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ABSTRACT 

STUDIES ON GENETIC CHARACTERIZATION OF AGRONOMIC TRAITS AND 

DISEASE RESISTANCE IN BREAD WHEAT 

JYOTIRMOY HALDER 

2021 

A steady increase in wheat yield is vital to feed the continuously rising world population. 

Systematic exploitation of wheat germplasm and a better understanding of the underlying 

genetic control could be pivotal in accelerating the genetic gain for yield and disease 

management. Various modern techniques such as genome-wide association study 

(GWAS), genomic selection (GS), fine mapping, and cloning can expedite wheat 

improvement and broaden our understanding of the complex wheat genome. In the first 

objective of this study, we evaluated the Watkins core set of 121 landrace cultivars (LCs) 

to identify novel sources of resistance against the tan spot, Stagonospora nodorum blotch 

(SNB), and Fusarium Head Blight (FHB). The phenotypic evaluation identified 13 LCs 

with multiple resistance to tan spot and SNB, while five other LCs were found to be a 

potential source for FHB resistance. A total of 30 significant marker-trait associations 

(MTAs) were identified in a GWAS for response to tan spot and SNB. In the second 

objective, we performed GWAS in a panel of 297 hard red winter wheat lines from the 

US Great Plains region to identify QTLs for various spike and kernel-related traits and 

evaluated the prediction accuracy (PA) of GS models for these traits. Most of the MTAs 

(47) were identified for spike-related traits, where 16, 15, 11, and 5 MTAs were 
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identified for spike length, spikelet per spike, spike density, and kernel per spike, 

respectively, while only 6 MTAs were identified for three kernel-related traits (kernel 

weight, kernel area, and thousand kernel weight). Fourteen MTAs were identified at two 

or more individual environments were considered stable QTLs. Univariate genomic 

selection (GS) models like genomic best linear unbiased prediction (GBLUP) were 

compared with multivariate models like Bayesian multi-trait multi-environment 

(BMTME) and we found that the multi-trait model (BMTME) outperformed the single-

trait model (GBLUP) in terms of PA. In the last objective, we developed a fine map of a 

grain yield QTL on chromosome 7DS introgressed into bread wheat from Aegilops 

tauschii (D-Genome donor of wheat). Heterogeneous inbred families (HIFs) were 

developed. Eleven high-quality SNP markers were developed and mapped to the target 

region (3-17 Mb) on chromosome 7DS using recombination breakpoints (recombinants). 

A total of 29 homozygous recombinants (7 haplotype groups) were identified and 

evaluated in the greenhouse and field. KASP markers spanning to the QTL region can be 

used for marker-assisted selection of 7DS yield QTL. Overall, the finding of this study 

can be used for genetic improvement of wheat and accelerate the genetic gain. 
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Chapter 1. Introduction 

 

Wheat (Triticum aestivum L.) is one of the most important cereal crops, playing a crucial 

role in feeding 35% of the world’s population by providing 19% of calories and 21% of 

proteins (Tadesse et al., 2019). The yearly increase of 0.9% in wheat yield is the lowest 

among the four major food crops (maize, rice, wheat, and soybean), to double the global 

production for feeding an estimated world population of 9 billion by 2050 (Ray et al., 

2013). However, wheat production facing increasing challenges from various factors 

including climate change, scarcity of natural resources like land and water, increasing 

biotic and abiotic stresses, etc. Therefore, to feed the growing world population with a 

gradual decrease in farmland, wheat breeding must focus on increasing yield through 

genetic improvement of wheat and minimizing yield losses due to biotic and abiotic 

stresses.  

Throughout the world, biotic stress such as many fungal diseases of wheat like rusts, tan 

spot, Stagonospora nodorum blotch (SNB), powdery mildew, and Fusarium head blight 

(FHB) remains a constant threat for wheat production. These diseases can cause up to 

50% of yield losses along with a significant reduction in end-use quality and mycotoxin 

contamination (Bai and Shaner, 2004; Gurung et al., 2009). Fungicides are considered an 

effective control measure to some extent, but their application adds additional production 

cost and may not inadequate control in diseases like FHB and may not be environment 

friendly (McMULLEN et al., 2012).  
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One possible solution to this problem is to grow resistant cultivars which is both an 

economically feasible and eco-friendly way to combat foliar and spike diseases in wheat. 

To develop high yielding resistant cultivar, wheat breeders can take advantage of wheat 

gene pools that contain a huge reservoir of diverse genes/alleles. Exploiting the genetic 

resources present in the primary, secondary, and tertiary gene pools of wheat could be a 

useful strategy to increase the genetic diversity of wheat (Hoisington et al., 1999). It was 

previously found that introgression of novel genes/alleles present in the diverse landraces 

can broaden the genetic base of bread wheat germplasm (Smale et al., 2002; Reif et al., 

2005) and can enhance the level of disease resistance in modern wheat. Therefore, 

mining the underutilized and genetically diverse landrace collection for diseases 

resistance genes/alleles could be an effective strategy to improve wheat. 

 

In addition to minimizing yield losses, enhancing wheat productivity is central to meeting 

the future wheat demand. Wheat yield is a complex polygenic trait influenced by various 

morphological, physiological, and environmental factors, making this trait challenging to 

manipulate and improve (Nadolska-Orczyk et al., 2017; Liu et al., 2018c). However, 

many individual traits such as spikelet number per spike (SNS), spike length (SL), spike 

number, kernels per spike (KPS), kernel size (KS), thousand kernel weights (TKW), etc., 

contribute to the yield and are less sensitive to the environment and have higher 

heritability than that of grain yield (Kato et al., 2000; Hai et al., 2008). Therefore, 

identification of important quantitative trait loci (QTLs) for yield contributing traits and 

further deployment is essential for the overall improvement of wheat.  Further with the 

recent development of advanced techniques like genomic selection (GS), we can select 
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superior individuals based on genomic estimated breeding values and shorten the 

breeding cycle thus leading to an increase in the genetic gain per unit of time (Meuwissen 

et al., 2001).  

 

Similar to disease resistance traits wild relatives of wheat can also be exploited for yield 

improvement (Yang et al., 2009). Introgression wild relatives can slow the progress due 

to undesirable linkage drag, however, such negative effects are limited when genes are 

transferred from wheat progenitor species Aegilops tauschii, D subgenome donor of 

wheat (Sehgal et al., 2011; Olson et al., 2013). Aegilops tauschii has far higher genetic 

diversity as compared to the wheat D genome and was found to be a useful source of 

genes for grain yield, end-use quality, and improved stress tolerance genes/alleles (Cox et 

al., 1995; Yang et al., 2009; Lopes and Reynolds, 2010; Jia et al., 2013). 

 

Further, to enhance wheat productivity, it is very important to understand the regulatory 

mechanisms of genes controlling wheat yield and their interactions with the environment 

(Reynolds et al., 2012). Mapping the quantitative trait loci (QTL) and identification of 

linked molecular markers can facilitate rapid genes transfer and pyramiding of several 

genes/QTLs for various agronomic traits including yield and yield contributing traits. 

Genetic characterization through linkage mapping and GWAS and application of 

genome-wide selection could be useful in enhancing the rate of genetic gain. The 

objectives of the current studies are; 
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1. To evaluate the core set of Watkins landrace collection for resistance to tan spot 

(P. tritici-repentis race 1 and race 5), SNB, and FHB and explore the genetic basis 

of that resistance.  

2. To understand the genetic control of various spike and kernel-related traits in hard 

red winter wheat using genome-wide association analysis (GWAS) and to 

evaluate the prediction accuracy of different GS models for predicting various 

kernel- and spike-related traits in hard winter wheat. 

3. To characterize the grain yield QTL on the short arm of chromosome 7D from Ae. 

tauschii (ac. TA1615) transferred to hexaploid bread wheat line KS05HW14. 
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Chapter 2. Literature review 

 

2.1. General introduction of wheat 

 

2.1.1. Wheat origin and domestication 

 

Bread wheat which is also known as common wheat is a member of the tribe Triticeae in 

the family Poaceae. There are about 25 species (both wild and domesticated) in the genus 

Triticum, consisting of a series of diploid, tetraploid, and hexaploid forms such as diploid 

wild wheat, Triticum urartu (AA genome) and einkorn wheat, Triticum monococcum 

(AA genome), allotetraploid emmer wheat, Triticum turgidum var. durum (AABB 

genome), allohexaploid common wheat, Triticum aestivum L. (AABBDD genome) etc. 

(Kim et al., 2017). 

Modern-day wheat/bread wheat is an allohexaploid (6x) species with three sets of 

homeologous chromosomes designated as A, B, and D sub genomes, which made it the 

largest genome (~ 17 gigabases, Gb) among cereals (William et al., 2007). This huge 

genome of hexaploid bread wheat (AABBDD, 2n = 6x = 42) was the consequence of the 

hybridization between diploid genome of grass species Aegilops tauschii (DD) and the 

tetraploid genome of T. turgidum (AABB) (Dubcovsky and Dvorak, 2007). T. urartu is 

considered as the progenitor of A sub genome of bread wheat, while several S genome 

species in genus Aegilops sect. sitopsis were believed to be the contributor of B genome 

(Feldman and Levy, 2015). Around 9,000 years ago, a hybridization event between 

tetraploid (T. turgidum subsp. dicoccon) wheat and the D sub genome donor species- Ae. 

tauschii (2n=2x=14, DD) was spontaneously happened that gave rise to the modern bread 
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wheat, T. aestivum (2n=6x=42, AABBDD) (Shewry, 2009). Shifting from the tetraploid 

wheat to the modern hexaploid form through the addition of D sub genome brought 

enhanced geographic and environmental adaptability in bread wheat, as well as increased 

the grain yield and quality. The event of wheat domestication that occurred in the 

present-day Middle East, played a significant role in the development and evolution of 

human civilization, as it shifted human civilization to a more agrarian society from the 

hunter-gatherer and nomadic pastoral one (Eckardt, 2010). 

2.1.2. Species of wheat 

 

There are three major species of wheat namely bread, club, and durum wheat make up 

90% of the wheat grown today (Englund, 2019). The most common species of wheat 

grown in the world are: 

I. Common or Bread wheat (T. aestivum, subsp. aestivum): the most widely 

cultivated group in the world. 

II. Club Wheat (T. aestivum subspecies compactum): It can be distinguished by its 

more compact ear due to shorter rachis segments. 

III. Durum (T. durum): It is also called pasta wheat or macaroni wheat, a tetraploid 

form that is the second most widely cultivated wheat. 

IV. Einkorn (T. monococcum): Einkorn wheat is a diploid species, can refer either to 

the wild species of wheat, Triticum boeoticum, or to the domesticated form, 

Triticum monococcum. 

V. Emmer (T. dicoccum): Emmer wheat or hulled wheat is a tetraploid species, 

which has been cultivated since ancient times.  



9 
 

 

 

 

VI. Spelt (T. spelta): also known as dinkel wheat or hulled wheat, is a hexaploid 

species cultivated in limited quantities. 

 

2.1.3. Wheat classes 

 

Wheat varieties grown in the USA, are divided into six distinct classes according to their 

growth habits (winter or spring), kernel color (red or white), and texture of the ripened 

grain (hard or soft).  

I. Hard Red Winter: It is a versatile class of wheat with excellent milling and baking 

characteristics and is mostly used for various bread, all-purpose flour, and even 

Asian style noodles. Winter wheat is planted in the fall and completes its life 

cycle in the spring. Hard Red Winter Wheat is grown in the Great Plains, 

Northern, and Pacific Northwest regions. 

II. Hard Red Spring: This class contains the highest protein among the classes and is 

used for various specialty items like hearth breads, rolls, croissants, bagels, and 

pizza crust. This class of wheat is mostly grown in Montana, North and South 

Dakota, and Minnesota. 

III. Soft Red Winter: This is a versatile weak-gluten wheat with excellent milling and 

baking characteristics. This type of wheat is generally high yielding and produces 

flour with relatively low protein content, which is suited for crackers, pastries, 

cookies, pretzels, and flat breads. Soft Red Winter Wheat is primarily grown east 

of the Mississippi River. 
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IV. Hard White: This is the newest class of wheat grown in many Great Plains states 

of the USA. This class is closely related to red wheat in its’ milling and baking 

qualities but comparatively sweeter in flavor. It is used for hard rolls, noodles, 

yeast breads, and tortillas.  

V. Soft White: It is primarily grown in the Eastern and Pacific Northwest regions. 

This class of wheat is ideal for Middle Eastern flat breads, crackers, pastries, 

cakes, and Asian-style noodles. 

VI. Durum: This is the hardest of all classes and mainly used for making high quality 

pasta. Durum wheat is grown in the Northern and Pacific Northwest regions. 

2.1.4. Climatic Requirement of wheat 

 

Plant growth and development largely depend upon the surrounding climatic conditions, 

and each crop species has its optimum climatic requirement for better growth, 

development, and reproduction. Crop phenology genes are significantly associated with 

yield physiology as grain yield is strongly influenced by the timing of developmental 

stages in a specific environment (Slafer et al., 2009). Wheat varieties with a winter 

growth habit need to vernalize (exposures to low temperatures) for a certain period to 

accelerate flowering (Kippes et al., 2015) but spring wheat does not require this cold 

exposure. Based on the different durations of vernalization requirements and 

geographical locations, winter wheat cultivars are typically categorized into three types: 

weak winter type (need brief exposure to low temperature), semi-winter type (requires 2–

4 weeks of cold exposure), and strong winter type (needs 4–6 weeks of cold exposure) 
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(Crofts, 1989). Phenology plays a significant role in crop adaptation to a particular 

environment (Fatima et al., 2020). The diversity of phenology genes present in the wheat 

genome helps it grow in a vast range of environmental conditions (Nazim Ud Dowla et 

al., 2018). Better understanding of the genetic control of phenological traits can help 

breeders to develop crops varieties with improved adaptive abilities and increase wheat 

productivity. Wheat adaptation and synchrony of flowering to different climatic 

conditions are largely controlled by vernalization (VRN1, VRN2, and VRN3) (Yan et al., 

2003, 2004, 2006), photoperiod sensitivity (Ppd1, Ppd2, and Ppd3) (Beales et al., 2007; 

Nishida et al., 2013), and autonomous earliness per se (Eps) genes (Nazim Ud Dowla et 

al., 2018). In general, wheat is a long day plant with a requirement of more than 14 h of 

light for flowering, whereas photoperiod-insensitive varieties can flower in short days 

(10 h or less light) (Beales et al., 2007; Kumar et al., 2012). Photoperiod-sensitive wheat 

cannot be grown as an overwinter crop in tropical regions because of the short-day length 

(Worland and Snape, 2001), whereas photoperiod-insensitive wheat flowers 

independently of day length and can grow in long- or short-day environments.  

2.2. Wheat genetic resources 

 

It is very important to understand the complex nature of the bread wheat (T. aestivum L.) 

genome and its wild relatives for future improvement of bread wheat particularly in the 

light of climate change. The genetic diversity in the modern wheat varieties is relatively 

low that has been recognized as a significant drawback for future wheat yield 

improvement. Wheat’s close or distant relative species present in the secondary and 

tertiary gene pools harbor a higher level of genetic diversity and can be a valuable source 
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of genes/alleles to broaden the genetic base of modern wheat (Winfield et al., 2016). 

Gene pool can be referred to the complete set of genes or genetic information found in a 

particular species of population, also includes its wild relatives as genetic information can 

be shared between them. The traditional classification of plants according to the gene 

pool concept was based on the relatedness and easiness of sharing genetic information 

between cultivated species with their wild relatives (Harlan and de Wet, 1971). The 

primary gene pool usually consists of closely related species including landrace cultivar, 

wild and weedy forms, breeding lines, etc. Crossing and useful gene/allele transfer 

between the species in the primary gene pool is considered easy and F1 hybrid is 

generally fertile with effective chromosome pairing. While the secondary gene pool 

includes fewer close relatives, hybridization with the primary gene pool is difficult but F1 

hybrid still may have some fertile progenies. The tertiary gene pool is composed of 

distant relatives or species with genomes non-homoeologous to bread wheat. Gene 

transfer with natural crossing is not possible, however, special methods such as the use of 

bridging materials or ionizing radiation treatments can be used to create hybrid (Hysing, 

2007). The gene pools of bread wheat are shown in (Figure 2.1). 

2.2.1. Wheat landraces; a valuable genetic resource 

 

More than 25,000 types of bread wheat have been developed for a wide range of 

environments throughout the globe (Shewry, 2009). However, the genetic diversity of 

modern wheat is narrow in general because of the repeated selection and intercrosses of 

existing elite wheat germplasm in each breeding cycle, resulting in the depletion of 

alleles from a diverse gene pool (Cox, 1997). Such a narrow genetic base of modern 
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wheat will be a challenge for sustainable wheat production and may create vulnerability 

to the ever-changing world climatic conditions and various other biotic and abiotic 

stresses (Bhatta et al., 2018).  

 

Figure 2.1. The gene pools of bread wheat (Triticum aestivum) according to the ease of 

gene transfer adopted from (Hysing, 2007). 

 

Researchers have been using the genetic resources from the primary gene pool to 

improve the elite wheat varieties or breeding lines. Alien or wild relative species from the 

secondary and tertiary gene pools have also been used for wheat improvement such as 

wide hybridization between wheat and non-Triticum species was successfully exhibited 

in many previous studies (Jiang et al., 1993; Mujeeb-Kazi and Rajaram, 2002; Gill et al., 
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2011). However, the major drawbacks with the alien introgression are that the process is 

not easy to handle, alien chromosome segments often cannot compensate for the loss of 

wheat chromatin, or undesirable genes/alleles are often linked to the desirable genes. As a 

result, only very few successful hybridizations finally reached to the production of 

commercial level (Jiang et al., 1993; Friebe et al., 1996). 

Wheat landraces are the locally adapted material that was not influenced by the modern 

breeding practices but had been gone through genetic improvement by traditional 

agricultural practice. Wheat landraces are very close to the elite breeding materials in 

terms of morphological similarities and genetic diversity that represent an important 

source of genetic variation in wheat (Harlan, 1975). Wheat landrace collections have 

much higher genetic diversity compared to the elite breeding populations and adaptability 

to diverse environmental conditions (Lopes et al., 2015). Wheat landraces not only have 

been traditionally cultivated for thousands of years throughout the globe under the most 

adverse environmental conditions but also in lower input farming systems (Lopes et al., 

2015). In the early 20th century, wheat landraces were chosen as the starting materials for 

a systematic wheat breeding program, therefore the modern breeding population can be 

considered as the mosaics of landrace cultivars (Wingen et al., 2017). 

Using wheat landraces for direct hybridization to transfer the useful genes/alleles to the 

advanced breeding materials could be an attractive breeding strategy when compared to 

the more complex genetic improvement strategies through the exploitation of genetic 

resources of wild species (Reynolds et al., 2007). Some of the successful examples of 

useful gene transfer from wheat landrace to modern breeding lines include reduced height 
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genes (Rht) in the wheat line ‘Norin 10’ which was integral to the ‘green revolution’ was 

inherited from Japanese landrace ‘Daruma’ that improved lodging and yield (Borlaug, 

1988; Wilhelm et al., 2013), powdery mildew resistance gene Pm24 from the Chinese 

landrace ‘Chiyacao’ (Huang et al., 1997), genes/QTLs for resistance to abiotic and biotic 

stresses (Hede et al., 1999; Skovmand et al., 2001; Halder et al., 2019).  

2.2.2. Aegilops tauschii; D genome donor of wheat  

 

Aegilops species which is from the tribe; Triticeae, have significant contributions in 

modern wheat origin and the current wheat breeding despite the handling difficulties that 

come along with the wild species (Kishii, 2019). This species mainly provided genetic 

resources conferring resistance to biotic stresses, but was also found as a useful source 

for other complex traits such as yield and abiotic stress tolerance (Rakszegi et al., 2020). 

Based on the Aegilops L. taxonomy, this genus consists of 23 species with C, D, M, N, S, 

and U genomes (Kishii, 2019). Ae. tauschii (2n = 2x = 14, genomes DD), the tausch's 

goatgrass is an annual grass species which is the donor of sub genome D to common 

wheat and an important genetic resource. Ae. tauschii is consists of two main lineage 

groups (subspecies), designated as lineage 1 (ssp. tauschii) and lineage 2 (ssp. 

strangulata) (Arora et al., 2017). However, while comparing the D sub genome of wheat 

and the known Ae. tauschii subspecies, it was found that lineage 2 contributed more than 

99% of the genetic material to the wheat D genome (Wang et al., 2013). The genome of 

this diploid progenitor is found to be closely related to wheat sub genome D because of 

the recent origin of modern hexaploid wheat, that makes Ae. tauschii an important 

resource for wheat breeding (Luo et al., 2013) and has been most widely used in wheat 
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breeding (Rakszegi et al., 2020). Ae. tauschii tend to have much higher genetic diversity 

compared to the diversity present in bread wheat’s D genome (Dvorak et al., 1998; Wang 

et al., 2013). The exploitation of the genetic variation of Ae. tauschii via introgression to 

the modern wheat can be a useful strategy to improve the narrow genetic base of wheat 

and accelerate productivity (Zhou et al., 2021).  

2.3. Challenges and opportunities in wheat yield improvement  

 

Demand for wheat yield and production improvement is clearly going to continue to feed 

the growing population. So, wheat production faces several routine challenges, such as 

high demand, common biotic and abiotic stresses, scarcity of natural resources, yield 

plateau, etc. There is a consensus that harvest index (HI) which is already close to 60%, 

cannot be improved much further in modern elite varieties (Curtis and Halford, 2014). In 

addition, climate change is threatening wheat production by increasing both biotic 

(aggressive diseases and insect pests) and abiotic stresses (drought, heat, salinity, cold, 

and waterlogging). 

Grain yield is the outcome of lots of physiological and biochemical processes, directly or 

indirectly regulated by numerous genes and their interplay with the environment. Many 

agronomic and physiological traits are involved in wheat grain yield response, for 

example, plant height, number of productive tillers, spike length, spikelet per spike, 

number of kernels per spike, thousand kernel weight, canopy temperature, chlorophyll 

content, photosynthetic rate, etc. The cumulative knowledge from wheat research 

suggests that both source’ and ‘sink’ tissues need to be improved for yield improvement 
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and several strategies can be followed such as strategic crossing to complement “source” 

with “sink” traits (Reynolds et al., 2017), reductionist approach to understand gene 

networks regulating individual yield component (Brinton and Uauy, 2019), strategies to 

increase photosynthesis (Parry et al., 2011), etc. Therefore, a comprehensive and 

multidisciplinary approach including both basic and applied filed of research would be 

necessary to further improve wheat in farmer's fields (Reynolds et al., 2009) (Figure 2.2). 

 

Figure 2.2. Complementary strategies including both basic and applied research areas to 

increase wheat yield potential (Reynolds et al., 2009). 

 

 2.4. Wheat diseases; constant threat to global food security 

 

Wheat production faces various challenges globally from biotic and abiotic stresses and 

wheat breeders are creating solutions to those problems with new varieties and advanced 

research. The relative impact of disease and pathogen varies with the presence of resistant 
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cultivar, climatic conditions, and crop management. It is a continuous quest for a plant 

breeder and pathologist to find resistant varieties against the prevailing pests. To keep the 

crop safe from diseases and make a satisfactory harvest, growers use pesticides and 

follow cultivation practices such as crop rotation, tillage, planting density, disease-free 

seeds, and cleaning of equipment, but plant varieties with inherent (genetic) disease 

resistance are generally preferred. Most of the globally important diseases of crops are 

caused by either necrotrophic or biotrophic fungi (Singh et al., 2016). 

2.4.1. General idea of host-pathogen interaction 

 

Various pathogens attack plants to assimilate nutrients from them and plants, in turn, 

have developed a sophisticated defense mechanism against the attack as a co-

evolutionary battle between plants and pathogens continues. Pathogens usually get access 

to the plant interior either by penetrating the leaf and root surfaces directly or by entering 

through wounds and natural openings such as leaf stomata. During the invasion process, 

pathogens degrade the plant cell wall by cell wall-degrading enzymes, then deliver 

pathogen effectors inside the plant cell, and eventually start interfering with the normal 

activities of the host (Pajerowska-Mukhtar and Dong, 2009; Tilsner and Oparka, 2010). 

On the other hand, plants have evolved complex defense mechanisms to combat pathogen 

invasion by blocking pathogen entrance and activating a range of defense responses. 

Plants also have preformed physical and chemical barriers as well as sophisticated two-

tiered immune systems. Understanding heritability and genetics allowed researchers to 

identify sources of heritable resistance, called resistance genes (R genes) (Rhoades, 1935; 

Bushnell, 1984). R genes were further described by Harold Henry Flor’s with his 
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groundbreaking gene-for-gene model (Flor, 1942), where he concluded that for every 

resistance gene in the host there is a corresponding virulence gene in the pathogen. 

Recent advancement in molecular biology and genetic research of host and pathogen 

interaction has revealed that plant resistance relies on a complex regulatory system that is 

greatly building upon Flor’s gene-for-gene model (Andersen et al., 2018). 

2.4.2. Tan spot  

 

2.4.2.1. Importance 

Tan spot of wheat, also known as yellow leaf spot, is caused by the fungus Pyrenophora 

tritici-repentis (asexual stage: Drechslera tritici-repentis) is an economically important 

disease. This disease has been reported worldwide wherever wheat and other susceptible 

host crops are grown. The disease develops on wheat in the spring and summer on both 

the upper and lower surfaces of leaves. This fungus can be a major concern for the no-till 

farming practice because the inoculum overwinters in stubble residues from the previous 

crop (Faris et al., 2013). The disease develops on both upper and lower surfaces of 

susceptible host leaves, appears as tan-colored oval-shaped necrotic and/or chlorotic 

spots with a black pinhead spot in the center. Symptoms become severe in highly 

susceptible genotypes, where the lesions tend to coalesce and may cover the entire leaf 

surface and eventually kill the leaves (Faris et al., 2013). Severe disease development 

decreases the capacity for photosynthesis (Singh et al., 2011), which leads to plant stress 

and ultimately yields loss (Faris et al., 2013). Yield reduction may reach up to 49% in 

susceptible cultivars in case of favorable disease conditions (Rees et al., 1982; Dinglasan 

et al., 2016). Infected kernels are characterized by a pink color (pink smudge) on the seed 
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coat (Schilder and Bergstrom, 1994). Losses due to tan spot are attributed to lower 

number of kernels/spikes, low thousand kernel weight (Shabeer and Bockus, 1988), 

reductions in the number of tillers, dry matter accumulation, leaf area index (Rees and 

Platz, 1983).  

2.4.2.2. Host range 

Both hexaploid bread wheat (T. aestivum) and tetraploid durum wheat (T. turgidum) are 

the main host of P. tritici-repentis (Faris et al., 2013). Other than wheat, this fugus has a 

wide range of hosts such as Avena sativa (oat), Hordeum vulgare (barley), and Secale 

cereale (rye), and many other grass species such as Elymus repens (Couch grass) (Lamari 

and Bernier, 1989; Ali and Francl, 2002; Kastelein et al., 2002). 

2.4.2.3. Disease cycle  

The tan spot pathogen (P. tritici-repentis) overwinters on last season’s wheat residue as 

black pinhead-sized sexual fruiting bodies (pseudothecia). During favorable weather 

conditions in spring and early summer, pseudothecia release sexual spores called 

ascospores, which is the primary source of inoculum. Asexual spores (conidia) are 

produced on previous crop residue and within existing leaf spots. Both types of spores 

can be dispersed by wind or rain and germinate and infect the wheat plant in a wide range 

of temperatures. During favorable weather conditions for disease, many conidia can be 

produced in the diseased plants, and then they can be blown to nearby plants and thereby 

initiate new infections (Mcmullen and Adhikari, 2009). 
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2.4.2.4. Race classification and Host selective toxins (HSTs)  

Ptr displays a complex race structure and so far, eight different races (1 to 8) of P. tritici-

repentis (PTR) have been identified based on the symptoms (necrosis and chlorosis) 

produced by host-selective toxins (HST) (Lamari et al., 2003).  Out of these eight races, 

three races (Races 2, 3, and 5) can be designated as the basic races, while the rest of the 

races (Races 1, 6, 7, and 8) except race 4 (avirulent) are the combinations of the three 

basic races (Lamari et al., 2003). Three host-specific toxins (Ptr ToxA, Ptr ToxB, and Ptr 

ToxC) of P. tritici-repentis have been identified and well-characterized so far (Dinglasan 

et al., 2016; Kokhmetova et al., 2021). Eight Ptr races either induce single or multiple 

toxins such as Race 2 (Ptr ToxA), Race 3 (Ptr ToxC), and Race 5 (Ptr ToxB) produce 

single HST, while Race 1 (Ptr ToxA and Ptr ToxC), Race 6 (Ptr ToxB and Ptr ToxC), 

Race 7 (Ptr ToxA and Ptr ToxB), and Race 8 (Ptr ToxA, Ptr ToxB, and Ptr ToxC) 

produce multiple HTTs (Lamari et al., 2003; Kokhmetova et al., 2021). The races which 

produce Ptr ToxA are associated with necrotic symptoms in Ptr ToxA-sensitive cultivars, 

whereas Ptr Tox-B-sensitive cultivars induce chlorosis (Kokhmetova et al., 2021). Both 

Ptr ToxA and ToxB are proteins in nature, while Ptr ToxC is not a protein, rather a low-

molecular-weight, nonpolar secondary metabolite (Effertz et al., 2002).  

2.4.2.5. Resistance sources/genes 

The disease system of Ptr–wheat does not follow the ‘classical’ gene-for-gene 

interaction, rather follow an inverse gene-for-gene manner where necrotrophic effectors 

(NEs) of Ptr interact with the corresponding host sensitivity (S) genes to induce disease 
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(Lamari et al., 2003; Liu et al., 2017b). Qualitative genes responsible for tan spot 

resistance have been given the designation “Tsr”, while genes associated with reaction to 

HST are designated as “Tsn” or “Tsc” depending on the necrosis or chlorosis symptom. 

Eight major Tsr genes (Tsrl, Tsr2, Tsr3, Tsr4, Tsr5, Tsr6, TsrHar, and TsrAri) located on 

chromosomes 2BS, 3AS, 3BL, 3DS, and 5BL have been identified and cataloged so far 

(Mcintosh et al., 2013). Resistant gene Tsr2 is from T. turgidum, confers resistance to 

race 3 isolates (Singh et al., 2006), Tsr3 was reported in synthetic hexaploid wheat 

confers resistance to race 1 (Tadesse et al., 2006b), Tsr4 comes from resistant cultivar 

salamouni also confers resistance to race 1 (Tadesse et al., 2006b), Tsr5 is reported to 

resist race 5 isolates also coming from tetraploid wheat (Singh et al., 2008). Host plant 

sensitivity to each HST is conferred by a single dominant host sensitivity (S) gene, 

namely Tsn1, Tsc1, and Tsc2 for Ptr ToxA, Ptr ToxC, and Ptr ToxB, respectively (Liu et 

al., 2017b). Sensitivity gene Tsn1 was mapped to chromosome arm 5BL in wheat and 

was subsequently cloned using a map-based strategy (Faris et al., 1996, 2010), while two 

other Tsc genes (Tsc1 and Tsc2), have been mapped on chromosomes 1AS  (Effertz et al., 

2002) and 2BS (Friesen and Faris, 2004; Abeysekara et al., 2010) that conferring 

sensitivity to HST Ptr ToxC and Ptr ToxB, respectively. Even though most of the 

resistance against tan spot coming from the tetraploid and hexaploid wheat, with few 

from D genome donor species A. tauchii (Cox et al., 1992; Siedler et al., 1994), there is 

still lots of scope to find the resistance sources in the different gene pool of wheat.  
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2.4.2.6. Disease management 

A combination of various management techniques can be followed to effectively manage 

tan spot in the fields. Cultural practices such as removal or destruction of infested residue 

from previous years, crop rotation with non-hosts (other than wheatgrass, bromegrass, or 

rye) can be very effective. Fungicides (strobilurin and triazole classes) are labeled for the 

management of tan spot that provide very good to excellent control. However, host 

resistance against tan spot can be considered as the most cost-effective and eco-friendly 

way to fight against this disease (Chu et al., 2008c). 

2.4.3. Stagonospora nodorum blotch (SNB) 

 

2.4.3.1. Importance 

Stagonospora nodorum blotch (SNB) is a globally important wheat disease caused by 

Parastagonospora nodorum fugus, which can infect both glumes and leaves, reducing 

grain yield and quality (Czembor et al., 2003), and the pathogen can affect wheat at both 

seedling and adult stages. P. nodorum is a necrotrophic fungus, which actively kills host 

cells during infection and subsequently lives in the dead tissue of the host plant (Laluk 

and Mengiste, 2010). Leaf blotches reduce the plant leaf surface area and hamper the 

photosynthesis process which is actively related to the plant food production mechanism 

and that’s how this disease reduce the overall crop growth and yield, while glume blotch 

is directly related to the grain quality reduction (Downie et al., 2020). Yield losses due to 

the SNB can reach up to 50% or more in case of severe epidemic (Shaner and Buechley, 

1995; Bhathal et al., 2003). This fugus occurs in wheat-growing areas worldwide but is 
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more prevalent in wheat growing areas with moderate to high rainfall such as regions in 

the southeastern United States, Canada, South America, Australia, Scandinavia, Central 

and Eastern Europe (Downie et al., 2020). The infection initially shows symptom of 

small chlorotic water-soaked lesions on the lower leaves of the infected plants, which 

turn yellow and finally red brown (Mcmullen and Adhikari, 2009). Infection area on the 

leaf surface produce lens-shaped structure without the distinct yellow border, which is a 

typical symptom of tan spot lesions (Mcmullen and Adhikari, 2009). 

2.4.3.2. Host range 

This necrotrophic fungus has a narrow host range, is mostly known as a wheat pathogen. 

Except bread wheat, other hosts include T. durum, Triticale, barley, and wild grasses have 

been reported to harbour P. nodorum (Cunfer, 2000; Solomon et al., 2006; Downie et al., 

2020). 

2.4.3.3. Disease cycle 

The disease cycle of P. nodorum fugus is very similar to that of tan spot disease. The 

reproductive structure (pseudothecia) or asexual structures (pycnidia) are very similar in 

appearance to tan spot fungus but smaller (Mcmullen and Adhikari, 2009). Ascospores 

forms from the reproductive structure (pseudothecia) as a part of sexual reproduction, 

generally cause the first infections, whereas as part of the asexual cycle, pycnidia form in 

lesions on the leaf that promote spore production for local infection, which can be 

dispersed through water-splash (Downie et al., 2020). The fungus overwinters on the 

wheat straw, debris, infested seed, or other overwintering crops. It was found that 
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sufficient moisture for a period of 12 to 18 hours is needed for infection and a 

temperature range between 68- and 81-degrees F is conducive for rapid disease 

development (Mcmullen and Adhikari, 2009).   

2.4.3.4. Necrotrophic effectors (NEs) and genes 

P. nodorum which is a necrotrophic fungus induces host cell death by secreting 

necrotrophic effectors (NEs) (typically proteins, phytotoxic metabolites), also known as 

host selective toxins. Once recognized by the host plant, its response to the effectors 

activates the programmed cell death (Friesen and Faris, 2010; Winterberg et al., 2014). 

However, this fungus can survive against the defense response and continue feeding on 

the dead tissue which makes the host susceptible to the pathogen and this phenomenon is 

termed as “inverse gene-for-gene” interaction, as the recognition of NEs by dominant 

host sensitivity genes leads necrotrophic effector-triggered susceptibly (NETS) (Friesen 

and Faris, 2010; Oliver et al., 2012). Instead of stopping the infection, this necrotic 

response by a sensitive host is believed to be helping the pathogen to colonize and 

continue feeding on it (Oliver and Solomon, 2010).  

Research on wheat- P. nodorum pathosystem identified a total of nine host sensitivity 

gene-NE interactions that include, Tsn1-SnToxA (Liu et al., 2006; Zhang et al., 2009; 

Faris et al., 2010), Snn1-SnTox1(Liu et al., 2004b; Reddy et al., 2008), Snn2- SnTox2 

(Friesen et al., 2007; Zhang et al., 2009), Snn3-B1-SnTox3 (Friesen et al., 2008; Liu et 

al., 2009b), Snn3-D1-SnTox3 (Zhang et al., 2011), Snn4-SnTox4 (Abeysekara et al., 

2009), Snn5-SnTox5 (Friesen et al., 2012), Snn6- SnTox6 (Gao et al., 2015), and Snn7- 
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SnTox7 (Shi et al., 2015). However, only three interactions such as Tsn1-SnToxA, Snn1-

SnTox1, and Snn3-B1-SnTox3 were studied more intensively due to the cloning of host 

sensitivity gene and/or pathogen NE (Haugrud et al., 2019). 

2.4.3.5. Disease management 

Some common practices such as crop rotation which reduces the inoculum and using 

fungicides can be effective to fight against disease outbreaks. However, extensive use of 

fungicides would increase the production cost and may not be an environment-friendly 

practice. Therefore, wheat cultivars with high levels of genetic resistance are more 

desirable, which not only decreases the cost of production but also environment friendly.  

However, despite decades of breeding effort, there is limited progress in improving SNB 

resistance as a significant level of susceptibility still retained in the modern wheat 

cultivars (Aguilar et al., 2005; Francki, 2013). Reduced/no tillage agricultural farming 

practice becoming popular throughout the globe, which was found significantly 

correlated with the SNB infection severity as the infected residue remains in the field 

(Mehra et al., 2015). So, residue management can be an effective strategy to lower the 

inoculum intensity in the field and lower the infection rate (Solomon et al., 2006).  

 

2.4.4. Fusarium head blight (FHB) 

 

2.4.4.1. Importance 

FHB is mostly caused by the pathogen Fusarium graminearum is a widespread and 

powerful enemy of wheat growers throughout the globe. This disease, also known as 
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Scab, inflicts yield and quality losses on farms in at least 18 states of USA and other 

wheat growing regions of the world. For the last few decades, frequent epidemics have 

attracted the attention of farmers and researchers from all over the world. This pathogen 

not only reduces the wheat yield, but also contains mycotoxin popularly known as 

deoxynivalenol (DON) that is toxic to the human and animal health. Prolonged humid 

and wet conditions is conducive for extensive infection and due to lower test weight, 

yield losses can reach up to 80% (Bai and Shaner, 1994). This disease is a global concern 

and the combined direct and secondary economic losses due to FHB from 1993 to 2001 

was estimated at $7.67 billion in the US alone (Nganje et al., 2004). Food industries 

throughout the U.S. incur losses from the cost of dealing with the toxin-contaminated 

grain that often accompanies scab infection.  

2.4.4.2. Host range 

Fusarium graminearum generally causes head blight in wheat and barley but can also 

cause disease in rice, oats and gibberella stalk and ear rot disease on maize (Goswami and 

Kistler, 2004). The fungus may also infect other plant species without causing disease 

symptoms.  

2.4.4.3. Disease cycle 

Fusarium graminearum overwinters as saprophytic mycelia on infested crop residues 

such as corn stalks, wheat straw, and other host plants (Goswami and Kistler, 2004). 

Fungus produces asexual spores known as macroconidia on the infested residues and can 

be dispersed to other host plants and debris through wind or rain. During favorable 
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weather (warm, humid, and wet) conditions in spring fungus produce sexual spores called 

ascospores, which can be windblown to infect the wheat head at the time of anthesis 

(Parry et al., 1995). If the environment is warm and moist, light pink/salmon-colored 

spores’ aggregation can be visible on the rachis and glumes of individual heads of wheat.  

2.4.4.4. Resistant types 

Wheat resistance against head scab is a complex process, the host plant can exhibit one or 

multiple types of resistance against the infection. There are five different types of FHB 

resistance mechanisms have been described that includes Type I (resistance to initial 

infection), Type II (resistance to disease spread within infected heads), Type III 

(resistance to DON production and accumulation), Type IV (resistance to seed 

colonization and damage), and Type V (tolerance to yield loss) (Mesterházy et al., 1999; 

Yi et al., 2018). Out of these resistance mechanisms, Type I and II are more extensively 

studied because the host shows resistance at an early stage of infection.  

2.4.4.5. Resistance sources/genes 

During the past decade, numerous studies have been published on molecular mapping of 

FHB resistance in wheat. Fortunately, large genetic variation for FHB resistance is 

available in the wheat gene pool, but often the best regionally adapted, and highly 

productive cultivars are susceptible to FHB. Host resistance to FHB is a complex trait 

conditioned by oligogenic to polygenic in nature, and quantitative trait loci (QTL) have 

been identified in almost in every wheat chromosome. Some QTL were found in several 

independent mapping studies indicating that such QTL are stable and therefore useful in 



29 
 

 

 

 

breeding programs. Even though many strains or races of Fusarium graminearum have 

been identified but no specific host-strain system has been recognized, that means 

virulence in this pathogen is not host-specific and resistance in cultivars is not race 

specific, makes it a horizontal, quantitative, and non-specific in nature (Mesterházy et al., 

1999). More than 200 QTL for FHB resistance have been reported for various types of 

resistance on all the wheat chromosomes (Buerstmayr et al., 2009), and a meta-QTL 

analysis clustered 43 QTL with unique chromosome locations (Liu et al., 2009a), but 

most of the QTLs have small to moderate effect to the FHB resistance.  

