď W.

Proof. First, suppose that W X radV “ t0u, that dimW “ k and that tw1, . . . , wku
is a basis for W. Now, define the function ϕ : V Ñ Fk given by

ϕpvq “ pBpv, w1q, . . . , Bpv, wkqq.

Note that x P WK if and only if ϕpxq “ 0 and so kerϕ “ WK. Therefore by

Rank-Nullity, we have that

dimWK “ dimV ´ dimϕpV q ě dim V ´ k “ dimV ´ dimW. Now suppose that

dimϕpV q “ p ď k “ dimW and let tx1, . . . xpu be a basis for ϕpV q. Let
v1, v2, . . . , vp P V such that ϕpviq “ xi for all i P t1, . . . , pu. Note that if

0 “ řp

i“1
βivi for some βi P F for all i implies that 0 “ řp

i“1
βϕpviq “ řp

i“1
βixi. This

implies that β1 “ ¨ ¨ ¨ “ βp “ 0 and so tv1, . . . , vpu is an independent set. Let

X “ xv1, . . . , vpy. Suppose that if x P X XWK then we have x “ řp

i“1
βivi and that

0 “ ϕpxq “ řp

i“1
βiϕpviq “ řp

i“1
βixi. This implies that x “ 0, and so

X XWK “ t0u. Now consider the set X ‘WK. We have that

dimWK “ dimV ´ dimϕpV q and so

dimV “ dimWK ` dimϕpV q “ dimWK ` dimX. Hence we know that

X ‘WK “ V. Next, define the map ψ : W Ñ Fp given by

ψpwq “ pBpv1, wq, Bpv2, wq, . . . , Bpvp, wqq. We claim that kerψ Ď radV. Suppose

that w P kerψ. Then w P XK and w P W. Then for any v P V we have that

v “ x` y for some x P X and y P WK. Hence we have that

Bpv, wq “ Bpx` y, wq “ Bpx, wq `Bpy, wq “ 0, and so we have kerψ Ď radV.
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Therefore, we have that p “ k and so

dimWK “ dimV ´ dimW.

Now suppose that radV Ď W , and dimW “ k. Then suppose that radV has

a basis tr1, . . . , rpu and let tr1, . . . , rp, wk´p, wk´p`1, . . . , wku be a basis for W. Let

W 1 “ xwk´p, . . . , wky. Note that W 1 X radV “ t0u and clearly WK “ pW 1qK and so

we can apply the first case and hence

dimWK “ dimpW 1qK “ dimV ´ dimW 1 “ dim V ´ dimW ` dim radV.

Now that we have the basic definitions of quadratic spaces, the construction of

NO
2̀n`1

p2hq utilizes a specific type of hyperplanes. Therefore, we will define and explore

the properties of hyperplanes of a quadratic space.

Definition 4.10. Let Q be a quadratic form on V. We call the pair pV,Qq a
quadratic space, and we say that V is regular with respect to Q if for all

x P radV zt0u, we have Qpxq ‰ 0.

We will begin by defining two different types of planes in a quadratic space, and

we also want to discuss the idea of regular subspaces of a quadratic space. We say a

subspaceH Ď V is regular if the induced quadratic spacepH,Q|Hq is regular.

Definition 4.11. A hyperbolic pair is an pair px, yq of singular vectors with
Bpx, yq “ 1. A two dimensional space which contains a hyhperbolic pair is a

hyperbolic plane.

Definition 4.12. Let pV,Qq be a quadratic space, and E Ď V. If dimE “ 2 and E

is nonsingular, then we say that E is an elliptic plane.

Now that we have defined two different types of planes, we wantto ensure that any
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regular plane of a quadratic space is either hyperbolic or elliptic. This allows will allow us

to be precise when we decompose hyperplanes into orthogonalplanes later in this section.

Proposition 4.13. If pV,Qq is a regular quadratic space of dimension 2, then V

has zero or two singular subspaces of dimension 1.

Proof. Let N denote the number of one dimensional singular subspaces of V, and

suppose that V is regular. If N “ 3, then let xxy, xyy, xzy be distinct one

dimensional singular subspaces of V. Without loss of generality, suppose that

V “ xx, yy. If Bpx, yq “ 0, then xxy Ď radV , but this is a contradiction since V is

regular. Hence Bpx, yq ‰ 0. Without loss of generality, suppose that Bpx, yq “ 1.

Now if Bpx, zq “ Bpy, zq “ 0 then we have xzy Ď radV and so V is not regular, a

contradiction. If Bpx, zq “ 0 but Bpy, zq ‰ 0, then consider that

Bpz `Bpz, yqx, xq “ 0, Bpz `Bpy, zqx, yq “ Bpy, zq `Bpy, zq “ 0 and that

Qpz `Bpy, zqxq “ Qpzq ` pBpy, zqq2Qpxq `Bpz, Bpy, zqxq “ 0 and so V is not

regular which is a contradiction. Now suppose that Bpx, zq ‰ 0 and Bpy, zq ‰ 0.

Then we claim that tx, y, zu is an independent set. Suppose that ax` by ` cz “ 0

for some a, b, c P F. Without loss of generality, suppose that Bpx, yq “ Bpx, zq “ 1

and Bpy, zq “ β for some β ‰ 0. Then we have 0 “ Bpax` by ` cz, xq “ b` c,

0 “ Bpax` by ` cz, yq “ a` βc, and 0 “ Bpax` by ` cz, zq “ a ` βb. This implies

that a “ b “ c “ 0 and so tx, y, zu is an independent set which is a contradiction

since dimV “ 2. Therefore, we know that N ď 2.

Now suppose that N “ 1 and that xxy Ď V for some x ‰ 0 with Qpxq “ 0.

Since V is regular, xxy X radV “ t0u. Hence there exists y P V such that

Bpx, yq ‰ 0. Without loss of generality, suppose that Bpx, yq “ 1. Note also that

Qpyq ‰ 0 since N “ 1. Now consider the subspace xy `Qpyqxy. Then we have

Qpy `Qpyqxq “ Qpyq ` pQpyqq2Qpxq `QpyqBpx, yq “ 0. Hence if N ą 0, then

N “ 2. Note that if N “ 0, then V is nonsingular, and therefore is regular.

Therefore, N P t0, 2u if V is regular.
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Corollary 4.14. Every regular two dimensional quadratic space is either hyperbolic

or elliptic.

The next theorem gives us a method of determining whether a regular quadratic

plane is elliptic or hyperbolic.

Proposition 4.15. Let pV,Qq be a quadradic space of dimension 2. Let u, v P V
and f P Frxs be defined by fpxq “ Qpxu` vq “ Qpuqx2 `Bpu, vqx`Qpvq. If V is

elliptic, then f is irreducible for any basis tu, vu. Conversely, if there exists a basis

tu, vu for V with Qpuq ‰ 0 such that f is irreducible, then V is elliptic.

Proof. Let pV,Qq be a quadratic space of dimension 2 and that V is elliptic. Then

we know that V is nonsingular. Let tu, vu be a basis for V . Consider that

fpxq “ Qpxu` vq ‰ 0 since xu` v P V for all x P F. Hence f does not have a root

and must therefore be irreducible.

Conversely, let tu, vu be a basis for V such that f is irreducible and Qpuq ‰ 0.

Then we know that the line xxu` vy is nonsingular for each x P F. Also, since

Qpuq ‰ 0 then we have no singular lines in V and so V must be an elliptic plane.

In the light of Proposition 4.15 and Corollary 4.14, we also see that ifV is

hyperbolic, thenf is has a root, and if there is a basis for whichf has a root, andV is

regular, thenV is hyperbolic.

Assumption. We now assume that pV,Qq is a regular quadratic space in addition

to the previous assumption that F is a field of characteristic 2.

A very useful tool in navigating quadratic spaces is to be able to identify a

hyperbolic plane which contains a given vector. The next proposition gives us a method of

constructing such a hyperbolic plane.

Proposition 4.16. If x P V is singular, then there exists y P V such that px, yq is a
hyperbolic pair.
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Proof. Let x P V such that Qpxq “ 0. Since x R radV there exists z P V so that

Bpx, zq ‰ 0. Without loss of generality, suppose that Bpx, zq “ 1. Consider the

element y “ Qpzqx` z. Then we know that

Qpyq “ Qpzq2Qpxq `QpzqBpx, zq `Qpzq “ 0 and

Bpx, yq “ Bpx,Qpzqx ` zq “ QpzqBpx, xq `Bpx, zq “ 1. Hence px, yq is a hyperbolic

pair.

One of our major results in this section will be that regular hyperplanes can be

written as an orthogonal direct sum of regular planes. The following result tells us that

taking the orthogonal complement of a hyperbolic plane is regular.

Proposition 4.17. If H is a regular plane of a regular quadratic space pV,Qq, then
V “ H kHK. Moreover, HK is a regular subspace of V.

Proof. Suppose H “ xx, yy is a regular plane in a regular quadratic space pV,Qq of
dimension n. First note that if z P H X radV then we have z “ ax` by for some

a, b P F and that Bpx, yq ‰ 0. Also, we know that 0 “ Bpz, xq “ b and

0 “ Bpz, yq “ a and so z “ 0. Hence, H X radV “ t0u. Therefore, by Proposition

4.9 we know that dimHK “ dimV ´ dimH “ n ´ 2. Additionally by the same

argument as above, we have that H XHK “ t0u and by definition H K HK.

Therefore, dimpH kHKq “ 2` n ´ 2 “ n “ dimV and clearly pH kHKq Ď V and

so we have H kHK “ V.

Now by way of contradiction, suppose that HK is not regular. Then there

exists a vector r P HK such that Bpr, hq “ 0 for all h P HK and Qprq “ 0. But then

Bpr, kq “ 0 for all k P H since r P HK and so r is a singular vector in the radical.

This contradicts that V is a regular space, so it must be the case that HK is a

regular subspace of V.

BecauseF is a field of characteristic 2, we will want to leverage the properties of

such fields. Hence the following definition.
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Definition 4.18. A field F is called a perfect field if either F has characteristic 0,

or, when F has characteristic p ą 0, the Frobenius endomorphism x ÞÑ xp is an

automorphism of F.

In our case, we have thatF is a field of characteristic 2. Therefore, ifF is perfect,

then Definition 4.18 tells us thatx ÞÑ x2 is an automorphism ofF and so each element of

F has a square root. Another useful characterization of planes is to determine their

regularity based on their bases. A majority of our analysis of the geometry will require our

spaces to be regular.

Proposition 4.19. Let pV,Qq be a quadratic space with dimV “ 2. V is regular if

and only if no basis for V is orthogonal.

Proof. Let pV,Qq be a quadratic space with dimV “ 2. Suppose that tu, vu is a
basis for V such that Bpu, vq “ 0. Then if Qpuq “ 0 or Qpvq “ 0 then V is not

regular. Then consider the polynomial

fpxq “ Qpxu` vq “ Qpuqx2 `Bpu, vqx`Qpvq “ Qpuqx2 `Qpvq. Note that since F

is a perfect field, there exists x0 P F such that x2
0
“ Qpvq

Qpuq and so f has a root and

hence Qpx0u` vq “ 0 Also, note that Bpx0u` v, uq “ Bpx0u` v, vq “ 0 and so V is

not regular.

Now let tu, vu be a basis for V such that Bpu, vq ‰ 0. Let x P radV. Then

x “ au` bv for some a, b P F and we have 0 “ Bpx, uq “ Bpau` bv, uq “ bBpv, uq
and 0 “ Bpx, vq “ Bpau` bv, vq “ aBpu, vq. But since Bpu, vq ‰ 0, then we must

have a “ b “ 0 and so x “ 0. Hence V is regular.

The property of perfection will allow us to determine the maximum dimension of

the radical of a given quadratic space as well as determine that quadratic spaces of high

enough dimension are singular.

Proposition 4.20. Let V be a vector space over a perfect field. If V is a regular

quadratic space with respect to Q, then the radical of V has either dimension 0 or 1.
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Proof. Suppose that dimpradV q ě 2. Then we know that there exists an

independent set, tx, yu Ď radV. Since V is a regular space, we know that Qpxq ‰ 0

and Qpyq ‰ 0. Since F is perfect, we may assume that Qpxq “ Qpyq “ 1. Consider

that since x, y P radV, we have 0 “ Bpx, yq “ Qpx` yq `Qpxq `Qpyq “ Qpx` yq.
Since tx, yu is independent, then we know that x` y ‰ 0 and so there exists a

nonzero singular vector in the radical of V and so V is not regular. Hence,

dimpradV q ă 2 and so we have dimpradV q P t0, 1u.

Proposition 4.21. If pV,Qq is a quadratic space over a perfect field with

dimV ě 3, then V is singular.

Proof. Let x P V zt0u and let y P xxyKzxxy. Note that since x ‰ 0, we have by

Proposition 4.9 that dimxxyK ě 2. If Qpxq “ 0 then V is singular. If Qpxq ‰ 0, then

Qpyq
Qpxq P F. Since F is perfect, there is an element a P F such that a2 “ Qpyq

Qpxq . Consider

z “ ax` y. Then Qpzq “ a2Qpxq ` aBpx, yq `Qpyq “ Qpyq `Qpyq “ 0. Hence V is

singular.

Corollary 4.22. If pV,Qq is a quadratic space over a perfect field with dimV ě 3,

then there is a hyperbolic plane in V.

The previous proposition allows us to factor regular, odd dimensional quadratic

spaces into an orthogonal direct sum of hyperbolic planes and the radical.

Proposition 4.23. If pV,Qq is an odd dimensional regular quadratic space with

with dimV “ 2n` 1 ě 3, then there exists a set of hyperbolic planes tHiuni“1
such

that V “Ën

i“1
Hi k radV.

Proof. We will induct on n where dimV “ 2n` 1. Let n “ 1. Then

dimV “ 2n` 1 “ 3. By Corollary 4.22 and Proposition 4.17, we see that there

exists a hyperbolic plane, H, in V. Therefore, V “ H kHK with dimHK “ 1. Since

V is regular and clearly Bph, vq “ 0 for all h P HK, and v P V, then HK is

nonsingular and hence HK “ radV so V “ H k radV.
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Suppose that the proposition is true for when n “ k. Let n “ k ` 1 and

dimV “ 2k ` 3. Since 2k ` 3 ą 3, we have that there is a hyperbolic plane, H1 Ď V,

by Corollary 4.22 and that V “ H1 kHK
1
. Note that HK

1
is a regular and

dimHK
1
“ 2k ` 1. By the induction hypothesis, there exists a set of hyperbolic

planes, tHiuki“1
such that HK

1
“Ëk

i“2
Hi k radHK

1
. Hence

V “Ëk

i“1
Hi k radHK

1
“Ëk`1

i“1
Hi k radV.

