1961

Control and Elimination of Quackgrass

Cooperative Extension, South Dakota State University

Follow this and additional works at: https://openprairie.sdstate.edu/extension_fact
Control and Elimination of QUACKGRASS

Figure 1. A mature quackgrass plant with a young plant growing from the same rhizome.

COOPERATIVE EXTENSION SERVICE
SOUTH DAKOTA STATE UNIVERSITY
U. S. DEPARTMENT OF AGRICULTURE
Control and Elimination of

QUACKGRASS

by K. R. Frost, extension agronomist—weeds; L. A. Derscheid, extension agronomist; and W. G. Wright, instructor in agronomy

Quackgrass\(^1\) is one of the most widely spread of the eight noxious weeds in South Dakota. It is particularly prevalent in northern counties, but is found in all parts of the state. It has been reported on over 280,000 acres on more than 14,000 South Dakota farms, but these reports do not include all rangeland infestations.

Quackgrass is a perennial grass that spreads by seeds and underground stems (rhizomes). It produces a great quantity of viable seed, which may retain its ability to germinate for at least 4 years in storage or in the soil. Quackgrass seeds cannot be removed from seed of many of our common grasses, especially bromegrass or wheatgrasses. If at all possible, sow only certified grass seed. Seeds of other crops must be cleaned with extreme care.

Screenings or forage infested with quackgrass seed often serve to spread the seed to new areas. Manure or mud on implement wheels or on the feet of animals, and improperly cleaned seeding or threshing equipment can also spread quackgrass seeds to a new location.

The rhizomes spread laterally in the upper 3 to 6 inches of soil. They are capable of producing new plants at each node (joint) and may grow through the soil for considerable distances, producing new shoots at frequent intervals, eventually forming a dense sod. Pieces of rhizomes may be carried on the plow or other tillage implements such as the field cultivator, or in mud on implement wheels, and thus spread the weed to uninfested areas.

Quackgrass is frequently confused with other grasses. Some ways of distinguishing it from several other grasses are summarized in Table 1. and are illustrated in Figures 2 and 3.

\(^1\)Agropyron repens L.

Combinations of cultivations, croppings, and chemicals can reduce the new stand of quackgrass by 90 per cent or more in one year.

INTENSIVE CULTIVATION

Cultivation is used primarily for starving other weeds. However, for quackgrass, it may be used for starving the plant by reducing root reserves, drying the rhizomes and top growth so that they die, and occasionally, exposing rhizomes to freezing.

Root reserves can be reduced throughout the growing season, but dry weather (summer) is necessary for drying the rhizomes and cold weather (fall) is needed for freezing. Root reserves are depleted more rapidly if the weed is growing on fertile soil or has received an application of nitrogen. Likewise, heavy grazing for a year prior to cultivation will aid in eliminating the weed.

Spring. Cultivation is aimed at reducing the root reserves. Cultivate it whenever leaves become 2-3 inches long (about every 3 weeks). A sharp one-way disk operated at a depth of 2 or 3 inches is the preferred implement. On unplowed sod use it once lengthwise and once crosswise for the first operation. If a one-way is not available, plow shallowly and disk to come up the sod. Use a disk harrow for later operations. A duckfoot field cultivator is a satisfactory implement when trash does not prevent its use, but it may carry rhizomes from one area to another.

Summer. Every 3 weeks with a one-way disk or duckfoot cultivator to reduce root reserves has been quite successful. In dry seasons, a heavy duty spring-toothed field cultivator may be used to aid in reducing root reserves and to lift rhizomes to the surface of the soil where they will dry in 4 or 5 days of dry weather. Weekly cultivations with a spring-toothed harrow are
needed to bring to the surface all the rhizome fragments that have been buried. Quackgrass fragments enclosed in clods, partially covered with soil, or anchored to the soil are not likely to be dried enough to be killed.

Late fall. Cultivation will aid in the freezing of rhizomes when temperatures are below 20 degrees F. In order to freeze them it is essential to expose as many rhizomes as possible. The last cultivation should be a deep cultivation or plowing and leave the surface rough. It will aid in preventing erosion and may result in additional kill by freezing.

An entire season of cultivation is generally required to eliminate quackgrass. However, early spring cultivation followed by a crosscultivated crop of corn reduces the stand and holds the weed in check. Allow the quackgrass to start its growth and plow deeply. The plant is buried deeply. Reappearance is delayed and root reserves reduced because it must produce a long shoot to reach the surface. Either cultivate deeply before planting the crop or plant immediately after plowing.

After-small-grain-harvest cultivation during late summer and fall reduces quackgrass stands, especially during dry years and when freezing has been effective.

CULTIVATION CROPS, AND CHEMICALS

The following chemicals are recommended for quackgrass control in conjunction with specific crops and tillage operations. Although their cost is relatively high, they will give 90 per cent elimination of the weed in one season.