A major FHB resistance QTL (Fhb1) from Sumai 3 has been mapped and widely used in 

breeding programs as this gene can significantly improve the resistance in diverse genetic 

backgrounds (Buerstmayr et al., 2009). However, it only provides 20-40% reduction in 

FHB severity in different genetic backgrounds. Several other lines from China such as 

Ning 7840, and Ning 8331 developed by Chinese wheat breeders, have also been the 

basis of the earlier projects to determine the genetic basis of Fusarium resistance. In 

addition, another Chinese landrace called Wangshuibai also showed high and stable 

resistance, made this line an alternative source for improving FHB resistance 

(Buerstmayr et al., 2009). Most repeatable QTL are those on chromosomes 3B (Fhb1), 

5A (Qfhs.ifa-5A) (Buerstmayr et al., 2002) and 6B (Fhb2) (Cuthbert et al., 2007). Several 

other new sources of FHB resistance have recently been reported and transferred into 

wheat including Fhb3 (Qi et al., 2008) from Leymus racemosus, Fhb6 from Elymus 

tsukushiensis (Cainong et al., 2015) and Fhb7 (Guo et al., 2015) from Thinopyrum 
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ponticum. Most of these genes are effective and should be utilized in the breeding 

programs. 

2.4.4.6. Disease management  

Severe FHB epidemics occur when a susceptible host genotype encounters abundant 

pathogen inocula during wheat flowering in presence of warm and humid weather 

(Osborne and Stein, 2007). There are several management practices that can be helpful in 

reducing losses caused by FHB (McMULLEN et al., 2012). The best way to control fhb 

is to practice multiple controlling strategies such as using resistant cultivars, cultural 

practices, and chemical controls, instead of single management practice. Plant breeders 

throughout the globe have been conducting research to develop fhb resistant germplasm, 

and using resistant germplasm is considered as the most economic and environment 

friendly. Timely application of available fungicides (triazole; group 3) can effectively 

suppress the FHB in wheat and barley (McMULLEN et al., 2012).  

2.5. Characterization of wheat germplasm 

 

2.5.1. Single nucleotide polymorphism (SNP); a powerful molecular marker 

 

SNP is a type of polymorphism which brings variation in a single base pair in the DNA 

sequence, become extremely popular in genetics and breeding research because of their 

genome-wide abundance and abilities to capture variations quickly (Korte and Ashley, 

2013). Rapid advances in next-generation sequencing technologies have significantly 

improved the discovery of SNPs (Allen et al., 2011; Berkman et al., 2012; Poland et al., 

2012). The shift from simple-sequence repeat (SSR) marker to SNP has made an 
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excellent progress in the crop research (Thomson, 2014). SNP data is being widely used 

to detect in quantitative trait locus (QTL) for key traits in linkage mapping studies, 

finding marker-trait associations in genome-wide association studies (GWAS), marker 

assisted selection, genomic selection, fine mapping, gene clone etc. (Cook et al., 2012; 

Chen et al., 2016a; Halder et al., 2019; Kuzay et al., 2019; Sidhu et al., 2020; Yang et al., 

2020; AlTameemi et al., 2021; Gill et al., 2021)  

2.5.2. Genome-wide association study (GWAS) 

 

Genome-wide association study (GWAS) or association mapping (AM) also known as 

"linkage disequilibrium mapping," is a method to uncover the association between 

phenotypes and genotypes and that relies on linkage disequilibrium (LD), which is the 

non-random co-segregation of alleles at two or more loci (Gupta et al., 2005; Breseghello 

and Sorrells, 2006). Compared to conventional QTL mapping or linkage analysis which 

is based on physical concept of distance and relies on the recombination (Xu et al., 2017), 

GWAS is more like a statistical concept; two loci are associated if the alleles at one locus 

are not independent of the alleles at another locus (allelic association). Association study, 

as a complement to linkage mapping, offer higher mapping effects, takes advantage of 

historic recombination events in broad-based diversity panels, thus providing higher 

resolution and a greater number of loci (Zhu et al., 2008). Because of the dramatic 

reduction in costs of sequence technologies, GWAS has been performed in nearly all 

economically important crops, including Arabidopsis, wheat, corn, rice, barley, soybean, 

potato, tomato, etc. (Wang et al., 2014a; Xu et al., 2017). AM has both advantages and 

disadvantages when compared to linkage mapping (Korte and Farlow, 2013). Its main 
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advantage of AM is that it exploits a mapping population with the diverse origin and 

utilize all the historical recombination events that occurred in its evolutionary history 

(Myles et al., 2009). Another advantage of GWAS is that it reduces the costs and time of 

creating mapping populations such as recombinant inbreed lines (RIL), and the same 

genotypic data of the mapping panel can be used for various studies. One common 

problem with AM study is that, false-positive associations can be detected between 

marker and traits due to the kinship that may exist among germplasm and population 

structure (Neumann et al., 2011; Korte and Farlow, 2013).  

There are different single or multi-locus models that have been developed to increase the 

power of marker-trait association (MTA) detection while controlling the false positive. 

Single locus analysis such as General Linear Model (GLM) (Price et al., 2006) and 

Mixed Linear Model (MLM) (Yu et al., 2006) are the two most widely used models. 

Compared to GLM, which identifies a greater number of MTAs with a high risk of false-

positive detection, MLM takes account of population structure and kinship in association 

analysis to reduce type I error, thus detecting more accurate associations. Multi-locus 

analysis such as Multiple Loci Mixed Linear Model (MLMM) (Segura et al., 2012) and 

Fixed and random model Circulating Probability Unification (FarmCPU) (Liu et al., 

2016) perform better in terms of controlling the false-discovery rate and the power of 

QTL detection. To better apply the GWAS output in crop improvement, the output of the 

study should be further utilized by follow-up studies and additional experiments to 

investigate the genetic basis of various economically important traits. 
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2.5.3. Genomic selection 

 

In conventional plant breeding, breeders identify parents with desirable characteristics, 

hybridized them to create favorable combinations followed by repeated phenotypic 

selection over several years to select lines/plants with superior performance. However, 

this approach has several limitations such as the variety development process may 

requires long period (5–12 years), mostly rely on phenotypic selection, genotype-

environment interaction (G x E), complex and low heritable traits etc. To solve or 

minimize the shortcomings of conventional breeding, marker-assisted selection (MAS) 

technique was introduced which takes advantage of molecular markers to identify the 

lines with desirable traits (indirect selection) with less phenotypic information (Collard 

and Mackill, 2008). MAS technique is very effective when the marker is linked to the 

trait of interest and the trait of interest is governed by major effect genes/QTLs (Wang et 

al., 2018). However, agronomically important traits are often controlled by many small-

effect genes/QTLs and are not very suitable for MAS. Therefore, to capture the effect of 

minor QTLs/genes, the concept of genomic selection (GS) was proposed, which is a 

modified form of MAS (Meuwissen et al., 2001) 

The GS process starts with a set of training populations (TP), that have been genotyped 

with genome-wide markers and phenotyped for trait of interest. Genotypic and 

phenotypic data from TP is employed to develop the prediction model, which is then used 

to calculate the genomic estimated breeding values (GEBVs) for a set of population 

(validation population) (Wang et al., 2018; Tessema et al., 2020). Now a breeder can use 

the calculated GEBVs to select the desired lines from the validation population without 



34 
 

 

 

 

phenotypic information (Meuwissen et al., 2001). All the marker effect is taken into 

consideration in GS, thus capturing more genetic variation for the trait of interest, making 

GS more effective compared to traditional MAS (Newell and Jannink, 2014). The 

prediction accuracies in GS are largely depend on the relationship between training and 

validation population, that is, the highest prediction accuracies can be achieved when 

training and test data are well related (Isidro et al., 2015).  

2.5.4. Fine mapping and map-based cloning 

 

Positional cloning is a step-by-step approach to narrow down the QTL region to the 

shortest possible genetic interval using recombinant lines for a specific trait of interest. 

This cloning process includes the identification of QTLs for a trait of interest in a target 

environment, fine map the QTL region with markers, identifying the causal gene, 

characterizing the gene, and finally deploying the gene for the improvement of breeding 

lines (Figure 2.3). First, the original population used to identify the QTL need to exploit 

for recombinant inbred lines (RILs) segregating for the trait of interest. With the help of 

these segregating population a high-resolution map for the QTL region can be 

constructed. The tentative position of the gene can be located by systematically 

evaluating the recombination events (recombinants within the candidate interval) 

phenotypically. Within the shortest possible candidate region, there could be several 

genes potential to be the causal gene for the trait of interest. To identify the real causal 

gene, it is necessary to develop plants with the loss of function mutations and then 

reintroduce the functional version in the candidate gene and if the mutants show that the 
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loss/gain of the functionality of the gene significantly altering the trait of interest that 

indicates the candidate is the causal gene (Kuzay et al., 2019).    

 

 

Figure 2.3. Basic steps of positional gene cloning of wheat.  

 

Positional cloning has been successful in wheat especially for major genes controlling 

traits of interest such as phenology genes, quality traits, disease resistance, etc. (Yan et 

al., 2003; Uauy et al., 2006; Fu et al., 2009). However, using positional cloning, 

identification of wheat genes controlling important agronomic traits has been a 

challenging and time-consuming strategy because of the huge genome size, low marker 

density, suppressed recombination, etc. (Hatta et al., 2019). Recent development in 

molecular techniques and bioinformatics facilities accelerating the rapid gene cloning 

process (Hatta et al., 2019). 

 



36 
 

 

 

 

2.6. References 

 

Abeysekara, N. S., Friesen, T. L., Keller, B., and Faris, J. D. (2009). Identification and 

characterization of a novel host-toxin interaction in the  wheat-Stagonospora 

nodorum pathosystem. Theor. Appl. Genet. 120, 117–126. doi:10.1007/s00122-009-

1163-6. 

Abeysekara, N. S., Friesen, T. L., Liu, Z., McClean, P. E., and Faris, J. D. (2010). Marker 

development and saturation mapping of the tan spot Ptr ToxB sensitivity locus Tsc2 

in hexaploid wheat. Plant Genome 3. 

Aguilar, V., Stamp, P., Winzeler, M., Winzeler, H., Schachermayr, G., Keller, B., et al. 

(2005). Inheritance of field resistance to Stagonospora nodorum leaf and glume 

blotch and correlations with other morphological traits in hexaploid wheat (Triticum 

aestivum L.). Theor. Appl. Genet. 111, 325–336. 

Ali, S., and Francl, L. J. (2002). A New Race of Pyrenophora tritici-repentis from Brazil. 

Plant Dis. 86, 1050. doi:10.1094/PDIS.2002.86.9.1050C. 

Allen, A. M., Barker, G. L. A., Berry, S. T., Coghill, J. A., Gwilliam, R., Kirby, S., et al. 

(2011). Transcript-specific, single-nucleotide polymorphism discovery and linkage 

analysis  in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol. J. 9, 

1086–1099. doi:10.1111/j.1467-7652.2011.00628.x. 

AlTameemi, R., Gill, H. S., Ali, S., Ayana, G., Halder, J., Sidhu, J. S., et al. (2021). 

Genome-wide association analysis permits characterization of Stagonospora 

nodorum blotch (SNB) resistance in hard winter wheat. Sci. Rep. 11, 12570. 

doi:10.1038/s41598-021-91515-6. 

Andersen, E. J., Ali, S., Byamukama, E., Yen, Y., and Nepal, M. P. (2018). Disease 

Resistance Mechanisms in Plants. Genes (Basel). 9. doi:10.3390/GENES9070339. 

Arora, S., Singh, N., Kaur, S., Bains, N. S., Uauy, C., Poland, J., et al. (2017). Genome-

Wide Association Study of Grain Architecture in Wild Wheat Aegilops tauschii. 

Front. Plant Sci. 8, 886. doi:10.3389/fpls.2017.00886. 

Bai, G., and Shaner, G. (1994). Scab of wheat: Prospects for control. Plant Dis. 78, 760–

766. doi:10.1094/PD-78-0760. 



37 
 

 

 

 

Beales, J., Turner, A., Griffiths, S., Snape, J. W., and Laurie, D. A. (2007). A Pseudo-

Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant 

of wheat (Triticum aestivum L.). Theor. Appl. Genet. 115, 721–733. 

doi:10.1007/s00122-007-0603-4. 

Berkman, P. J., Lai, K., Lorenc, M. T., and Edwards, D. (2012). Next-generation 

sequencing applications for wheat crop improvement. Am. J. Bot. 99, 365–371. 

doi:10.3732/ajb.1100309. 

Bhathal, J. S., Loughman, R., and Speijers, J. (2003). Yield reduction in wheat in relation 

to leaf disease from yellow (tan) spot and septoria nodorum blotch. Eur. J. Plant 

Pathol. 109, 435–443. doi:10.1023/A:1024277420773. 

Bhatta, M., Morgounov, A., Belamkar, V., Poland, J., and Baenziger, P. S. (2018). 

Unlocking the novel genetic diversity and population structure of synthetic 

Hexaploid wheat. BMC Genomics 2018 191 19, 1–12. doi:10.1186/S12864-018-

4969-2. 

Borlaug, N. E. (1988). Challenges for global food and fiber production. K. Skogs-och 

Lantbruksakademiens Tidskr. Suppl. (Sweden). no. 21. 

Breseghello, F., and Sorrells, M. E. (2006). Association Analysis as a Strategy for 

Improvement of Quantitative Traits in Plants. Crop Sci. 46, 1323–1330. 

doi:https://doi.org/10.2135/cropsci2005.09-0305. 

Brinton, J., and Uauy, C. (2019). A reductionist approach to dissecting grain weight and 

yield in wheat. J. Integr. Plant Biol. 61, 337–358. doi:10.1111/jipb.12741. 

Buerstmayr, H., Ban, T., and Anderson, J. A. (2009). QTL mapping and marker-assisted 

selection for Fusarium head blight resistance in wheat: a review. Plant Breed. 128, 

1–26. doi:10.1111/J.1439-0523.2008.01550.X. 

Buerstmayr, H., Lemmens, M., Hartl, L., Doldi, L., Steiner, B., Stierschneider, M., et al. 

(2002). Molecular mapping of QTLs for Fusarium head blight resistance in spring 

wheat. I. Resistance to fungal spread (Type II resistance). Theor. Appl. Genet. 104, 

84–91. 

Bushnell, W. R. (1984). “15 - Structural and Physiological Alterations in Susceptible 

Host Tissue,” in, eds. W. R. Bushnell and A. P. B. T.-T. C. R. Roelfs (Academic 



38 
 

 

 

 

Press), 477–507. doi:https://doi.org/10.1016/B978-0-12-148401-9.50021-2. 

Cainong, J. C., Bockus, W. W., Feng, Y., Chen, P., Qi, L., Sehgal, S. K., et al. (2015). 

Chromosome engineering, mapping, and transferring of resistance to Fusarium head 

blight disease from Elymus tsukushiensis into wheat. Theor. Appl. Genet. 128, 

1019–1027. doi:10.1007/s00122-015-2485-1. 

Chen, G., Zhang, H., Deng, Z., Wu, R., Li, D., Wang, M., et al. (2016). Genome-wide 

association study for kernel weight-related traits using SNPs in a Chinese winter 

wheat population. Euphytica 212, 173–185. doi:10.1007/s10681-016-1750-y. 

Chu, C. G., Friesen, T. L., Xu, S. S., and Faris, J. D. (2008). Identification of novel tan 

spot resistance loci beyond the known host-selective toxin insensitivity genes in 

wheat. Theor. Appl. Genet. 117, 873–881. doi:10.1007/s00122-008-0826-z. 

Collard, B. C. Y., and Mackill, D. J. (2008). Marker-assisted selection: an approach for 

precision plant breeding in the  twenty-first century. Philos. Trans. R. Soc. London. 

Ser. B, Biol.  Sci. 363, 557–572. doi:10.1098/rstb.2007.2170. 

Cook, J. P., McMullen, M. D., Holland, J. B., Tian, F., Bradbury, P., Ross-Ibarra, J., et al. 

(2012). Genetic architecture of maize kernel composition in the nested association 

mapping  and inbred association panels. Plant Physiol. 158, 824–834. 

doi:10.1104/pp.111.185033. 

Cox, T. S. (1997). Deepening the Wheat Gene Pool. J. Crop Prod. 1, 1–25. 

doi:10.1300/J144v01n01_01. 

Cox, T. S., Raupp, W. J., Wilson, D. L., Gill, B. S., Leath, S., Bockus, W. W., et al. 

(1992). Resistance to foliar diseases in a collection of Triticum tauschii germ plasm. 

Plant Dis. 76, 1061–1064. 

Crofts, H. J. (1989). On defining a winter wheat. Euphytica 44, 225–234. 

doi:10.1007/BF00037529. 

Cunfer, B. M. (2000). Stagonospora and Septoria diseases of barley, oat, and rye. Can. J. 

plant Pathol. 22, 332–348. 

Curtis, T., and Halford, N. G. (2014). Food security: The challenge of increasing wheat 

yield and the importance of not compromising food safety. Ann. Appl. Biol. 164, 

354–372. doi:10.1111/aab.12108. 



39 
 

 

 

 

Cuthbert, P. A., Somers, D. J., and Brulé-Babel, A. (2007). Mapping of Fhb2 on 

chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread 

wheat (Triticum aestivum L.). Theor. Appl. Genet. 114, 429–437. 

Czembor, P. C., Arseniuk, E., Czaplicki, A., Song, Q., Cregan, P. B., and Ueng, P. P. 

(2003).  QTL mapping of partial resistance in winter wheat to Stagonospora 

nodorum blotch . Genome 46, 546–554. doi:10.1139/g03-036. 

Dinglasan, E., Godwin, I. D., Mortlock, M. Y., and Hickey, L. T. (2016). Resistance to 

yellow spot in wheat grown under accelerated growth conditions. Euphytica 2016 

2093 209, 693–707. doi:10.1007/S10681-016-1660-Z. 

Downie, R. C., Lin, M., Corsi, B., Ficke, A., Lillemo, M., Oliver, R. P., et al. (2020). 

Septoria Nodorum Blotch of Wheat: Disease Management and Resistance Breeding 

in the Face of Shifting Disease Dynamics and a Changing Environment. 

Phytopathology®, PHYTO-07-20-0280-RVW. doi:10.1094/PHYTO-07-20-0280-

RVW. 

Dubcovsky, J., and Dvorak, J. (2007). Genome Plasticity a Key Factor in the Success of 

Polyploid Wheat Under Domestication. Science (80-. ). 316, 1862–1866. 

doi:10.1126/science.1143986. 

Dvorak, J., Luo, M.-C., Yang, Z.-L., and Zhang, H.-B. (1998). The structure of the 

Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor. Appl. 

Genet. 97, 657–670. 

Eckardt, N. A. (2010). Evolution of domesticated bread wheat. Plant Cell 22, 993. 

doi:10.1105/tpc.110.220410. 

Effertz, R. J., Meinhardt, S. W., Anderson, J. A., Jordahl, J. G., and Francl, L. J. (2002). 

Identification of a chlorosis-inducing toxin from Pyrenophora tritici-repentis and the 

chromosomal location of an insensitivity locus in wheat. Phytopathology 92, 527–

533. 

Englund, R. L. (2019). Chapter 2: Wheat Classes, History, and Breeding Timelines. 

Available at: http://www.ncwheatmontanacoop.com/order/wheat-c-1_66_35.html 

[Accessed October 21, 2021]. 

Faris, J. D., Anderson, J. A., Francl, L. J., and Jordahl, J. G. (1996). Chromosomal 



40 
 

 

 

 

location of a gene conditioning insensitivity in wheat to a necrosis-inducing culture 

filtrate from Pyrenophora tritici-repentis. Phytopathology 86, 459–463. 

doi:10.1094/Phyto-86-459. 

Faris, J. D., Liu, Z., and Xu, S. S. (2013). Genetics of tan spot resistance in wheat. Theor. 

Appl. Genet. 126, 2197–2217. doi:10.1007/s00122-013-2157-y. 

Faris, J. D., Zhang, Z., Lu, H., Lu, S., Reddy, L., Cloutier, S., et al. (2010). A unique 

wheat disease resistance-like gene governs effector-triggered susceptibility to 

necrotrophic pathogens. Proc. Natl. Acad. Sci. 107, 13544–13549. 

doi:10.1073/PNAS.1004090107. 

Fatima, Z., Ahmed, M., Hussain, M., Abbas, G., Ul-Allah, S., Ahmad, S., et al. (2020). 

The fingerprints of climate warming on cereal crops phenology and adaptation 

options. Sci. Rep. 10, 18013. doi:10.1038/s41598-020-74740-3. 

Feldman, M., and Levy, A. A. (2015). Origin and Evolution of Wheat and Related 

Triticeae Species. Alien Introgression Wheat Cytogenet. Mol. Biol. Genomics, 21–

76. doi:10.1007/978-3-319-23494-6_2. 

Flor, H. H. (1942). Inheritance of pathogenicity of Melamp-sora lini. Phytopath 32, 653–

669. Available at: https://eurekamag.com/research/024/865/024865326.php 

[Accessed October 13, 2021]. 

Francki, M. G. (2013). Improving Stagonospora nodorum resistance in wheat: A review. 

Crop Sci. 53, 355–365. doi:10.2135/cropsci2012.06.0347. 

Friebe, B., Jiang, J., Raupp, W. J., McIntosh, R. A., and Gill, B. S. (1996). 

Characterization of wheat-alien translocations conferring resistance to diseases and 

pests: current status. Euphytica 1996 911 91, 59–87. doi:10.1007/BF00035277. 

Friesen, T. L., Chu, C., Xu, S. S., and Faris, J. D. (2012). SnTox5-Snn5: a novel 

Stagonospora nodorum effector-wheat gene interaction and its  relationship with the 

SnToxA-Tsn1 and SnTox3-Snn3-B1 interactions. Mol. Plant Pathol. 13, 1101–

1109. doi:10.1111/j.1364-3703.2012.00819.x. 

Friesen, T. L., and Faris, J. D. (2004). Molecular mapping of resistance to Pyrenophora 

tritici-repentis race 5 and sensitivity to Ptr ToxB in wheat. Theor. Appl. Genet. 109, 

464–471. doi:10.1007/s00122-004-1678-9. 



41 
 

 

 

 

Friesen, T. L., and Faris, J. D. (2010). Characterization of the wheat-Stagonospora 

nodorum disease system: what is the molecular basis of this quantitative 

necrotrophic disease interaction? Can. J. Plant Pathol. 32, 20–28. 

Friesen, T. L., Zhang, Z., Solomon, P. S., Oliver, R. P., and Faris, J. D. (2007). 

Characterization of the Interaction of a Novel Stagonospora nodorum Host-Selective 

Toxin with a Wheat Susceptibility Gene. Plant Physiol. 146, 682–693. 

doi:10.1104/pp.107.108761. 

Friesen, T. L., Zhang, Z., Solomon, P. S., Oliver, R. P., and Faris, J. D. (2008). 

Characterization of the Interaction of a Novel Stagonospora nodorum Host-Selective 

Toxin with a Wheat Susceptibility Gene. Plant Physiol. 146, 682–693. 

doi:10.1104/pp.107.108761. 

Fu, D., Uauy, C., Distelfeld, A., Blechl, A., Epstein, L., Chen, X., et al. (2009). A kinase-

START gene confers temperature-dependent resistance to wheat stripe rust. Science 

323, 1357–1360. doi:10.1126/science.1166289. 

Gao, F., Wen, W., Liu, J., Rasheed, A., Yin, G., Xia, X., et al. (2015). Genome-Wide 

Linkage Mapping of QTL for Yield Components, Plant Height and Yield-Related 

Physiological Traits in the Chinese Wheat Cross Zhou 8425B/Chinese Spring. 

Front. Plant Sci. 6, 1099. doi:10.3389/fpls.2015.01099. 

Gill, B. S., Friebe, B. R., and White, F. F. (2011). Alien introgressions represent a rich 

source of genes for crop improvement. Proc. Natl. Acad. Sci. 108, 7657–7658. 

doi:10.1073/PNAS.1104845108. 

Gill, H. S., Halder, J., Zhang, J., Brar, N. K., Rai, T. S., Hall, C., et al. (2021). Multi-Trait 

Multi-Environment Genomic Prediction of Agronomic Traits in Advanced Breeding 

Lines of Winter Wheat. Front. Plant Sci. 0, 1619. doi:10.3389/FPLS.2021.709545. 

Goswami, R. S., and Kistler, H. C. (2004). Heading for disaster: Fusarium graminearum 

on cereal crops. Mol. Plant Pathol. 5, 515–525. doi:10.1111/j.1364-

3703.2004.00252.x. 

Guo, J., Zhang, X., Hou, Y., Cai, J., Shen, X., Zhou, T., et al. (2015). High-density 

mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum 

ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theor. Appl. 



42 
 

 

 

 

Genet. 128, 2301–2316. doi:10.1007/s00122-015-2586-x. 

Gupta, P. K., Rustgi, S., and Kulwal, P. L. (2005). Linkage disequilibrium and 

association studies in higher plants: present status and  future prospects. Plant Mol. 

Biol. 57, 461–485. doi:10.1007/s11103-005-0257-z. 

Halder, J., Zhang, J., Ali, S., Sidhu, J. S., Gill, H. S., Talukder, S. K., et al. (2019). 

Mining and genomic characterization of resistance to tan spot, Stagonospora 

nodorum blotch (SNB), and Fusarium head blight in Watkins core collection of 

wheat landraces. BMC Plant Biol. 19, 1–15. doi:10.1186/s12870-019-2093-3. 

Harlan, J. R. (1975). Geographic Patterns of Variation in Some Cultivated Plants. J. 

Hered. 66, 182–191. doi:10.1093/oxfordjournals.jhered.a108610. 

Harlan, J. R., and de Wet, J. M. J. (1971). TOWARD A RATIONAL CLASSIFICATION 

OF CULTIVATED PLANTS. Taxon 20, 509–517. 

doi:https://doi.org/10.2307/1218252. 

Hatta, M. A. M., Steuernagel, B., and Wulff, B. B. H. (2019). “Chapter 4 - Rapid Gene 

Cloning in Wheat,” in Woodhead Publishing Series in Food Science, Technology 

and Nutrition, eds. T. Miedaner and V. B. T.-A. of G. and G. R. in C. Korzun 

(Woodhead Publishing), 65–95. doi:https://doi.org/10.1016/B978-0-08-102163-

7.00004-1. 

Haugrud, A. R. P., Zhang, Z., Richards, J. K., Friesen, T. L., and Faris, J. D. (2019). 

Genetics of Variable Disease Expression Conferred by Inverse Gene-For-Gene 

Interactions in the Wheat-Parastagonospora nodorum Pathosystem. Plant Physiol. 

180, 420. doi:10.1104/PP.19.00149. 

Hede, A. R., Skovmand, B., Reynolds, M. P., Crossa, J., Vilhelmsen, A. L., and Stølen, 

O. (1999). Evaluating genetic diversity for heat tolerance traits in Mexican wheat 

landraces. Genet. Resour. Crop Evol. 1999 461 46, 37–45. 

doi:10.1023/A:1008684615643. 

Houshyar, E., and Grundmann, P. (2017). Environmental impacts of energy use in wheat 

tillage systems: A comparative life cycle assessment (LCA) study in Iran. Energy 

122, 11–24. doi:https://doi.org/10.1016/j.energy.2017.01.069. 

Huang, X. Q., Hsam, S. L. K., and Zeller, F. J. (1997). Chromosomal location of genes 



43 
 

 

 

 

for resistance to powdery mildew in common wheat (Triticum aestivum L. em. 

Thell.) 4. Gene Pm 24 in Chinese landrace Chiyacao. Theor. Appl. Genet. 95, 950–

953. 

Hysing, S. C. (2007). Genetic Resources for Disease Resistance in Wheat. Dr. Diss. 

2007. 

Isidro, J., Jannink, J.-L., Akdemir, D., Poland, J., Heslot, N., and Sorrells, M. E. (2015). 

Training set optimization under population structure in genomic selection. Theor. 

Appl. Genet. 128, 145–158. doi:10.1007/s00122-014-2418-4. 

Jiang, J., Friebe, B., and Gill, B. S. (1993). Recent advances in alien gene transfer in 

wheat. Euphytica 1994 733 73, 199–212. doi:10.1007/BF00036700. 

Kastelein, P., Köhl, J., Gerlagh, M., and Goossen-van de Geijn, H. M. (2002). Inoculum 

sources of the tan spot fungus Pyrenophora tritici-repentis in The  Netherlands. 

Meded. (Rijksuniversiteit te Gent. Fak. van Landbouwkd. en  Toegepaste Biol. Wet. 

67, 257–267. 

Kim, S. K., Kim, J.-H., and Jang, W.-C. (2017). Past, Present and Future Molecular 

Approaches to Improve Yield in Wheat. Wheat Improv. Manag. Util. 

doi:10.5772/67112. 

Kippes, N., Debernardi, J. M., Vasquez-Gross, H. A., Akpinar, B. A., Budak, H., Kato, 

K., et al. (2015). Identification of the VERNALIZATION 4 gene reveals the origin 

of spring growth habit  in ancient wheats from South Asia. Proc. Natl. Acad. Sci. U. 

S. A. 112, E5401-10. doi:10.1073/pnas.1514883112. 

Kishii, M. (2019). An Update of Recent Use of Aegilops Species in Wheat Breeding. 

Front. Plant Sci. 10, 585. doi:10.3389/fpls.2019.00585. 

Kokhmetova, A., Sehgal, D., Ali, S., Atishova, M., Kumarbayeva, M., Leonova, I., et al. 

(2021). Genome-Wide Association Study of Tan Spot Resistance in a Hexaploid 

Wheat Collection From Kazakhstan. Front. Genet. 0, 1736. 

doi:10.3389/FGENE.2020.581214. 

Korte, A., and Ashley, F. (2013). The advantages and limitations of trait analysis with 

GWAS : a review Self-fertilisation makes Arabidopsis particularly well suited to 

GWAS. Plant Methods 9, 29. 



44 
 

 

 

 

Korte, A., and Farlow, A. (2013). The advantages and limitations of trait analysis with 

GWAS: a review. Plant Methods 9, 29. doi:10.1186/1746-4811-9-29. 

Kumar, S., Sharma, V., Chaudhary, S., Tyagi, A., Mishra, P., Priyadarshini, A., et al. 

(2012). Genetics of flowering time in bread wheat Triticum aestivum: 

complementary  interaction between vernalization-insensitive and photoperiod-

insensitive mutations imparts very early flowering habit to spring wheat. J. Genet. 

91, 33–47. doi:10.1007/s12041-012-0149-3. 

Kuzay, S., Xu, Y., Zhang, J., Katz, A., Pearce, S., Su, Z., et al. (2019). Identification of a 

candidate gene for a QTL for spikelet number per spike on wheat chromosome arm 

7AL by high-resolution genetic mapping. Theor. Appl. Genet. 132, 2689–2705. 

doi:10.1007/s00122-019-03382-5. 

Laluk, K., and Mengiste, T. (2010). Necrotroph attacks on plants: wanton destruction or 

covert extortion? Arab. Book/American Soc. Plant Biol. 8. 

Lamari, L., and Bernier, C. C. (1989). Toxin of Pyrenophora tritici-repentis: Host-

specificity, significance in disease, and inheritance of host reaction. Phytopathology 

79, 740–744. 

Lamari, L., Strelkov, S. E., Yahyaoui, A., Orabi, J., and Smith, R. B. (2003). The 

Identification of Two New Races of Pyrenophora tritici-repentis from the Host 

Center of Diversity Confirms a One-to-One Relationship in Tan Spot of Wheat. 

Phytopathology 93, 391–396. doi:10.1094/phyto.2003.93.4.391. 

Liu, S., Hall, M. D., Griffey, C. A., and McKendry, A. L. (2009a). Meta‐analysis of QTL 

associated with Fusarium head blight resistance in wheat. Crop Sci. 49, 1955–1968. 

Liu, X., Huang, M., Fan, B., Buckler, E. S., and Zhang, Z. (2016). Iterative Usage of 

Fixed and Random Effect Models for Powerful and Efficient Genome-Wide 

Association Studies. PLOS Genet. 12, e1005767. doi:10.1371/journal.pgen.1005767. 

Liu, Z., Faris, J. D., Oliver, R. P., Tan, K.-C., Solomon, P. S., McDonald, M. C., et al. 

(2009b). SnTox3 acts in effector triggered susceptibility to induce disease on wheat 

carrying  the Snn3 gene. PLoS Pathog. 5, e1000581. 

doi:10.1371/journal.ppat.1000581. 

Liu, Z., Friesen, T. L., Ling, H., Meinhardt, S. W., Oliver, R. P., Rasmussen, J. B., et al. 



45 
 

 

 

 

(2006). The Tsn1 –ToxA interaction in the wheat–Stagonospora nodorum 

pathosystem parallels that of the wheat–tan spot system. Genome 49, 1265–1273. 

doi:10.1139/g06-088. 

Liu, Z. H., Friesen, T. L., Rasmussen, J. B., Ali, S., Meinhardt, S. W., and Faris, J. D. 

(2004). Quantitative Trait Loci Analysis and Mapping of Seedling Resistance to 

Stagonospora nodorum Leaf Blotch in Wheat. Phytopathology 94, 1061–1067. 

doi:10.1094/phyto.2004.94.10.1061. 

Liu, Z., Zurn, J. D., Kariyawasam, G., Faris, J. D., Shi, G., Hansen, J., et al. (2017). 

Inverse gene-for-gene interactions contribute additively to tan spot susceptibility in 

wheat. Theor. Appl. Genet. 2017 1306 130, 1267–1276. doi:10.1007/S00122-017-

2886-4. 

Lopes, M. S., El-Basyoni, I., Baenziger, P. S., Singh, S., Royo, C., Ozbek, K., et al. 

(2015). Exploiting genetic diversity from landraces in wheat breeding for adaptation 

to climate change. J. Exp. Bot. 66, 3477–3486. doi:10.1093/JXB/ERV122. 

Luo, M.-C., Gu, Y. Q., You, F. M., Deal, K. R., Ma, Y., Hu, Y., et al. (2013). A 4-

gigabase physical map unlocks the structure and evolution of the complex genome 

of Aegilops tauschii, the wheat D-genome progenitor. Proc. Natl. Acad. Sci. U. S. A. 

110, 7940–7945. doi:10.1073/pnas.1219082110. 

Mcintosh, R. A., Yamazaki, Y., Dubcovsky, J., Rogers, J., Morris, C., Appels, R., et al. 

(2013). 12 th International Wheat Genetics Symposium 8-13. 

Mcmullen, M., and Adhikari, T. (2009). Fungal Leaf Spot Diseases of Wheat: Tan spot, 

Stagonospora nodorum blotch and Septoria tritici blotch. 

McMULLEN, M., Paul, S., Hershman, M. N. D., and Bergstrom, G. (2012). A Unified 

Effort to Fight an Enemy of Wheat and Barley: Fusarium Head Blight. Plant Dis. 

96, 171–1728. doi:10.1094/PDIS-03-12-0291-FE ©. 

Mehra, L. K., Cowger, C., Weisz, R., and Ojiambo, P. S. (2015). Quantifying the effects 

of wheat residue on severity of Stagonospora nodorum blotch and yield in winter 

wheat. Phytopathology 105, 1417–1426. 

Mesterházy, Á., Bartók, T., Mirocha, C. G., and Komoroczy, R. (1999). Nature of wheat 

resistance to Fusarium head blight and the role of deoxynivalenol for breeding. 



46 
 

 

 

 

Plant Breed. 118, 97–110. 

Meuwissen, T., Hayes, B., and Goddard, M. (2001). Prediction of total genetic value 

using genome-wide dense marker maps. Genetics 157. 

Mujeeb-Kazi, A., and Rajaram, S. (2002). Transferring alien genes from related species 

and genera for wheat improvement. Bread wheat Improv. Prod., 199–215. 

Myles, S., Peiffer, J., Brown, P. J., Ersoz, E. S., Zhang, Z., Costich, D. E., et al. (2009). 

Association mapping: critical considerations shift from genotyping to experimental  

design. Plant Cell 21, 2194–2202. doi:10.1105/tpc.109.068437. 

Nazim Ud Dowla, M. A. N., Edwards, I., O’Hara, G., Islam, S., and Ma, W. (2018). 

Developing Wheat for Improved Yield and Adaptation Under a Changing Climate: 

Optimization of a Few Key Genes. Engineering 4, 514–522. 

doi:https://doi.org/10.1016/j.eng.2018.06.005. 

Neumann, K., Kobiljski, B., Denčić, S., Varshney, R. K., and Börner, A. (2011). 

Genome-wide association mapping: A case study in bread wheat (Triticum aestivum 

L.). Mol. Breed. 27, 37–58. doi:10.1007/s11032-010-9411-7. 

Newell, M. A., and Jannink, J.-L. (2014). Genomic selection in plant breeding. Methods 

Mol. Biol. 1145, 117–130. doi:10.1007/978-1-4939-0446-4_10. 

Nganje, W. E., Kaitibie, S., Wilson, W. W., Leistritz, F. L., and Bangsund, D. A. (2004). 

Economic Impacts of Fusarium Head Blight in Wheat and Barley: 1993-2001. 

Available at: http://agecon.lib.umn.edu/. [Accessed October 13, 2021]. 

Nishida, H., Yoshida, T., Kawakami, K., Fujita, M., Long, B., Akashi, Y., et al. (2013). 

Structural variation in the 5′ upstream region of photoperiod-insensitive alleles Ppd-

A1a and Ppd-B1a identified in hexaploid wheat (Triticum aestivum L.), and their 

effect on heading time. Mol. Breed. 31, 27–37. 

Oliver, R. P., Friesen, T. L., Faris, J. D., and Solomon, P. S. (2012). Stagonospora 

nodorum: from pathology to genomics and host resistance. Annu. Rev. Phytopathol. 

50, 23–43. doi:10.1146/annurev-phyto-081211-173019. 

Oliver, R. P., and Solomon, P. S. (2010). New developments in pathogenicity and 

virulence of necrotrophs. Curr. Opin. Plant Biol. 13, 415–419. 

Osborne, L. E., and Stein, J. M. (2007). Epidemiology of Fusarium head blight on small-



47 
 

 

 

 

grain cereals. Int. J. Food Microbiol. 119, 103–108. 

doi:10.1016/J.IJFOODMICRO.2007.07.032. 

Pajerowska-Mukhtar, K., and Dong, X. (2009). A kiss of death—proteasome-mediated 

membrane fusion and programmed cell death in plant defense against bacterial 

infection. Genes Dev. 23, 2449. doi:10.1101/GAD.1861609. 

Parry, D. W., Jenkinson, P., and McLeod, L. (1995). Fusarium ear blight (scab) in small 

grain cereals—a review. Plant Pathol. 44, 207–238. doi:10.1111/J.1365-

3059.1995.TB02773.X. 

Parry, M. A. J., Reynolds, M., Salvucci, M. E., Raines, C., Andralojc, P. J., Zhu, X.-G., et 

al. (2011). Raising yield potential of wheat. II. Increasing photosynthetic capacity 

and  efficiency. J. Exp. Bot. 62, 453–467. doi:10.1093/jxb/erq304. 

Poland, J. A., Brown, P. J., Sorrells, M. E., and Jannink, J. L. (2012). Development of 

high-density genetic maps for barley and wheat using a novel two-enzyme 

genotyping-by-sequencing approach. PLoS One 7. 

doi:10.1371/journal.pone.0032253. 

Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., and Reich, 

D. (2006). Principal components analysis corrects for stratification in genome-wide 

association studies. Nat. Genet. 38, 904–909. doi:10.1038/ng1847. 

Qi, L. L., Pumphrey, M. O., Friebe, B., Chen, P. D., and Gill, B. S. (2008). Molecular 

cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to 

Fusarium head blight disease of wheat. Theor. Appl. Genet. 117, 1155–1166. 

doi:10.1007/s00122-008-0853-9. 

Rakszegi, M., Molnár, I., Darkó, É., Tiwari, V. K., and Shewry, P. (2020). Editorial: 

Aegilops: Promising Genesources to Improve Agronomical and Quality Traits of 

Wheat. Front. Plant Sci. 11, 1060. doi:10.3389/fpls.2020.01060. 

Ray, D. K., Mueller, N. D., West, P. C., and Foley, J. A. (2013). Yield Trends Are 

Insufficient to Double Global Crop Production by 2050. PLoS One 8, e66428. 

Available at: https://doi.org/10.1371/journal.pone.0066428. 

Reddy, L., Friesen, T. L., Meinhardt, S. W., Chao, S., and Faris, J. D. (2008). Genomic 

analysis of the Snn1 locus on wheat chromosome arm 1BS and the identification of 



48 
 

 

 

 

candidate genes. 

Rees, R. G., and Platz, G. J. (1983). Effects of yellow spot on wheat: comparison of 

epidemics at different stages of crop development. Aust. J. Agric. Res. 34, 39–46. 

Rees, R. G., Platz, G. J., and Mayer, R. J. (1982). Yield losses in wheat from yellow spot: 

comparison of estimates derived from single tillers and plots. Aust. J. Agric. Res. 33, 

899–908. Available at: https://doi.org/10.1071/AR9820899. 

Reynolds, M., Dreccer, F., and Trethowan, R. (2007). Drought-adaptive traits derived 

from wheat wild relatives and landraces. J. Exp. Bot. 58, 177–186. 

Reynolds, M., Foulkes, M. J., Slafer, G. A., Berry, P., Parry, M. A. J., Snape, J. W., et al. 

(2009). Raising yield potential in wheat. J. Exp. Bot. 60, 1899–1918. 

doi:10.1093/JXB/ERP016. 

Reynolds, M. P., Pask, A. J. D., Hoppitt, W. J. E., Sonder, K., Sukumaran, S., Molero, 

G., et al. (2017). Strategic crossing of biomass and harvest index—source and 

sink—achieves genetic gains in wheat. Euphytica 213, 257. doi:10.1007/s10681-

017-2040-z. 