The previous proposition covers all of the odd dimensional regular quadratic

spaces, so now we want to determine a decomposition for the even dimensional regular

hyperplanes of these odd dimensional spaces.

Definition 4.24. Let pV,Qq be a regular quadratic space. We say that V is a

hyperbolic space if there exists a collection of hyperbolic planes tHiuni“1
such that

V “Ën

i“1
Hi.

Definition 4.25. Let pV,Qq be a regular quadratic space of dimension 2n` 1 and

let H Ď V be a hyperplane. We say that H is a hyperbolic hyperplane if the

induced quadratic space pH,Q|Hq is a hyperbolic space.

Definition 4.26. Let pV,Qq be a regular quadratic space of dimension 2n` 1 and

let H Ď V be a hyperplane. We say that H is a elliptic hyperplane if the induced

quadratic space pH,Q|Hq is regular and not hyperbolic.

To ensure that our definitions of hyperbolic hyperplanes andelliptic hyperplanes

are consistent, we prove that they are regular.

Proposition 4.27. Let V be a regular quadratic space of dimension 2n` 1. If H is

a hyperbolic hyperplane then H is a regular hyperplane.

Proof. Note that if V is odd dimensional, then H is even dimensional. Let tHiuni“1

be a collection of hyperbolic planes such that H “Ën

i“1
Hi. Then if we let phi1, hi2q

be a hyperbolic pair for Hi then we have th11, h12, h21, h22, . . . , hn1, hn2u as a basis
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for H. Let x P radH. Then we know that x “ řn

i“1
pai1hi1 ` ai2hi2q for some scalars

aij P F. Note that for all i P t1, . . . , nu and j P t1, 2u we have 0 “ Bpx, hijq “ aik for

k P t1, 2uztju. Hence we have that x “ 0 and so H is regular.

Note that Proposition 4.27 along with the definition of elliptic hyperplanes tell us

that every regular hyperplane of an odd dimensional quadratic space is either hyperbolic

or elliptic. This now allows us to decompose any elliptic hyperplane of an odd

dimensional regular quadratic space.

Proposition 4.28. Let pV,Qq be a regular quadratic space of dimension 2n` 1. If

H is an elliptic hyperplane, then there exists a collection of hyperbolic planes

tHiun´1

i“1
and an elliptic plane W such that

H “
n´1ë
i“1

Hi kW.

Proof. If H is an elliptic hyperplane, then we know that H is regular. If n “ 1 then

dimH “ 2 and so H is an elliptic plane. Now suppose n ą 1. Then dimH “ 2n ą 3.

By Corollary 4.22, there exists a hyperbolic plane H1 Ď H. By Proposition 4.17, we

can decompose H “ H1 kHK
1
. By successively applying Proposition 4.17, we have

H “Ën´1

i“1
Hi kW where W is regular and dimW “ 2. If W contains a singular

vector, then W would be a hyperbolic plane and hence H would then be a

hyperbolic hyperplane. Thus it must be the case that W does not contain any

singular vectors. Hence H “Ën´1

i“1
Hi kW.

We now want to leverage our decomposition of regular hyperplanes to help us

quickly determine whether a hyperplane is elliptic or hyperbolic without having to

decompose it. This leads us to the following definitions.

Definition 4.29. Let pV,Qq be a quadratic space and T Ď V be a subspace. We

say that T is a totally singular subspace of V if for all x P T we have Qpxq “ 0.
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Definition 4.30. Let T be a totally singular subspace of V. We say that T is a

maximal totally singular subspace if for any totally singular subspace S such

that T Ď S then T “ S.

Using these totally singular subspaces will allow us to determine which type of

regular hyperplane it is. However, we still must prove that the cardinality of any two

maximal totally singular subspaces are the same. The next definition and theorem will

allow us to do just that.

Definition 4.31. Suppose that Q1 and Q2 are quadratic forms on quadratic spaces

V1 and V2 respectively. An isometry relative to B1 and B2 is an F-linear injection

f : V1 Ñ V2 satisfying Q2pfpvqq “ Q1pvq for all v P V1.

Note that in light of the previous definition, we also have that

B2pfpxq, fpyqq “ Q2pfpxq ` fpyqq `Q2pfpxqq `Q2pfpyqq
“ Q1px` yq `Q1pxq `Q1pyq “ B1px, yq.

Theorem 4.32 (Taylor 7.4 Witt’s Extension Theorem). Suppose that U is a

subspace of V and that the map f : U Ñ V is a linear isometry. Then there is a

linear isometry g : V Ñ V such that gpuq “ fpuq for all u P U if and only if

fpU X radV q “ fpUq X radV.

We omit the proof, but it can be found in [16].

Corollary 4.33. Any two maximal totally singular subspaces of V are isometric

and have the same dimension.

Proof. Let W1 be a maximal totally singular subspace of V with dimW1 “ n and let

W2 be a totally singular subspace with dimW2 ď n. Let tu1, . . . , unu be a basis for

W1 and tv1, . . . , vmu be a basis for W2. Since V is regular, we have that

W1 X radV “ t0u and W2 X radV “ t0u. Let f : W2 Ñ V be the linear map given
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by vi ÞÑ ui. Note that for each basis element of W2 we have that

Qpviq “ Qpfpviqq “ Qpuiq “ 0. Hence f is an isometry. Additionally,

fpW2 X radV q “ fpt0uq “ t0u “ fpW2q X radV since fpW2q is a totally singular

subspace of V. Then there exists a linear isometry g : V Ñ V such that fpwq “ gpwq
for all w P W2. Since g is an isometry, g´1pW1q is a totally singular subspace and

since g is a bijection, n “ dimW2 “ dim gpW q “ dimW1.

Definition 4.34. Let pV,Qq be a quadratic space. The dimension of a maximal

totally singular subspace is called the Witt index and is denoted mpV q.

Now that we have proven that the dimension of maximal totallysingular subspaces

are invariant, we want to catalog the Witt indices of odd dimensional regular quadratic

spaces and their regular hyperplanes.

Proposition 4.35. If pV,Qq is regular quadratic space where dimV “ n is odd,

then mpV q “ n´1

2
.

Proof. Let pV,Qq be a regular quadratic space with dimV “ n where n is odd. Then

by Proposition 4.23 we have V “Ën´1
2

i“1
Hi k radV where Hi is a hyperbolic plane

for each i P t1, . . . , n´1

2
u. Let phi1, hi2q be a hyperbolic pair for each Hi. Then the

subspace T “ xh11, h21, . . . , hn´1
2

1
y is a totally singular subspace of dimension n´1

2
.

Now by way of contradiction, suppose that T is not maximal. That is, there

exists S Ď V such that T Ď S but T ‰ S. This implies that dimS ą dimT. Suppose

that dimS “ dimT ` 1. Let xh11, h21, . . . , hn´1
2

1
, sy be a basis for S. Since

Bps, hi1q “ 0 for all i P t1, . . . , n´1

2
u, Proposition 4.19 implies that s R Hi for every i

since each Hi is regular. Therefore, xsy Ď radV which implies that V is not regular.

This is a contradiction, and so T must be a maximal totally singular subspace, and

dimT “ n´1

2
.

Proposition 4.36. Suppose pV,Qq is a regular quadratic space of dimension n. The

space V is hyperbolic if and only if mpV q “ n
2
.
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Proof. Suppose that pV,Qq is a quadratic space of dimension n. If V is hyperbolic,

then by definition, we have n “ 2m for some m P N and V “Ëm

i“1
Hi where tHiumi“1

is a collection of hyperbolic planes. Note that each Hi contains a hyperbolic pair

phi1, hi2q. Then subspace T “ xh11, h21, . . . , hm1y is a totally singular subspace and

dimT “ m “ n
2
.

Now suppose by way of contradiction, that T is not maximal. Then there

exists S Ď V such that T Ď S but T ‰ S. Let dimS “ dimT ` 1 and let

th11, . . . , hm1, su be a basis for S. Since Bps, hi1q “ 0 for all i P t1, . . . , mu,
Proposition 4.19 implies that s R Hi for every i since each Hi is regular. Therefore,

V “ V “Ëm

i“1
Hi k xsy and so dimV “ 2n` 1 which is a contradiction since V is a

hyperbolic space. Therefore, T must be maximal and dimT “ n
2
.

Now suppose that V contains a maximal totally singular subspace, T , of of

dimension m “ n
2
. Note that since V is regular we have T X radV “ t0u. Now

induct on the dimension of T. If m “ 1 then T “ xt1y. By Proposition 4.16, we have

that there exists a hyperbolic plane H “ xt1, s1y. Since we know that if m “ 1, then

dimV “ 2, we must have V “ H and so V is hyperbolic. Now suppose that if

dimV “ 2m´ 2 and V contains an m´ 1 dimensional maximal totally singular

subspace, then V is hyperbolic. Let tt1, . . . , tmu be a basis for T . Let

C “ xt2, . . . , tmyK. Note that dimC “ n
2
` 1 by Proposition 4.9. Additionally,

T Ď C. Note that since dimC ą dim T, there exists s P C such that s R T but

Bpt1, sq ‰ 0. Without loss of generality, suppose that Bps, t1q “ 1. If s is singular,

then we have the hyperbolic pair pt1, sq. If s is not singular, then pt1, Qpsqt1 ` sq is a
hyperbolic pair. Let H1 be the hyperbolic plane that contains t1 and is orthogonal

to C. Then V “ H1kHK
1
and xt2, . . . , tmy Ď HK

1
. Note that dimHK

1
“ 2m´ 2 and it

contains the maximal totally singular subspace T 1 “ xt2, . . . , tmy. Since HK
1
is

regular dimT 1 “ m´ 1, the induction hypothesis gives us that HK
1
is a hyperbolic

space. Hence there exist hyperbolic planes tHiumi“2
such that HK

1
“Ëm

i“2
Hi and so



29

V “Ëm

i“1
Hi and so V is a hyperbolic space.

Note a consequence of Proposition 4.36, we have that ifpV,Qq is a regular

quadratic space withdimV “ 2n, and thatV is elliptic, thenmpV q “ n
2
´ 1.

It is at this point that we focus our attention on quadratic spaces over finite fields.

We will utilize the trace function given by finite fields to aidin our understanding of

regular hyperplanes.

Definition 4.37. The field Fq is the field containing q elements.

Assumption. Suppose that |F| “ p2hq for some h P N.

Definition 4.38. Let F be a finite field of characteristic 2 such that |F| “ 2h for

some h P N. Define tr : F Ñ F2 given by trpαq “ α ` α2 ` ¨ ¨ ¨ ` α2h´1

.

Proposition 4.39. If F is a finite field of characteristic 2 such that |F| “ 2h for

some h P N, then trpα ` βq “ trpαq ` trpβq, trpα2q “ trpαq for all α, β P F.

Proof. Let F be a finite field of characteristic 2 such that |F| “ 2h for some h P N.

First let α, β P F. Then trpα ` βq “ pα ` βq ` pα ` βq2 ` ¨ ¨ ¨ ` pα` βq2h´1 “
α ` α2 ` ¨ ¨ ¨ ` α2

h´1 ` β ` β2 ` ¨ ¨ ¨ ` β2
h´1 “ trpαq ` trpβq.

Next, consider that since F is a finite field, we have that α ÞÑ α2
h

is the

identity map since the nonzero elements of F form a cyclic group under

multiplication. Therefore,

trpα2q ` trpαq “ α2 ` α4 ` ¨ ¨ ¨ ` α2h´1 ` α2h ` α ` α2 ` ¨ ¨ ¨ ` α2h´1

“ α2 ` α4 ` ¨ ¨ ¨ ` α2h´1 ` α` α ` α2 ` ¨ ¨ ¨ ` α2h´1 “ 0.

Hence, trpα2q “ trpαq for all α P F.

Proposition 4.40. Let F be a finite field. The polynomial x2 ` x` β P Frxs is
irreducible if and only if trpβq “ 1.
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Proof. Suppose that x2 ` x` β P Frxs is reducible. Then for some γ P F we have

γ2 ` γ ` β “ 0, or equivalently, γ2 ` γ “ β. But then

trpβq “ trpγ2 ` γq “ trpγ2q ` trpγq “ 2 trpγq “ 0.

Now suppose that F “ F2n for some n P N and that

0 “ trpβq “ β ` β2 ` ¨ ¨ ¨ ` β2n´1

. Note that for any α P Fzt0u that we have

α2
n´1 “ 1 and so α2

n “ α. If n is odd, then n “ 2m` 1 for some m P Z. Let

x0 “ β ` β4 ` β16 ` ¨ ¨ ¨ ` β2
2m´2 ` β2

2m

and consider

x2
0
` x0 ` β “ pβ ` β4 ` β16 ` ¨ ¨ ¨ ` β2

2m´2 ` β2
2mq2

` pβ ` β4 ` β16 ` ¨ ¨ ¨ ` β22m´2 ` β22mq ` β

“ β2 ` β8 ` β32 ` ¨ ¨ ¨ ` β22m´1 ` β22m`1 ` β ` β4 ` ¨ ¨ ¨ ` β22m´2

` β22m ` β

“ β ` β ` β ` β2 ` β4 ` β8 ` ¨ ¨ ¨ ` β22m´1 ` β22m “ trpβq “ 0.

Hence, we know that x2 ` x` β has a root and so it is reducible.

Now suppose that n is even, and let γ P F such that trpγq “ 1. Then define

x0 “ γβ2 ` pγ ` γ2qβ4 ` ¨ ¨ ¨ ` pγ ` γ2 ` ¨ ¨ ¨ ` γ2
n´2qβ2

n´1

and consider

x2
0
` x0 ` β “ pγβ2 ` pγ ` γ2qβ4 ` ¨ ¨ ¨ ` pγ ` γ2 ` ¨ ¨ ¨ ` γ2

n´2qβ2n´1q2

` pγβ2 ` ¨ ¨ ¨ ` pγ ` γ2 ` ¨ ¨ ¨ ` γ2
n´2qβ2

n´1q ` β

“ γβ2 ` γβ4 ` ¨ ¨ ¨ ` γβ2
n´1 ` pγ ` 1qβ2

n ` β “ γ trpβq “ 0.