Dalapon is sold as a powder under the tradename, "Dowpon," to be dissolved in water and applied as a spray. It is more effective when used in conjunction with tillage operations than when used alone. You cannot expect to kill more than 90 or 95 per cent of the weeds. Dalapon is more readily absorbed by plant tops than by roots. In the following treatments use enough water to dissolve the dalapon and give good coverage.

In the spring and fall, respectfully, use dalapon at the rate of six and ten pounds acid equivalent per acre.

Apply 6 pounds acid equivalent of dalapon (8 pounds of Dowpon product) per acre during the spring when quackgrass is 4 to 8 inches tall. Plow treated area 7 to 10 days later and plant a crop 4 to 6 weeks after spraying or fallow for a season. Crops that can be planted are corn, sorghum, soybeans and alfalfa. Treated areas should be disked several times after plowing. Row crops are best suited since they can be cultivated allowing control of quackgrass regrowth if any is present. Early maturing varieties or hybrids may need to be planted because of delayed planting.

A single application of dalapon at the rate of 10 pounds (13½ pounds of Dowpon product) per acre in early spring gives seasonal control for areas that cannot be cultivated. Retreatment will be necessary to achieve elimination. Two applications of 5 pounds per acre applied 6 weeks apart is equally effective on quackgrass and less injurious to trees. This treatment can be used safely under fruit trees that are old enough to bear fruit (4 years old).

For fall treatment mow during August to remove quackgrass top growth; apply 10 pounds acid equivalent (13½ pounds of Dowpon product) per acre during the fall (at least 1 week before first killing frost is expected) when quackgrass is 4 to 8 inches tall. Plow treated area during fall or spring (not less than 7 days after treatment) and plant crop during spring or fallow for a season. Row crops are best suited since they can be cultivated allowing for control of quackgrass regrowth if any is present.

TCA, a chemical closely related to dalapon, is more effective when applied to rhizomes of quackgrass during the fall of the year. It is sold under numerous tradenames as a powder or granules to be dissolved in water and applied as a spray. It is absorbed by plant roots. It seldom kills more than 90-95% of the weeds. Plow shallowly to get a maximum number of rhizomes on the surface of the soil. Spray immediately with 20 pounds of TCA acid equivalent (25 pounds of 90% product, which is 80% acid equivalent) per acre. Residual effect may injure some crops seeded the next spring. Potatoes, flax, sugar beets, alfalfa, birdsfoot trefoil, and oats are seldom injured; but corn, soybeans, and red clover may be severely injured. Barley and wheat are intermediate in sensitivity.

On undisturbed sod use 100 pounds of TCA acid equivalent (125 pounds of 90% product, which is 80% acid equivalent) per acre (¾ pound of product per square rod) during the late summer or early fall to get similar results.

Atrazine is formulated as wettable powder to be applied as a spray. Fall application of atrazine on cropland is one of the best chemical methods of controlling quackgrass; however, small grains, forage crops or soybeans may be damaged by chemical residue if these crops are seeded the second spring after application of this herbicide. On cropland with normal amount of crop residue, apply 4 pounds active ingredient (5 pounds of atrazine 80W product) per acre in the spring before April 15 or in the fall between September 15 and November 1. Plow treated area at least 3 weeks after treatment. Plowing areas treated with fall applications can be delayed until spring. Prepare soil, plant corn and cultivate or fallow for a season.
On cropland with heavy residue, plow during late summer and apply atrazine in the fall or spring. Disk treated area at least three weeks after treatment, then plant corn and cultivate or fallow for a season. Atrazine applications for quackgrass control are best when applied 20 gallons of water per acre. On non-cropland, apply 8 pounds of active ingredient (10 pounds of atrazine 80W product) per acre between September 15 and the first snowfall.

Amitrole-T* is a liquid concentrate to be mixed with water and applied as a spray. Amitrole-T contains amitrole and ammonium thiocyanate and is superior to amitrole alone for the control of perennial weeds. Amitrole-T is sold under the tradenames Amitrol-T and Cytrol both containing 2 pounds active ingredient per gallon.

Apply Amitrole-T during the spring when quackgrass is 4 to 8 inches tall. Use 4 pounds of Amitrole-T (2 gallons of Cytrol or Amitrol-T products) in 40 to 50 gallons of spray solution per acre. Plow treated area 2 to 3 weeks after spraying. Plant corn and cultivate or fallow for a season.

If Amitrole-T is used in combination with atrazine and a corn crop, Amitrole-T may be used at a lower rate of 2 pounds (1 gallon of Cytrol or Amitrol-T products) for satisfactory results. Then apply 2½ pounds of atrazine (3½ pounds of atrazine 80W product) behind corn planter or shortly after planting corn to control both annual weeds and quackgrass regrowth.