Rhoades, V. H. (1935). The Location of a Gene for Disease Resistance in Maize. Proc. 

Natl. Acad. Sci. U. S. A. 21, 243. doi:10.1073/PNAS.21.5.243. 

Schilder, A. M. C., and Bergstrom, G. C. (1994). Infection of wheat seed by Pyrenophora 

tritici-repentis. Can. J. Bot. 72, 510–519. 

Segura, V., Vilhjálmsson, B. J., Platt, A., Korte, A., Seren, Ü., Long, Q., et al. (2012). An 

efficient multi-locus mixed-model approach for genome-wide association studies in 

structured populations. Nat. Genet. 44, 825–830. doi:10.1038/ng.2314. 

Shabeer, A., and Bockus, W. W. (1988). Tan spot effects on yield and yield components 

relative to growth stage in winter wheat. Plant Dis. 72, 599–602. 

Shaner, G., and Buechley, G. (1995). Epidemiology of leaf blotch of soft red winter 

wheat caused by Septoria tritici and Stagonospora nodorum. Plant Dis. 79, 928–938. 

doi:10.1094/PD-79-0928. 

Shewry, P. R. (2009). Wheat. J. Exp. Bot. 60, 1537–1553. doi:10.1093/jxb/erp058. 

Shi, G., Friesen, T. L., Saini, J., Xu, S. S., Rasmussen, J. B., and Faris, J. D. (2015). The 

wheat Snn7 gene confers susceptibility on recognition of the Parastagonospora 



49 
 

 

 

 

nodorum necrotrophic effector SnTox7. Plant Genome 8, plantgenome2015-02. 

Sidhu, J. S., Singh, D., Gill, H. S., Brar, N. K., Qiu, Y., Halder, J., et al. (2020). Genome-

Wide Association Study Uncovers Novel Genomic Regions Associated With 

Coleoptile Length in Hard Winter Wheat. Front. Genet. 10, 1. 

doi:10.3389/fgene.2019.01345. 

Siedler, H., Obst, A., Hsam, S. L. K., and Zeller, F. J. (1994). Evaluation for resistance to 

Pyrenophora tritici-repentis in Aegilops tauschii Coss. and synthetic hexaploid 

wheat amphiploids. Genet. Resour. Crop Evol. 41, 27–34. doi:10.1007/BF00051420. 

Singh, P. K., Crossa, J., Duveiller, E., Singh, R. P., and Djurle, A. (2016). Association 

mapping for resistance to tan spot induced by Pyrenophora tritici-repentis race 1 in 

CIMMYTs historical bread wheat set. Euphytica 207, 515–525. 

doi:10.1007/s10681-015-1528-7. 

Singh, P. K., Duveiller, E., and Singh, R. P. (2011). Evaluation of CIMMYT germplasm 

for resistance to leaf spotting diseases of wheat. 

Singh, P. K., Mergoum, M., Ali, S., Adhikari, T. B., Elias, E. M., Anderson, J. A., et al. 

(2006). Evaluation of Elite Wheat Germplasm for Resistance to Tan Spot. Plant Dis. 

90, 1320–1325. doi:10.1094/pd-90-1320. 

Singh, P. K., Mergoum, M., Gonzalez-Hernandez, J. L., Ali, S., Adhikari, T. B., Kianian, 

S. F., et al. (2008). Genetics and molecular mapping of resistance to necrosis 

inducing race 5 of Pyrenophora tritici-repentis in tetraploid wheat. Mol. Breed. 21, 

293–304. doi:10.1007/s11032-007-9129-3. 

Skovmand, B., Reynolds, M. P., and DeLacy, I. H. (2001). Mining wheat germplasm 

collections for yield enhancing traits. Euphytica 2001 1191 119, 25–32. 

doi:10.1023/A:1017528025501. 

Slafer, G. A., Kantolic, A. G., Appendino, M. L., Miralles, D. J., and Savin, R. (2009). 

Crop Development: Genetic Control, Environmental Modulation and Relevance for 

Genetic Improvement of Crop Yield. in. 

Solomon, P. S., Lowe, R. G. T., TAN, K., Waters, O. D. C., and Oliver, R. P. (2006). 

Stagonospora nodorum: cause of stagonospora nodorum blotch of wheat. Mol. Plant 

Pathol. 7, 147–156. 



50 
 

 

 

 

Tadesse, W., Hsam, S. L. K., and Zeller, F. J. (2006). Evaluation of common wheat 

cultivars for tan spot resistance and chromosomal location of a resistance gene in the 

cultivar “Salamouni.” Plant Breed. 125, 318–322. doi:10.1111/j.1439-

0523.2006.01243.x. 

Tadesse, W., Sanchez-Garcia, M., Assefa, S. G., Amri, A., Bishaw, Z., Ogbonnaya, F. C., 

et al. (2019). Genetic Gains in Wheat Breeding and Its Role in Feeding the World. 

Crop Breeding, Genet. Genomics 1, e190005. doi:10.20900/cbgg20190005. 

Tessema, B. B., Liu, H., Sørensen, A. C., Andersen, J. R., and Jensen, J. (2020). 

Strategies Using Genomic Selection to Increase Genetic Gain in Breeding Programs 

for Wheat. Front. Genet. 0, 1538. doi:10.3389/FGENE.2020.578123. 

Thomson, M. J. (2014). High-Throughput SNP Genotyping to Accelerate Crop 

Improvement. Plant Breed. Biotechnol. 2, 195–212. 

Tilsner, J., and Oparka, K. J. (2010). Tracking the green invaders: advances in imaging 

virus infection in plants. Biochem. J. 430, 21–37. doi:10.1042/BJ20100372. 

Uauy, C., Distelfeld, A., Fahima, T., Blechl, A., and Dubcovsky, J. (2006). A NAC Gene 

regulating senescence improves grain protein, zinc, and iron content in  wheat. 

Science 314, 1298–1301. doi:10.1126/science.1133649. 

Wang, G., Leonard, J. M., von Zitzewitz, J., James Peterson, C., Ross, A. S., and Riera-

Lizarazu, O. (2014). Marker–trait association analysis of kernel hardness and related 

agronomic traits in a core collection of wheat lines. Mol. Breed. 34, 177–184. 

doi:10.1007/s11032-014-0028-0. 

Wang, J., Luo, M.-C., Chen, Z., You, F. M., Wei, Y., Zheng, Y., et al. (2013). Aegilops 

tauschii single nucleotide polymorphisms shed light on the origins of wheat  D-

genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. 

New Phytol. 198, 925–937. doi:10.1111/nph.12164. 

Wang, X., Xu, Y., Hu, Z., and Xu, C. (2018). Genomic selection methods for crop 

improvement: Current status and prospects. Crop J. 6, 330–340. 

doi:https://doi.org/10.1016/j.cj.2018.03.001. 

Wilhelm, E. P., Boulton, M. I., Barber, T. E. S., Greenland, A. J., and Powell, W. (2013). 

Genotype analysis of the wheat semidwarf Rht-B1b and Rht-D1b ancestral lineage. 



51 
 

 

 

 

Plant Breed. 132, 539–545. doi:10.1111/PBR.12099. 

William, H. M., Trethowan, R., and Crosby-Galvan, E. M. (2007). Wheat breeding 

assisted by markers: CIMMYT’s experience. Euphytica 157, 307–319. 

Winfield, M. O., Allen, A. M., Burridge, A. J., Barker, G. L. A., Benbow, H. R., 

Wilkinson, P. A., et al. (2016). High-density SNP genotyping array for hexaploid 

wheat and its secondary and tertiary gene pool. Plant Biotechnol. J. 14, 1195–1206. 

doi:10.1111/pbi.12485. 

Wingen, L. U., West, C., Waite, M. L., Collier, S., Orford, S., Goram, R., et al. (2017). 

Wheat landrace genome diversity. Genetics 205, 1657–1676. 

doi:10.1534/genetics.116.194688. 

Winterberg, B., Du Fall, L. A., Song, X., Pascovici, D., Care, N., Molloy, M., et al. 

(2014). The necrotrophic effector protein SnTox3 re-programs metabolism and 

elicits a strong defence response in susceptible wheat leaves. BMC Plant Biol. 2014 

141 14, 1–15. doi:10.1186/S12870-014-0215-5. 

Worland, T., and Snape, J. (2001). Genetic Basis of Worldwide Wheat Varietal 

Improvement. Part 2 in: Bonjean, AP, Angus WJ, 2001. The world wheat book: a 

history of wheat breeding. Lavoisier Publ. Paris, Fr. 1131, 60–100. 

Xu, Y., Li, P., Yang, Z., and Xu, C. (2017). Genetic mapping of quantitative trait loci in 

crops. Crop J. 5, 175–184. doi:https://doi.org/10.1016/j.cj.2016.06.003. 

Yan, L., Fu, D., Li, C., Blechl, A., Tranquilli, G., Bonafede, M., et al. (2006). The wheat 

and barley vernalization gene VRN3 is an orthologue of FT. Proc. Natl. Acad. Sci. 

U. S. A. 103, 19581–19586. doi:10.1073/pnas.0607142103. 

Yan, L., Loukoianov, A., Blechl, A., Tranquilli, G., Ramakrishna, W., SanMiguel, P., et 

al. (2004). The wheat VRN2 gene is a flowering repressor down-regulated by 

vernalization. Science 303, 1640–1644. doi:10.1126/science.1094305. 

Yan, L., Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T., and Dubcovsky, J. 

(2003). Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. 

Sci. U. S. A. 100, 6263–6268. doi:10.1073/pnas.0937399100. 

Yang, L., Zhao, D., Meng, Z., Xu, K., Yan, J., Xia, X., et al. (2020). QTL mapping for 

grain yield-related traits in bread wheat via SNP-based selective genotyping. Theor. 



52 
 

 

 

 

Appl. Genet. 133, 857–872. doi:10.1007/s00122-019-03511-0. 

Yi, X., Cheng, J., Jiang, Z., Hu, W., Bie, T., Gao, D., et al. (2018). Genetic Analysis of 

Fusarium Head Blight Resistance in CIMMYT Bread Wheat Line C615 Using 

Traditional and Conditional QTL Mapping. Front. Plant Sci. 9. 

doi:10.3389/FPLS.2018.00573. 

Yu, J., Pressoir, G., Briggs, W. H., Vroh Bi, I., Yamasaki, M., Doebley, J. F., et al. 

(2006). A unified mixed-model method for association mapping that accounts for 

multiple levels of relatedness. Nat. Genet. 38, 203–208. doi:10.1038/ng1702. 

Zhang, Z., Friesen, T. L., Simons, K. J., Xu, S. S., and Faris, J. D. (2009). Development, 

identification, and validation of markers for marker-assisted selection against the 

Stagonospora nodorum toxin sensitivity genes Tsn1 and Snn2 in wheat. Mol. Breed. 

23, 35–49. 

Zhang, Z., Friesen, T. L., Xu, S. S., Shi, G., Liu, Z., Rasmussen, J. B., et al. (2011). Two 

putatively homoeologous wheat genes mediate recognition of SnTox3 to confer  

effector-triggered susceptibility to Stagonospora nodorum. Plant J. 65, 27–38. 

doi:10.1111/j.1365-313X.2010.04407.x. 

Zhou, Y., Bai, S., Li, H., Sun, G., Zhang, D., Ma, F., et al. (2021). Introgressing the 

Aegilops tauschii genome into wheat as a basis for cereal improvement. Nat. Plants 

7, 774–786. doi:10.1038/s41477-021-00934-w. 

Zhu, C., Gore, M., Buckler, E. S., and Yu, J. (2008). Status and prospects of association 

mapping in plants. Plant Genome 1. 

 

 

 

 

 

 



53 
 

 

 

 

Chapter 3. Mining and genomic characterization of resistance to Tan spot, 

Stagonospora nodorum blotch (SNB), and Fusarium head blight in Watkins core 

collection of wheat landraces 

 

Jyotirmoy Halder1, Jinfeng Zhang1, Shaukat Ali1, Jagdeep S. Sidhu1, Harsimardeep S. 

Gill1, Shyamal K. Talukdar2, Jonathan Kleinjan1
, Brent Turnipseed1 and Sunish K. 

Sehgal1* 

 

1Department of Agronomy, Horticulture & Plant Science, South Dakota State University, 

Brookings, SD 57007 

2California Cooperative Rice Research Foundation, Inc., Rice Experiment Station, Biggs, 

CA 95917 

 

* Corresponding author:  

Sunish K. Sehgal 

sunish.sehgal@sdstate.edu 

 

 

This chapter has been published in BMC Plant Biology journal.  

Reference: Halder, J., Zhang, J., Ali, S., Sidhu, J. S., Gill, H. S., Talukder, S. K., 

Kleinjan, J., Turnipseed, B., & Sehgal, S. K. (2019). Mining and genomic 

characterization of resistance to tan spot, Stagonospora nodorum blotch (SNB), and 

Fusarium head blight in Watkins core collection of wheat landraces. BMC plant biology, 

19(1), 480. https://doi.org/10.1186/s12870-019-2093-3 

 

mailto:sunish.sehgal@sdstate.edu
https://doi.org/10.1186/s12870-019-2093-3


54 
 

 

 

 

3.1. Abstract 

  

Background 

In the late 1920s, A. E. Watkins collected about 7,000 landrace cultivars (LCs) of bread 

wheat (Triticum aestivum L.) from 32 different countries around the world. Among which 

826 LCs remain viable and could be a valuable source of superior/favorable alleles to 

enhance disease resistance in wheat. In the present study, a core set of 121 LCs, which 

captures the majority of the genetic diversity of Watkins collection, was evaluated for 

identifying novel sources of resistance against tan spot, Stagonospora nodorum blotch 

(SNB), and Fusarium Head Blight (FHB). 

Results 

A diverse response was observed in 121 LCs for all three diseases. The majority of LCs 

were moderately susceptible to susceptible to tan spot Ptr race 1 (84%) and FHB (96%) 

whereas a large number of LCs were resistant or moderately resistant against tan spot Ptr 

race 5 (95%) and SNB (54%). Thirteen LCs were identified in this study could be a 

valuable source for multiple resistance to tan spot Ptr races 1 and 5, and SNB, and 

another five LCs could be a potential source for FHB resistance. GWAS analysis was 

carried out using disease phenotyping score and 8,807 SNPs data of 118 LCs, which 

identified 30 significant marker-trait associations (MTAs) with -log10 (p-value) >3.0. 

Ten, five, and five genomic regions were found to be associated with resistance to tan 

spot Ptr race 1, race 5, and SNB, respectively in this study. In addition to Tsn1, several 

novel genomic regions Q.Ts1.sdsu-4BS and Q.Ts1.sdsu-5BS (tan spot Ptr race 1) and 

Q.Ts5.sdsu-1BL, Q.Ts5.sdsu-2DL, Q.Ts5.sdsu-3AL, and Q.Ts5.sdsu-6BL (tan spot Ptr 
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race 5) were also identified. Our results indicate that these putative genomic regions 

contain several genes that play an important role in plant defense mechanisms. 

Conclusion  

Our results suggest the existence of valuable resistant alleles against leaf spot diseases in 

Watkins LCs. The single-nucleotide polymorphism (SNP) markers linked to the 

quantitative trait loci (QTLs) for tan spot and SNB resistance along with LCs harboring 

multiple disease resistance could be useful for future wheat breeding. 

  

Keywords: Watkins Landrace Cultivars, Tan spot, Fusarium head blight, Stagonospora 

nodorum blotch, disease resistance, Genome-wide association study, QTL, biotic stress.   
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3.2. Background 

 

Wheat is a staple food crop for more than 35% of the world’s population (Li et al., 2015). 

Biotic and environmental stresses pose a serious threat to global wheat production 

(Tolmay, 2004; Limbalkar et al., 2018). Fungal diseases of wheat like rusts, tan spot, 

Stagonospora nodorum blotch (SNB), powdery mildew and Fusarium head blight (FHB) 

can cause up to 50% yield losses along with a significant reduction in end-use quality 

(Bai and Shaner, 2004; Gurung et al., 2009). Further, the FHB pathogen (Fusarium 

graminearum Schwabe) produces mycotoxins such as deoxynivalenol (DON) that 

accumulate in the infected grains and constitute a serious threat to food safety (Pestka, 

2010). Fungicides can be used to control these diseases to some extent, but fungicide 

application adds additional cost to wheat growers with inadequate control over disease 

like FHB (McMULLEN et al., 2012). Moreover, indiscriminate use of fungicides can 

cause environmental contamination or may lead to the development of fungal resistance. 

  

Growing resistant cultivars is considered as an effective and eco-friendly approach to 

combat foliar and spike diseases in wheat. However, resistance to FHB, tan spot, and 

SNB is largely quantitatively inherited and limited by additive genetic effect and 

genotype × environment interaction (Wolf et al., 1998; Xu et al., 2004; Gurung et al., 

2009). Presently, only a couple of effective sources of resistance to FHB (Fhb1, Fhb5A) 

are available in cultivated bread wheat. Most of the FHB resistances have been 

transferred into wheat from alien species i.e.  Leymus racemosus (Fhb3), Elymus 

tsukushiensis (Fhb6), and Thinopyrum ponticum (Fhb7) (Qi et al., 2008; Cainong et al., 



57 
 

 

 

 

2015; Guo et al., 2015).  Currently, eight different Ptr races have been identified for tan 

spot (Lamari and Bernier, 1989; Ali and Francl, 2003; Lamari et al., 2003; Ali et al., 

2010), however, Ptr race 1 is found to be the most prevalent one (Benslimane et al., 2011; 

Aboukhaddour et al., 2013; Abdullah et al., 2017). Though several sources of tan spot 

resistance have been identified in various spring and winter wheat germplasm (Xu et al., 

2004; Singh et al., 2006; Mergoum et al., 2007; Ali et al., 2008; Liu et al., 2015), a 

greater portion of tested germplasm, including commercial cultivars, is reported to be 

susceptible to Ptr race 1 (Xu et al., 2004; Ali et al., 2008; Chu et al., 2008b, 2008c; Liu et 

al., 2015). Similarly, SNB resistant sources also remain limited (Francki, 2013) and only 

a few commercial cultivars are known to be resistant to SNB (Adhikari et al., 2011). 

Finally, while resistance may be derived from alien species, this type of resistance is 

often associated with linkage drag and may hinder progress in breeding programs. 

Therefore, a continuous effort in identification and introgression of resistance from 

under-utilized landraces can offer other alternatives to help enhance the level of 

resistance in modern wheat. 

  

The success of semi-dwarf wheat varieties has resulted in large areas of wheat planted to 

a limited number of cultivars. While the advantages of semi-dwarf wheat are well 

documented, their popularity has led to limited genetic diversity and increased 

vulnerability to pests and diseases under the threat of changing climate (Keneni et al., 

2012; Fu, 2015). Previous studies showed that introgression of novel genes/alleles 

present in the landraces can help avert the narrowing down the genetic base of bread 

wheat germplasm (Smale et al., 2002; Reif et al., 2005). In general, the genetic diversity 



58 
 

 

 

 

present in various landrace collections is much higher than in modern cultivars (Wingen 

et al., 2017). Therefore, mining the genetically diverse bread wheat germplasm with 

broad resistance to multiple diseases has the potential to improve wheat resistance to 

diseases and pests (Polák and Bartoš, 2002). 

 

A. E. Watkins, a scholar from Cambridge, England, initially collected over 7,000 

accessions of landrace cultivars (LCs) mainly from 32 countries of Asia, Europe, Africa, 

and Australia in the 1930s. During the second world war, most accessions were lost, and 

the remaining 826 viable accessions are called Watkins collection (Wingen et al., 2014). 

A core set of 121 LCs was developed based on genotypic and some phenotypic 

evaluation that captures the majority of the genetic diversity of A.E. Watkins collection 

(Wingen et al., 2014). Recently, 804 accessions of Watkins collection were genotyped 

using 35K Wheat Breeders’ Array showing that a considerable amount of novel genetic 

diversity is present in the Watkins collection which is yet to be fully explored (Winfield 

et al., 2018). Several researchers evaluated the Watkins collection and found it as a 

potential source for identifying new genes or alleles for leaf rust, stripe rust, eyespot, and 

root-lesion nematode resistance (Dyck, 1994; Bansal et al., 2011; Thompson and 

Seymour, 2011; Burt et al., 2014). However, these LC’s are yet to be evaluated for 

resistance to tan spot, SNB, and FHB. 

 

Molecular markers linked to genes or quantitative trait loci (QTLs) can facilitate 

simultaneous marker-assisted breeding and pyramiding for several traits avoiding 

laborious and time-consuming phenotyping. Previously, QTL mapping has been used to 
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identify marker-trait associations for Tsr1/tsn1 (Faris et al., 1996), Tsr2/tsn2 (Singh et al., 

2006), Tsr3/tsn3 (Tadesse et al., 2006a), Tsr4/tsn4 (Tadesse et al., 2006b), Tsr5/tsn5 

(Singh et al., 2008) and Tsr6/tsc2 (Friesen and Faris, 2004) and three toxin sensitivity or 

insensitivity loci related to SNB, Snn1 (Liu et al., 2004a), Snn2 (Friesen et al., 2008), and 

Tsn1 (Liu et al., 2006). However, QTL studies have lower power in identifying QTLs 

with small effect and typically demarcate QTLs to large genomic regions (Korte and 

Ashley, 2013), whereas the availability of high-density SNP arrays (Wang et al., 2014b; 

Allen et al., 2017) and next-generation sequencing technologies (Poland et al., 2012) 

makes genome-wide association (GWAS) a powerful tool for dissecting the genetic 

architecture of complex traits. Further, GWAS can effectively identify many natural 

allelic variations in a large set of unrelated individuals as compared to the traditional 

QTL mapping (Huang and Han, 2014). The effectiveness of GWAS has already been 

established in several crops by identifying the genomic regions controlling a variety of 

traits like grain shape and flowering time in rice (Zhao et al., 2011; Feng et al., 2016), 

husk traits (Cui et al., 2016) and stalk lodging resistance-related traits in corn (Zhang et 

al., 2018b), drought stress in barley (Pham et al., 2019), and tan spot resistance in 

cultivated rye (Sidhu et al., 2019). In wheat, GWAS has been employed to capture 

genetic factors affecting complex traits like agronomic (Sukumaran et al., 2015; Sun et 

al., 2017a), end-use qualities (Chen et al., 2019), and disease resistance including tan spot 

(Gurung et al., 2011, 2014; Patel et al., 2013; Kollers et al., 2014), Stagonospora 

nodorum blotch (Adhikari et al., 2011; Gurung et al., 2014), Fusarium head blight 

(Arruda et al., 2016), spot blotch (Ayana et al., 2018), and stem and leaf rust (Edae et al., 
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2018; Juliana et al., 2018). Thus, evaluating the Watkins LCs for resistance to leaf spot 

and head diseases and identifying linked molecular markers through GWAS is 

noteworthy. 

 

The objectives of this study were to evaluate the core set of Watkins LCs for resistance to 

tan spot (P. tritici-repentis race 1 and race 5), SNB, and FHB and identify resistant LCs 

that can be exploited in improving resistance to tan spot, SNB, and FHB in wheat. In 

addition, GWAS was performed to characterize genomic regions conferring resistance to 

tan spot (Ptr race 1 and race 5) and SNB in Watkins core set. 

 

3.3. Results  

 

3.3.1. Phenotypic/resistance evaluation 

 

The Watkins core set of 121 LCs evaluated against Ptr race 1 and race 5 and 

corresponding toxins Ptr ToxA and Ptr ToxB respectively, showed a diverse response 

(Supplementary Table S1). Genotypic variation for both the tan spot races (Ptr race 1 and 

5) was significant  (p <2e-16) among genotypes (Supplementary Table S2). The mean 

disease score for tan spot Ptr race 1 and Ptr race 5 among LCs was 3.6 and 1.9, 

respectively (Table 3.1). Of the 121 LCs, 2 (1.6%), 17 (14.0%), 54 (44.6%), and 48 

(39.7%) were resistant, moderately resistant, moderately susceptible, and susceptible 

against Ptr race 1 respectively (Figure 3.1). On the other hand, the majority of the LCs 

were found to be resistant (29.7%) or moderately resistant (65.2%) against Ptr race 5 

(Figure 3.1). The Pearson correlation coefficient (r) values between three repeated 

experiments (exp.) was 0.74 (exp. 1 and 2), 0.68 (exp. 2 and 3), and 0.75 (exp. 1 and 3) 
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for Ptr race 1 and 0.80 (exp. 1 and 2), 0.64 (exp. 2 and 3), and 0.67 (exp. 1 and 3) for Ptr 

race 5. 

 

 

Figure 3.1. Bar graph showing the response of Watkins landrace cultivars (LCs) against 

Fusarium head blight (FHB), Tan spot Pyrenophora tritici-repentis (Ptr) race 1 (R1) and 

race 5 (R5), and Stagonospora nodorum blotch (SNB) evaluation. The X-axis 

representing the type of diseases and the Y-axis showing the number of LCs found 

resistant, moderately resistant, moderately susceptible, and susceptible in the evaluation. 

Values on the bar represents number of LCs. 

 

A diverse response to SNB was observed among the genotypes (p < 2e-16) 

(Supplementary Table S2). The mean disease score for 121 LCs was 2.8 with a range of 

1.3 to 4.0 (Table 3.1). About 5% (n=6), 49% (n=60), 43% (n=52), and 2.5% (n=3) of LCs 

were found to be resistant, moderately resistant, moderately susceptible, and susceptible 

respectively against P. nodorum (Figure 3.1). The Pearson correlation coefficient values 
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between experiments were 0.76 (exp. 1 and 2), 0.69 (exp. 2 and 3), and 0.76 (exp. 1 and 

3) for SNB. A variable response (p < 2e-10) to FHB was also observed among the 119 

LCs in the mist-irrigated, inoculated FHB nursery (Supplementary Table S2). The 

moderately resistant check Lyman showed a disease index of 15.2 and susceptible check 

Overley showed a disease index of 50 (Table 3.1). Out of 119 LCs, only seven (6%) 

demonstrated a moderately resistant response (DI: 13.4-25.3) while all other LCs (94%) 

showed moderately susceptible to susceptible (DI: 26.1-56.7) response to FHB in the 

field nursery (Figure 3.1, Supplementary Table S1). In addition to FHB response, there 

was also a significant variation (p < 2e-16) between the two replications, indicating the 

presence of field and inoculation variation between the replications (Supplementary 

Table S2). The mean FHB disease severity, incidence, and index in the core set were 

34.4, 98.9, and 34.1 respectively (Table 3.1). The seven moderately resistant LCs were 

further analyzed in the greenhouse using the point inoculation method and five of these 

LCs displayed percent spikelet severity (PSS) ranging from 8.6-10.2% (moderately 

resistant), while two LCs showed moderate susceptibility (Table 3.1). 
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Table 3.1: Watkins LCs found resistant/moderately resistant to leaf spot diseases and FHB. 
Accession 

No. 

Country of 

origin 

Tan spot Stagonospora 

nodorum blotch 

(SNB) 

Fusarium head blight 

(FHB) Ptr race 1 Ptr race 5 

Reaction 

typea (Lesion 

type) 

Ptr ToxA 

reaction 

Reaction 

typea (Lesion 

type) 

Ptr ToxB Reaction typea  

(Lesion type) 

Accession 

No. 

Country 

of origin 

Reaction typeb 

(Disease 

Index) 

Percent 

spikelet 

severity 

(PSS) 

1190007 Australia MR (2.28) Insensitive MR (1.56) Insensitive R     (1.5) 1190032 India MR (22.8) 10.2 

1190042 France MR (1.56) Sensitive R     (1.22) Insensitive MR (1.67) 1190308 Iran MR (23.0) 8.6 

1190103 Italy R    (1.44) Sensitive R     (1.0) Insensitive MR (2.61) 1190551 Spain MR (23.75) 9.6 

1190126 India MR (2.28) Insensitive R     (1.0) Insensitive MR (2.5) 1190662 Romania MR (25.18) 9.6 

1190160 Spain MR (1.78) Sensitive R     (1.44) Insensitive MR (1.56) 1190788 Turkestan MR (25.35) 9.2 

1190273 Spain MR (2.0) Insensitive R     (1.0) Insensitive MR (2.44) - - - - 

1190292 Cyprus MR (1.89) Sensitive R     (1.11) Insensitive MR (1.72) - - - - 

1190397 Portugal MR (1.56) Insensitive R     (1.17) Insensitive MR (2.56) - - - - 

1190398 Palestine MR (1.72) Insensitive R     (1.22) Insensitive MR (2.94) - - - - 

1190662 Romania MR (2.56) Insensitive MR (2.0) Insensitive MR (2.0) - - - - 

1190698 China MR (1.83) Insensitive MR (1.61) Insensitive MR (2.17) - - - - 

1190740 USSR MR (1.67) Insensitive R     (1.44) Insensitive MR (2.22) - - - - 

1190912 Hungary R     (1.39) Sensitive R     (1.33) Insensitive R     (1.17) - - - - 

Salamouni  1  1  1 Lyman  15.25 - 

6B662  -  4.3  - Overley  50 34.6 

Glenlea  4.56  -  4 Emerson  - 9.1 

Mean  3.6  1.9  2.8   34.1  

CV (%)c  12.7  19.4  14.3   14.7  

LSDd  0.7  0.6  0.6   9.9  

Range  1.3-4.4  1.1-4.0  1.3-4.0   17.4-56.7%  
a Tan spot Race 1 and Race 5 and stagonospora nodorum blotch (SNB) disease reaction scoring from 1 to 5. 
b Fusarium head blight (FHB) reaction type based on disease index in field experiments. c CV= Coefficient of variation, d LSD= least significant difference 
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3.3.2. Reaction of LCs to PtrToxA and PtrToxB 

 

All 121 Watkins LCs were also screened against Ptr ToxA and Ptr ToxB. Just over 50% 

of the LCs (n=61) showed sensitivity to Ptr ToxA (produced by Ptr race 1 causing tan 

spot) with necrotic lesions in the toxin infiltrated leaf area, while the other 49.6% LCs 

(n=60) were rated as toxin insensitive because they did not show any visible necrosis 

(Figure 3.2). Among nineteen of the resistant or moderately resistant LCs, 26% (n=5) 

were sensitive and 74% (n=14) were insensitive to Ptr ToxA. Out of 102 LCs that 

exhibited a susceptible response to Ptr race 1, 56 (55%) LCs were sensitive and 46 (45%) 

LCs were insensitive to Ptr ToxA (Figure 3.2).  

 

 

Figure 3.2. Reaction of Watkins core set of landrace cultivars (LCs) to tan spot (Ptr race 

1), Ptr ToxA and Ptr race 5, and Ptr ToxB respectively. R; resistant; S; susceptible; In; 

insensitive to Ptr ToxA or ToxB; Sen; sensitive to Ptr ToxA or ToxB. 

 

In case of Ptr ToxB (produced by tan spot Ptr race 5), 111 LCs (92%) displayed as 

insensitive with no visible chlorosis, while the only remaining 10 LCs (8%) exhibited 
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sensitivity by producing chlorosis in the infiltrated area of the leaves. Of the 115 LCs 

showing resistance to Ptr race 5, 95% (n=109) were insensitive to the Ptr ToxB and 5% 

(n=6) were sensitive (Figure 3.2 and Figure 3.3). Among the six LCs susceptible to Ptr 

race 5, 67% (n=4) and 23% (n=2) manifested sensitive and insensitive response to Ptr 

ToxB respectively (Figure 3.2 and Figure 3.3). We found a significant correlation 

between LCs response to Ptr ToxA and Ptr race 1 (p-value=0.04) and Ptr ToxB and Ptr 

race 5 (p-value=4.903e-06) (Figure 3.2). 

 

 

Figure 3.3. Response reaction of Watkins landrace cultivars (LCs) against Pyrenophora 

tritici-repentis (Ptr) and corresponding toxin (Ptr ToxB) at seeding stage in greenhouse. 

A) Ptr ToxB reaction in 6B662 (susceptible check); B) Ptr race 5 reaction in 6B662 

(susceptible check); C) Insensitive reaction of Acc.1190305 to Ptr ToxB; D) 

Acc.1190305 showing susceptibility to race 5; E) Acc.1190352 representing sensitivity to 

Ptr ToxB; F) Acc.1190352 representing resistance to race 5; G) Ptr ToxB reaction in 

Salamouni (resistant check), and H) Ptr race 5 reaction in Salamouni (resistant check). 
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3.3.3. Geographical distribution of the resistant and susceptible LCs 

 

In this study, germplasm identified as resistant to the three diseases were collected from 

different parts of the world. The LCs that conferred resistance to Ptr race 1 were mainly 

collected from different European countries (Supplementary Figure S1A). On the other 

hand, most of the LCs resistant to Ptr race 5 were distributed around the Mediterranean 

Sea and southwest Asia (Supplementary Figure S1B). Like tan spot, the resistant or 

moderately resistant LCs to SNB also came from two broad geographical regions in Asia 

and Europe (Supplementary Figure S1C). Out of the five LCs moderately resistant to 

FHB, three were collected from Asian counties (India, Iran, and Turkestan) and two from 

Europe (Spain and Romania) (Supplementary Figure S1D). 

 

3.3.4. Genotyping and Population structure in Watkins core set 

 

The 35,143 SNP genotype data for 118 LCs was obtained from Winfield et al. (Winfield 

et al., 2018). The data was filtered using a minor allele frequency (MAF) < 0.05 and 

missing value of >10% to obtain 10,828 high-quality SNPs. Model-based Bayesian 

clustering of 118 LCs using 10,828 SNPs in STRUCTURE program we determined that 

Watkins core set was comprised of largely two main subpopulations. However, our 

principal component analysis (PCA) showed that 23.4 % of the variation was explained 

by the first component (PC1), while 8.8% and 6.3% variations were explained by the 

second and third principal components, respectively (Supplementary Figure S2). Overall, 

a total of 38.5% of the variation was explained by the first three components. Another 

2,021 SNPs with no available position (cM) on the genetic map (Allen et al., 2017) were 
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further removed to obtain 8,807 SNPs that were used for GWAS analysis. Out of 8,807 

SNPs, 41.3% (n=3,639) were from A genome, 49.5% (n=4,356) from B genome, and 

9.2% (n=812) from D (Supplementary Table S3). 

 

3.3.5. Marker-trait associations (MTA) 

 

Marker-trait associations revealed 20 putative genomic regions conferring resistance to 

tan spot (Ptr race 1 and 5) and SNB in the Watkins LCs of wheat (Figure 3.4 and Table 

3.2). Quantile-quantile (Q-Q) plots of p-values for different diseases showed that the 

MLM model accounting for population structure and kinship fits our data (Figure 3.4).  
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Figure 3.4. Genome-wide association scan. Mixed linear model (MLM) based Manhattan 

plots represent–log10 (p-value) for SNPs distributed across all 21 chromosomes of wheat. 

A) Pyrenophora tritici-repentis race 1 (Ptr race 1); B) Pyrenophora tritici-repentis race 5 

(Ptr race 5); C) Stagonospora nodorum blotch (SNB). Y-axis:–log10 (p-value) and x-axis: 

wheat chromosomes. The horizontal lines stands as a threshold for significant markers 

with–log10 (p-value) of > 3 which correspond to a p-value <1 × 10−3. On the right side 

of each model, Quantile-Quantile (QQ) plots represent expected null distribution of p-

values vs observed p-values. 
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In total, thirty significant markers with -log10 (P-value) >3.0 were identified to be 

associated with the traits studied. Significant markers identified ten genomic regions 

associated with response to Ptr race 1 that were distributed on eight chromosomes 

including 1A (182.2cM and 267.2cM), 2B (3.1cM), 3A (1.9cM), 3B (202.7cM), 4A 

(107.3cM), 4B (4.99Mbp), 5A (373.0cM), and 5B (15.7cM and 166.7cM). The 

significant markers explained phenotypic variation ranged from 14 to 17%. Five genomic 

regions associated with resistance to Ptr race 5 were identified on chromosomes 1B 

(50.4cM), 2D (216.1cM), 3A (198.2cM), 5B (55.3cM), and 6B (165.2cM) (Table 3.2, 

Figure 3.4). A QTL, Q.Ts5.sdsu-5BS explained the maximum variation of 20% for 

response to Ptr race 1. In total, six new QTLs (Q.Ts1.sdsu-4BS, Q.Ts1.sdsu-5BS, 

Q.Ts5.sdsu-1BL, Q.Ts5.sdsu-2DL, Q.Ts5.sdsu-3AL, and Q.Ts5.sdsu-6BL) were identified 

for tan spot. Association analysis for a response to SNB revealed five genomic regions 

on four chromosomes 2B (89.1cM), 5A (116.6cM), 5B (210.8cM and 243.0cM), and 7A 

(29.9cM) (Table 3.2). One SNP (AX-94394626) on chromosome 5BL (Q.Snb.sdsu-5BL), 

significantly associated with SNB resistance at the seedling stage, and explained 22% of 

the phenotypic variation.  
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Table 3.2: Significant associations between single nucleotide polymorphism (SNP) 

markers and Watkins LCs response to two major leaf spot diseases (tan spot Ptr race 1, 

race 5, and SNB). 

 
Trait QTLs (SNP markers) Allele  Chr Genetic 

position 

(cMa) 

Physical 

position 

(Mbp) 

P-value R 2 

PTR1 Q.Ts1.sdsu-1AL  

(AX-94510190) 

C/T 1AL 182.2 536.43 0.0004 0.16 

 
Q.Ts1.sdsu-1AL  

(AX-94932688) 

C/T 1AL 267.2 589.02 0.0009 0.14 

 
Q.Ts1.sdsu-2BS  
(AX-94748285) 

A/T 2BS 3.1 6.31 0.0001 0.18 

 
Q.Ts1.sdsu-3AS  
(AX-94591588) 

C/T 3AS 1.9 20.00 0.0010 0.14 

 
Q.Ts1.sdsu-3BL  

(AX-94967827) 

G/T 3BL 202.7 798.55 0.0005 0.16 

 
Q.Ts1.sdsu-4AL  

(AX-94662401) 

C/T 4AL 107.3 543.74 0.0008 0.15 

 
Q.Ts1.sdsu-4BS  
(AX-95190182) 

C/G 4BS -* 4.99 0.0005 0.16 

 
Q.Ts1.sdsu-5AL  
(AX-94462650) 

A/G 5AL 373.0 671.39 0.0003 0.16 

 
Q.Ts1.sdsu-5BS  

(AX-95684251) 

A/C 5BS 15.7 13.43 0.0005 0.16 

 
Q.Ts1.sdsu-5BL  

(AX-95252159) 

C/T 5BL 166.7 568.82 0.0010 0.14 

PTR5 Q.Ts5.sdsu-1BL  
(AX-94399951) 

C/T 1BL 50.4 352.39 0.0004 0.19 

 
Q.Ts5.sdsu-2DL  
(AX-94570302) 

G/T 2DL 216.1 413.78 0.0004 0.19 

 
Q.Ts5.sdsu-3AL  

(AX-94701190) 

A/G 3AL 198.2 719.76 0.0009 0.17 

 
Q.Ts5.sdsu-5BL  

(AX-94589119) 

G/T 5BL 55.3 314.30 0.0002 0.20 

 
Q.Ts5.sdsu-6BL  
(AX-94950339) 

C/G 6BL 165.2 678.74 0.0007 0.18 

SNB Q.Snb.sdsu-2BS  

(AX-94413492) 

A/G 2BS 89.1 238.50 0.0008 0.20 

 
Q.Snb.sdsu-5AL  

(AX-94758045) 

C/T 5AL 116.6 472.34 0.0004 0.21 

 
Q.Snb.sdsu-5BL  

(AX-94394626) 

G/T 5BL 210.8 638.83 0.0002 0.22 

 
Q.Snb.sdsu-5BL  
(AX-94878132) 

C/T 5BL 243.0 679.13 0.0005 0.21 

 
Q.Snb.sdsu-7AS 

(AX-94424444) 

C/T 7AS 29.9 53.26 0.0002 0.23 

a The cM position is based on individual genetic maps (Allen et al. 2017), *  No genetic position is available 
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3.3.6. In silico gene annotation of the QTL regions 

 

For response to tan spot Ptr race 1, a total of 500 genes in the 10 QTL regions with 

known functions in CS RefSeq v1.1 (Appels et al., 2018) were identified and 106 of those 

genes are predicted to have defense-related functions including major families like LRR 

(Leucine-rich repeat), NB-ARC (NB-ARC domain), cytochrome P450, and Pkinase 

(Protein kinase) (Supplementary Table S4). In addition, other proteins such as cysteine-

rich secretory protein family (Pathogenesis-related protein 1), sugar transporter protein, 

peroxidase, ABC transporter, mitochondrial carrier protein, Barwin family (Pathogenesis-

related protein PR-4), and acidic chitinase were found. In five candidate regions 

conferring resistance to tan spot Ptr race 5, a total of 207 genes identified of which only 

26 known genes had a role in plant defense responses (Supplementary Table S4). Most of 

the genes belong to the protein kinase domain family. However, NBS-LRR type, NB-

ARC type, and ABC transporter genes were also identified. In candidate regions 

conferring SNB resistance, 291 genes were identified from five QTL regions. Among 

them, only 36 genes were found to be associated with plant defense mechanisms. The 

identified proteins were mainly protein kinase domain, cytochrome P450 family, leucine-

rich repeat receptor-like protein kinase family, NBS-LRR, and NB-ARC domain. 

(Supplementary Table S4). 