Hence we know that x2 ` x` β has a root and so it is reducible.

Proposition 4.41. Let F be a finite field and a, b P Fzt0u. The polynomial

ax2 ` bx` c P Frxs has a root if and only if trpac
b2
q “ 0.

Proof. Let F be a finite field, and let fpxq “ ax2 ` bx` c P Frxs. Note that since F

is finite and has characteristic 2, then F is perfect. Suppose that f is irreducible.

Now consider the polynomial gpxq “ fp b
a
xq “ b2

a2
ax2 ` b2

a
x` c “ b2

a
px2 ` x` ac

b2
q.
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Note that by Proposition 4.40 trpac
b2
q “ 1 if and only if g is irreducible if and only if

f is irreducible.

The previous propositions provide us another way to test if aplane is hyperbolic or

elliptic when using Proposition 4.15.

Proposition 4.42. If F is a finite field of characteristic 2 such that |F| “ 2h for

some h P N, then for each c P F2, there are exactly 2h´1 elements α P F such that

trpαq “ c.

Proof. Let F be a finite field of characteristic 2 such that |F| “ 2h for some h P N.

First, suppose that trpFq “ 0. Then by Proposition 4.41, we know that every monic

quadratic polynomial, x2 ` bx` c P Frxs is reducible. Therefore, we know that every

monic quadratic polynomial is of the form px´ β1qpx´ β2q for some β1, β2 P F.

Consider the set of monic, quadratic polynomials over this field, that is

Frxs “ tx2 ` α1x` α2 : α1, α2 P Fu. Let h : F2 Ñ Frxs be given by

hpα1, α2q “ x2 ` α1x` α2. This function is clearly a bijection and therefore,

|Frxs| “ |F|2. However, since each monic polynomial is reducible, we have that

Frxs “ tpx´ β1qpx´ β2q : β1, β2 P Fu. Let g : F2 Ñ Frxs be given by

gpβ1, β2q “ px´ β1qpx´ β2q. Note that gpβ1, β2q “ gpβ2, β1q and so g is not injective.

This implies that |tpx´ β1qpx´ β2q : β1, β2 P Fu| ă |F|2 which is a contradiction.

Hence there exists an element β P F such that trpβq “ 1. Now note that for any

α P kerptrq, we have that trpα` βq “ 1. Now we can build the coset of β ` kerptrq in
the additive structure of F, that this is a well-defined coset. Note that since kerptrq
is a subgroup of F, we know that by Lagrange’s Theorem, rF : kerptrqs “ 2 and so

| kerptrq| “ |β ` kerptrq| “ |F|
2
“ 2h´1.

The final result of this section is to show that if a quadratic space is written as the

orthogonal direct sum of two elliptic planes, then it is actually a hyperbolic space. This

result allows us to obtain ideal bases for hyperbolic spaces.
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Proposition 4.43. Let F be a finite field. If E1, E2 are elliptic planes in a

quadratic space pV,Qq and E1 Ď EK
2
, then E1 k E2 is a hyperbolic space.

Proof. Let tu1, v1u and tu2, v2u be bases for E1 and E2 respectively. Without loss of

generality we can suppose that Qpu1q “ Bpu1, v1q “ 1 and Qpu2q “ Bpu2, v2q “ 1.

Now let x P radpE1 k E2q. Then x “ au1 ` bv1 ` cu2 ` dv2. Note that

Bpx, u1q “ Bpx, v1q “ Bpx, u2q, Bpx, v2q “ 0 implies that a “ b “ c “ d “ 0 and so

x “ 0. Therefore, radpE1 k E2q “ t0u so E1 k E2 is regular.

We will show that E1 k E2 contains a two dimensional totally singular

subspace and we consider two cases.

Case 1. Suppose that Qpv1q “ Qpv2q. Then the subspace T “ xu1 ` u2, v1 ` v2y has
the properties that

Qpu1 ` u2q “ Qpu1q `Qpu2q `Bpu1, u2q “ 1` 1` 0 “ 0,

that

Qpv1 ` v2q “ Qpv1q `Qpv2q `Bpv1, v2q “ 0,

and that

Bpu1 ` u2, v1 ` v2q “ Bpu1, v1q `Bpu2, v2q “ 1` 1 “ 0.

Hence T is a two dimensional totally singular subspace and by Proposition 4.36,

E1 k E2 is a hyperbolic space.

Case 2. Suppose that Qpv1q ‰ Qpv2q and define the polynomials

fpxq “ Qpxu1 ` v1q “ x2 ` x`Qpv1q and gpxq “ Qpxu2 ` v2q. Clearly f ‰ g. Since

E1, E2 are elliptic planes, we know that trpQpv1qq “ trpQpv2qq “ 1. Therefore, we

know that trpQpv1q `Qpv1qq “ 0. Hence the polynomial

hpxq “ x2 ` x` pQpv1 `Qpv2qqq is reducible. Since h is reducible, then there exists

s P F such that hpsq “ 0. Consider the basis tu2, su2 ` v2u for E2. This implies that



33

Qpxu2 ` su2 ` v2q “ x2 ` x` ps2 ` s `Qpv2qq “ x2 ` x`Qpv1q “ fpxq. Then the

subspace T “ xu1 ` u2, v1 ` su2 ` v2y has the properties that

Qpu1 ` u2q “ Qpu1q `Qpu2q `Bpu1, u2q “ 1` 1` 0 “ 0,

that

Qpv1 ` su2 ` v2q “ Qpv1q `Qpsu2 ` v2q “ Qpv1q `Qpv1q “ 0,

and that

Bpu1`u2, v1`su2`v2q “ Bpu1`u2, v1q`sBpu1`u2, u2q`Bpu1`u2, v2q “ 1`0`1 “ 0.

Therefore, T is a two dimensional totally singular subspace and by Proposition 4.36

E1 k E2 is a hyperbolic space.

5 A CORRESPONDENCE BETWEEN POINTS AND HYPERPLANES

The graphNO
2̀n`1

p2hq is defined on hyperplanes of an odd dimensional regular quadratic

space. Usually, it is useful to consider a set of vectors instead of hyperplanes. SinceF is

characteristic 2, the usual convention of identifying hyperplanes with the vector in its

orthogonal complement doesn’t work here. So instead, we will develop a correspondence

between the regular hyperplanes of an odd dimensional regular quadratic space and

vectors in a regular quadratic space of one fewer dimension.

Definition 5.1. Two maximal totally singular subspaces are said to be

complementary if they have trivial intersection.

This definition allows us to develop bases for two complementary totally singular

subspaces where the vectors are almost all orthogonal.

Proposition 5.2. Let pV,Qq be a regular quadratic space with Witt index m. The
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subspaces T and S are complementary if and only if there exist bases tt1, . . . , tmu
and ts1, . . . , smu for T and S, resepectively, such that Bpti, sjq “ δij .

Proof. Suppose that there exist bases for T “ xt1, . . . , tny and S “ xs1, . . . , sny such
that Bpti, sjq “ δij . Let x P T X S. Then x “ řn

i“1
aiti and x “ řn

j“1
bjsj. Note that

since x P S, we have Bpx, siq “ 0 for all i P t1, . . . , nu. Hence, we have

0 “ Bpřn

i“1
aiti, sjq “ aj for all j P t1, . . . , nu. Hence we must have x “ 0 and so the

intersection is trivial.

Now suppose that T and S are maximal and that T X S “ t0u. We will

induct on the Witt Index of V . First suppose that dimT “ dimS “ m “ 1. Let

T “ xt1y and S “ xs1y. Since m “ 1, then dimV “ 2 or dimV “ 3. Suppose that

dimV “ 2 and that Bpt1, s1q “ 0. Since tt1, s1u is an independent set, then tt1, s1u
is an orthogonal basis for V. This implies that V is not regular by Proposition 4.19,

which is a contradiction. Hence Bpt1, s1q ‰ 0 and therefore, there is a basis tt1, s11u
such that Bpt1, s11q “ 1.

Now suppose that dim V “ 3 and Bpt1, s1q “ 0. Since V is regular, then V

contains a nontrivial and nonsingular radical. Let radV “ xry. But then we know

that tt1, s1, ru is an independent set and a basis for V . However, this implies that

t1 P radV which implies that V is not regular, a contradiction. Therefore,

Bpt1, s1q ‰ 0 and thus there is a basis tt1, s11u such that Bpt1, s11q “ 1.

Now suppose that when m “ k then there exist bases tt1, . . . , tku and
ts1, . . . , sku for T and S, respectively, such that Bpti, sjq “ δij . Let m “ k ` 1. This

implies that dim V “ 2k ` 2 or dimV “ 2k ` 3. Also, dim T “ dimS “ k ` 1 and

that T X S “ t0u. Let t1 P T zt0u. If Bpt1, sq “ 0 for all s P S then S is not maximal

which is a contradiction. Therefore, since S is maximal, then without loss of

generality, there exists s1 P Szt0u such that Bpt1, s1q “ 1. This implies that pt1, s1q
is a hyperbolic pair and that V “ xt1, s1y k xt1, s1yK where xt1, s1yK is a regular

space with Witt index m “ k. Consider that the subspaces T 1 “ T X xt1, s1yK and
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S 1 “ S X xt1, s1yK have trivial intersection since T X S “ t0u and that

dimT 1 “ dimS 1 “ k. Therefore by the induction hypothesis, there exist bases

tt2, . . . , tk`1u and ts2, . . . , sk`1u for T 1 and S 1, respectively, such that Bpti, sjq “ δij .

Therefore, the bases tt1, . . . , tk`1u and ts1, . . . , sk`1u for T and S, respectively, have

the property that Bpti, sjq “ δij .

The previous proposition will allow us to write down a specific basis for any odd

dimensional regular quadratic space. This basis lets us give an formula for all of the

regular hyperplanes that space.

Proposition 5.3. If pV,Qq is a regular quadratic space with dimV “ n for some

odd n P N and if T, S Ď V are maximal, complementary, totally singular subspaces,

then V “ pT ‘ Sq k radV.

Proof. If n is odd then we have mpV q “ n´1

2
by Proposition 4.35. Hence, T, S are

complementary totally singular subspaces of V implies that dimpT ‘ Sq “ n´ 1 and

so dimppT ‘ Sq k radV q “ 2n` 1 and so V “ pT ‘ Sq k radV.

Corollary 5.4. If dimV “ 2n ` 1 and pV,Qq is regular, then there is a basis for

V “ xb1, b2, . . . , b2n´1, b2n, ry

where r P radV zt0u, Qprq “ 1, and Bpb2i´1, b2jq “ δij for all i, j P t1, . . . , nu.

Proposition 5.5. If pV,Qq is a hyperbolic quadratic space with dim V “ n for some

even n P N and if T, S Ď V are maximal, complementary totally singular subspaces,

then V “ T ‘ S.

Proof. Since n is even, then we have mpV q “ n
2
by Proposition 4.36, and so we have

dimT “ dimS “ n
2
and so dimpT ‘ Sq “ n and hence V “ T ‘ S.

Corollary 5.6. If dimV “ 2n and pV,Qq is hyperbolic, then there is a basis for

V “ xb1, b2, . . . , b2n´1, b2ny and Bpb2i´1, b2jq “ δij for all i, j P t1, . . . , nu.
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Since the direct sum of complementary totally singular subspaces will always be a

subspace of their quadratic spaces, we will find it useful to identify vectors with their

components from the two complementary totally singular subspaces.

Definition 5.7. Let T, S be complementary totally singular subspaces of a regular

quadratic space, pV,Qq, and let x “ t` s` r P V for some t P T, s P S, and
r P radV. Define the projT pxq “ t to be the projection of x onto T.

The next proposition allows us to find a hyperbolic plane containing any given

vector in space. This allows us to determine the intersection of our hyperplanes.

Proposition 5.8. If pV,Qq be a singular quadratic space with dimV “ 2n for some

n P N, then any vector x P V zt0u is contained in a hyperbolic plane.

Proof. Since V is regular, if Qpxq “ 0 then by Proposition 4.16, x is in a hyperbolic

plane. Now suppose that Qpxq ‰ 0. Since dim V “ 2n, then we know that x R radV.

Therefore, there exists y P V such that Bpx, yq ‰ 0. Let

fpγq “ Qpx` γyq “ 1` γBpx, yq ` γ2Qpyq. If f is reducible, then there exists

z P xx, yy such that Qpzq “ 0 and Bpx, zq “ 1. Therefore, if w “ Qpxqz ` x then

Qpwq “ Qpxq2Qpzq `Qpxq `QpxqBpx, zq “ 0 and so xz, wy “ xx, yy is a hyperbolic

plane that contains x.

If f is irreducible, then xx, yy contains no singular vectors and must be an

elliptic plane. Since V is singular, then we know that xx, yyK is singular and hence

there exists a hyperbolic plane, H Ď xx, yyK. Therefore, there exists w P H such that

Qpwq “ Qpyq. Then Bpw ` y, xq “ Bpx, yq ‰ 0 and Qpw ` yq “ Qpwq `Qpyq “ 0.

Therefore by a similar argument to above, xx, w ` yy spans a hyperbolic plane that

contains x.

The next proposition begins our work towards developing thecorrespondence

between regular hyperplanes and the points in a vector spacethat is the same dimension as

the hyperplanes. Here we identify a sequence inF which will become our point that we



37

associate with the hyperplane. It is at this point which we utilize the previously known

results to identify the regular hyperplanes of an odd dimensional quadratic space and

vectors of a regular quadratic space of one dimension fewer which is a new identification.

Theorem 5.9. Let pV,Qq be a regular quadratic space with dimV “ 2n ` 1 for

some n P N. If a hyperplane H Ď V is regular, then there exists a unique sequence of

elements, tβiu2ni“1
, in F, such that

H “Ën

i“1
xb2i´1 ` β2i´1r, b2i ` β2iry. Conversely, if tβiu2ni“1

P F2n is a

sequence, then the hyperplane H “Ën

i“1
xb2i´1 ` β2i´1r, b2i ` β2iry is a regular

hyperplane.