For controlling quackgrass in established shelterbelts where cultivation is not practiced use Amitrole T in combination with simazine*. Simazine is a wettable powder sold under the tradename Simazine 80W. Use 2 pounds of Amitrole T (1 gallon of Cytrol or Amitrole-T products) plus 6 pounds of active ingredient of simazine (7½ pounds of Simazine 08W product) in at least 50 gallons of water per acre.

COST OF CHEMICALS

The cost of these chemicals varies from year to year. However, the approximate cost of a pound of active ingredient for the before-mentioned chemicals is as follows: Dalapon $1.60; TCA $0.50; Amitrole-T $5.00; Atrazine $3.20; and Simazine $3.55.

SPECIAL CROPPING

The three cropping systems presented here have practical use in areas unsuited to long periods of intensive cultivation. These practices reduce stands but much slower than the chemical treatments listed before.

Plan One. During the first year plant small grain underseeded with sweet clover. Plow under for green manure the following year. Plow 5 inches deep and cultivate extensively until fall. The third year, plant a row crop and do a thorough job of cultivating. Pick up stray plants.

Plan Two. Plant small grain and seed it to sweet clover. The next year cut the clover for hay. Plow 5

*Complete Chemical names for herbicides used for quackgrass control are: Dalapon—2,2-dichloropropionic acid; TCA—trichloroacetic acid; Atrazine—2-chloro-4-ethylamino-6-isopropylamino-s-triazine; Simazine—2-chloro-4,6-bis(ethyl-amino)-s-triazine; Amitrole-T—3-amino-1,2,4-triazole plus ammonium thiocyanate.

Summary of Vegetative Characters by Which Quackgrass Can Be Distinguished from Several Other Grasses

<table>
<thead>
<tr>
<th>Grass</th>
<th>Growth Habit</th>
<th>Leaf blade*</th>
<th>Leaf sheath*</th>
<th>Rhizomes*</th>
<th>Auricles*</th>
<th>Ligule*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quackgrass</td>
<td>sod-forming</td>
<td>flat, smooth</td>
<td>hairy, split, overlapping</td>
<td></td>
<td></td>
<td>short</td>
</tr>
<tr>
<td>Bromegrass</td>
<td>sod-forming</td>
<td>flat, smooth</td>
<td>smooth, continuous</td>
<td>tan</td>
<td>generally none</td>
<td>large smooth</td>
</tr>
<tr>
<td>Western Wheatgrass</td>
<td>sod-forming</td>
<td>rolled, rigid, rough upper surface; saw-toothed edges</td>
<td>smooth, split</td>
<td>tan</td>
<td>long, colored</td>
<td>minute, smooth</td>
</tr>
<tr>
<td>Slender Wheatgrass</td>
<td>bunch-type</td>
<td>flat, smooth</td>
<td>smooth, split</td>
<td>none</td>
<td>none</td>
<td>minute, hairy</td>
</tr>
<tr>
<td>Ryegrass</td>
<td>bunch-type</td>
<td>flat, smooth</td>
<td>smooth, split</td>
<td>none</td>
<td>short</td>
<td>very short, membranous</td>
</tr>
</tbody>
</table>

For location of these plant parts, see illustration.
inches deep immediately after cutting the hay. Follow an extensive cultivation program until Sept. 10-20, when rye should be seeded at 2 bushels per acre.

The third year combine the rye crop and plow to a depth of 5 inches immediately after harvest. Cultivate extensively until fall. Finally plant to a row crop the fourth year and do a good job of cultivating. Clean up stray plants.

Plan Three. This method is especially effective when the spring of the first year is dry. Cultivate extensively the first year from the time the quackgrass reaches a height of 2 inches until June 15 or July 1. Drill in German millet, proso millet, or buckwheat where it is adapted. Cut the German millet for hay, but harvest the proso millet or buckwheat for seed.

Figure 2. Detailed drawings of young leaves of Quackgrass, Bromegrass, Western wheatgrass, Slender wheatgrass, and Perennial ryegrass, show the difference in: 1) base of the leaf blade; 2) ligule; 3) auricles; 4) leaf sheath; and 5) cross-section of the leaf sheath.

Figure 3. Portions of spikes of quackgrass and perennial ryegrass: A) side-view of quackgrass showing how flat side of spikelet is attached to the rachis; B) a view of the same spike of quackgrass after it was turned one-fourth turn; and C) rye grass spike viewed from same angle as in B, showing that the narrow edge of spikelet is attached to the rachis.

Issued in furtherance of Cooperative Extension work, acts of May 8 and June 30, 1914, in cooperation with the United States Department of Agriculture. John T. Stone, Dean of Extension Service, South Dakota State University, Brookings, South Dakota.