 

3.4. Discussion 

 

Continuous improvement in wheat varieties is needed to meet the consumer demand and 

ensure global food security, especially with unpredictable climatic conditions causing 
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new biotic and abiotic stresses. Mining novel resistant germplasm sources for wheat 

improvement could be a key breeding strategy to address these challenges. Evaluating the 

core set of Watkins LCs provided some useful insight about the distribution of resistant 

and susceptible germplasm to various diseases and identified potential LCs which could 

be a valuable source of resistant genes or alleles against tan spot, SNB, and FHB (Table 

3.1).  

 

3.4.1. Geographical distribution and characterization of resistant source 

 

A large percentage of Watkins LCs were both susceptible to Ptr race 1 and showed a 

resistant response to Ptr race 5. Finding resistance against Ptr race 1 is more challenging 

as compared to race 5 because race 1 is the most prevalent race in Africa, Asia, Europe, 

North and South America (Postnikova and Khasanov  Glavpochtamt, (Uzbekistan)), 

1998; Ali and Francl, 2003; Lamari et al., 2003; Benslimane et al., 2011; Aboukhaddour 

et al., 2013). Other than its widespread presence, Ptr race 1 was also reported to contain 

the virulence of both race 2 and 3 (Lamari et al., 2003), making it more aggressive than 

other races. In this study, most of the LCs (84%) were found to be susceptible or 

moderately susceptible to Ptr race 1 originated from the region around the Mediterranean 

Sea and all over Asia (Supplementary Figure S1A). This result could be partly explained 

by the environmental factor such as favorable weather conditions during wheat growth in 

the Mediterranean Sea and Asia for disease development or lower of selection pressure. 

Our results are in agreement with the earlier reports where a large portion of tested wheat 
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germplasm was found susceptible to Ptr race 1 (Xu et al., 2004; Ali et al., 2008; Chu et 

al., 2008c, 2008a; Liu et al., 2015).  

 

Two host-selective toxins (HST: Ptr ToxA and Ptr ToxB) produced by the various races 

and considered to be associated with the two symptoms necrosis and chlorosis 

respectively (Orolaza, 1995; Strelkov and Lamari, 2003), were used to evaluate the 121 

LCs. All four combinations of toxin-disease reactions were observed among these LCs; 

tan spot Ptr race1 resistance-Ptr ToxA insensitive (74%), tan spot Ptr race 1 resistant-Ptr 

ToxA sensitive (26%), tan spot Ptr race 1 susceptible- Ptr ToxA sensitive (45%), tan spot 

Ptr race 1 susceptible-Ptr ToxA insensitive (55%) (Figure 3.2). Data from this study 

support the statement that the host reaction to HST does not determine the resistance or 

susceptibility of the host to Ptr races. These observations were consistent with previous 

studies (Noriel et al., 2011; Abdullah et al., 2017) and suggest that though Ptr ToxA plays 

a role in aggressiveness and can be used as a predictor of resistance/susceptibility, 

however, it is not the sole cause of pathogenicity and insensitivity to Ptr ToxA does not 

necessarily imply resistance to Ptr race 1 (Friesen et al., 2003). Results also suggest that 

other pathogenicity factors in addition to Ptr ToxA might be involved in host disease 

response (Noriel et al., 2011; Abdullah S, 2017).  

 

Landrace collections response to Ptr race 5 showed a majority of LCs (95%) were 

resistant or moderately resistant to Ptr race 5, indicating very low virulence present in this 

race and those lines were mainly distributed around the region of Mediterranean Sea and 

in southwest Asia (Supplementary Figure S1B). Ali et al. (Ali et al., 2008) previously 
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reported the similar type of resistance reaction, where they found around 98% wheat 

genotypes resistant to Ptr race 5, however, Tadesse et al (2006b) found 84% of the tested 

cultivars susceptible against Ptr race 5. These differences could be attributed to the 

different genetic backgrounds of the germplasm evaluated.  

 

Similar to the tan spot Ptr race 1-Ptr ToxA interaction system, all four combinations of 

toxin-disease reactions were observed; Ptr race 5 resistance-ToxB insensitive (95%), Ptr 

race 5 resistant-ToxB sensitive (5%), Ptr race 5 susceptible-ToxB sensitive (23%), and 

Ptr race 5 susceptible-ToxB insensitive (67%) (Figure 3.2). For example, accession 

1190305 was insensitive to Ptr ToxB and susceptible to Ptr race 5, while accession 

1190352 was sensitive to Ptr ToxB but resistant to Ptr race 5 (Figures 3.2 and 3.3). These 

four combinations of toxin-disease reaction system are fully established in Ptr race 1-

ToxA interaction but the parallel relationship showing Ptr ToxB insensitivity, and Ptr 

race 5 susceptibility observed in this study seems to be not reported so far. Therefore, 

results from this study suggest that germplasm which is insensitive to Ptr ToxB is not 

necessarily resistant to Ptr race 5 and this could be results of multiple effector-host 

susceptibility interactions.  

 

Nearly half of LCs evaluated for response to SNB in this study demonstrated resistant or 

moderately resistant reactions, majorly dispersed in European and Asian countries, 

indicating that tested LCs could be a good source of resistant genes/alleles for SNB 

resistant wheat breeding programs (Supplementary Figure S1C). Several other previous 

studies also found around 50% of tested material was resistant or moderately resistant to 
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SNB using both elite wheat genotypes and wheat-alien species derivatives (Mergoum et 

al., 2007; Oliver et al., 2008).  

 

This study did not find any FHB resistant LCs within the core set of Watkins collection. 

However, five moderately resistant LCs that came from various parts of the world were 

identified. Three out of five moderately FHB resistant LCs identified in the field and 

greenhouse were originally collected from Asian countries (India, Iran, and Turkestan), 

indicating Asia a potential source of resistance (Supplementary Figure S1D). Previous 

studies have shown that a high level of resistance to FHB was mainly found in Asian 

sources like Chinese and Japanese cultivars (Bai and Shaner, 2004; Yu et al., 2008). Most 

(94%) of the tested LCs were susceptible or moderately susceptible to FHB, which 

implied that the resistant resources for FHB were rare in the Watkins collection. The five 

moderate resistance LCs could be further characterized and used in FHB resistance 

breeding.  

 

3.4.2. Marker-trait association 

 

Ten genomic regions were identified on eight chromosomes that were significantly 

associated with Ptr race 1 resistance. Previous studies (Faris et al., 1996; Tadesse et al., 

2006; Juliana et al., 2018) have reported QTLs on eight (1AL, 2BS, 3AS, 3BL, 4AL, 

5AL, and 5BL) of the 10 genomic regions, and our study supports those QTLs and 

identifies tightly linked SNP markers. We identified SNP AX-95252159 (Q.Ts1.sdsu-

5BL) located on chromosome 5BL (166.7cM), which corresponds to previous known tan 

spot host-selective toxin (HST) insensitivity gene tsn1 (Faris et al., 1996; Anderson et al., 
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1999). A Genome-wide association study (GWAS) was also performed on the response 

to toxin infiltration with a purified toxin (Ptr ToxA) that produce necrosis in leaves. 

Infiltration study revealed three additional SNP (AX-94912015, AX-94941069, and AX-

95659861) around 150 cM on chromosome 5BL co-segregating with a genomic region 

very close to Tsn1 locus (Faris et al., 1996; Anderson et al., 1999). In addition to the 

known QTLs, two novel QTLs (Q.Ts1.sdsu-4BS and Q.Ts1.sdsu-5BS) on chromosome 

4BS and 5BS were identified (Table 3.2). 

 

Five genomic regions conferring resistance to Ptr race 5 were identified (Q.Ts5.sdsu-1BL, 

Q.Ts5.sdsu-2DL, Q.Ts5.sdsu-3AL, Q.Ts5.sdsu-5BL, Q.Ts5.sdsu-6BL) on chromosomes 

1BL, 2DL, 3AL, 5BL, and 6BL (Table 2, Figure 4). Ptr race 5 produces a toxin (Ptr 

ToxB) and the sensitivity to this toxin is regulated by the Tsc2 gene which was 

previously mapped on the short arm of chromosomes 2B (Friesen and Faris, 2004). 

However, no significant marker-trait association on 2BS was found where the Tsc2 gene 

is located. It is also likely that due to the limited statistical power, we could not detect 

Tsc2 in the Watkins core set. Furthermore, previous studies related to Ptr race 5 and tan 

spot non-race specific studies revealed genomic regions conferring resistance on 

chromosomes 2AS, 4AL, and 2BL (Friesen and Faris, 2004), 2AS and 5BL (Chu et al., 

2008c), 1BS and 3BL (Faris and Friesen, 2005), 2D, 6A and 7D (Gurung et al., 2011), 

3B, 5D, 6B, and 7B (Liu et al., 2015). It is clear from these independent studies that only 

a few common chromosomal locations have been identified related to Ptr race 5 

resistance. The likely reason for rare overlap among studies could be the result of the 

frequency of the causal alleles in populations and small sample size. Another explanation 
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is that the wheat-Ptr pathosystem is complex and there may be other virulence factors in 

addition to toxin Ptr ToxB involved in tan spot resistance (Chu et al., 2008c). 

Marker-trait associations for a response to SNB were identified in five genomic locations 

on chromosomes 2BS, 5AL, 5BL, and 7AS (Table 3.2, Figure 3.4). Three major genes 

for toxin sensitivity or insensitivity, Snn1, Snn2, and Tsn1 were previously mapped on 

chromosome 1BS, 2DS and 5BL, respectively (Liu et al., 2004b, 2006; Friesen et al., 

2008). In this study, no marker was found related to Snn1 and Snn2 genes. However, 

several markers were found co-segregating with a genomic region on chromosome 5BL 

where the major gene Tsn1 is located (Francki, 2013). Further, we identified a SNP 

significantly associated with SNB resistance on chromosome 2BS, where a resistance 

QTL was previously identified by Czembor et al (Czembor et al., 2003).  

 

3.4.3. In Silico functional annotation of the QTL regions 

 

Host-pathogen interaction induces a plant defense mechanism that can be divided into 

two major categories, (i) constitutive defense that is triggered by pathogen-associated 

molecular patterns (PAMPs) and (ii) a temporarily induced more localized mechanism in 

which plants try to defend a specific attacked area (Howe and Jander, 2008). In plants, 

resistance (R) proteins are usually involved in pathogen recognition that triggers innate 

constitutive immune responses (Gouveia et al., 2017). There are many R genes that have 

been cloned so far and most resistance proteins contain a central nucleotide-binding (NB) 

domain fused with a C-terminal leucine-rich repeat (LRR) domain. This study found NB-

ARC and NBS-LRR type genes in many of the annotated QTL regions (Supplementary 
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Table S4). The NB-ARC domain is a functional ATPase domain and its nucleotide-

binding state is found to regulate the activity of R-proteins (Van Ooijen et al., 2008). The 

NBS-LRR are the most common R-genes, which detect pathogen-associated proteins, 

typically effector molecules of pathogens that are responsible for virulence (DeYoung 

and Innes, 2006). One major susceptibility gene for tan spot and SNB is Tsn1 which 

encodes a protein with a leucine-rich repeat domain that is similar to the one found in 

NLR proteins (Keller et al., 2018). Another large family of proteins identified in this 

study was Receptor-like kinases (RLKs) which is involved in various functions like plant 

growth, development, hormone perception and response to pathogens. Most defense-

related RLKs are the LRR subclass (Ramonell and Goff, 2007). The cloning of Snn1 

providing resistance against SNB identified Wall Associated kinases (WAKs), a unique 

class of receptor-like kinase (RLKs) which are known to drive pathways for biotrophic 

pathogen resistance. Snn1 recognizes SnTox1, leading to activation of programmed cell 

death, thus allowing the necrotroph to gain nutrients and sporulate (Shi et al., 2016).  

Further, we also identified peroxidase superfamily protein which is an important 

component of pathogen-associated molecular pattern-triggered immunity (PTI) and plays 

a significant role in the production of reactive oxygen species (ROS) in response to 

pathogen attack (Daudi et al., 2012; Mammarella et al., 2015). Several other genes 

identified in this study are known to be related to plant defense-related responses 

including plant chitinase proteins that take part in pathogenesis-related activities (Punja 

and Zhang, 1993), glutathione S-transferase T3 (Wisser et al., 2005), serine/threonine-

protein kinase (Zhou et al., 1995), ABC transporter (Krattinger et al., 2009), 
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pathogenesis-related protein 1(PR 1) (Develey-Rivière and Galiana, 2007), and disease 

resistance protein RPM1 (Tornero et al., 2002).  

 

3.5. Conclusions 

 

The mining of superior alleles is essential for continuous improvement in wheat 

germplasm. Recent diversity studies (Wingen et al., 2014; Winfield et al., 2018) have 

shown that global collections of landraces have excellent potential. Since Watkins LCs 

are hexaploid wheat, like modern varieties, molecular characterization and gene 

introgression of useful traits could be more effective due to less linkage drag as compared 

to introgressions from other wild relatives. In this study, after a thorough screening of the 

core set of LCs against tan spot (Ptr race1 and race 5), SNB, and FHB, many potential 

genetic resources (Table 3.1) for wheat improvement were identified. This study 

strengthens the fact that Watkins collection is a useful genetic resource, which may 

confer broad resistant gene sources against various diseases (DYCK and JEDEL, 1989; 

Hiebert et al., 2005; Bansal et al., 2011; Burt et al., 2014) and improving useful 

agronomic traits. As a recommendation, accession 1190662 (Romania) could be a 

valuable breeding resource because it confers resistance or moderate resistance to all the 

diseases evaluated (tan spot Ptr race1 and race 5, SNB, and FHB) in this study. Similarly, 

thirteen other LCs (acc.1190007, acc.1190042, acc.1190103, acc.1190126, acc.1190160, 

acc.1190273, acc.1190292, acc.1190397, acc.1190398, acc.1190662, acc.1190698, 

acc.1190740, and acc.1190912) showed resistance to tan spot (Ptr race1 and race 5) and 

SNB (Table 3.1). All these LCs could be excellent sources for current or future multi-
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disease resistant germplasm improvement programs. In addition, identified resistant 

landraces with the diverse country of origin could be a valuable source for improving the 

genetic diversity in wheat. Furthermore, new QTLs and tightly linked SNPs (Table 3.2) 

identified in this study may be used to develop Kompetitive allele-specific PCR (KASP) 

assays (Supplementary Table S5) for marker-assisted breeding for tan spot and SNB. 

 

3.6. Methods 

 

3.6.1. Plant and fungal material 

 

A core set of 121 Watkins land race (LC) cultivars were obtained from John Innes Centre 

(JIC), UK (Wingen et al., 2014). The LCs used in this study were collected from more 

than thirty different countries in Europe, Asia, Africa, Australia, and the USSR (Union of 

Soviet Socialist Republics). Most of the land races were found related to two broad 

geographical regions. Among which 45% of the landraces come from Asian countries 

and 37% from Europe (Supplementary Table S1). 

All 121 LCs were evaluated for response to tan spot caused by P. tritici-repentis (Ptr) 

race 1 (isolate Pti2) and race 5 (isolate DW7) and Stagonospora nodorum blotch (SNB) 

caused by Parastagonospora nodorum (isolate Sn2K) under greenhouse conditions at the 

seedling stage. A set of differential lines/cultivars Salamouni (resistant to tan spot Ptr 

race1, race 5, and SNB), Glenlea (susceptible to tan spot Ptr race 1 and SNB), and 6B662 

(susceptible to tan spot Ptr race 5) were included as checks for tan spot and Stagonospora 

nodorum blotch (SNB). An aggressive Fusarium graminarum strain (Fg1) was used to 

evaluate LCs for FHB in the mist-irrigated field nursery and selected moderately resistant 
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LCs were validated in the greenhouse. Moderately resistant cultivars Overland, Lyman, 

and Emerson and susceptible cultivars Flourish and Overley were used as checks for 

FHB.  

 

3.6.2. Evaluation of Watkin LCs for their reaction to tan spot using Ptr race 1 and race 5 

and Ptr ToxA and ToxB 

 

3.6.2.1. Reaction to Ptr race 1 and race 5 

 

The core set of 121 Watkin LCs was planted in a single root trainer container (Ray Leach 

“Cone-trainer”TM Single Cell System) filled with Sunshine R 360 potting soil (Sun Gro 

Horticulture, Agawam, MA, USA). The cones were arranged in trays (Stuewe & Sons, 

Tangent, OR, USA) following a randomized complete block design with three 

replications, and the entire experiment was repeated three times. The inoculum was 

prepared by plating dry plugs of the isolate stored at -20℃ in the center of petri plates 

containing V8PDA  media (150 mL of V8 juice, 10 g of Difco PDA, 10 g of Difco agar, 

3 g of calcium carbonate, and 850 mL of distilled water) (Lamari and Bernier, 1989). 

V8PDA plates were wrapped with aluminum foil paper and incubated for 5–6 days at 

room temperature. When the culture had grown about 3 cm from the center, mycelial 

growth was flattened with the help of a flamed sterile test tube bottom in the presence of 

distilled sterilized water. Excess water was removed and the plates were incubated under 

continuous light for 24 h at 21 °C followed by 24 h in the dark at 16 °C to induce 

conidiophores and conidia, respectively. Finally, 25 mL sterile distilled water was added 

to each plate and the conidia were dislodged with a sterile loop wired needle. Inoculum 
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concentration was adjusted to 3×103 conidia mL–1 using a hemacytometer. Two-week-old 

seedlings were spray inoculated with Ptr race 1 and 5 as described by Lamari and Bernier 

(1989). Following inoculation, seedlings were moved into a mist chamber to provide 

100% humidity for 24 h to initiate infection. After 24 h, seedlings were transferred to a 

greenhouse bench at South Dakota State University, Brookings, SD. Disease response 

was scored 7 days after inoculation using a 1 to 5 scale lesion rating system, where scores 

1–2 indicates resistant to moderately resistant, and 3–5 indicates moderately susceptible 

to susceptible (Lamari and Bernier, 1989).  

 

3.6.2.2. Reaction to toxin Ptr ToxA and ToxB 

 

Three fully expanded leaves of each accession were infiltrated with Ptr ToxA or Ptr ToxB 

culture filtrates using a needle-less syringe as described by Faris et al (Faris et al., 1996). 

Dr. Timothy Friesen, USDA-AS, Fargo, ND, kindly provided the culture filtrates. Leaves 

of differential genotypes such as Salamouni (insensitive to Ptr ToxA and Ptr ToxB), 

Glenlea (sensitive to Ptr ToxA), and 6B662 (sensitive to Ptr ToxB) were infiltrated with 

the equal volume (20-25 ul) of full-strength filtrate. All the infiltrated plants including 

differential genotypes were rated after 72 hours of toxin infiltration for necrosis (Ptr 

ToxA) or chlorosis (Ptr ToxB) symptoms and the leaves were rated as sensitive (+) or 

insensitive (–) reactions to each of the toxins (Ptr ToxA and Ptr ToxB).  
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3.6.3.  Evaluation of Watkin LCs for their reaction to SNB 

 

Seedlings were inoculated at the two-leaf stage in a greenhouse using the method 

described for tan spot. The experiment was conducted following a randomized complete 

block design with three replications and repeated thrice. A pure culture of Sn2k was 

revived on V8PDA medium by placing two dried mycelial plugs in the center of the 

plate. The plates were incubated at 21°C under light for 7d. The pycnidiospores were 

collected by adding 30 mL sterile distilled water into each plate and by scraping the plate 

surface using a sterile glass slide. Inoculum concentration was estimated with a 

hemacytometer and adjusted to 1×106 mL–1 before inoculation. After inoculation, 

seedlings were moved to a humidity chamber to provide 100% humidity for 24h and then 

moved back to the greenhouse bench. Disease reactions were scored 8d after inoculation 

using a numerical scale of 0 to 5 based on the lesion type as described in Liu et al (Liu et 

al., 2007), where scores 0-2 were considered resistant and score 3 and above were 

considered susceptible. 

 

3.6.4. Evaluation of Watkin LCs for their reaction to FHB in field and greenhouse 

 

3.6.4.1. Field Evaluation  

Watkins LCs along with checks were evaluated in mist-irrigated, inoculated FHB 

nurseries located in Brookings, SD. Each accession was planted in the field using a head-

row planter in a 3-feet long row maintaining about 40 plants per row. The experiment 

was conducted following a randomized complete block design with two replications. 

Fusarium-infected corn kernels (scabby corn inoculum) were spread in the field at three, 
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two, and one-week intervals prior to heading (beginning at boot stage). In addition, direct 

spray inoculation was conducted at 50% anthesis for each line using a conidial 

suspension containing 100,000 spores/ml and a misted irrigation was applied to maintain 

the humidity. Twenty-one days after inoculation, disease severity was scored for 20 

spikes per LC using a visual scale described by Stack and McMullen (Stack and 

Mcmullen, 2011). In this scale, the percentage of the infected spikelets on each of the 

sampled heads were visually estimated based on 10 categories of infection (0, 7%, 14%, 

21%, 33%, 50%, 66%, 79%, 90%, and 100%) and disease severity was calculated by 

averaging all 20 heads. Disease incidence was calculated based on the number of spikes 

per 20 heads showing any level of disease symptoms. Disease incidence was multiplied 

with disease severity to calculate the FHB disease index (DI).  

 

3.6.4.2. Greenhouse Evaluation 

The Watkins LCs demonstrating moderately resistant responses were further evaluated in 

the greenhouse for Type II resistance using the point inoculation method described by 

Stack et al (Stack et al., 2002). Spore suspension was prepared from Fusarium 

graminearum (isolate Fg1) grown in ½ PDA media. The central spikelets of at least 20 

spikes from each accession were inoculated at the flowering stage with l0µl of 50,000 

conidia/ml. Just after inoculation, heads were lightly misted and covered with Ziploc 

plastic bags to maintain the relative humidity above 90% and the greenhouse temperature 

was kept at 20 to 26 ºC. Three days after inoculation, Ziploc plastic bags were removed. 

Infected spikelets of each spike were counted after twenty-one days. The total number of 
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spikelets in each of the inoculated spikes were used to calculate the percent spikelet 

severity (PSS). 

 

3.6.5. Genotyping and SNP discovery 

 

The Watkins collection was recently genotyped with the Axiom® Wheat Genotyping 

Breeders’ Array platform (Winfield et al., 2018), which contains 35K SNPs (Allen et al., 

2017). The genotyping data of 118 LCs were obtained from the online database 

CerealsDB (http://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/indexNEW.php).  

The genotype data of 118 LCs was then filtered by removing SNPs with minor allele 

frequency (MAF) < 0.05 and a missing value of >10%. The genetic positions of selected 

SNPs were obtained from the wheat 35K SNP map (Allen et al., 2017). The SNP flanking 

sequences were mapped using BLASTN to wheat RefSeq v1.1 assembly to identify the 

physical locations of the genetically mapped SNPs. 

 

3.6.6. Statistical analyses  

 

Descriptive statistical parameters including mean, standard deviation, and coefficient of 

variation of disease scores (reactions) for tan spot, SNB, and FHB were calculated using 

R version 3.5.3 (R Core Team, 2014). The R program was also used to perform an 

analysis of variance (ANOVA) to test the significance of response among LCs to 

different diseases. We have performed Pearson’s chi-squared test to see if the toxin 

sensitivity/insensitivity and disease severity are correlated. 

 

http://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/indexNEW.php
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3.6.6.1. Structure analysis 

Population structure within the Watkins core set of LCs (n = 118) was determined by 

the Principal component analysis (PCA) and STRUCTURE analysis (Pritchard et al., 

2000b). Principal component analysis (PCA) among and between the LCs was performed 

using the R-package ‘prcomp’. Structure analysis was done using  STRUCTURE 

software version 2.3.4 (Pritchard et al., 2000b) with burn-in period and a number of 

Markov Chain Monte Carlo (MCMC) iterations set as 10000 and 20000, respectively. 

The best-fit number of clusters (DeltaK) was determined by STRUCTURE 

HARVESTER (Duncan et al., 2017) following Evanno et al (Evanno et al., 2005). 

 

3.6.6.2. Marker-trait associations (MTA) 

GWAS was performed to find marker-trait association using 8,807 SNP markers and the 

disease score data for tan spot (Ptr race 1 and race 5), and Stagonospora nodorum blotch 

(isolate Sn2K) with ‘GAPIT’ package (Tang et al., 2016) in the R program. Based on 

available genotypic information, a total of 118 LCs from the Watkins core set were used 

for GWAS analysis. Two linear models, the GLM (generalized linear model), which is 

based on the least square fixed effects and the MLM (mixed linear model), with both 

fixed and random effects, were evaluated. Marker effect and population structure (Q) 

were modeled as fixed effects, whereas the relatedness among the individuals (kinship) 

was modeled as random effect. A kinship matrix was calculated using GAPIT’s default 

VanRaden algorithm (VanRaden et al., 2011) and population structure (Q) was obtained 

using PCA (Zhao et al., 2007). The MLM method was selected for analysis because of its 

statistical power and ability to control type I error. Significant association of markers and 



87 
 

 

 

 

traits was determined by the p-value < 1.0 ×10-3 or -log10 (p-value) > 3. The MLM for 

GWAS can be mathematically represented as: 

y = Xβ + Zu + e 

Where, y represents the vector of the phenotypic values, β represents fixed effects due to 

the marker and population structure, u represents the vector of the random effects, e 

represents the vector of residuals, and X and Z are the incidence matrices for β and u 

respectively. 

 

3.6.6.3. Candidate gene annotation in QTL regions  

The physical positions of all significant SNPs on Chinese spring (CS) RefSeq v1.1 were 

obtained from IWGSC (Appels et al., 2018). To find candidate genes associated with 

resistance to tan spot and SNB, the candidate regions flanking the significant SNP marker 

were demarcated. A 5 megabase pair (Mb) region (2.5Mb up and downstream each) from 

the significant SNP was selected. The CS high confidence (HC) gene annotation version 

1.1 (Appels et al., 2018) was used to identify genes involved in plant defense 

mechanisms.  

 

3.7. References 

 

Abdullah, S., Sehgal, S. K., Jin, Y., Turnipseed, B., and Ali, S. (2017). Insights into tan 

spot and stem rust resistance and susceptibility by studying the pre-green revolution 

global collection of wheat. Plant Pathol. J. 33, 125–132. 

doi:10.5423/PPJ.OA.07.2016.0157. 

Abdullah S, S. S. and A. S. (2017). Race Diversity of Pyrenophora tritici-repentis in 

South Dakota and Response of Predominant Wheat Cultivars to Tan Spot. J. Plant 



88 
 

 

 

 

Pathol. Microbiol. 08. doi:10.4172/2157-7471.1000409. 

Aboukhaddour, R., Turkington, T. K., and Strelkov, S. E. (2013). Race structure of 

Pyrenophora triciti-repentis (tan spot of wheat) in Alberta, Canada. Can. J. Plant 

Pathol. 35, 256–268. doi:10.1080/07060661.2013.782470. 

Adhikari, T. B., Jackson, E. W., Gurung, S., Hansen, J. M., and Bonman, J. M. (2011).  

Association Mapping of Quantitative Resistance to Phaeosphaeria nodorum in 

Spring Wheat Landraces from the USDA National Small Grains Collection . 

Phytopathology 101, 1301–1310. doi:10.1094/phyto-03-11-0076. 

Ali, S., and Francl, L. J. (2003). Population Race Structure of Pyrenophora tritici-repentis 

Prevalent on Wheat and Noncereal Grasses in the Great Plains. Plant Dis. 87, 418–

422. doi:10.1094/pdis.2003.87.4.418. 

Ali, S., Gurung, S., and Adhikari, T. B. (2010).  Identification and Characterization of 

Novel Isolates of Pyrenophora tritici-repentis from Arkansas . Plant Dis. 94, 229–

235. doi:10.1094/pdis-94-2-0229. 

Ali, S., Singh, P. K., McMullen, M. P., Mergoum, M., and Adhikari, T. B. (2008). 

Resistance to multiple leaf spot diseases in wheat. Euphytica 159, 167–179. 

doi:10.1007/s10681-007-9469-4. 

Allen, A. M., Winfield, M. O., Burridge, A. J., Downie, R. C., Benbow, H. R., Barker, G. 

L. A., et al. (2017). Characterization of a Wheat Breeders’ Array suitable for high-

throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum 

aestivum). Plant Biotechnol. J. 15, 390–401. doi:10.1111/pbi.12635. 

Anderson, J. A., Effertz, R. J., Faris, J. D., Francl, L. J., Meinhardt, S. W., and Gill, B. S. 

(1999). Genetic Analysis of Sensitivity to a Pyrenophora tritici-repentis Necrosis-

Inducing Toxin in Durum and Common Wheat. Phytopathology 89, 293–297. 

doi:10.1094/phyto.1999.89.4.293. 

Appels, R., Eversole, K., Feuillet, C., Keller, B., Rogers, J., Stein, N., et al. (2018). 

Shifting the limits in wheat research and breeding using a fully annotated reference 

genome. Science (80-. ). 361, eaar7191. 

Arruda, M. P., Brown, P., Brown-Guedira, G., Krill, A. M., Thurber, C., Merrill, K. R., et 

al. (2016). Genome-Wide Association Mapping of Fusarium Head Blight Resistance 



89 
 

 

 

 

in Wheat using Genotyping-by-Sequencing. Plant Genome 9, 0. 

doi:10.3835/plantgenome2015.04.0028. 

Ayana, G. T., Ali, S., Sidhu, J. S., Gonzalez Hernandez, J. L., Turnipseed, B., and Sehgal, 

S. K. (2018). Genome-Wide Association Study for Spot Blotch Resistance in Hard 

Winter Wheat. Front. Plant Sci. 9, 1–15. doi:10.3389/fpls.2018.00926. 

Bai, G., and Shaner, G. (2004). Management and Resistance in Wheat and Barley To 

Fusarium Head Blight. Annu. Rev. Phytopathol. 42, 135–161. 

doi:10.1146/annurev.phyto.42.040803.140340. 

Bansal, U. K., Forrest, K. L., Hayden, M. J., Miah, H., Singh, D., and Bariana, H. S. 

(2011). Characterisation of a new stripe rust resistance gene Yr47 and its genetic 

association with the leaf rust resistance gene Lr52. Theor. Appl. Genet. 122, 1461–

1466. doi:10.1007/s00122-011-1545-4. 

Benslimane, H., Lamari, L., Benbelkacem, A., Sayoud, R., and Bouznad, Z. (2011). 

Distribution of races of Pyrenophora tritici-repentis in Algeria and identication of a 

new virulence type. Phytopathol. Mediterr. 50, 203–211. 

Burt, C., Griffe, L. L., Ridolfini, A. P., Orford, S., Griffiths, S., and Nicholson, P. (2014). 

Mining the watkins collection of wheat landraces for novel sources of eyespot 

resistance. Plant Pathol. 63, 1241–1250. doi:10.1111/ppa.12221. 

Cainong, J. C., Bockus, W. W., Feng, Y., Chen, P., Qi, L., Sehgal, S. K., et al. (2015). 

Chromosome engineering, mapping, and transferring of resistance to Fusarium head 

blight disease from Elymus tsukushiensis into wheat. Theor. Appl. Genet. 128, 

1019–1027. doi:10.1007/s00122-015-2485-1. 

Chen, J., Zhang, F., Zhao, C., Lv, G., Sun, C., Pan, Y., et al. (2019).  Genome‐wide 

association study of six quality traits reveals the association of the TaRPP13L1 gene 

with flour colour in Chinese bread wheat . Plant Biotechnol. J., 1–17. 

doi:10.1111/pbi.13126. 

Chu, C.-G., Xu, S. S., Faris, J. D., Nevo, E., and Friesen, T. L. (2008a).  Seedling 

Resistance to Tan Spot and Stagonospora nodorum Leaf Blotch in Wild Emmer 

Wheat ( Triticum dicoccoides ) . Plant Dis. 92, 1229–1236. doi:10.1094/pdis-92-8-

1229. 



90 
 

 

 

 

Chu, C. G., Friesen, T. L., Faris, T. D., and Xu, S. S. (2008b). Evaluation of seedling 

resistance to tan spot and Stagonospora nodorum blotch in tetraploid wheat. Crop 

Sci. 48, 1107–1116. doi:10.2135/cropsci2007.09.0516. 

Chu, C. G., Friesen, T. L., Xu, S. S., and Faris, J. D. (2008c). Identification of novel tan 

spot resistance loci beyond the known host-selective toxin insensitivity genes in 

wheat. Theor. Appl. Genet. 117, 873–881. doi:10.1007/s00122-008-0826-z. 

Cui, Z., Luo, J., Qi, C., Ruan, Y., Li, J., Zhang, A., et al. (2016). Genome-wide 

association study (GWAS) reveals the genetic architecture of four husk traits in 

maize. BMC Genomics 17. doi:10.1186/s12864-016-3229-6. 

Czembor, P. C., Arseniuk, E., Czaplicki, A., Song, Q., Cregan, P. B., and Ueng, P. P. 

(2003).  QTL mapping of partial resistance in winter wheat to Stagonospora 

nodorum blotch . Genome 46, 546–554. doi:10.1139/g03-036. 

Daudi, A., Cheng, Z., O’Brien, J. A., Mammarella, N., Khan, S., Ausubel, F. M., et al. 

(2012). The Apoplastic Oxidative Burst Peroxidase in Arabidopsis Is a Major 

Component of Pattern-Triggered Immunity. Plant Cell 24, 275–287. 

doi:10.1105/tpc.111.093039. 

Develey-Rivière, M. P., and Galiana, E. (2007). Resistance to pathogens and host 

developmental stage: A multifaceted relationship within the plant kingdom. New 

Phytol. 175, 405–416. doi:10.1111/j.1469-8137.2007.02130.x. 

DeYoung, B. J., and Innes, R. W. (2006). Plant NBS-LRR proteins in pathogen sensing 

and host defense. Nat. Immunol. 7, 1243–1249. doi:10.1038/ni1410. 

Duncan, O., Trösch, J., Fenske, R., Taylor, N. L., and Millar, A. H. (2017). Resource: 

Mapping the Triticum aestivum proteome. Plant J. 89, 601–616. 

doi:10.1111/tpj.13402. 

Dyck, P. L. (1994). Genetics of leaf rust resistance in 13 accessions of the Watkins wheat 

collection. Euphytica 80, 151–155. doi:10.1007/BF00039311. 

DYCK, P. L., and JEDEL, P. E. (1989). GENETICS OF RESISTANCE TO LEAF 

RUST IN TWO ACCESSIONS OF COMMON WHEAT. Can. J. Plant Sci. 69, 

531–534. doi:10.4141/cjps89-064. 

Edae, E. A., Pumphrey, M. O., and Rouse, M. N. (2018). A Genome-Wide Association 



91 
 

 

 

 

Study of Field and Seedling Response to Individual Stem Rust Pathogen Races 

Reveals Combinations of Race-Specific Genes in North American Spring Wheat. 

Front. Plant Sci. 9, 1–18. doi:10.3389/fpls.2018.00052. 

Evanno, G., Regnaut, S., and Goudet, J. (2005). Detecting the number of clusters of 

individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 

2611–20. doi:10.1111/j.1365-294X.2005.02553.x. 

Faris, J. D., Anderson, J. A., Francl, L. J., and Jordahl, J. G. (1996). Chromosomal 

location of a gene conditioning insensitivity in wheat to a necrosis-inducing culture 

filtrate from Pyrenophora tritici-repentis. Phytopathology 86, 459–463. 

doi:10.1094/Phyto-86-459. 

Faris, J. D., and Friesen, T. L. (2005). Identification of quantitative trait loci for race-

nonspecific resistance to tan spot in wheat. Theor. Appl. Genet. 111, 386–392. 

doi:10.1007/s00122-005-2033-5. 

Feng, Y., Lu, Q., Zhai, R., Zhang, M., Xu, Q., Yang, Y., et al. (2016). Genome wide 

association mapping for grain shape traits in indica rice. Planta 244, 819–830. 

doi:10.1007/s00425-016-2548-9. 

Francki, M. G. (2013). Improving Stagonospora nodorum resistance in wheat: A review. 

Crop Sci. 53, 355–365. doi:10.2135/cropsci2012.06.0347. 

Friesen, T. L., Ali, S., Kianian, S., Francl, L. J., and Rasmussen, J. B. (2003). Role of 

Host Sensitivity to Ptr ToxA in Development of Tan Spot of Wheat. Phytopathology 

93, 397–401. doi:10.1094/phyto.2003.93.4.397. 

Friesen, T. L., and Faris, J. D. (2004). Molecular mapping of resistance to Pyrenophora 

tritici-repentis race 5 and sensitivity to Ptr ToxB in wheat. Theor. Appl. Genet. 109, 

464–471. doi:10.1007/s00122-004-1678-9. 

Friesen, T. L., Zhang, Z., Solomon, P. S., Oliver, R. P., and Faris, J. D. (2008). 

Characterization of the Interaction of a Novel Stagonospora nodorum Host-Selective 

Toxin with a Wheat Susceptibility Gene. Plant Physiol. 146, 682–693. 

doi:10.1104/pp.107.108761. 

Fu, R. (2015). Global warming-accelerated drying in the tropics. Proc. Natl. Acad. Sci. 

112, 201503231. doi:10.1073/pnas.1503231112. 



92 
 

 

 

 

Gouveia, B. C., Calil, I. P., Machado, J. P. B., Santos, A. A., and Fontes, E. P. B. (2017). 

Immune receptors and co-receptors in antiviral innate immunity in plants. Front. 

Microbiol. 7, 1–14. doi:10.3389/fmicb.2016.02139. 

Guo, J., Zhang, X., Hou, Y., Cai, J., Shen, X., Zhou, T., et al. (2015). High-density 

mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum 

ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theor. Appl. 

Genet. 128, 2301–2316. doi:10.1007/s00122-015-2586-x. 

Gurung, S., Bonman, J. M., Ali, S., Patel, J., Myrfield, M., Mergoum, M., et al. (2009). 

New and diverse sources of multiple disease resistance in wheat. Crop Sci. 49, 

1655–1666. doi:10.2135/cropsci2008.10.0633. 

Gurung, S., Mamidi, S., Bonman, J. M., Jackson, E. W., del Río, L. E., Acevedo, M., et 

al. (2011). Identification of novel genomic regions associated with resistance to 

Pyrenophora tritici-repentis races 1 and 5 in spring wheat landraces using 

association analysis. Theor. Appl. Genet. 123, 1029–1041. doi:10.1007/s00122-011-

1645-1. 

Gurung, S., Mamidi, S., Bonman, J. M., Xiong, M., Brown-Guedira, G., and Adhikari, T. 

B. (2014). Genome-wide association study reveals novel quantitative trait loci 

associated with resistance to multiple leaf spot diseases of spring wheat. PLoS One 

9. doi:10.1371/journal.pone.0108179. 

Hiebert, C., Thomas, J., and McCallum, B. (2005). Locating the broad-spectrum wheat 

leaf rust resistance gene Lr52 (LrW) to chromosome 5B by a new cytogenetic 

method. Theor. Appl. Genet. 110, 1453–1457. doi:10.1007/s00122-005-1978-8. 

Howe, G. A., and Jander, G. (2008). Plant Immunity to Insect Herbivores. Annu. Rev. 

Plant Biol. 59, 41–66. doi:10.1146/annurev.arplant.59.032607.092825. 

Huang, X., and Han, B. (2014). Natural Variations and Genome-Wide Association 

Studies in Crop Plants. Annu. Rev. Plant Biol. 65, 531–551. doi:10.1146/annurev-

arplant-050213-035715. 

Juliana, P., Singh, R. P., Singh, P. K., Poland, J. A., Bergstrom, G. C., Huerta-Espino, J., 

et al. (2018). Genome-wide association mapping for resistance to leaf rust, stripe 

rust and tan spot in wheat reveals potential candidate genes. Theor. Appl. Genet. 



93 
 

 

 

 

131, 1405–1422. doi:10.1007/s00122-018-3086-6. 

Keller, B., Wicker, T., and Krattinger, S. G. (2018). Advances in Wheat and Pathogen 

Genomics: Implications for Disease Control. Annu. Rev. Phytopathol. 56, 67–87. 

doi:10.1146/annurev-phyto-080516-035419. 

Keneni, G., Bekele, E., Imtiaz, M., and Dagne, K. (2012). Genetic Vulnerability of 

Modern Crop Cultivars: Causes, Mechanism and Remedies. Int. J. Plant Res. 2, 69–

79. doi:10.5923/j.plant.20120203.05. 

Kollers, S., Rodemann, B., Ling, J., Korzun, V., Ebmeyer, E., Argillier, O., et al. (2014). 

Genome-wide association mapping of tan spot resistance (Pyrenophora tritici-

repentis) in European winter wheat. Mol. Breed. 34, 363–371. doi:10.1007/s11032-

014-0039-x. 

Korte, A., and Ashley, F. (2013). The advantages and limitations of trait analysis with 

GWAS : a review Self-fertilisation makes Arabidopsis particularly well suited to 

GWAS. Plant Methods 9, 29. 

Krattinger, S., Wicker, T., and Keller, B. (2009). “Map-Based Cloning of Genes in 

Triticeae (Wheat and Barley),” in Genetics and Genomics of the Triticeae, eds. G. J. 

Muehlbauer and C. Feuillet (New York, NY: Springer US), 337–357. 

doi:10.1007/978-0-387-77489-3_12. 

Lamari, L., and Bernier, C. C. (1989). Toxin of Pyrenophora tritici-repentis: Host-

specificity, significance in disease, and inheritance of host reaction. Phytopathology 

79, 740–744. 

Lamari, L., Strelkov, S. E., Yahyaoui, A., Orabi, J., and Smith, R. B. (2003). The 

Identification of Two New Races of Pyrenophora tritici-repentis from the Host 

Center of Diversity Confirms a One-to-One Relationship in Tan Spot of Wheat. 