Proof. Let H Ď V be a regular hyperplane. And let tb1, . . . , b2n, ru be a basis for V

given by Corollary 5.4. Then we know that r R H, and so dimpH X xb2i´1, b2i, ryq “ 2

for each i P t1, . . . , nu. Now let tx, yu be a basis for H X xb2i´1, b2i, ry. Then
x “ ab2i´1 ` cb2i ` dr and y “ eb2i´1 ` fb2i ` gr for some a, c, d, e, f, g P F. Since x

and y are independent and H is regular, then we know that either a ‰ 0 or c ‰ 0

and that e ‰ 0 or f ‰ 0. If a ‰ 0 then let p P F such that y1 “ y ` px “ f 1b2i ` g1r.

And then let q P F such that x1 “ x` qy1 “ a1b2i´1 ` d1r. A similar construction can

be made for x1 and y1 if c ‰ 0. In either case, without loss of generality, there exists

a basis for H X xb2i´1, b2i, ry of the form tb2i´1 ` β2i´1r, b2i ` β2iru for some

β2i´1, β2i P F. Therefore, we know that for each i P t1, . . . , nu we have

H X xb2i´1, b2i, ry “ xb2i´1 ` β2i´1r, b2i ` β2iry. By construction and the basis for V

from Corollary 5.4, the planes are orthogonal for distinct i, j P t1, . . . , nu.
Additionally, if xb2i´1 ` β2i´1r, b2i ` β2iry X xb2j´1 ` β2j´1r, b2j ` β2jry ‰ t0u then
tb1, . . . , b2n´1, ru is not an independent set which is a contradiction. Hence we have

H “
në

i“1

xb2i´1 ` β2i´1r, b2i ` β2iry.

Now consider H “Ën

i“1
xb2i´1 ` β2i´1r, b2i ` β2iry and
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H “Ën

i“1
xb2i´1 ` γ2i´1r, b2i ` γ2iry. Since H is written as a direct sum, the

intersection of any two planes must be trivial. Hence, for all i P t1, . . . , nu,
H X tb2i´1, b2i, ru “ xb2i´1 ` β2ir, b2i ` β2iry “ xb2i´1 ` γ2i´1r, b2i ` γ2iry. Note that if

β2i´1 ‰ γ2i´1 then we have pβ2i´1 ` γ2i´1qr P H X xb2i´1, b2i, ry which is a

contradiction since H is a regular hyperplane. Hence β2i´1 “ γ2i´1. A similar

argument shows that β2i “ γ2i and so the sequence of tβiu2ni“1
is unique.

Now suppose that for some sequence tβiuni“1
that the hyperplane

H “ kn
i“1
xb2i´1 ` β2i´1r, b2i ` β2iry but also that H is not regular. Let x P radH.

Then we know that x “ řn

i“1
pa2i´1pb2i´1 ` β2i´1rq ` a2ipb2i ` β2irqq where ai P F for

all i P t1, . . . , 2nu. Additionally, we have that

Bpx, b2i´1 ` β2i´1rq “ Bpa2ipb2i ` β2irq, b2i´1 ` β2i´1rq “ a2i “ 0

for all i P t1, . . . , nu. A similar argument shows that a2i´1 “ 0 for all i P t1, . . . , nu.
Therefore, x “ 0 and so radH “ t0u. Therefore, H is a regular hyperplane.

Now that we can identify a given sequence with regular hyperplanes, we now want

to determine which hyperplanes are hyperbolic and ellipticgiven the sequence.

Theorem 5.10. Let H Ď V be a regular hyperplane and let

H “Ën

i“1
xb2i´1 ` β2i´1r, b2i ` β2iry. The hyperplane H is hyperbolic if and only if

trpřn

i“1
β2i´1β2iq “ 0.

Proof. Let Pi “ xb2i´1 ` β2i´1r, b2i ` β2iry. Since Pi must be regular for all

i P t1, . . . , nu by Proposition 5.9, then by Corollary 4.14, Pi is either a hyperbolic

plane or an elliptic plane.

Now consider the polynomial

fpxq “ Qpxpb2i´1 ` β2i´1rq ` b2i ` β2irq “ x2β2

2i´1
` x` β2

2i. By Proposition 4.41, Pi

is hyperbolic if and only if trpβ2

2i´1
β2

2iq “ trppβ2i´1β2iq2q “ trpβ2i´1β2iq “ 0 and Pi is

elliptic if and only if trpβ2i´1β2iq “ 1.
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Next, suppose that H is a hyperbolic hyperplane. If Pi is hyperbolic for all i,

then we have
nÿ

i“1

trpβ2i´1β2iq “ trp
nÿ

i“1

β2i´1β2iq “ 0.

If Pi is not hyperbolic for all i, then consider the set

E “ tj : trpβ2j´1β2jq “ 1u.

By Proposition 4.43, we know that if j, k P E then

trpβ2j´1β2jq ` trpβ2k´1β2kq “ 0

and therefore Pj k Pk is a hyperbolic space.

Since H is hyperbolic, the Witt index is n. Suppose that |E|mod2 “ 1.

Then there exists an elliptic plane Pi so that H “ kn´1

i“1
Hi k Pi where Hi is a

hyperbolic plane for all i P t1, . . . , n´ 1u. But then since Pi is elliptic, it contains no

singular vectors and thus mpHq “ n ´ 1 which is a contradiction. Thus we have

|E|mod2 “ 0 and hence

tr

˜
nÿ

i“1

β2i´1β2i

¸
“ 0.

Now suppose that 0 “ trpřn

i“1
β2i´1β2iq “ řn

i“1
trpβ2i´1β2iq. Now if

trpβ2i´1β2iq “ 0 for all i, then each Pi is a hyperbolic plane and so H is a hyperbolic

hyperplane. If trpβ2i´1β2iq ‰ 0 for all i then let E “ tj : trpβ2j´1β2jq “ 1u. Clearly
we must have |E| mod 2 “ 0 and so by Proposition 4.43, there exist hyperbolic

planes tHiuni“1
such that H “Ën

i“1
Hi and so H is a hyperbolic hyperplane.

Since the construction ofNO
2̀n`1

p2hq involves computing the intersection of

hyperbolic hyperplanes, we now compute these intersections in general.

Proposition 5.11. Let H,K be regular hyperplanes of V. If
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H “Ën

i“1
xb2i´1 ` β2i´1r, b2i ` β2iry and K “Ën

i“1
xb2i´1 ` γ2i´1r, b2i ` γ2iry, then

H XK “
#

nÿ
i“1

aipbi ` βirq :
nÿ

i“1

aipβi ` γiq “ 0

+
.

Proof. Let x P H XK. Then for some scalars ai, ci P F for i P t1, . . . , 2nu we have

x “
2nÿ
i“1

aipbi ` βirq “
2nÿ
i“1

cipbi ` γirq.

Thus,

0 “
2nÿ
i“1

ppai ` ciqbi ` paiβi ` ciγiqrq “
2nÿ
i“1

ppai ` ciqbiq `
˜

2nÿ
i“1

paiβi ` ciγiq
¸
r.

Since tb1, . . . , b2n, ru is a basis for V , then ai “ ci for all i P t1, . . . , 2nu andř
2n

i“1
aipβi ` γiq “ 0.

In our final result, we establish a bijection between the hyperbolic hyperplanes of

an odd dimensional quadratic space and the points of a quadratic space of one dimension

fewer. We will use this bijection to prove a graph isomorphism in Section 5.

Proposition 5.12. Let pV1, Q1q be a regular quadratic space of dimension 2n` 1

for some n P N and pV2, Q2q be a hyperbolic quadratic spaces of dimension 2n. If

H “ tH Ď V1 : H is a hyperbolic hyperplaneu and PH “ tv P V2 : trpQpvqq “ 0u,
then |H| “ |PH |.

Proof. Let n P N be given, let pV1, Q1q be a regular quadratic space with

dimV1 “ 2n` 1 and let tb1, . . . , b2n, ru be the basis for V1 given by Corollary 5.4. Let

pV2, Q2q be a hyperbolic quadratic space with dimV2 “ 2n, and let te1, . . . , e2nu be
the hyperbolic basis for V2 given by Corollary 5.6. This implies that if v P PH , then

v “
2nÿ
i“1

βiei
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such that

tr

˜
nÿ

i“1

β2i´1β2i

¸
“ 0.

Define the function f : PH Ñ H given by

fpvq “Ën

i“1
xb2i´1 ` β2i´1r, b2i ` β2iry. Note that since teiu2ni“1

is a basis for V2 that

f is well-defined. Also, by Theorem 5.10 we have that

fpvq “
në

i“1

xb2i´1 ` β2i´1r, b2i ` β2iry

is a hyperbolic hyperplane of V1. We claim that f is a graph isomorphism.

Note that if H P H then by Theorem 5.9 there is a sequence tβiu2ni“1
such that

H “
në

i“1

xb2i´1 ` β2i´1r, b2i ` β2iry.

Clearly, if we let v “ ř2n

i“1
βiei then fpvq “ H , and v P PH by Theorem 5.10 so f is

surjective. Let u, v P PH such that

u “
2nÿ
i“1

γiei.

Now suppose that fpvq “ fpuq. Then

në
i“1

xb2i´1 ` β2i´1r, b2i ` β2iry “
ëxb2i´1 ` γ2i´1r, b2i ` γ2iry

and by Theorem 5.9, u “ v and so f is injective. Hence f is a bijection and

|H| “ |PH |.

6 ISOMORPHIC STRONGLY REGULAR GRAPHS

In this section, we formally define the graphNO`
2n`1

p2hq. In addition, we define two new

graphs on the points of an even quadratic space. We will then show that one of our new
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graphs is isomorphic toNO
2̀n`1

p2hq and prove that both new graphs are strongly regular.

Definition 6.1. Let pV,Qq be a regular quadratic space with dimV “ 2n` 1 for

some n P N, and let H be the set of hyperbolic hyperplanes of V and let E be the

set of elliptic hyperplanes of V. Define the graph on H or E with H „ K if and only

if H XK is not regular. The graph on H is denoted by NO`
2n`1

p2hq and the graph

on E is denoted by NO´
2n`1

p2hq .

Definition 6.2. Let pV,Qq be a hyperbolic quadratic space with dim V “ 2n for

some n P N, and where |F| “ 2h for some h ě 2. Let PH be the vectors in V such

that trpQpvqq “ 0 and let PE be the vectors in V such that trpQpvqq “ 1. We will

call the set PH the hyperbolic points. Define the graphs on PH and PE with

v „ u if and only if v ‰ u and Qpu` vq `Bpv, uq2 “ 0. We denote this graph on PH

by NO`
2np2hq and we denote the graph on PE by NO´

2np2hq. We will call NO
2̀np2hq

the hyperbolic points graph.

In order to prove that the hyperbolic points graph is isomorphic toNO`
2n`1

p2hq,
we will need to show that the number of vectors with trace equal to zero is the same

number as hyperbolic hyperplanes used inNO`
2n`1

p2hq. Since every singular vector has

trace equal to zero, we begin by counting the number of singular vectors in an even

dimensional quadratic space.

Lemma 6.3. Let pV,Qq be a regular quadratic space of dimension 2n where n P N

and assume |F| “ 2h for some h P N. If pV,Qq is a hyperbolic quadratic space, then

| kerQ| “ p2h ´ 1qp2hqn´1 ` p2hq2n´1.

Proof. We first note that since pV,Qq is a hyperbolic quadratic space, then there

exists a basis tbiu2ni“1
such that V “Ën

i“1
xb2i´1, b2iy where pb2i´1, b2iq is a hyperbolic

pair. Hence for any x P V we have

Qpxq “ Q

˜
2nÿ
i“1

aibi

¸
“

nÿ
i“1

a2i´1a2i.
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Suppose n “ 1. Then dimV “ 2 and so Qpa1b1 ` a2b2q “ a1a2 “ 0 if and only

if a1 “ 0 or a2 “ 0. Thus

| kerQ| “ 2h`1 ´ 1 “ p2h ´ 1qp1q ` 2h “ p2h ´ 1qp2hq0 ` p2hq1.
Now for ease of notation, let q “ 2h. Also suppose that for n “ m for some

m ě 1 we have

| kerQ| “ pq ´ 1qqm´1 ` q2m´1.

Now let n “ m` 1. Then we have dimV “ 2m` 2 and

Qpxq “ Q

˜
2m`2ÿ
i“1

aibi

¸
“

m`1ÿ
i“1

a2i´1a2i “
mÿ
i“1

a2i´1a2i ` a2m`1a2m`2.

If
řm

i“1
a2i´1a2i “ 0 then Qpxq “ 0 if and only if a2m`1 “ 0 or a2m`2 “ 0. There are

2q ´ 1 choices for such coefficents. If
řm

i“1
a2i´1a2i ‰ 0 then a2m`1 ‰ 0 and

a2m`2 ‰ 0. Additionally, we know that without loss of generality, we can choose

a2m`1 to be any nonzero element, and then a2m`2 is determined. Hence

| kerQ| “ p2q ´ 1qrpq ´ 1qqm´1 ` q2m´1s ` pq ´ 1qrq2m ´ rpq ´ 1qqm´1 ` q2m´1ss
“ qm`1 ´ qm ` q2m`1

“ pq ´ 1qqm ` q2m`1

Hence by induction, we have | kerQ| “ p2h ´ 1qp2hqn´1 ` p2hq2n´1.

Using Lemma 6.3, we now will be able to find the cardinality of the set of

hyperbolic points and set of elliptic points.

Theorem 6.4. Let pV,Qq be a hyperbolic quadratic space with dim V “ 2n for some

n P N. Also let |F| “ q. If PH “ tv P V : trpQpvqq “ 0u, then |PH| “ 1

2
pq2n ` qnq.

Proof. First we note that trpQpvqq “ 0 if and only if Qpvq “ 0 or if Qpvq “ α where

trpαq “ 0. Note that by Proposition 4.42, we know that there are qn´1 ´ 1 “ q

2
´ 1

nonzero elements with trace equal to 0. Next we note that by Lemma 6.3, we have
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| kerQ| “ pq ´ 1qqn´1 ` q2n´1. This implies that there are | kerQ|´1

q´1
singular lines in V

and there are q2n´1

q´1
´ | kerQ|´1

q´1
“ q2n´1 ´ qn´1 nonsingular lines in V. Note that since

F is perfect, for each element α P F there exists a unique element, x, of a

nonsingular line such that Qpxq “ α. Therefore

|PH | “ pq ´ 1qqn´1 ` q2n´1 ` ` q
2
´ 1
˘ pq2n´1 ´ qn´1q “ 1

2
pq2n ` qnq.