Phytopathology 93, 391–396. doi:10.1094/phyto.2003.93.4.391. 

Li, A. L., Geng, S. F., Zhang, L. Q., Liu, D. C., and Mao, L. (2015). Making the bread: 

Insights from newly synthesized allohexaploid wheat. Mol. Plant 8, 847–859. 

doi:10.1016/j.molp.2015.02.016. 

Limbalkar, O. M., K. Meena, V., Singh, M., and Sunilkumar, V. P. (2018). Genetic 

Improvement of Wheat for Biotic and Abiotic Stress Tolerance. Int. J. Curr. 



94 
 

 

 

 

Microbiol. Appl. Sci. 7, 1962–1971. doi:10.20546/ijcmas.2018.712.226. 

Liu, Z., El-Basyoni, I., Kariyawasam, G., Zhang, G., Fritz, A., Hansen, J., et al. (2015). 

Evaluation and Association Mapping of Resistance to Tan Spot and Stagonospora 

Nodorum Blotch in Adapted Winter Wheat Germplasm. Plant Dis. 99, 1333–1341. 

doi:10.1094/PDIS-11-14-1131-RE. 

Liu, Z., Friesen, T. L., Ling, H., Meinhardt, S. W., Oliver, R. P., Rasmussen, J. B., et al. 

(2006). The Tsn1 –ToxA interaction in the wheat–Stagonospora nodorum 

pathosystem parallels that of the wheat–tan spot system. Genome 49, 1265–1273. 

doi:10.1139/g06-088. 

Liu, Z. H., Faris, J. D., Meinhardt, S. W., Ali, S., Rasmussen, J. B., and Friesen, T. L. 

(2004a). Genetic and Physical Mapping of a Gene Conditioning Sensitivity in Wheat 

to a Partially Purified Host-Selective Toxin Produced by Stagonospora nodorum. 

Phytopathology 94, 1056–1060. doi:10.1094/phyto.2004.94.10.1056. 

Liu, Z. H., Faris, J. D., Meinhardt, S. W., Ali, S., Rasmussen, J. B., and Friesen, T. L. 

(2007).  Genetic and Physical Mapping of a Gene Conditioning Sensitivity in Wheat 

to a Partially Purified Host-Selective Toxin Produced by Stagonospora nodorum . 

Phytopathology 94, 1056–1060. doi:10.1094/phyto.2004.94.10.1056. 

Liu, Z. H., Friesen, T. L., Rasmussen, J. B., Ali, S., Meinhardt, S. W., and Faris, J. D. 

(2004b). Quantitative Trait Loci Analysis and Mapping of Seedling Resistance to 

Stagonospora nodorum Leaf Blotch in Wheat. Phytopathology 94, 1061–1067. 

doi:10.1094/phyto.2004.94.10.1061. 

Mammarella, N. D., Cheng, Z., Fu, Z. Q., Daudi, A., Bolwell, G. P., Dong, X., et al. 

(2015). Apoplastic peroxidases are required for salicylic acid-mediated defense 

against  Pseudomonas syringae. Phytochemistry 112, 110–121. 

doi:10.1016/j.phytochem.2014.07.010. 

McMULLEN, M., Paul, S., Hershman, M. N. D., and Bergstrom, G. (2012). A Unified 

Effort to Fight an Enemy of Wheat and Barley: Fusarium Head Blight. Plant Dis. 

96, 171–1728. doi:10.1094/PDIS-03-12-0291-FE ©. 

Mergoum, M., Singh, P. K., Ali, S., Elias, E. M., Anderson, J. A., Glover, K. D., et al. 

(2007). Reaction of Elite Wheat Genotypes from the Northern Great Plains of North 



95 
 

 

 

 

America to Septoria Diseases. Plant Dis. 91, 1310–1315. doi:10.1094/pdis-91-10-

1310. 

Noriel, A. J., Sun, X., Bockus, W., and Bai, G. (2011). Resistance to tan spot and 

insensitivity to Ptr ToxA in wheat. Crop Sci. 51, 1059–1067. 

doi:10.2135/cropsci2010.08.0464. 

Oliver, R. E., Cai, X., Wang, R.-C., Xu, S. S., and Friesen, T. L. (2008). Resistance to 

Tan Spot and Stagonospora nodorum Blotch in Wheat-Alien Species Derivatives. 

Plant Dis. 92, 150–157. doi:10.1094/pdis-92-1-0150. 

Orolaza, N. P. (1995).  Evidence of a Host-Specific Chlorosis Toxin from Pyrenophora 

tritici-repentis, the Causal Agent of Tan Spot of Wheat . Phytopathology 85, 1282. 

doi:10.1094/phyto-85-1282. 

Patel, J. S., Mamidi, S., Michael Bonman, J., and Adhikari, T. B. (2013). Identification of 

QTL in spring wheat associated with resistance to a novel isolate of Pyrenophora 

tritici-repentis. Crop Sci. 53, 842–852. doi:10.2135/cropsci2012.01.0036. 

Pestka, J. (2010). Toxicological mechanisms and potential health effects of 

deoxynivalenol and nivalenol. World Mycotoxin J. 3, 323–347. 

doi:10.3920/WMJ2010.1247. 

Pham, A. T., Maurer, A., Pillen, K., Brien, C., Dowling, K., Berger, B., et al. (2019). 

Genome-wide association of barley plant growth under drought stress using a nested 

association mapping population. BMC Plant Biol. 19, 1–16. doi:10.1186/s12870-

019-1723-0. 

Polák, J., and Bartoš, P. (2002). Natural Sources of Plant Disease Resistance and their 

Importance in the Breeding. Czech J. Genet. Plant Breed. 38, 146–149. 

doi:10.17221/6255-cjgpb. 

Poland, J. A., Brown, P. J., Sorrells, M. E., and Jannink, J. L. (2012). Development of 

high-density genetic maps for barley and wheat using a novel two-enzyme 

genotyping-by-sequencing approach. PLoS One 7. 

doi:10.1371/journal.pone.0032253. 

Postnikova, E. N., and Khasanov  Glavpochtamt, (Uzbekistan)), B. A. (Institute of G. 

(1998). Tan spot in Central Asia. 



96 
 

 

 

 

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of Population Structure 

Using Multilocus Genotype Data. Genetics 155, 945–959. Available at: 

https://www.genetics.org/content/155/2/945. 

Punja, Z. K., and Zhang, Y.-Y. (1993). Plant Chitinases and Their Roles in Resistance to 

Fungal Diseases 1. J. Nematol. 25, 526–540. 

Qi, L. L., Pumphrey, M. O., Friebe, B., Chen, P. D., and Gill, B. S. (2008). Molecular 

cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to 

Fusarium head blight disease of wheat. Theor. Appl. Genet. 117, 1155–1166. 

doi:10.1007/s00122-008-0853-9. 

R Core Team (2014). R: A Language and environment for statistical Computing. 

Ramonell, K. M., and Goff, K. E. (2007). The Role and Regulation of Receptor-Like 

Kinases in Plant Defense. Gene Regul. Syst. Bio. 1, 167–175. 

Reif, J. C., Zhang, P., Dreisigacker, S., Warburton, M. L., Van Ginkel, M., Hoisington, 

D., et al. (2005). Wheat genetic diversity trends during domestication and breeding. 

Theor. Appl. Genet. 110, 859–864. doi:10.1007/s00122-004-1881-8. 

Shi, G., Zhang, Z., Friesen, T. L., Raats, D., Fahima, T., Brueggeman, R. S., et al. (2016). 

The hijacking of a receptor kinase–driven pathway by a wheat fungal pathogen leads 

to disease. Sci. Adv. 2, e1600822. doi:10.1126/sciadv.1600822. 

Sidhu, J. S., Ramakrishnan, S. M., Ali, S., Bernardo, A., Bai, G., Abdullah, S., et al. 

(2019). Assessing the genetic diversity and characterizing genomic regions 

conferring Tan Spot resistance in cultivated rye. PLoS One 14, 1–22. 

doi:10.1371/journal.pone.0214519. 

Singh, P. K., Mergoum, M., Ali, S., Adhikari, T. B., Elias, E. M., Anderson, J. A., et al. 

(2006). Evaluation of Elite Wheat Germplasm for Resistance to Tan Spot. Plant Dis. 

90, 1320–1325. doi:10.1094/pd-90-1320. 

Singh, P. K., Mergoum, M., Gonzalez-Hernandez, J. L., Ali, S., Adhikari, T. B., Kianian, 

S. F., et al. (2008). Genetics and molecular mapping of resistance to necrosis 

inducing race 5 of Pyrenophora tritici-repentis in tetraploid wheat. Mol. Breed. 21, 

293–304. doi:10.1007/s11032-007-9129-3. 

Smale, M., Reynolds, M. P., Warburton, M., Skovmand, B., Trethowan, R., Singh, R. P., 



97 
 

 

 

 

et al. (2002). Dimensions of diversity in modern spring bread wheat in developing 

countries from 1965. Crop Sci. 42, 1766–1779. 

Stack, R. W., Elias, E. M., Fetch, J. M., Miller, J. D., and Joppa, L. R. (2002). Fusarium 

Head Blight Reaction of Langdon Durum-Triticum. Crop Sci. 42, 637–642. 

Stack, R. W., and Mcmullen, M. P. (2011). Stack, Mcmullen - 2011 - A Visual Scale to 

Estimate Severity of Fusarium Head Blight in Wheat(2). 

Strelkov, S. E., and Lamari, L. (2003). Host–parasite interactions in tan spot 

[Pyrenophora tritici-repentis] of wheat. Can. J. Plant Pathol. 25, 339–349. 

doi:10.1080/07060660309507089. 

Sukumaran, S., Dreisigacker, S., Lopes, M., Chavez, P., and Reynolds, M. P. (2015). 

Genome-wide association study for grain yield and related traits in an elite spring 

wheat population grown in temperate irrigated environments. Theor. Appl. Genet. 

128, 353–363. doi:10.1007/s00122-014-2435-3. 

Sun, C., Zhang, F., Yan, X., Zhang, X., Dong, Z., Cui, D., et al. (2017). Genome-wide 

association study for 13 agronomic traits reveals distribution of superior alleles in 

bread wheat from the Yellow and Huai Valley of China. Plant Biotechnol. J. 15, 

953–969. doi:10.1111/pbi.12690. 

Tadesse, W., Hsam, S. L. K., Wenzel, G., and Zeller, F. J. (2006a). Identification and 

monosomic analysis of tan spot resistance genes in synthetic wheat lines (Triticum 

turgidum L. × Aegilops tauschii Coss.). Crop Sci. 46, 1212–1217. 

doi:10.2135/cropsci2005.10-0396. 

Tadesse, W., Hsam, S. L. K., and Zeller, F. J. (2006b). Evaluation of common wheat 

cultivars for tan spot resistance and chromosomal location of a resistance gene in the 

cultivar “Salamouni.” Plant Breed. 125, 318–322. doi:10.1111/j.1439-

0523.2006.01243.x. 

Tang, Y., Liu, X., Wang, J., Li, M., Wang, Q., Tian, F., et al. (2016). GAPIT Version 2: 

An Enhanced Integrated Tool for Genomic Association and Prediction. Plant 

Genome 9, 0. doi:10.3835/plantgenome2015.11.0120. 

Thompson, J. P., and Seymour, N. P. (2011). Inheritance of resistance to root-lesion 

nematode (Pratylenchus thornei) in wheat landraces and cultivars from the West 



98 
 

 

 

 

Asia and North Africa (WANA) region. Crop Pasture Sci. 62, 82. 

doi:10.1071/cp10309. 

Tolmay, V. L. (2004). Resistance to Biotic and Abiotic Stress in the Triticeae. Hereditas 

135, 239–242. doi:10.1111/j.1601-5223.2001.00239.x. 

Tornero, P., Chao, R. A., Luthin, W. N., Goff, S. A., and Dangl, J. L. (2002). Large-scale 

structure-function analysis of the Arabidopsis RPM1 disease resistance protein. 

Plant Cell 14, 435–50. doi:10.1105/tpc.010393.436. 

Van Ooijen, G., Mayr, G., Kasiem, M. M. A., Albrecht, M., Cornelissen, B. J. C., and 

Takken, F. L. W. (2008). Structure-function analysis of the NB-ARC domain of 

plant disease resistance proteins. J. Exp. Bot. 59, 1383–1397. 

doi:10.1093/jxb/ern045. 

VanRaden, P. M., O’Connell, J. R., Wiggans, G. R., and Weigel, K. A. (2011). Genomic 

evaluations with many more genotypes. Genet. Sel. Evol. 43, 10. doi:10.1186/1297-

9686-43-10. 

Wang, S., Wong, D., Forrest, K., Allen, A., Chao, S., Huang, B. E., et al. (2014). 

Characterization of polyploid wheat genomic diversity using a high-density 90 000 

single nucleotide polymorphism array. Plant Biotechnol. J. 12, 787–796. 

doi:10.1111/pbi.12183. 

Winfield, M. O., Allen, A. M., Wilkinson, P. A., Burridge, A. J., Barker, G. L. A., 

Coghill, J., et al. (2018). High-density genotyping of the A.E. Watkins Collection of 

hexaploid landraces identifies a large molecular diversity compared to elite bread 

wheat. Plant Biotechnol. J. 16, 165–175. doi:10.1111/pbi.12757. 

Wingen, L. U., Orford, S., Goram, R., Leverington‑Waite, M., Bilham, L., Patsiou, T. S., 

et al. (2014). Establishing the A. E. Watkins landrace cultivar collection as a 

resource for systematic gene discovery in bread wheat. Theor. Appl. Genet. 127, 

1831–1842. doi:10.1007/s00122-014-2344-5. 

Wingen, L. U., West, C., Waite, M. L., Collier, S., Orford, S., Goram, R., et al. (2017). 

Wheat landrace genome diversity. Genetics 205, 1657–1676. 

doi:10.1534/genetics.116.194688. 

Wisser, R. J., Sun, Q., Hulbert, S. H., Kresovich, S., and Nelson, R. J. (2005). 



99 
 

 

 

 

Identification and characterization of regions of the rice genome associated with 

broad-spectrum, quantitative disease resistance. Genetics 169, 2277–2293. 

doi:10.1534/genetics.104.036327. 

Wolf, E. D. De, Effertz, R. J., Ali, S., and Francl, L. J. (1998). Vistas of tan spot research. 

Can. J. Plant Pathol. 20, 349–370. doi:10.1080/07060669809500404. 

Xu, S. S., Friesen, T. L., and Mujeeb-Kazi, A. (2004). Seedling resistance to tan spot and 

Stagonospora nodorum blotch in synthetic hexaploid wheats. Crop Sci. 44, 2238–

2245. 

Yu, J. Bin, Bai, G. H., Cai, S. Bin, Dong, Y. H., and Ban, T. (2008). New fusarium head 

blight-resistant sources from Asian wheat germplasm. Crop Sci. 48, 1090–1097. 

doi:10.2135/cropsci2007.10.0554. 

Zhang, Y., Liu, P., Zhang, X., Zheng, Q., Chen, M., Ge, F., et al. (2018). Multi-Locus 

Genome-Wide Association Study Reveals the Genetic Architecture of Stalk Lodging 

Resistance-Related Traits in Maize. Front. Plant Sci. 9, 1–12. 

doi:10.3389/fpls.2018.00611. 

Zhao, K., Aranzana, M. J., Kim, S., Lister, C., Shindo, C., Tang, C., et al. (2007). An 

Arabidopsis example of association mapping in structured samples. PLoS Genet. 3, 

0071–0082. doi:10.1371/journal.pgen.0030004. 

Zhao, K., Tung, C. W., Eizenga, G. C., Wright, M. H., Ali, M. L., Price, A. H., et al. 

(2011). Genome-wide association mapping reveals a rich genetic architecture of 

complex traits in Oryza sativa. Nat. Commun. 2, 1–10. doi:10.1038/ncomms1467. 

Zhou, J., Loh, Y. T., Bressan, R. A., and Martin, G. B. (1995). The tomato gene Pti1 

encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in 

the hypersensitive response. Cell 83, 925–935. doi:10.1016/0092-8674(95)90208-2. 



100 
 

 

 

 

3.8. Appendix 

 

List of Supplementary Tables: 

 

Supplementary Table S1. Watkins core set of wheat landrace cultivars, their country of 

origin and mean disease score with standard error for tan spot, SNB and FHB. 

Entry 

number  

Accession 

number 

Country of 

origin 

Mean Disease Score 

Tan spot 

Ptr race 1 

Tan spot 

Ptr race 5 
SNB 

FHB 

Disease 

Index  

1 1190004 Iraq 3.7±0.31 1.1±0.11 1.5±0.29 34±1.3 

2 1190007 Australia 2.3±0.15 1.6±0.22 1.5±0.29 34±6.5 

3 1190023 Australia 3.8±0.22 1.8±0.29 3±0 31±5.3 

4 1190032 India 3.7±0.33 1.3±0.19 3.4±0.06 23±0 

5 1190034 India 3.3±0.33 2.3±0.19 2.7±0.19 35±2.8 

6 1190040 France 3.7±0.33 1.9±0.11 1.3±0.33 39±8.8 

7 1190042 France 1.6±0.29 1.2±0.22 1.7±0.33 38±3.6 

8 1190044 Morocco 4.3±0.33 2.8±0.11 3±0 31±0.6 

9 1190045 Syria 4.3±0.33 2.7±0 3.2±0.22 33±1.3 

10 1190079 India 3.3±0.33 1.2±0.11 2.6±0.22 41±4.5 

11 1190081 India 4.2±0.4 2.4±0.22 3.2±0.22 32±0 

12 1190092 India 4±0 1±0 3.9±0.24 34±0.9 

13 1190103 Italy 1.4±0.29 1±0 2.6±0.06 54±0 

14 1190110 France 4.7±0.15 1.8±0.22 2.8±0.11 29±3.5 

15 1190126 India 2.3±0.15 1±0 2.5±0 30±10.3 

16 1190127 India 3.9±0.11 1±0 2.2±0.22 35±1.8 

17 1190139 France 3.9±0.48 1.7±0.33 3.4±0.29 34±3.8 

18 1190141 China 4.1±0.29 1.7±0.33 2.6±0.2 30±0 

19 1190145 Spain 4±0 2.4±0.29 2.9±0.29 30±6.8 

20 1190149 

United 

Kingdom 4±0 1.6±0.4 3.3±0.15 32±0 

21 1190160 Spain 1.8±0.62 1.4±0.11 1.6±0.4 36±4.5 

22 1190166 India 3.8±0.17 2.7±0 3.2±0.22 36±0.5 

23 1190181 Poland 3.3±0.33 2.3±0.33 3±0 41±0.8 

24 1190199 India 3.9±0.11 2±0 3.7±0.19 43±0 

25 1190209 Egypt 3.6±0.29 1.8±0.25 3.7±0.15 38±0 

26 1190216 Morocco 2.1±0.36 1.4±0.22 3.2±0.17 43±9.3 

27 1190218 Tunisia 3.6±0.22 2±0 2.8±0.11 NA 
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28 1190219 Spain 4±0.19 2.8±0.17 3.2±0.17 39±2.3 

29 1190223 Burma 4±0.19 1.7±0.33 2.9±0.11 29±1.2 

30 1190224 China 2.1±0.59 1.4±0.29 3.8±0.29 31±4.3 

31 1190231 Hungary 4.2±0.4 1.2±0.22 3±0 40±0.3 

32 1190238 Iran 3.8±0.17 2±0 3.3±0.19 54±2.3 

33 1190239 Spain 4.5±0.29 1.7±0.33 2.2±0.17 53±0 

34 1190246 India 4.3±0.38 1.4±0.11 1.3±0.33 37±8 

35 1190254 Morocco 4±0.38 2.7±0.33 3.3±0.17 38±0 

36 1190264 

Canary 

Islands 4.2±0.4 1.5±0.29 3.9±0.11 48±12.3 

37 1190273 Spain 2±0 1±0 2.4±0.29 33±1.6 

38 1190281 Greece 3.8±0.17 1.4±0.29 2.6±0.22 34±0 

39 1190291 Cyprus 4.3±0.17 2.4±0.22 2.1±0.11 33±6.5 

40 1190292 Cyprus 1.9±0.22 1.1±0.11 1.7±0.15 34±0 

41 1190299 Turkey 3.9±0.36 2.4±0.29 3.3±0.19 33±1.5 

42 1190300 Turkey 4.3±0.19 2.1±0.34 3.4±0.06 32±0.3 

43 1190305 Egypt 4±0.19 3.8±0.11 2.8±0.36 24±0 

44 1190308 Iran 3.9±0.11 1.1±0.11 2.9±0.11 23±0 

45 1190313 Burma 3.9±0.11 2.2±0.11 2.8±0.35 30±1.5 

46 1190324 China 3.4±0.4 1±0 1.3±0.33 29±3.9 

47 1190325 

United 

Kingdom 3.6±0.29 1.9±0.4 2±0 29±2.7 

48 1190349 Bulgaria 4.1±0.11 2.2±0.17 4±0 30±2.8 

49 1190352 Yugoslavia 4.2±0.22 2.2±0.11 3.9±0.24 33±0.3 

50 1190355 Yugoslavia 4.3±0.19 1.3±0.19 3.7±0.15 31±0.3 

51 1190360 Yugoslavia 3.4±0.11 2.7±0.33 2.8±0.17 32±3.5 

52 1190387 Spain 4.2±0.11 2±0.19 3.4±0.2 36±2.3 

53 1190396 Portugal 3.9±0.11 2±0 3.3±0.15 32±0.3 

54 1190397 Portugal 1.6±0.11 1.2±0.17 2.6±0.29 31±0.5 

55 1190398 Palestine 1.7±0.15 1.2±0.22 2.9±0.24 34±1.3 

56 1190406 India 3.9±0.29 1.7±0.19 3.1±0.11 34±11.5 

57 1190420 India 3.5±0.29 2.1±0.11 2.8±0.35 40±0 

58 1190433 India 4.1±0.11 2.2±0.22 3.6±0.2 29±4.4 

59 1190440 China 4.1±0.22 2.3±0.19 3.9±0.11 31±2.8 

60 1190444 China 3.8±0.17 4±0.19 2.8±0.35 37±10.9 

61 1190451 Romania 3.2±0.48 2.1±0.11 1.6±0.45 30±10.5 

62 1190460 Afghanistan 3.9±0.11 2.3±0.33 4±0 35±4.5 

63 1190468 Afghanistan 4.1±0.44 3±0 3.7±0.33 27±1.9 

64 1190471 Afghanistan 4.1±0.11 2.9±0.24 3.3±0.15 30±2.5 

65 1190474 Afghanistan 4.3±0.15 2.3±0.33 2.9±0.24 35±0.1 
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66 1190475 Afghanistan 3.8±0.44 2.2±0.17 3.4±0.2 34±2.8 

67 1190481 Poland 3.9±0.34 1.8±0.17 2.9±0.34 28±3.5 

68 1190483 Poland 3.9±0.34 3±0.19 2.5±0 41±5.6 

69 1190496 Morocco 4.1±0.11 2.3±0 3.4±0.22 27±0 

70 1190507 Australia 3±0.51 1.6±0.29 3.2±0.22 44±6.8 

71 1190546 Spain 2.7±0.19 2.2±0.11 3.6±0.22 37±13.3 

72 1190551 Spain 4.4±0.2 2.1±0.11 2.4±0.22 24±0 

73 1190560 Greece 3.8±0.17 1.4±0.11 3.7±0.33 57±0 

74 1190562 Greece 4±0 1.7±0.19 3.2±0.29 34±7.7 

75 1190566 Greece 4.2±0.17 2.1±0.11 4.2±0.29 32±9.8 

76 1190568 China 4.3±0.15 2.6±0.22 3.3±0.15 38±4 

77 1190579 Iran 3.9±0.11 1.7±0.15 2.4±0.29 32±0 

78 1190580 Iran 2.3±0 3.4±0.22 2.6±0.22 38±0 

79 1190591 Portugal 3.8±0.11 1±0 2.6±0.2 36±2 

80 1190605 Greece 4±0 1.9±0.22 1.9±0.34 32±0.8 

81 1190624 Bulgaria 3.9±0.24 2±0 3.1±0.24 32±7.5 

82 1190627 Iran 4.3±0.15 1.8±0.62 2±0 26±0 

83 1190629 Iran 3.9±0.24 2.2±0.22 2.4±0.2 34±3.5 

84 1190637 Turkey 3.9±0.11 1.2±0.22 1.6±0.4 28±2.3 

85 1190639 Crete 4.1±0.11 1.7±0.33 1.8±0.4 35±0 

86 1190651 China 3.7±0.38 1.8±0.17 2.3±0.33 33±7.8 

87 1190652 China 3.5±0.1 1.2±0.11 1.7±0.43 35±11.1 

88 1190662 Romania 2.6±0.11 2±0 2±0 25±3.3 

89 1190670 Poland 3.2±0.29 2.1±0.11 2.3±0.15 29±0.3 

90 1190671 USSR 4±0 1.3±0.33 2.3±0.33 34±1 

91 1190680 Italy 4.2±0.22 2.3±0 2±0 35±1 

92 1190683 Spain 4.1±0.11 2.1±0.11 2.7±0.15 35±1 

93 1190685 Spain 4.2±0.22 1.7±0.15 3.3±0.19 27±0 

94 1190690 Greece 3.9±0.11 1.7±0.33 2.1±0.11 43±0 

95 1190694 India 3.9±0.29 1.9±0.11 2.9±0.28 36±0.1 

96 1190698 China 1.8±0.44 1.6±0.06 2.2±0.17 28±1 

97 1190700 China 3.4±0.29 1.4±0.11 2.4±0.29 17±3.8 

98 1190704 Iran 3.4±0.29 1.2±0.17 3.3±0.33 32±3.5 

99 1190705 Iran 3.9±0.48 2.1±0.24 3.2±0.17 38±4.3 

100 1190707 India 4±0 2.7±0 2.8±0.4 34±3.3 

101 1190722 China 3.8±0.11 2.2±0.17 3.9±0.29 34±6.2 

102 1190729 Iran 3.9±0.11 2.4±0.22 3.9±0.29 31±4 

103 1190731 India 4.1±0.11 2±0.29 3.2±0.22 39±3.3 

104 1190732 India 4.1±0.11 1.9±0.31 3.2±0.11 32±1.3 



103 
 

 

 

 

105 1190740 USSR 1.7±0.19 1.4±0.22 2.2±0.22 28±0.2 

106 1190742 Algeria 3.8±0.11 2.8±0.11 3.9±0.29 42±3.5 

107 1190746 USSR 4.1±0.11 1.9±0.31 3.5±0.1 47±8 

108 1190747 Ethiopia 4±0 1±0 3.7±0.33 34±0 

109 1190749 USSR 3.3±0.69 2.5±0.29 2.2±0.22 34±5.3 

110 1190750 USSR 4±0 1.4±0.29 2.2±0.17 36±2.5 

111 1190753 USSR 3.2±0.48 1.3±0.19 2.6±0.29 34±4 

112 1190771 USSR 1.9±0.29 1.2±0.17 3.3±0.33 NA 

113 1190777 Finland 2.1±0.11 1.3±0.33 3.3±0.33 49±15 

114 1190784 Italy 3.9±0.11 2.5±0.29 2.4±0.29 28±0.8 

115 1190788 USSR 3.7±0.15 2.6±0.22 2.8±0.33 25±0.2 

116 1190789 USSR 4±0 3.3±0.15 3±0 37±13.8 

117 1190811 Tunisia 3.6±0.39 1.8±0.11 2.3±0.17 27±0.5 

118 1190814 Tunisia 3.3±0.44 1.7±0.15 1.7±0.31 33±2 

119 1190816 Italy 4.1±0.11 2.3±0.33 2±0 37±3.5 

120 1190827 China 4±0 2.8±0.11 3.9±0.11 31±0 

121 1190912 Hungary 1.4±0.2 1.3±0.19 1.2±0.17 31±2.8 

 

Supplementary Table S2. Analysis of variance (ANOVA) response to tan spot Ptr race 

1, race 5, Stagonospora nodorum blotch (SNB), and Fusarium head blight (FHB). 

 

Disease Variable DF SS MS F value P 

Tan spot  Genotype 120 634.6 5.288 16.99 <2e-16 *** 

Ptr race 1 Experiment 2 2.6 1.278 4.106 0.0168 * 

  Block 2 0.9 0.47 1.51 0.2216 

  Residuals 882 274.5 0.311     

Tan spot  Genotype 120 390.6 3.255 14.802 < 2e-16 *** 

Ptr race 5 Experiment 2 0.4 0.222 1.008 0.36534 

  Block 2 2.4 1.176 5.345 0.00492 ** 

  Residuals 910 200.1 0.22     

SNB Genotype 120 516.7 4.306 15.933 < 2e-16 *** 

  Experiment 2 3.7 1.873 6.933 0.00103 ** 

  Block 2 1 0.525 1.942 0.14399 

  Residuals 855 231 0.27     

FHB Genotype 118 9678 82 3.256 2.39e-10 *** 

  Block 1 2329 2328.7 92.448 < 2e-16 *** 

  Residuals 118 2972 25.2     
***, **, * Significant at p˂0.001, p˂0.01, p˂0.05 respectively 
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Supplementary Table S3. SNP distribution across the three wheat genomes used for 

GWAS in 121 Watkins landrace cultivars (LCs). 

 

Genome Chromosome Number of SNPs 

% 

SNPs 

A 1 556  

 2 565  

 3 490  

 4 360  

 5 650  

 6 461  

 7 557  
A genome 1-7 3,639 41.3 

B 1 709  

 2 696  

 3 705  

 4 338  

 5 796  

 6 671  

 7 441  
B genome 1-7 4,356 49.5 

D 1 204  

 2 207  

 3 99  

 4 37  

 5 123  

 6 66  

 7 76  
D genome 1-7 812 9.2 

Total SNPs (A, B, and D) 8,807 100 
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Supplementary Table S4. List of genes in the candidate regions spanning the tan spot race 1, 5, and SNB resistance QTLs and their 

functional annotations. 

 

S. no. Trait QTL Chromosome Most 

significant SNP 

Candidate gene ID* Protein 

1 Tan spot 

Ptr race 

1 

Q.Ts1.sdsu-1AL  1AL AX-94510190 TraesCS1A01G350800.1 Leucine-rich repeat receptor-like 

protein kinase family protein 

2 TraesCS1A01G351600.1 Cytochrome P450 family protein, 

expressed 

3 TraesCS1A01G353400.1 Acidic chitinase 

4 TraesCS1A01G353900.1 NBS-LRR-like resistance protein 

5 TraesCS1A01G354000.1 NBS-LRR-like resistance protein 

6 TraesCS1A01G354100.1 NBS-LRR-like resistance protein 

7 TraesCS1A01G354200.1 NBS-LRR-like resistance protein 

8 TraesCS1A01G355300.1 Pathogenesis-related protein PR-4 

9 TraesCS1A01G356100.1 Peroxidase 

10 TraesCS1A01G356200.1 Mitochondrial carrier protein, 

expressed 

11 Q.Ts1.sdsu-1AL  1AL AX-94932688 TraesCS1A01G439200.1 F-box family protein 

12 TraesCS1A01G439900.1 zinc finger MYM-type-like protein 

13 TraesCS1A01G440300.1 Leucine-rich repeat receptor-like 

protein kinase family protein 

14 TraesCS1A01G440400.1 Leucine-rich repeat receptor-like 

protein kinase family protein 
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15 TraesCS1A01G440600.1 Leucine-rich repeat receptor-like 

protein kinase family protein 

16 TraesCS1A01G440700.1 Leucine-rich repeat receptor-like 

protein kinase family protein 

17 TraesCS1A01G441000.1 Leucine-rich repeat receptor-like 

protein kinase family protein 

18 TraesCS1A01G441500.1 LRR and NB-ARC domains-

containing disease resistance 

protein 

19 TraesCS1A01G442100.1 Cytochrome P450 family protein, 

expressed 

20 TraesCS1A01G442800.1 Protein kinase family protein 

21 TraesCS1A01G443100.1 Protein kinase 

22 TraesCS1A01G443800.1 Pathogenesis-related protein 1 

23 TraesCS1A01G444000.1 Pathogenesis-related protein 1 

24 Q.Ts1.sdsu-2BS  2BS AX-94748285 TraesCS2B01G006200.1 Cytochrome P450 

25 TraesCS2B01G006600.1 Cytochrome P450 

26 TraesCS2B01G006900.1 Cytochrome P450 

27 TraesCS2B01G007400.3 Receptor protein kinase-related 

protein-like 

28 TraesCS2B01G007500.1 NBS-LRR disease resistance 

protein, putative 

29 TraesCS2B01G007600.1 NBS-LRR disease resistance 

protein, putative, expressed 

30 TraesCS2B01G008300.1 Serine/threonine-protein kinase 
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31 TraesCS2B01G008400.1 Protein kinase 

32 TraesCS2B01G008600.1 cytochrome P450, family 705, 

subfamily A, polypeptide 21 

33 TraesCS2B01G009100.1 Cytochrome P450 

34 TraesCS2B01G010600.1 Cytochrome P450 

35 TraesCS2B01G010700.1 Leucine-rich repeat receptor-like 

kinase 

36 TraesCS2B01G011200.1 Leucine-rich repeat receptor-like 

kinase 

37 TraesCS2B01G011300.1 Leucine-rich repeat receptor-like 

kinase 

38 TraesCS2B01G011600.1 NBS-LRR disease resistance 

protein 

39 TraesCS2B01G012100.3 ABC transporter B family-like 

protein 

40 TraesCS2B01G012200.1 ABC transporter B family-like 

protein 

41 TraesCS2B01G012300.1 ABC transporter B family-like 

protein 

42 TraesCS2B01G012600.1 StAR-related lipid transfer protein 

43 TraesCS2B01G013700.1 Cytochrome P450 

44 TraesCS2B01G013800.1 Cytochrome P450 family protein, 

expressed 

45 TraesCS2B01G014000.1 Cytochrome P450 family protein, 

expressed 



108 
 

 

 

 

46 TraesCS2B01G014200.1 Cytochrome P450 family protein, 

expressed 

47 TraesCS2B01G014300.1 Cytochrome P450 

48 TraesCS2B01G014400.1 Cytochrome P450 

49 TraesCS2B01G014500.1 Cytochrome P450 family protein, 

expressed 

50 TraesCS2B01G014600.1 Cytochrome P450 

51 TraesCS2B01G014700.1 Cytochrome P450, putative 

52 TraesCS2B01G014800.1 Cytochrome P450 

53 TraesCS2B01G014900.1 Cytochrome P450, putative 

54 TraesCS2B01G015000.1 Cytochrome P450 

55 TraesCS2B01G015100.1 Cytochrome P450 family protein 

56 TraesCS2B01G015400.1 Cytochrome P450 

57 TraesCS2B01G015700.1 Cytochrome P450 

58 TraesCS2B01G015900.1 Cytochrome P450 

59 TraesCS2B01G016500.1 Cytochrome P450 family protein 

60 TraesCS2B01G016800.1 Cytochrome P450 

61 TraesCS2B01G017000.1 Cytochrome P450 family protein, 

expressed 

62 TraesCS2B01G017200.1 Cytochrome P450 

63 TraesCS2B01G017500.1 Cytochrome P450 

64 TraesCS2B01G017700.1 Cytochrome P450 

65 TraesCS2B01G018200.1 NBS-LRR disease resistance 

protein-like protein 



109 
 

 

 

 

66 TraesCS2B01G018400.1 Disease resistance protein (NBS-

LRR class) family 

67 TraesCS2B01G018500.1 NBS-LRR disease resistance 

protein-like protein 

68 TraesCS2B01G018600.1 NBS-LRR disease resistance 

protein-like protein 

69 TraesCS2B01G018700.1 NBS-LRR disease resistance 

protein-like protein 

70 TraesCS2B01G018800.1 NBS-LRR-like resistance protein 

71 TraesCS2B01G018900.1 Cytochrome P450 

72 Q.Ts1.sdsu-4AL  4AL AX-94662401 TraesCS4A01G232200.1 Receptor-kinase, putative 

73 TraesCS4A01G235600.2 Kinase family protein 

74 TraesCS4A01G235800.1 Peroxidase 

75 Q.Ts1.sdsu-4BS  4AS AX-95190182 TraesCS4B01G004600.1 NBS-LRR-like resistance protein 

76 TraesCS4B01G004800.1 NBS-LRR-like resistance protein 

77 TraesCS4B01G004900.1 NBS-LRR disease resistance 

protein 

78 TraesCS4B01G005000.1 NBS-LRR-like resistance protein 

79 TraesCS4B01G005100.1 NBS-LRR-like resistance protein 

80 TraesCS4B01G005200.1 Receptor-like protein kinase 

81 TraesCS4B01G005900.1 Cytochrome P450 family protein, 

expressed 

82 TraesCS4B01G006000.1 Cytochrome P450 family protein, 

expressed 



110 
 

 

 

 

83 TraesCS4B01G006100.1 NBS-LRR disease resistance 

protein-like protein 

84 TraesCS4B01G006300.1 NBS-LRR disease resistance 

protein-like protein 

85 TraesCS4B01G006400.1 NBS-LRR disease resistance 

protein-like protein 

86 TraesCS4B01G007000.1 Leucine-rich repeat receptor-like 

protein kinase family protein 

87 TraesCS4B01G007500.1 Disease resistance protein 

88 TraesCS4B01G007600.1 Leucine-rich repeat receptor-like 

protein kinase family protein 

89 TraesCS4B01G007700.1 Leucine-rich repeat receptor-like 

protein kinase family protein 

90 TraesCS4B01G007800.1 Leucine-rich repeat receptor-like 

protein kinase family protein 

91 TraesCS4B01G007900.1 Leucine-rich repeat receptor-like 

protein kinase family protein 

92 TraesCS4B01G008000.1 Receptor protein kinase, putative 

93 TraesCS4B01G008100.1 Receptor-like protein kinase 

94 TraesCS4B01G009500.1 Receptor protein kinase, putative 

95 TraesCS4B01G009700.1 Cytochrome P450 family protein, 

expressed 

96 Q.Ts1.sdsu-5AL  5AL AX-94462650 TraesCS5A01G505200.1 Pathogenic type III effector 

avirulence factor Avr AvrRpt-

cleavage: cleavage site protein 
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97 TraesCS5A01G506600.1 Tetratricopeptide repeat protein 

7A 

98 TraesCS5A01G508100.1 kinase-like protein 

99 TraesCS5A01G509000.1 cytochrome p450 78a9 

100 TraesCS5A01G509400.1 Sugar transporter protein 

101 TraesCS5A01G509600.1 Sugar transporter protein 

102 Q.Ts1.sdsu-5BS  5BS AX-95684251 TraesCS5B01G011200.1 Pathogenesis-related protein 1 

103 TraesCS5B01G011300.1 Receptor protein kinase, putative 

104 TraesCS5B01G012000.1 Receptor protein kinase, putative 

105 TraesCS5B01G014000.1 Disease resistance protein RPM1 

106 TraesCS5B01G014600.1 Serine/threonine-protein kinase 

107 Tan spot 

Ptr race 

5 

Q.Ts5.sdsu-1BL 1BL AX-94399951 TraesCS1B01G196700.3 Kinase family protein 

108 Q.Ts5.sdsu-2DL  2DL AX-94570302 TraesCS2D01G319400.1 Glutathione S-transferase T3 

109 TraesCS2D01G320600.1 Receptor-like kinase 

110 TraesCS2D01G321400.1 Receptor kinase-like protein 

111 TraesCS2D01G322600.1 ABC transporter ATP-binding 

protein 

112 Q.Ts5.sdsu-3AL  3AL AX-94701190 TraesCS3A01G490000.1 F-box protein-like 

113 TraesCS3A01G490100.1 Receptor-like protein kinase 

114 TraesCS3A01G490200.1 protein kinase family protein 

115 TraesCS3A01G491400.1 receptor kinase 1 

116 TraesCS3A01G491800.1 ATPase subunit 4 

117 TraesCS3A01G493100.1 Protein kinase 

118 TraesCS3A01G493500.1 Protein kinase 
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119 TraesCS3A01G493600.1 Protein kinase 

120 TraesCS3A01G493700.3 Protein kinase 

121 TraesCS3A01G493800.1 Protein kinase 

122 TraesCS3A01G493900.1 Protein kinase 

123 TraesCS3A01G494000.1 Protein kinase 

124 TraesCS3A01G494100.1 Receptor-like protein kinase 

125 TraesCS3A01G495100.1 Disease resistance protein (NBS-

LRR class) family 

126 TraesCS3A01G495200.1 mitochondrial lipoamide 

dehydrogenase 1 

127 TraesCS3A01G495500.1 Disease resistance protein (TIR-

NBS-LRR class) family 

128 TraesCS3A01G495900.1 F-box protein 

129 Q.Ts5.sdsu-5BL  5BL AX-94589119 TraesCS5B01G168400.1 F-box family protein 

130 TraesCS5B01G170700.1 Protein kinase-like 

131 TraesCS5B01G171000.1 Mitochondrial import inner 

membrane translocase subunit 

Tim22 

132 Q.Ts5.sdsu-6BL  6BL AX-94950339 TraesCS6B01G399900.1 Serine/threonine-protein kinase 

133 SNB Q.SNB.sdsu-2BS 2BS AX-94413492 TraesCS2B01G236100.2 Serine/threonine-protein kinase 

134 TraesCS2B01G236800.8 Serine/threonine-protein kinase 

135 TraesCS2B01G236900.1 Serine/threonine-protein kinase 

136 TraesCS2B01G237000.1 Serine/threonine-protein kinase 

137 Q.SNB.sdsu-5AL 5AL AX-94758045 TraesCS5A01G254500.1 F-box family protein 

138 TraesCS5A01G254600.1 Receptor protein kinase, putative 
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139 TraesCS5A01G255800.1 Kinase-like 

140 TraesCS5A01G257900.1 Disease resistance protein 

141 TraesCS5A01G259500.1 defense protein-like protein 

142 TraesCS5A01G259800.1 defense protein-like protein 

143 TraesCS5A01G260100.1 defense protein-like protein 

144 TraesCS5A01G261200.1 Protein kinase family protein 

145 TraesCS5A01G261600.1 Disease resistance protein (NBS-

LRR class) family 

146 Q.SNB.sdsu-5BL  5BL AX-94394626 TraesCS5B01G465400.1 Glucan endo-1,3-beta-glucosidase 

1 

147 TraesCS5B01G465800.1 RAC-alpha serine/threonine-

protein kinase 

148 TraesCS5B01G468100.1 Protein kinase family protein 

149 Q.SNB.sdsu-5BL 5BL AX-94878132 TraesCS5B01G511800.1 Protein kinase 

150 TraesCS5B01G512500.1 Cytochrome P450 

151 TraesCS5B01G512600.1 nodulin MtN21 /EamA-like 

transporter family protein 

152 TraesCS5B01G514200.1 Cytochrome P450 

153 TraesCS5B01G516300.1 Cytochrome P450 family protein 

154 TraesCS5B01G517600.1 Leucine-rich repeat receptor-like 

protein kinase 

155 TraesCS5B01G517700.1 ABC transporter ATP-binding 

protein YtrE 

156 Q.SNB.sdsu-7AS  7AS AX-94424444 TraesCS7A01G089300.1 Receptor protein kinase, putative 

157 TraesCS7A01G089700.1 Peroxidase 
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158 TraesCS7A01G089900.1 protein kinase family protein 

159 TraesCS7A01G090800.1 F-box family protein 

160 TraesCS7A01G091000.1 Kinase family protein 

161 TraesCS7A01G091100.1 Protein kinase 

162 TraesCS7A01G091200.2 Protein kinase 

163 TraesCS7A01G091300.1 Protein kinase 

164 TraesCS7A01G091400.1 Protein kinase 

165 TraesCS7A01G091500.1 Protein kinase 

166 TraesCS7A01G091600.1 Leucine-rich repeat receptor-like 

protein kinase family protein 

167 TraesCS7A01G091700.1 Protein kinase 

168 TraesCS7A01G092400.1 Disease resistance protein (NBS-

LRR class) family 
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Supplementary Table S5. Flanking Sequence of the most significant SNP markers associated with two major leaf spot diseases (tan 

spot Ptr race 1, race 5, and SNB). 