Corollary 6.5. Let pV,Qq be a hyperbolic quadratic space with dim V “ 2n for some

n P N. Also let |F| “ q. If PE “ tv P V : trpQpvqq “ 1u, then |PE| “ 1

2
pq2n ´ qnq.

Proof. Since tr : F Ñ F2, we know that any vector in F that does not map to zero,

must map to 1. Hence |PE| “ |V | ´ |PH | “ q2n ´ 1

2
pq2n ´ qnq “ 1

2
pq2n ´ qnq.

With the cardinality of the hyperbolic points set determined, we can now use our

bijection from Proposition 5.12, to show that the hyperbolic points graph andNO
2̀n`1

p2hq
are isomorphic.

Theorem 6.6. NO`
2n`1

p2hq is isomorphic to NO`
2np2hq.

Proof. Let n P N be given, let pV1, Q1q be a regular quadratic space with

dimV1 “ 2n` 1 and let tb1, . . . , b2n, ru be the basis for V1 given by Corollary 5.4.

Let pV2, Q2q be a hyperbolic quadratic space with dimV2 “ 2n. Let te1, . . . , e2nu be
the hyperbolic basis for V2 given by Corollary 5.6. Recall that

PH “ tv P V2 : trpQpvqq “ 0u and H “ tH Ď V1 : H is a hyperbolic hyperplaneu.
Let v P PH . That is

v “
2nÿ
i“1

βiei

such that

tr

˜
nÿ

i“1

β2i´1β2i

¸
“ 0.

Let f : PH Ñ H given by fpvq “Ën

i“1
xb2i´1 ` β2i´1r, b2i ` β2iry be the

bijection from Proposition 5.12. Additionally, this gives us that |H| “ |PH |. Now let



45

v, u P PH . By Proposition 5.11

fpvq X fpuq “
#

nÿ
i“1

aipbi ` βirq :
nÿ

i“1

aipβi ` γiq “ 0

+
.

Let tciu2ni“1
be a sequence in F such that

ci “
$’&’%βi´1 ` γi´1 if i “ 0mod2

βi`1 ` γi`1 if i “ 1mod2.

We claim that x “ ř2n

i“1
cipbi ` βirq P radpfpvq X fpuqqzt0u. Clearly, x ‰ 0, and we

have that

2nÿ
i“1

cipβi ` γiq “ pβ2 ` γ2qpβ1 ` γ1q

` pβ1 ` γ1qpβ2 ` γ2q ` ¨ ¨ ¨ ` pβ2n´1 ` γ2n´1qpβ2n ` γ2nq “ 0.

Hence x P fpvq X fpuq. Note also that

B

˜
x,

2nÿ
i“1

aipbi ` βirq
¸
“

2nÿ
i“1

2nÿ
j“1

aicjBpbj , biq

“ a1c2 ` a2c1 ` a3c4 ` a4c3 ` ¨ ¨ ¨ ` a2n´1c2n ` a2nc2n´1

“
2nÿ
i“1

aipβi ` γiq “ 0.

Hence x P radpfpvq X fpuqqzt0u.
Now let y P radpfpvq X fpuqq. Then

y “
2nÿ
i“1

dipbi ` βirq
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where di P F for all i P t1, . . . , nu and

2nÿ
i“1

dipβi ` γiq “ 0.

Now let z P fpvq X fpuq. Then

z “
2nÿ
i“1

fipbi ` βirq

where fi P F for all i P t1, . . . , nu, and

2nÿ
i“1

fipβi ` γiq “ 0.

Then we have that

0 “ Bpy, zq “
2nÿ
i“1

2nÿ
j“1

difjBpbi, bjq “ d1f2 ` d2f1 ` ¨ ¨ ¨ ` d2n´1f2n ` d2nf2n´1

This implies that that

di “
$’&’%cpβi´1 ` γi´1q if i “ 0mod 2

cpβi`1 ` γi`1qq if i “ 1mod 2.

Hence, y P xxy and so radpfpvq X fpuqq “ xxy.
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Additionally, we have that

Qpxq “ Q

˜
2nÿ
i“1

cipbi ` βirq
¸
“ Q

˜
2nÿ
i“1

cibi `
˜

2nÿ
i“1

ciβi

¸
r

¸

“ Q

˜´ 2nÿ
i“1

cibi

¯¸
`
˜

2nÿ
i“1

ciβi

¸2

“ pβ1 ` γ1qpβ2 ` γ2q ` ¨ ¨ ¨ ` pβ2n´1 ` γ2n´1qpβ2n ` γ2nq `
˜

2nÿ
i“1

ciβi

¸
2

“ Qpβ ` γq
` ppβ2 ` γ2qβ1 ` pβ1 ` γ1qβ2q ` ¨ ¨ ¨ ` pβ2n ` γ2nqβ2n´1 ` pβ2n´1 ` γ2n´1qβ2nq2

“ Qpβ ` γq `Bpβ, γq2.

Then we have β „ γ if and only if Qpβ ` γq `Bpβ, γq2 “ 0 if and only if

Qpxq “ 0 if and only if fpβq X fpγq is not regular.
Therefore, f is a graph isomorphism. Hence NO`

2n`1
p2hq is isomorphic to

NO`
2np2hq.

Theorem 6.7. NO´
2n`1

p2hq is isomorphic to NO´
2np2hq.

Proof. The function f : PE Ñ E given by fpvq “Ën

i“1
xb2i´1 ` β2i´1r, b2i ` β2iry is

clearly a graph isomorphism and the proof is identical to that of Theorem 6.6.

We note that it is known [4] that NÒ
2n`1

p2hq and that NÓ
2n`1

p2hq are strongly

regular, but we prove that NÒ
2np2hq is strongly regular for completeness. But first, we

need to catalog some properties of a useful function to provethat the hyperbolic points

graph is strongly regular.

Definition 6.8. A graph is called a strongly regular graph if each vertex has the

same number of neighbors, k, that adjacent vertices have the same number of

common neighbors, λ, and that non-adjacent vertices have the same number of

common neighbors, µ. We will often say a graph is an SRGpv, k, λ, µq.
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Lemma 6.9. For all x P V there exists a linear bijection τx : V Ñ V with the

following properties:

1. For y P V ,
τxpyq “ y. (6.1)

if and only if Bpx, yq “ 0. In particular, τxpxq “ x.

2.

τxpτxpyqq “ y (6.2)

for all y P V.

3. For all y, z P V
Bpτxpyq, zq “ Bpy, τxpzqq. (6.3)

4. If x P PH , then

Qpτxpyqq “ Qpyq `Bpx, yq2. (6.4)

Proof. Let x P V. Define the following function τx : V Ñ V given by

τxpyq “ y ` γBpx, yqx where γ P Fzt0u. First, let a P F and y, z P V. Note that

τxpay ` zq “ ay ` z ` γBpay ` z, xqx “ apy ` γBpy, xqxq ` pz ` γBpz, yqxq
“ aτxpyq ` τxpzq.

Therefore, τx is a linear function.

Now, suppose τxpyq “ τxpzq. Then y ` γBpy, xqx “ z ` γBpz, xqx. Hence we

have that y ` z “ γBpy ` z, xqx. Hence y ` z P xxy. This implies that

Bpy ` z, xq “ 0 and so y “ z. Hence τx is injective.

Next, we know that Bpx, yq “ 0 if and only if τxpyq “ y ` γBpx, yqx “ y.
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Additionally, we know that

τxpτxpyqq “ τxpy ` γBpy, xqxq “ y ` γBpy, xqx` γBpy ` γBpy, xqx, xqx “ y.

Next, note that

Bpτxpyq, zq “ Bpy ` γBpx, yqx, zq “ Bpy, zq ` γBpx, yqBpx, zq
“ Bpy, z ` γBpx, zqxq “ Bpy, τxpzqq.

Finally, suppose that x P PH . Then,

Qpτxpyqq “ Qpy ` γBpx, yqxq
“ Qpyq `QpγBpy, xqxq `Bpy, γBpy, xqxq “ Qpyq `Bpx, yq2pγ2Qpxq ` γq

Note that γ2Qpxq ` γ ` 1 “ 0 has a solution if and only if trpQpxqq “ 0. Since

x P PH , then there exists γ0 P F such that γ2
0
Qpxq ` γ0 ` 1 “ 0 and hence τx given

by τxpyq “ y ` γ0Bpy, xqx has the property that Qpτxpyqq “ Qpyq `Bpx, yq2.

The next Lemma will help us determine the set of hyperbolic points connected to a

given point in the hyperbolic points graph, called neighbors. This characterization of this

set will help us compute the intersection between two sets ofneighbors. In other words,

we will be finding the set of common neighbors to two hyperbolic points.

Lemma 6.10. If x P PH , and Vx “ tz P PH : z „ xu, then

Vx “ x` tτxpyq : y P kerQzt0uu.

Proof. Let x P PH be given let τx : V Ñ V be the map from Lemma 6.9. Note that

for all z P V, z “ x` τxpx` τxpzqq and that if z “ x` τxpyq for some y P V then

y “ x` τxpzq by the injectivity of τx. Therefore, z P ty : Qpx` τxpyqq “ 0u if and
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only if x` τxpzq P kerQ if and only if

x` τxpx` τxpzqq “ z P x` tτxpyq : y P kerQu.

Hence, ty : Qpx` τxpyqq “ 0u “ x` tτxpyq : y P kerQu. Since y P Vx if and only if

Qpx` yq `Bpx, yq2 “ 0 and x ‰ y if and only if Qpτxpx` yqq “ 0. Therefore,

Vx “ x` tτxpyq : y P kerQzt0uu.

Lemma 6.11. If x, y P PH , Vx “ tz P PH : z „ xu, Vy “ tp P PH : p „ yu, and τx be

the linear map from Lemma 6.9, then

Vx X Vy “ tx` τxpzq : z P kerQzt0u, Qpx` τxpyqq `Bpx` τxpyq, zq `Bpx` τxpyq, zq2 “ 0u.

Proof. Let w P Vx. Then by Lemma 6.10, we know that w “ x` τxpzq for some

singular z. Therefore using properties of τx from Lemma 6.9, w P Vy if and only if

0 “ Qpy ` wq `Bpy, wq2 “ Qpy ` x` τxpzqq `Bpy, x` τxpzqq
“ Qpx` yq `Qpτxpzqq `Bpx` y, τxpzqq `Bpx, yq2 `Bpy, τxpzqq2

“ Qpx` yq `Qpzq `Bpx, zq2 `Bpτxpx` yq, zq `Bpx, x` yq2 `Bpτxpyq, zq2

“ Qpx` τxpyqq `Bpx` τxpyq, zq `Bpx` τxpyq, zq2.

Thus,

Vx X Vy “ tx` τxpzq : z P kerQzt0u, Qpx` τxpyqq `Bpx` τxpyq, zq `Bpx` τxpyq, zq2 “ 0u.

This next lemma will give us the cardinality of the set of singular vectors that are

orthogonal to a given vector. We will use this to help determine the number of common

neighbors between two hyperbolic points.
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Lemma 6.12. Let pV,Qq be a regular quadratic space of dimension 2n for some

n P N. If v P PH , then

| kerQX xvyK| “
$’&’%q

2n´2 ` qn ´ qn´1 if v P kerQ

q2n´2 if v R kerQ.

Proof. Suppose v P PH . First, suppose v P kerQ. Then there exists u P V such that

xu, vy is a hyperbolic plane. Therefore, V “ xu, vy k xu, vyK. We will show that

kerQX xvyK “ tbv ` p : b P F, p P xu, vyK, Qppq “ 0u. Note that since xu, vyK is

regular, then by Lemma 6.3,

| kerQ|xu,vyK “ q2n´3 ` qn´1 ´ qn´2.

Let z P kerQX xvyK.
Then z “ au` bv ` p for some a, b P F and p P xu, vyK. Since z P xvyK,

Bpz, vq “ Bpau` bv ` p, vq “ aBpu, vq “ 0

implies that a “ 0. Hence z “ bv ` p. Additionally, Qpzq “ 0 if and only if Qppq “ 0.

Thus

z P tbv ` p : b P F, p P xu, vyK, Qppq “ 0u.

Now suppose that z P tbv ` p : b P F, p P xu, vyK, Qppq “ 0u. Then

Bpz, vq “ Bpbv ` p, vq “ bBpv, vq `Bpp, vq “ 0

and so z P xvyK. Also, Qpzq “ Qpbv ` pq “ b2Qpvq `Qppq `Bpbv, pq “ 0. Hence

z P kerQ. Therefore, kerQX xvyK “ tbv ` p : b P F, p P xu, vyK, Qppq “ 0u.
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Hence if v P kerQ, then

| kerQX xvyK| “ |tbv ` p : b P F, p P xu, vyK, Qppq “ 0u| “ |Fˆ kerQ|xu,vyK|
“ qpq2n´3 ` qn´1 ´ qn´2q “ q2n´2 ` qn ´ qn´1.

Now suppose v R kerQ. Then by Proposition 5.8 there exists H Ď V such

that H is a hyperbolic plane, and v P H . Therefore, V “ H kHK. We will show

kerQX xvyK “ tav ` p : a P F, p P HK, Qppq “ Qpavqu. Suppose z P kerQX xvyK.
Then z “ h` p for some h P H and p P HK. Since Bpz, vq “ 0, we have that

Bph, vq “ 0 which implies that h “ av for some a P F. Additionally, Qpzq “ 0 if and

only if

Qpzq “ Qpav ` pq “ Qpavq `Qppq `Bpav, pq “ Qpavq `Qppq “ 0.

Hence z P tav ` p : a P F, p P HK, Qppq “ Qpavqu.
Now let z P tav ` p : a P F, p P HK, Qppq “ Qpavqu. Then

Bpz, vq “ Bpav ` p, vq “ 0 and so z P xvyK. Additionally, Qpzq “ Qpavq `Qppq “ 0

and so z P kerQ. Hence z P kerQX xvyK. Therefore,
kerQX xvyK “ tav ` p : a P F, p P HK, Qppq “ Qpavqu.

Now we wish to compute |tav ` p : a P F, p P HK, Qppq “ Qpavqu|. First, for
a P F, set

ca “ |tp P HK : Qppq “ Qpavqu|.

We claim that

ca “
$’&’%q

2n´3 ` qn´1 ´ qn´2 if a “ 0

q2n´2 ´ qn´2 if a ‰ 0.

Suppose that a “ 0. Then av ` p “ p P kerQ|HK and so

c0 “ | kerQ|HK| “ q2n´3 ` qn´1 ´ qn´2.

Now suppose a ‰ 0. Then for each nonsingular line of HK there exists
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exactly one vector such that Qpavq “ Qppq. Therefore,

ca “ q2n´2 ´ q2n´3 ´ qn´1 ` qn´2

q ´ 1
“ q2n´3 ´ qn´2.

Hence if v R kerQ, we have that

| kerQX xvyK| “ |tav ` p : a P F, p P HK, Qppq “ Qpavqu| “
ÿ
aPF

ca

“ q2n´3 ` qn´1 ´ qn´2 ` pq ´ 1qpq2n´3 ´ qn´2q “ q2n´2.

Theorem 6.13. NO`
2np2hq is an

SRG

ˆ
q2n ` qn

2
, q2n´1 ` qn ´ qn´1 ´ 1, 2pq2n´2 ´ 1qqn´1pq ´ 1q, 2pq2n´2 ` qn´1q

˙
.

Proof. Note that if q “ 2h then by Theorem 6.4 we have the number of vertices of

NO`
2np2hq is

|PH | “ 1

2
pq2n ` qnq.

Let „ denote adjacency the graph and let Vx “ ty : y „ xu. By Lemma 6.10,

Vx “ x` tτxpyq : y P kerQzt0uu.

Hence by Lemma 6.3, the degree of NO`
2np2hq is

k “ |Vx| “ | kerQ| ´ 1 “ pq ´ 1qpqqn´1 ` pqq2n´1 ´ 1.

Now suppose that x „ y. This implies that Qpx` τxpyqq “ 0. Hence if we let
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v “ x` τxpyq then by Lemma 6.11,

Vx X Vy “ tx` τxpzq : z P kerQzt0, vu, Bpv, zq2 `Bpv, zq “ 0u
“ tx` τxpzq : z P kerQzt0, vu, Bpv, zq P t0, 1uu
“ tx` τxpzq : z P kerQzt0, vu, Bpv, zq “ 0u
Y tx` τxpzq : z P kerQzt0, vu, Bpv, zq “ 1u.

By Lemma 6.9, the map z ÞÑ x` τxpzq is a bijection, and so

|tx` τxpzq : z P kerQzt0, vu, Bpv, zq “ 0u| “ |tz P kerQzt0, vu, Bpv, zq “ 0u|
“ |pkerQX xvyKqzt0, vu|
“ q2n´2 ` qn ´ qn´1 ´ 2.

Now to compute |tx` τxpzq : z P kerQzt0, vu, Bpv, zq “ 1u| we first note

that | kerQzxvyK| “ | kerQ| ´ | kerQX xvyK| “ q2n´1 ´ q2n´2. This implies there are

q2n´1´q2n´2

q´1
“ q2n´2 lines in kerQ that are not orthogonal to v. From each of these

lines, there is exactly one vector, zl, such that Bpv, zlq “ 1. Therefore,

λ “ |Vx X Vy| “ q2n´2 ` qn ´ qn´1 ´ 2` q2n´2 “ 2pq2n´2 ´ 1q ` qn´1pq ´ 1q.

Now suppose that x  y. Note that since x, y P PH we have

trpQpxqq “ trpQpyqq “ 0, and

trpQpx` τxpyqqq “ trpQpxq `Qpyq `Bpx, yq `Bpx, yq2q
“ trpQpxqq ` trpQpyqq ` trpBpx, yqq ` trpBpx, yq2q
“ 0.
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Also,

Vx X Vy “ tx` τxpzq : z P kerQzt0u, Qpx` τxpyqq `Bpx` τxpyq, zq `Bpx` τxpyq, zq2 “ 0u.

Additionally, if v “ x` τxpyq then by Lemma 6.9,

|Vx X Vy| “ |tz P kerQ : Qpvq `Bpv, zq `Bpv, zq2 “ 0u|. Note that by Lemma 6.9

6.4, we have that

Qpvq “ Qpτxpx`yqq “ Qpx`yq`Bpx, x`yq2 “ Qpxq`Qpyq`Bpx, yq`Bpx, yq2 ‰ 0.

We wish to find |tz P kerQ : Bpv, zq “ 1u|. By Lemma 6.12

| kerQzxvyK| “ | kerQ| ´ | kerQX xvyK| “ q2n´1 ` qn ´ qn´1 ´ q2n´2.

This implies there are q2n´1´q2n´2`qn´qn´1

q´1
“ q2n´2 ` qn´1 lines in kerQzxvyK.

Therefore, for each line in kerQzxvyK, there exists zl such that Bpv, zlq “ 1 and so

|tz P kerQ : Bpv, zq “ 1u| “ q2n´2 ` qn´1. Now let z1 P tz P kerQ : Bpv, zq “ 1u and
let β P F. Then we have that βz1 P tz P kerQ : Qpvq `Bpv, zq `Bpv, zq2 “ 0u if and
only if

0 “ Qpvq `Bpv, βz1q `Bpv, βz1q2 “ Qpvq ` β ` β2.

Since trpQpvqq “ 0, then there exist β1, β2 P F for each z1 P tz P kerQ : Bpv, zq “ 1u
such that β1z

1, β2z1 P tz P kerQ : Qpvq `Bpv, zq `Bpv, zq2 “ 0u. Hence,

µ “ |Vx X Vy| “ |tz P kerQ : Qpvq `Bpv, zq `Bpv, zq2 “ 0u| “ 2pq2n´2 ` qn´1q.

Therefore NO`
2np2hq is a

SRGp1
2
pq2n`qnq, q2n´1`qn´qn´1´1, 2pq2n´2´1q`qn´1pq´1q, 2pq2n´2`qn´1qq.

Now that we have proven that the hyperbolic points graph is strongly regular, we



56

now want to define a graph that is related to the hyperbolic points graph. We will define

this graph on a subset of the hyperbolic points, namely all ofthe points which do not lie in

a given totally singular subspace. We define adjacency similarly to that of the hyperbolic

points graph, but alter adjacency in a key way. Additionally, we need to note that we will

also restrict ourselves to building this graph only ifF “ F4. This is because in the proof

that it is strongly regular, we require that the trace function have the desired properties.

Definition 6.14. Let F “ F4 and pV,Qq be a hyperbolic quadratic space of

dimension 2n. Also let T, S be complementary, maximal totally singular subspaces

of V. Define the graph on PHzS in the following way: The vertices x „s y if either

1. projT pxq “ projT pyq and Qpx` yq `Bpx, yq2 “ 1, or

2. projT pxq ‰ projT pyq and Qpx` yq `Bpx, yq2 “ 0.

We call this graph the hyperbolic subpoints graph.

Note that because of the clear relationship betweenNO`
2np4q and the hyperbolic

subpoints graph, we distinguish between adjacency inNO`
2np4q as„ and adjacency in the

subpoints graph as„s . We now present a handful of lemmas that determine the number

of common neighbors that are in certain sets.

Lemma 6.15. Let pV,Qq be a regular quadratic space of dimension 2n for some

n P N over F4 and let T, S be maximal, complementary, totally singular subspaces of

V. If x, y P PHzS are distinct,

Ax :“ tz P PHzS : projT pxq “ projT pzq, Qpx` zq `Bpx, zq2 “ 0u,

Bx :“ tz P PHzS : projT pxq “ projT pzq, Qpx` zq `Bpx, zq2 “ 1u,

and

Cx :“ tz P PHzS : projT pxq ‰ projT pzq, Qpx` zq `Bpx, zq2 “ 0u,
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then

1.

|Ax| “ |Bx|, (6.5)

2.

|Ax X Ay| “ |Bx XBy|, (6.6)

and

3.

|Ax X Cy| “ |Bx X Cy|. (6.7)

Proof. Suppose that x, y, z P PHzS “ U such that

projT pxq “ projT pyq “ projT pzq “ t for some t P T . Then for some s1, s2, s3 P S we

have x “ t` s1, y “ t ` s2, and z “ t ` s3. Therefore

Qpx` zq `Bpx, zq2 “ Qps1 ` s2q ` pBpt, s1q `Bpt, s2qq2 “ pQpxq `Qpzqq2 .

Hence, Qpx` zq `Bpx, zq2 “ 1 if and only if Qpxq “ Qpzq ` 1. By Proposition 5.2

there exists s P S such that Bpt, sq “ 1. Define the map χ1 from Bx given by

z ÞÑ z ` s. Then if z P Bx then projT pz ` sq “ t and

Qpz ` sq “ Qpzq `Qpsq `Bpz, sq “ Qpzq ` 1. This implies that

Qpx` z ` sq `Bpx, z ` sq2 “ 0 and so z ` s P Ax. Additionally, if z P Ax XAy Ď Ax

then χ1pzq P Bx XBy Ď Bx. Note that χ1pχ1pzqq “ z and so χ1 is its own inverse

and therefore a bijection. Hence |Ax| “ |Bx| and |Ax X Ay| “ |Bx XBy|.
Next we will show that |Ax X Cy| “ |Bx X Cy|. Let x, y, z P U such that

projT pxq “ projT pzq “ t1 and that projT pyq “ t2 ‰ t1. Suppose z P Ax X Cy. We will

now proceed in two cases.

Case 1. Suppose that t2 “ βt1 for some β P F4zt0, 1u. Then by Proposition 4.42,
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trpβq “ 1, and by Proposition 5.2, there exists s P S such that Bpt1, sq “ 1. This

implies that Bpt2, sq “ β. Now set z1 “ z ` s. Note that

Qpz1q “ Qpzq `Bpz, sq “ Qpzq ` 1 and so z1 P U. Also,
Qpx` z1q `Bpx, z1q “ Bpx, z ` sq “ 1, and

Qpy ` z1q `Bpy, z1q2 “ Qpy ` zq `Qpsq `Bpy ` z, sq `Bpy, z ` sq2

“ Bps, zq `Bps, yq `Bps, yq2 “ 1` β ` β2 “ 1` trpβq “ 0.

Therefore, z1 P Bx X Cy and so the map χ2 given by z ÞÑ z ` s is an invertible map

which shows that |Ax X Cy| “ |Bx X Cy|.

Case 2. Now suppose that tt1, t2u is an independent set. Then by Proposition 5.2

there exists s1, s2 P S such that Bpti, sjq “ δij for i, j P t1, 2u. Set s “ s1 ` βs2 such

that β P F4zt0, 1u. By Proposition 4.42, trpβq “ 1. Set z1 “ z ` s. Then we have

that Qpz1q “ Qpzq `Bpz, sq “ Qpzq ` 1 and so z1 P U. Also,
Qpx` z1q `Bpx, z1q “ Bpx, z ` sq “ 1, and

Qpy ` z1q `Bpy, z1q2 “ Qpy ` zq `Qpsq `Bpy ` z, sq `Bpy, z ` sq2

“ Bps, zq `Bps, yq `Bps, yq2 “ 1` β ` β2 “ 1` trpβq “ 0.

Therefore, z1 P Bx X Cy and so the map χ3 given by z ÞÑ z ` s is an invertible map

which shows that |Ax X Cy| “ |Bx X Cy|.

Therefore, |Ax X Cy| “ |Bx X Cy|.

The next lemma will count the number of common neighbors inside of a given

totally singular subspace.

Lemma 6.16. Let pV,Qq be a regular quadratic space of dimension 2n for some

n P N over F4 and let T, S be maximal, complementary, totally singular subspaces of

V. If x P PHzS and Sx “ ts P S : s „ xu, then |Sx| “ |S|
2
. Moreover, if x, y P PHzS,
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then

|Sx X Sy| “

$’’’’&’’’’%
0 if projT pxq “ projT pyq and x „s y

|S|
2

if projT pxq “ projT pyq and x s y

|S|
4

if projT pxq ‰ projT pyq.

Proof. Let U “ PHzS, x P U, and let y P S. Then projT pxq “ t ‰ 0 and projT pyq “ 0

then x “ t` s1 and y “ s2 for some s1, s2 P S. Then
0 “ Qpx` yq `Bpx, yq2 “ Qpxq `Bpt, s2q `Bpt, s2q2 “ Qpxq ` trpBpt, s2qq.
Therefore, note the set

ts P S : x „ su “ ts P S : trpBpt, sqq “ 0u “ ts P S : Bpt, sq P t0, 1uu.

Note that by Proposition 5.2, there is a basis for S so that S “ xw1, . . . , wny where
Bpt, wiq “ δ1i. Then we know that Bpt, sq “ 0 if and only if s P xw2, . . . , wny.
Additionally, we know that Bpt, sq “ 1 if and only if s P w`xw2, . . . , wny. Therefore,

|ty P S : Qpx` yq `Bpx, yq2 “ 0u| “ |xw2, . . . , wny| ` |w1 ` xw2, . . . , wny|
“ |S|

4
` |S|

4
“ |S|

2
.

Now let x, y P U. Suppose that projT pxq “ projT pyq “ t, x “ t` s1, y “ t` s2,
and x „s y. This implies that 1 “ Qpx` yq `Bpx, yq2 “ Bpx, yq2 “ Bpx, yq and
Qpxq “ Qpyq ` 1. Now let s P S and x „ s. Then

Qpxq “ Bpt` s1, sq `Bpt ` s1, sq2

Qpyq ` 1 “ Bpt, sq `Bpt, sq2

1 “ Qpyq `Bpt ` s2, sq `Bpt` s2, sq2 “ Qpy ` sq `Bpy, sq2.

Therefore, s  y and so |Sx X Sy| “ |H| “ 0.

Now suppose that x s y. This implies that Bpx, yq “ 0 and that
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Qpxq “ Qpyq. If s P Sx, then

0 “ Qpxq `Qpsq `Bpt ` s1, sq `Bpt` s1, sq2

“ Qpyq `Qpsq `Bpt ` s2, sq `Bpt` s2, sq2 “ Qpy ` sq `Bpy, sq2

Hence, we have s P Sy and so |Sx X Sy| “ |S|
2
.

Finally, suppose that projT pxq “ t1 and projT pyq “ t2 ‰ t1. We will proceed

in two cases.