 

S. no. Trait QTL Chr. Most significant 

SNPs 

Flanking sequences 

1 Tan spot Ptr 

race 1 

Q.Ts1.sdsu-1AL  1AL AX-94510190 CCTGCGCGAGCACAGGAAGAACAGAGCTCCTAAAT[C/T] 

GTCTCATGCTCGCAATGATGATGTTGATAACTTTG 

2 Q.Ts1.sdsu-1AL  1AL AX-94932688 AAAAATGTGACAGATCCATGTTGTGAAGACATTGC[C/T] 

AGTACTATTGACAATGGAGCAGATGATAATAATCC 

3 Q.Ts1.sdsu-2BS  2BS AX-94748285 TCTGGCAGCCCGAAACTTGAATGAATGAAGAAAAA[A/T] 

TGTCTTGTATCGTCTCACCATTTTGCTACGGCCAT 

4 Q.Ts1.sdsu-3AS  3AS AX-94591588 GCTCAGTTGCTTCATCATCAGCAGGGAAGTTACAT[C/T] 

ACCTAAATTACCCTTGCACAAGAATTCTCAGCTGT 

5 Q.Ts1.sdsu-3BL  3BL AX-94967827 AGGGAGCGTGGTGGGAGAAAGAAATGAGCTTTTCT[G/T] 

ATCTCAGTTTACTCACAGGACAATGCTTACAACCA 

6 Q.Ts1.sdsu-4AL  4AL AX-94662401 TGTTGCAACATTTCAGCCAAGTGGAAATCCGAATG[C/T] 

TCCTGCCTTTCCTCCTCAAAACATGGAGGTAGCTC 

7 Q.Ts1.sdsu-4BS  4BS AX-95190182 ACTTCTGAAGTTTTACAACACTGTTCGGCAAATAC[C/G] 

TCAGATTAGCGTTGGTAGCATCCAAGACTTCCAAG 

8 Q.Ts1.sdsu-5AL  5AL AX-94462650 GCTGCTAATCAAGCTAAATTGAAGCCTACGGAGAT[A/G] 

ACATGTTGTTAACTAAGAGGTTACAGTGAGGTTGG 

9 Q.Ts1.sdsu-5BS  5BS AX-95684251 TACTCACTTTCAGGCCAAGACAAGGCGGACTAGAC[A/C] 

GGTGATGGGTCCATGTCGTCGGATATCTATGAATG 
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10 Q.Ts1.sdsu-5BL  5BL AX-95252159 TCGCATCTGCGGGCGATGATAAGCTTGTTAAGATC[C/T] 

GGAAGACTGACTCGTGGCGCTGCATCCAGACTATA 

11 Tan spot Ptr 

race 5 

Q.Ts5.sdsu-1BL  1BL AX-94399951 TCTAGTGCGTGCTTGACTAATCTGTATCGTCATAA[C/T] 

ATGGTCTCACAGAAGTAAATAAACGGTGCATATCC 

12 Q.Ts5.sdsu-2DL  2DL AX-94570302 GCCGGTACGTGATCTACGTCAAGGCTGGGGTCTAC[G/T] 

AAGAGATGGTCATGGTCCCCAAGGACAAGGTGAAC 

13 Q.Ts5.sdsu-3AL  3AL AX-94701190 GGAGGTGTACACGAAGCACCACAAGGCGGGGAGTG[A/G] 

CGAGGTGAAGCGGGAGGAGTTCGCGAAGATGAGCG 

14 Q.Ts5.sdsu-5BL  5BL AX-94589119 GTCCGTGTGCTGGACATCAAGTACTTACTGGTATA[G/T] 

TAGCAACATAATTTGTGTGGGATATGGCAATACGC 

15 Q.Ts5.sdsu-6BL  6BL AX-94950339 GCAAAGGAGCACAGAAGGTCCATTCCGAAGCTCGG[C/G] 

GAAACACCTGGGCTCACAAGGCAGGAATACCACCT 

16 SNB Q.SNB.sdsu-

2BS  

2BS AX-94413492 GCTCTGTTTGTGAAATACCATTCTTGTGGTATACG[A/G] 

AGTATAAAGAGGGCCTGACCTTGGTAAATTTCTTT 

17 Q.SNB.sdsu-

5AL  

5AL AX-94758045 GCAGGCCGGAGCGAGTCGAGCTTCACTTTTTTGTT[C/T] 

CGTTCAGTTAGTGCTGCTGTGCATCGCAGTGTGGA 

18 Q.SNB.sdsu-

5BL  

5BL AX-94394626 CATGCTCGTTACGTTAATTGGCATTGGTGAGTTAT[G/T] 

TCAAACAAAAATCTCCACACAACCTTCTCTTACAG 

19 Q.SNB.sdsu-

5BL  

5BL AX-94878132 CTCAGGGGGGAAACCAAGTTCAGGAACGCCAAGAA[C/T] 

AATGCCACTACTGGAGGTCTGTCCATGACTTTAGC 

20 Q.SNB.sdsu-

7AS 

7AS AX-94424444 AAAATCTCCATCACTCGAGTTTGAAGGCAGATCAT[C/T] 

TTCCAATTGGTAATTTAATCAGATAAAGATGTTAT 

Chr. Chromosome  
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List of Supplementary Figures: 

 

 

 

Supplementary Figure S1. Geographical distribution of Watkins landrace cultivars 

(LCs) and their response to A) tan spot Ptr race 1; B) tan spot Ptr race 5; C) SNB; and D) 

FHB. Red and blue spots represent resistant and susceptible LCs respectively. 
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Supplementary Figure S2. Principal Components Analysis (PCA) of 118 Watkins LCs 

of wheat using 10,828, SNPs. In the PCA plot, the small colored dots representing the 

LCs and they were colored according to three different populations (P1: Population 1, P2: 

Population 2, and P3: Population 3) identified by (Winfield et al 2018) using all 804 

Watkins LCs and 35K SNPs. 
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Chapter 4. Genome-wide association and genomic prediction for spike and kernel 

traits in hard winter wheat 

 

4.1. Abstract 

 

Wheat grain yield is the most important economic trait, and its continuous improvement 

is of prime importance for all the breeding programs. A better understanding of the 

genetic control of yield and other yield contributing traits can help in increasing the 

genetic gain. The present study was designed to identify the marker-trait associations 

(MTAs) for various spike and kernel-related traits of wheat through genome-wide 

association studies (GWAS). An association mapping panel comprising 297 hard winter 

wheat accessions was evaluated for eight spike and kernel-related traits at the three 

different locations in South Dakota. A wide range of phenotypic variability was found 

among the accessions for all the studied traits. The coefficient of variation (CV) for these 

traits ranged from 0.77 (kernel length) to 6.62% (kernels per spike) and high heritability 

estimates were obtained for each trait, ranging from 0.72 (thousand kernel weight) to 0.93 

(kernel length). GWAS was performed using 15,590 SNPs distributed across all the 21 

wheat chromosomes. A total of 53 significant SNPs (P < 0.001) for seven traits were 

identified, however, no MTA was detected for kernel length. The highest number of 

MTAs were found to be located on chromosomes 2B and 4A (6 MTAs each), followed 

by 1A, 2A, and 3B (5 MTAs each), while the rest of the MTAs were spread on various 

other chromosomes. We identified 16 MTAs for spike length, followed by spikelet per 

spike (15), spike density (11), and kernel per spike (5). Only six MTAs were identified 

for three kernel-related traits (kernel weight, kernel area, and thousand kernel weight). 
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Out of 53 significant MTAs, 14 were identified in two or more individual environments 

and were considered as stable QTLs. Five genomic regions were identified to control 

multiple spike/kernel traits, and these could play an important role in wheat yield 

enhancement. Further, we compared the predictive ability of spike and kernels traits in 

HWWAMP using univariate genomic selection (GS) models like GBLUP and multi-trait 

multi-environment models like BMTME. The multi-trait model (BMTME) outperformed 

the single-trait model (GBLUP) for all the traits studied in all the environments showing 

a prediction improvement of up to 147% for SL over the GBLUP model. The results of 

this study provide useful insights into the complex genetic nature of wheat yield and yield 

contributing traits in hard winter wheat.  

Keywords: Yield, genome-wide association studies (GWAS), Marker-trait associations 

(MTAs), genomic selection (GS) 
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4.2. Introduction 

 

Bread wheat (Triticum aestivum L.) is one of the most important and widely grown food 

crops, which supplies about 20% of the daily protein and caloric requirements for billions 

of people (Gahlaut et al., 2019). Global food production is required to double by 2050 to 

feed the growing population, however, the yearly yield increase of wheat is the lowest 

(0.9%) among the four major food crops (maize, rice, wheat, and soybean), which is far 

less than the required rate (2.4%) to meet the demand (Ray et al., 2013). Therefore, to 

feed the ever-increasing world population with a gradual decrease in farmland, yield 

improvement remains the primary focus for the wheat breeding programs globally.  

 

Wheat yield is a complex phenomenon influenced by various factors such as 

morphological characteristics, physiological indices, grain-related traits, and different 

environmental conditions, making this trait challenging to manipulate and improve 

(Nadolska-Orczyk et al., 2017; Liu et al., 2018c). However, grain yield is a collective 

output of various individual traits such as spikelet number per spike (SNS), spike length 

(SL), spike number, kernels per spike (KPS), kernel size (KS), and thousand kernel 

weight (TKW), which are less sensitive to the environment and have higher heritability 

than that of grain yield itself (Kato et al., 2000; Hai et al., 2008). Three major 

components that collectively determine the final yield of wheat are the number of 

spikes/unit area, kernels per spike (KPS), and thousand kernel weight (TKW) (Liu et al., 

2018c). In addition, other spike-related traits like spike number per plant, spike length 

(SL), and spikelet number per spike (SPS) also play a significant role in wheat yield 

improvement (Guo et al., 2017). Therefore, identification and further deployment of 
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important quantitative trait loci (QTLs) that regulate different yield-related traits are 

essential to dissect the genetic basis of yield and overall improvement of wheat. 

 

Grain yield and related traits are generally controlled by many small-effect QTLs. Two 

main approaches, traditional QTL mapping and genome-wide association studies 

(GWAS) have been intensively used to dissect the genetic basis of these complex traits 

(Liu et al., 2018a). Nevertheless, GWAS offers higher resolution due to a greater number 

of ancestral gene recombination present in the association mapping panel than in linkage 

mapping that exploits a few meiotic recombinations (Ward et al., 2019a). GWAS has 

shown a significant improvement in determining the genetic architecture of major food 

crops such as wheat (Pang et al., 2020), maize (Yu and Buckler, 2006), and rice (Huang 

et al., 2010). The effectiveness of GWAS has already been established to capture genetic 

factors affecting complex traits in wheat such as agronomic (Sukumaran et al., 2015; Sun 

et al., 2017b), disease resistance (Arruda et al., 2016; Juliana et al., 2018; Halder et al., 

2019), and end-use qualities (Chen et al., 2019). GWAS takes advantage of high-marker 

density across the genome through the availability of single nucleotide polymorphism 

(SNP) arrays such as 90K (Wang et al., 2014b), 660K (Cui et al., 2017), and 820K 

making it a more robust and reliable technique (Li et al., 2019a; Tsai et al., 2020).  

 

GWAS and linkage mapping studies have been carried out to identify significant QTLs 

for several yield-related traits in wheat. For example, QTLs associated with spike-related 

traits (Huang et al., 2006; Naruoka et al., 2011; Cui et al., 2014; Gao et al., 2015; Guo et 

al., 2017; Liu et al., 2017; Ward et al., 2019a; Pang et al., 2020), and kernel-related traits 

(Zhang et al., 2012; Jaiswal et al., 2015; Chen et al., 2016a; Liu et al., 2018c) have been 
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identified on all the wheat chromosomes. Several GWA studies also reported major effect 

genes or stable QTLs such as TaGS5, TaSus1, TaSus2, and TaGW2 significantly 

associated with kernel size, kernel weight, spike and peduncle length, and grain weight 

(Bednarek et al., 2012; Hou et al., 2014; Wang et al., 2015; Ma et al., 2016). Two major 

genes responsible for modern wheat spike morphology (Q and C) were mapped on 

chromosomes 5A and 2D were also found associated with grain size, shape, grain 

number, grain yield, and thousand-grain weight. (Johnson et al., 2008; Xie et al., 2018). 

Spikelet or grain number per spike was associated with the gene TaMOC1-7A and 

TaTEF-7A in several studies (Zheng et al., 2014; Zhang et al., 2015). Nevertheless, a 

considerable number of studies dissected the genetics of yield-related traits in wheat; 

relatively few used winter wheat germplasm (Ward et al., 2019a). Therefore, it is likely 

that many new genes/QTLs affecting the yield and contributing traits have yet to be 

identified in hard winter wheat germplasm.  

 

Apart from GWAS, Genomic selection (GS) is another approach that utilizes genome-

wide marker data for early selection of superior individuals and has the potential to 

increase genetic gain per unit of time (Meuwissen et al., 2001). GS is particularly 

important to select for complex traits under polygenic traits. Unlike marker-assisted 

selection (MAS), GS does not require identifying QTLs linked to the important traits; 

however, it uses genome-wide markers to predict different traits of interest (Bassi et al., 

2016). Furthermore, the polygenic nature of most of the agronomic traits, including grain 

yield, drastically limits the use of MAS in wheat breeding (Wang et al., 2019; Tsai et al., 

2020). Thus, GS has been evaluated for many complex traits in wheat, such as grain yield 

and yield-related traits (Ward et al., 2019b; Guo et al., 2020a; Juliana et al., 2020), 
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disease resistance (Rutkoski et al., 2014; Arruda et al., 2015), and quality traits 

(Battenfield et al., 2016).  

 

Despite several studies reporting the evaluation of GS to predict a variety of agronomic 

traits, the low prediction ability (PA) of GS models remains a challenge in the 

implementation of this approach. Recent research on GS largely focuses on the 

appropriate model selection and cross-validation schemes to increase the predictive 

ability (PA) of various traits (Belamkar et al., 2018; Guo et al., 2020b). Though single 

trait models, such as ridge-regression best linear unbiased prediction (rrBLUP) and 

genomic best linear unbiased prediction (GBLUP), are the standard models used for GS 

(VanRaden, 2008); several multivariate GS models have been proposed that results in an 

increase prediction ability for different traits (Jia and Jannink, 2012a; Jiang et al., 2015; 

Schulthess et al., 2016a). Montesinos-López et al. (2016) proposed a Bayesian multi-trait 

and multi-environment (BMTME) model that extends the conventional models to 

consider the correlation between multiple traits evaluated over multiple environments. 

Thus, the BMTME model accounts for T x G x E interaction in a unified approach and 

yields better predictions over single-trait models (Montesinos-López et al., 2016, 2019b). 

Recently, few studies reported an increase in the prediction accuracy of agronomic and 

end-use quality traits in wheat using the BMTME approach (Guo et al., 2020b; Ibba et 

al., 2020). 

 

The present study sought to perform GWAS in a panel of hard red winter wheat from the 

US Great Plains region to identify QTL for various spike and kernel related traits and 

explore the candidate genes presumably responsible for trait of interest using the wheat 
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reference genome. Further, we employed genomic selection with a cross-validation 

scheme to evaluate if we can successfully predict various kernel- and spike-related traits. 

We used data for 8 traits recorded over three environments to estimate the efficacy of 

recent multi-trait multi-environment models. 

 

4.3. Materials and methods  

 

4.3.1. Plant Materials and field trials 

 

In the current study, we used 297 accessions of the hard winter wheat association 

mapping panel (HWWAMP) developed under the USDA-TCAP project (Guttieri et al., 

2015). This HWWAMP comprises advanced breeding lines and released varieties since 

the 1940s from the Great Plains region of the US, including North Dakota, Montana, 

Michigan, South Dakota, Nebraska, Kansas, Oklahoma, Colorado, and Texas. 

The association mapping panel was evaluated at three locations E1(Aurora farm), E2 

(PlantPath farm, and E3 (Felt farm)) in South Dakota, USA, during the 2019-2020 

cropping season using a randomized complete block design (RCBD) with two 

replications. Each accession was planted in a 1.0 m long two-row plot with an inter-row 

spacing of 20 cm. The field was managed using recommended agronomic practices for 

proper growth and development. 

4.3.2. Phenotypic trait evaluation and statistical analysis 

 

Eight morphological traits were evaluated, including spikelet number per spike (SPS), 

spike length (SL), spike density (SD), kernels per spike (KPS), thousand kernel weight 

(TKW), kernel length (KL), kernel width (KW), and kernel area (KA). Ten random 
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spikes from each accession per replication were manually harvested at physiological 

maturity. SL was measured from the base of the rachis to the topmost spikelet, excluding 

the awns. SPS were counted from the basal sterile spikelet to the top fertile spikelet. SL 

and SPS were the means of measurements from 10 selected spikes in each replication. SD 

was calculated as the ratio of SPS to SL. TKW was measured by weighing 500 kernels 

from each accession with two replications. Three kernel-related traits (KL, KW, and KA) 

were recorded with an automatic grain analyzer Vibe QM3 (Vibe Imaging Analytics, CA 

95010, USA).  

META-R (Multi Environment Trail Analysis with R) version 6.04 (Alvarado et al., 2020) 

was used for estimating the best linear unbiased estimates (BLUE) for all the traits. The 

BLUEs of two replicates for individual locations were estimated using the following 

model: 

 

yij = µ + Ri + Gj + eij 

where yij is the trait of interest, μ is the overall mean, Ri is the effect of the ith replicate, Gj 

is the effect of the jth genotype/accession, and eij is the residual error effect associated 

with the ith replication and jth genotype. For multi-location analysis and BLUE over three 

environments, we used the following statistical model: 

 

yijk = µ + Ei + Rj(i) + Gk + GEik + eijk 

where yijk is the trait of interest, μ is the overall mean, Ei is the effect of the ith 

environment, R j(i) is the effect of the jth replicate nested within the ith environment, Gk is 
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the effect of the jth genotype, GEik is the effect of the genotype x environment (G x E) 

interaction, and eijk is the residual error associated with the ith replication and jth genotype.  

The estimates from the above analyses were used to assess the broad-sense heritability 

(H2) across environments as follow: 

𝐻2 =  
𝜎𝑔

2

𝜎𝑔
2 + 𝜎𝑔𝐸

2 /𝑛𝐿𝑜𝑐 + 𝜎𝑒
2/(𝑛𝐿𝑜𝑐 x 𝑛𝑅𝑒𝑝)

 

 

where 𝜎𝑔
2 genotype variance component, and 𝜎𝑔𝐸

2  is G × E interaction variance 

component, and  𝜎𝑒
2 is the .error variance components. The nLoc term represents the 

number of environments in the analysis.  

4.3.3. Genotyping and SNP discovery 

 

The HWWAMP was genotyped using the wheat Infinium 90K iSelect array (Illumina 

Inc. San Diego, CA) under the USDA-TCAP (Cavanagh et al., 2013). We obtained the 

genotypic data from the T3 Toolbox 

(https://triticeaetoolbox.org/wheat/genotyping/display_genotype.php?trial_code=TCAP9

0K_HWWAMP). After removing the SNPs with more than 10% missing genotypes and 

minor allele frequency (MAF) of less than 0.05, 15,590 high-quality SNPs were used for 

further analysis. The genetic positions of the wheat Infinium 90K iSelect SNP markers 

were obtained from the consensus genetic map of 46,977 SNPs (Wang et al., 2014). The 

physical positions of the SNPs associated with various spike and kernel-related traits 

were obtained by blasting the flanking sequences of respective SNPs to wheat Chinese 

Spring RefSeq v1.1 (IWGSC et al., 2018).  

https://triticeaetoolbox.org/wheat/genotyping/display_genotype.php?trial_code=TCAP90K_HWWAMP
https://triticeaetoolbox.org/wheat/genotyping/display_genotype.php?trial_code=TCAP90K_HWWAMP
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4.3.4. Population Structure and Linkage Disequilibrium 

 

Population structure among the 297 winter wheat accessions was assessed using a 

Bayesian model-based clustering program, STRUCTURE v2.3.4 assuming an Admixture 

model (Pritchard et al., 2000). The most likely number of sub-groups was inferred based 

on an ad-hoc statistic (DeltaK) based on the rate of change in the log probability between 

runs using successive K-values (Evanno et al., 2005) using STRUCTURE HARVESTER 

(Earl and vonHoldt, 2012). We used ten subgroups (K =1-10) with five independent runs 

for each subgroup using a burn-in period of 10,000 iterations followed by 10,000 Monte-

Carlo iterations. Linkage disequilibrium (LD) decay distances were calculated using 

TASSEL v5.0 (Bradbury et al., 2007) in our previous study (Ayana et al., 2018). The LD 

decay distances for individual and whole genomes were estimated by plotting the 

estimated r2 values against the genetic distance (cM) between the markers. 

4.3.5. Marker-trait associations (MTA) 

 

Genome-wide associations were analyzed using two different algorithms, namely the 

mixed linear model (MLM) (Yu et al., 2006) and FarmCPU (fixed and random model 

circulating probability unification) (Liu et al., 2016). Both the models were implemented 

in Genomic Association and Prediction Integrated Tool (GAPIT) (Lipka et al., 2012). In 

brief, MLM incorporates kinship and population structure as covariates to minimize the 

confounding effects and control false positives. However, it leads to false negatives due 

to the confounding between testing markers and cofactors simultaneously. FarmCPU is 

an improved multiple-locus model that controls false positives by fitting the associated 

markers detected from the iterations as cofactors to perform marker tests within a fixed-
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effect model. The quantile-quantile (QQ) plots revealed that the FarmCPU performed 

better than MLM for most traits. Therefore, we employed FarmCPU to report the MTAs 

for all the spike- and kernel-related traits. Though we found several associations to be 

significant based on the Bonferroni correction for multiple testing, most of these 

associations were limited to one or two environments. Thus, an arbitrary threshold to 

determine significant MTAs was set at -log10 P ≥ 3.0 (Wang et al., 2017a) and only those 

MTAs were reported as significant, which surpassed this threshold in the combined 

analysis (BLUEs over environments) and at least two of the three environments.  

Allele stacking analysis was performed to study the accumulative effect of favorable 

alleles on the trait’s phenotype. The accessions from the mapping panel were grouped 

based on the alleles of significant SNPs for all the spike-related traits. These groups were 

compared by pairwise comparison of means based on LSD with FDR corrected P-value 

at 5% level of significance to verify the additive effect of the favorable alleles on the 

phenotype of the traits. 

4.3.6. Identification of candidate genes 

 

For candidate gene analysis, only stable MTAs for three spike traits were selected. The 

candidate regions were demarcated within +/- 1Mb of the most significant SNP for each 

QTL to identify the candidate genes. The high confidence genes in the selected region 

were retrieved from wheat genome assembly IWGSC RefSeq v1.0 and gene ontology 

(GO) annotation information of these genes was extracted from IWGSC Functional 

Annotation v1.0 (IWGSC et al., 2018). Gene expression browser (http://www.wheat-

http://www.wheat-expression.com/


130 
 

 

 

expression.com/) was used to exclude unlikely candidates and shorten the candidate list 

to fewer genes for each selected MTA.  

4.3.7. Genomic Prediction Models and Cross-validation 

 

We evaluated one univariate and one multivariate genomic prediction model for 

predicting eight spike- and kernel-related traits. The univariate genomic best linear 

unbiased prediction (GBLUP) model to predict the genomic estimated breeding values 

(GEBVs) of individuals is given below: 

y = Xb+Zu+e 

where y is a vector of observed phenotypes, X and Z are design matrices, b is a vector of 

fixed effect, u is a vector of additive genetic effects (u ~ N(0,Gσ2g), where G is a G-

matrix and σ2g is additive genetic variance), and e is a vector of random residual effects 

(e ~ N(0,Iσe2)). The model was implemented using the ‘BWGS’ R package for one trait 

at a time. 

The Bayesian multi-trait multi-environment (BMTME) model for genomic predictions 

can be briefly described as: 

 

y = Xβ + Z1b1 + Z2b2 + ε 

 

where y is the response matrix of order j × t (where t is the number of traits and j = n × I, 

where n denotes the number of genotypes and I denotes the number of environments); X 

is of the order j × I, whereas β is of the order I × t. The matrices Z1 (j × n) and b1 (n × t) 

represent the genotype × trait interaction, while the matrices Z2 (j × In) and b2 (In × t) 

http://www.wheat-expression.com/


131 
 

 

 

represent the genotype × trait × environment interactions. The matrix ε (j × t) is used to 

represent the BMTME model residuals. Model simulations were carried out using the R 

package ‘BMTME’ (Montesinos-López et al., 2016, 2019a) with 10,000 burn-in and 

25,000 iterations. 

Predictive ability was assessed as Pearson’s correlation coefficient between GEBVs and 

observed phenotypes for the testing set. A cross-validation scheme was used to estimate 

the predictive ability for the GBLUP model, where the whole population was divided into 

five random sets of equal size. Four of the five sets (80%) were used as a training set 

(phenotyped and genotyped) to train the model, and the remaining set (20%) was used for 

prediction (genotyped only) for prediction. The cross-validation process was repeated 

1,000 times, where each iteration included different lines in the training and testing sets. 

A similar scheme was used for the BMTME model by randomly splitting the lines into 

80% training set and 20% testing set. However, the BMTME model employs a Gibbs 

sampler with multiple iterations and is computationally expensive; we repeated the cross-

validation scheme 25 times. 

4.4. Results: 

 

4.4.1. Distribution of SNPs, population structure and LD analysis 

 

A total of 15,590 high-quality SNPs were distributed across all 21 wheat chromosomes. 

Out of the 15,590 SNPs, almost 50% (7,630) markers were from the B sub-genome, 

while the A and D sub-genomes had 6,211 (39.84%) and 1,749 (11.22%) markers, 

respectively (Supplementary Table S2). Chromosomes 5B, 1B, and 6B had the highest 

number of markers (1,554, 1,254, and 1,237 respectively), while chromosomes 4D (52), 
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7D (133), and 6D (146) had the lowest number of markers (Supplementary Table S2). To 

identify whether the HWWAMP is structured based on the breeding programs/origin, we 

performed the Structure analysis in our previous study (Sidhu et al., 2020). Four sub-

populations (P1, P2, P3, and P4) were identified in the HWWAMP, where P1, P2, P3, 

and P4 consist of 120, 34, 33, and 110 genotypes. Nevertheless, we did not observe any 

grouping in the HWWAMP based on the origin of germplasm. The HWWAMP was 

analyzed for LD decay pattern in one of our previous studies (Ayana et al., 2018) using a 

set of 1,842 SNPs. LD decay was estimated as the distance where LD value (r2) falls 

below 0.1 or half strength of D' (D' = 0.5). For the whole genome, the LD dropped to 0.5 

at 4.5 cM. LD decay was found similar for both A (3.4 cM) and B (3.6 cM) sub-genomes; 

however, it was much higher for the D sub-genome (14.2 cM).  

4.4.2. Phenotypic variation and correlations 

 

A wide variation was observed in the HWWAMP for all the spike and kernel-related 

traits (Table 4.1 and Supplementary Table S1). The linear mixed model analysis revealed 

low variance due to the replication effect, indicating a lower random error of field trials. 

The broad-sense heritability estimates for eight traits ranged from 0.72 (TKW) to 0.93 

(KL). Overall, phenotypic variabilities of traits appeared to be normally distributed with 

noticeable variation among three environments (Figure 4.1).  

 

 



133 
 

 

 

Table 4.1. The combined phenotypic performance of all traits and heritability across 

environments. 

Traita Mean Min Max LSD CV (%) Heritability 

SPS  15.68 12.73 19.87 1.17 3.60 0.88 

SL  8.04 6.49 9.57 0.59 3.35 0.83 

SD  1.96 1.60 2.53 0.13 5.08 0.91 

KPS  39.18 26.45 54.33 5.67 6.62 0.77 

KW 2.83 2.61 3.11 0.10 0.97 0.76 

KL 6.11 5.46 6.80 0.17 0.77 0.93 

KA 13.25 11.32 15.72 0.76 1.55 0.84 

TKW 30.74 23.11 39.69 3.40 3.87 0.72 
aSPS, spikelet number per spike; SL, spike length; SD, spikelet density; KPS, kernel number per spike; KW, kernel 

width; KL, kernel length; KA, kernel area; TKW, thousand kernel weight, CV, coefficient of variation; LSD, least 

significant difference; Min, minimum; Max, maximum 

 

Pearson’s correlation between eight traits was estimated using across-environment BLUE 

values (Figure 4.1). A moderate to high positive correlation was observed between SPS 

and other spike-related traits such as SL (r = 0.42), SD (r = 0.64), and KPS (r = 0.32). 

However, SPS was negatively correlated with all the four kernel-related traits (KW, KL, 

KA, and TKW). On the other hand, SL showed significant positive correlations with all 

the studied traits except SD (r = -0.43) (Figure 4.1). As expected, we observed a strong 

positive correlation within four kernel-related traits (KW, KL, KA, and TKW), and 

kernel-related traits showed a negative correlation with spike-related traits except for SL 

(Figure 4.1). 
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Figure 4.1. Pearson's linear correlation matrix among spike and kernel related traits 

based on their best linear unbiased estimates (BLUE). Values inside the rectangle 

represent the correlation coefficient and three symbols *, **, and ***, represent 

correlation coefficient significance levels at P < 0.05, 0.01, and 0.001, respectively. The 

diagonally arranged plots show the phenotypic distribution of traits based on BLUE 

values. Bivariate scatter plots with fitted lines are at the left side of the diagonally 

arranged phenotypic distribution plots. SPS, spikelet number per spike; SL, spike length; 

SD, spikelet density; KPS, kernel number per spike; KW, kernel width; KL, kernel 

length; KA, kernel area; TKW, thousand kernel weight. 
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4.4.3. GWAS on spike and kernel-related traits 

 

GWAS was performed on spike and kernel-related traits using BLUEs from across-

environment analysis (combined analysis) and individual environments. Nevertheless, 

only those MTAs were reported that were significant in the combined analysis and at 

least in two of the three environments. GWAS identified a total of 53 significant MTAs 

(P < 0.001) for seven traits out of eight studied traits as no MTA was observed for KL. 

The MTAs were distributed across all the chromosomes except chromosomes 2D and 5D 

(Figure 4.3).  

 

 

 



136 
 

 

 

 

Figure 4.3. Physical positions (Mb) of the MTAs associated with 7 spike and kernel 

related traits identified in this study based on Chinese Spring RefSeq 1.1 (IWGSC, 2018) 

across chromosomes. SPS, spikelet number per spike; SL, spike length; SD, spikelet 

density; KPS, kernel number per spike; KW, kernel width; KA, kernel area; TKW, 

thousand kernel weight. 

 

Most of the MTAs were identified on the A sub-genome (28), followed by the B (19) and 

D (6) sub-genomes. The highest number of MTAs were located on chromosomes 2B and 

4A (6 MTAs each), followed by 1A, 2A, and 3B (5 MTAs each) (Figure 4.3 and 

Supplementary Table S3). Of the 53 significant MTAs, 14 were detected in combined 
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analysis and in two or more individual environments (Table 4.2). Thus, these MTAs were 

considered stable and reported significant for further use in candidate gene analysis and 

employment in wheat breeding programs.  
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Table 4.2. Significant genomic region identified in combined and multiple locations for various kernel and spike traits. 

 

Traita SNP$ Chr Alleles* Pos cM -Log10P Environments* Effect 

SPS Excalibur_c97022_396 6A C/T 37415157 58.04 4.0 E1, E3, C -0.266 
 

RFL_Contig3175_1217 6A T/C 604877158 136.70 3.5 E2, E3, C -0.168 
 

IWA4455 6D A/G 462631946 155.56 3.8 E1, E3, C 0.061 

  IWA5913 7A A/G 674276906 152.78 14.0 E1, E2, E3, C -0.500 

SL Kukri_c10860_1283 2A G/A 87857405 105.89 4.7 E1, E2, C 0.163 
 

Tdurum_contig82393_484 2B C/A 730562664 118.43 8.4 E1, E3, C 0.147 

  IWA3639 7A G/A 610934198 131.11 7.6 E1, E3, C -0.138 

SD IWA2519 3A C/T 371628644 86.16 3.3 E1, E2, C -0.026 
 

IWA5913 7A A/G 674276906 152.78 9.4 E1, E2, E3, C -0.055 
 

IWA1902 7D A/G 530035575 149.59 4.1 E1, E2, E3, C -0.041 

KPS BS00021959_51 2B C/T 110818850 90.97 3.2 E1, E3, C -1.862 

  Excalibur_c1921_1191 5B G/A 427650909 51.16 4.0 E1, E2, C 1.390 

KW BS00044274_51 2A T/G 47826702 81.90 3.3 E2, E3, C 0.024 

KA Kukri_c74409_199 4A G/A 37773890 40.27 3.4 E1, E3, C 0.250 

Chr, chromosome; Pos, physical position in base pair (based on IWGSC RefSeq); cM, genetic position in centiMorgans (based on 90K_cons2014); *favorable allele 

(underlined), aSPS, spikelet number per spike; SL, spike length; SD, spikelet density; KPS, kernel number per spike; KW, kernel width; KA, kernel area 
$SNPs/genomic region were significant in BLUE (combined) and multiple individual locations  
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4.4.3.1. Spike related traits 

A total of 15 significant MTAs were found for SPS distributed on the chromosomes 1A, 

2A, 2B, 4A, 5A, 5B, 6A, 6B, 6D, 7A, and 7B. Of the 15 MTAs, four SNPs namely 

Excalibur_c97022_396 (37.4 Mb), RFL_Contig3175_1217 (604.9 Mb), IWA4455 (462.6 

Mb), and IWA5913 (674.3 Mb) on chromosomes 6A, 6A, 6D, and 7A, respectively 

(Supplementary Table S3 and Figure 4.2). For SL, a total 16 MTAs were identified on 

chromosomes 1A, 2A, 2B, 3A, 3B, 4A, 4B, 4D, 5A, 5B, 6A, 6B, and 7A. However, only 

three SNPs, namely Kukri_c10860_1283 (87.9 Mb), Tdurum_contig82393_484 (730.6 

Mb), and IWA3639 (610.9 Mb) on chromosomes 2A, 2B, and 7A, respectively were 

significant in multiple environments (Supplementary Table S3 and Figure 4.2). Eleven 

significant MTAs were detected for SD on chromosomes 1A, 1B, 1D, 2A, 3A, 4A, 5B, 

6A, 6B, 7A, and 7D. Out of the 11 MTAs, three MTAs including IWA2519 (371.6 Mb), 

IWA5913 (674.3 Mb), and IWA1902 (530 Mb) on chromosomes 3A, 7A, and 7D were 

significant in multiple environments. Similarly, we identified five MTAs for KPS on 

chromosomes 1D, 2B, and 5B, of which, BS00021959_51 (110.8 Mb) and 

Excalibur_c1921_1191 (427.7 Mb) on chromosomes 2B and 5B were significant in 

multiple environments. (Supplementary Table S3 and Figure 4.2).  
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Figure 4.2. Genome-wide association scan. Fixed and random model Circulating 

Probability Unification (FarmCPU) based Manhattan plots represent -log10P for SNPs 

distributed across all 21 chromosomes of wheat. A) Spikelet number per spike (SPS); B) 

Spike length (SL); C) Spike density (SD); D). Kernel number per spike (KPS). Y-axis: -

log10P and X-axis: wheat chromosomes. The horizontal lines stand as a threshold for 

significant markers with -log10P ≥ 3. 

 

4.4.3.2. Kernel related traits 

GWAS identified only six MTAs for three (KW, KA, and TKW) kernel-related traits 

(Supplementary Table S3 and Supplementary Figure S1). In total, three MTAs were 

detected for KW on chromosomes 1A, 2A, and 4A. Out of the three associations, only 

BS00044274_51 (47.8 Mb) on chromosome 2A was significant in two environments 

(Table 4.2). Further, two MTAs were identified for KA on the chromosomes 3D and 4A; 

however, only Kukri_c74409_199 (37.8 Mb) on chromosome 4A was found significant 

in multiple environments. We identified only one MTA for TKW located on chromosome 

2A (Supplementary Table S3). 
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4.4.4. Genomic regions or SNPs affecting multiple traits 

 

Five significant MTAs were found to be associated with more than one trait, exhibiting 

the pleiotropic effect of a single gene or a group of tightly linked genes (Supplementary 

Table S3). Two MTAs, namely Excalibur_c35316_154 (2.5 Mb) and IWA5913 (674.2 

Mb) located on the chromosomes 1A and 7A were associated with both SPS and SD. 

Similarly, BS00044274_51 (47.8 Mb) on chromosome 2A was associated with KA and 

KW, while IWA6659 (84.9 Mb) on 4A was associated with several spike and kernel-

related traits, including KW, KA, TKW, and SL. Another MTA IWA6485 (600.2 Mb) on 

chromosome 3D was significantly associated with KA and SL (Supplementary Table S3). 

 

4.4.5. Phenotypic effects of favorable QTL alleles 

 

To identify the accumulative effect of favorable alleles for various traits, we grouped the 

HWWAMP based on the number of favorable alleles carried by the accessions for four 

spike-related traits (Figure 4.4).  
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Figure 4.4. Accumulative effect of favorable alleles of the identified stable associations 

(MTAs identified in multiple environments) for four spikes related traits: A) 

spikelet/spike (count); B) spike length (cm); C) spikelet density; D) kernel/spike (count). 

X-axis representing the favorable allele count and Y-axis representing the respective 

phenotypic value. Mean was compared based on LSD (least significant difference) with 

FDR (false discovery rate) corrected P-value at 0.05 level of significance. For each trait, 

box plots with the same letter indicates no significant difference in mean, while different 

letters indicate significant difference (P < 0.05). 

 

Rather than using all identified MTAs, we used only stable MTAs (Table 4.2) for this 

analysis. For SPS, accessions with one, two, three, and four favorable alleles had a mean 

value of 14.78, 15.70, 15.71, and 16.85, respectively. The accessions with three or more 

favorable alleles had significantly higher SPS than lines with only one favorable allele 

(Figure 4.4 and Supplementary Table S4). We also found a significant difference in SL 

with the increment of favorable alleles. HWWAMP lines that carried none of identified 

favorable alleles for SL had a mean of 7.7 cm, while lines with one, two, and three 

favorable alleles had a mean SL of 7.82, 8.06, and 8.30 cm, respectively. A similar 

additive effect was observed for SD, as two or more favorable alleles significantly 
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increased the compactness of the spike (SD) compared to lines with zero or only one 

favorable allele. The mean KPS was 35.49, 37.27, and 40.53 when the accessions had 

zero, one, and two favorable alleles identified in our study, respectively (Figure 4.4 and 

Supplementary Table S4). 

4.4.6. Candidate gene analysis for significant MTAs 

 

Candidate gene analysis was performed for five stable MTAs having the -log10P ≥ 4.0. 

For each MTA, a window of 2 Mb was used to identify the putative candidates. A total of 

120 high confidence genes were retrieved by using IWGSC RefSeq v1.0 annotation. 

However, we excluded the unlikely candidates using publicly available RNA‐Seq 

expression data from Wheat Expression Browser and a thorough review of related 

literature. Finally, 14 putative candidate genes were selected for three different traits 

based on their relatively high RNA expression in the shoot, spike, and grain development 

at seeding, vegetative and reproductive stages of wheat (Table 4.3). The selected genes 

encode for various proteins, including Peptidyl-prolyl cis-trans isomerase, Cold shock 

protein, NADPH-cytochrome P450 reductase, Glycoprotein membrane GPI-anchored, 

Ubiquitin-like protein, BZIP transcription factor, and ATP-dependent RNA helicase 

(Table 4.3).  

4.4.7. Genomic prediction on HWWAMP for various spike and kernel traits 

 

In this study, the predictive abilities of two different genomic prediction (GP) models, 

namely GBLUP and BMTME, were compared using a cross-validation scheme. The 

prediction performance of the models for eight spike and kernel-related traits was 

estimated in terms of average Pearson's correlation (Figure 4.5).  
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Table 4.3. Putative candidate genes within the identified regions controlling wheat spike related traits. 

 

Traita Significant SNP Chr Gene ID Protein 

SPS Excalibur_c97022_396 6A TraesCS6A01G068300 Gamma-glutamylcyclotransferase    
TraesCS6A01G068900 Peptidyl-prolyl cis-trans isomerase    
TraesCS6A01G069500 Cold shock protein 

SL Tdurum_contig82393_484 2B TraesCS2B01G533500.1 Sulfhydryl oxidase 1    
TraesCS2B01G534200.1 NADPH--cytochrome P450 reductase    
TraesCS2B01G534700.1 UPF0136 membrane protein  

Kukri_c10860_1283 2A TraesCS2A01G141800.1 Transcription-associated protein 1    
TraesCS2A01G141900.1 Glycoprotein membrane GPI-anchored    
TraesCS2A01G142700.1 Ubiquitin-like protein    
TraesCS2A01G142800.1 BZIP transcription factor  

IWA3639 7A TraesCS7A01G419100.1 60S acidic ribosomal protein P3    
TraesCS7A01G419400.1 ATP-dependent RNA helicase 

SD IWA1902 7D TraesCS7D01G411600.1 60S acidic ribosomal protein P3    
TraesCS7D01G412200.1 ATP-dependent RNA helicase 

aSPS, spikelet number per spike; SL, spike length; SD, spikelet density, Chr, chromosome
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Figure 4.5. The predictive ability (PA) for spike (SL, spike length; SD, spikelet density; 

SPS, spikelet number per spike; KPS, kernel number per spike) and kernel (TKW, 

thousand kernel weight; KL, kernel length; KW, kernel width; KA, kernel area) related 

traits evaluated at three environments (E1, E2, and E3). Boxplots compare the PA using a 

single-trait prediction model (GBLUP) and a Bayesian multi-trait multi-environment 

prediction model (BMTME). X-axis showing the environments and Y-axis representing 

the % PA value. 

 

Moderate mean predictive ability (PA) was observed for various traits using single-trait 

model (GBLUP). The highest PA (0.52) was for spike density (SD) at E3, while the 

lowest mean PA was 0.22 (E3) for SL (Figure 4.5 and Supplementary Table S6). 

On the other hand, multi-trait model (BMTME) showed the highest mean PA 0.73 at E1 

and E3for spike density (SD), whereas the lowest mean PA was found for KPS (0.53) at 
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E1 and E2. Our result showed that the multivariate model (BMTME) outperformed the 

single-trait model (GBLUP) for all the traits studied in all the environments (Figure 4.5 

and Supplementary Table S6). In terms of a percent increase in PA, BMTME increased 

the mean prediction accuracy ranging from 30.5% (E1) for KPS to 147.3% (E3) for SL 

(Supplementary Table S6). In the case of kernel-related traits, the BMTME model 

outstripped the GBLUP model for all the trait-environment combinations (Figure 4.5 and 

Supplementary Table S6). Like spike-related traits, gain in the mean prediction accuracy 

using BMTME over GBLUP ranged from 22.3 to 141.1% for KW and TKW, 

respectively (Supplementary Table S6).  

4.5. Discussion 

 

Wheat yield is the most important and complex target trait for the wheat breeding 

program. Grain yield mainly depends on the accumulative effect of the different yield 

contributing traits, including spike- and kernel-related traits. Breeders have relied upon 

the identification and deployment of novel genes/QTLs governing these crucial traits. 

Nevertheless, a relatively lesser number of studies identified such genomic regions in 

winter wheat. In this study, a diverse population coming from various winter wheat 

breeding programs of the Great Plains region of the USA was used to dissect the genetics 

of yield-related traits. A wide range of phenotypic variabilities was found among the 

germplasm for all the traits studied, making this panel suitable for genome‐wide 

association analysis (Supplementary Table S1).  
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4.5.1. Trait’s heritability and correlation 

 

High broad-sense heritability was observed for all the traits, ranging from 0.72 for TKW 

to 0.93 for KL (Table 4.1). The high heritability estimates were in line with several 

previous studies (Wang et al., 2017b; Garcia et al., 2019; Alqudah et al., 2020; 

Muhammad et al., 2020a). We observed a significant positive correlation between SPS 

and other spike-related traits (SL, SD, and KPS) (Figure 4.1). On the other hand, all the 

kernel-related traits were positively correlated among themselves and with SL, showing 

that increased SL positively affects kernel traits (Figure 4.1). Several previous studies 

also reported positive associations among TKW, KL, and KW (Breseghello and Sorrells, 

2007; Ramya et al., 2010; Rasheed et al., 2014; Chen et al., 2016b; Muhammad et al., 

2020a). We also observed that an increase in SPS, KPS, and SD causes a decrease in 

kernel-related traits (KW, KL, KA, and TKW), as they were negatively correlated. 

Muhammad et al. (Muhammad et al., 2020b) also reported a strong negative correlation 

for KL and KW with KPS. Further, two yield component traits, grain number (GN) and 

grain weight (GW) or size, are usually negatively correlated (Sadras, 2007; Bustos et al., 

2013; García et al., 2013), and this might be a consequence of trade-offs between these 

traits. The competition for assimilates between spikelets leads to an unbalanced 

distribution of GN along the spike and may restrict the grain yield (Guo et al., 2017; 

Molero et al., 2019).  
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4.5.2. Marker-trait associations and comparison with previous studies 

We used FarmCPU algorithm to identify the MTAs that use both fixed and random effect 

models iteratively to control the false discovery. In this study, a total of 53 MTAs were 

identified for spike- and kernel-related traits using combined BLUEs across three 

environments (Supplementary Table S3). However, we focused on the MTAs identified 

in multiple environments and MTAs associated with multiple traits (Table 4.2). We 

identified 47 MTAs for spike-related traits (Supplementary Table S3), while only a few 

associations for kernel-related traits. Some of the MTAs we identified were likely to be 

novel whereas many of the QTLs identified in the present study are in similar locations as 

reported in previous studies. Spike-related traits are generally complex in nature and most 

of the wheat chromosomes harbor genetic factors affecting these traits (Liu et al., 2018c). 

It is important to mention here that the optimization of multiple spike characteristics can 

effectively enhance the integrated sink capacity and ultimate yield potential of wheat 

(Fan et al., 2019).  

The MTAs for SPS were distributed on the chromosomes 1A, 2A, 2B, 4A, 5A, 5B, 6A, 

6B, 6D, 7A, and 7B (Supplementary Table S3). We compared the MTAs identified in this 

study with previous studies based on physical and genetic positions; though use of 

different types of markers and genetic maps across studies makes it difficult to precisely 

compare the QTLs (Ward et al., 2019a). Four stable SNPs namely 

Excalibur_c97022_396 (37.4 Mb), RFL_Contig3175_1217 (604.9 Mb), IWA4455 (462.6 

Mb), and IWA5913 (674.3 Mb) on chromosomes 6AS, 6AL, 6DL, and 7AL (Table 4.2) 

were significantly associated with SPS. Of the four stable QTLs one MTA (IWA5913) 

identified for SPS on chromosome 7A was reported in earlier studies, and a promising 
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gene regulating SPS designated as WHEAT ORTHOLOG OF APO1 (WAPO1) was 

reported on wheat chromosome arm 7AL (~674 Mb) in a recent study (Kuzay et al., 

2019). Further, Sun et al. (Sun et al., 2017) identified a SNP (Kukri_c264_539) for SPS 

on 6A (29.5 Mb) in four environments, that co-localized with a stable marker 

Excalibur_c97022_396 (37.4 Mb) detected in this study. In addition, using combined 

environment, two significant associations were identified for SPS (BS00011235_51 (552 

Mb) and GENE-4848_95 (740 Mb) on chromosomes 5A and 7B, respectively.  Liu et al., 

(2018b) have also reported QTLs for SPS in the similar region. It is important to mention 

that the marker BS00011235_51 is ~35 Mb away from the vernalization gene (Vrn-A1) 

(Yan et al., 2003), located on chromosome 5A at ~587 Mb. Previous studies have 

reported that Vrn‐A1 is also involved in increasing the SPS (Whitechurch and Snape, 

2003).  

For SL, 16 MTAs were identified on chromosomes 1A, 2A, 2B, 3A, 3B, 4A, 4B, 4D, 5A, 

5B, 6A, 6B, and 7A. Out of the 16 MTAs, three SNPs, namely Kukri_c10860_1283 (87.9 

Mb), Tdurum_contig82393_484 (730.6 Mb), and IWA3639 (610.9 Mb) on chromosomes 

2A, 2B, and 7A were found to be stable over multiple environments (Table 4.2). MTAs 

(Kukri_c10860_1283 and Tdurum_contig82393_484) for SL have been previously 

reported in various studies (Liu et al., 2017, 2018b; Mwadzingeni et al., 2017). Another 

significant marker (Excalibur_rep_c68588_1196) identified on chromosome 4BS (21 

Mb) for SL, corresponds to the physical location of semi-dwarfing gene Rht-B1(~30 Mb). 

Other than reducing plant height, Rht-B1 was reported to exhibit pleiotropic effects on 

grain yield and yield components, including SL (Okada et al., 2019; Guan et al., 2020). 

Several MTAs identified on chromosomes 5A, 6A, and 6B for SL were found to be co-
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localized with MTAs reported by previous studies focusing on wheat yield component 

traits (Yu et al., 2014; Mwadzingeni et al., 2017; Liu et al., 2018b) (Supplementary Table 

S3). 

We identified five MTAs for KPS distributed on chromosomes 1D, 2B, and 5B 

(Supplementary Table S3). One stable association on chromosome 2B (BS00021959_51) 

was detected at 110.8 Mb (90.9 cM) for KPS (Table 2). Shi et al., (2017) also reported an 

association for KPS at 122.3Mb and suggested that this marker may be linked to the 

photoperiod insensitive gene Ppd-B1 in common wheat. A similar association was 

detected by Gao et al. (2015) at 92 cM for the same trait on chromosome 2B in a bi-

parental mapping population in two environments. Further, we identified a stable MTA 

(Excalibur_c1921_1191) for KPS on chromosome 5B at 427.6 Mb (Table 4.2). Tang et. 

al. (2011) mapped three QTLs for KPS spanned by markers Xgwm499 and Xgwm213 

(418.8-477.5 Mb), overlapping the physical position identified in our study. Two other 

MTAs were identified using combined environment analysis for KPS on chromosomes 

2B (CAP8_c5108_139) and 5B (IWA4329), which co-localized with the previously 

reported MTAs in several studies (Neumann et al., 2011; Guo et al., 2017; Liu et al., 

2018b) (Supplementary Table S3). 

Eleven significant MTAs were detected for SD on chromosomes 1A, 1B, 1D, 2A, 3A, 

4A, 5B, 6A, 6B, 7A, and 7D, however, MTAs on 3A, 7A, and 7D were significant in 

multiple environments (Table 4.2 and Supplementary Table S3). Similar to our finding, 

several previous studies reported MTAs for SD on chromosomes 1A, 1B, 3A, 4A, 6A, 

and 6B (Jantasuriyarat et al., 2004; Liu et al., 2018c). One stable SNP (IWA5913) on 7A 
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at 674 Mb for SD was also identified for SPS and could be a pleiotropic locus (Table 

4.2). 

A total of three MTAs were identified for KW on chromosomes 1A, 2A, and 4A. Several 

studies have reported associations in similar physical locations on chromosomes 1A and 

2A for KW (Wu et al., 2015; Li et al., 2019b). Our study identified MTAs for KA on 

chromosomes 3D and 4A and TWK on 2A, however, previous studies also identified 

significant association for KA and TKW on chromosomes 4A and 2A, respectively (Liu 

et al., 2018b; Su et al., 2018)  (Table 4.2 and Supplementary Table S3).  

 

4.5.3. Multi-trait QTL regions  

Our result revealed the pleiotropic nature of the QTLs/MTAs for the spike and kernel-

related traits and assumed this phenomenon might be due to the complex relationships 

among these traits. Spike is a complex and multi-component trait, and its overall 

expression is comprehensively determined by a series of correlated traits, such as SPS, 

SL, SD, etc. and major genes which control these components generally show pleiotropic 

effects or linkage at the QTL level (Fan et al., 2019). Our study identified two MTAs 

(Excalibur_c35316_154 and IWA5913) responsible for SPS, also found to be associated 

with the trait SD (Supplementary Table S3). In many previous studies also reported 

numerous pleiotropic QTL clusters simultaneously affecting various spike-related traits 

and involving major genes (Heidari et al., 2011; Cui et al., 2012; Zhai et al., 2016; Fan et 

al., 2019). In case of kernel-related traits, MTAs for KW was found having a pleiotropic 

relationship with other kernel and spike traits (KA, TKW, and SL) (Supplementary Table 

S3) and multi-trait QTLs have also been previously reported for grain yield, TKW, KW, 
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SPS, SL and KPS in wheat (Prashant et al., 2012; Patil et al., 2013; Wu et al., 2015; Chen 

et al., 2016b). Pleiotropic effects may also partially be explained by correlations between 

agronomic traits (Chen et al., 2016b; Kumar et al., 2016; Liu et al., 2017), as shown in 

our study, a strong correlation within kernel-related traits and with SL (Figure 4.1). 

 

4.5.4. Staking favorable alleles for wheat yield enhancement 

In our study favorable alleles showed significant additive effects on the phenotype of four 

spike-related traits (Figure 4.4 and Supplementary Table S4), indicating the importance 

of favorable alleles staking to improve the performance of yield contributing traits of 

wheat (Sun et al., 2017; Li et al., 2019b). It was found that the germplasm with 3 or more 

favorable alleles showed significant improvement in SPS count compared to germplasm 

with only one favorable allele (Figure 4.4 and Supplementary Table S4). Several best and 

worse lines based on the highest and lowest phenotypic value for spike-related traits were 

compared to examine the cumulative allele effect on the individual germplasm 

phenotypes (Supplementary Table S5). Line with the highest number of SPS in our 

mapping population was MT9982 (19.87), followed by OK05108 (19.23), had all four 

favorable alleles, while lines with only 1 favorable allele such as TAM400 (12.80), 

TAM109 (13.27), and HV906-865 (13.27) were among the worse (Supplementary Table 

S5). This phenomenon of better performance with a higher number of favorable alleles 

was true for all other traits (SL, SD, and KPS) as well, such as a line with the highest 

mean SL in all the environments was OK1067274 (9.57) that had all the 3 favorable 

alleles, whereas line MT85200 (6.49) which showed the lowest SL, had only one 

favorable allele. It was also observed that some lines in HWWAMP had higher number 
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of favorable alleles for multiple traits such as line OK05108 was among the best for SPS 

and SL with all the 7 favorable alleles studied for these two traits (Supplementary Table 

S5). Therefore, breeders could use such materials with higher number of favorable alleles 

for multiple traits as parents to develop new high-yielding varieties. 

 

4.5.5. Putative candidate genes for several important MTAs 

Fourteen putative candidate genes were identified for 5 chosen MTAs (-log10P ≥ 4.0) for 

3 different spike related traits (SPS, SL, and SD) based on their potential involvement 

and higher expression in shoot, spike, and kernel development at vegetative and 

reproductive stages of wheat (Table 4.3). Gene (TraesCS6A01G068900) on chromosome 

6A was identified as a putative candidate for SPS, that code for protein Peptidyl-prolyl 

cis-trans isomerase (PPIase), which was found to have a significant role in the deposition 

of storage proteins in wheat (Dutta et al., 2011). It was also found that PPIase activity in 

the wheat was regulated by the developmental stages and was also cultivar-dependent 

(Dutta et al., 2011). Another gene TraesCS6A01G069500, was also identified as a 

putative candidate for SPS that code for cold shock proteins (CSPs). CSP family have 

their known roles in cold acclimation, gene expression regulation, developmental 

processes such as flower and seed development, etc. (Behl et al., 2020). In a field 

experiment conducted under drought stress conditions by Yu et al., (2017), found that the 

cold shock protein SeCspA transgenic wheat lines showed significant improvement in the 

1000-grain weight and grain yield compared to the control genotype. Several putative 

candidate genes were identified for SL such as TraesCS2B01G534200, 

TraesCS2A01G141900, TraesCS2A01G142700, and TraesCS2A01G142800 code for 
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proteins NADPH-cytochrome P450 reductase, Glycoprotein membrane 

glycosylphosphatidylinositol-anchored, Ubiquitin-like protein, and BZIP transcription 

factor, respectively (Table 4.3). Cytochrome P450s (CYPs) are the largest and versatile 

enzymes family involved in NADPH- and/or O2-dependent hydroxylation reactions and 

play a significant role in multiple processes of plant growth and development (Pandian et 

al., 2020). TaMs1(glycosylphosphatidylinositol-anchored lipid transfer protein) is a 

wheat fertility gene, was found to express in pollen development and encodes a GPI-LTP 

targeted to the plasma membrane (Kouidri et al., 2018). Protein ubiquitination is a major 

post-translational modification that occurs in eukaryotes and regulates diverse biological 

processes, such as lysine ubiquitination in common wheat regulating proteasome 

composition ribosome assembly/translation, carbohydrate metabolism, signal 

transduction, and photosynthesis (Zhang et al., 2017). Another important gene 

TraesCS7D01G412200 code for protein ATP-dependent RNA helicase was identified for 

SD (Table 4.3) which was one of the top candidates with a very high level of gene 

expression. Most of the members of the DEAD-box enzymes family have putative ATP-

dependent RNA helicase activity, play important roles in all types of processes in RNA 

metabolism (Zhang et al., 2014). Recent studies showed that DEAD-box RNA helicases 

have various roles in growth, development, and stress responses in various crops such as 

wheat, rice, maize, tomato, etc. (Nawaz and Kang, 2019).   

4.5.6. Genomic prediction on HWWAMP 

Our GWAS results show that yield contributing traits are highly quantitative therefore 

genomic selection for multiple yield contributing traits could be another promising 

strategy to improve wheat yield. We compared the predictive abilities of both single- and 
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multi-trait and multi-environment models (GBLUP and BMTME) to predict spike and 

kernel-related traits of wheat (Figure 4.5). Our result demonstrated that, compared to 

common single-trait model (GBLUP), multi-trait model (BMTME) showed much higher 

mean prediction abilities for all the studied traits and all three environments (Figure 4.5). 

The mean prediction abilities spike traits increased in range of 30.5% (E1) for KPS up to 

147.3% for SL in E3 BMTME model (Supplementary Table S5). Similarly, improved 

mean prediction abilities were found for kernel-related traits as well, ranging from 22.3% 

(E2) to 141.13% (E2) for KW and TKW, respectively. Several previous studies reported 

an increase in the prediction accuracies for various agronomic and end-use quality traits 

by using Bayesian-based model for multi-trait and multi-environment analysis (Jia and 

Jannink, 2012b; Schulthess et al., 2016b; Guo et al., 2020; Ibba et al., 2020). BMTME 

model is found effective for both high and low heritability traits and can be used in plant 

breeding programs to predict economically important traits when they are inter-correlated 

(Guo et al., 2020; Ibba et al., 2020).  

In conclusion, our study showed that the diversity panel we used is a valuable source for 

exploiting genetic variation for various yield contributing traits. The negative 

relationships between spike and kernel-related traits indicate the moderate physiological 

trade-off between primary grain yield components. GWAS effectively identified both 

stable and environment-specific QTLs for various spike and kernel-related traits. The 

QTLs identified or validated in the current study can be tracked in the hard winter wheat 

breeding programs using linked SNP markers and could also be incorporated into 

multivariate GS models for enhancement of yield-related traits in wheat. 
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4.7. Appendix 

 

List of Supplementary Tables: 

 

Supplementary Table S1. Mean (BLUE) phenotypic value of HWWAMP for 8 different 

spike and kernel related traits. 

 

Sl. no. Entry name SPS SL SD KPS KW KL KA TKW 

1 2145 15.33 7.73 1.99 34.65 2.74 5.96 12.49 28.53 

2 2180 15.97 8.62 1.85 39.92 2.72 6.23 12.75 27.64 

3 2174-05 16.83 7.75 2.17 34.77 2.86 5.74 12.55 30.63 

4 ABOVE 15.53 7.95 1.96 43.45 2.83 5.95 13.06 28.57 

5 AGATE 14.83 8.25 1.80 28.92 2.95 6.77 15.16 36.40 

6 AKRON 16.23 8.71 1.86 36.90 2.86 5.92 13.12 32.14 

7 ALICE 16.07 8.62 1.86 42.48 2.81 6.00 13.12 29.16 

8 ALLIANCE 16.33 8.15 2.01 41.12 2.83 6.26 13.56 30.56 

9 ANTELOPE 15.87 8.34 1.90 38.37 2.75 5.85 12.31 29.04 

10 ANTON 16.57 8.05 2.06 37.95 2.86 6.06 13.54 32.28 

11 ARAPAHOE 15.17 8.50 1.78 34.65 2.73 6.42 13.30 30.29 

12 ARLIN 14.80 8.36 1.77 37.08 2.90 6.07 13.51 32.78 

13 AVALANCHE 15.37 8.20 1.87 41.70 2.86 6.19 13.68 30.06 

14 BAKERS_WHITE 16.07 8.06 1.99 40.58 2.81 6.33 13.53 31.19 

15 BENNETT 14.53 8.00 1.82 34.03 2.96 6.47 14.64 34.74 

16 BIG_SKY 16.60 8.15 2.04 44.93 2.78 5.86 12.43 27.75 

17 BILL_BROWN 15.40 8.29 1.87 41.12 2.82 6.18 13.47 29.23 

18 BILLINGS 14.47 8.80 1.64 42.03 2.87 6.70 14.87 36.31 

19 BISON 15.20 8.03 1.89 32.57 2.83 6.43 13.89 34.21 

20 BOND_CL 14.97 8.77 1.71 44.47 2.82 5.97 13.05 28.15 

21 BRONZE 15.70 8.25 1.90 29.28 2.68 6.09 12.50 28.73 

22 BUCKSKIN 17.03 7.68 2.22 36.60 2.89 6.02 13.40 32.12 
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23 BURCHETT 16.30 8.08 2.02 38.03 2.73 6.00 12.43 29.23 

24 BYRD 15.47 8.96 1.73 42.98 2.88 6.09 13.54 32.85 

25 CAMELOT 16.70 8.61 1.94 40.37 2.91 6.39 13.98 34.28 

26 CAPROCK 12.73 7.04 1.81 35.50 2.83 5.96 13.09 28.26 

27 CARSON 16.93 7.71 2.20 42.77 2.81 5.92 12.55 28.85 

28 CENTERFIELD 15.23 7.70 1.97 38.43 2.84 6.07 13.13 29.89 

29 CENTURA 16.63 7.23 2.30 38.03 2.79 6.03 12.93 29.08 

30 CENTURK78 15.70 7.16 2.19 31.37 2.63 5.94 11.94 26.66 

31 CENTURY 15.67 8.22 1.91 41.40 2.70 6.03 12.51 28.36 

32 CHENEY 15.40 8.26 1.87 32.47 2.71 6.11 12.67 28.36 

33 CHEYENNE 16.40 7.49 2.19 31.27 2.73 6.08 12.67 29.96 

34 CHISHOLM 14.30 7.91 1.81 34.32 2.89 6.35 13.88 34.73 

35 CO03064 16.93 9.13 1.86 46.60 2.82 6.09 13.21 29.58 

36 CO03W043 14.67 8.15 1.80 38.60 2.86 6.33 13.92 32.45 

37 CO03W054 16.57 9.28 1.79 44.77 2.89 6.51 14.38 31.75 

38 CO04025 15.15 8.50 1.78 43.55 2.91 6.00 13.55 30.23 

39 CO04393 16.10 9.21 1.75 40.22 2.93 6.21 13.93 32.66 

40 CO04499 13.83 7.75 1.78 42.83 2.94 6.18 13.91 31.96 

41 CO04W320 16.47 9.22 1.79 46.57 2.88 6.14 13.77 31.70 

42 CO050337-2 16.07 7.85 2.05 43.83 2.85 6.24 13.58 31.60 

43 CO07W245 16.20 8.22 1.97 42.85 3.01 6.07 14.05 33.85 

44 CO940610 15.10 8.43 1.79 38.28 2.95 6.39 14.47 35.56 

45 COLT 15.30 7.19 2.13 33.60 2.73 6.18 12.59 30.99 

46 COMANCHE 15.33 7.77 1.97 35.30 2.80 6.20 13.26 30.83 

47 COSSACK 18.27 7.43 2.46 44.63 2.88 6.08 13.27 32.66 

48 COUGAR 15.43 8.43 1.83 36.62 2.88 6.19 13.52 33.89 

49 CREST 18.30 7.93 2.31 36.48 2.69 5.81 11.78 25.57 
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50 CRIMSON 17.90 7.83 2.28 34.12 2.62 5.72 11.32 26.96 

51 CULVER 15.03 7.56 1.99 33.45 2.78 6.39 13.41 29.87 

52 CUSTER 15.63 8.79 1.78 38.18 2.81 6.16 13.34 31.64 

53 CUTTER 13.33 7.50 1.77 43.82 2.80 6.24 13.47 29.14 

54 DANBY 17.17 8.50 2.02 44.28 2.84 6.12 13.39 31.33 

55 DARRELL 14.93 8.23 1.82 35.85 2.79 6.41 13.37 30.31 

56 DAWN 14.93 7.92 1.88 33.38 2.76 5.98 12.68 29.67 

57 DECADE 15.10 8.13 1.86 44.10 2.76 6.09 12.83 28.80 

58 DELIVER 17.83 8.96 1.99 40.37 2.91 6.36 14.11 31.64 

59 DENALI 17.03 8.55 1.99 47.13 2.84 6.26 13.71 31.22 

60 DODGE 14.80 8.03 1.84 31.67 2.73 6.04 12.49 28.88 

61 DUKE 16.57 7.60 2.18 45.17 2.72 5.91 12.30 29.05 

62 DUMAS 17.03 8.27 2.06 42.20 2.87 5.50 12.08 28.14 

63 DUSTER 16.80 8.38 2.01 40.75 2.90 6.22 13.79 31.75 

64 E2041 15.90 8.42 1.89 41.80 2.91 6.21 13.77 30.30 

65 EAGLE 14.20 7.92 1.79 29.87 2.76 6.34 13.32 30.11 

66 ENDURANCE 16.38 8.70 1.89 34.57 2.91 6.41 14.13 32.17 

67 ENHANCER 15.53 8.02 1.94 44.78 2.68 6.23 12.87 27.37 

68 EXPEDITION 13.93 7.33 1.91 34.05 2.82 6.28 13.45 32.37 

69 FULLER 14.63 7.86 1.86 37.75 2.83 6.04 12.83 30.65 

70 G1878 15.43 7.65 2.01 28.08 2.97 6.31 14.59 38.58 

71 GAGE 15.87 8.28 1.92 32.52 2.81 6.13 13.02 31.04 

72 GALLAGHER 18.33 8.44 2.17 44.68 2.84 6.39 13.83 31.72 

73 GARRISON 14.17 7.54 1.88 41.12 2.86 5.87 13.07 29.40 

74 GENOU 18.30 8.71 2.10 40.62 2.70 6.07 12.46 27.67 

75 GENT 14.37 7.51 1.92 33.92 2.83 6.22 13.64 31.73 

76 GOODSTREAK 14.13 7.56 1.87 38.82 2.85 6.25 13.65 33.76 
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77 GUYMON 17.23 9.49 1.82 43.87 2.84 6.51 13.97 29.73 

78 HAIL 17.50 9.51 1.84 37.42 2.75 6.59 13.83 30.10 

79 HALLAM 14.80 7.62 1.94 34.47 2.90 6.13 13.64 31.26 

80 HALT 13.30 7.68 1.73 37.30 2.87 5.86 12.92 31.22 

81 HARDING 16.73 8.06 2.08 38.43 2.78 6.31 13.33 31.72 

82 HARRY 17.07 8.04 2.12 48.43 2.93 6.30 14.10 32.02 

83 HATCHER 14.70 8.13 1.80 37.92 2.84 6.21 13.79 32.84 

84 HEYNE 15.90 7.87 2.03 38.92 2.81 6.03 13.01 30.55 

85 HG-9 18.03 8.98 2.01 35.85 2.95 6.35 14.24 34.20 

86 HOMESTEAD 13.83 6.69 2.07 27.55 2.73 5.87 12.15 28.01 

87 HONDO 15.23 7.57 2.01 34.20 2.94 6.30 14.14 35.02 

88 HUME 17.33 7.96 2.18 36.73 2.65 5.84 11.77 26.59 

89 HV906-865 13.27 6.72 1.98 34.70 2.83 5.65 12.34 27.62 

90 HV9W03-1379R 16.07 7.14 2.25 47.20 2.68 5.70 11.72 25.41 

91 HV9W03-1551WP 14.40 8.09 1.78 36.13 2.78 6.41 13.72 28.90 

92 HV9W03-1596R 16.57 8.69 1.91 41.73 2.89 5.98 13.19 31.51 

93 HV9W05-1280R 15.43 8.58 1.80 38.08 2.97 6.21 14.15 36.45 

94 HV9W06-504 16.47 7.27 2.26 54.33 2.84 5.63 12.17 25.89 

95 INFINITY_CL 15.77 7.40 2.13 40.43 2.82 5.85 12.69 29.42 

96 INTRADA 14.73 7.79 1.89 31.87 2.77 6.10 12.97 31.44 

97 JAGALENE 16.27 8.12 2.01 45.00 2.78 5.94 12.58 27.25 

98 JAGGER 14.80 8.10 1.83 41.67 2.68 6.00 12.19 26.70 

99 JERRY 16.60 7.54 2.20 34.57 2.82 6.61 14.38 35.02 

100 JUDEE 17.17 8.54 2.01 36.23 2.69 5.87 12.03 27.07 

101 JUDITH 17.17 8.47 2.03 41.65 2.83 6.66 14.56 30.18 

102 JULES 16.37 8.22 1.99 43.38 2.79 6.14 13.14 27.96 

103 KARL_92 15.20 8.14 1.87 34.35 2.78 6.34 13.45 32.00 
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104 KAW61 17.77 8.30 2.14 28.97 2.80 5.97 12.80 33.30 

105 KEOTA 15.83 8.57 1.85 41.57 2.94 6.26 14.15 33.36 

106 KHARKOF 16.67 8.94 1.86 35.32 2.84 5.92 12.98 32.40 

107 KIOWA 14.87 7.81 1.90 29.68 2.85 6.31 13.69 33.00 

108 KIRWIN 15.57 7.92 1.97 32.53 2.88 6.29 13.81 33.85 

109 KS00F5-20-3 14.43 8.05 1.80 42.90 2.96 6.25 14.17 34.39 

110 LAKIN 13.87 8.00 1.74 37.83 2.83 6.21 13.46 29.52 

111 LAMAR 16.63 7.50 2.22 38.53 2.82 6.47 13.95 33.08 

112 LANCER 15.73 7.24 2.17 30.90 2.71 5.90 12.12 29.24 

113 LARNED 14.53 8.12 1.79 32.90 2.82 6.35 13.84 32.23 

114 LINDON 15.30 8.17 1.87 41.13 2.74 5.90 12.50 29.40 

115 LONGHORN 14.73 8.41 1.75 35.52 2.89 5.84 13.01 30.75 

116 MACE 17.07 8.17 2.09 39.80 2.70 6.13 12.67 26.74 

117 MCGILL 14.47 8.29 1.74 42.67 2.78 6.07 12.81 28.98 

118 MILLENNIUM 15.20 6.98 2.18 34.57 2.85 5.85 12.60 30.08 

119 MIT 13.47 7.75 1.74 37.77 2.74 5.91 12.60 28.97 

120 MT0495 17.30 8.93 1.94 41.77 2.71 5.99 12.31 26.61 

121 MT06103 17.10 8.06 2.12 40.42 2.87 6.15 13.30 32.84 

122 MT85200 15.00 6.49 2.31 32.58 2.73 5.81 12.27 26.90 

123 MT9513 18.90 7.90 2.39 42.28 2.75 5.94 12.45 25.71 

124 MT9904 18.53 7.33 2.53 36.62 2.77 5.98 12.71 29.51 

125 MT9982 19.87 8.83 2.25 43.08 2.84 6.09 13.23 29.81 

126 MTS0531 16.00 8.49 1.88 38.72 2.75 6.41 13.46 26.39 

127 NE02558 16.83 8.60 1.96 40.37 2.78 6.27 13.33 29.17 

128 NE04490 15.77 7.83 2.01 42.88 2.78 6.14 13.20 29.90 

129 NE05430 14.10 7.28 1.94 39.77 2.73 5.79 12.26 26.97 

130 NE05496 17.33 8.40 2.06 41.68 2.84 5.97 13.02 29.57 
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131 NE05548 16.57 8.04 2.06 42.98 2.89 6.66 14.61 35.42 

132 NE06545 15.07 8.22 1.83 35.95 2.89 6.03 13.45 30.97 

133 NE06607 13.60 7.94 1.72 38.57 2.85 6.55 14.27 31.91 

134 NE99495 16.40 8.76 1.87 38.80 2.80 6.44 13.64 29.97 

135 NEKOTA 13.80 7.79 1.77 29.68 2.88 6.13 13.52 33.22 

136 NELL 15.13 7.05 2.15 31.32 2.80 5.92 12.71 30.61 

137 NEOSHO 17.20 9.42 1.83 47.68 2.89 5.80 12.77 30.01 

138 NEWTON 16.07 8.71 1.85 39.88 2.79 6.06 13.00 29.05 

139 NI06736 14.87 8.20 1.81 34.05 2.86 6.30 13.75 33.55 

140 NI06737 14.83 7.83 1.89 43.32 2.78 5.96 12.61 28.03 

141 NI07703 16.30 7.34 2.22 45.65 2.70 6.22 12.81 29.59 

142 NI08707 15.27 8.23 1.86 46.17 2.91 6.62 14.66 34.32 

143 NI08708 15.00 8.08 1.86 42.57 2.80 6.20 13.17 28.28 

144 NIOBRARA 15.80 7.55 2.09 37.27 2.79 6.29 13.27 27.99 

145 NORKAN 14.40 7.87 1.83 31.57 2.73 6.15 12.71 29.31 

146 NORRIS 15.77 7.85 2.01 35.02 2.89 5.91 13.07 28.19 

147 NUFRONTIER 17.60 8.01 2.20 49.33 2.65 6.02 12.17 25.26 

148 NUHORIZON 15.97 8.05 1.98 38.92 2.76 5.84 12.35 28.76 

149 NUPLAINS 15.77 7.92 2.00 37.12 2.69 5.92 12.22 28.05 

150 NUSKY 16.77 7.45 2.25 40.90 2.74 5.90 12.29 26.96 

151 NW03666 15.97 8.47 1.88 41.02 2.84 6.27 13.65 31.74 

152 OGALLALA 14.97 7.51 1.99 36.62 2.70 5.58 11.59 26.96 

153 OK_BULLET 18.25 8.93 2.04 42.80 2.97 6.42 14.55 33.77 

154 OK_RISING 15.67 8.32 1.88 39.18 2.92 5.91 13.39 32.74 

155 OK02405 17.00 8.13 2.10 43.30 2.89 5.83 12.91 31.14 

156 OK04111 16.33 8.67 1.89 37.68 2.90 6.00 13.25 33.18 

157 OK04415 16.83 7.30 2.31 35.90 2.89 5.96 13.30 31.40 
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158 OK04505 15.40 7.90 1.95 45.67 2.88 6.24 13.74 31.90 

159 OK04507 17.10 8.27 2.07 40.00 2.86 6.13 13.45 32.79 

160 OK04525 15.17 7.28 2.08 33.68 2.82 5.59 11.92 26.97 

161 OK05108 19.23 9.34 2.06 37.33 2.89 6.21 13.89 31.96 

162 OK05122 14.60 7.43 1.97 41.13 2.91 5.98 13.40 32.00 

163 OK05134 15.93 8.56 1.86 41.90 3.11 6.27 14.97 36.77 

164 OK05204 15.33 8.41 1.83 38.85 3.10 6.05 14.47 36.02 

165 OK05303 15.50 8.28 1.87 34.54 2.98 6.11 14.08 34.94 

166 OK05312 15.60 8.01 1.95 40.92 2.99 6.02 13.88 34.28 

167 OK05511 17.37 8.38 2.07 42.78 2.97 5.79 13.24 32.75 

168 OK05526 13.90 7.09 1.97 38.28 3.08 6.67 15.72 39.69 

169 OK05711W 15.50 7.96 1.95 39.65 2.83 5.66 12.38 29.19 

170 OK05723W 17.17 8.49 2.02 47.82 2.99 6.38 14.63 34.19 

171 OK05830 16.33 8.19 1.99 40.13 2.91 5.55 12.43 29.37 

172 OK06114 16.30 8.29 1.97 44.73 2.89 5.97 13.25 30.70 

173 OK06210 14.97 8.27 1.81 38.40 2.97 6.18 14.07 34.28 

174 OK06318 15.47 7.96 1.94 36.73 2.82 5.77 12.49 28.96 

175 OK06319 15.67 8.42 1.86 38.92 2.94 5.90 13.36 33.10 

176 OK06336 14.03 8.19 1.72 41.13 2.90 6.47 14.50 34.91 

177 OK07231 15.60 7.83 2.00 42.27 2.80 6.15 13.15 30.99 

178 OK07S117 16.30 8.57 1.90 39.25 2.86 6.29 13.76 29.94 

179 OK08328 17.50 7.63 2.30 42.08 2.86 6.03 13.18 29.91 

180 OK09634 13.63 7.05 1.93 40.98 2.79 6.11 12.81 28.82 

181 OK101 15.20 8.67 1.76 36.45 2.76 6.24 12.94 29.39 

182 OK10119 16.27 8.68 1.87 39.62 2.74 6.01 12.67 29.16 

183 OK102 15.47 7.37 2.10 33.75 2.80 5.89 12.64 29.82 

184 OK1067071 16.87 8.33 2.03 42.07 2.77 6.00 12.82 30.19 
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185 OK1067274 16.43 9.57 1.72 44.55 2.94 6.22 13.95 31.93 

186 OK1068002 15.63 8.09 1.93 44.65 2.86 6.09 13.38 30.57 

187 OK1068009 16.73 7.73 2.17 38.17 3.03 5.99 13.97 34.79 

188 OK1068026 16.17 8.48 1.91 46.43 3.07 5.91 13.74 32.66 

189 OK1068112 17.10 8.60 1.99 40.28 2.95 6.41 14.59 35.98 

190 OK1070267 17.07 8.63 1.98 47.70 2.89 6.09 13.36 28.92 

191 OK1070275 16.23 8.24 1.97 43.17 2.87 6.03 13.07 28.02 

192 ONAGA 14.37 7.13 2.02 34.68 2.92 5.46 12.35 28.29 

193 OVERLAND 14.77 7.03 2.11 36.30 2.76 6.21 13.20 30.03 

194 OVERLEY 13.63 6.91 1.97 38.32 2.96 6.06 13.65 35.59 

195 PARKER 16.47 7.35 2.24 34.03 2.79 6.02 12.66 30.63 

196 PARKER76 15.67 7.60 2.06 33.97 2.79 6.11 12.75 30.41 

197 PETE 14.93 9.32 1.60 34.58 2.93 5.84 13.28 31.05 

198 PLATTE 16.33 8.68 1.88 48.98 2.83 5.84 12.64 27.27 

199 POSTROCK 14.93 7.88 1.89 41.42 2.81 5.67 12.28 28.65 

200 PRAIRIE_RED 13.70 7.48 1.83 38.73 2.89 6.19 13.81 31.21 

201 PRONGHORN 15.97 7.38 2.16 38.65 2.88 6.38 14.12 33.95 

202 PROWERS 17.03 7.89 2.16 34.85 2.94 6.45 14.37 36.68 

203 RAWHIDE 16.10 6.95 2.32 42.28 2.79 6.08 12.76 27.18 

204 REDLAND 16.00 7.58 2.11 34.50 2.75 6.02 12.66 29.42 

205 RIPPER 14.47 8.76 1.66 36.12 2.87 6.46 14.29 31.63 

206 RITA 16.40 8.00 2.05 39.10 2.67 5.92 12.09 26.68 

207 ROBIDOUX 16.50 8.84 1.87 40.98 2.92 5.92 13.45 33.24 

208 RONL 16.73 8.33 2.01 49.65 2.86 5.87 12.99 29.02 

209 ROSE 17.80 7.51 2.37 39.93 2.66 5.91 11.88 28.02 

210 ROSEBUD 18.23 7.96 2.29 35.87 2.82 6.01 12.83 31.49 

211 SAGE 15.10 8.75 1.73 35.28 2.78 6.36 13.60 30.98 
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212 SANDY 15.90 7.76 2.05 37.33 2.73 5.93 12.41 28.27 