Case 1. Suppose t2 “ βt1 for some β P F4zt0, 1u. Let S “ xw1, . . . , wny such that

Bpt, wjq “ δ1j . Also let w P S and suppose that w P Sx X Sy. Then

Qpxq `Bpx, wq `Bpx, wq2 “ 0 and Qpyq `Bpy, wq `Bpy, wq2 “ 0. Since

Bpx, wq “ Bpt, wq and Bpy, wq “ Bpβt, wq then Bpt, wq, Bpβt, wq P t0, 1u since
x, y P U. Suppose by way of contradiction that w “ w1` s for some s P xw2, . . . , wny.
Then Bpt, wq “ 1 and Bpβt, wq “ β R t0, 1u and so w R Sy, a contradiction. Hence,

it must be the case that w P xw2, . . . , wny and therefore

|Sx X Sy| “ |xw2, . . . , wny| “ |S|
4
.

Case 2. Suppose that tt1, t2u is an independent set and x “ t1 ` s1 and y “ t2 ` s2.

Also let S “ xw1, . . . , wny such that Bpt1, wjq “ δ1j and Bpt2, wjq “ δ2j . Then we

have w P Sx X Sy if and only if

Qpxq `Bpt1, sq `Bpt1, sq2 “ 0

and

Qpyq `Bpt2, sq `Bpt2, sq “ 0

if and only if

Qpxq `Qpyq “ Bpt1 ` t2, sq `Bpt1 ` t2, sq2.

Note that since x, y P U then we know Qpxq `Qpyq P t0, 1u and so



61

If Qpxq `Qpyq “ 1 then trpBpt1 ` t2, sqq “ 1. This implies that

Bpt1, sq `Bpt2, sq P tβ1, β1 ` 1u where β1 P F4zt0, 1u. If Bpt1, sq “ β1 and

Bpt2, sq “ 0 then s P β1w1 ` xw3, . . . , wny. If Bpt1, sq “ β1 and Bpt2, sq “ 1 then

s P pβ1w1 ` w2q ` xw3, . . . , wny. If Bpt1, sq “ 0 and Bpt2, sq “ β1 then

s P β1w2 ` xw3, . . . , wny. If Bpt1, sq “ 1 and Bpt2, sq “ β1 then

s P pw1 ` β1w2q ` xw3, . . . , wny. Therefore, |Sx X Sy| “ 4p4n´2q “ 4n´1 “ |S|
4
.

If Qpxq `Qpyq “ 0 then trpBpt1 ` t2, sqq “ 0. This implies that

Bpt1, sq `Bpt2, sq P t0, 1u. If Bpt1, sq “ 1 and Bpt2, sq “ 0 then

s P w1 ` xw3, . . . , wny. If Bpt1, sq “ 1 and Bpt2, sq “ 1 then

s P pw1 ` w2q ` xw3, . . . , wny. If Bpt1, sq “ 0 and Bpt2, sq “ 1 then

s P w2 ` xw3, . . . , wny. If Bpt1, sq “ Bpt2, sq “ 0 then s P xw3, . . . , wny. And so,

|Sx X Sy| “ 4p4n´2q “ 4n´1 “ |S|
4
. Therefore, if projT pxq ‰ projT pyq, then

|Sx X Sy| “ |S|
4
.

We now want to prove that our new hyperbolic subpoints graph is strongly regular.

Proposition 6.17. The hyperbolic subpoints graph is a

SRGp24n´1 ´ 22n´1, 42n´1 ` 4n´1, 2p42n´2 ` 4n´1q, 2p4q2n´2 ` 4n´1q.

Proof. Let U “ PHzS. First we know that from Theorem 6.4 that the size of the

hyperbolic subpoints graph is

|U | “ |PH | ´ 4n “ 1

2
p42n ´ 4nq “ 24n´1 ´ 22n´1.

Now to show that this graph is regular, we first note that the degree of the

hyperbolic points graph and the hyperbolic subpoints graph are related. Consider
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the disjoint sets

Ax “ ty P U : projT pxq “ projT pyq, Qpx` yq `Bpx, yq2 “ 0u,
Bx “ ty P U : projT pxq “ projT pyq, Qpx` yq `Bpx, yq2 “ 1u,
Cx “ ty P U : projT pxq ‰ projT pyq, Qpx` yq `Bpx, yq2 “ 0u, and
Sx “ tz P S : Qpx` zq `Bpx, zq2 “ 0u.

From Theorem 6.13 that for any x P PH , set of adjacent points to x in NO
2̀np4q is

Vx “ pAxztxuq Y Cx Y Sx

and has degree 3p4qn´1 ` 42n´1 ´ 1. Note that in the subpoints graph for any x P U ,
we have

Ux “ ty P U : y „s xu “ Bx Y Cx.

We can now compute the degree of the hyperbolic subpoints graph since we

know that x s x for all x P PH , Lemmas 6.15 and 6.16 give that

|Ux| “ |Vx| ´ |Sx| ` 1 “ 3p4qn´1 ` 42n´1 ´ 1´ 2p4qn´1 ` 1. “ 4n´1 ` 42n´1.

Next, we want to determine |Ux X Uy| for distinct x, y P U. We begin by

noting that

Ux XUy “ pBx YCxq X pBy YCyq “ pBx XByq Y pBx XCyq Y pBy XCxq Y pCx XCyq.

Additionally, we have

Vx X Vy “ ppAx Y Cx Y Sxqztxuq X ppAy Y Cy Y Syqztyuq
“ ppAx X Ayq Y pAx X Cyq Y pAy X Cxq Y pSx X Syqqztx, yu.
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Suppose x „s y. If projT pxq “ projT pyq then x  y in NO
2̀np4q and by

Lemmas 6.15 and 6.16, we have |Ux X Uy| “ |Vx X Vy| “ 2p42n´2 ` 4n´1q. If
projT pxq ‰ projT pyq then x „ y in NO`

2np4q and so Lemmas 6.15 and 6.16 give us

that

|UxXUy| “ |VxXVy|´|SxXSy|`2 “ 2p4q2n´2´2`3p4qn´1´p4qn´1`2 “ 2p42n´2`4n´1q.

Now suppose that x s y. If projT pxq “ projT pyq then x „ y in NO
2̀np4q and

by Lemmas 6.15 and 6.16, we have

|UxXUy| “ |VxXVy|´|SxXSy|`2 “ 2p4q2n´2´2`3p4qn´1´p4qn´1`2 “ 2p42n´2`4n´1q.

If projT pxq ‰ projT pyq, then x  y in NO
2̀np4q and so Lemmas 6.15 and 6.16, we

have that

|Ux X Uy| “ |Vx X Vy| ´ |Sx X Sy| “ 2p42n´2 ` 4n´1q ´ 4n´1 “ 2p4q2n´2 ` 4n´1.

Therefore, the hyperbolic subpoints graph is a

SRGp42n´4n

2
, 42n´1 ` 4n´1, 2p42n´2 ` 4n´1q, 2p4q2n´2 ` 4n´1q.

It is key that this graph andNO
2̀np2hq are strongly regular. The identification of

the points of the subpoints and hyperbolic points graphs will be key in building a Steiner

ETF for the subpoints graph, and a Tremain ETF for the hyperbolic points graph.

7 CORRESPONDING ETFS FROMNO`
2N p4q AND THE HYPERBOLIC

SUBPOINTS GRAPH

In our final section, we will establish the connection betweenNO
2̀np2hq and the

hyperbolic subpoints graph with a Tremain ETF and a Steiner ETF respectively. To

accomplish this we first establish that the Gram matrix of an ETF with the properties our
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Steiner and Tremain ETFs have give rise to an adjacency matrix for a strongly regular

graph. Then we will show that if we have the adjacency matrix for a strongly regular

graph, then it satisfies a quadratic relation.

Proposition 7.1. If A is the adjacency matrix for a graph, G, which is a

SRGpn, k, λ, µq, then
A2 “ λA` kIn ` µpJn ´ In ´ Aq

where In is an n ˆ n identity matrix and Jn is an nˆ n all ones matrix.

Proof. We begin by noting that the A2

xy entry contains the number of vertices

adjacent to both x and y. If x “ y then this would be a diagonal entry and since G

is regular, then A2

xx “ k for all x. Note that if x „ y in G then A2

xy corresponds to

the number of vertices adjacent to two connected vertices. Since G is a strongly

regular graph, then this number is λ for every nonzero entry of A. Lastly if x ‰ y

and x  y then A2

xy corresponds to the number of vertices adjacent to two

disconnected vertices. This number is µ and is in every nonzero, non-diagonal entry

of A. These cases are exhaustive, and so A2 “ λA`KIn ` µpJn ´ A ´ Inq.

This lemma allows us to build an object which will act as our balanced incomplete

block design for our Steiner ETF.

Lemma 7.2. Let T, S be a maximal totally singular subspace of a regular quadratic

space pV,Qq of dimension 2n so that V “ T ‘ S and let F “ F4. If

b “ tt1, t2, t3u Ď T zt0u such that t1 ` t2 ` t3 “ 0 and x “ t1 ` s P PHzS for some

s P S, then the quantity Qpxq `Bpx, tq `Bpx, tq2 is constant for all t P bztprojT pxqu.

Proof. Define the function g : bÑ F given by gptq “ Qpxq `Bpx, tq `Bpx, tq2. Note
that gpt1q “ Qpxq `Bpt1 ` s, t1q `Bpt1 ` s, t1q2 “ Qpxq `Qpxq `Qpxq2 “ Qpxq. We

now proceed by cases. Suppose that Qpxq “ 0 and gpt2q “ 0. Then

gpt3q “ gpt1 ` t2q “ Qpxq `Bpx, t1 ` t2q `Bpx, t1 ` t2q2 “
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Qpxq `Bpx, t2q `Bpx, t2q “ gpt2q “ 0. If gpt2q “ 1 then a similar calculation yields

gpt3q “ 1.

Now if Qpxq “ 1 and gpt2q “ 0 then a similar calculation yields gpt3q “ 0.

And simliarly if gpt2q “ 1, then gpt3q “ 1. Hence g is constant for all

t P BztprojT pxqu.

Lemma 7.3. Let T, S be maximal, complementary totally singular subspaces of a

regular quadratic space pV,Qq of dimension 2n and let F “ F4. If s P Szt0u, then

|tt P T : trpBpt, sqq “ 0u| “ |tt P T : trpBpt, sqq “ 1u|.

Proof. Let s P Szt0u. By Proposition 5.2, there exists t1 P T such that Bpt1, sq “ 1.

Also, by Proposition 4.42, there exists β P F4 such that trpβq “ 1. Let γ be a map

from tt P T : trpBpt, sqq “ 0u to tt P T : trpBpt, sqq “ 1u given by γptq “ t` βt1.

Then we see that

trpBpt ` βt1, sqq “ trpBpt, sqq ` trpBpβt1, sqq “ 0` trpβq “ 1.

Therefore, γptq P tt P T : trpBpt, sqq “ 1u. Additionally, γpγptqq “ t and so this is an

invertible map and is therefore a bijection. Hence, it must be the case that

|tt P T : trpBpt, sqq “ 0u| “ |tt P T : trpBpt, sqq “ 1u|.

Now we will build our Steiner ETF from the hyperbolic subpoints graph.

Definition 7.4. Let T, S be maximal complementary, totally singular subspaces of

a regular quadratic space of dimension 2n so that V “ T ‘ S and let F “ F4. Also

let B “ ttt1, t2, t3u Ď T zt0u : t1 ` t2 ` t3 “ 0u. We define the matrix Φ, with rows
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indexed by elements of B and columns indexed by elements of PHzS given by

ΦpB, xq “

$’’’’’’&’’’’’’%
´1 if projT pxq P B and Qpxq `Bpx, tiq `Bpx, tiq2 “ 0 for any ti P BztprojT pxqu

1 if projT pxq P B and Qpxq `Bpx, tiq `Bpx, tiq2 “ 1 for any ti P BztprojT pxqu

0 otherwise.

Example 7.5. In this example, we will present the smallest example of the Steiner

ETF from the hyperbolic subpoints graph. In this case V “ F4

4
and we let

V “ xe1, e2, e3, e4y and the quadratic form is

Qpa1e1` a2e2` a3e3` a4e4q “ a1a2` a3a4. We then note that we can let T “ xe1, e3y
and S “ xe2, e4y. Using this setup and Definition 7.4, we obtain the following matrix

on the next page. We note that the rows are indexed by triples of elements that

sum to zero but we only write the first two elements to save space. The third

element of the set can be found by taking the sum of the two elements shown. We

will prove that a matrix constructed like this is indeed an equiangular tight frame.
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Theorem 7.6. The matrix Φ given by Definition 7.4 is a 4
2n´3p4qn`2

6
ˆ 1

2
p42n ´ 4nq

Steiner equiangular tight frame.

Proof. For ease of notation, denote the columns of Φ by ϕx where x P PHzS “ U.

Now consider

}ϕx}2 “ xϕx, ϕxy “
ÿ
bPB

Φpb, xqΦpb, xq “ ÿ
bPB

projT pxqPb

1 “ |tb P B : projT pxq P bu|

“ |ttt1, t2u Ď T zt0u : projT pxq “ t1 ` t2u| “ 1

2
|tt1 P T zt0, projT pxquu|.

If we consider T as a 2n dimensional vector space over the subfield of F4 consisting

of t0, 1u then clearly |tt1 P T zt0, projT pxquu| “ 22n ´ 2. Therefore,

}ϕx}2 “ 22n´2

2
“ 2p4n´1q ´ 1 for all x P U.

Now we will show that Φ is equiangular. First, let x, y P U and let

projT pxq “ t1 and projT pyq “ t2 where t1 ‰ t2. Since t1, t2 are distinct, then there is

exactly one block, b0 P B such thattt1, t2u Ď b0. Therefore,

|xϕx, ϕyy| “ |ÿ
bPB

Φpb, xqΦpb, yq| “ |Φpb0, xqΦpb0, yq| “ 1.

Now suppose that projT pxq “ projT pyq “ t1 and that for some s1, s2 P S we

have x “ t1 ` s1, and y “ t1 ` s2. In this case we have

|xϕx, ϕyy| “
ˇ̌̌̌
ˇÿ
bPB

Φpb, xqΦpb, yq
ˇ̌̌̌
ˇ “

ˇ̌̌̌
ˇ̌̌ÿ
bPB
t1Pb

Φpb, xqΦpb, yq
ˇ̌̌̌
ˇ̌̌

“
ˇ̌̌̌
ˇ̌12 ÿ

t2PT ztt1,0u
Φptt1, t2, t1 ` t2u, xqΦptt1, t2, t1 ` t2u, yq

ˇ̌̌̌
ˇ̌ .