213 SANTA_FE 13.70 7.73 1.77 41.65 2.88 6.06 13.33 30.91 

214 SCOUT66 14.53 8.65 1.68 36.43 2.86 6.44 14.20 35.96 

215 SD00111-9 15.23 8.32 1.83 37.25 2.89 6.80 14.96 35.87 

216 SD01058 18.07 8.71 2.08 39.27 2.74 6.00 12.70 29.32 

217 SD01237 14.13 7.85 1.80 37.50 2.88 6.31 14.10 34.09 

218 SD05118 16.77 8.25 2.03 44.05 2.78 6.29 13.31 30.44 

219 SD05210 16.80 8.37 2.01 35.03 2.79 6.10 12.96 30.84 

220 SD05W018 15.57 7.40 2.11 43.25 2.78 6.17 12.99 28.67 

221 SETTLER_CL 15.53 8.48 1.83 38.93 2.84 6.18 13.56 31.82 

222 SHAWNEE 17.90 8.55 2.27 41.65 2.90 6.16 13.54 31.67 

223 SHOCKER 14.23 7.51 1.90 43.40 2.92 5.89 13.12 30.75 

224 SIOUXLAND 15.97 8.34 1.92 37.37 2.85 6.25 13.50 32.82 

225 SMOKYHILL 16.50 7.68 2.15 51.17 2.74 5.87 12.34 27.54 

226 SPARTAN 14.47 7.67 1.89 39.95 2.81 6.37 13.79 31.94 

227 STANTON 15.00 7.62 1.97 38.35 2.86 6.21 13.51 30.85 

228 STURDY 12.80 7.51 1.70 40.07 2.87 5.94 13.24 30.35 

229 STURDY_2K 14.27 7.60 1.88 36.32 2.87 6.20 13.58 32.81 

230 TAM105 14.07 8.03 1.75 31.77 2.84 5.99 13.18 29.76 

231 TAM107 13.67 8.00 1.71 43.20 2.95 6.46 14.69 34.07 

232 TAM107-R7 13.33 7.50 1.78 34.55 2.92 6.21 14.03 32.51 

233 TAM109 13.27 7.83 1.70 30.02 2.90 6.46 14.18 33.83 

234 TAM110 13.50 7.85 1.72 37.08 2.93 6.21 14.16 30.67 

235 TAM111 15.77 7.69 2.05 43.90 2.83 5.94 12.72 29.87 

236 TAM112 14.57 7.59 1.92 37.77 2.86 6.01 13.28 30.89 

237 TAM200 14.17 7.32 1.94 37.80 2.72 5.87 12.41 29.61 

238 TAM202 14.97 8.12 1.84 39.32 2.78 6.08 13.17 29.74 
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239 TAM203 13.70 7.04 1.95 41.33 2.84 6.18 13.47 28.15 

240 TAM302 15.40 8.32 1.85 39.37 2.80 6.28 13.55 28.64 

241 TAM303 13.73 7.63 1.83 39.07 2.97 6.14 14.23 32.75 

242 TAM304 17.47 7.86 2.22 49.42 2.74 5.97 12.36 25.06 

243 TAM400 12.80 7.57 1.69 36.18 2.75 5.86 12.49 29.11 

244 TAM401 15.87 8.58 1.85 47.52 2.77 6.24 13.24 28.27 

245 TAMW-101 13.53 7.35 1.84 30.13 2.92 6.59 14.51 36.59 

246 TANDEM 14.40 7.48 1.92 26.45 2.94 6.19 14.02 36.14 

247 TARKIO 15.03 7.09 2.12 39.23 2.91 6.22 13.72 30.35 

248 TASCOSA 14.43 7.77 1.86 35.02 2.84 6.16 13.59 31.26 

249 THUNDER_CL 15.77 9.11 1.73 43.55 2.85 6.24 13.64 28.60 

250 THUNDERBOLT 14.60 7.56 1.93 37.67 2.85 5.83 12.80 31.48 

251 TREGO 15.40 8.28 1.85 37.67 2.89 6.11 13.78 32.47 

252 TRISON 15.70 7.87 2.00 32.23 3.02 6.24 14.30 38.50 

253 TRIUMPH64 13.80 6.95 1.99 28.60 2.88 6.12 13.47 33.58 

254 TURKEY_NEBSEL 17.30 8.65 2.01 36.60 2.85 6.28 13.55 33.23 

255 TX00V1131 14.43 7.95 1.81 40.40 2.68 6.02 12.38 29.06 

256 TX01A5936 16.13 8.74 1.85 46.92 2.86 6.29 13.85 32.95 

257 TX01M5009-28 16.00 7.71 2.08 48.72 2.76 5.50 11.60 23.11 

258 TX01V5134RC-3 13.90 7.96 1.75 44.05 2.92 6.08 13.60 32.19 

259 TX02A0252 14.27 7.76 1.84 39.95 2.73 6.14 12.98 29.87 

260 TX03A0148 16.40 9.30 1.76 45.27 2.92 6.45 14.49 32.16 

261 TX03A0563 14.60 8.01 1.82 39.67 2.78 6.11 12.98 30.19 

262 TX04A001246 15.13 8.56 1.77 41.20 2.90 6.05 13.67 34.31 

263 TX04M410211 15.12 7.83 1.93 39.58 2.86 6.20 13.56 33.03 

264 TX04V075080 14.47 8.19 1.77 40.63 2.85 6.71 14.61 32.35 

265 TX05A001188 14.63 7.19 2.04 39.68 2.69 5.87 12.05 27.02 
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266 TX05A001822 15.67 8.19 1.92 45.25 2.89 5.91 13.33 32.10 

267 TX05V7259 16.27 7.98 2.04 39.82 2.78 6.07 12.86 31.41 

268 TX05V7269 17.23 8.30 2.08 51.23 2.72 6.03 12.46 26.38 

269 TX06A001132 15.57 7.34 2.12 41.90 2.94 6.35 14.05 33.71 

270 TX06A001263 16.33 7.77 2.10 43.03 2.79 5.92 12.85 28.92 

271 TX06A001281 15.73 7.98 1.98 45.28 2.79 6.18 12.99 29.72 

272 TX06A001386 16.20 8.83 1.84 41.47 2.82 5.93 12.76 30.66 

273 TX06V7266 16.03 8.02 2.00 50.45 2.76 5.73 12.15 25.32 

274 TX07A001279 16.20 7.43 2.18 46.73 2.70 5.60 11.76 26.21 

275 TX07A001318 14.73 8.08 1.82 42.43 2.82 6.33 13.80 32.60 

276 TX07A001420 15.87 8.57 1.85 42.52 2.85 5.77 12.68 30.34 

277 TX86A5606 16.73 8.30 2.02 34.98 2.93 6.37 14.20 34.77 

278 TX86A6880 18.43 8.84 2.09 42.38 2.86 6.32 13.71 32.70 

279 TX86A8072 13.57 7.79 1.74 34.30 2.95 6.06 13.84 32.26 

280 TX96D1073 14.17 7.63 1.86 35.05 2.88 5.81 12.89 30.43 

281 TX99A0153-1 14.43 8.51 1.70 34.37 2.74 6.41 13.48 31.57 

282 TX99U8618 15.33 7.99 1.92 36.97 2.72 5.84 12.11 29.14 

283 VENANGO 16.43 8.32 1.98 42.20 2.79 6.13 13.22 31.96 

284 VISTA 15.43 7.48 2.07 33.15 2.61 6.00 12.00 27.15 

285 VONA 15.57 7.50 2.08 43.87 2.79 5.78 12.40 27.98 

286 W04-417 13.60 7.32 1.86 45.17 2.79 5.84 12.44 26.88 

287 WAHOO 16.27 7.74 2.11 36.93 2.75 5.80 12.17 27.69 

288 WARRIOR 16.17 7.95 2.04 34.85 2.80 5.91 12.65 29.19 

289 WB411W 15.93 7.96 2.00 42.88 2.85 6.26 13.49 31.14 

290 WENDY 15.23 8.16 1.87 35.37 2.85 5.86 12.93 29.33 

291 WESLEY 15.73 7.29 2.16 36.67 2.73 6.20 12.90 28.27 

292 WICHITA 13.97 8.22 1.70 30.00 2.88 6.17 13.71 34.55 
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293 WINDSTAR 16.03 7.82 2.05 40.65 2.79 6.15 13.02 29.30 

294 WINOKA 15.62 7.34 2.13 37.07 2.71 5.95 12.38 26.01 

295 YELLOWSTONE 18.23 8.37 2.18 38.80 2.79 5.99 12.75 29.70 

296 YUMA 15.30 7.88 1.94 37.90 2.84 6.16 13.40 31.63 

297 YUMAR 15.73 8.00 1.97 45.20 2.82 5.98 13.06 27.96 

SPS, spikelet number per spike; SL, spike length; SD, spikelet density; KPS, kernel number per spike; KW, kernel 

width; KA, kernel area; TKW, thousand kernel weight 

 

Supplementary Table S2. SNP distribution across the three wheat sub-genomes used for 

GWAS in HWWAMP. 

 

Sub-genome Chromosome Number of 

SNPs 

% 

SNPs 

A 1 1036 
 

 
2 956 

 

 
3 773 

 

 
4 744 

 

 
5 790 

 

 
6 958 

 

 
7 954 

 

Subtotal A 1-7 6211 39.8396 

B 1 1254 
 

 
2 1162 

 

 
3 1117 

 

 
4 451 

 

 
5 1554 

 

 
6 1237 

 

 
7 855 

 

Subtotal B 1-7 7630 48.9416 

D 1 438 
 

 
2 581 

 

 
3 240 

 

 
4 52 

 

 
5 159 

 

 
6 146 

 

 
7 133 

 

Subtotal D 1-7 1749 11.2187 

Total SNPs (A, B, 

and D) 

  
100 
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         Supplementary Table S3. Significant SNPs/MTAs identified with BLUE (combined) value for various traits. 

 

 Traita SNP$ Chr Allele Pos cM -Log10P effect Environment* Pleiotropic 

effect 

SPS Excalibur_c35316_154 1A T/C 2540768 16.672 4.3 0.20455 E2, C SD  
Excalibur_c11398_913 2A C/T 118446604 102.437 3.4 -0.2223 C 

 

 
Kukri_c36783_91 2B A/C 154985272 93.282 6.5 0.21808 E3, C 

 

 
Tdurum_contig42153_1190 2B T/C 41198679 66.196 4.3 -0.2434 C 

 

 
BS00069271_51 4A A/G 4620085 8.607 3.8 -0.2732 C 

 

 
BS00037357_51 4A T/C 610493930 67.921 3.0 -0.2019 C 

 

 
BS00011235_51 5A C/A 552515237 76.809 5.6 -0.3999 C 

 

 
IAAV4072 5A C/A 42106388 42.476 4.3 -0.2106 E3, C 

 

 
Ex_c23426_1546 5B A/G 40786594 39.4 3.6 0.27005 E2, C 

 

 
Excalibur_c97022_396 6A C/T 37415157 58.038 4.0 -0.2661 E1, E3, C 

 

 
RFL_Contig3175_1217 6A T/C 604877158 136.701 3.5 -0.1681 E2, E3, C 

 

 
IWA7896 6B C/T 151130562 59.159 5.7 -0.3324 E3, C 

 

 
IWA4455 6D A/G 462631946 155.557 3.8 0.06089 E1, E3, C 

 

 
IWA5913 7A A/G 674276906 152.783 14.0 -0.5 E1, E2, E3, C SD 

  GENE-4848_95 7B G/T 739931213 165.047 4.6 0.20834 C 
 

SL TA006139-0953 1A T/C 26959396 51.943 4.4 -0.107 E1, C 
 

 
RAC875_c60162_206 1A T/C 545891404  110.678 3.5 -0.0836 C 

 

 
Kukri_c10860_1283 2A G/A 87857405 105.892 4.7 0.16259 E1, E2, C 

 

 
Tdurum_contig82393_484 2B C/A 730562664 118.432 8.4 0.14718 E1, E3, C 

 

 
IWA7916 2B T/C 53464964 71.999 8.1 0.1535 E3, C 

 

 
IWA8127 3A A/C 20004385 33.664 3.9 -0.0872 C 
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Ra_c35_3184 3B C/T 739984089 88.313 5.8 0.12681 E1, C 

 

 
Ex_c883_2618 4A A/G 17259209 33.77 6.0 0.12594 E3, C 

 

 
Excalibur_rep_c68588_1196 4B G/A 21377973 45.719 5.2 0.10603 C 

 

 
Kukri_c4210_480 4D T/C 455252652  94.22 3.8 -0.1023 C 

 

 
CAP8_c1066_309 5A A/G 488262170 57.929 3.3 0.15612 C 

 

 
JD_c63005_896 5B T/C 513873396 58.443 3.3 -0.0947 E1, C 

 

 
IWA6116 6A A/G 602708877 135.858 3.3 -0.1316 E2, C 

 

 
GENE-4204_311 6B T/C 614437173 71.972 3.5 0.09673 C 

 

 
Tdurum_contig569_263 6B T/C 704793345 108.86 3.0 0.08076 C 

 

  IWA3639 7A G/A 610934198 131.114 7.6 -0.1382 E1, E3, C 
 

SD Excalibur_c35316_154 1A T/C 2540768 16.672 4.8 0.02645 C SPS  
BobWhite_c14362_86 1B T/C 653888017 125.263 3.9 0.05179 E3, C 

 

 
IAAV618 1D T/C 486879128 167.108 4.9 -0.0346 C 

 

 
Kukri_rep_c104307_905 2A A/G 32144831 65.649 3.6 -0.0244 C 

 

 
IWA2519 3A C/T 371628644 86.158 3.3 -0.0258 E1, E2, C 

 

 
BobWhite_rep_c66057_98 4A G/T 38369643 40.27 5.6 0.0307 C 

 

 
Kukri_c19760_2091 5B A/G 177188132 38.495 4.1 -0.0194 E1, C 

 

 
RFL_Contig5037_560 6A G/A 594748679 117.771 4.9 -0.0323 C 

 

 
TA015451-0472 6B A/G 222005447 64.57 3.9 0.02838 E1, C 

 

 
IWA5913 7A A/G 674276906 152.783 9.4 -0.0548 E1, E2, E3, C SPS  
IWA1902 7D A/G 530035575 149.588 4.1 -0.0411 E1, E2, E3, C 

 

KPS IWA6805 1D A/G 429698652 111.969 3.0 1.22743 C 
 

 
CAP8_c5108_139 2B G/A 26567970 46.763 3.4 -2.3829 C 

 

 
BS00021959_51 2B C/T 110818850 90.971 3.2 -1.8616 E1, E3, C 

 

 
Excalibur_c1921_1191 5B G/A 427650909 51.159 4.0 1.38977 E1, E2, C 
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  IWA4329 5B C/T 694520891 188.578 3.2 -1.3803 E2, C 
 

KW RAC875_c21411_162 1A A/G 539964977 105.742 3.2 0.03634 C 
 

 
BS00044274_51 2A T/G 47826702 81.895 3.3 0.02359 E2, E3, C KA 

  IWA6659 4A C/T 84934131 47.532 3.2 -0.0304 E1, C KA, TKW, 

SL 

KA IWA6485 3D A/G 600261870 149.826 3.3 0.20109 C SL 

  Kukri_c74409_199 4A G/A 37773890 40.27 3.4 0.25033 E1, E3, C 
 

TKW Tdurum_contig46797_585 2A T/C 44836524 81.489 3.3 0.725 E3, C 
 

           Chr, chromosome; Pos, physical position in base pair (based on IWGSC RefSeq); cM, genetic position in centiMorgans (based on 90K_cons2014); *Environment 1(E1),                       

           Environment 2 (E2), Environment 3 (E3), Combined locations (C) 
               aSPS, spikelet number per spike; SL, spike length; SD, spikelet density; KPS, kernel number per spike; KW, kernel width; KA, kernel area; TKW, thousand kernel weight 
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 Supplementary Table S4. Phenotypic value with the no of favorable alleles. 

 

 Traita 0 1 2 3 4 

SPS  NA 14.78 15.7 15.71 16.85 

SL 7.7 7.82 8.06 8.3 NA 

SD  1.8 1.83 1.9 2.02 NA 

KPS 35.49 37.27 40.53 NA NA 
          aSPS, spikelet number per spike; SL, spike length; SD, spikelet density; KPS, kernel number per spike 

 

Supplementary Table S5. Five best and worse lines in terms of phenotypic 

performance for spike related traits. 

 

   aSPS, spikelet number per spike; SL, spike length; SD, spikelet density; KPS, kernel number per spike; fav., 

favorable; Pheno., Phenotypic  

 

 

Traita Entry name No of 

fav. 

alleles 

Pheno. 

value 

Trait Entry name No of 

fav. 

alleles 

Pheno. 

value 

SPS CAPROCK 3 12.73 SD SAGE 0 1.73 

 TAM400 1 12.80  CO04025 0 1.78 

 STURDY 3 12.80  LARNED 0 1.79 

 TAM109 1 13.27  EAGLE 0 1.79 

 HV906-865 1 13.27  NORKAN 0 1.83 

 TX86A6880 4 18.43  RAWHIDE 3 2.32 

 MT9904 2 18.53  ROSE 3 2.37 

 MT9513 3 18.90  MT9513 3 2.39 

 OK05108 4 19.23  COSSACK 3 2.46 

  MT9982 4 19.87   MT9904 3 2.53 

SL MT85200 1 6.49 KPS TANDEM 1 26.45 

 HOMESTEAD 1 6.69  HOMESTEAD 1 27.55 

 HV906-865 1 6.72  G1878 1 28.08 

 OVERLEY 0 6.91  TRIUMPH64 1 28.60 

 TRIUMPH64 2 6.95  AGATE 1 28.92 

 OK05108 3 9.34  RONL 2 49.65 

 NEOSHO 3 9.42  TX06V7266 2 50.45 

 GUYMON 3 9.49  SMOKYHILL 1 51.17 

 HAIL 3 9.51  TX05V7269 2 51.23 

  OK1067274 3 9.57   HV9W06-504 2 54.33 
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Supplementary Table S6. Performance of the two models for 8 different spike 

and kernel related traits.  

 

aSPS, spikelet number per spike; SL, spike length; SD, spikelet density; KPS, kernel number per   

spike, KW, kernel width; KA, kernel area; TKW, thousand kernel weight 

Traita Env GBLUP BMTME Improvement 

(%) Mean 

PA SE 

Mean 

PA SE 

SPS E1 0.44 0.002 0.66 0.026 50.00 

 E2 0.44 0.002 0.71 0.020 62.25 

  E3 0.49 0.002 0.70 0.018 42.53 

SL E1 0.23 0.002 0.55 0.011 139.76 

 E2 0.25 0.003 0.56 0.041 122.34 

  E3 0.22 0.003 0.54 0.035 147.3 

SD E1 0.46 0.002 0.73 0.014 58.41 

 E2 0.47 0.002 0.71 0.018 50.87 

  E3 0.52 0.002 0.73 0.026 40.22 

KPS E1 0.41 0.002 0.53 0.040 30.48 

 E2 0.39 0.002 0.53 0.016 35.19 

  E3 0.33 0.002 0.48 0.030 44.18 

TKW E1 0.23 0.003 0.47 0.033 105.44 

 E2 0.18 0.003 0.43 0.026 141.13 

  E3 0.20 0.003 0.45 0.034 124.94 

KL E1 0.43 0.002 0.70 0.040 63.55 

 E2 0.38 0.002 0.68 0.025 78.11 

  E3 0.39 0.002 0.70 0.017 80.60 

KW E1 0.36 0.002 0.52 0.042 43.30 

 E2 0.35 0.002 0.43 0.019 22.29 

  E3 0.27 0.002 0.39 0.040 45.71 

KA E1 0.33 0.002 0.62 0.027 87.38 

 E2 0.29 0.002 0.56 0.018 91.63 

  E3 0.29 0.002 0.57 0.028 97.19 
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 List of Supplementary Figures: 

 

Supplementary Figure S1. Genome-wide association scan. Fixed and random model 

Circulating Probability Unification (FarmCPU) based Manhattan plots represent -log10P 

for SNPs distributed across all 21 chromosomes of wheat. A) Kernel length (KL); B) 

Kernel width (KW); C) Kernel area (KA); and D). Thousand kernel weights (TKW). Y-

axis: -log10P and X-axis: wheat chromosomes. The horizontal lines stand as a threshold 

for significant markers with -log10P ≥ 3. 
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Chapter 5: Fine mapping a grain yield QTL introgressed into bread wheat from D-

genome donor Aegilops tauschii 

 

5.1. Abstract 

 

Wheat (Triticum aestivum L.) is one of the most important food crops supplying one-fifth 

of all calories consumed worldwide. A steady wheat yield improvement is essential to 

feed the continually rising human population. Modern wheat can take advantage of 

genetic variation for agronomically important traits present in Aegilops tauschii, the D-

genome donor of modern wheat. A D-genome Nested Association Mapping (DNAM) 

population in a hexaploid hard white winter wheat (HWWW) breeding line KS05HW14-

3 was evaluated to identify grain yield QTLs. We identified a yield QTL from Ae. 

tauschii (ac. TA1615) transferred to wheat (KS05HW14-3) that was located on the distal 

11 Mb region of chromosome 7DS. This 7D QTL explained ~4% of the phenotypic 

variation in grain yield. We developed and mapped 11 high-quality co-dominant SNP 

markers to 7DS QTL region by screening 29 homozygous recombinants (7 haplotype 

groups) lines. The homozygous recombinants were evaluated in the greenhouse and field 

for yield and yield contributing traits in 2020-21. No consistent variation in yield was 

found between the recombinant lines at Brookings, likely due to some winter kill and a 

limited number of replications. However, variation for TKW between parental lines was 

intriguing and could be further explored along with other yield contributing traits.  

Keywords: Wheat, Aegilops tauschii, D genome, grain yield, QTL, recombinants 
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5.2. Introduction 

 

Wheat including both bread wheat (Triticum aestivum L.) and durum wheat (T. turgidum 

subsp. durum is one of the most important food crops that provide about 20% of the 

calories and protein for human consumption (Shiferaw et al., 2013). Wheat yield 

improvement is the prime interest of wheat breeding which is very crucial to meet the 

demands of the growing human population. Yield is the final output of a complex process 

that is directly and multilaterally determined by various yield-component traits, such as 

tiller number, spikelet per spike, grains per spike, thousand kernel weight, etc., and also 

largely influenced by the environmental factors (Wu et al., 2012). Even though yield is a 

low heritable trait, several yield-associated traits are less sensitive to environmental 

conditions i.e., higher heritability compared to grain yield (Cuthbert et al., 2008). 

Therefore, it is useful to study yield-associated traits for a better understanding of the 

genetic control and relationship between yield and related traits. 

 

Wheat gene pool is a huge reservoir of diverse genes/alleles however, accessing this 

resource from secondary, or tertiary gene pool can be challenging due to the lack of 

viability of the hybrids and limited or no recombination. Therefore, genetic resources 

from various gene pools remain under-utilized, however, when effectively transferred to 

elite breeding materials, have resulted in improvement in economically important traits 

such as grain yield, biotic and abiotic stress resistance, improved nutritional and 

processing qualities, etc. (Trethowan and Mujeeb‐Kazi, 2008).  
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The D genome of modern wheat has narrow genetic diversity as compared to its diploid 

progenitor (Ae. tauschii Coss.) because of the genetic bottleneck from the hybridization 

between tetraploid Triticum turgidum L. (2n = 4x = 28, AABB) and diploid Ae. tauschii 

Coss. (2n = 2x = 14, DD) (Dvorak et al., 1998; Wang et al., 2013, Strauss et al., 2021). 

Ae. tauschii is a valuable genetic resource for bread wheat improvement and has been 

most widely used in wheat breeding (Rakszegi et al., 2020). Useful genes or alleles of Ae. 

tauschii can be transferred to the bread wheat through direct hybridization (Sehgal SK., 

2006; Sehgal et al. 2011; Olson et al., 2013) and this additional genetic diversity in the D 

genome could bring higher grain yield, better end-use quality, and improved stress 

tolerance (Cox et al., 1995; Yang et al., 2009; Lopes and Reynolds, 2010; Jia et al., 

2013). Numerous useful genes for stress-related traits have been identified and 

introgressed from Ae. tauschii to modern wheat including leaf rust (Cox et al., 1994; 

Raupp et al., 2001), stem rust (Assefa and Fehrmann, 2004; Olson et al., 2013), powdery 

mildew (Miranda et al., 2006; Wiersma et al., 2017), root lesion nematode (Thompson 

and Haak, 1997), tan spot (Tadesse et al., 2006), Hessian fly (Cox and Hatchett, 1994) 

etc. Therefore, it is important to exploit the D genome donor (Ae. tauschii) of wheat for 

other economically important traits including yield.  

 

Mapping the quantitative trait loci (QTL) and identification linked molecular markers can 

facilitate rapid transfer and pyramiding of several genes and QTLs for various agronomic 

traits including yield. Subsequence cloning of the respective genes can help in better 

understanding the regulatory mechanisms of genes controlling wheat yield and this 

information could be used to wheat improvement.  
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Olson et al., ( 2013) develop a wheat D-genome Nested Association Mapping (DNAM) 

population by directly hybridizing eight Ae. tauschii accessions (TA1615, TA1617, 

TA1642, TA1662, TA1693, TA1718, TA10171, and TA10187) to a hexaploid hard white 

winter wheat (HWWW) breeding line KS05HW14-3 (Supplementary figure S1). A 

subset of 420 BC2F4:6 lines (DNAM Core) from 1,200 BC2F4 RILs were evaluated for 3 

years in 6 different winter wheat growing regions across the United States to identify 

several grain yields contributing QTLs, including an important QTL in chromosome 

7DS. The most significant marker linked to the 7DS QTL is at 11,665,611 bp and 

explained ~4% of the phenotypic variation in grain yield (Supplementary figure 2). In the 

current study, we further mapped the grain yield QTL on the short arm of chromosome 

7D and identified new molecular markers spanning the region.  

 

5.3. Material and methods 

 

5.3.1. Development of heterogeneous inbred families (HIFs) 

 

Three BC1F5 lines from the cross KS05HW14-3/TA1615 that were heterozygous across 

the 7DS QTL region were identified and self-pollinated to develop two heterogeneous 

inbred families (HIFs).    

5.3.2. DNA extraction and quantification 

 

DNA was extracted manually from leaf samples of 7-10 days old seedlings using 

MagMAX™ Plant DNA Isolation Kit based on MagMAX magnetic bead technology that 

eliminates the need for phenol/chloroform extraction or alcohol precipitation 

(MagMAXTM Plant DNA Isolation Kit). The complete DNA extraction protocol can be 



192 
 

 

 

found in the following website: https://assets.thermofisher.com/TFS-

Assets/LSG/manuals/MAN0015954_MagMAX_Plant_DNA_Kit_UG.pdf. The concentration 

of the extracted DNA was measured with the Synergy™ H1 multi-mode microplate 

reader (BioTek Instruments, Winooski, VT 05404, United States).  

5.3.3. Identification of SNPs and development of KASP™ assays 

 

To saturate the target regions with markers, the parents of the mapping population 

KS05HW14 (HWWW) and TA1615 (Ae. tauschii) were genotyped using wheat exome 

capture to identify many polymorphisms in the selected HIFs. SNPs located in the high 

confidence genes were selected using JBrowse (https://wheat-

urgi.versailles.inra.fr/Tools/JBrowse) for primer designing (KASP assays). Initially, the 

markers polymorphic among parents were identified for further genotyping of the HIF 

populations (Supplementary figure 3). KASP™ primers were designed using Kraken™ 

software from LGC genomics (https://www.biosearchtech.com/) and from exome capture 

data of the parents using the Triticeae Toolbox (T3) 

(https://shiny.triticeaetoolbox.org/primer_filter/).  

The total reaction volume for preparing KASP genotyping mix was 10 µL (per well), 

where 5 µL of genomic DNA (~50 ng), 5 µL of 2X KASP-TF master mix and 0.14 µL of 

KASP assay mix was used. The details KASP genotyping thermal cycle protocol is 

provided in tabular format (Table 5.1) and a qPCR machine (CFX96 Touch Real-Time 

PCR Detection System) was used for running PCR reaction and read the fluorescence 

signal generated after cycle completion. More details about KASP thermal cycle protocol 

https://assets.thermofisher.com/TFS-Assets/LSG/manuals/MAN0015954_MagMAX_Plant_DNA_Kit_UG.pdf
https://assets.thermofisher.com/TFS-Assets/LSG/manuals/MAN0015954_MagMAX_Plant_DNA_Kit_UG.pdf
https://wheat-urgi.versailles.inra.fr/Tools/JBrowse
https://wheat-urgi.versailles.inra.fr/Tools/JBrowse
https://www.biosearchtech.com/
https://shiny.triticeaetoolbox.org/primer_filter/
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can be found in KASP genotyping manual (https://biosearch-

cdn.azureedge.net/assetsv6/KASP-genotyping-chemistry-User-guide.pdf).  

Table 5.1. KASP thermal cycling protocol used in this study.  

 

Protocol stage Temperature Duration Number of cycles 

for each stage 

Stage 1 

Hot-start Taq 

activation 

94 °C 15 minutes × 1 cycle 

Stage 2  

Touchdown 

  

94 °C 20 seconds × 10 cycles 

61 °C (61 °C decreasing 0.6 °C 

per cycle to achieve a final 

annealing/extension temperature 

of 55 °C).  

60 seconds 

Stage 3  

Amplification 

94 °C 20 seconds × 26 cycles 

55 °C 60 seconds 

Stage 4 (read the 

plate) 

35 °C (any temperature below 40 

°C is suitable for the read stage) 

60 seconds × 1 cycle 

 

5.3.4. Genotyping and Phenotyping 

 

Initial seed production from HIFs was carried out in the greenhouse. All individuals in 

HIF were screened with two SNP markers (at 3Mb and 17 Mb) to identify recombinants. 

Candidate recombinants were screened with 11 KASP markers. As some recombinant 

lines were heterozygous in the target region, the recombinants were further grown in the 

greenhouse to identify potential homozygous recombinants in the advanced generations, 

and later seed increased for phenotyping. Homozygous recombinants were evaluated in 

replicated yield trials at one location (Brooking, SD) 2020-21 field season due to a 

limited quantity of seed. Data was recorded for spikelet number per spike (SNS), spike 

length (SL), spike number, row yield, and thousand kernel weights (TKW) in the 

https://biosearch-cdn.azureedge.net/assetsv6/KASP-genotyping-chemistry-User-guide.pdf
https://biosearch-cdn.azureedge.net/assetsv6/KASP-genotyping-chemistry-User-guide.pdf
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greenhouse, while only plot yield and thousand kernel weights (TKW) were recoreded in 

the field. 

5.4. Results  

 

5.4.1. Identifying recombinants  

 

Parents of the mapping population KS05HW14 (HWWW) and TA1615 (Ae. tauschii) 

were genotyped using exome capture and a total of 1,150 SNPs were identified in the 

yield QTL region (3-17 Mb) on chromosome 7DS. Selected SNPs were used to develop 

KASP assays to screen the recombinant lines and their progeny. More than 80 KASP 

markers spanning the 7DS QTL region were evaluated and 11 high-quality co-dominant 

markers were identified. More than 2,500 progenies F6, F7, and F8 progenies were 

screened with KASP markers to identify lines carrying recombination events in the target 

region (Table 5.2). We identified 70 lines with 15 potential recombination events 

(recombinants) between marker 7D_3793951 and 7D_17345795 including both 

homozygous and heterozygous recombinants. Only a few recombinants were 

homozygous in the target region in F6 lines and heterozygosity in the recombinant lines 

was a common problem and had to be selfed for two more generations to identify 

homozygous recombinants. A total of 29 homozygous recombinants lines were finally 

identified and grown in the greenhouse for seed increase.  
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Table 5.2. Selected markers frequently used for the genotyping of heterogeneous inbred families (HIFs) to identify heterozygous and 

homozygous recombinants. 

 
Sl. 

No. Marker_name Allele Sequence A1 A2 Chr. Position 

1 

NCB_7D1710406_A1 A1 GAAGGTGACCAAGTTCATGCTGgttcattacagcatgaggttcaGTatttA A G 7D 1710406 

NCB_7D1710406_A2 A2 GAAGGTCGGAGTCAACGGATTGgttcattacagcatgaggttcaGTatttG A G 7D 1710406 

NCB_7D1710406_C1 C1 gctagCatttccttcattgctgcaaG A G 7D 1710406 

2 

NCB_7D3785762_A1 A1 GAAGGTGACCAAGTTCATGCTcttcctcctcacacaaatctgctG C A 7D 3785762 

NCB_7D3785762_A2 A2 GAAGGTCGGAGTCAACGGATTgtcttcctcctcacacaaatctgctT C A 7D 3785762 

NCB_7D3785762_C1 C1 cggcttgcaaaggcttagatcTtcaT C A 7D 3785762 

3 

NCB_7D4289467_A1 A1 GAAGGTGACCAAGTTCATGCTactttggcgtcatcactatccacaA T G 7D 4289467 

NCB_7D4289467_A2 A2 GAAGGTCGGAGTCAACGGATTactttggcgtcatcactatccacaC T G 7D 4289467 

NCB_7D4289467_C1 C1 gtcagcctcgttgatgatggcaC T G 7D 4289467 

4 

NCB_7D5304440_A1 A1 GAAGGTGACCAAGTTCATGCTgacgaagaaccaaatgataggaggatTG C T 7D 5304440 

NCB_7D5304440_A2 A2 GAAGGTCGGAGTCAACGGATTggacgaagaaccaaatgataggaggatTA C T 7D 5304440 

NCB_7D5304440_C1 C1 gggggaaccttgggcactcG C T 7D 5304440 

5 

NCB_7D6696159_A1 A1 GAAGGTGACCAAGTTCATGCTgtctcctaacaagggaagaaactcaagT T A 7D 6696159 

NCB_7D6696159_A2 A2 GAAGGTCGGAGTCAACGGATTgtctcctaacaagggaagaaactcaagA T A 7D 6696159 

NCB_7D6696159_C1 C1 gcagcgactgatgagtgtggattAC T A 7D 6696159 

6 

NCB_7D7073644_A1 A1 GAAGGTGACCAAGTTCATGCTcatgttcaggttgggtcaatcgcT A C 7D 7073644 

NCB_7D7073644_A2 A2 GAAGGTCGGAGTCAACGGATTgttcaggttgggtcaatcgcG A C 7D 7073644 

NCB_7D7073644_C1 C1 agggcaaacatgacaaattctagtgataC A C 7D 7073644 

7 

NCB_7D10021983_A1 A1 GAAGGTGACCAAGTTCATGCTgggattccagagaggccggtT A C 7D 10021983 

NCB_7D10021983_A2 A2 GAAGGTCGGAGTCAACGGATTAgggattccagagaggccggtG A C 7D 10021983 
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NCB_7D10021983_C1 C1 caaacaccactgatgcagctccC A C 7D 10021983 

8 

NCB_7D12546901_A1 A1 GAAGGTGACCAAGTTCATGCTcgagcctcttgattcttccccG G A 7D 12546901 

NCB_7D12546901_A2 A2 GAAGGTCGGAGTCAACGGATTccgagcctcttgattcttccccA G A 7D 12546901 

NCB_7D12546901_C1 C1 atcggctatcaatcagcaggaggaG G A 7D 12546901 

9 

NCB_7D14783159_A1 A1 GAAGGTGACCAAGTTCATGCTgccatCGtccCtTctgaccgT T C 7D 14783159 

NCB_7D14783159_A2 A2 GAAGGTCGGAGTCAACGGATTccatCGtccCtTctgaccgC T C 7D 14783159 

NCB_7D14783159_C1 C1 gtggcgAttcgacatggaggcT T C 7D 14783159 

10 

NCB_7D17276946_A1 A1 GAAGGTGACCAAGTTCATGCTgtaatcaagcatctccccGgagtatT A C 7D 17276946 

NCB_7D17276946_A2 A2 GAAGGTCGGAGTCAACGGATTgtaatcaagcatctccccGgagtatG A C 7D 17276946 

NCB_7D17276946_C1 C1 agtgttgggtacgaaaccttccttcT A C 7D 17276946 

11 

NCB_7D17860294_A1 A1 GAAGGTGACCAAGTTCATGCTcaggccaggtatacgttgttatgcA A G 7D 17860294 

NCB_7D17860294_A2 A2 GAAGGTCGGAGTCAACGGATTaggccaggtatacgttgttatgcG A G 7D 17860294 

NCB_7D17860294_C1 C1 tccagcagcataggcacccatC A G 7D 17860294 
Chr. chromosome 
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5.4.2. Haplotype map of the QTL region 

 

The yield QTL used in this study was mapped in the distal 11 Mb on the short arm of 

chromosome 7D and the yield contributing allele came from the TA1615 (Ae. tauschii). 

To delimit the QTL region, we developed KASP makers between 3-17 Mb on 

chromosome 7DS. We identified 29 homozygous recombinant lines representing 7 

haplotypes (3-17 Mb) (Figure 5.1). On average, a marker was identified every 1.6 Mb.  

 

 Figure 5.1. The haplotype map of the recombinant lines in the 7DS QTL region (3-17 

Mb) 

 

5.4.3. Field and greenhouse evaluation in 2020-21 field season 

 

Data was recorded for yield and yield contributing traits from both greenhouse and field 

in 2020-21 season. In the greenhouse the wheat (KS06HW14) had a grain yield of 52 g 

and the wheat-tauschii introgression line had a grain yield of 47 g. The seven haplotypes 

demonstrated a grain yield ranging from 22 g to 67g. The number of spikelets/spikes 

(SPS) ranged 18.2- 22.0 and spike length (SL) ranged 8.6- 10.5 among the seven 

haplotypes. The thousand kernel weight (TKW) ranged 32.0 g to 37.9 g among the 

haplotypes whereas, KS06HW14 and wheat-tauschii introgression line had TKW of 31 

and 36.8g, respectively (Table 5.3).  We did not find any significant difference among 
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different haplotypes based in the greenhouse for grain yield, SL, and SPK. In the field  

Wheat -tauschii introgression line that carries the QTL region produced a higher grain 

yield (533.7g) as compared to the recipient wheat line KS06HW14 (503.0 g) (Table 5.3), 

however, the yield variation was not statistically significant. The mean yield (4 

replications) in seven haplotypes ranged from 322 g to 504 g, however, these were not 

statistically significant due to variability among replicates. 

Table 5.3. Phenotypic performance of parents and recombinant haplotypes for various 

yield contributing traits at greenhouse and field. 

  

Parents & 

Haplotypes 

Mean (greenhouse) Mean (field) 

SPS SL Tillers

/ Plant 

Grain 

Yield (g) 

TKW 

(g) 

Grain 

Yield (g) 

TKW 

(g) 

Wheat 

(KS05HW14) 20.4 9.3 4.4 52.1 31.0 503.0 29.0 

Wheat-Tauschii 

introgression lines 21.3 9.9 3.8 47.1 36.8 533.7 31.7 

Haplotype 1 20.8 9.2 4.2 44.1 33.0 398.0 30.0 

Haplotype 2 20.8 10.2 3.8 44.0 37.9 492.7 33.0 

Haplotype 3 22.0 10.5 5.1 67.4 35 485.0 32.0 

Haplotype 4 19.6 9.7 3.9 46.5 36.5 504.3 32.0 

Haplotype 5 20.7 9.6 4.3 47.5 33.4 500.0 30.3 

Haplotype 6 18.2 8.6 2.6 22.2 32.0 322.7 30.7 

Haplotype 7 21.5 10.0 3.8 35.0 33 409.0 31.0 
SPS; spikelet number per spike, SL; spike length, TKW; thousand kernel weights 

5.5. Discussion 

 

A total of 29 homozygous recombinants from 7 haplotype groups were identified and 

evaluated in the greenhouse and field. Heterozygosity and reduced recombination rate 

were evident in the QTL region. Finding more recombination events will be necessary to 

delimit the QTL region as suggested previously the biggest challenge for the use of 
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Aegilops is low recombination rates between Aegilops and wheat chromosomes in certain 

parts of the genome (Kishii, 2019). Field data from the 2020-21 season did not show any 

significant variation in yield which could be attributed to limited replications required 

proper statistical analysis. Further, unexpected variation among the biological replicates 

for various traits due to winter kill and drier conditions in the 2020-21 season, limited the 

statistical analysis. Grain yield perse has low heritability trait because it is highly 

regulated by environmental factors and interactions, this tends to hamper the progress in 

understanding the yield-related genes and gene network (Kuzay et al., 2019). Partitioning 

the gross yield into various yield contributing traits such as SPS, seeds per spike, TKW, 

etc. that have higher heritability can be an effective strategy to deal with this problem 

(Zhang et al., 2018). Significant variation for TKW between parental lines would be 

interesting to explore further along with other high heritable traits. Data from future 

(2021-22) replicated trials should help in demarcating the location grain yield QTL.  
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5.7. Appendix 

 

List of Supplementary Figures: 

 

 

Supplementary Figure S1. Development of the DNAM population by direct 

hybridization of wheat and tauschii  
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Supplementary Figure S2. The physical location of 7D QTL and the most significant 

marker linked to the QTL is at 11,665,611 bp. 

 

 

Supplementary Figure S3. Primer development and KASP genotyping of HIFs. 
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