Let t2 P T zt0, t1u and let ε “ Qpxq `Qpyq ` trpBpt2, s1 ` s2qq. Then

Φptt1, t2, t1 ` t2u, xqΦptt1, t2, t1 ` t2u, yq “ 1
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if and only if ε “ 0. Additionally, ε “ 1 if and only if

Φptt1, t2, t1 ` t2u, xqΦptt1, t2, t1 ` t2u, yq “ ´1. Therefore, we have

|xϕx, ϕyy| “ 1

2

ˇ̌̌̌
ˇ̌̌ ÿ

t2PT ztt1,0u
trpBpt2,s1`s2q“εq

p´1qε
ˇ̌̌̌
ˇ̌̌ .

By Lemma 7.3, we have that

|tt2 P T : trpBpt2, s1 ` s2qq “ 0u| “ |tt2 P T : trpBpt2, s1 ` s2qq “ 1u|. However, we
note that 0 P tt2 P T : trpBpt2, s1 ` s2qq “ 0u and that

Qpxq `Qpyq “ Bpt1, s1 ` s2q P t0, 1u and so t1 P tt2 P T : trpBpt2, s1 ` s2qq “ 0u.
Therefore,

ÿ
t2PT ztt1,0u

trpBpt2,s1`s2q“εq

p´1qε “

$’’&’’%
2 if Qpxq “ Qpyq

´2 if Qpxq “ Qpyq ` 1.

Hence, |xϕx, ϕyy| “ 1 and so Φ is equiangular.

Now we wish to show that xϕx, ϕyy “ 1 if and only if x „s y in the

hyperbolic subpoints graph. Suppose that projT pxq ‰ projT pyq and for some

s1, s2 P S we have x “ t1` s1 and y “ t2 ` s2. Then we have xϕx, ϕyy “ 1 if and only

if Φpb0, xq “ Φpb0, yq if and only if

Qpxq `Bpt2, xq `Bpt2, xq2 “ Qpyq `Bpt1, yq `Bpt1, yq2 if and only if

Qpxq `Qpyq `Bpx, yq `Bpx, yq2 “ 0. Thus in the hyperbolic subpoints graph we

have x „s y. If projT pxq “ projT pyq then we can see that xϕx, ϕyy “ 1 if and only if

Qpxq `Qpyq “ 1 from the equiangularity proof. Therefore we know that in the

hyperbolic subpoints graph, we have x „s y. Therefore Φ˚Φpx, yq “ 1 if and only if

x „s y in the hyperbolic subpoints graph.

Let A be the adjacency matrix for the hyperbolic subpoints graph and let I, J

be the identity and all ones matrix of approriate dimension, then we can see that

Φ˚Φ “ 2A` pI ´ J
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where p “ 2p4qn´1. Since we know that A is the adjacency matrix for a strongly

regular graph on n vertices, we know that A2 “ λA` kI ` µpJ ´ I ´ Aq. Hence,

pΦ˚Φq2 “ p2A` pI ´ Jqp2A` pI ´ Jq
“ p4λ´ 4µ` 4pqA` p4k ´ 4µ` p2qI ` p4µ` n´ 4k ´ 2pqJ
“ p2p4qn ´ 2p4qn´1qp2A` pI ´ Jq.

Hence we see that the gram matrix of Φ is a multiple of a projection, and so

Φ is tight. Therefore, Φ is an equiangular tight frame.

Lastly, we note that if we consider the nonzero elements of T to be the points

and the set B as a collection of subsets of T , then clearly pT zt0u,Bq is a BIBD with

λ “ 1, and k “ 3. Additionally, since ts P S : t` s P Phu for any t P T zt0u is has
cardinality 8, then Φ satisfies Definition 3.6 and so Φ is a Steiner ETF.

Now using this frameΦ we will build another frame of Tremain style. LetpV,Qq
be a regular, hyperbolic quadratic space overF4 with complementary totally singular

subspacesT, S such thatV “ T ‘ S. Let the matrixA indexed by elements ofT and

elements ofPHzS be defined by

Apt, xq “

$’’’’&’’’’%
?
2 if t P T zt0u, projT pxq “ t, Qpxq “ 0

´?2 if t P T zt0u, projT pxq “ t, Qpxq “ 1

0 else

.

Note thatA is a4n ˆ 1

2
p42n ´ 4nq matrix.

Next we define the matrixC indexed by elements ofT and elements ofS defined

by

Cpt, sq “

$’’’’&’’’’%
b

1

2
if trpQpt ` sqq “ 0, t ‰ 0

´
b

1

2
if trpQpt ` sqq “ 1b

3

2
if t “ 0

.
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Note thatC is a4n ˆ 4n matrix.

Using the construction ofΦ from Theorem 7.6, now lets define the following

matrix,

Ψ “
»—–Φ 0

A C

fiffifl .
Notably, this matrix has1

2
p42n ` 4nq columns. We will now give an equivalent definition

of the entire matrixΨ.

Definition 7.7. Let T, S be maximal complementary, totally singular subspaces of

a regular quadratic space of dimension 2n so that V “ T ‘ S and let F “ F4. We

define the matrix Ψ, with rows indexed by elements of R “ B Y T and columns

indexed by elements of PH given by

Ψpr, xq “

$’’’’’’’’’’’’’’’’’’’’’&’’’’’’’’’’’’’’’’’’’’’%

´1 if r P B, projT pxq P r, Qpxq `Bpx, tiq `Bpx, tiq2 “ 0 for any ti P rztprojT pxqu
1 if r P B, projT pxq P r, Qpxq `Bpx, tiq `Bpx, tiq2 “ 1 for any ti P rztprojT pxqu?
2 if r P T zt0u, projT pxq “ r, Qpxq “ 0

´?2 if r P T zt0u, projT pxq “ r, Qpxq “ 1b
1

2
if r P T zt0u, x P S, trpQpr ` xqq “ 0

´
b

1

2
if r P T zt0u, x P S, trpQpr ` xqq “ 1b

3

2
if r “ 0, x P S

0 otherwise.

Example 7.8. We continue with the same set up from Example 7.5. We will take

the matrix from that example and add the appropriate rows and columns as

described by Definition 7.7. In the figure below, we note that the blank spaces are

zeros and the sybmols ` and ´ correspond to 1 and ´1 respectively.
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Finally, we prove that the graph ofNO
2̀n`1

p2hq arises naturally from a Tremain

ETF.

Theorem 7.9. The matrix Ψ is a 4
2n`3¨4n`2

6
ˆ 1

2
p42n ` 4nq Tremain equiangular

tight frame. Moreover, if G “ Ψ˚Ψ, D is the adjacency matrix of NO`
2np4q, and

p “ 2p4qn´1 ` 2, then G “ 2D ` pI ´ J where I, J are identity matrix and all ones

matrix.

Proof. We first begin by noting the relationship between Ψ and Φ from Theorem

7.6. Let ψz denote the column of Ψ associated with z P PH and ϕz be the column of

Φ associated with z P PHzS. Now let x P PHzS. Then we have

}ψx}2 “ xψx, ψxy “ xϕx, ϕxy ` 2 “ 2p4qn´1 ` 1. Now if we consider s P S then

}ψs}2 “ xψs, ψsy “
ÿ
bPB

Ψpb, sq2 ` ÿ
tPT zt0u

Ψpt, sq2 `Ψp0, sq2 “ 0` 1

2
p4n ´ 1q ` 3

2

“ 2p4qn´1 ` 1.

Hence each column of Ψ has equal norm.

Now we will show that Ψ is equiangular. And we will proceed in cases.

Case 1. First let x, y P PHzS such that projT pxq “ t1 and projT pyq “ t2 where

t1 ‰ t2. This implies that Apt2, xq “ Apt1, yq “ 0 and so |xψx, ψyy| “ |xϕx, ϕyy| “ 1.

Case 2. Now consider x, y P PHzS where projT pxq “ projT pyq “ t. Note that from

the proof of Theorem 7.6 if Qpxq “ Qpyq then xϕx, ϕyy “ ´1. Additionally, we see

that Apt, xq “ Apt, yq and so |xψx, ψyy| “ |xϕx, ϕyy ` Apt, xqApt, yq| “ | ´ 1` 2| “ 1.

Now consider that if Qpxq `Qpyq “ 1 then xϕx, ϕyy “ 1. Since in this case we have

Apt, xq “ ´Apt, yq then we have |xψx, ψyy| “ |xϕx, ϕyy ` Apt, xqApt, yq| “ |1´ 2| “ 1.

Case 3. Now suppose t P T and s1 P S such that x “ t ` s1 P PHzS and y P S.
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Then we can see that

|xψx, ψyy| “ |xϕx, 0y ` Apt, xqCpt, yq| “
ˇ̌̌̌
ˇp˘?2q

˜
˘
c

1

2

¸ˇ̌̌̌
ˇ “ 1.

Case 4. Lastly, suppose that x, y P S. Consider that when t ‰ 0, Cpt, xqCpt, yq “ 1

2

if and only if trpQpt` xqq ` trpQpt` yqq “ trpBpt, x` yqq “ 0. This also implies that

Cpt, xqCpt, yq “ ´1

2
if and only if trpBpt, x` yqq “ 1. Therefore, by a similar

argument in the proof of Theorem 7.6, there are 2p4qn´1 ´ 1 vectors in T zt0u such
that trpBpt, x` yqq “ 0 and 2p4qn´1 vectors in T zt0u such that trpBpt, x` yqq “ 1.

Then

|xψx, ψyy| “ | ÿ
tPT zt0u

Cpt, xqCpt, yq ` Cp0, xqCp0, yq|

“ |1
2
p2p4qn´1 ´ 1´ 2p4qn´1q ` 3

2
|

“ 1.

Therefore, Ψ is equiangular.

Since the columns of Ψ are indexed by elements of PH , then we will show

that for any x, y P PH , pΨ˚Ψqpx, yq “ 1 if and only if x „ y in NO`
2np4q.

First suppose that x, y P PHzS and that projT pxq ‰ projT pyq. Then from

Theorem 7.6 we know that this implies that x „s y in the hyperbolic subpoints

graph which implies that x „ y in NO`
2np4q. Next, if we suppose that x, y P PHzS

and that projT pxq “ projT pyq, then Qpx` yq `Bpx, yq2 “ 0 if and only if

Qpxq “ Qpyq if and only if xψx, ψyy “ 1. Therefore in this case we have x „ y if and

only if Ψ˚Ψpx, yq “ 1.

Now suppose that t P T and s1 P S such that x “ t` s1 P PHzS and that

y P S. Then xψx, ψyy “ Apt, xqCpt, yq “ 1 if and only if

Qpxq ` trpQpt` yqq “ Qpx` yq `Bpx, yq2 “ 0 if and only if x „ y.

Finally, note that if x, y P S then xψx, ψyy “ 1 and we have

Qpx` yq `Bpx, yq2 “ 0 so x „ y. Hence if we consider the gram matrix of Ψ, we
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have Ψ˚Ψpx, yq “ 1, if and only if x „ y in NO4

2n`1
.

Therefore, if D is the adjacency matrix for NO
2̀np4q, then we have

Ψ˚Ψ “ 2D` pI ´ J where p “ p2p4qn´1` 2q. Since we know that D is the adjacency

matrix for a strongly regular graph we know that D2 “ λD ` kI ` µpJ ´ I ´Dq
where λ, µ, and k are the graph parameters of the hyperbolic points graph.

Therefore we can see that

pΨ˚Ψq2 “ p2D ` pI ´ Jqp2D ` pI ´ Jq
“ p4λ´ 4µ` 4pqD ` p4k ´ 4µ` p2qI ` p4µ` n ´ 4k ´ 2pqJ
“ p6p4qn´1qp2D ` pI ´ Jq.

Hence we can see that Ψ˚Ψ is a multiple of a projection and is therefore

tight. Thus, Ψ is an equiangular tight frame.

Clearly, the matrix Ψ is has rows indexed by B Y T zt0u Y t0u and columns

indexed by pT ˆ ts P S : t` s P PHzSuq Y S. We know that from the proof of

Theorem 7.6, that pT zt0u,Bq is a Steiner triple system, and that this matrix

satisfies Definition 3.8. Hence Ψ is a Tremain ETF.

Example 7.10. We recall Example 3.10. This Tremain ETF is actually an instance

of this construction. In this case we have V “ F2

4
and let V “ xe1, e2y with a

quadratic form Qpae1 ` be2q “ ab. We then note that T “ xe1y and S “ xe2y. Using
this setup and Definition 7.4, we can construct a Steiner ETF with a BIBD

consisting of a pointset of xe1yzt0u and the set of blocks consists of a single set

te1, αe1, pα` 1qe1u. This gives us a trivial Steiner ETF of

Φ “
„
´1 ´1 ´1 ´1 ´1 ´1


.

Using this trivial Steiner ETF, we can build a nontrivial Tremain ETF according to

Definition 7.7.
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Figure 6: Tremain ETF Associated with NO
2̀
p4q

‚ “ ?
2, ˝ “ ´?2, ♦ “

b
1

2
, ♥ “ ´

b
1

2
, ♠ “

b
3

2

8 CONCLUSION AND FUTURE WORK

In this paper we have analyzed the construction ofNO
2̀n`1

p2hq and developed a

construction of an isomorphic strongly regular graph whichallowed us to identify the

vertices of the graph with vectors in a particular vector space instead of hyperplanes. This

identification allowed us to observe a natural correspondence betweenNO
2̀n`1

p4q and a

family of Tremain ETFs.

By strengthening the connection between a family of TremainETFs and

NO`
2n`1

p4q we hope to extend this correspondence to other contexts. It was critical to

building this particular family of Tremain ETFs that we restricted to vector spaces over

F4. We hope to duplicate this analysis over other fields of characteristic 2 as well as other

finite fields. In [8], the discovery of the SRGp820, 429, 228, 220q arose as a generalization

of a particular family of Tremain ETFs. This particular SRG was not an instance of

NO`
2n`1

p2hq. By analyzing the construction of other polar graphs in a similar manner, we

hope to find new extensions of ETFs similar to Tremain ETFs which may give new graphs
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that aren’t polar graphs.

We may search for a frame representation that does not rely solely on ETFs since

every strongly regular graph corresponds to a generalization of equiangular tight frames,

called two-distance tight frames [1]. By developing an explicit connection between other

polar graphs over fields that are notF4, then we can potentially discover generalizations of

two-distance tight frames that may result in new strongly regular graphs.
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